
Padova University

Master thesis

Study of Driving Factors in Preliminary
Design of Autonomous Systems

Francesco Feltrin

supervised by
Prof. Alessandro Francesconi

September 2016

Abstract

The aim of the project is to individuate and understand the factors that affect the
preliminary design for autonomous systems the most, with a particular focus on standard
commercial satellites. This allows the solution of typical trade-offs (such as increased
subsystem efficiency versus increased mass) using analytical tools instead of numerical
optimization. Furthermore it can be used to quickly discard unappealing architecture
(reducing development time) and to prove or validate engineering intuition, accelerating
phase A.

Optimal system design goes one step further and, given a set of predetermined tasks
that need to be performed, identifies a single optimum design. Although promising, very
few successful examples are available in literature and they all deal with simple industrial
applications, within a tightly controlled environment.

This constitutes a significant barrier for its application to autonomous systems which
have to survive extreme, and extremely varied environmental conditions (i.e. launch seg-
ment and the space environment), perform considerably more tasks and satisfy stringent
mass optimization. Furthermore, definition of an optimum point over a multi dimen-
sional space (such as the space of all the subsystem requirements values) is non trivial,
as the weight to attribute to each parameter has to be chosen on case by case basis.

Instead, we propose to map subsystem requirements (such as authority of the ADCS,
battery capacity, on board storage capacity etc) as function of mission requirements.
Once we identify the set of all the systems that satisfy mission requirements, we can study
common traits or use some preference function (cost function) to choose an optimum
design.
By keeping isolated the optimization/preference function from subsystem requirements
definition, we maintain separated the constraints that are given from physics and mission
definition (such as an orbit that does not allow for certain power systems) and those
induced by the optimization. This is useful as the latter are typically based on more
dynamic parameters (such as estimated development cost for a particular subsystem and
performance level), which might be more subject to change during detailed subsystem
design.

Given a required output, for example the torque needed for a given manoeuvre,
and depending on system architecture, minimum subsystem requirement might be set
unequivocally or not. If the ADCS has only 3 Reaction wheels, the control law is unique,

2

if there are 4, we have one redundant DOF, which causes ambiguity.
In the second case, in order to directly link subsystem requirements to mission requests,
we need to define a control allocation strategy. If all actuators use the same resource
(e.g. current), a standard strategy is to minimize said resource consumption. If more
resources can be used, we need to decide how to distribute the burden; for example, if
all the reaction wheels are almost saturated, we need to decide whether to saturate one
(and eventually which one) or just increase the momentum of each one. The traditional
approach is to assign a set of more or less arbitrary weights or costs.

There are cases in which this strategy is justified, and an equivalence between two
non homogeneous resources can be objectively stated. Then, we can obtain subsystem
requirements directly from the mission requirement and optimal control. Said equiva-
lence does not often exist.

We propose to study, on an instant by instant base, the effect of the consumption of
one specific resource versus all others, and then actuate the consumption strategy that
promises best system performances. Two simplified models have been studied:

1. An hybrid vehicle has the option to either drain the battery, consume fuel or use a
combination of both to meet instantaneous torque demand. Both battery charge
and fuel quantity are finite. When the system is no longer able to provide the
required torque, (either because it has run out of fuel, current or both) the system
is said to be non responsive.

2. A singly redundant ADCS system based on reaction wheels is examined. To pro-
duce the time dependent requested torque, the system can allocate control among
the wheels. Level of saturation are tracked and when a reaction wheel is fully
saturated, the system is no longer able to use it.

In both simulations, we pursued the goal of maximum responsive time, the elapsed time
between simulation start and the instant after which the system is no longer able to
provide the required torque. Responsive time is a scalar value that can be used as an
objective measure for control allocation effectiveness. Analytical results have been found
and optimum (in the sense of responsive time maximizing) strategies have been identified
under some simplifying assumptions.

In fact, the effectiveness of such strategy depends on the degree to which output
request is known beforehand. First, we examined the case of perfect information (request
is a function of time, but is completely known from the start). Subsequently, we limited
information to statistical knowledge (only the average request is known in advance). It
has been found that optimal control allocation behaviour imitates that of an economy
in which resources prices are set using scarcity principle (the more scarce a resource is,
the more valuable it becomes).

Having developed an optimum strategy for maximum exploitation of on board re-
sources, we can assume its use (therefore eliminating any ambiguity), and determine
the amount of on-board resources needed for a statistically known mission requirement.

3

This result can be used to determine minimum necessary battery capacity, given eclipse
duration. In a similar manner, we can determine the minimum Reaction wheel angular
momentum necessary to deal with a periodic disturbance, on board data storage given
link availability period etc.

Other minimum subsystem requirements, such as authority or bandwidth can be
determined in similar ways from mission requirements. If each task (thermal control,
power generation, data handling) is performed by a non redundant subsystem, this
relationship is direct and unequivocal. If there is redundancy however, an allocation
strategy must be chosen.

We simulated a simple bus with Thermal control, Power system, on board data han-
dling and generic payload, which sets instantaneous requirements. Using an allocation
strategy to minimize authority we performed a Monte Carlo analysis to explore various
mission scenarios, different degree of redundancy and subsystem efficiencies.
Given the high number of parameters, more than 500 thousand simulations were per-
formed to increase confidence in the results. For a real mission however, many of these
variable would be fixed by external conditions, allowing for a much faster, possibly an-
alytical, solution. Strong correlation between mission requirements and reduction in
minimum authority was found. Authority requirements were considerably lower when
redundancy was accounted for, with average authority reduction between 10 and 15%
(for each subsystem, compared with the single actuator case).

Finally, to better appreciate the advantages of the proposed method, we applied it to
a specific mission. To further specify the problem, we chose to pursued mass minimiza-
tion. This optimization choice allows us to solve many trade offs, by providing quanti-
tative assessment on which subsystem authority has the greatest effect. To implement
the approach, we developed parametric models for each subsystem from a database of
cubesat components. Results from this optimization place the average decrease in mass
between 5 an 10 %.

Therefore we can conclude that the added degrees of freedom featured in a
redundant architecture can be used to reduce overall system requirements,
under the assumption of appropriate control allocation algorithms. System flexibility
gives the algorithms more way in which to accommodate external requests, allowing for
a case by case optimization, based on up to date information about demand, instead of
an optimization at the design level.

4

Introduction: Control allocation and Design

We can think of a subsystem as a set of interconnected actuators and a set of laws
to coordinate them. For example, in the case of the thermal control subsystem, a
resistor (the actuator) would depend on the power provided by another subsystem (PS),
and would be governed by a law stating how much current the two subsystem need
to exchange. We can represent both these ideas using a network diagram as shown
below. Every subsystem is a node that can convert some input in output with a known
production function, the connections show what kind of relationship are possible and
the laws will quantify each exchange among the allowed interaction. Some subsystem
provide the initial input (such as batteries). Finally, the system is able to produce
what is of interest, the system outputs, which are usually the end goal of the subsystem
cooperation efforts.

i1

i2

T

ṁf

q

System Output
T

S1

S2

S3

S4

S5

Figure 1: A system as a network of subsystems

Example 0.1. The network in figure 1 could be the representation of the architecture
of a ground propulsion system. The battery S1, provides current i1 to the starter electric
motor S2 which converts it into torque T , starting the engine S4. Once S4 is self
sustaining, it exchanges heat with the radiator S3 (which might consume current as
well) and it rotates the alternator, which will ultimately recharge the battery.

The above is a set of subsystems (S1, ..., S5), and a control allocation rule
which from the required torque T , is able to come up with the commands for every
subsystem. From the control allocation standpoint, this approach shows how the same
result might be achieved in many different way, which implicitly raises the question of
which is better, hence optimum allocation.

To design the system and its parameters (such as the authority of each subsystem or
their efficiency) we can use the network diagram to compose the production function of
each component in that of the system. This however, is still dependent on the subsystem
interaction laws.

5

The problem of control allocation/management can be solved independently from the
problem of subsystem parameter design. In fact, we can operate under the hypothesis
of a given design, and solve the management. In general however, there is no reason
to assume the system to be bi injective; given a wanted output there usually is more
than one way to produce it. This ambiguity is even more pressing in the case of Fault
tolerant design, in which actuators are many times the number of degrees of freedom in
order to assure operational continuity even after a failure event. To solve this, we will
need to develop a concept of optimal management, or a way in which to express a
preference.

Example 0.2. Redundancy and choice. Assume that the system in figure 1 is an
hybrid car in which the internal combustion engine and electric motor are connected
with a planetary gear. Upon the driver’s request, the system must deliver a torque T .
There are infinite ways to have the electric motors torque Ts and the internal combustion
engine’s Tic add up to T . Even though they produce the same torque, it is clear that
any combination of electric and combustion will have different secondary effects that
we might want to consider. The control allocation algorithm will have to express a
preference on the secondary condition, and then make the choice.

Once an optimal management algorithm is defined, we change the design (choice of
subsystems) and find the new optimum management. By comparing the performances of
the various systems under optimal management (hence how well they react to the same
requests), we will be able to chose the system design that yields the locally optimum
system.

Example 0.3. A racing car. It might be useful to apply this to the design of a racing
car. The performance during the race will be the result of both the car design and the
pilot skill (management).
With infinite budget, one can think to produce every possible car, have the same pilot
race it, measure the time and hence chose the optimum vehicle design. While the design
of the car could theoretically be guess work, the pilot must be consistent and possibly
the best we have.
This naive optimization method might not be absurd if, instead of building the car, we
use computer simulations.

6

Optimum Management

System management can be loosely defined as the set of instruction to give to every
subsystem in order to obtain a preferred system behaviour. It should not come as a
surprise that it heavily depends on the system design.

In this chapter, we will assume the system design to be given, from architecture to
subsystem parameters, and examine a few types of basic system architecture types that
can be used to solve the management of any system architecture/network.

We will begin with a formal definition of subsystem and the basic assumptions we
will use in order to establish a common notation.

SISO Subsystem model

Definition 1.0.1. Subsystem
We define a subsystem as a component that allows management, that is a component in
which the system management algorithm can directly control the input.

Example 1.4. A simple gear is not a subsystem because it can not be managed; It
converts a torque T1 into a torque T2 according to its geometry

T1 = τ · T2

The gear ratio τ can not be changed by the management. Hence, we can not con-
trol/manage the power the gear produces by acting on the gear itself.

Example 1.5. If we put a clutch before the gear, we have a subsystem. We have to
decide when to engage or disengage the clutch; we can perform a management by a crude
PWM.

Example 1.6. A gearbox is also a subsystem; as we need to decide which τ to use
among a few options.

The reasoning behind the previous definition is that, since we are interested in the
management of the system, we don’t need to care about components which, by definition,
can not be managed. Furthermore, using this definition eventually each component will
be part of a subsystem.

7

We will represent a subsystem as shown in figure 1.2, to emphasise that it consumes
and produce some goods (g0,g1) and requires some form of management (xi).

g0 g1

xi

Si(xi)

Figure 1.2: Siso Subsystem model

Since we can control this agent, there will be two functions

g 0,Si(xi) g 1,Si(xi)

that describe the relationship between the operational level xi and the consumption/production.
It is worth noticing that these functions are well defined.1. We can write a vector, called
production plan

Si(xi) =

(
g 0,Si(xi)
g 1,Si(xi)

)
where, according with the usual notation, a negative value means consumption while
a positive one represent production. We will call xi the level of operation, which we
assume always in [0, 1] (or [−1, 1] is the subsystem operations can be reversed), where 0
means that the system is turned off and 1 means that the system is working at maximum
authority.

To simplify the notation, we will drop the subscript Si , and write gp(xi) instead of
gp,Si(xi) whenever this doesn’t create ambiguity.

In general, we will assume that a SISO system either simply produces something
without any input (like a battery or a fuel tank) or transforms some good in some
other good. In the latter, we can see that in the space input-output (g0, g1), a system
will work in the second or fourth quadrant, that is, consuming one resource to produce
another.

1These are indeed functions, because we have designed the system to be controllable

8

g0

g1

Both g0 and g1 are being produced

Consume g0 to produce g1

Both g0 and g1 are being consumed

Consume g1 to produce g0

xi = 1

xi = 0

xi = −1

Figure 1.3: The production function of a SISO system in the input-output space.

Notes for the economic model;
These assumption will always be used unless otherwise specified; they are reasonable for
engineers but are often explicitly stated in economic models of networks, and therefore
might be interesting for economists

1. Possibility of inaction:
We assume each subsystem can be turned off completely. That is Si(0) = ~0 for all
subsystems.

2. Free disposal:
We want to allow a subsystem to be running at sub optimal capacity, which means
we allow a system to input more resources than those that it uses. 2

3. Non decreasing production set3;
that is, by consuming more resources, the outputs can not decrease.

|g0(x̂)| ≥ |g0(x)| ⇒ g1(x̂) ≥ g1(x)

We can always assume that the level of operation x is monotonally linked to both
production and consumption;

x̂ > x ⇒ |g0(x̂)| ≥ |g0(x)| and |g1(x̂)| ≥ |g1(x)|

since we have designed it this way.

2This is strictly not true for engineering systems however, we can assume that it is if we are sure
that the economic solution we’ll find will not use it (which is reasonable, as the maximum profit must be
on the boundary of the production set) or if we assume that the exchange doesn’t really happen. The
subsystem pays for more input and disposes of it by letting it stays in the previous system.

3Since we allow for free disposal, the production function is extend to a production set

9

A more formal definition of management algorithm can now be introduced.

Definition 1.0.2. Management algorithm
Let S be an ensemble of n subsystems that operates with L goods; A management algo-
rithm is an algorithm that, given the system requirements ~R, produces the operational
level vector X.
x1

x2

. . .
xn

 ∈ [0, 1]n such that ~S(X) =


g0,S1(x1) + g0,S2(x2) + · · ·+ g0,Sn(xn)
g1,S1(x1) + g1,S2(x2) + · · ·+ g1,Sn(xn)

. . .
gL,S1(x1) + gL,S2(x2) + · · ·+ gL,Sn(xn)

 =


r1

r2

. . .
rL

 = ~R ∈ RL

(1.1)

Remark. Note that;

1. If a subsystem s takes no part in the production or consumption of a given good
p, we have

gp(xs) ≡ 0 ∀xs ∈ [0, 1]

This means that usually the function ~S has a lot less terms than those shown
above.

2. Usually, n > L; there are more subsystems that goods exchanged. This happens
in redundant systems, where the number of actuators is greater than the number
of outputs. This means that we have more unknowns than equations, and the
solution, if it exists, might not be unique. This is the problem of management.

If n < L some goods would be coupled, that is, we could not produce (consume)
one without producing (consuming) the other as well4.
If n = L, the system would be highly vulnerable to malfunctions; each subsystem
failure (which we can model by taking out a subsystem production plan Si) will re-
sult in a system failure (when the system is no longer able to meet the requirements
~R).

For some system architectures, the problem of system management is closed ; there
is no ambiguity. For every system requirement ~R (system output) with some reasonable
choices, we can determine the operational level X. We can write an injective function
S.
We want to find out when this is the case, and what happens otherwise.

4This might still happen for some subsystems, but not for all. There are some instances in which this
is tolerable, however, the more interesting case is the first one.

10

The reservoir subsystems

Since we have introduced a more formal definition of management algorithm, we want to
give an idea of optimum management, which is the management algorithm that optimizes
resource consumption.

The system depicted in figure 1.2 is an active component, or a subsystem that con-
verts some amount of the good g0 into some other amount of another good g1. However,
since we are mostly interested in autonomous systems5 the resources are typically inter-
nal and therefore finite. Quite intuitively, at the beginning of each productive chain we
have a reservoir subsystem that provides the initial good.
Examples of such subsystem might be a fuel tank, a battery, a reservoir of cool liquid
for thermal control etc.

In order to facilitate the accounting of how much resources we are consuming with a
given strategy, we can define an adjoint function similar to ~S(X),

~Q(X) : [0, 1]n → RL ~Q(X) =


g0,Sj (xj) + g0,Sk

(xk) + . . .
g1,Sp(xp) + g1,Sr(xr) + . . .

. . .
gL,Sm(xm) + gL,Sd

(xd) + . . .

 = Q0

The only difference between ~Q and ~S is that the number of reservoir subsystem will
be usually considerably lower than the number of active subsystem. We can expect
typically only one reservoir subsystem for each good, (for example one set of batteries
can be viewed as a single battery).

Remark. The agglomerate consumption function does not add anything; all the infor-
mation we need are already present in the agglomerate production function ~S. However,
having a function that keeps track of all we are consuming can be useful to define some
overall efficiency.

5Even if we are not, this still applies as the reservoir can be simply the subsystem that brings resources
into the system.

11

Zero redundancy system; trivial management.

Imagine a series (or chain) of SISO subsystem, each one producing the good the following
one needs.

g1 g2 g3 g4 System Output
r4

S

S1(x1) S2(x2) S3(x3) S4(x4)

Figure 1.4: A Zero Redundancy System, simple chain or a series

To solve the management means to find X such that

X ∈ [0, 1]4 such that ~S(X) =


g1,S1(x1) + g1,S2(x2)
g2,S2(x2) + g2,S3(x3)
g3,S3(x3) + g3,S4(x4)

g4,S4(x4)

 =


0
0
0
r4

 = ~R ∈ RL

The request is well posed if r4 is in the range of possible output for the system; we
assume

~R ∈ Im(S) Im(S)=̇
{
~ρ ∈ RL such that ∃X ∈ [0, 1]n, ~S(X) = ~ρ

}
We now proceed to solve the management for a chain; There are two possibilities,

depending weather all the gi are invertible, or not.

1. All the gi are invertible6

There is no ambiguity in the network management. From r4, inverting g4(x4) we
can determine x4, hence x3 and so on up to x1. Formally the system is

g4,S4(x4) = r4

g3,S3(x3) = −g3,S4(x4)
g2,S2(x2) = −g2,S3(x3)
g1,S1(x1) = −g1,S2(x2)

⇒


g4,S4

−1(r4) = x4

g3,S3
−1(−g3,S4(x4)) = x3

g2,S2
−1(−g2,S3(x3)) = x2

g1,S1
−1(−g1,S2(x2)) = x1

2. Not all the subsystem function are invertible.
We can reduce the hypothesis of invertibility to the weaker hypothesis of non
decreasing subsystem production function. The concept of efficiency allows us to
swiftly deal with the issue of ambiguity. Assume that figure 1.5, represents

S4(x4) =

(
g3(x4)
g4(x4)

)

12

−g3

g4

r1

r2

x4 = 0

x4 = 0.25

x4 = 0.5

x4 = 0.75

x4 = 1

Figure 1.5: A patologically non invertible production function

When asked to produce the quantity r4, any x4 ∈ [0.25, 0.5] would be a viable
option. However, it is clear that x4 = 0.25 is the best choice as it minimize
consumption of g3. The segment between x4 = 0.5 and x4 = 0.75 poses no problem.
We can then define a new, invertible S4 as

S′4(x4) =


S4(x4) if x4 < 0.25
S4(0.25) if 0.25 ≤ x4 ≤ 0.5
S4(x4) if x4 > 0.5

S′4 is now invertible and we can proceed as in the previous case.

Note that:

1. We are assuming the system to be a productive chain, therefore we try to minimize
consumption. If this were a disposal chain, our goal would be to consume as much
as possible, hence we would pick the point that maximizes consumption.

2. We have obtained an invertible function, but (g′4)−1 is not continuous. This can
be overlooked as long as we are dealing with static requirements, but it might be
a problem once we enter the realm of dynamics, unless we are dealing with zero
order subsystems.

We formalize the above method with the concept of engineering efficiency or
strong efficiency. We define the efficiency of a subsystem Si as usual

εi(xi)=̇
gp,Si(xi)

gp−1,Si(xi)

6We are implicitly relinquishing the option of free disposal

13

then, we can restrict an originally non injective function Si to

S′i(xi) =

{
Si(xi) if g−1

p (rp) is unique

Si(x
?) if g−1

p (rp) is a set and x? ∈ g−1
p (rp) such that ε(x?) ≥ ε(x)∀x ∈ g−1

p (rp)
(1.2)

Note; one can verify that x? exists by proving the g−1
p (rp) set to be closed and

bounded (Extreme value theorem).
This maximizes system efficiency. Since all the production functions are increasing

(non decreasing), using less resources in the a step will not use more resources in the
previous. Then, this strategy can lead only to less or equal consumption.

Again, we want to point out that a zero redundancy system is highly vulnerable
to malfunctions and losses in efficiency, as the system efficiency can be written as the
product of the chain of efficiencies.

εS =
r4

g1(x1)
=

r4

g3(x4)
· g3(x3)

g2(x3)
· g2(x2)

g1(x1)
= ε4 · ε3 · ε2

Note that:

1. Since the requirements are given (later we will see that these descend from the
control theory), maximizing efficiency means to minimize resource con-
sumption.

2. The efficiency of the system S1 is not defined, as it is supposed to be a simple
supplier.

We have solved the management of a generic chain, which now can be simplified as
a single subsystem.

14

Non trivial management

The ambiguity in the system S will be on the combined production of S1 and S2. Hence,
we will assume that each production function is already in its invertible restriction.

g1,S1

g1,S2

g2
r2

S

S1(x1)

S2(x2)

+ S3(x3)

Figure 1.6: A Non-Trivial system with SISO subsystems

The management problem is to find

X ∈ [0, 1]3 such that ~S(X) =

(
g1,S1(x1) + g1,S2(x2) + g1,S3(x3)

g2(x3)

)
=

(
0
r2

)
= ~R ∈ R2

The above system shows one degree of redundancy; the requirements of the subsys-
tem S3 can be met with any combination of g1,S2 +g1,S1 such that g2,S3(g1,S2 +g1,s1) = r2.

Now that we have a mono dimensional choice, which is the best combi-
nation of g1,S2 + g1,S1? How do we chose?

We can differentiate between two cases; depending on whether or not S1 and S2 use
the same resources. In the first case, the whole system can be still seen as a SISO system,
while in the second, it has to be treated as a MIMO.

S1 and S2 homogeneous

In this case, both subsystems S1 and S2 transform the same input in the same output.
The only presumable difference between the two system will be the respective efficiency.
Notably, we can still define an objective strong efficiency for the first step, and the
whole system as the ratio output input

εS =
g2,S3

Input
=

g2,S3

fi(X)

Where fi(X) : Rn → R is the function that counts the amount of the resource fi
consumed by the reservoirs (components such as a fuel tank, a battery, a pressure
vessel).
By hypothesis, both S1 and S2 use the same resource, hence the denominator of the

15

efficiency is a scalar, and the definition is meaningful. We can then assume that the best
solution will be that which maximises system efficiency εS .

Example 1.7. Let S1 and S2 in figure 1.6 are two batteries that supply a current to
the subsystem S3. Even though nominally identical, they may exhibit different efficien-
cies due to their recent operational history; assume for example that S1 is overheated,
changing the chemical reaction effectiveness. We may chose to drain S2 more than S1,
to obtain a better system efficiency.

Note that the efficiency εS is

1. Meaningful, because is a well defined fraction (we are not dividing by a multiple
of zero) and we can always confront two option with their efficiency to find out
which is best

2. Objectively defined, because we can not distinguish between the amount of
resources that are used by S1 or S2, since they are of the same kind/quality.

To write a management function that maximizes efficiency, we can follow the process
we used for a chain.

S1 and S2 not homogeneous

As mentioned before, we have to chose one element (X) for each R, so that we can invert
the function ~S(R), and solve the management problem.

If the system deals with multiple goods, its consumption (input) has to be described
with a vector in Rn. Then we can no longer define an efficiency as the ratio of output
input, because vector division is meaningless. We can still think to use a concept similar
to efficiency ; since the requirements (outputs) are given, we could just focus on mini-
mizing consumption (input), without performing a division.

This leads to a somewhat similar problem; in Rn it is not obvious which among two
element is the smaller.

Example 1.8. Let figure 1.6 be a heating system; S1 is a resistor, while S2 a hot liquid
from which we extract heat. What should we use to heat the subsystem S3? How can
we compare two possible alternative? Are we using less resources if by using electric
energy, the hot liquid, or a combination of the two?

There are two conventional options:

1. Since we can not compare two element in Rn, we arbitrarily define a function
C : Rn → R, so that we can define a total order on the image of the element of Rn
(the usual order ≤).
It is clear that this function can not be injective (due to the dimensions of the
problem). Hence, we may find that the maximum value of the cost function C will
be linked to many points of the domain, and the problem is still not completely
solved.

16

Example 1.9. A consolidated approach for the function C is to assign a cost/price
to each resource the system uses. The total cost of a strategy/choice can then be
computed as

C(X) = x1 · c1 + x2 · c2 + ...+ xn · cn = ~x · ~C

The cost function can be seen as a simple dot product, once we have identified the
cost vector ~C such that C(X) = XT · ~C.

~C =

(
1
5

)
C(X) = 1 · x1 + 5 · x2

0
2

4 0

2

40

20

x1

x2

~C(X)
level curves

0 1 2 3 4 5

0

10

20

30

x1

Figure 1.7: Cost function; level curves are points which are equally expensive, and
therefore equally valid.

Example 1.10. Another idea is to use the norm, which can be seen as a particular
cost vector dependent on the quantity itself (~C = X). One should not think of
this as an objective choice just because it doesn’t require an arbitrary cost vector.
The relatives weight are implicit in the choice of the unit.
If we are comparing fuel mass and current, there is big difference between the norm
of a vector written in kg or in grams!

Once a cost function is defined, finding the optimum value is an exercise that can
be solved in various ways. Numerical solution can be used, Lagrange optimization
and so on. However, the question remains on how to assign the cost vector in an
objective way. This is crucial only for the the concept of optimum allocation or
management, the system will operate with any cost vector but in a suboptimal
way.

17

2. We accept a partial order.
This means that we accept that there will be many solutions which we are not able
to compare. Given two elements in Rn we may or may not be able to say which is
bigger/better. This is quite similar to the above case except for the fact that we
don’t have to chose the price vector C. In this sense, this method is objective.
In fact, one can prove that, if a maximum (minimum) exists for this partial order,
it is also the maximum (minimum) for any choice of price vector ~C.

Partial order definition

Definition 1.0.3 (Partial Order). Let A be a set and v a relation on A. v is a
partial order on A if it is

(a) Reflexive: ∀a ∈ A, a v a
(b) Antisymmetric: a, b ∈ A, a v b and a w b⇔ a = b

(c) Transitive: a, b, c ∈ A, a v b and b v c⇒ a v c,

Example 1.11. Partial order ”divide exactly”
Let us define the divide order on the natural set a, b ∈ N, as a v b if ∃x ∈ N such
that a · x = b.
We can check that this relation is reflexive, antisymmetric and transitive, in fact

(a) ∀a ∈ N, a · 1 = a

(b) If ∃x ∈ N such that a · x = b and ∃ y ∈ N such that a = y · b, then clearly
a = a · x = b = b · y ⇒ x = y = 1 hence a = b.

(c) If ∃x ∈ N such that a · x = b and ∃ y ∈ N such that b · y = c, then a · x · y = c
hence a v c.

Definition 1.0.4 (Total Order). If, for every couple of elements in A, we can say
either a v b or b v a (or both), the partial order is said to be a total order.

Example 1.12. The partial order in example 1.11 is not a total order. To prove
this, note that 2 does not divide 3 and 3 does not divide 2.

Remark. Recognize that, on the vector space Rn the norm of a vector does not
constitute a partial order as, in general, it is not antisymmetric (two vector can
have the same norm and not be the same vector).

A partial order on Rn can be defined as

~a,~b ∈ Rn ~a� ~b ⇔ ai ≤ bi i = 1, 2, ..., n

Clearly, this is reflexive, antisymmetric and transitive. However this does not
constitute a total order, hence there are elements of the domain that can not be
compared with one another. This is known in economics as Pareto efficiency.

18

To understand the value of this definition, consider the following case in which we
use it to compare the points A,B,C,D in R2

x1

x2

A = (2, 2)

B = (5, 4)

C = (1, 1.5)
D = (4, 0.5)

Figure 1.8: A partial order in R2

In figure 1.8 we can recognize that

C � A A� B D � B

But we can not say either A� D nor D � A.

However, as mentioned before, this partial order has the propriety to be objective;
notice that, if A� B the cost of the operation A is less than that of the operation
B regardless of the cost vector ~C ∈ R+. In fact

~C ·A ≤ ~C ·B c1a1 + c2a2 + · · ·+ cmam ≤ c1b1 + c2b2 + · · ·+ cmbm

c1(a1 − b1) + c2(a2 − b2) + . . . cm(am − bm) ≤ 0

Which is true when we assume that A � B, ~C ∈ R+. The partial order � is a
very strong condition, but it isn’t always applicable.
Then, if A is a minimum (with regard to the� partial order), it will be a minimum
for every possible cost vector we could think of.

Finally, we can come up with more creative ways to establish a preference. We would
like to have the best of both options, which is a cost function, which is also objective.
This will be the topic of the next chapter.

19

A new approach to resource
allocation strategies

In the previous chapter, we showed some methods to manage a resource consumption
once a cost vector has been chosen. In this chapter we will explore the reasons we might
use to chose such a vector.

Intuitively, the cost vector establishes an equivalence among our finite resources; It
states, for example, that 1 g s−1 of a specific fuel might be equivalent to a current of 1
A . But how can we compare two non homogeneous quantities ?
In well defined circumstances, the laws of physics can establish (or at least suggest) an
equivalence; we can compare different types of fuel on the basis of the chemical energy
they released when burning. However, more than one parameter might be involved in
the comparative evaluation; we might wish to compare densities, economic costs, reac-
tivity (as in the capacity to oxidise the engine) etc.

To begin with, let us use the equivalences that are implicit in the system architecture
itself. An equivalence among different resources might be established using
the production functions of subsystems with homogeneous output.

Example 2.13. Reaction wheel and thrusters for Attitude Control
Assume we have a satellite which can control its orientation using both reaction wheels
and thrusters. The total output torque T will be the sum of the torque given by both
subsystems, Ttot = TRW +TTh. We can write each subsystem contribution as a function
of its resource consumption; Ttot = TRW (i) + TTh(ṁf). We can therefore establish and
equivalence among the two inputs for each level of produced output

T ′ = TRW (i′) = TTh(ṁ′f) i′ = T−1
RW (T ′) ṁ′f = T−1

Th (T ′)

It is not unreasonable to say that the current i′ and fuel flow ṁ′f are equivalent in their
ability to produce the same torque T ′. The two quantities i′ and ṁf obviously have
no reason to be the same; they will just cost the same

cm · ṁ′f = ci · i′ ⇒ cm
ci

=̇
i′

ṁ′f

We need to consider some issues

20

1. If the relative cost if determined using the same equation that states system output,
we are not adding anything. This has the advantage of being objective, but does
nothing to solve the problem. We are merely using the same equation twice.
The real cost choice will be something similar, but not exactly as shown
above

Example 2.14. Assume that the production functions of example 2.13 are both
linear; then

T = αi+ βṁf i′ =
T ′

α
ṁ′f =

T ′

β
→ cm

ci
=

T ′

α
T ′

β

=
β

α

The equation cm · ṁf = ci · i means that if we both increase a current by∆i and
decrease fuel flow of ∆ṁf = ci

cm
∆i, we will end up paying the same price. The

cost function is
C = ci · i+ cm · ṁf

Then if we add the cost function ~C = (ci, cm)t in order to close the problem of
management we find that{

T = αi+ βṁf

C = ci · i+ cm · ṁf
⇒

{
T
α = i+ β

αṁf
C
ci

= i+ cm
ci
· ṁf

⇒ C =
T

α
· ci

Hence, given a torque requirement, any choice of i, ṁf will cost the same; We can
not use this exact method to close the problem.

2. Once again, we require the production function to be invertible. We have shown
how the hypothesis of maximum efficiency is enough to write an invertible restric-
tion of a production function. However, consider that some values of T might be
in the co domain of only one of the subsystem. In this case, we can think of the
relative cost either as cm =∞ or meaningless.

3. If the production functions are linear, price is constant. Otherwise, it usually won’t
be.

Another cost definition strategy
As shown above, if we want to base our cost/equivalence on system architecture, we need
to find a function which is independent from the system production function. A rather
objective and sensible choice to define the costs would be to pursue maximum system
duration. We want to find the cost function ~C that maximizes responsive time, which
we define as the time in which the system is able to meet requirements.

Remark. The above goal is tailored for autonomous systems, but can be extended to
almost any system. There are however, some notable exceptions:

21

1. Systems that have access to unlimited external resources.
We can imagine an industrial system that is plugged in the electric grid for power,
obtains water for cooling from a river and so on. In this instance, we don’t need to
find a cost vector, because real word economics does it for us. We have an objective
cost function that we usually wish to minimize, hence there is no ambiguity.

2. Systems with pre defined, finite life.
This might be the case of a transport module in a space mission. Once the payload
has been placed in its final orbit, there is no advantage in prolonging operative life
of the transport system. However, if we solve the problem above, we can design
a system which reach its end life exactly when we want it. This systems would
minimize cost.

To develop the thought above into a coherent and somewhat general theory, we will
start a simple system as a guide model.

Hybrid car model hypothesis

As a guide system, we will use a hybrid car, comprising of two engines, one electric and
one internal combustion.

i

ṁf

Ti

Tm
T

Figure 2.9: Our guide system for this chapter

Assuming linear production functions, the overall system output is given by

T = α · i+ β · ṁf (2.3)

Each engine consumes a characteristic resource, current and fuel respectively. These are
both finite resources, hence∫ tf

0
i(t) dt = Ah

∫ tf

0
ṁf (t) dt = Mtot

22

The goal is to last as long as possible, or to obtain tf max. Formally, T (t) being the
torque requirement at a time t, we define

tf =̇max

{
t̂ ∈ R+ such that

∫ t̂

0
i(t) dt ≤ Ah

∫ t̂

0
ṁf (t) dt ≤Mtot and ∀t ≤ t̂, T (t) = αi(t) + βṁf (t)

}
The two functions i(t) and ṁf (t) are the variable we can use to maximize tf .

Remark. Notation:

1. Ah is a measure of the battery capacity (Ampere hours).

2. In an attempt at a more intuitive notation, instead of using x1 and x2 to describe
the operational level of the electric engine and the combustion engine, we will use i
and ṁf . They are pure numbers in [0, 1] and can be defined from the real measured
consumption I and Ṁ as

i=̇
I

Imax

[
A

A

]
ṁf =̇

Ṁ

Ṁmax

[
kg

kg

]
How the cost function decides what to use

We have one equation in two unknowns. To solve the system, we need another equation,
that is how much we value ṁf compared to i. Let us add the generic linear cost function{

T = αi+ βṁf

C = ci · i+ cm · ṁf

Obviously, specific and total costs ci, cm, C are unknowns. The problem becomes finding
a strategy to define c1, c2 so that minimizing the cost function will yield the longest tf .

Form the second equation we obtain an equivalence among the two goods. The same
cost can be paid by either using only i or ṁf .

C = ci · i = cm · ṁf ⇒ ṁf =
ci
cm
· i = k · i

The parameter k sets an equivalence between electric energy consumption and fuel
consumption. It states the relative preference between the two.

Remark. Note that:

1. Only relative prices matter. If we have L goods, and ~C ∈ RL is a cost vector, the
solution to the optimal management problem will be the same for every λ~C, λ ∈
R++ cost vectors. Since we only need to define L − 1 relative prices, in our case
the parameter k is enough (L− 1 = 2− 1 = 1).

2. Here, we are using i and ṁf as quantities, against what we previously stated on
them begin operational levels. However, under the hypothesis of linear production
functions7, the two differ by a mere constant, which we can imagine included in
the costs.

7Even without linear production there are very tightly bounded.

23

Now, we minimize cost C ′=̇ C
cm

and see which k leads to maximum tf .{
T = αi+ βṁf

C ′ = k · i+mf
T = αi+ β · (C ′ − ki) C ′ =

T + (βk − α)i

β

Since ṁf = f(i), the only way we can minimize cost is by acting on i,

∂C ′

∂i
=

(βk − α)

β

The sign of the derivative is given by

βk > α ⇔ β

cm
>
α

ci

Notice that

• ∂C′

∂i > 0;Increasing i we increase cost. The amount of torque produced by fuel
that we can buy with one unit of currency is greater than that using electricity.
The, by increasing i (hence decreasing ṁf) we increase cost. We chose i as low as
possible, while still meeting the require T .

• ∂C′

∂i < 0; increasing i we decrease cost. To minimize cost, we require i as big as
possible, i = 1.

Discriminant cases

Every point on the plane i, ṁf in fig (2.12) can be associated to a torque value. By
tracing constant value lines for T (t), we can identify some critical values.

i

ṁf (1, 1)

T1

T2ṁf = T−αi
β

T1 < T2

Figure 2.10: Production function T (i, ṁf) on the operational level domain

We can identify two notable values for the output T . If the requested torque T is
below a certain level (T ≤ T1), the level curves intersect both axis. This means that,
even if one of the two subsystem were to shut down, we would be still able to meet the
required T . While T ≤ T1, maximum consumption of i means zero consumption of ṁf

24

and vice versa.
For values above this threshold (T1 ≤ T ≤ T2) we can meet requirements with just the
combustion engine, if we so chose. We can not do the opposite. Hence, even maximum
consumption of i (i = 1) requires ṁf 6= 0 to produce T . For values T ≥ T2 we need to
use both systems at all times.
We will call the first case complete redundancy, the second partial redundancy
while the third cooperative redundancy.
Note that the discriminant among the 3 cases is quite simple

T1 = min {α, β} T2 = max {α, β}

It is clear then that, if we run out of fuel, every request of T above T1 will not be
feasible, and the system will become non responsive. This is a simple case in which there
are objective reasons to regard fuel as more valuable than current for this subsystem.

Constant parameters

We assume complete knowledge of all time varying constant T (t) and that α(t) =
α, β(t) = β are both constant. We want to and find analytical equation for tf , which we
want to maximize, eventually using the parameter k.

Complete redundancy (T ≤min {α, β})

To begin with, assume that T is constant; since both engine can meet requirements
independently of each other, we do not need to worry about which is going to run out
of resources first. With a simple integration we have that∫ tf

0
Tdt =

∫ tf

0
αi(t) dt+

∫ tf

0
βṁf (t) dt

T · tf = α ·
∫ tf

0
i(t) dt+β ·

∫ tf

0
ṁf (t) dt = α ·Ah+β ·Mtot ⇒ tf =

α ·Ah+ β ·Mtot

T

Which is clearly independent on i(t), ṁf (t) and therefore k.

This result holds even if T (t) is a generic function, but always less than T1. Hence,
since how we distribute resources doesn’t matter, tf is independent of the price
vector.

Partial redundancy (min {α, β} ≤ T ≤max {α, β}

Assume again that T (t) is a constant; the case above applies with only minor modifica-
tions.

Example 2.15. Assume the electric engine is unable to provide the torque T alone.
The order in which we do things does matter, but only slightly. If we consume all fuel

25

first, we will not be able to use the electrical energy stored in the battery. Then, we
run the electric engine with the internal combustion until the charge in the battery is
depleted, hence we continue simply by burning fuel.

i1, ṁf1 i2 = 0, ṁf2 such that αis + βṁf,s = T

T ·tf = α·
∫ tf

0
i dt+β·

∫ tf

0
ṁf dt = α·

(∫ t1

0
i1 dt+

∫ tf

t1

i2 dt

)
+β·

(∫ t1

0
ṁf1 dt+

∫ tf

t1

ṁf2 dt

)
What if T (t) varies with time? It still doesn’t matter what we chose; any function

i(t) implies a fuel consumption function

ṁf (t) =
T (t)− α · i(t)

β

which yield the same tf . The only condition is that we consume all electric energy before
we run out of fuel

ti ≤ tm where ti :

∫ ti

0
i(t) dt = Ah and tm :

∫ tm

0
ṁf (t) dt = Mtot

If this holds, then ∀i(t) we can define ṁf as

ṁf =̇


T (t)−α·i(t)

β for 0 ≤ t ≤ ti

T (t)
β for te < t ≤ tf

Cooperative redundancy (min {α, β} ≤ T ≤ α + β)

Since both engines are needed to meet the requirement, they can not be run indepen-
dently of one another. As soon as we run out of one resource, our system will become
unresponsive. We can compute both exhaustion times ti and tm as

ti such that

∫ ti

0
i(t) dt = Ah tm such that

∫ tm

0
ṁf (t) dt = Mtot

If the request T is constant in time, we have good reasons to think that i(t) and ṁf (t)
will be constant as well. We will verify this hypothesis at the end. Then we can write∫ ti

0
i dt = i · ti = Ah⇒ ti =

Ah

i

∫ tm

0
ṁf dt = ṁf · tm = Mtot ⇒ tm =

Mtot

ṁf

And tf =̇min {ti, tm}. Since i and ṁf are linked by the required torque, we can write
both depletion times as a function of i

ti(i) =
Ah

i
; ṁf =

T − αi
β

⇒ tm(i) =
Mtot · β
T − αi

26

We plot ti(i) and tm(i)

i

t

tm

ti

Battery lasts longer Tank lasts longer

Figure 2.11: Depletion time as a function of current

tf will be the greatest if we finish all resources8 at the same time.

tm(i) = tb(i) ⇒ Mtot · β
T − αi

=
Ah

i
⇒ i =

Ah · T
Mtot · β +Ah · α

And, not surprisingly, there is a clear symmetry

ṁf =
T − αi
β

=
T − α Ah·T

Mtot·β+Ah·α
β

=
Mtot · T

Mtot · β +Ah · α

We can find the ratio of i to ṁf ;

k =
ci
cm

=
i

ṁf
=

Ah

Mtot

The line ṁf = 1
k · i is the preferred relationship between i and ṁf , which is the relation-

ship that maximizes tf .

8Note that, for the way we have constructed this model, the two engine can only cooperate, they can
not be detrimental to each other (ie one can not break while the other accelerates).

27

i

ṁf (1, 1)Ta Tb

ṁf = i
k

Figure 2.12: Required torque and maximum tf strategy.

If the two curves intersect within the operational level domain (case Ta in figure
2.12), we are able to produce the right torque and achieve the condition of maximum tf .
The analytical condition for this to happen are the following{

T = α · i+ β · ṁf

ṁf = i
k

⇒ T =

(
α+

β

k

)
· i i =

T

α+ β
k

≤ 1 and ṁf =
i

k
≤ 1

When this happens, both resources are being used at the same rate. This means
that k is constant in time as well. Hence, the solution to the system above are time
invariant, and our initial hypothesis is verified(i, ṁf are constant).

This results holds whenever we satisfy the equation ṁf = i
k . However, even if we

decide to move on the line of equi-consumption we will consume fuel and current at the
same time, but producing different levels of T .

If the two curves don’t intersect (such as Tb figure 2.12), we have to compromise. To
maximize tf we try to get as close as possible to the optimal condition. To measure this
distance, we can identify a family of lines parallel to the optimum,

ṁf =
1

k
· i+ C C ∈ R

which naturally generates the cost function C : R2 → R that conveys the idea of distance
from the optimum

C = ṁf −
1

k
· i

28

i

ṁf (1, 1)

T

C = 0

C = 1

C = −1

Figure 2.13: Required torque and cost function.

Let us study the sign of C

C :


ṁf − 1

k · i ≥ 0 for ṁf · k ≥ i

ṁf − 1
k · i ≤ 0 for ṁf · k ≤ i

But, remembering that k = Ah
Mtot

and that ti = Ah
i and tm = Mtot

ṁf

ṁf · k ≥ i ⇔ ṁf ·
Ah

Mtot
≥ i ⇔ Ah

i
≥ Mtot

ṁf
⇔ ti ≥ tm

Hence, positive value of C, mean that we deplete the fuel tank before the battery and
vice versa.

In this instance, minimizing C will maximize tf . We might start to question why we
should go to all the trouble to define a cost function, when clearly we could just compute
the responsive time directly. It is also clear that the two optimizations lead to the same
result.

Remark. One immediate perk of not using the t(f) that we could define over the whole
domain is that such functions is somewhat dubious if either i and ṁf are not constant.
Without time constant assumption, we no longer have that

ti =
Ah

i
tm =

Mtot

ṁf

By doing so, iso cost lines do not represent iso time line.

If ti ≤ tm ⇒ tf = ti = Ah
i (case below the blue line). Then, all the points that

share the same current consumption i, share the same tf . In the same way for tm ≤ tm,
tf = Mtot

ṁf
. If we plot iso-time lines we have

29

i

ṁf (1, 1)

C = 0

iso time

Figure 2.14: Iso responsive time curves(red) Vs cost (blue).

Generic T (t)

Let us now consider T (t) as a generic function which can take any value in the admitted
domain.

As we have seen before, whenever T (t) is below the threshold of complementary
redundancy, the choice among i and ṁf isn’t a meaningful one. That is, any choice
will allow for the same responsive time. This is a key observation, because it gives us
the possibility of action. What we chose in this region of request will not affect our
responsive time in this region but will still have some effects.

t

T (t) Cooperative redundancy

Partial redundancy

Complete redundancy

T1

T2

Figure 2.15: Generic torque T (t)

It is easy to see that the zero always belongs to the equi-consumption line; for
sufficiently low level of output then, we will always be able to operate on this line. If we
do so, we have seen that the value k will not change.
If we operate outside of this line, either because we have to (there is no other possibility,
as T (t′) > T2) or because we decide to (if T (t′) < T2 we can pretty much do whatever
we want) we will consume resources unevenly. Assume for example that we decide to
consume more current than fuel; we will deplete the battery more than thee fuel tank
and the ratio k = Ah

Mtot
will decrease.

Hence, by deciding the operation level, we can modify the shape of the equi-consumption

30

line. This possibility opens a new degree of freedom, which allows us to devise a general
strategy.

It is clear that, among all of the possible k, the best is that is k = 1. This way,
we can provide any torque level without ever leaving the equi-consumption line. This
means that any function T (t) will be met and responsive time will be maximized.

k = 1 means that we have the same amount9 of resources. If this is the preferred
condition, it is clear that given any resource level Ah(t),Mtot(t), we will always try to
consume more of the most abundant resource. This is usually a viable option only when
T (t) < T2 = max(α, β).

We have therefore a simple algorithm that maximizes responsive life.

Response time maximizing Algorithm

labelprotocol1

1: if k 6= 1 then
2: if T (t) ≥ T2 then
3: Minimize |C|
4: else
5: Consume most abundant resource to k → 1
6: end if
7: else
8: ṁf = i⇒ i(t) = T (t)

α+β
9: end if

Remark. Note that

1. This algorithm does not require prior knowledge of T (t) as it operates on an
instantaneous fashion.

2. It will give rise to non continuous control functions; some adjustment can be made,
but it will shorten responsive life.

Upper Bound
It is a good idea to find a criterion to measure how good any proposed solution might be.
The maximum possible time tf will occur if the two engine can operate independently,
the maximum torque we can offer is given by α ·Ah+ βMtot. Then

tf,max=̇ t such that

∫ t

0
T (t)dt = α ·Ah+ βMtot

Remark. The time tf we obtain from the above is not necessarily an achievable maximum.
We can not however find a higher value.

9Two quantities here are equal if they can produce the same torque output

31

An application: 3 reaction wheels for 2D satellite manoeuvre

We want to increase the complexity of the problem by increasing the number of dimen-
sions. This will help us define and understand the basic concept which are needed to
reach general results.

Assume we have a 2D model of a satellites that uses reaction wheels to turn around
2 axis. For redundancy it is equipped with 3 reaction wheels; one on the x positive axis,
one on the positive y axis, and the third on the diagonal.

x

y

φ̈1

φ̈2

φ̈3

TRW1

TRW2 TRW3

Figure 2.16: Model of a satellite that can rotate in x and y

{
Tx = TRW1 + TRW3 · sin(θ)
Ty = TRW2 + TRW3 · cos(θ)

⇒

{
Tx = I1 · φ̈1 + I3√

2
· φ̈3

Ty = I2 · φ̈2 + I3√
2
· φ̈3

(2.4)

Each reaction wheels consumes current, however this is a homogeneous resource, and
we already know how to deal with it. Instead, will consider it’s rotational velocity/degree
of saturation as the limiting condition. This gives us a condition on maximum velocity

φ̇1 ≤ φ̇1,max φ̇2 ≤ φ̇2,max φ̇3 ≤ φ̇3,max

The goal then is to maximize responsive time, or the interval between de-
saturation manoeuvres. Since the operational level will be the angular acceleration
φ̈, the saturation condition can be expressed by∫ tf

0
φ̈i(t) dt ≤ φ̇i,max =̇ Ii i = 1, 2, 3

Possibly to cause more confusing, the maximum rotational velocity will be identified
by Ii.

Remark. Note that;

32

1. In this application, maximizing responsive time means maximizing time between
desaturation periods. This has the advantage of reducing down time in the satellite
pointing capabilities. Furthermore, if the disturb was periodic, one might be able
to avoid de-saturation all together, if one were able last more than half period.

2. In this example, we will assume that Tx(t), Ty(t) ≥ 0 for every t. A more generic
example will be discussed later however, this should be the worst case scenario.

3. To begin with, we assume no explicit transferring of angular momentum from one
reaction wheel to the other. This means asking that φ̈i ≥ 0 at all times.
This restriction conceptually treats saturation of the wheels as any other resources
(which can not be traded for one another). Later it will become clear that, by
lifting this restriction, nothing changes.

In order to avoid any assumption on geometry and reaction wheel parameters, we
rewrite equation as

{
Tx = α · φ̈1 + γ1 · φ̈3

Ty = β · φ̈2 + γ2 · φ̈3
⇒

(
Tx
Ty

)
=

[
α 0 γ1

0 β γ2

]
·

φ̈1

φ̈2

φ̈3


Having 3 variables and 2 equations, we have one degree of freedom; a generic solution

can be written as

(
Tx
Ty

)
=

[
α 0 γ1

0 β γ2

]
·


Tx

α
Ty
β

0

+

−γ1
α

−γ2
β

1

 φ̈3

 ⇒ ~T = [B](~X+ ~K·φ̈3)
~K ∈ Ker([B])
~X such that ~T = [B] · ~X

Since we have only one degree of freedom but two independent outputs, in some yet
loose sense, we have less choices than in the previous example (in which the dimension
of the output and degree or redundancy were equal).

Following the same approach as before, we want to define the regions of complete,
partial and cooperative redundancy. This will allow us to define the co domain of the ~T
that we can hope to provide given any level of saturation.

We need to be careful in extending the previous definition. Before, the complete
redundancy set was comprised of all the requests to which every subsystem was able
to answer independently. This is no longer a meaningful distinction since, in general,
a single subsystem can only supply a mono dimensional output, while the request is
typically bi dimensional.

To derive a more insightful generalization, let us plot all the possible ~T on a plane
(figure 2.17).

33

Tx

Ty

T1

T2

T3

(α, 0)

(0, β)

(α+ γ1, γ2)

Figure 2.17: All possible output levels

The highlighted sets Ti are the sets of ~T ∈ R2 that don’t require the i-th reaction
wheel. The intersection of the three T1,2,3 = T1∩T2∩T3 can be viewed as the complete

redundancy set. In fact, for all ~T ∈ T1,2,3, we can take out any subsystem and still be

able to meet ~T .
Using those same elementary sets, we can define the partial redundancy sets

defined as those ~T that we can not supply unless we have two specific subsystems; these
are

T1 \ T1,2,3 T2 \ T1,2,3 T3 \ T1,2,3

Finally, we have the set of ~T that require all 3 reaction wheels to be operational10,
which will be the cooperative redundancy set.

Tx

Ty

Cooperative redundancy

Partial redundancy

Complete redudnacy

Figure 2.18: Complete, Partial and Cooperative redundancy

10This is something more than the inclusion of all the previous sets.

34

Ideally, we would like to saturate all reaction wheels in order to get the maximum
responsive time. We have 3 choices;

1. We saturate one reaction wheel, and then the other two at the same time.

2. We saturate two reaction wheels, and then the remaining one.

3. We saturate all three at the same time.

Both option 1 and 2 are viable only under specific conditions on ~T . The first is generally
viable only if ~T ∈ T1,2,3 (otherwise, as soon as we lose one reaction wheel, we become

un-responsive). Option 2 is usually not feasible, unless ~T is parallel to (α, 0)T , (0, β)T

or (γ1, γ2)T .

Complete redundancy

Assume ~T (t) = ~T constant and ~T ∈ T1,2,3. This means that we could saturate any of
the reaction wheels and still be able to meet requirements. However, once we have only
2 reaction wheels, the system becomes completely determined; we lose the ability to
chose anything. Therefore, the residue responsive time is determined only by ~T (t). To
maximize responsive time, we try to saturate all reaction wheels at the same time.

Saturating one RW
This strategy relies too heavily on the assumption of constant T , and therefore will not
be pursued.

Saturating every reaction wheel at the same time
This strategy is by far the best; it can also be applied to partial and complete redundancy.

We compute residue time under the hypothesis of constant φ̈i(t). We have to equa-
tions in 3 variables, therefore everything can be expressed as a function of φ̈3.

tRWi =
Ii

φ̈i

{
Tx = α · φ̈1 + γ1 · φ̈3

Ty = β · φ̈2 + γ2 · φ̈3
⇒ tRW1 =

I1 · α
Tx − γ1φ3

tRW2 =
I2 · β

Ty − γ2φ3

35

φ̈3φ̈??3φ̈?3

t

tRW1

tRW2

tRW3

Figure 2.19: Depletion time as a function of RW3 operation

Since we are don’t want to lose our ability to chose, we restrict responsive time as

tf =̇min
{
tRW1(φ̈3), tRW2(φ̈3), tRW3(φ̈3)

}
. Given the fact that the curves tRWi(φ̈3) have

opposite derivatives11 the maximum for tf will be when two or more intersect.

Theoretically, there can be three points in which we saturate two reaction wheels at
the same time; this are given by

tRW1 = tRW2=̇t1,2 ⇒
I1 · α

Tx − γ1φ3
=

I2 · β
Ty − γ2φ3

t1,3 ⇒
I1 · α

Tx − γ1φ3
=
I3

φ3
t2,3 ⇒

I2 · β
Ty − γ2φ3

=
I3

φ3

Which give the three operational levels

t1,2 ⇒ φ̈?3 =
I1αTy − I2βTx
I1αγ2 − I2βγ1

t1,3 ⇒ φ̈??3 =
I3Tx

I1α+ I3γ1
t2,3 ⇒ φ̈???3 =

I3Ty
I2β + I3γ2

For each, we must check whether we saturate first the coupled reaction wheels or the
third one:

t? = min
{
t1,2, tRW3(φ̈?3)

}
t?? = min

{
t1,3, tRW2(φ̈??3)

}
t??? = min

{
t2,3, tRW1(φ̈???3)

}
And finally, we will chose φ̈3 that yield the maximum tf .

Generally then, we can not saturate all reaction wheels at the same time.
If φ̈?3 6= φ̈??3 , there is nothing we can do to change it. We can only chose the one that
yields the longest time.

11This is intuitive as they are derived under the constraint of equal output. If one reaction wheels
contributes less to the torque output, another will have to supply the difference.

36

If φ̈?3 = φ̈??3 we are able to saturate all reaction wheels at the same time, hence
maximum responsive time would be achieved. However, as noted before, this condition
might not be verified, depending both on ~T and I1, I2, I3. By equating the two we obtain

I1α+ I3γ1

Tx
=
I2β + I3γ2

Ty
⇒ αTy · I1 − βTx · I2 + (Tyγ1 − Txγ2) · I3 = 0

The best strategy to adopt is then determined by relationships between I1, I2, I3 and
Tx, Ty. In the hope of a more intuitive and formal expression of these conditions, we
introduce the resource space.

Interpretation using the space of resources
Consider the resource space I1, I2, I3 as an euclidean vector space. The resource currently
available are the points of this space, while the vectors are the instantaneous consumption
~Φ = (φ̈1, φ̈2, φ̈3)Tdt. In this space, a request ~T generates a plane of equi consumption
possibilities, π, given by

π :
[
αTy −βTx (Tyγ1 − Txγ2)

]
·

I1

I2

I3

 = 0 (2.5)

If we are on this plane, we can move on a straight line towards the origin (which is kind
of our nirvana, the condition in which we deplete all resources and therefore reach tf
maximum). Each point on this plane is associated with a maximum tf strategy, given
by :

~Φ? =


Tx−γ1φ̈3

α
Ty−γ2φ̈3

β

φ̈3

 φ̈3 =
I3Tx

I1α+ I3γ1
=

I3Ty
I2β + I3γ2

(2.6)

Notably, we can only move parallel to the plane π. This is easily shown by remem-
bering that the allowed motions are

~Φ =

Tx
α
Ty
β

0

+

−γ1
α

−γ2
β

1

 φ̈3

[
αTy −βTx (Tyγ1 − Txγ2)

]
· ~Φ = 0

Although this shouldn’t come as a surprise, it has some notable implications.

Remark. This means that

1. If we are on π, and the requirements don’t change, we can move freely on the plane
and still be able to revert back to φ̈?3 to finish all resources at the same time.

2. We can not really move freely on the plane, as we have 2 equations in 3 unknowns.
Wherever we are on the plane, we can still reach the origin.

3. Since we move parallel to this plane, if we start outside of it (and it doesn’t change),
we won’t be able to reach it.

37

If we are on the plane however, we can make sense of some intuitive results; since
the optimal path ~Φ? on the plane is defined as

~Φ? =


TxI1

I1α+I3γ1

TyI2
I2β+I3γ2

TxI3
I1α+I3γ1


And it’s direction is straight to the origin. To see that, one can check

~It0 + s~Φ? = 0 for some s ∈ R

In fact s = I3
φ3

. Once again, this renders the idea that, if something is scarce (I1 ≈ 0) we
will value it more (and move almost parallel to I1). We have formally expressed what
we always knew, we need to move straight towards the origin.

0

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.5

1

I1 I3

I 2

π

(a) Plane π.

x = I1

y = I3

(b) Residue time on π

38

Analytical results

In the previous section, we have worked under the simplifying assumption of ~T (t) con-
stant. This is an extremely strong assumption, but its usefulness lays in introducing
intuitive concepts and guidelines for a more general and useful approach. Our final goal
for this branch of management will be to develop a management strategy able to maxi-
mize responsive time against an unknown ~T (t).
The next step towards this goal is to assume ~T (t) generic, but known.

As ~T is the key factor that distinguishes the various cases, we begin by establishing its
basic proprieties. ~T (t) represents the vector of requests at any time t; each component is
a request for the system to produce something. We assume that, to meet the requirement
Ti the system will always consume resources and never gain them.

This assumption is justified by the fact that, in most cases, subsystem do not show
a symmetrical behaviour; a combustion engine does not produce gasoline when a torque
is applied, and an electric engine has not the same proprieties when used as a motor or
a generator. However, we will challenge this hypothesis by the end of the chapter, as
resupply considerations are crucial for an autonomous system.
Due to the sign convention, to maintain the same sing on the resource consumption, we
assume that every component of ~T has to be greater or equal to 0 at any time. This is
expressed by

Ti(t) ≥ 0 i = 1, 2, ...n∀t ∈ R+ ⇔ ~0� ~T (t)∀t ∈ R+ (2.7)

Since we intend to use responsive time to measure the effectiveness of our choices we
need to produce an unambiguous definition. Intuitively, responsive time is the period
from an arbitrarily set starting point and the last instant in which the system is able to
meet demand. It is clear, however, that is the request is constantly ~0 any algorithm is
able to meet demand indefinitely. Whenever there is an interval [t1, t2] in which ~T (t) = ~0,
ambiguity arises. To avoid this we simply impose

if ~T (t′) = ~0 Then ∃δ such that ∀ ε < δ ∈ R+ ~T (t′ + ε) 6= ~0, (2.8)

This only means we have to pause our time counter whenever the system goes through
a period of hibernation.

We want to obtain some formal results to guide our algorithm. It is easy to observe
that our model of system behaviour is conservative in a broad sense. Every unit of
resources can be directly transformed into a given amount of output, and the conversion
has a fixed and constant12 efficiency. It is therefore reasonable to think that how we use
it won’t affect how much output we can obtain. This builds on the hypothesis of linearity
and time constant matrix B with all non negative elements13.

12Fixed as linear with production, constant as constant in time.
13If there are positive and negative elements, it means that some components are consuming what

other are producing, which is a case we will not consider here

39

Hence, we can reasonably expect that using more resources will yield a longer
responsive time. As of now, using more resources is a rather loosely defined concept,
since it would requires a total order in a subspace of Rn. However, if we consume all
available resources, we are sure to have used more resources than in any other case.
We will naturally start by aiming at the origin of the resources space. Many question
arise naturally, such as, is it always possible to consume al resources? Can we prove that
it doesn’t matter how we consume the initial resources?
We will start from the latter question.

Theorem 1. Let ~T (t) : R+ → Rn+ be a known demand function and ~Φ(t) : R+ → Rm
an instantaneous management function such that

~T (t) = B · ~Φ(t) ∀t ∈ R+ and B ∈ Rn×m (2.9)

Then, if exists tf such that,

∀t ∈ [0, tf)

∫ t

0

~Φ(t)dt� ~I(0) and

∫ tf

0

~Φ(t)dt = ~I(0) (2.10)

tf is unique.

This results tells us that how we use the resources, hence which ~Φ(t) we chose, won’t
matter as long as we use all resources. Note that the dis-equivalence � means for every
component of a vector.

Proof. Since ~Φ(t) has to meet demand and we assume tf exists, we can integrate equation
2.9 from 0 to tf∫ tf

0

~T (t)dt =

∫ tf

0
B · ~Φ(t)dt = B ·

∫ tf

0

~Φ(t)dt = B · ~I(0) ⇒
∫ tf

0

~T (t)dt = B~I(0)

(2.11)
This is clearly independent of our choice of ~Φ(t). Assume that tf is not unique and

it exists t′f ∈ R+ \ {tf} that satisfies condition 2.10. Then, using equation 2.11∫ t′f

0

~T (t)dt = B

∫ t′f

0

~Φ(t)dt = B~I(0) =

∫ tf

0

~T (t)dt

Assume t′f > tf∫ t′f

0

~T (t)dt =

∫ tf

0

~T (t)dt +

∫ t′f

tf

~T (t)dt =

∫ tf

0

~T (t)dt ⇒
∫ t′f

tf

T (t)dt = 0

Since T (t)� ~0, we would have to conclude ~T (t) = ~0,∀t ∈ [tf , t
′
f] but this is absurd due

to hypothesis 2.8.

Form the proof of the theorem we can also obtain a condition for the existence of tf .
Assuming T (t) known, we can determine whether we will be able to deplete all resources
or not.

40

Example 2.16. Assume, as in the previous example, ~Φ = (x1, x2, x3)T , ~T = (Tx, Ty)
T

and ~I = (I1, I2, I3)T . System architecture is given by

(
Tx
Ty

)
=

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 ·
x1

x2

x3

 ⇒ ~T =
[
~α ~β ~γ

]
· ~X ⇒ ~T = B · ~X

We want to know if tf exists, or rather, which level of resources are able to allow for
tf to exists. Since there is one degree of redundancy, we can express everything as a
function of one variable, say x1. Hence,

~T − ~α · x1 =
[
~β ~γ

]
·
(
x2

x3

)
⇒

[
~β ~γ

]−1
∫ tf

0
(~T − ~α · x1) dt =

∫ tf

0

(
x2

x3

)
dt

[
~β ~γ

]−1
(∫ tf

0

~T dt− ~α · I1(0)

)
=

(
I2(0)
I3(0)

) I1(0)
I2(0)
I3(0)

 =

(
I1(0)[

~β ~γ
]−1 (∫ tf

0
~T dt− ~α · I1(0)

))
I1(0)
I2(0)
I3(0)

 =

(
0[

~β ~γ
]−1 ∫ tf

0
~Tdt

)
+

(
1

−
[
~β ~γ

]−1
~α

)
· I1(0) (2.12)

Clearly, there is no reason why I1 should play a predominant role, hence we expect
similar results if we use any other variable xi. We can also notice that the vector that
multiplies I1 is in the the ker of B.

B ·

(
1

−
[
~β ~γ

]−1
~α

)
=
[
~α ~β ~γ

]
·

(
1

−
[
~β ~γ

]−1
~α

)
= ~α−

[
~β ~γ

]
·
[
~β ~γ

]−1
· ~α = 0

Equation 2.12 gives, for every tf , the set of initial resource that allow for the existence
of tf .

In general then, we can say that tf exists when the initial condition satisfy 2.12.

Lemma 2. Let ~T (t) : R+ → Rn+ be a known demand function for a system with
m subsystem and m resources, described by a matrix B.tf exists if ~I(t = 0) is in the
hyperplane of dimension m− n that contains the point

~P =



0
0
. . .
0[

Bn×n
]−1 ∫ tf

0 Tdt



m− n

}
n

and is generated by the null space of B.

41

If condition 2.12 is not met, then it is not possible to end all resources at the same
time. This will lead to some unusable left overs, or a final position ~I(tf) different from

the origin. Since we still want to find the path ~Φ(t) that produces the longest responsive
time, we need a function that associates a responsive time to each ~Φ(t). As we had
previously assumed however, we only need the initial and final point.

Lemma 3. Responsive time for a given ~Φ(t) is a function only of ~I(0), ~I(tf) and the

demand function ~T (t).

Proof. Assume ~I(0) = (I1, I2, I3)T such that[
~β ~γ

]−1
(∫ tf

0

~T dt− ~α · I1(0)

)
=

(
I?2
I?3

)
6=
(
I2

I3

)
and, in particular

{
I?2 < I2

I?3 < I3

If we redefine the initial level of resources ~I as (I1, I
?
2 , I

?
3), we have identically verified

the condition of existence of tf and from theorem 1, tf has to be unique. Our final

position will be ~I(tf) = (0, I2 − I?2 , I3 − I?3)T . Then tf depends only on the ~I(0), ~I(tf)

and ~T (t).

We must acknowledge the fact that (I2(0)?, I3(0)?)T might be � ~0. To find the
appropriate combination resources (one that is strictly greater than zero), we can add
or subtract multiples of the null space until ~I?(0)� ~I(0).

At this point, given initial and final position we can determine the elapsed responsive
time without having to specify the path we intend to chose. The next step is to
map all possible end-points in order to find which yields the highest responsive time.

Using lemma 3 it is clear that the time it take to go from A to C is the sum of times
from A to B and B to B. Then we can arbitrarily set a starting point in the space resource
I0, define all responsive time from this point, and then, depending on the actual current
location, redefine the tf field over every point with a simple addition or subtraction.

Calculating the field of responsive time over the resource space.
Using the results from lemma 3, we can assign to some specific points in the space of
resources a value tf . The fact that not all point in the resource space are reachable
should be clear from Lemma 2, which states whether is possible or not to reach the
origin.
Then, our goal is to find the feasible set, or all the reachable points, and assign to each
one a value tf .

Given a point ~0� ~I ′ � ~I(0), it will be reachable if, for some t? we have that the leftover
when starting from ~I(0) is exactly that point. This can be written as

∆~I=̇(~I(0)− ~I ′)) ~I(0) = ∆~I + ~I ′
[
~β ~γ

]−1
(∫ t?

0

~T dt− ~α ·∆I1(0)

)
=

(
∆I2(0)?

∆I3(0)?

)
We can notice two kinds of degrees of freedom, one accessed changing time t and

the other changing the position of the end point, by acting on ∆I1. We can easily draw

42

equi-responsive time sets by keeping t? fixed and changing ∆I1

I(t′) =

{
I ′ = ~I(0)−∆~I ∆~I =

(
∆I1[

~β ~γ
]−1 (∫ t′

0
~T dt− ~α ·∆I1

)) for ∆I1 ∈ [0, I1(0)]

}
(2.13)

Once again, we recognise this set as a line, which we decompose as a point and a
direction

I(t′) = ~P + ~K · s =

 I1(0)

I2(0)− [~β ~γ]−1
∫ t′

0 Tx dt

I3(0)− [~β ~γ]−1
∫ t′

0 Ty dt

+

 −1

[~β ~γ]−1α1

[~β ~γ]−1α2

 ·∆I1

(it’s not super correct, because it uses a specific number of resources, but it should give
the general idea). This set is a sub-space of the ambient space, spanned by the ker of
B, hence the feasible points in the resource space can be seen as a curve, determined by
~T , extruded in the ~K direction.

The equi-responsive time sets structure shown in states that a set of points of the
resource space is equivalent from the standpoint of responsive time. Since this is the
criterion we seek to use, we can define a reasonable and objective equivalence as

Definition 2.0.5. Given ~I1 and ~I2 in Rm,

~I1 ≡ ~I2 ⇔ t0→1 = t0→2 ⇔ ∃s ∈ R+ : ~I1 = ~I2 + s · ~KB

From this we want to obtain a definition of some equivalance class, then a order
relationship and finally be able to determine what it means to consume more or less
resources. This will prove us that the longer time is achieved when we reach the origin.

A partial order that makes sense, and the set that makes it into a total order.

Theorem 4. If tf , defined as tf =̇t′ ∈ R+ such that
∫ t′

0
~Φ(t)dt = ~I0 exists, then given

any responsive time t1 ∫ t1

0

~Φ(t)dt = ~I1 � ~I0 ⇔ t1 < tf

Proof. Since we have to meet constraints, we have that

B

∫ t1

0

~Φ(t)dt = B · ~I1 =

∫ t1

0

~T (t)dt B

∫ tf

0

~Φ(t)dt = B · ~I(0) =

∫ tf

0

~T (t)dt

it is intuitive that if B · Ĩ1 � B · Ĩ0 then∫ t1

0

~T (t)dt�
∫ tf

0

~T (t)dt ⇔ t1 < tf

43

since we assumed that T (t) ≥ 0 always positive. Then we only need to verify the
condition above.
Clearly, if B was invertible, we would have

B · ~I1 � B · ~I0 ⇔ B−1B · ~I1 � B−1B · ~I0 ⇔ ~I1 � ~I0

Since B is not invertible, let us verify Eq. above for the generic i-th row. We need to
show that

Bi1I11 + · · ·+BimI1m < Bi1I01 + · · ·+BimI0m.

Recall that I1,j < I0,j for each j ∈ {1, . . . ,m}. Hence,

Bi1(I11 − I0m) + · · ·+Bim(I1m − I0m) < 0,

Since Bij ≥ 0, for each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m}.

What happens for an unknown T (t)?
It is nice to notice that, the equi-responsive time loci depends only on

∫ t
0 T (t) dt, not on

the instantaneous requests. Then, we can say that

Lemma 5. Given ~T1(t) and ~T2(t) if, for some t0, t1,∫ t0

0
T1(t)dt =

∫ t0

0
T2(t)dt and

∫ t1

0
T1(t)dt =

∫ t1

0
T2(t)dt

Then the iso responsive time sets are the same.

This means that if we are able to assume a probability distribution for my T (t), we
can use an average as an educated guess, and act as if we knew what the function was.

44

Formal system design

System design might be seen as the process of making many choices, the effects of which
can hardly be assessed independently from one another, in the hope of getting to be best
possible system.

Experience and case by case reasoning are essential for the human system engineer.
Can we generalize this process so to understand the basic analytic rules underling it and
have a computer do it?

A naive approach to the problem would be to find a function F that, given a system,
would tell us how good the system is;

F : System design→ System evaluation (3.14)

Then, all we are left to do is to try several different systems until we either run out of
options or money, and just choose the system with the highest score.

This method, although incredibly inefficient, is also incredibly easy to implement,
being virtually independent of the structure of the problem at hand. We don’t need
to know F , we just need to apply it. What is more, not only it doesn’t require any
assumption on F (continuity, smoothness etc), but it doesn’t even require knowledge of
any analytical representation of F . This blind approach is very similar to what biological
evolution is based upon. Unfortunately, usually F does not exist.

To see this, let us break down F in more meaningful blocks.


p1

p2

. . .
pn

 Detailed design

Parametric design Computer simulation

Empirical Tests

Performances

Objectives

E

Figure 3.21: A more in depth analysis of F

45

1. The domain of the function could be a simple list of all the possible design we
will try. However, there are good reasons not to do so; first of all, if there is no
continuity among the various systems, no conclusion can be inferred from one test
to the next one, and virtually all possibilities have to be examined.
A smarter choice will be to use a parametric design; in which a number of param-
eters defines a design completely.

2. From the detailed design, we can predict or measure performances with either
computer simulation (such as CFD or FEM) or empirical tests.

3. Finally, after we have decided which performances we prefer, we can write a fitness
function that gives us an evaluation of the Design we have tested.

Example 3.17. A Bolt
We start with the parametric design, which already contains the basic shape of the bolt,
with the hexagonal head, the thread, an indication of the material etc. As parameter
we may chose, for the geometry body diameter, hexagon diameter, length etc, for the
material the concentration of carbon in the steel and so on. Even for this very simple
problem, we might want to use numerical simulations or empirical tests if we plan to use
it outside the linear domain of the material.
Once we have the performances, we can measure them against our design objectives; if we
are interested only in the UTS, rather than on the fragility at low temperature and so on.

Figure 3.22: A geometrically parametric blot design

The best bolt design will be that which maximizes the fitness function.

Both computer simulation and empirical tests hide the possibility for F not to be
a function, which means that the same system might be associated with two
different evaluations.

46

System performances will depend both on system design, system management (how the
system behaves), and external conditions. If we don’t specify all three, F can not
be a function14, merely a correlation.

While the dependence on external condition might be obvious, that with system
management is somewhat new, and has been made possible by modern electronics. As
modern systems feature a great deal of software, system behaviour can be reprogrammed
and changed at will, with little constraints given by the physical parameters.

Example 3.18. Watt centrifugal Governor
Figure 3.23 shows an analogic control feedback loop. As the Governor spins, centrifugal
forces balance with gravitational forces to push outward the two weights. By doing so
they open or close the valve that governs the steam engine. There will be a speed above
which centrifugal forces win against gravity, therefore closing the valve closes, and vice
versa.
To set this speed, one would need to change the gear ratio that connects the
governor and the steam engine. This parameter is already included in the physical
design, management here is not an issue.

Figure 3.23: Watt centrifugal Governor

Assume we want to find which among two steam locomotive is faster. It is clear that,
even if both the engine and external condition are the same, we will not get the same
result (hence we won’t have a function) if we don’t specify the governor geometry.

In the above example however, one might still see the governor’s geometry as part of
the system design itself, because it takes some non trivial work to change the equilibrium

14Since a system design (element of the domain) will not be uniquely linked to a performance level.

47

speed.
If we examine a more modern example however, the line between system design and
management becomes more defined, just as the relationship between system design and
system behaviour fades.

Example 3.19. A modern car race
Assume we have two cars and we want to find out which is the fastest around a

particular track. Our performance and fitness function are completely defined by the
best time around the track. We fix external conditions by having the two car race with
the same driver, under the same weather conditions.
This is still not enough, as modern cars feature many settings such as race mode, eco,
comfort and so on. We need to specify the settings for each car, for example race mode
or eco-friendly mode. If we don’t do this, we may find that, under nominally identical
conditions, we can obtain different results, which means that F is not a function.

Let us assume then, that we have specified a management algorithm15; we still need
to fix external conditions.

If we are dealing with a well understood component16, which has to be used in
a bigger system, we will have simple external conditions, in order to give a synthetic
representation of the behaviour (UTS for mechanical structure, efficiency of conversion,
electrical resistance at a given temperature). This is fundamentally different from what
we do when we design a system; the external condition here are hypothesis, which needs
to be met during system design. 17

If we are dealing with complex systems, we want to measure their performances
against realistic environmental conditions. This poses the problem of uncertainty and
unpredictable environmental conditions.

A very reasonable thing to do, in the face of uncertainties, is to handle them sta-
tistically. That is to extrapolate the invariant characteristics of the phenomenon, and
design to a reasonable worst case scenario.

Example 3.20. PSD;
The dynamic loadings on a structure due to wind, acceleration etc can not be accurately
predicted. Hence, a smart thing to do is to design to the highest probable loading,
which is linked to the average loading. This guarantees that the unpredictability of the
environmental conditions won’t affect system performances.

The uncertainties on environmental conditions might be more significant than those
in the case of the dynamic loadings. If we are to enter an age of industrial space,
mission oriented design can not be sustainable. Lunch systems already have to satisfy

15This has to be developed in the previous chapter; possibly a management algorithm that allows the
system to meet all requirements while using the least amount of resources

16Systems without management
17If we design a structure using a given beam, you know when it will break, and it is our business to

make sure the loading does not exceed this condition. When we design a roof, we have to design it to
the specification of the ambient it will operate in.

48

a spectrum of different payload requirement (payload mass, terminal velocity etc) and
modular satellite might soon follow. The endeavour of space system design might soon
be pursued with a very partial understanding of the system’s mission, which increases
the scope of the uncertainties considerably.

We could still follow the same approach as before, by designing a system that per-
forms under average performances, or we could use the optimum management to modify
our system on a case by case basis.

Example 3.21. A really strange car race
Assume a new race format is instituted, where the teams don’t know where the next

race will take place until 2 days before the event. The tracks might range from formula
one, smooth tarmac to muddy rally terrain, to iced lakes or sandy deserts.
A commercial car might work on all the above surfaces, with little adjustments. This
is because it is designed to be good on average on all the surfaces. However, since we
have 2 day before each race, we could devise a car that can be rapidly adjusted for the
terrain we have to face. Probably this will be the car with the best overall performances.

The benefit of designing a reconfigurable system are the following

1. The same system can be used for different missions

2. During operations, the system can make more accurate predictions about real
external conditions than what we can speculate during the design phase.

We want to investigate what it means to design a system for maximum reconfigura-
bility over a range of external conditions (rather than maximum average performances
over the same range of external condition).

49

System Design and flexible design concept

We assume that system architecture, as well as overall mission design has been defined in
phase A/0. We already know which kind of subsystem we are going to use, their functions
and, to some extent, what kind of external conditions and overall system requirement
we have to satisfy.
For a standard commercial telecommunication satellite, the architecture is based on the
concept of Bus; we know we will need a Power System, an On Board Computer, an
ADCS etc. We expect to know something about the orbit in which the system will
operate as well as some kind of information on what the system is supposed to do.
Our goal is to analytically derive the characteristics/requirements at a subsystem
level. Once we have the parameters and characteristics for the standard static system
optimization, we will use them as a benchmark for the new, flexible design method.

CPU ADCS

PSTCS

PL

Figure 3.24: A simple satellite architecture.

For each subsystem we need to decide what level of performances (in the broadest
sense) we require; what is the conversion efficiency of the PS? What should the capacity
of the battery be? How fast can the RW spin? Etc. These are the requirements we need
for each subsystem; they can later be used to choose the appropriate components from
a catalogue, or in the case of custom subsystems, they would provide the requirement
for the preliminary design of each subsystem.

Usually, we think of these parameters as lower boundaries; If the conversion efficiency
is higher than the design value, we can expect the system to work better than anticipated.
This is not strictly true; even if we ignore the fact that usually increasing one parameters
come at a cost for another (in term of mass, economic budget etc), subsystems are usually
interdependent or coupled. The requirements for each subsystem are implicit functions
of each other. For example, a more efficient conversion in the PS would waste less energy,
hence we could use smaller solar panel 18.

This is the reason why it is hard to directly relate system level preferences-objectives

18This is to remind us that the frontier between acceptable system and not acceptable ones is quite
complex, non plane curve.

50

to subsystem preferences. For example if the imperative is to minimize system mass, we
could start by choosing the lightest CPU, then the lightest TCS etc all the way up to
the PS. There is clearly no guarantee that the resulting system will be the lightest. On
the contrary, one could expect a light system to be quite inefficient, hence requiring a
heavier PS19.

There are many trade-offs to consider, as we have to account for all subsystems
interactions. Let us recall the definition of system engineering:

A logical process of activities that transforms a set of requirements arising from a
specific mission objective in a full description of a system which fulfils the
objective in an optimum way. It ensures that all aspects of a project have been

considered and integrated into a consistent whole.20

We rephrase this definition in an equivalent but more formal way: among all system that
to are able to meet mission objectives we want to choose the optimal ones, according to
some criterion. In the space of all the possible systems, we want to find the ones that
actually meet mission objectives and, among them the optimal one.
Since a system (at this point, during phase A) is just a collection of subsystems, each
with specific parameters, the space of all subsystem can be thought of as a subspace of
Rm. We now need to

1. Define the set of possible system.

2. Define the cost function for finding the optimum.

There are three different approaches, either 2→ 1, first enforcing the cost function and
then checking if the system actually works, 1 → 2, defining all the system that might
work, and the applying the cost function, finding out which one is the best.
Further more, one might use an hybrid, by solving some mid-point decision by direct
optimization. For example, if in a subsystem we have the possibility to either be more
efficient or decrease the mass of the subsystem, this choice might be made indepen-
dently of other subsystems. The first and the hybrid approach might not get to the
global optimum, however, they are quite faster. This begin said, the second approach is
conceptually better, because it gives more emphasis to the physics of the problem. The
optimization is much more volatile; how important is the mass of the system compared
with its volume? How much it matter to finish the design phase by the day X versus
how much it costs? These are circumstantial considerations and might change during
the course of the design phase, due to new technology or other external constraints.

Using the second approach, we want to identify the set of subsystem requirements
that make a system mission-objective worthy. From architecture and physics, we can

19We would have chose the lighter of the viable options, but the options are a function of what we
have chosen before!

20Stark etc. Space System engineering.

51

write some21 balance equations:
NCPU(t) = NADCS(t)+ NPS(t)+ NTCS(t) + NPL(t)

iPS(t) = iADCS(t) + iTCS(t)+ iCPU (t)+ iPL(t)

TADCS(t) = d2

dt (θPL(t)) · I0 + Text(t)

qTCS(t) = qADCS(t)+ qPS(t)+ d
dt(TPL(t)) ·mcp+ qCPU (t)+ qext(t)

(3.15)
The first line in Eq 3.15 conveys the necessity for the CPU to perform all the operations
requested by the ADCS, by the PS, the TCS and the Payload. Similarly, the PS must
be able to supply current to all the subsystem that needs it. For the ADCS and the
TCS the effect of external condition also appears and the equations are differential in
nature. Note that each function is time dependent and the equations must be verified
at all time for the system to be mission objective worthy.

If we are able to determine the right hand side of Eq 3.15, we would have all
the parameters for each subsystem that make the system mission objective
worthy.

The maximum authority for each subsystem would simply be the maximum for t
taken over the whole mission duration. If we derive 3.15 we can determined how fast the
response for each system must be. If we integrate 3.15, we obtain the capacity of the
system (how much the battery must hold, maximum Ns for the reaction wheels etc).

0 200 400 600

−1

0

1

2

time

C
u
rr

en
t

Time Vs. Current

i(t)

max(i(t))

0 200 400 600
−2

0

2

4

time

A
h

Time Vs. Charge

∫
t i(t)dt

starting charge

Figure 3.25: Assuming RHS known, we can obtain imax and the battery charge.

However, the right hand side of the balance equation is not known beforehand; it
depends on both external conditions (such as external heat fluxes of torques and payload
requirements) and internal interdependencies between subsystems.

While external conditions are given by the mission,(e.g. the amount of sunlight
available will be a function only of the orbit we have chosen) internal interdependencies

21There can be many, I am just writing the most intuitive ones

52

are auto-inducing (a bigger ADCS will increase satellite inertia, which will require yet
higher level of torque). Taking advantage of this interdependency, we will be able to
reduce the variables in the problem.
We begin by dealing with such auto inducing relationships. We can identify two main
categories;

1. The effect each subsystem has on other subsystems, which we can call cross-
coupling. This is a measure of how much a subsystem relies on other to operate;
the TCS uses both computational power and electric power, so it can not operate
on its own. Hence a high thermal load will have effects on the PS authority as well
as the CPU.

2. The effects that each subsystem has on overall system dynamics (mass/inertial,
thermal inertia, ect)

Cross coupling
As a first approximation, let us assume that all subsystem have a substantially mono
dimensional output. This is to say that the space of the transformation given by each
subsystem is mono dimensional, or that the input output are in a fixed relationship with
one another.
Given a level of torque TADCS, the current iADCS is uniquely determined; so is com-
putational power requested NADCS , the waste heat produced qADCS and so on. This is
equivalent to the idea of operational level

TADCS(t) = f1(xADCS) iADCS = f2(xADCS) qADCS = f3(xADCS) NADCS = f4(xADCS)

We assume we are controlling the operational level xADCS of a subsystem and all out-
puts/inputs are function of this level. For simplicity, we will write all productions as
a function of the most important thing the subsystem produces22. Extending this as-
sumption to all subsystem, we can re-write the set of equations 3.15 as

NCPU(t) = N(TADCS)+ N(iPS)+ N(qTCS) + NPL(t)
iPS(t) = i(TADCS) + i(qTCS)+ i(NCPU)+ iPL(t)

TADCS(t) = d2

dt (θPL(t)) · I0 + Text(t)

qTCS(t) = q(TADCS)+ q(iPS)+ d
dt(TPL(t)) ·mcp+ q(NCPU)+ qext(t)

(3.16)
Now, let us assume that they are also linear; initially we will do this for simplicity,

later however we will discuss the range of applicability of this hypothesis. Then, the
ADCS can be characterized by its 3 efficiencies

NADCS =
TADCS
εADCS,N

iADCS =
TADCS
εADCS,i

qADCS =
TADCS
εADCS,q

We can do this for every subsystem, and obtain the linear system

22This is formally allowable because we can expect the designed/most important output, to be a
strictly monotone function of the main input, hence invertible.

53


NCPU(t) = TADCS

εADCS,N
+ iPS

εPS,N
+ qTCS

εTCS,N
+ NPL(t)

iPS(t) = TADCS
εADCS,i

+ NCPU
εCPU,i

+ qTC
εTC,i

+ iPL(t)

TADCS(t) = d2

dt (θPL(t)) · I0 + Text(t)

qTCS(t) = q(TADCS)+ q(iPS)+ q(NCPU)+ d
dt(TPL(t)) ·mcp+ qext(t)

We bring all the term that feature the actions of a subsystem to the left side of the
equation.

NCPU (t) − iPS
εPS,N

− TADCS
εADCS,N

− qTCS
εTCS,N

= NPL(t)

−NCPU
εCPU,i

iPS(t) − TADCS
εADCS,i

− qTC
εTC,i

= iPL(t)

0 0 TADCS(t) 0 = d2

dt (θPL(t)) · I0+ Text(t)

− NCPU
εCPU,q

− iPS
εPS,q

− TADCS
εADCS,q

qTCS(t) = d
dt(TPL(t)) ·mcp +qext

The above system can be written more easily in matrix form
1 − 1

εPS,N
− 1
εADCS,N

− 1
εTCS,N

− 1
εCPU,i

1 − 1
εADCS,i

− 1
εTC,i

0 0 1 0
− 1
εCPU,q

− 1
εPS,q

− 1
εADCS,q

1

·

NCPU (t)
iPS(t)

TADCS(t)
qTCS(t)

 =


NPL(t)
iPL(t)

d2

dt (θPL(t)) · I0+ Text(t)
d
dt(TPL(t)) ·mcp +qext


(3.17)

By inverting the above matrix, we can obtain the analytical expression of maximum
authority, capacity and response.

Dynamic effects
We have still some unknown dependent from the choice of subsystems on the right hand
side of the equation. The Eq 3.17, satellite inertia I0, and thermal inertia mcp depend
on subsystem parameters. To account for this we could simply iterate; we start with a
guess for each subsystem mass, add them up, we obtain the authority for each subsystem,
check from a database for new mass and inertia estimates and repeat to convergence.
With a reasonable good first guess, the method converges.
Alternatively, if we had a function that was able to link system mass and authority for
each subsystem, we could solve the problem directly and analytically.

Optimal control
Some of the equations are differential in nature. If Payload requirement are expressed as
function of time (e.g. a tracking manoeuvre θ(t)), one can derive them analytically and
there is no real difference between differential equation and algebraic equations. How-
ever, it is common for the payload to ask for point to point (P2P) manoeuvres. The PL
might require to be pointed in a specific direction in a given time frame, or to be kept
within a specific range of temperatures. The path to use to achieve this requirement is
not unique, and can be obtain using optimal control theory.

54

0 10 20 30 40 50

0

0.5

1

Time

P
os

it
io

n
Time Vs. position

(a) Several path for the same P2P require-
ment

0 10 20 30 40 50

0

1

2

·10−2

Time

A
u
th

or
it

h
y

Time Vs. authorithy

(b) Correspondent authority required

Figure 3.26: Different solution to optimal control.

Choosing the right profile is possible through a series of trade off between how quickly
we need to reach the specified value (Fig. 3.26a), how much authority we have to use (Fig.
3.26b), how big is the allowable margin of error is etc. These trade offs are outside the
scope of this chapter, and therefore we will always assume these requirements (θ(t), T (t)
etc) to be known.

Imagine that we know exactly all external conditions as a function of time. Then
we can obtain the exact minimum requirement for our system. We can have the frontier
of the mission objective worthy system set, as a function of the subsystem efficiencies.
In an effort to generalize out notation, we will call Yj(t) all external conditions and
payload requirement for the j-th subsystem and Xj the operational levels of the generic
subsystems. Furthermore, we will restrict the problem to a system with only 3 subsystem
for simplicity. From Eq 3.17, we have 1 − 1

ε1,2
− 1
ε1,3

− 1
ε2,1

1 − 1
ε2,3

− 1
ε3,1

− 1
ε3,2

1

 ·
X1(t)
X2(t)
X3(t)

 =

Y1(t)
Y2(t)
Y3(t)

 E · X̄ = Ȳ

which quantifies the link between external request and system characteristics. If we
invert23 matrix E⇒ E−1 = B, we can analytically derive all subsystem characteristics.X1

X2

X3

 =

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

 ·
Y1(t)
Y2(t)
Y3(t)


23The matrix E is always invertible. This is due to architecture (mostly) and the idea of controllability.

55

Defining subsystem parameters- Authority of a Subsystem:
As mentioned many times before, we proceed to determine authority for each subsystem
as

Aut1 = maxt(B1,1 · Y1(t) +B1,2 · Y2(t) +B1,3 · Y3(t))
Aut2 = maxt(B2,1 · Y1(t) +B2,2 · Y2(t) +B2,3 · Y3(t))
Aut3 = maxt(B3,1 · Y1(t) +B3,2 · Y2(t) +B3,3 · Y3(t))

(3.18)

We can now appreciate analytically the effect of the interdependencies between different
subsystems. The maximum requirement for each subsystem may be given by a combi-
nation of direct and indirect requirements. Furthermore, the timing of the such requests
play a vital role. In fact, the same external conditions will not yield the same system
design after a time translation. This shows how a statistical approach does not capture
the whole phenomenon.

Capacity of a subsystem
The analogous of equation 3.18 for capacity is given by

Cap1 =
∫ t1

0 {B1,1 · Y1(t) +B1,2 · Y2(t) +B1,3 · Y3(t)} dt

Cap2 =
∫ t2

0 {B2,1 · Y1(t) +B2,2 · Y2(t) +B2,3 · Y3(t)} dt

Cap3 =
∫ t3

0 {B3,1 · Y1(t) +B3,2 · Y2(t) +B3,3 · Y3(t)} dt

(3.19)

Where the parameters ti are the minimum time interval in which we need to maintain
nominal operations. In the case of the ADCS, this might be the time between desatu-
ration manoeuvres; for the PS, this would be the eclipse time, for a TCS that features
PCC, the time in which we would use only passive control.

From these integral, we get informations such as what is the maximum momentum
that the RW must handle, what is the capacity of the battery, how much data storage we
need, what is the thermal capacity of the PCC etc. Due to the fact that we are taking
the integral, a statistical description of the external condition is undistinguishable from
a time dependent one.

Dynamic response of a subsystem;
If we derive a time dependent estimation of the external conditions, we can find an upper
bound to the system request in term of reactiveness. It should be possible to link this
parameter to the cut off frequency of the system, but this extends beyond the scope of
this chapter.

Cross coupling affects all subsystem requirements, typically requiring higher perfor-
mances (greater authority, capacity etc). A measure of how much a system is coupled
is given by the coefficients of the B matrix.
An ideally decoupled system would have E = I = B; the individual request have only a
direct effect on the subsystem designed to address them. This might be achieved either
with infinite efficiency (εi,j → ∞) of by forcefully decoupling the subsystem. We can
imagine that a CPU will always need power to operate, however, if there is a power
source dedicated to the CPU, they system will be decoupled.

56

If we extend this idea to all subsystem however, subsystem mass will likely increase a
lot, as usually a lot of small subsystems weight more than one big subsystem. This might
still be a viable option under the assumption of modular design, in which we sacrifice
system performances in order to reduce development costs.

For highly integrated system, we can expect some degree of coupling, which we can
optimistically set using the laws of physics (the power needed for a cooling system can
be estimated with the reverse Carnot cycle) or information taken from the state of the
art.

The case in which external conditions are known exactly has the interesting pro-
priety that we can expect the optimum system to be the same under any reasonable
optimization rules.
We generally can assume that any cost function will be monotone with mass, volume,
complexity etc. All these proprieties will also increase monotonously with performances
such as authority, efficiency etc. Usually then we can expect that the best system,
regardless of the optimum criterion, belongs to the boundary of the mission objective
worthy set.
Clearly, this is a viable option only if we know exactly what the external request will be;
otherwise we will need some margin of safety, which will place the system within the set
(instead of on the surface).

Unknown external conditions
It is to say the least, improbable, that we have exact knowledge of Y (t). The next best
thing is therefore to record past missions and use them to extract estimates on external
conditions. We use an average value (µi) and a dispersion (σi). Hence we will model
them as a normal distribution Yi ∼ N (µi, σ

2
i). Now we can deal with the distribution

of output levels for each subsystem;X1

X2

X3

 =

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

 ·
Y1 ∼ N (µ1, σ

2
1)

Y2 ∼ N (µ2, σ
2
2)

Y3 ∼ N (µ3, σ
2
3)


To derive the distributions for Xi, we need to recall some basic results for normal dis-
tributions, such as; linear transformation

X ∼ N (µ, σ2) Z = a ·X + b a, b ∈ R ⇒ Z ∼ N (aµ+ b, a2σ2) (3.20)

and sum of independent variables

X ∼ N (µ1, σ
2
1)

Y ∼ N (µ2, σ
2
2)

Z = X + Y ⇒ Z ∼ N (µ1 + µ2, σ
2
1 + σ2

2) (3.21)

Then we have

X1 ∼ N (
∑3

i=1B1,iµi ,
∑3

i=1B
2
1,iσ

2
i)

X2 ∼ N (
∑3

i=1B2,iµi ,
∑3

2=1B
2
2,iσ

2
i)

X3 ∼ N (
∑3

i=1B3,iµi ,
∑3

i=1B
2
3,iσ

2
i)

57

Defining subsystem parameters
For each subsystem, we want to set a maximum output value (authority) as well as a
capacity, or the integral of output with time.

Capacity is straight forward. Due to mission parameters we expect some estimate of
the time tR between refuelling/recharging or general re supply system resources. Hence
we have that

Ci ≥
∫ tR

0
Xi(t)dt =

∫ tR

0
µXidt = µXi · tR

Provided that tR is long enough. Using basic results from probability, we can also give
an estimate on how accurate this prediction is as a function of the integration time tr.

Authority for each subsystem
If we applied the method we used in the case of exact knowledge, we would have to
estimate the maximum of a normal distribution, which is +∞. Therefore, we must
decide on a cover factor, or equivalently, the percent of cases we require the system to
be able to answer.
For example, if we decide that it is enough for a subsystem to be responsive in 97% of
cases, we can set the maximum authority of the system as

max(Xj) = µXi + 2 · σXi =

(
3∑
i=1

Bj,iµi

)
+ 2 ·

√√√√ 3∑
i=1

B2
j,iσ

2
i

due to other known proprieties of the normal distribution.

4.4 4.6 4.8 5 5.2 5.4 5.6

0

0.5

1

1.5

2

Aut

ex
p

ec
te

d
fr

eq
u
en

cy

Authority Vs. frequency

Clearly, the more assurance we want, the higher the authority we require. In the same
way, the higher the uncertainty we have on the requests (σY) the higher the authority
level we require! We can appreciate the effect of the uncertainties in the definition of
the maximum authority for the system.

Remark. What is the probability that all three actuator are able to answer to the requests
we make? This is also the percent of expected time we are able to meet requirements.

58

It is clearly the probability that all requests are below the maximum authority, which
means

P(X1 ≤ max(X1) AND X2 ≤ max(X2) AND X3 ≤ max(X3)

If the event are independent24 this would be simply the product of individual probabil-
ities

P(X1 ≤ max(X1)) · P(X2 ≤ max(X2)) · P(X3 ≤ max(X3))

Hard Requirement and House Keeping requirement
Assume that we settle for 97% cover factor; is it enough? Can we allow for 3% of request
to go unanswered?

Intuitively, it depends on what kind of requests we are neglecting. If we are saturat-
ing some subsystem due to a incidental superposition of independent requests, we can
easily reschedule them in order to lower instantaneous requirement. For example, if the
PS is not able to simultaneously power an attitude adjustment manoeuvre, a demanding
temperature control adjustment, data handling etc and all these events are not function-
ally linked25 we can prioritize some request and queue the rest. We can accept the fact
that we are not able to answer such requests because we can avoid them as they happen
(furthermore, they are very unlikely26).

On the other hand, if the peak is given by a task that requires simultaneous
operations, failure to comply is not acceptable. For instance, if we require a very
accurate tracking, we can not think to power first the ADCS and afterwards the PL;
the two requirements must be addressed simultaneously.
These request are to be considered known, as they are an key factor in mission design.

To deal with such circumstance, we distinguish between house keeping request(HK)
which can be handled statistically and hard requirement(HR), which are assumed to
be known.
For the estimation of systems capacities, nothing changes. The most important results
are for authority definition.

Authority with HK and HR
The equivalent of Eq 3.18 uses, instead of the Y (t) the values of each request during the
several cases of HR. For each of the n HR conditions obtained from mission design, the
system must be able to satisfy

Aut ≥ E−1 · YHR,i for i = 1, ..., n

(Where ≥ means all components are greater or equal). This requirement can probably
be reduced to less than n, as it is clear that if YHR,i � YHR,j than also E−1YHR,i �
E−1YHR,j ; if we satisfy the jth requirement we have satisfied the ith as well. Further-
more, we assume that all YHK,i requirement are � the YHR,i.

24They are not independent, so this is not the case, but it gives the idea
25There is no reason why the should be performed at the same time, it just so happens
26If they are independent, the probability is the product of individual probability

59

We then have that, for each subsystem J = 1, 2, 3 the required authority will be

AutJ = maxi (BJ1Y1 +BJ2Y2 +BJ3Y3|HR,i) for i = 1, ..., n (3.22)

This process of choosing the maximum value requested individually for usually very
different than simply choosing the anti-image of the maximum YHR. Let us examine two
possibilities;

1. By choosing the individual maximum, we find that all belong to the same event.
That is, we have that we can actually find an YHR that is bigger than all the other
(in the sense of �). If this is the case, we simply design the system to handle this
condition, and everything is analytical and can easily be dealt with.

2. Complementary to the first case, we have that not all maximum requests come from
the same HR. The maximum authority for each subsystem might be reached only
with one HR, while in all other cases, the subsystem uses could use less authority.

The second hypothesis is somewhat more likely than the first, as typically a system is
required to perform a multiple objectives maybe very different among each other, which
require different things.
This behaviour can be expect to increase as the number of subsystems increases.

Regardless of the case in which we might be, following the above procedure will give
us the authority for each subsystem. Using the statistical knowledge on the requests we
can assess the needed system capacity. Then we have a pretty good estimate of all the
subsystem parameters.
It is important to notice that all the above parameters are function of the specific
subsystem efficiencies.

The flexibility approach

The first case does not pose any particular challenge for the design process. The second
one however present possibility to improve. In this case, we have that the authority of
a subsystem is set by an unusually high demand condition, and in most cases are used
to much lower operational levels.

It is worth noticing that this paradigm arises partially from mission requirement,
partly from the efficiency of each subsystems. Even with ideal subsystems then, there
will always be a mission profile that yield this result (namely, that the system are way
over authoritative).

One way to break out of the paradigm above is to relax the hypothesis of mono
dimensional production set. We could allow for individual efficiencies to vary, according
with instantaneous requests. Clearly, we can not expect to be able to simultaneously
increase all efficiencies, otherwise we would have done so in the design phase. A more
realistic hypothesis is that we can increase one efficiency at the cost of lowering another.
To ask whether this is possible or not is a rather legitimate question. Assume there are

60

two components that perform the same function (say a power conversion) using different
technology, and have been inserted in the system for redundancy. Unless we use the
exact components, we can imagine that they will exhibit different efficiencies.
Once again, if one subsystem has strictly higher efficiencies under every aspect, we might
chose that same system twice. The most interesting case is that in which we have two
subsystem with non-comparable efficiencies. If this is the case, the overall subsystem
efficiency will be the weighted average of the two, (weighted by the amount of output
maybe). Hence we can migrate from one efficiency condition to the other.
This outcome could be achieved even with the same hardware, but with different algo-
rithms. For example, power control might be obtain with PWM and square waves of
more sinusoidal waves.

Whenever this happens, one can modulate the overall subsystem performance by
simply using more of one system and less of the other. Although this is very clear if
one assumes linear behaviour, for non linear system the effect of this are probably even
bigger. One could even modulate efficiency by using two identical subsystems!

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

system

effi
ci

en
cy

Consumption at fixed output

Power used i

computational resources (N)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

Aut

ex
p

ec
te

d
fr

eq
u
en

cy

Non linear components

Figure 3.27: Some basic normal distribution to show the cover factor

But what is the benefit of having a subsystem that can change its efficiency?
The intuitive idea is that, if a request is particularly demanding on one subsystem, the
other might avoid worsening this condition by increasing the efficiency with regard to the
almost saturated subsystem. The downside of this is to increase the load on a different
subsystem, but if this is less saturated, it will not develop into a higher authority demand
in the design phase.
If this intuition is right, we can lower over all authority on all subsystems, independently
of the technology used, and without sacrificing any system properties27.

Before studying this method analytically, we wanted to obtain some semi-empirical
results. We are interested in the decrease in authority between the static design and the

27The flexible system is able to do everything the static system can do, but with smaller actuators

61

dynamic one.
The static design works like this:

1. Fix efficiencies for all subsystems (6 variables)

2. Fix External conditions, such as maximum requests and usual requests (6 variables)

3. Obtain Authority for each subsystem (3 values) using 3.22

For the dynamic case the process is

1. Fix efficiencies for all subsystems (6 variables)

2. Fix flexibility, how much I can improve or decrease each efficiency (6 variables)

3. Fix External conditions, such as maximum requests and usual requests (6 variables)

4. Obtain Authority for each subsystem (3 values) by brute force.

We then compare the authority of systems with the same efficiency and external condi-
tions.

How efficiency changes
We allow for efficiencies to change, then the matrix E will be something like

Evar =

 1 − 1
ε1,2±δε1,2 − 1

ε1,3±δε1,3
− 1
ε2,1±δε2,1 1 − 1

ε2,3∓δε2,3
− 1
ε3,1∓δε3,1 − 1

ε3,2∓δε3,2 1


Where the fact that we can not increase all efficiencies for a given subsystem is given by
the inverted sign of the ±. To quantify these change in efficiencies, we use the variables
p, q, r all in [−1, 1]. The matrix Evar is now

Evar(p, q, r) =

 1 − 1
ε1,2+q·∆ε1,2 − 1

ε1,3+r·∆ε1,3
− 1
ε2,1+p·∆ε2,1 1 − 1

ε2,3−r·∆ε2,3
− 1
ε3,1−p·∆ε3,1 − 1

ε3,2−q·∆ε3,2 1


And ∆εi,j is now the maximum efficiency change the subsystem can perform. While the
parameters p, q, r will have to be set by the internal management of the system, as the
mission progresses, in real time, the parameters ∆εi,j are set during the design phase.

It is worth noticing that using this model, since by choosing p, q, r = 0 we revert to
the static case, we can not make things worse. The question is whether or not we are
able to improve more than the cost (in term of mass) of having a flexible system.

There are two more things to consider; Maybe we can not have higher efficiencies for
each subsystem because we have reached the state of the art. If we haven’t though, a
static optimization yields no results, because on average, it doesn’t matter if you increase
one efficiency to lower the other.

62

How do we chose which authority is the best one?
This is a problem just for this specific exercise, and in the real application can be over-
looked. Once a target function is defined, there is no longer ambiguity in the definition of
best authority. We will have to invert Evar, so for easier notation we rename everything.

Evar(p, q, r) =

 1 −a1,2(q) −a1,3(r)
−a2,1(p) 1 −a2,3(r)
−a3,1(p) −a3,2(q) 1

 (3.23)

We need to clarify how we chose the authority in the dynamic case(step 4). A
simple, brute force way to do it is as follows; The anti image of the ith HR is given by

Aut:,i = Evar(p, q, r)
−1Yi

We want to lower all subsystem authority28. We can cycle through a lot of possible
combinations of p, q, r and find the one we like the best. In this case, we chose according
to the � preference, hence for each HR, we have a vector containing the authority for
each actuator AutHR,j . Due to how we chose it, we are sure that there is no other vector
(and p, q, r combination) that is able to match YHR,j and is strictly smaller than our
choice.
Once we have this for all the n HR, we set individual authority as before

AutJ = maxi (AutJ,i) for i = 1, ..., n

What kind of improvement can we expect?

This model has a lot of variables. To guide our analytical search, we performed a Monte
Carlo analysis. We have all 18 variables change within some reasonable intervals and
record the results.

Simulation Parameters:
Subsystems range of characteristics

28This is very demanding, but doesn’t require a trade off.

63

Efficiency Flexibility
Subsystem Characteristics Min Max Min Max

[%]of eff [%]of eff

PS Heat 83% 95% 1 50
Computational [MHz/W] 0.1 5 1 50

TCS Power 50% 90% 1 50
Computational [MHz/W] 0.1 5 1 50

CPU Power [W/MHz] 0.01 0.1 1 50
Heat [W/MHz] 0.01 0.1 1 50

External Conditions Mean Peak
Min Max Min Max

Current [W] 5 50 2 10
Waste heat [W] 5 50 2 10

Payload data handling [MHz] 30 300 2 10

Figure 3.28: All the combinations tried in the Monte Carlo method.

The result of running the program on the above simulation is shown in figure 3.29.
The x axis represents the percent decrease in the authority requirement for each sub-
system. This can be also understood as an additional safety factor that we would have
if we designed the system with the classical method vs the proposed one. The y axis
shows how frequent any particular value has been obtained.

64

Figure 3.29: Changing all 18 variables.

Figure 3.29 shows a rather jagged, although consistent pattern. However, given the
number of variables, it is very hard to discern what is meaningful and what is not. In
an effort to give more meaningful results, we fixed the system characteristics and cycled
through many different mission requirement.

System A; subsystems characteristics

• PS: Energy conversion efficiency between 82% and 87% (heat output). Static
84.5%
Computational cost per W between 0.08 MHz and 0.12 Mhz. Static 0.10

• TCS: power required for 1 W of heat removed 0.8W and 1.2W. Eff 44% and 55%
(Combination of Peltier cells and other methods).Static 50%
Computational cost per W removed 0.08 MHz and 0.12 Mhz.Static 0.10

• OBDH: power required for 1Mhz 0.008 W and 0.012 W. Static 0.010
Heat removal per Mhz 0.08 W and 0.12 W. Static 0.010

65

External Conditions Mean Peak
Min Max Min Max

Current [W] 10 100 2 6
Waste heat [W] 10 100 2 6

Payload data handling [MHz] 20 80 2 6

Figure 3.30: External condition used in figure 3.31

Figure 3.31: Using system A, we vary mission parameters to assess % gains.

The most interesting peaks might seem a relatively small. However, 10% of 200 000
missions is still 20 000 mission in which we could decrease up to 25% the authority of
the PS without and functional drawback! Again, this improvement is almost regardless
of the technology we are using, so it is a big improvement on every subsystem.

The data we have used for the simulations above were taken by data sheet from
cubesat shop. Their relevance however, remains questionable. Not everything is available
and there is no information on how system proprieties would scale etc.
These simulation however were not performed with the intent of getting accurate or
reliable data, just indications for the analytical model. The main question however is,

66

how much flexibility is needed, and is it achievable?
This is the main point because without flexibility, the two approached are exactly the
same.

67

Flexibility of a linear subsystem

Let us set aside the schematic, functional representation shown in figure 3.24 and return
to the component based one (3.32). While the first one was useful to show the functional
relationships between the subsystems, this has the advantage of showing the actual,
physical subsystems, with their redundancies and interconnections. We will use it to
show more intuitively how flexibility can be obtain from redundancy.

Assume we have a system S with n subsystems, L goods (with L < n) and a well
defined management algorithm X(~R).

S

S1
S2

S3

...

Sn

∑n
i=1 g1,Si∑n
i=1 g2,Si

. . .∑n
i=1 gL,Si

~R

Figure 3.32: A generic system

We describe such system with an adjoint production function ~S(X) : [0, 1]n → RL
to model production and a adjoint consumption function ~Q(X) : [0, 1]n → RL. The first
provides the outputted amount of goods for every possible operational level X while
the second quantifies the amount of resources that have been consumed from internal
resources. Note that the second is somewhat unnecessary, as all the information about
consumption are contained in ~S. We define it only to emphasize consumption.

Assume also that each subsystem production set can be written as a linear function
of its operational level,

Si =


g1,i(xi)
g2,i(xi)
. . .

gL,i(xi)

 =


α1,i

α2,i

. . .
αL,i

 · xi xi ∈ [0, 1], α ∈ R;

Then,we can write

~S(X) =


g1,S1(x1) + g1,S2(x2) + · · ·+ g1,Sn(xn)
g2,S1(x1) + g2,S2(x2) + · · ·+ g2,Sn(xn)

. . .
gL,S1(x1) + gL,S2(x2) + · · ·+ gL,Sn(xn)

 =


α1,1 α1,2 . . . α1,n

α2,1 α2,2 . . . α2,n

.
αL,1 αL,2 . . . αL,n

·

x1

x2

. . .
xn

 = ~R

~S(X) = B ·X B ∈ RL,n

68

Now, the set of all the possible X that satisfy the management problem is very easy
to identify

~S(~R)
−1

=
{
X = Xp +Xk, where B ·Xp = ~R and Xk ∈ ker(B)

}
for X,Xp, Xk ∈ [0, 1]n

~S−1 can be easily represented on a vector space as an hyperplane with dimension n−L.

Example 3.22. Assume a system composed of 2 subsystem (n = 2) that co-operate to
produce only one good (L = 1). We have dim(Ker(B)) = 1 and ~S−1 will be a segment
on the plane.

B = [α1 α2]; B ·X = R ⇒ Xp =

(
0
R
α2

)
Xk =

(
1
− 1
α2

)
Or, in the analytical description

x2 =
R

α2
− α1

α2
x1

x1

x2 (1, 1)

R1

R2

R3

System S1

Figure 3.33: Representation of ~S−1(R)

Independently of the required ~R, the slope, or direction of ~S−1 is determined by
ker(B).
Notably, this is a characteristic of the system, not of any specific subsystem;
it tells something about the proprieties of the ensemble.

On the same space Rn, we have defined the cumulative consumption function ~Q. Here
we have several goods that might be consumed for each point X in the operational space.
As we have seen in chapter 1 and 2, setting an equivalence between these goods is
a demanding task. Therefore, we refrain from making such a demanding decision, and
plot each consumption function

~Q(X) =

g0(x1) + g0(x2) + . . .
. . .

gL(x1) + gL(x2) + . . .

 =

G0(X)
. . .

GL(X)


69

Without having to say anything about the type of management we intend to use,
we can say that it will depend on these quantities Gi. Let G0(X) : Rn → R be the
consumption of a given internal finite good from all the subsystems.

We initially assume that G0(X) is linear as well; To avoid a trivial system (with mere
reservoirs) we assume that it looks something like this

~S(X) =

 α1 α2 0 0
−β1,1 −β1,2 β1,3 0
−β2,1 −β2,2 0 β2,4



x1

x2

x3

x4

 =

R0
0

 αi,j > 0

The system above has only one direct output (R) which can be produced using either
S1 or S2 (the only systems that can produce output on the first line). These however
consume two resources (which we’ll call G1 and G2) and are supplied by the S3 and S4.
Once we determine x1 and x2, it is quite obvious that we don’t have any choice for x3

and x4, hence the figure above are still a valid representation R(x1, x2). We can write
G1 and G2 as function of x1 and x2.{

G1(X) = β1,3 · x3

β1,3 · x3 − β1,1x1 − β1,2x2 = 0
→ G1(X) = β1,1x1 + β1,2x2 x2 =

G1

β1,2
− β1,1

β1,2
x1

And in the same way G2(X) = β2,1x1 +β2,2x2. Let us plot R(X), G1(X) and G2(X)
on the same domain (now we assume the domain to be (x1, x2)).

x1

x2
(1, 1)

System S1

R3

R2

R1

Level lines for G1(X)

Level lines for G2(X)

Level lines for S(X)

Figure 3.34: Level lines for both ~S, G1 and G2 in a simple case.

In figure 3.34 we see that both subsystems S1 and S2 can use some amount of the
resource G1, G2 to produce the desired output. The management algorithm will chose
an X? ∈ ~S−1(R) to optimize ~Q(X?), hence the trade off between consumption of G1

and G2 in some yet unspecified sense. In general, we can not, and do not want to, say
anything more on the preferred value of ~Q(X).

Intuitively, if we have at our disposal 2 resources G1, G2 that can both be converted
into a needed output, using more of one will reduce the consumption of the other. Hence,

70

if one is more valuable than the other, we will want to maximize consumption of the less
valuable one.

The management will have to chose a point in ~S−1(R). We want to emphasize the
possibility we have. Since in this case the set ~S−1(R) is a line we use a parametrization

X(t) such that ∀X ∈ ~S−1(R′) ∃ t ∈ [0, 1] : X(t) = X

Which in the linear case, can be written as

~S−1(R) =

(
x1(t) = γt+K

x2(t) = R
α1,2
− α1,1

α1,2
(γt+K)

)
γ,K such that x1(t = 0) = ... x1(t = 1)

Where K, γ depend only the level of R requested. Now we can plot G1(X), G2(X), X ∈
~S−1(R).

G1(X(t)) = β1,1x1(t) + β1,2x2(t) = β1,1(γt+K) + β1,2

[
R

α2
− α1

α2
(γt+K)

]
G1(t) =

(
β1,1 − β1,2

α1

α2

)
γ · t+

(
β1,1K + β1,2

R

α2
+ β1,2 ·

α1

α2
K

)
We obtain the same results with G2(t), we just need to substitute β1,1 and β1,2 with β2,1

and β2,2.

G2(t) =

(
β2,1 − β2,2

α1

α2

)
γ · t+

(
β2,1K + β2,2

R

α2
+ β2,2 ·

α1

α2
K

)

t

G1

G2

Figure 3.35: Consumption of G0 and G1 on an iso R line

Since the management algorithm is merely choosing a t, we are interested in know-
ing weather resource consumption increase or decreases with t. Since these are linear
functions, this is straight forward.

dG1

dt
=

(
β1,1 − β1,2

α1

α2

)
γ

dG2

dt
=

(
β2,1 − β2,2

α1

α2

)
γ

We divide our options in two possibilities, either G′1 and G′2 have the same sign, or they
don’t.

71

1. If they have the same sign (they both either increase or decrease with t), there is
no trade off;Assume for simplicity that G′1, G

′
2 > 0

β1,1 > β1,2
α1

α2
β2,1 > β2,2

α1

α2
⇒ α2

β1,2
>

α1

β1,2

α2

β2,2
>

α1

β2,2

Notice that the ratios αj/βi, j are the efficiencies with which the subsystem Sj
converts the resource i into the required good. In this case, the subsystem 2 is
strictly more efficient than 1. When asked to produce R′, it will consume less
G1 and less G2 that what S1 would require.
This is not a very interesting example, in the design phase we would simply take
out the less performing subsystem.

2. In light of what shown above, we will assume that G′1 ·G′2 < 0. This means that to
produce the same output, one subsystem consumes more G1 than the other (and
vice versa for G2).

Flexibility of a non linear subsystem

Two identical linear subsystem are not reconfigurable/flexible; this is obvious from the
definition of linearity. Given the output, the input is fixed

f1(x1) + f1(x2) = O1 → c1x1 + c1x2 = O1 → x1 + x2 =
O1

c1

As soon as we lift the hypothesis of linearity however, we can use two identical subsystems
and maintain some flexibility. The simplest production function we can think of is a
polynomial

f1(x1) = c2 · x2
1 + c1 · x1 + c0

Now, even if the system has two identical subsystems, we the anti image of the wanted
output is not unique.

f1(x1) + f1(x2) = O1 → c2 · (x2
1 + x2

2) + c1 · (x1 + x2) + c0 = O1

Which can be used to implicitly define a locus in which the above is verified, or the
options we have at our disposal and from which we can choose.

72

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

Work load

E
ffi

ci
en

cy
Efficiency curve for a non linear subsystem

Efficiency

(a) Efficiency

0 20 40 60 80 100

0

50

100

Work load

O
u
tp

u
t

Output for a non linear subsystem

(b) Production function of each subsystem

Effect of Changes in Dynamic Parameters

Now we want to offer some ideas on how to account for changes that affect the dynamic
characteristics as well as the functional one. A classical example would be a trade off
between subsystem mass and efficiency; is the increase in efficiency worth the increase
in mass?

To be more specific, by dynamic characteristics we mean every constant that influ-
ences the differential equations 3.15, such as mass, angular inertia, thermal conductivity,
electrical charge capacity etc etc. Adding a new subsystem or modifying an existing one
will usually change many of these proprieties; since our adjustment are aimed at maxi-
mizing management effectiveness, the minimum, mildest condition we put on dynamic
changes is not to make the system worse. We can interpret this desire to not worsen our
condition as follow

The system after the change should be able to do everything the system was able to do
before the change.

To formally state the above, let us begin by focusing on a mono dimensional dynamic
system. The generic differential equation will depend on a series of dynamic parameters
M = (m1,m2, . . . ,mn) ∈ Rn, where n is the order of the differential equation. To be as
generic as possible29 we will identify it as

f : C1 × Rn → R f(x(t),M) = u(t)

Usually, the problem of dynamics is aimed at solving for x(t) given the external input
u(t). In this instance however, we are only concerned with what we can make our system
do. The question is, given x(t), can we produce a u(t) able to guide our system on x(t)?

29We are assuming all physical quantities to be continuous

73

If we assume that our actuators don’t suffer any dynamic effects (zero order30) we
only need to avoid saturation of the actuators. That is, we need to be sure that all
the u(t) that we need to keep the system on the wanted trajectory x(t) are below the
threshold of maximum output, which is a characteristics of the system.

Example 3.23. Imagine a simplified model of a satellite as a rigid body on a plane, in
a low orbit environment. We wish to rotate it of an angle θt, according with the law
θ(t), t ∈ [t0, t1]. The coefficients ~M = (I, c) are its inertia along the axis of rotation and
a drag coefficient to account for some atmospheric residue. The differential equation
that describes its dynamic could be something like

Iθ̈ + cθ̇ = u(t)

Where u(t) is the cumulative torque which the system is able to produce. This might
be the sum of the torque given by the reaction wheels, magneto torquers and thrusters.
Again this is a characteristic of the system as a whole.
Given θ(t), the manoeuvre will be feasible if

max
{
Iθ̈(t) + cθ̇(t)

}
≤ U ∀t ∈ [t0, t1]

where U is the maximum achievable output u(t), or the actuator authority.

Note that, given x(t), finding the maximum u(t) required to accomplish the manoeu-
vre is trivial. In light of this, the extension to non linear dynamics (for once) is also
trivial. Since we are going to use the maximum quite often, we define a semi-norm as

Definition 3.0.6. Let f(t) : R→ R then

||f(t)|| = max {f(t)}

Remark. It is a norm if f(t)→ [0,+∞), it is a semi norm if f(t)→ R since if ||f(t)|| = 0
does not imply f(t) = 0 for any t.

Then, we can formalize our requirement;

Definition 3.0.7 (Possibility set). Let ~M = (m1,m2, . . . ,mn) ∈ Rn be the vector of
dynamic coefficients, U ∈ R the value of the maximum output feasible with our system
and f(M,x) be the differential equation. We define as the possibility set

P ~M,U =̇
{
x(t) ∈ C1(R) such that ||f(x, ~M)|| ≤ U

}
(3.24)

If we assume that the system dynamics f doesn’t change, it is clear that

U1 ≤ U2 ⇒ P ~M,U1
⊆ P ~M,U1

We are interested in the inclusion relation as we change ~M . The intuitive notation we
had before can be expressed formally as;

30We can produce any output, without having to worry about how fast it’s rising or falling and so on

74

Definition 3.0.8 (Allowable changes). Given a system with dynamic vector ~M1 and
maximum output U1, a change in the system is allowable if the possibility set of
the resulting system ~M2, U2 include the previous.

P ~M1,U1
⊆ P ~M2,U2

(3.25)

Remark. Note that:

1. As mention before, checking if any one x(t) belongs to any P ~M,U is remarkably
simple, even for complex, non linear system. However if we want to define a
possibility set by testing every possible x(t), we need to devise a more strategic
test.

2. It is clear that most PM,U are infinite, with the notable exception of the free motion
possibility set PM,0. Therefore, proving the inclusion by trying every possible
combination is in general not feasible.

3. It is also true that we might not want/need to maintain, in the new design, all
the trajectories x(t) that were available in the previous system. However, since we
have not found any reasonable way to determine which trajectories are superfluous,
we will assume that none are.

An engineering approach to the problem might be to give an estimate of a number of
the most demanding manoeuvre and then checking for those. It is not formally complete,
but it is very simple.
Otherwise, for a linear system, a more sophisticated strategy may be the following;

1. Under reasonable assumptions for x, we can decompose it in Fourier series.

2. We can analytically find the ||f(M,x)|| = u for a generic harmonic.

3. We add them all up. We can say something like: if the PSD of x is such an such,
then ||f(M,x)|| < U ′. This way we can characterize the whole possibility set with
only one function, PSD.

4. Using the same PSD we can see how U ′ changes as M changes.

5. We confront the two proposed systems.

75

Parametric Design

As more of a curiosity than an actual suggestion, we want to consider why parametric
design might be extremely interesting for the flexible design concept. We will return to
the most basic idea of design method.

If our subsystem choice is bounded to a finite set, we could actually try every possible
system and chose the (loosely defined) best one. Even with tomorrow’s computational
power however, this method is bound to saturate our computational capabilities ex-
tremely quickly.

The possible design to test for a given problem are given by∏
i∈S

(Si) ,

where S is the set of the subsystems (which we assume to be finite) and Si is the set of the
possible choices for the subsystem i. If one think about a simple system, with 5 subsystem
and 5 possible choices, this yields 55 possibilities. Considering the computational burden
of every simulation, which must find the optimal management within a range of different
requirements and external conditions, this is only theoretically a viable option.

Furthermore, there are good reasons to use this method with parametrized compo-
nents, instead of modular ones. Hence we would have a continuous range of different
subsystems. In this second case, even the theoretical possibility vanishes.

From the finite subsystem space to continuous; parametric design
Parametric design is the idea that we understand a subsystem well enough to be able
to write a set of functions that fully describes its characteristics, and that can be met
during manufacturing.

Example 3.24. Imagine a hypergolic bipropellent propulsion system for space applica-
tion. Its efficiency can be measured by the characteristic velocity

c =
Thrust

ṁfuel
= c? · cF

Where cF depends on the expansion ratio of the divergent nozzle, the c? can be linked
with the length of the chamber, as longer chambers allow for a more complete combus-
tion.
With appropriate testing, it is possible to write c a function of geometry

c = f

(
Lchamber,

AE
AT

)
By further refining this process, one could have a completely parametric engine design.

A simple way to obtain the performance curves could be to naively interpolate from
specification of off the shelves components. While these will prove useful for the design

76

process, it is crucial31 to have the component design completely determined. That is,
we need to be sure we can

• Manufacture the subsystem to meet the projected specification characteristics

• Produce the detailed design without human intervention.

Economic viability of Parametric design Vs Modular design
Parametric design could offer optimal performances while still taking advantage of scale
economy.

Analysis of scale economy
Scale economy is based on the fact that fixed costs can be diluted over large volume of
production. Fixed costs can be divided in

• Design,Development and Testing
Obviously, design, development and testing costs have to be paid only once per
product. With parametric design, instead, one would have to do at least non
destructive tests on every component. However, the R&D costs would be spread
out over a much wider application range.

• Production Infrastructures
For very large volumes of production, these could include moulds and specified
machinery. However, for aerospace purposes, these are mostly CNC machine and
3D printers. Hence, slightly modified designs will not affect the unit cost.

• Material break cost
Due to large volume order, suppliers might offer a discount. For material this still
applies for parametric design; for basic components such as integrated circuits, it
doesn’t.

Finally, an increase in the range of the module produced would widen the market,
allowing for greater scale economy.

Optimal design
Assuming we have developed the parametric design for all the subsystems, we are still
left with the embarrassing problem of the choice in Rn. Once again, we can not define
a total order because a generic system will use more than one resource to produce more
than one good, therefore there is no unique definition of efficiency.

Using optimum management we can be sure that the system will always perform
the best it can given the system design and external conditions. While the system
design is what we need to find, we have not yet said anything about external conditions.

31For the economic worthiness of the endeavour

77

Application to a specific mission

Figure 4.37: Oneweb concept for the standard nanosatellite.

In the previous chapters, we have developed a method for system design based on
a flexibility principle, which can be also seen as simply relaxing the hypothesis of sin-
gle controllable input subsystem. To assess the general proprieties and overall perfor-
mances of this approach, it was applied to several thousand different mission scenarios,
which were expressed by maximum output requirements (e.g. maximum power request,
maximum computational burden etc...). Due to the varied nature of these mission, no
optimization/target function was explicitly chosen and the only secondary goal was the
minimization of all subsystem authorities. This was chosen under the assumption that
any sensible cost function (such as total mass, total cost, complexity etch) is non decreas-
ing with all subsystem authorities. Then, minimizing system authority will minimize any
cost function.
Due to the wide variation of mission parameters, the results obtained are meaningful
only on a mean, statistical base. Furthermore, a decrease in minimum needed authority

78

for a subsystem is hard to intuitively relate to a system improvement.
In order to increase our confidence in this approach, we will now apply it to a specific
mission, with a specific optimization target. We have chosen to study a constellation of
low orbit telecommunication satellites, with the secondary goal of mass minimization.

As explored extensively in chapter 3, the easiest way to achieve subsystem flexibility
is by having two non identical components working together. The flexibility approach
will then be achieved by choosing which components to use.

To measure the effectiveness of the flexibility method, we will compare it against both
a classic, monolithic, design (in which we just want to chose the single best component
) and a simply redundant, fragmented one, in which redundancy is achieved by using
identical components. This second architecture is aimed at increasing system reliability
while maintaining costs and design complexity by having identical components.
Since we have chosen to optimize for minimal total system mass, this will be our metrics
to judge the effectiveness of a method.

Finally, since this is still a preliminary study, we will use simple (linear) models for
the production function of each subsystem. At this stage, higher level of detail would
not be relevant, as the uncertainties over mission definition and component model would
hide any detailed system behaviour. Furthermore, quick and indicative models are often
more useful than complex computational one, which would require a lot more time to
process and would be much harder to understand intuitively. As for the model that links
subsystem’s authority to system’s mass, we will initially assume this to be linear as well.
However, under this linear hypothesis, it is clear that there will be no difference between
monolithic design and the the fragmented one32.

Mission Definition

We envision a constellation of a vast number (≈ 700) of small satellites (mass ≈ 100 ∼
200 kg) in low earth orbit (h ≈ 800 ∼ 1200 km) for telecommunication and internet
providing purposes. Similar projects are being pursued by Oneweb, SpaceX and Surrey
Satellite ltd, which makes it an interesting exercise both due to the richness of available
information and for the intrinsic value of the study.

We will focus on the preliminary design of following subsystems: Power system,
ADCS, Telecom (which, in this case, is almost the same as the payload) and On
board computer.

32As the mass function is linear with authority, having two subsystems with half the authority is the
same as having one subsystem

79

CPU ADCS

PSTelecom

Figure 4.38: Map of the subsystem interdependencies.

We are going to use linear models for all the production function of each subsystem
(i.e. all the goods/resources they consume or produce). Using linear models allows also
for constant values, therefore the instantaneous production/consumption of a subsystem
will be given by the consumption vector times the control variable (~Vs ·xs) and a constant
vector. The constant vector allows for a better representation of real system behaviour.

CPU :


0
−iC
+NC

0

·xC ADCS :


TA
−iA
−NA

0

·xA PS :


−TP
+iP
−NP

0

·xP Telecom :


−TT
−iT
−NT

DT

·xT
(4.26)

The vectors ~Vs will change depending on the component we are considering and ide-
ally they would be taken directly from the component’s data sheet. All coefficient are
intended to be real positive numbers.

While it is clear that the CPU needs power to provide the NC computational power,
other interactions might not be as obvious. Depending on the orbit or the spacecraft
manoeuvres, the power system might need to perform sun tracking by rotating the solar
panels. This is equivalent as an external torque which will have to be corrected by the
ADCS. Furthermore, both sun tracking and power conversion algorithms will require
some computational power. Finally, even the telecommunication system might use a
pointing mechanism, which will again require adjustments from the ADCS, but this has
not been included in the model.

Remark. The model we have implemented in the previous chapter featured a great
number of parameters, but many of them were just definition of mission requirements.
Since the mission parameters now will be fixed however, we can considerably reduce the
number of variables.

Once we have chosen the subsystem from a catalogue, the whole system will be model

80

by the following
0
−iC
+NC

0

·xC+~CC+


TA
−iA
−NA

0

·xA+~CA+


−TP
+iP
−NP

0

·xP+~CP+


−TT
−iT
−NT

DT

·xT+~CT =


Treq(t)
ireq(t)
Nreq(t)
Dreq(t)




0 TA −TP 0
−iC −iA +iP −iT
+NC −NA −NP 0

0 0 0 DT

 ·

xA
xP
xC
xT

 =


Treq(t)
ireq(t)
Nreq(t)
Dreq(t)

−∑ ~Ci (4.27)

Where all the constant vector have been lumped together on the right side of the equa-
tion. If the system is able to provide the requested outputs without exceeding the
maximum authority of each subsystem, mission requirements are met. This condition is
easily expressed by

~x� ~Aut where ~x=̇S−1(~Treq − ~C), ~Aut =


Aut1
Aut2
. . .
Autn


Once we have verified that the system is able to meet mission requirements, we assess

its effectiveness which in this case, is its mass. This is obtained by simply adding the
each subsystem mass, which should be reported on the component data sheet.
Later in this chapter, instead of using actual components, we will use equations to model
a continuous range of authorities. In that case, total system mass will become a function
of each subsystem authority.

Mission requirements

We need to define the right hand side of equation 4.27, or the amount of each of the
outputs we require for the specified mission. As a first approximation, we can limit our
requests to only the attitude control and volume of data transmitted. This because we
assume that no power output is requested, as all the power consumption from the system
itself have already been accounted for. It would not be the case if we had divided the
system in bus and payload, in which case, the bus would have had to supply the payload
with everything it needed . Here, the payload is the telecommunication system, and
therefore we can assume to have everything together.

To describe the mission with a series of request vectors, we need to define one for each
situation that could saturate our actuators. These vectors are given by the maximum
expected requests for each system, while the other requests are assumed to be average,
which is justified under the assumption that request intensities are probabilistic and peak
requests are unlikely. For each output we than have to identify average and maximum

81

levels.

Ext1 =


Tmax Tavg

0 0
0 0

Dmean Davg

 Ext2 =


Tmax Tavg Tavg Tavg
iavg imax iavg iavg
Navg Navg Nmax Navg

Dmean Dmean Dmean Davg


Torque requirements

The torque required for any manoeuvre is given by Ti = Iiθ̈i. To assess it, we need
to know both the desired time law θ(t), and the inertial proprieties of the spacecraft.
To obtain the first, we need to chose a controller algorithm, while the second one will
depend on the configuration we are examining. In the matlab algorithm, the inertia of
the satellite is estimated using the mass, the volume (using cubesat’s standard maximum
density) and some assumption on the shape of the system. As theses parameters will
be determined during the simulation, instead of giving maximum and average torque
requirement, we will specify maximum and average angular acceleration.

We want to derive θ(t) as a function of simple mission requirement. These will be
specified as a rotation of the angle ∆θ in the time interval ∆t. Since the objective is to
find the maximum performance we can achieve with a given authority T , we will assume
that we will be using the full authority for the whole time. Then the we have the curve
in figure 4.39, which assumes no coasting and therefore

TRW =
4∆α

(δt)2
· Isat (4.28)

0 2 4 6 8 10

0

20

40

t (s)

θ
θ̇
θ̈

Figure 4.39: Angular acceleration, velocity and rotation.

82

Since the constellation is in LEO, we assume the period of the orbit to be approx-
imately 90 minutes, which gives an average rotation (in nadir pointing configuration)
of 360/5400 [◦s−1] ≈ 1, 2 ◦s−1. Therefore, assuming we do not relay on passive attitude
control techniques, this is the rotational speed we need to maintain. Of course, if this
is constant, we do not need to supply any torque. If we assume that the average nadir
point active correction is to be executed every 10 seconds, and takes five, we have

∆θavg = 12◦ ∆tavg = 5 s

To estimate maximum torque requirement, we assume it to be there times as impor-
tant as in the average case, hence

∆θavg = 36◦ ∆tavg = 5 s

Data requirement are hard to assess; by looking at telecommunication satellites spec-
ifications, traditional telecommunication satellite might have around 100 transponders.
Approximately, this amounts to about 50 000 Mbps of total data link for one geosta-
tionary satellite. Since a typical GEO constellation might have tens of satellites, while
the one we are considering might have approximately 1000, we estimate budget about
500 Mbps on average and 1 000 Mbps peak requirement per satellite.

Solar panel angular acceleration θ̈ for power system estimation
Since we are assuming that the power system (in a worst case scenario of unusable bat-
tery) needs to have an independent orientation system from everything else, we assume
it needs to counter act the motion of the satellite, in order to keep its pointing. Then
the angular acceleration we expect will be θ̈ ≈ θ̈s.

Derivation of Subsystems models

Ideally, we would like to implement the model shown in equation 4.26 directly, using only
off the shelves components. To do so, we would need to compile a database containing
the production function vector, system authority and system mass for each component.
Given a selection of subsystems, we could then check weather the overall system is able
to satisfy mission requirements, (which means that for each subsystem, the maximum
authority needed to meet requirement is lower than that of the subsystem) and finally
compute its total mass.
Once this process is performed for every possible combination of subsystems, we would
be able to chose the best option according to our preferences (in this case, the system
with lower mass).

However, this approach is not feasible due to the scarce number of standardize,
ready to buy, components. Even after restricting the scope of the mission to cubesat-
like components, by far the most standardized segment, one should not expect to find

83

more than 10 different options for any given subsystem. Due to the poor resolution in
the choice of subsystems, it is indeed possible that the difference between the standard
design method and the flexibility based one might yield no effect.

To avoid this filtering effect, we will assume to have a continuous choice of subsystems,
by allowing for any technology to be scaled up or down in a linear fashion with its
authority. This is not as extravagant as it may sound; it can be seen as simply providing
the requirements for each subsystem and then having it custom made.

To derive such models, we examine the components that are readily available on sites
such as CubesatShop, Isis and Clyde Space and interpolate. An example for reaction
wheel is provided below.

Example 4.25. Reaction wheel scalability
Cube Space offers three reaction wheels; small, medium and large. Their performances
are shown in the table and the plot below

0 0.5 1 1.5 2 2.5 3

0

1

2

3

Max torque (mNm)

P
ea

k
p

ow
er

(W
)

0 0.5 1 1.5 2 2.5 3

0

100

200

Max torque (mNm)

M
as

s
(g

)

Cubewheel Small Medium Large

Maximum Torque 0.23 mNm 1 mNm 2.3 mNm
Peak power 0.6 W 1.0 W 2.2 W

Mass 55 g 130 g 200 g

Figure 4.40: Cube Space small, medium and large reaction wheels.

We will assume that any reaction wheel with authority comparable with the above
can be produced; all of the proprieties relative to its production function (e.g. power
consumption, computational needs etc) will be model as a linear function of the torque
output, while its mass (and possibly cost) will be a linear function of its maximum
authority.

RW =


1

−1.5 [mWmNm]

−10 [MHz
mNm]

0 [Mbps
mNm]

 · x [mNm] mass RW = 90[
g

mNm
] ·max(x [mNm])

84

In the next paragraphs, we will extrapolate linear models for each subsystem. Some
of the characteristics (for example the amount of computational power needed for a
manoeuvre) are hard to estimate and are not usually included in the component data
sheet. In these cases, rough estimation will be used and check against literature.

ADCS systems
The following table shows all the components we have been able to identify, with their
basic specifications and proprieties.

Name Authority Power consumption (peak) Mass Price
RW [mNm] [mW] [g] $

a? 0.23 600 55 4300
b?? 0.635 2200 90 7100
c?? 1 1000 130 5400
d? 2.3 2200 200 6500

10 SP-M 11 3500 960 165000
100 SP-0 110 10000 2600 258000

SSTL 240 140000 5200 NA
Clyde Space 40 28000 1500 34000

Figure 4.41: ?: IsiSpace, ?? cubesatshop.

0 2 4 6 8 10 12 14

0

0.5

1

1.5

·104

Max torque (mNm)

P
ea

k
p

ow
er

(m
W

)

0 5 10 15

0

500

1,000

1,500

Max torque (mNm)

m
as

s
(g

)

Figure 4.42: General trends for reaction wheels

From fig 4.42 we can abstract the model for both power consumption and mass.
Since we want to have different components, we will not use the average proprieties of

85

the cluster, but rather extract 3 trends, upper and lower bounds, and mean

RWA =


1

−1.1 · 103 mW
mNm

−20 MHz
mNm

0

+


0

−1200
0
0

 mRW A = 80
[g

mNm

]
· Autorithy RWA+10

(4.29)

RWB =


1

−0.75 · 103 mW
mNm

−44 MHz
mNm

0

+


0
−500

0
0

 mRW B = 90
[g

mNm

]
· Autorithy RWB+30

(4.30)

RWB =


1

−0.3 · 103 mW
mNm

−110 MHz
mNm

0

+


0
−400

0
0

 mRW C = 100
[g

mNm

]
· Autorithy RWB+80

(4.31)
To figure out a law for the computational power needed for our hypothetical para-

metric ADCS is based on ADCS computer boards.
Many ADCS computer board can be used as OBC as well however, very few data points
are available to estimate the processor’s speed. To have at least an indication of the
processor’s burden, we will assume it to be the only cause for energy consumption other
that the actuators themselves. Then using the power consumption in the idle case, we
can extrapolate the speed of the processors. The model we are using to link the two is
based on the data from the SatBus 1C1

Processor’s Power consumption[mW] =


1.4
3.5
8

[
mW

MHz

]
· Processor’s speed (4.32)

Board Type Authority Speed Power Mass Cost Inferred (at 3.5)
ADCS [mNm] [MHz] [mW] [g] [K$] [MHz]

Nano avionics MT / 168 NA 44 NA /
MAI board MT,RW NA NA 90 90 25 25

ISIS MT Board MT / NA 175 196 8 50
CubeControl MT, RW 0.15 NA 220 115 4.8 62

MAI 400 RW,MT 0.635 NA 450 694 90 128

The best attempt at modelling the computational burden of a set of 3 reaction wheels

86

is by using the equation

ADCS CPU[MHz] =


110
44
20

MHz

mNm
· T [mNm]

Power subsystem

The driving parameter in this subsystem is clearly the output current/wattage. This
is usually obtained with a combination of direct solar power and battery usage. We
will model the power system as 3 different components; the distribution and control
board(EPS), the solar array and the battery. The mass of the board/distribution
system will be estimated using table below and will be assumed to be

mboard[g] = 1.8 · 10−3
[g

mW

]
Power [mW] + 50

Name Max W CPU Consumption Mass Price
EPS [mW] [MHz] [mW] [g] [k$]

Crystalspace Vasik 10 000 NA 15 80 2.8
CubeSat DHV-CS-10 29 000 NA NA 50 NA
CS 3rd Generation 1U EPS 22 500 NA NA 86 4.9
Surrey PCDU 2 600 000 NA NA 2600 NA

Figure 4.43: Power subsystems boards.

0 0.5 1 1.5 2 2.5 3

·104

60

80

100

Output power (mW)

M
as

s
(g

)

To complete the model as in equation 4.26, we need to link instantaneous power
request to both torque and computational burden. The worst case scenario we wish to
consider is that in which the battery is completely drained, and therefore we need to use
the solar panels to provide all the needed wattage.
The solar array must be always pointed in the appropriate direction. By orienting them

87

we create a parasite torque, which we can estimate from the mass and geometry of the
panels. Solar panels proprieties are reported below.

Name Rated W Eff Area t Mass Price Dim I
Solar Panel [103 mW] [%] [mm] [g] [k$] [mm2] [g mm2]·104

CubeSat DHV-CS-10 2.9 30 1 U 2.4 50 NA 100x100 8.2
Nano avionics 2.3 17 1U 1.7 NA NA 100x100 NA

ISIS single 3.6 30 1 U 2 50 NA 100x100 8.2
ISIS custom 1U 2.3 28 1 U 2 50 NA 100x100 8.2
ISIS custom 2U 4.6 28 2 U 2 100 NA 200x100 16.4
ISIS custom 3U 6.9 28 3 U 2 150 NA 300x100 24.6

EXA deployable a 3.75 19 3U 1.5 87 NA 300x100 14.5
EXA deployable b 12 28 4U 1.5 70 NA 400x100 11.6
EXA deployable c 3.75 19 3U 1.5 115 NA 300x100 19
EXA deployable d 12 28 4U 1.5 98 NA 400x100 16

Figure 4.45: Solar panels proprieties for inertia considerations

0 0.5 1 1.5

·104

10

20

30

40

50

Output power (mW)

In
er

ti
a

(m
m

2
g

10
4
)

0 0.5 1 1.5

·104

50

100

150

200

250

300

Output power (mW)

m
as

s
(g

)

Figure 4.46: Linear models for solar arrays.

Inertia Solar Panel [104 ·mm2g] = 7 +


3 · 10−3

1.4 · 10−3

0.3 · 10−3

[
mm2g

mW

]
·Output power[mW]

Finally, we need to evaluate the computational burden of both the Peak Power track-
ing and solar tracking algorithm. From table 4.43 we could infer (using the same method

88

used for the ADCS) a single data point at around 4.2 MHz 33 for the Crystalspace Vasik.

PSA =


−(7 + 3 · 10−3Aut) · 10−2 · θ̈ mNm

mW
1

−1.8 · 10−4 Mhz
mW

0

 ·WPS

mPS A [g] = (15·10−3+1.8·10−3)
[g

mW

]
· Autorithy PSA+(60+50)g+8·10−3Capacity battery

PSB =


−(7 + 1.4 · 10−3Aut) · 10−2 · θ̈ mNm

mW
1

−4.2 · 10−4 Mhz
mW

0

 ·WPS

mPS B [g] = (8·10−3+1.8·10−3)
[g

mW

]
· Autorithy PSB+(50+50)g+8·10−3Capacity battery

PSC =


−(7 + 0.3 · 10−3Aut) · 10−2 · θ̈ mNm

mW
1

−10.7 · 10−4 Mhz
mW

0

 ·WPS

mPS C [g] = (2·10−3+1.8·10−3)
[g

mW

]
· Autorithy PSC+(40+50)g+8·10−3Capacity battery

Finally, the mass of the battery will be assumed linear with its capacity. Below, some
target batteries are reported.

33or 1.8 or 10.7, depending on the computer model you use

89

Name Voltage Ahr Capacity Mass Price
[V] [mAh] [mWhr] [g] [k$]

Tenergy RCR123A cells 3 900 2700 17 0.008
Panasonic CGR18650HG
cells

3.7 2250 8325 45 0.01

Clyde Space Remote battery
board

8.2 1220 10004 62 1

Clyde Space 3U CubeSat
Battery

8.2 1220 10004 141 1

CubeSatKit / Pumpkin
CubeSat Kit Linear EPS Rev
D Standard

3.7 3000 11100 155 0.750

GomSpace - NanoPower BP-4 8.4 3600 30240 213 1.5

0 0.5 1 1.5 2 2.5 3

·104

0

100

200

300

400

Capacity (mWhr)

m
as

s
(g

)

Figure 4.47: Battery mass Vs capacity

mass battery[g] =


14 · 10−3

8 · 10−3

4.5 · 10−3

[g

mWhr

]
· battery capacity[mWhr]

Unlike the solar array and the power management board, the authority for the battery
is its capacity. To estimate it, we will take the average power consumption and integrate
it over the eclipse time.

Battery capacity =

∫
Eclipse

avg(mW)dt

Where average consumption will be obtained by imposing as external condition the
average request for all subsystems.

Remark. We calculated inertia of the solar panels as gmm2 but we express torque as
mNm. The conversion between the two is

gmm2 = 10−3kg 10−6m2 = 10−9Nm · s2 = 10−6mNm · s2 104gmm2 = 10−2mNms2

90

On Board computer

For the OBC, the main driver will be the rate of the processor and the power consump-
tion. Other characteristics are going to be included as well for future reference.

Board Processor Max Power consumption Mass Price
MHz mW g $

ISIS OBC 400 550 94 4300
Cube computer 48 435 70 4500

SatBus 1C1 168 574 44 NA
Clyde Space OBC 100 350 NA 8400

Sadly there are incredibly few OBC to choose from. From the data sheet of the
SatBus 1C0, we can validate the linear model to infer correlation between number of
operations and the amount of power consumed.

0 50 100 150 200 250

0

200

400

600

800

CPU frequency (MHz)

P
ow

er
co

n
su

m
p
ti

on
(m

W
)

30 MHz 60 MHz 168 MHz

current (2x 3.3 V) 16 mA 30 mA 87 mA
Power 105 mW 198 mW 574 mW

Figure 4.48: Linear relationship between clock frequency and power consumption in the
SatBus 1C1

To scale the OBC regarding the relationships processor-power consumption and
processor-mass, we present the following plots, which are extremely effective in con-
veying the oversimplification of the linear assumption.

91

0 100 200 300 400

400

600

800

1,000

Processing power (MHz)

P
ea

k
p

ow
er

(m
W

)

0 100 200 300 400

50

100

150

Processing power (MHz)

m
as

s
(g

)

OBCA =


0

−2 mW
MHz

1
0

·NOBC+


0
−300

0
0

 mOBC A [g] = 0.25
[g

MHz

]
· Autorithy OBCA+55

(4.33)

OBCB =


0

−1.2 mW
MHz

1
0

·NOBC+


0
−300

0
0

 mOBC B [g] = 0.15
[g

MHz

]
· Autorithy OBCB+40

(4.34)

OBCC =


0

−0.5 mW
MHz

1
0

·NOBC+


0
−300

0
0

 mOBC C [g] = 0.1
[g

MHz

]
· Autorithy OBCC+28

(4.35)

Telecom subsystem

There are several uplink downlink parameters, the most relevant to our model are re-
ported in the table below.

92

Name Type Data rate Signal power Consumption Mass Price
[mW] [mW] [g] $

a S band 38 kbps 250 6000 600 NA
b S band 10 Mbps 4000 38000 1800 NA

e?? S band 100 kbps 500 4000 62 8500
f?? S band 1 Mbps 500 5000 75 7800

Nano avionics S band 1 Mbps 500 4500 75 NA
Clyde Space S band 2 Mbps 500 6000 ? 8900

c X band 10 Mbps 5000 65000 4000 NA
d X band 500 Mbps 11000 120000 4000 NA

g?? UHF/ VHF 1.2 kbps 500 4000 65 8500
h?? UHF/ VHF 1.2 kbps 500 4000 75 8500

Figure 4.50: Surrey, ?: IsiSpace, ?? Cubesatshop.

0 1 2 3 4 5 6

0

0.5

1

·105

Data link (log(kbps))

P
ea

k
p

ow
er

(m
W

)

S band
X band

UHF band

0 1 2 3 4 5 6

0

2,000

4,000

Data link (log(kbps))

m
as

s
(g

)

To asses the amount of computational power required we will assume that the number
of operation performed by the CPU is proportional to volume of data to be transmitted.

MHz

kbps
=

1000mW

1.8 or 3.5 or 8 mW
MHz

· 1

log10(500000kbps)
=

1000mW

1.8 or 3.5 or 8
· 1

5.6990
=


97.4830
50.1341
21.9337

TelA =


0

−2.2 · 104 mW
kbps

−22 MHz
kbps

1

·Log(Data) mTel A [g] = 100

[
g

kbps

]
· Autorithy TelA+100

93

TelB =


0

−104 mW
kbps

−50 MHz
kbps

1

·Log(Data) mTel B [g] = 450

[
g

kbps

]
· Autorithy TelB+100

TelC =


0

−103 mW
kbps

−97 MHz
kbps

1

·Log(Data) mTel C [g] = 850

[
g

kbps

]
· Autorithy TelC+100

Structure mass

Finally, to have a more accurate representation of the satellite mass, we need to account
for the structure. From the first estimation of the system mass we can obtain minimum
volume (using maximum density, which for cubesat standards is 1 kg per litre).
Once we have an indication on the number of modules, we use the table below to asses
the average mass for a 1 U structure.

Name Type Mass Cost
[g] [k$]

Clyde Space 1U 1 U 155 4.6
Clyde Space 2U 2 U 275 5.3
Clyde Space 3U 3 U 390 6.9

ISIS 1U 1U 200 2.15
ISIS 2U 2U 390 2.95
ISIS 3U 3U 540 3.65
ISIS 6 U (2x3x1)U 1100 7.35

0 1 2 3 4 5 6

0

500

1,000

Number of Units

M
as

s
(g

)

94

Mass structure =


200
160
140

[
g

#U

]
·Number of units

Algorithm structure

We now provide an overview of the algorithm that implements the classical approach and
the one we propose. As the torque required of the reaction wheels depends on the inertia
of the system, which is initially unknown, the process requires iterations, as shown in
Fig. 4.52.

Give a set of all the subsystem types we could use, we can generate the list of every
possible combination of subsystem. We want to assign to each one its mass, in order
to find the lightest system. Since we are using parametric models, the mass of each
component will be a function of its authority. To derive the authority of each subsystem
we use the worst external conditions (for each subsystem), which guarantees that we
satisfy the mission requirement.

As noticed above, some requirements depend on system mass. An estimation m0

starts the algorithm. To obtain the inertia, we assume maximum density for a cubesat
module to be 1000 kg m−3, which we use to calculate the volume and therefore the
number of units. Assuming a simple configuration of stacked cubes, we have everything
we need to determine the moment of inertia.
With the satellite inertia we can express mission requirements as system requirements.
Due to system coupling or interdependencies, it might not be intuitive which condition
is the most demanding for a specific subsystem. Therefore all system requirements are
considered and subsystem authority is set using the maximum value.
Having defined every authority, we can calculate each component mass. Furthermore,
we add the mass of the structure (linear with the number of modules) and the mass of
the battery (linear with battery capacity). If the final mass is sufficiently close to the
original estimate, we proceed to the next system configuration, otherwise we iterate the
process.

Static Model

In the static case, the system is completely determined, as there are no redundancies.
Therefore, any subsystem authority needed for a specific system requirement can be
obtained by simply inverting the system matrix.

S · ~x = ~Ri ⇒ ~xi = S−1 ~Ri

After all conditions have been examined, system authority is set by

Autj = max {~x1 · êj , ~x2 · êj , . . . ~xn · êj , }

Where êj is the vector that extracts the j th component34

34êj = (0, 0, .., 0, 1, 0, ..., 0)

95

Estimation of sys-
tem proprieties ~mi

Requirements = f(~mi)

Authority = f(~Req)Update model

~mi+1 = f(Aut)

mi+1 ≈ mi ?
No

Figure 4.52: Steps in the algorithm.

Flexible Model

As we have chosen to pursue flexibility using redundancy, to use the flexibility approach
we need to specify two different components for each subsystem. Mass estimation and
system requirements can be derived exactly as in the previous case; system authority
can not.

As shown in Fig. 4.53, the main difference between the two approaches is whether
we have freedom in choosing the authority or not. As the system is doubly redundant in
all of its components, we can model it as two separate system working together. Let us
call x̂ the vector of the operational level of the first set of actuators and ŷ the operational
level of the second one. S1 and S2 are respective matrices, while Êi is the ith external
request.
If the system meets mission requirements, it must be that

[S1] · x̂+ [S2] · ŷ ≤ Êi ∀i ∈ External conditions

96

...

Requirements → ~ext

Authority = f(~ext)
Minimize authority
requirements

~mi+1 = f(Aut) Choose minimum ~m

mi+1 ≈ mi

?

Figure 4.53: Differences in the pseudo code for system design with flexibility.

On the other hand, the mass of the system (which we wish to minimize) is given by

Ms = m̂1 · x̂+ m̂2 · ŷ

Where m̂1 and m̂2 are vector that depend on the choice of subsystems but are both
strictly positive, which reminds us that we are seeking to minimize system authority.
Clearly, if we had only one external condition, the lowest authority is given by

[S1] · x̂+ [S2] · ŷ = Ê1 ⇒ x̂ = [S1]−1(Ê1 − [S2] · ŷ)

Hence
Ms = m̂1 · [S1]−1 · Ê1 + (−m̂1 · [S1]−1 · [S2] + m̂2)ŷ

Which is a function only of the authority of the secondary subsystems. Calling S=̇[S1]−1·
[S2], if we derive it with respect to each secondary subsystem authority we have

∂Ms

∂yi
= −m̂1 · S(:, i) + m̂2(i)

If the derivative is positive, system mass increases as the more authority is given to the
secondary system, if negative mass decreases.
Note two important proprieties for this model;

97

1. Each derivative is constant.

2. External condition don’t affect the derivative.

Therefore minimum system mass, regardless of the external conditions is achieved
by transferring all the authority to either the primary subsystem (∂Ms

∂yi
> 0, yi = 0) or

to the secondary (∂Ms
∂yi

< 0⇒ yi = ymax, xi = 0).

However, an autonomous system will usually have to react to more than one external
condition. To account for this, we include all external condition vectors in the matrix
E = [Ê1, Ê2, . . . , Ês], where s is the number of external conditions. System behaviour
in each condition can be written in matrix form as

[S1] · [x̂1, x̂2, . . . , x̂s] + [S2] · [ŷ1, ŷ2, . . . , ŷs] = E

Which can be use to express the primary subsystem requirements as a function of the
authority of the second one

[x̂1, x̂2, . . . , x̂s] = [S1]−1(E− [S2] · [ŷ1, ŷ2, . . . , ŷs])

System mass is a function of authority, which needs can be written as

~AutX =


max([x1(1), x2(1), . . . , xs(1)])
max([x1(2), x2(2), . . . , xs(2)])

. . .
max([x1(n), x2(n), . . . , xs(n)])

 ~AutY =


max([y1(1), . . . , ys(1)])
max([y1(2), . . . , ys(2)])

. . .
max([y1(n), , . . . , ys(n)])


We are interested in mass, and for each each subsystem we have
mss 1

mss 2

. . .
mss s

 =


~m1(1) 0 . . . 0

0 ~m1(2) . . . 0
.

0 0 . . . ~m1(n)

 ~AutX +


~m2(1) 0 . . . 0

0 ~m2(2) . . . 0
.

0 0 . . . ~m2(n)

 ~AutY

(4.36)
Clearly, we can express ~AutX as a function of ~AutY and then optimize. However, the
function max is not continuous. Therefore, we suggest to first calculate each subsystem
mass and apply the maximum only afterwards.

We call M1 and M2 ∈ Rn×n the matrices with the coefficients of mass on the diagonal
(as used in eq. 4.36).

Ms = M1 ·X + M2 · Y = M1 · [S1]−1(E− [S2] · Y) + M2 · Y

Ms = M1 · [S1]−1E + (M2 −M1 · [S1]−1[S2]) · Y = A + B · Y

The mass of the system is now given by the sum of the maximum values of mass for every
row. The variable that we can use to change the matrix Ms are the n × s components

98

of the Y matrix. Then, we want to study the derivative of total system mass Mtot with
respect to these variables

dMtot

dY
=

d

dY
(msys,1 +msys,2 + · · ·+msys,n) =

d

dY
msys,1 +

d

dY
msys,2 + · · ·+ d

dY
msys,n

Since everything is linear, the derivative of Mtot with respect to Y will be the sum of
the derivative of each subsystem mass; we can divide the problem by subsystem for
simplicity.

Let us consider the minimization of msys,j (0 < j < n). This is the maximum value
on the jth row of Ms, which we assume to be on the ith column (0 < i < s). Clearly,
the matrix A plays no role as it is constant,

d

dY
(êTj ·Ms·êi) =

d

dY




01

. . .
1j
. . .
0n


T 

B1,1 B1,2 . . . B1,n

B2,1 B2,2 . . . B2,n

.
Bn,1 Bn,2 . . . Bn,n

 ·

y1,1 y1,2 . . . y1,s

y2,1 y2,2 . . . y2,s

.
yn,1 yn,2 . . . yn,s




01

. . .
1i
. . .
0n




d msys,j

dY
=

d

dY

[Bj,1 Bj,2 . . . Bj,n
]
·


y1,i

y2,i

. . .
yn,i


 =

1 . . . i . . . s
0 . . . Bj,1 . . . 0
0 . . . Bj,2 . . . 0

.
0 . . . Bj,n . . . 0


If we now sum all derivatives, we have a matrix that gives us clear indications on whether
to increase the authority of the primary or secondary subsystem. Every element element

of the matrix dMtot

dY
indicates if Mtot increases, decreases or is unaffected by the respective

yi,j .

dMtot

dY
=

n∑
j=1

d msys,j

dY
=̇D ∈ Rn×s (4.37)

Before we going into more detail on the optimization method, we need to consider

that is the objective function is linear with authority(as in this case), the d Ms

dY
matrix

is piece wise constant.
Locally, if Ds,t > 0, mass increases with ys,t, and vice versa. Many coefficient in D

might also be zero, which means that they act on a condition that is not a maximum,
and hence does not affect the authority of the subsystem.
As the coefficients seems to be independent of Y , and the derivative is constant, the
extreme values are found at the extreme of the interval, either for y maximum or min-
imum. Clearly, the minimum value for any Yi,j is zero (all authority to the primary
system), while the highest is that which yields Xi,j = 0(all authority to the secondary).

99

However, as we act on the matrix Y , Ms changes, and the position of the maximum
value for each subsystem may change position in Ms, which means that D changes as
well.

Defining a piece wise domain is conceptually simple, at least in the linear case,
however it may be tricky to generalize for a high number of dimension.

Problem with optimization is that the derivative is not defined on some points of the
domain, where more than one system are at the maximum value. Therefore we decided
to have and algorithm that optimize only within the continuous piece of the domain,
and is randomly initiated at different points.

A much easier alternative is to implement an iterative algorithm.

Remark. There are some things to consider before proceeding onto the non linear case

1. External conditions do not affect the D matrix directly, however they define the
domain of each piece of derivative.

2. More than one maximum might appear at once.

3. In this chapter, we are assuming that minimizing authority minimizes system mass,
which is reasonable as each subsystem mass is strictly increasing with authority.
However, we have neglected the effect that changing the ratio of authorities between
the primary and secondary system might have on the control allocation effective-
ness. It is not impossible that this approach might require bigger tanks or batter
capacity to compensate for an eventual decrease in efficiency of the management
algorithm.

The interactions mentioned above are just possibilities, not the result of any em-
pirical evidence. To assess such issue we would need to develop a much more
sophisticated model, which would not be justified at this stage.

Using a non linear fit for system mass

Finally, we try to generalize the above method for non linear target functions as well.
This allows for a more realistic representation of parametric design, but makes the
problem significantly more complex. We are still assuming linear system behaviour.

To begin with, we derive non linear equation to predict component mass as a function
of authority. Since we are using the same database as in the linear case, which is very
limited, we choose to adopt a function as simple as possible

ms = C1 ·AutC2 (4.38)

where both constants are derived by interpolation. As we expect the cost function to
be strictly increasing, both coefficients will be greater than zero. The results are listed
below.

100

0 50 100 150 200 250

0

2,000

4,000

6,000

8,000

Max torque (mNm)

m
as

s
(g

)

(a) Reaction wheels

0 0.5 1 1.5

·104

0

50

100

150

200

250

Output power (mW)

m
as

s
(g

)

(b) Solar panel


mRW A = 160 · (AutRW)0.58 [g]
mRW B = 200 · (AutRW)0.6 [g]
mRW C = 300 · (AutRW)0.6 [g]

mPS A = 60 · (AutPS · 10−3)0.5 +1.8 ·AutPS · 10−3 +mbattery

mPS B = 40 · (AutPS · 10−3)0.5 +1.8 ·AutPS · 10−3 +mbattery

mPS C = 30 · (AutPS · 10−3)0.3 +1.8 ·AutPS · 10−3 +mbattery

0 100 200 300 400

0

50

100

150

200

Processing power (MHz)

m
as

s
(g

)

(a) On board computer

0 1 2 3 4 5 6

0

1,000

2,000

3,000

4,000

Data link (log(kbps))

m
as

s
(g

)

S band
X band

UHF band

(b) Telecommunication system


mOBC A = 10 · (AutOBC)0.5 [g]
mOBC B = 7.5 · (AutOBC)0.45 [g]
mOBC C = 5 · (AutOBC)0.4 [g]

mTELA = 400 · (log(AutTEL))0.5 [g]
mTELB = 900 · (log(AutTEL))0.5 [g]
mTELC = 1200 · (log(AutTEL))0.6 [g]

101

We will use the same nomenclature used in the linear case, except for the target
function, which, instead of a scalar product with the respective mass vectors m1 and m2

will be represented by the functions f1, f2 : ~AutX ∈ Rn → ~msys ∈ Rn

~Ms =


f1,1(AutX,1)
f1,2(AutX,2)

. . .
f1,n(AutX,n)

+


f2,1(AutY,1)
f2,2(AutY,2)

. . .
f2,n(AutY,n)

 = f1(~AutX) + f2(~AutY)

Again, we decide to take the maximum35 at the end of the process. This is allowed
since the target function are assumed to be strictly increasing. Then we return to Ms

in matrix form, and as a function of the matrices X and Y .

Ms =

f1(Xê1)

 , . . . ,

f1(Xên)

+

f2(Y ê1)

 , . . . ,

f2(Y ên)


Again, we study the derivative of a single subsystem mass, assuming the maximum

on the jth row is on the ith and pth column of the X and Y matrix respectively

dmsys,j =
df1,j

dXj,i
dXj,i +

df2,j

dYj,p
dYj,p

The derivatives of f1 and f2 will depend on the function and the point at which they are
calculated. However, as system behaviour is still assumed to be linear, we can express
Xj,i as a function of Y according to

X = [S1]−1(E− [S2] · Y) ⇒ Xi,j = êTj · ([S1]−1(E− [S2] · Y) · êi

Xj,i = C−
(
Sj,1 Sj,2 . . . Sj,n

)
·


Y1,i

Y2,i

. . .
Yn,i

 where [S] = [S1]−1[S2] C ∈ R = constant

Which allows us to write each subsystem mass derivative as a function of Y

d

dY
msys,j =

df1,j

dXj,i

dXj,i

dY
+

df2,j

dYj,p

dYj,p
dY

=

− df1,j

dXj,i
·

1 . . . i . . . s
0 . . . Sj,1 . . . 0
0 . . . Sj,2 . . . 0

. . .
0 . . . Sj,n . . . 0

 +
df2,j

dYj,p
·

1 . . . p . . . s
0 . . . 0 . . . 0

. . .
0 . . . 1 . . . 0

. . .
0 . . . 0 . . . 0


1
. . .
j
. . .
n

If we do this for every subsystem, we will obtain the general version of (matrix above
for linear case), which we would use in the same way to optimize out target function.

35Which is the operation that transforms X into ~AutX

102

Algorithm Results

Two comparisons have been performed; the first, using linear mass functions, compares
the standard monolithic architecture with the flexible one. As mentioned before, in this
case the simply redundant one is indistinguishable, as far as mass is concern, from the
monolithic one. The second simulation uses the sub linear mass function and confronts
the simply redundant system with the flexible one. In this case, the monolithic architec-
ture is not used. This is because the sublinear mass function puts an unfair premium on
bigger subsystems, that have an authority to mass ratio considerably high. Even though
we established mass as our principle criterion, reliability is also an issue and we can not
compare the two architectures.

We also have to chose a metric to asses the effectiveness of these approach. We will
report two options

1. Confront only minimum mass system
As we are interested in only one system design, we may only care about the best
option. However, mass optimization may not be the only driving factor. Some
subsystem may be available only at a greater cost in complexity or some other
non quantifiable parameter. Furthermore, at this stage, we are still interested
in understanding the overall performances of the flexibility approach, hence the
second option.

2. Confront average using each method.
The optimization using flexibility will be an added cost. Therefore, we might want
to have an indication of the expected results to decide whether it is worth it or not.
Having an average over a broader sample pool will give us a more representative
indication of the expected gains.

Using the linear mass function, we have obtained a 32 % gain on system mass in
the flexible design approach compared with the classical one. On average however, the
flexible design is able to decrease system mass of about 8 %.

Using the sublinear mass function instead we have a 28 % gain on best system mass
but an average 15 % decrease.

These results are somewhat puzzling, but can be explained. As it turns out, there are
subsystem that are overall better than other. While implementing the flexible approach,
the algorithm chooses only pair of different subsystems. For example, if the primary
reaction wheels are the A type, the secondary can not be A as well. Therefore, if a
component is significantly better than the other, a design which is allowed to choose it
twice has a significant advantage. This possibility was mentioned in chapter 3.
To test this hypothesis, we allow for the flexible algorithm to choose the same component
twice. In both cases, we obtain lower system mass even in the smallest mass case.
Notably however, average reduction decreases, suggesting that, by adding the same
component system, we have a less effective method, which is what we would expect.

103

The results reported above are clearly preliminary and highly dependent on the
models we used to describe each component. At this stage then, they can be seen as
an indication of a real possibility of significant improvement, but further development is
needed.

104

Contents

Abstract . 2
Introduction: Control allocation and Design . 5

Optimal Management 7
Fundamental system architecture . 7
Non trivial management . 15

Partial order definition . 18

A new approach to resource allocation strategies 20
Hybrid car model hypothesis . 22

Discriminant cases . 24
Constant parameters . 25
2D attitude control . 32

Analytical results . 39

Formal System design 45
System Design and flexible design concept . 50

The flexibility approach . 60
What kind of improvement can we expect? 63

Flexibility of a linear subsystem . 68
Flexibility of a non linear subsystem . 72
Effect of Changes in Dynamic Parameters 73

Parametric Design . 76

Application to a specific mission 78
Mission Definition . 79

Mission requirements . 81
Derivation of Subsystem models . 83

Power subsystem . 87
On Board computer . 91
Telecom subsystem . 92
Structure mass . 94

Algorithm structure . 95
Static Model . 95

105

CONTENTS CONTENTS

Flexible Model . 96
Using a non linear fit for system mass . 100
Algorithm Results . 103

106

List of Figures

1 A system as a network of subsystems . 5
1.2 Siso Subsystem model . 8
1.3 The production function of a SISO system in the input-output space. . . . 9
1.4 A Zero Redundancy System, simple chain or a series 12
1.5 A patologically non invertible production function 13
1.6 A Non-Trivial system with SISO subsystems 15
1.7 Cost function; level curves are points which are equally expensive, and

therefore equally valid. 17
1.8 A partial order in R2 . 19
2.9 Our guide system for this chapter . 22
2.10 Production function T (i, ṁf) on the operational level domain 24
2.11 Depletion time as a function of current 27
2.12 Required torque and maximum tf strategy. 28
2.13 Required torque and cost function. 29
2.14 Iso responsive time curves(red) Vs cost (blue). 30
2.15 Generic torque T (t) . 30
2.16 Model of a satellite that can rotate in x and y 32
2.17 All possible output levels . 34
2.18 Complete, Partial and Cooperative redundancy 34
2.19 Depletion time as a function of RW3 operation 36
3.21 A more in depth analysis of F . 45
3.22 A geometrically parametric blot design . 46
3.23 Watt centrifugal Governor . 47
3.24 A simple satellite architecture. 50
3.25 Assuming RHS known, we can obtain imax and the battery charge. 52
3.26 Different solution to optimal control. 55
3.27 Some basic normal distribution to show the cover factor 61
3.28 All the combinations tried in the Monte Carlo method. 64
3.29 Changing all 18 variables. 65
3.30 External condition used in figure 3.31 . 66
3.31 Using system A, we vary mission parameters to assess % gains. 66
3.32 A generic system . 68
3.33 Representation of ~S−1(R) . 69

107

LIST OF FIGURES LIST OF FIGURES

3.34 Level lines for both ~S, G1 and G2 in a simple case. 70
3.35 Consumption of G0 and G1 on an iso R line 71
4.37 Oneweb concept for the standard nanosatellite. 78
4.38 Map of the subsystem interdependencies. 80
4.39 Angular acceleration, velocity and rotation. 82
4.40 Cube Space small, medium and large reaction wheels. 84
4.41 ?: IsiSpace, ?? cubesatshop. 85
4.42 General trends for reaction wheels . 85
4.43 Power subsystems boards. 87
4.45 Solar panels proprieties for inertia considerations 88
4.46 Linear models for solar arrays. 88
4.47 Battery mass Vs capacity . 90
4.48 Linear relationship between clock frequency and power consumption in

the SatBus 1C1 . 91
4.50 Surrey, ?: IsiSpace, ?? Cubesatshop. 93
4.52 Steps in the algorithm. 96
4.53 Differences in the pseudo code for system design with flexibility. 97

108

