
University of Padova

Department of Information Engineering

Master Thesis in ICT for Internet andMultimedia

Quantization for Secret Key Generation

in Underwater Acoustic Channels

Supervisor Master Candidate
Professor Stefano Tomasin Amedeo Giuliani
University of Padova

Co-supervisor
Francesco Ardizzon
University of Padova

Academic Year
2021-2022

ii

ToGloria, who has always motivated and
supported me, especially during hard times.

iv

Abstract

Securing wireless communications in harsh environments, such as underwater networks, via
traditional cryptographic approaches is unfeasible. For example, public key encryption would
require a public key infrastructure and a key management infrastructure. A viable solution is
instead physical layer security, allowing two devices to obtain a symmetric cryptographic key
from the randomness provided by the underlying communication channel, which varies in
time, frequency, and space, in general.

The probability of having both parties generating the same key and its number of bits greatly
depend on how sampled observations are quantized. In this thesis, novel data-driven quantiza-
tion techniques, whichmakeuse of specific channel features computed from impulse responses
collected from real experiments, are investigated. In particular, we propose a new machine
learning algorithm that quantizes an input vector into an initial key, as close as possible to a
series of independent and uniformly distributed symbols andmatches at beast the correspond-
ing initial key of the corresponding receiver, to guarantee a high key agreement probability and
to avoid an eavesdropper to infer future values exploiting the correlation between consecutive
symbols. We also propose an adversarial neural network architecture, where legitimate parties
feature a neural quantizer to produce the initial key, whereas the eavesdropper tries to recon-
struct the key agreed by the first two.

v

vi

Contents

Abstract v

List of figures ix

List of tables xiii

Listing of acronyms xv

1 Introduction 1

2 Underwater Acoustic Communication 3
2.1 Underwater Acoustic channel . 3

2.1.1 Channel modeling . 3

3 Secret Key Generation 7
3.1 Physical Layer Security . 7

3.1.1 Source and channel models . 8
3.1.2 Secret Key Agreement protocol . 9
3.1.3 Secret key capacity for source model 10

3.2 SKA protocol state of the art . 10
3.2.1 Neural Network implementations 11
3.2.2 Machine Learning implementations 19

3.3 Considered channel features for SKG . 21

4 Quantizer 23
4.1 Correlated Gaussian random variables . 24

4.1.1 Local objective function . 27
4.1.2 Eavesdropper presence . 33
4.1.3 Adversarial training . 34

4.2 Generalization to higher-dimensional input 35

5 Secret Key GenerationWith Autoencoders 39
5.1 The autoencoder . 39
5.2 Systemmodel . 40
5.3 Autoencoder with uniform quantizer . 40
5.4 Autoencoder with Differentiable Soft Quantization 41

vii

5.5 Eavesdropper presence . 42
5.6 Enhance secret key uniformity . 42

5.6.1 Eavesdropper-aware training . 45

6 Numerical results 47
6.1 Gaussian data set . 47

6.1.1 Developed joint quantizer . 47
6.1.2 Uniform joint quantizer . 53
6.1.3 Autoencoder with uniform quantizer 55
6.1.4 Autoencoder with Differentiable Soft Quantization 57
6.1.5 MTAE . 59
6.1.6 DAAE . 61
6.1.7 AAE with uniform quantizer . 62
6.1.8 Comparison between NN architectures 66

6.2 Underwater data set . 69
6.2.1 Developed joint quantizer . 69
6.2.2 Uniform joint quantizer . 71
6.2.3 AE with uniform quantizer . 71
6.2.4 AE with DSQ . 72
6.2.5 MTAE . 74
6.2.6 DAAE . 75
6.2.7 AAE . 78
6.2.8 Comparison between NN architectures 79

7 Conclusion 83

Bibliography 85

Acknowledgments 89

viii

Listing of figures

3.1 Symmetric and asymmetric encryption schemes visual comparison. 8
3.2 Source and channel models in the PLS approach. 9
3.3 SKA protocol [1]. 10
3.4 AE architecture [2]. 11
3.5 TheMSE of zA and zB based on PCA and AE [2]. 13
3.6 TheMI of zA and zB based on PCA and AE [2]. 14
3.7 MTAE architecture [3]. 15
3.8 Correlation coefficient of the feature z between Alice and Eve [3]. 16
3.9 t-SNE visualization of features [3]. 16
3.10 DAAE architecture [4]. 17
3.11 Correlation coefficient of the feature z between Alice and Eve [4]. 19
3.12 t-SNE visualization of features [4]. 20
3.13 IPI quantization thresholds for 1- (yellow), 2- (orange), 3- (red), and 4-bit

(dark red) quantization. Values are in ms. 21

4.1 Plot of Alice and Bob realizations with ρAB = 0.7. 25
4.2 Solutions with α = 0.5 . 28
4.3 Joint uniform quantizer solutions. 30
4.4 Comparison between key probabilities of our solution and the joint uniform

quantizer. 32
4.5 Normalized standard deviation versus exclusion probability in function of α

with the local objective function andR = 4. 33
4.6 Stalking attack [5]. 34
4.7 One possible solution of the generalized algorithm with L = 2 andR = 4. . . 37
4.8 Another possible solution of the generalized algorithm with L = 2 andR = 4. 37

5.1 DSQ function with L = 4 and κ = 100. 42
5.2 AAE architecture. 43
5.3 Latent space distributions for Alice’s (left plot) and Bob’s (right plot) primary

keys, Gaussian data set. 45

6.1 Normalized standard deviation versus exclusion probability in function of α
with the global objective function. 48

6.2 Solutions with the entropy objective function,R = 4 and different ρAB values. 48

ix

6.3 Solutions with the mutual information objective function,R = 4 and differ-
ent ρAB values. 50

6.4 Convergence plot of the objective function (6.2). 50
6.5 Mutual information between Alice and Bob for b = 2, 3, 4 with the devel-

oped quantizer. 51
6.6 KAP between Alice and Eve for the developed quantizer, with b = 1, 2, 3, 4

and ρAB = 0.9. 51
6.7 SKR in presence of an eavesdropper with our quantizer. 52
6.8 KAPbetweenAlice andEve for the developed quantizerwith adversarial train-

ing. 53
6.9 Mutual information betweenAlice andBob for the higher-dimensional input

version of the developed quantizer. 54
6.10 SKR in presence of an eavesdropper with the joint uniform quantizer. 54
6.11 Symbol distribution of Alice and Bob’s initial keys for the AE+UQwith b =

2, Gaussian data set. 55
6.12 Mutual information between Alice and Bob initial keys for the AE+UQ,

Gaussian data set. 56
6.13 SMR between Alice and Bob for the AE+UQ, Gaussian data set. 56
6.14 SKR between Alice and Bob for the AE+UQ, Gaussian data set. 57
6.15 Mutual information between Alice and Bob initial keys with PCA, Gaussian

data set. 57
6.16 SMR between Alice and Bob with PCA, Gaussian data set. 58
6.17 SKR between Alice and Bob with PCA, Gaussian data set. 58
6.18 Mutual information between Alice and Bob for the AE+DSQ, Gaussian data

set. 59
6.19 SMR between Alice and Bob for the AE+DSQ, Gaussian data set. 59
6.20 Symbol distribution of Alice and Bob’s initial keys for the AE+DSQ, Gaus-

sian data set. 60
6.21 SKR between Alice and Bob for the AE+DSQ, Gaussian data set. 60
6.22 SKR between Alice and Eve for the MTAE+UQ architecture, Gaussian data

set. 61
6.23 SKRbetweenAlice and Eve for theMTAE+DSQ architecture, Gaussian data

set. 62
6.24 SKR between Alice and Eve for the DAAE+UQ architecture, Gaussian data set. 63
6.25 SKR betweenAlice and Eve for the DAAE+DSQ architecture, Gaussian data

set. 63
6.26 Primary key distributions for Alice (left plot) and Bob (right plot), Gaussian

data set. 64
6.27 Mutual information between Alice and Bob for the AAE architecture, Gaus-

sian data set. 64

x

6.28 SMR between Alice and Bob for the AAE architecture, Gaussian data set. . . 65
6.29 SKR for the naive AAE architecture, Gaussian data set. 65
6.30 SKR for the AAE architecture with eavesdropper-aware training, Gaussian

data set. 66
6.31 Comparison of SKR curves of AE+UQ, AE+DSQ, andAAE+UQ,Gaussian

data set. 67
6.32 Comparison of SKR curves of MTAE+UQ, MTAE+DSQ, DAAE+UQ,

DAAE+DSQ, and AAE(adv)+UQ, Gaussian data set. 68
6.33 KAP between Alice and Bob in function of SNR. 70
6.34 SKR of the developed joint quantizer in function of ρAE for each channel

feature of the underwater data set. 70
6.35 KAP vs ρAE withR = 4. 71
6.36 SKR of the joint uniform quantizer in function of ρAE for each channel fea-

ture of the underwater data set. 72
6.37 Symbol distribution of Alice and Bob’s initial keys for the AE with b = 2,

underwater data set. 72
6.38 Mutual information between Alice and Bob initial keys for the AE+UQ, un-

derwater data set. 73
6.39 SMR between Alice and Bob for the AE+UQ, underwater data set. 73
6.40 SKR between Alice and Bob for the AE+UQ, underwater data set. 74
6.41 Symbol distribution of Alice and Bob’s initial keys for the AE+DSQ, under-

water data set. 74
6.42 Mutual information betweenAlice and Bob initial keys for the AE+DSQ, un-

derwater data set. 75
6.43 SMR between Alice and Bob for the AE+DSQ, underwater data set. 75
6.44 SKR between Alice and Bob for the AE+DSQ, underwater data set. 76
6.45 SKR between Alice and Bob for the MTAE+UQ, underwater data set. 76
6.46 SKR between Alice and Bob for the MTAE+DSQ, underwater data set. . . . 77
6.47 SKR between Alice and Bob for the DAAE+UQ, underwater data set. 77
6.48 SKR between Alice and Bob for the DAAE+DSQ, underwater data set. . . . 78
6.49 Latent space distributions for Alice’s (left plot) and Bob’s (right plot) primary

keys, underwater data set. 79
6.50 Primary keydistributions forAlice (left plot) andBob (right plot), underwater

data set. 79
6.51 Mutual information between Alice and Bob for the AAE, underwater data set. 80
6.52 SKR between Alice and Bob for the AAE, underwater data set. 80
6.53 SKR between Alice and Bob for the AAE with eavesdropper-aware training,

underwater data set. 81
6.54 Comparison of SKR curves of AE+UQ,AE+DSQ, andAAE+UQ, underwa-

ter data set. 81

xi

6.55 Comparison of SKR curves of MTAE+UQ, MTAE+DSQ, DAAE+UQ,
DAAE+DSQ, and AAE(adv)+UQ, underwater data set. 82

xii

Listing of tables

2.1 Spreading loss model [6]. 4

4.1 KAP comparison between our solution and the uniform quantizer in func-
tion of the number of regionsR. 29

xiii

xiv

Listing of acronyms

UWA Underwater Acoustic

UAN Underwater Acoustic Network

ICI Inter-Carrier Interference

ISI Inter-Symbol Interference

CIR Channel Impulse Response

CFR Channel Frequency Response

SKA Secret Key Agreement

SKG Secret Key Generation

AWGN Additive White Gaussian Noise

PLS Physical Layer Security

TDD Time DivisionMultiplexing

RSS Received Signal Strength

SL Spreading Loss

AL Absorption Loss

PSD Power Spectral Density

IEEE Institute of Electrical and Electronics Engineers

ML Machine Learning

NL Neural Network

ReLU Rectified Linear Unit

MSE Mean Square Error

PCA Principal Component Analysis

xv

t-SNE t-distributed stochastic neighbor embedding

MTAE Multi-Task Autoencoder

DAAE Domain-Adversarial Training of Autoencoder

GRL Gradient Reversal Layer

KGnet Key Generation neural network

IPI Inter-Pulse Interval

WBAN Wireless Body Area Network

PMD Probability Mass Distribution

RMS Root Mean Square

KDE Kernel Density Estimation

KAP Key Agreement Probability

SKR Secret Key Rate

SVM Support Vector Machine

SMR Symbol Matching Rate

DSQ Differentiable Soft Quantization

AAE Adversarial Autoencoder

xvi

1
Introduction

Today’s world depends heavily on wireless communications, and data transfer through these
networks is growing for a variety of cases, including civilian applications like social network-
ing, banking, and other financial and business operations, but more importantly for military
applications. Information security has become a primary concern as a result of the exponential
increase of wireless services, as individuals rely on the wireless network to send sensitive data.
Due to the broadcast nature of wireless communication systems, any user within range can
intercept signals being exchanged between two parties, giving a possible attacker the opportu-
nity to initiate a series of passive attacks such as eavesdropping, or to carry out active attacks
like denial of service, spoofing, and jamming. Therefore, there is a strong need to secure the
transmitted information.
Traditional security approaches, namely, encryption-based schemes in which the message

is encrypted via some algorithm, rely on the fact that such algorithm is complex enough to
prevent a possible attacker from decrypting the intercepted message. However, with the re-
cent advantages in computational techniques, there is a possibility for the attacker to steal the
key via brute force attacks. On the contrary, physical layer security schemes do not depend
on computational complexity but they exploit unpredictable and random characteristics of
wireless channels, e.g., noise and fading. Specifically, legitimate users independently generate
a symmetric key from the randomness of the underlying wireless channel.
The focus of this thesis work is physical layer security applied to underwater acoustic chan-

nels, with a focus on quantization methods with data-driven approaches, namely, machine

1

learning techniques and neural network architectures.
The thesis is structured as follows.
Chapter 2 starts with an overview of the UWA channel, explaining the characteristics of the

medium and how to model the path loss and the noise in underwater communications.
Chapter 3 introduces the core concepts of PLS, describes the steps of the general SKA pro-

cedure, and terminates with a review of the state of the art.
Chapter 4 describes an initial version of our quantizer, exploring several possible loss func-

tions and relative outcomes. Then, it is seen that the presence of an eavesdropper observing
a highly correlated channel with respect to one of the legitimate parties leads to a low secret
key rate if nothing is done to prevent this. Ultimately, the two-dimensional initial version is
extended to accept in input an arbitrary number of channel features.

In Chapter 5 the attention is shifted towards neural networks and in particular on develop-
ing a neural quantizer that is capable of producing a key that is consistent for the legitimate
parties, but not for the eavesdropper.

Chapter 6 gathers the numerical results of every algorithm and neural network architecture
developed in the thesis.

2

2
Underwater Acoustic Communication

2.1 Underwater Acoustic channel

In the Underwater Acoustic (UWA) channel communication does not occur with radio waves
due to the high rate of absorption of electromagnetic signals, but acoustic waves are employed,
which have a much lower propagation speed, namely v ≃ 1.5 · 103 m/s and because of this,
latency is quite high, namely,∼ 0.67ms/m. An acoustic modem usually operates at frequen-
cies ranging from∼ 10 kHz to∼ 100 kHz. Due to limited bandwidth and high end-to-end
delay, transmission rate is of the order of few tens of kbps. Moreover, although for the mobile
radio channel lots of models have been developed, it does not exist a standard model for UWA
communication channels and hence one has to carry out experimental analyses to understand
the statistical properties of theUWAchannel at the particular site the systemhas to be installed.

2.1.1 Channel modeling

TheUWAchannel is a doubly selective channel,meaning largeDoppler anddelay spread. They
arises because of time-varying characteristics of seawater and the surrounding environment.
Specifically, the Doppler spread is mainly given by the change of path length inducted by sur-
faces waves and relativemotion of transmitter or receiver, whereas the delay spread is due to the
presence of several delayed copies of the signal arriving at the receiver because of reflections at
sea surface and bottom and any other object present, and refraction in water. The first results

3

Shallow waters Deep waters Practical
Spreading loss model cylindrical wave spherical wave cylindrical/spherical wave
Spreading loss factor k = 1 k = 2 k = 1.5

Table 2.1: Spreading loss model [6].

in a time-selective behavior and causes Inter-Carrier Interference (ICI), while the second results
in a frequency-selective behavior and is accountable for Inter-Symbol Interference (ISI).
Transmission in a UWA channel is also strongly affected by path loss, which is composed

by spreading loss (SL) and absorption loss (AL). SL is caused by the “spreading” of the acoustic
wave, i.e., as the wave travels towards the receiver its front will occupy a larger and larger area,
which means that the energy per surface unit becomes less and less. AL is caused by the energy
of the acoustic wave being converted in other forms – such as heat, which is then absorbed by
themedium– as it travels towards the receiver. The overall path loss over a distance l for a signal
at frequency f is given by [7]:

A(l, f) = A0l
ka(f)l (2.1)

where a(f) is the absorption coefficient, which varies in frequency and can be expressed via
Thorp’s formula for frequencies less than 50 kHz [8]:

10 log a(f) =
0.11f 2

1 + f 2
+

44f 2

4100 + f 2
+ 2.75 · 10−4f 2 + 0.003 dB/km (2.2)

or via Fisher and Simmons’ formula, that also takes into account the depth d and temperature
t [9]:

10 log a(d, t, f) =
A1P1f1f

2

f 2
1 + f 2

+
A2P2f2f

2

f 2
2 + f 2

+ A3P3f
2 dB/km (2.3)

In Table 2.1 are reported the possible values for the spreading factor k in (2.1). In shallow
waters the transmission distance is less than the height of water, while in deep waters it holds
the converse. Usually, the spreading factor is set to k = 1.5 for practical applications.

As in any other environment, there is also noise hindering communications. In particular,
noise in underwater channels can be classified into two groups: ambient noise, always present
in background and caused by environmental conditions and objects moving in the sea, and
site-specific noise, which occurs only in precises locations such as polar regions. Regarding am-
bient noise, there aremany sources which aremore or less influent depending on the operating
frequency:

4

• turbulence noise, which is dominant for frequencies f < 10Hz

• shipping noise, that influences mostly the interval 10 < f < 100Hz

• waves and other surface motions caused by rains and winds, which impacts mainly the
interval 100 < f < 100 kHz

• thermal noise, that becomes dominant for frequencies f > 100 kHz

The Power Spectral Density (PSD) for each of these four sources is empirically modeled as
follows:

10 logNt(f) = 17− 30 log f

10 logNs(f) = 40 + 20(s− 0.5) + 26 log f − 60 log(f + 0.03)

10 logNw(f) = 50 + 7.5
√
w + 20 log f − 40 log(f + 0.4)

10 logNth(f) = −15 + 20 log f

(2.4)

where s ∈ [0, 1] indicates the intensity of the shipping activity and w is the wind speed in
m/s [7][6][10][11].

5

6

3
Secret Key Generation

3.1 Physical Layer Security

Since Underwater Acoustic Networks (UANs) are based on acoustic communication, which
means they use a broadcast wireless channel, an attacker could easily eavesdrop the signals trav-
elling over themedium. Hence, it is necessary for the nodes in the network to implement secure
ways to communicate. Classical encryption schemes (Fig. 3.1) are the symmetric encryption,
where the nodes use the same key to encrypt and decrypt data, and the use of asymmetric en-
cryption, in which each user has a pair of keys, public and private. Whenever a node wants
to transmit something to another device, it will use the public key of that device to encrypt
the data; the receiving node will then decrypt the received data with its private key. However,
in the first case one would have to implement a key distribution center, which is almost an
impossible task in UANs. A possible solution could be generating keys via a pseudorandom
generator and pre-installing them in the nodes, but the lack of randomness of such generators
could be exploited and when a certain key is compromised, all nodes using that key are not
secure anymore. Instead, in the second case, there is the need of a dedicated infrastructure for
keymanagement and authentication. Moreover, a public key encryption scheme requires high
computingpower since they are based onmathematical problems. Amore promising approach
for UANs is the Physical Layer Security (PLS), in which the aim is to dynamically generate se-
cret keys exploiting the randomness and reciprocity of the common acoustic channel, the first

7

(a) Public key scheme. (b) Symmetric key scheme.

Figure 3.1: Symmetric and asymmetric encrypঞon schemes visual comparison.

given by time-varying propagation physics in UWA channels. This paradigm is not computa-
tionally demanding and it is information-theoretically secure, making it a good solution for
UANs, in which nodes are usually power constrained.
Throughout thewhole thesis, wewill refer toAlice andBob as the two legitimate parties that

want to distill a secret symmetric key to use for subsequent secure communications, while we
will refer to Eve as the eavesdropper, i.e., a malicious node that is only capable of passive attacks,
the aim of which is to steal the key used by Alice and Bob.

3.1.1 Source and channel models

In the source model, shown in Fig. 3.2a, Alice, Bob, and Eve respectively observe the statis-
tically related [noisy] observations x, y, and z of a common source of randomness – which
is the channel itself – modeled as a memory-less source (XYZ, pxyz), where X ,Y ,Z are the
sets in which x, y, z take their values respectively, and pxyz is a collection of probability mass
functions, one for each x, y, z . It is assumed that the channel statistics are know but it cannot
be controlled by the involved parties by any means. This is the model adopted in the thesis.

In the channel model, shown in Fig. 3.2b, instead of observing realizations of an external
source, Bob and Eve observe the outputs of the channel, modeled as a memory-less channel
(X , pyz|x,YZ), where the input set X is controlled by Alice and pyz|x is a collection of prob-
ability mass functions, one for each X . In this case the source of randomness is hence Alice

8

(a) Source-type. (b) Channel-type.

Figure 3.2: Source and channel models in the PLS approach.

itself [12].

3.1.2 Secret Key Agreement protocol

The general Secret Key Agreement (SKA) protocol, also known as Secret Key Generation (SKG)
procedure, is visualized in Fig. 3.3 and also summarized as follows [13]:

1. Channel probing

(a) Channel sampling
(b) Pre-processing

2. Quantization

3. Information reconciliation

4. Privacy amplification

The channel probing step further divides into channel sampling, in which Alice and Bob ex-
change probing signals to estimate either the Channel Impulse Response (CIR) or the Channel
Frequency Response (CFR), and pre-processing, in which signal processing techniques are im-
plemented to manipulate the acquired data before proceeding with subsequent steps. Then,
there is the quantization step, where the measurements are translated into bits, yielding the
initial key. Since Alice and Bob exchange probe signals in a Time Division Duplexing (TDD)
fashion, and due to hardware differences of receivers, the two quantized sequences will likely
not be equal, even though the probing signals are exchanged within the channel coherence
time. Hence, in the information reconciliation stage the aim is to correct the mismatching bits
in Alice and Bob initial keys. However, this operation leaks some information on the public

9

Figure 3.3: SKA protocol [1].

channel that Eve could exploit. Thus, as last step, privacy amplification has the goal to distill a
shorter and more secure key through, e.g., a pre-agreed hash function.

3.1.3 Secret key capacity for source model

The weak secret key capacity CSM
s for the source model described in Section 3.1.2 is the max-

imum number of bits that Alice and Bob can obtain from the respective channel observation
that are unknown to Eve, and can be bounded as [12]:

I(X;Y)−min {I(X;Z), I(Y ;Z)} ≤ CSM
s ≤ min {I(X;Y), I(X;Y | Z)} (3.1)

The lower bound is simply given by the difference between the information rate between the
legitimate parties, Alice and Bob, and a certain amount of information leaked to the eavesdrop-
per Eve. In this thesis we will maximizeCSM

s by maximizing this lower bound.

3.2 SKA protocol state of the art

Most existing implementations of the SKA protocol are based on classical signal processing,
and they aremostly for Institute of Electrical andElectronics Engineers (IEEE) 802.11 and IEEE

10

Figure 3.4: AE architecture [2].

802.15.4. Moreover, popular observations to extract the key from are CIR, CFR, and the Re-
ceived Signal Strength (RSS) [13], but there is also the possibility to distill a key from other
features.

In this thesis we focus on data-driven approaches, thuswewill review someworks employing
Machine Learning (ML) algorithms andNeural Network (NN) architectures.

3.2.1 Neural Network implementations

The authors of [2] propose an SKG scheme based on an autoencoder (AE) to extract recipro-
cal features from weakly correlated CIR estimates of radio channels. The structure of the pro-
posed AE is shown in Fig. 3.4. The inputs x(i)

A are Alice’s CIR estimates ĥ
(i)

A , of size 300× 2,
each row of which is a pair of amplitude and phase of the corresponding tap, i.e.,

x(i)
u = [A(i)

u ,φ(i)
u], (3.2)

whereA(i)
u and φ(i)

u are the amplitude and phase of each user CIR ĥ
(i)

u , respectively. The in-
puts are first reshaped into a one-column vector, and then they are passed through the encoder
fenc(·; θ) – with θ the NN learnable parameters – composed by five fully-connected layers of
size 1000, 1000, 500, 500, and 300, respectively. The first four layers have the Leaky Rectified
LinearUnit (ReLU) as activation function, while for the last one a linear activation function is
used to output the encoded vector z(i) of size 10. This vector is passed to the decoder gdec(·; θ′)
– composed by five fully-connected layers of size 300, 500, 500, 1000, and 1000, respectively,
all of them equipped with a Leaky ReLU activation function – to output x(i)

B , which should
be as close as possible to h(i)

B .

11

Since the number of scatters in a radio channel is limited, the channel responses are sparse
in terms of power or amplitude. Hence, the phase of channel responses with low power is
worthless to be recovered and counted in the loss function, and so this has been redefined to
emphasize the influence of large amplitude part:

ℓ(i) =
∥∥∥A(i)

B − Â
(i)

B

∥∥∥
2
+ ρ

∑
j

(
A

(i,j)
B

)2 ∥∥∥φ(i,j)
B − φ̂

(i,j)
B

∥∥∥2
2

(3.3)

whereA(i)
B and φ(i)

B represent the amplitude and phase of target output h(i)
B , while Â

(i)

B and
φ̂

(i)
B are the amplitude and phase of the output of the decoderx(i)

B . Instead, the weight param-
eter ρ controls the proportion of the amplitude and phase error.

Note that since input and output do not coincide, the proposedAEworks as a denoisingAE.
As long as the difference between the output and Bob’s estimates becomes small, the extracted
features z may represent the commonmain part of Alice and Bob’s side-information.
The optimal encoding anddecoding parameters θ∗ and θ′∗ can be obtainedwhen the average

reconstruction error (namely, the average over the training set of (3.3)) reaches globalminimum.
After the AE training, Alice and Bob can generate reciprocal features as:

zA = fenc(ĥ
(i)

A ; θ∗),

zB = fenc(ĥ
(i)

B ; θ∗).
(3.4)

To assess the performance of this architecture, the authors have chosen the following two
metrics:

1. the Mean Square Error (MSE) between the extracted reciprocal features of Alice and
Bob

MSE =
1

m

m∑
i=1

∥∥∥z(i)
A − z

(i)
B

∥∥∥2
2
, (3.5)

wherem is the number of samples in the test set;

2. the mutual information between the extracted reciprocal features of Alice and Bob

MI = I(zA, zB) =
∑
za

∑
zb

p(za, zb) log
p(za, zb)

p(za)p(zb)
, (3.6)

where p denotes the probability mass function.

12

Figure 3.5: The MSE of zA and zB based on PCA and AE [2].

TheMSE andMI results of theAE solution are comparedwith the ones obtainedwithPrin-
cipal Component Analysis (PCA). As shown in Fig. 3.5 and Fig. 3.6, the proposed scheme al-
ways outperforms the PCA algorithm, and this holds especially for low values of SNR, thanks
to the additional degrees of freedom of non-linear transformations.

This work assumes that an eavesdropper (Eve) is far from legitimate sides by at least λ
2
, i.e.,

spatial decorrelation occurs, and the correlation between Eve’s CIR estimates and Alice and
Bob estimates is so weak that can be ignored. However, when Eve is at a distance less than
half a wavelength the correlation between Eve and Alice’s CIR estimates is significant, allow-
ing Eve to steal keys using its own CIR estimates with the same network as the legitimate sides.
The authors of [3] propose aMulti-Task Autoencoder (MTAE), that extracts the reciprocal fea-
tures from the channel estimates of the legitimate sides while reducing its correlation with the
eavesdropper. The feature extractorGz(·; θz) tries to extract the main reciprocal information
between legitimate communication sides, while attempting tomake this information irrelevant
for Eve. In this way, even if the eavesdropper manages to obtain the same network that Alice
and Bob use for reciprocal features extraction, it will be difficult to obtain the same key by
using its features. In particular, the inputs x(i)

A ,x
(i)
E ∈ R300×2 are first reshaped into a one-

column vector and thenmapped intoD-dimensional feature vectors z(i)
A and z(i)

E byGz(·; θz),
which consists in four fully-connected layers of size 600, 300, 120, and 64, respectively. The

13

Figure 3.6: The MI of zA and zB based on PCA and AE [2].

first three layers use a Leaky ReLU, while the last one has a linear activation function. Then,
z
(i)
A is mapped to x̂(i)

B –which should be as close as possible tox(i)
B – by decoderGb(·; θb), that

is the converse of the feature extractor and consists of four fully-connected layers all equipped
with a Leaky ReLU. TheMTAE architecture is visualized in Fig. 3.7.

The proposed loss function for the i-th sample is:

ℓ(i)(x
(i)
A ,x

(i)
B ,x

(i)
E ; θz, θb) = ℓ

(i)
b (x

(i)
A ,x

(i)
B ; θz, θb)− λ ℓ(i)z (x

(i)
A ,x

(i)
E ; θz, θb) =

=
∥∥∥x(i)

B − x̂
(i)
B

∥∥∥2
2
− λ

∥∥∥z(i)
A − z

(i)
E

∥∥∥2
2
=

=
∥∥∥x(i)

B −Gb(Gz(x
(i)
A ; θz); θb)

∥∥∥2
2
−

− λ
∥∥∥Gz(x

(i)
A ; θz)−Gz(x

(i)
E ; θz)

∥∥∥2
2
,

(3.7)

where the parameter λ, which controls the trade-off between the two objectives of the MTAE,
is adjusted dynamically during the training with the following schedule:

λ = λ0

(
1− 1

1 + e−3 epoch
EPOCH

)
(3.8)

where λ0 is the parameter starting value, epoch is the current number of epochs elapsed, and

14

Figure 3.7: MTAE architecture [3].

EPOCH is the total number of epochs required for the training.
The overall loss function is:

LMTAE(S; θz, θb) =
1

|S|

|S|∑
i=1

ℓ
(i)
b (x

(i)
A ,x

(i)
B ; θz, θb)− λ ℓ(i)z (x

(i)
A ,x

(i)
E ; θz, θb) (3.9)

whereS is the training set. Learning occurs by seeking the optimumweights θ∗z , θ∗b – forwhich
the saddle point of (3.9) is achieved – by minimizing (3.9):

(θ∗z , θ
∗
b) = argmin

θz ,θb
LMTAE(S; θz, θb). (3.10)

The trained feature extractor is equipped both on Alice and Bob to generate the reciprocal
features as:

zA = Gz(x
(i)
A ; θ∗z)

zB = Gz(x
(i)
A ; θ∗z)

(3.11)

To understand how good is this architecture at reducing the possibility of Eve stealing the
key of Alice and Bob, the authors choose the following two metrics:

1. the Pearson correlation coefficient

ρ =
COV (zu1 , zu2)

σzu1
, σzu2

(3.12)

whereu1, u2 ∈ A,B,E andu1 ̸= u2, to see by howmuch the correlation betweenAlice
and Bob is reduced;

15

Figure 3.8: Correlaঞon coefficient of the feature z between Alice and Eve [3].

Figure 3.9: t-SNE visualizaঞon of features [3].

2. t-distributed stochastic neighbor embedding (t-SNE) visualization, a dimensionality re-
duction technique to visualize the latent space z. If two data are similar in a high-
dimensional space, they should be close to each other when reduced to a 2-dimensional
space, and vice versa.

These twometrics are also computed for the baseline architecture, namely, the AEmodel in
[2] for a comparison.
In Fig. 3.8 it can be clearly seen that the features generated withMTAE have a lower correla-

tion than those generated through the naive AE. Also from Fig. 3.9 is obvious that theMTAE
increases the differentiation between zA (yellow dots) and zE (purple dots).
Another approach to ensure information security when the eavesdropper is close less than

half a wavelength from either legitimate parties is explained in [4], in which the same authors
propose a Domain-Adversarial Training of Autoencoder (DAAE). The main components of
such architecture are: one encoder, two decoders, and a Gradient Reversal Layer (GRL). As

16

Figure 3.10: DAAE architecture [4].

for the MTAE, the goal is to extract the reciprocal channel features of legitimate sides while
maximizing the feature differencewith respect toEve. Specifically, the inputAlice’sCIRx

(i)
A ∈

R300×2 is reshaped into a one-column vector and it is mapped to theD-dimensional vector z
by the feature extractor Gz(·; θz). Then, the feature vector is mapped to x̂(i)

B – which again
should be as close as possible to Bob’s estimate x(i)

B – by decoderGb(·; θb). Ultimately, z goes
through the GRL before being mapped to x̂

(i)
E – which should be as far as possible to Eve’s

estimate x(i)
E – by decoder Ge(·; θe). The feature extractor consists in four fully-connected

layers of size 600, 300, 120, and 64, respectively, all of them equipped with a Leaky ReLU
activation function but the last, which has a linear activation function. The two decoders have
the same architecture, four fully-connected layers of size 64, 120, 300, and 600, respectively, all
using the LeakyReLU as activation function. The overall architecture is illustrated in Fig. 3.10.
In particular, the proposed training method has a two-fold objective:

1. minimize the reconstruction error between the outputs x̂(i)
B and the ground truth x(i)

B

to let the encoded vector z containing the reciprocal information between Alice and
Bob’s CIR estimates;

2. maximize the reconstruction error between the outputs x̂(i)
E and the ground truth x(i)

E

to ensure that z contains as little information as possible related to Eve’s CIR estimates.

17

The first objective can be achieved with a standard AE, and thus the networks Gz and Gb

are trained by descending the gradient of the following loss function:

ℓ
(i)
b (x

(i)
A ,x

(i)
B ; θz, θb) =

∥∥∥x(i)
B −Gb(Gz(x

(i)
A ; θz); θb)

∥∥∥2
2
. (3.13)

The second objective instead can be achieved by seeking the converse objective of the AE, that
is, the networksGz andGe are trained by ascending the gradient of the loss function:

ℓ(i)e (x
(i)
A ,x

(i)
E ; θz, θe) =

∥∥∥x(i)
E −Gb(Gz(x

(i)
A ; θz); θb)

∥∥∥2
2
. (3.14)

Of course, oneneeds tomake a trade-offbetween these twoobjectives. Theoverall loss function
is then:

LDAAE(S; θz, θb, θe) =
1

|S|

|S|∑
i=1

ℓ
(i)
b (x

(i)
A ,x

(i)
B ; θz, θb)− λℓ(i)e (x

(i)
A ,x

(i)
E ; θz, θe) (3.15)

Specifically, the weights are updated in the following way:

θz ← θz − µ

(
∂ℓ

(i)
b

∂θz
− λ

∂ℓ
(i)
e

∂θz

)
, (3.16)

θb ← θb − µ

(
∂ℓ

(i)
b

∂θb

)
, (3.17)

θe ← θe − µ

(
∂ℓ

(i)
e

∂θe

)
, (3.18)

whereµ represents the learning rate. However, due to the presence of the parameterλ in (3.16),
SGD is not applicable. This problem can be solved by the GRL: during forward propagation
this layer is transparent, i.e., it just copies the input to its output; during backward propagation
the GRL obtains the gradient from the subsequent layer and multiplies it by −λ before it is
passed to the previous layer. Formally, theGRL can be defined by the following set of equation:

Rλ(x) = x, (3.19)

dRλ

dx
= −λI, (3.20)

18

Figure 3.11: Correlaঞon coefficient of the feature z between Alice and Eve [4].

where I is the identity matrix.
As it has been done for the MTAE, also here the authors evaluate the Pearson correlation

coefficient ρ between the extracted features and inspect the latent space via t-SNE. This time,
besides PCA and the AE baseline, they compare the DAAE also with theKey Generation neu-
ral network (KGnet) architecture [14], where it is assumed that Eve’s distance is greater than
half a wavelength and so KGnet does nothing to protect against it. From Fig. 3.11 is clear that
the DAAE yields a lower correlation between Alice and Eve extracted features when Eve is re-
ally close to Alice with respect to the other three architecture. This differentiation can also
be seen from Fig. 3.12, where zA (yellow dots) and zE (purple dots) are far apart in the two-
dimensional space.

3.2.2 Machine Learning implementations

Apart fromCIR, CFR, and RSS, it is also possible to design an algorithm on the basis of other
kinds of features. For example, the authors in [15] propose a SKG procedure exploiting the
Inter-Pulse Interval (IPI) of ECG signals. Here Alice and Bob are two sensors belonging to
the sameWireless Body AreaNetwork (WBAN), which collect ECG signals from two different
locations. The authors developed a quantizer that has in input Alice and Bob IPI sequences
x and y, and quantizes such values in a joint manner. In particular, let Qx and Qy be Alice
and Bob’s quantizers, and x̃ = Qx(x) and ỹ = Qy(y) the quantized versions of x and y. Of

19

Figure 3.12: t-SNE visualizaঞon of features [4].

course, x̃, ỹ ∈ {1, . . . ,R}, withR the number of regions.

The best situation is when the two quantized sequences coincide, thus one can define a ran-
dom variable x∗ as:

x∗ =

x̃ if x̃ = ỹ

∅ if x̃ ̸= ỹ
(3.21)

Then, the ProbabilityMass Distribution (PMD) of x∗ is:

px∗(r) =

∫
Rx

r×Ry
r

pxy(a, b) da db, r ∈ {1, . . . ,R} , (3.22)

where Rx
r and Ry

r are the Alice and Bob’s quantizer regions associated to r ∈ {1, . . . ,R},
while the probability of non-coincidence is P [x∗ = ∅] = 1−

∑R
r=1 px∗(r).

The aim is to maximize the entropy times frequency of x∗, since we are not interested in the
case where x̃ ̸= ỹ, i.e.,

P [x∗ ̸= ∅]H(x∗) =
R∑

r=1

px∗(r) log 1
2

(
px∗(r)

P [x ̸= ∅]

)
, (3.23)

20

Figure 3.13: IPI quanঞzaঞon thresholds for 1- (yellow), 2- (orange), 3- (red), and 4-bit (dark red) quanঞzaঞon. Values are in
ms.

where px∗(r) = Nr

N
is the empirical PMD of x∗,Nr is the cardinality of the r-th region,N is

the total number of samples, and P [x∗ ̸= ∅] is the probability that x̃ = ỹ, that is, Alice and
Bob choose the same region. The equality in (3.23) comes from the fact that since the symbol
∅ is discarded, one has to scale the PMD by P [x∗ ̸= ∅] =

∑R
r=1 px∗(r).

The outcome of this non-uniform quantizer is shown in Fig. 3.13 for b ∈ {1, 2, 3, 4} quan-
tization bits.

3.3 Considered channel features for SKG

From the CIRs gathered in a sea experiment carried out in Eilat, Israel in January 2022, we
obtain the power-delay profile H ′

n(t, τ) for the links Bob→Alice and Bob→Eve. Let xi,n(t)

be the value of the i-th featurewith i = 1, . . . , 4, measured at time t by each noden. To extract
the features, we zero out low-power arrivals in the power-delay profile, i.e.,

Hn(t, τ) =

0 |H ′
n(t, τ)| < Th

H ′
n(t, τ) |H ′

n(t, τ)| ≥ Th.
(3.24)

Let Sn(t) the set of delays of all channel arrivals that remain after this thresholding operation.
Then, we consider the following four features for the SKA procedure [16]:

21

1. Number of channel taps
x1,n(t) = |Sn(t)| , (3.25)

2. Average tap power

x2,n(t) =
1

|Sn(t)|
∑

τ∈Sn(t)

|Hn(t, τ)| , (3.26)

3. RelativeRootMean Square (RMS) delay

x3,n(t) =

(
1

|Sn(t)| − 1

∑
τ∈Sn(t),τ ̸=τ0

(τ − τ0)
2

)1/2

, (3.27)

4. Smoothed received power

x4,n(t) = αqn,t + (1− α)x4,n(t
′). (3.28)

The experiment lasted 30 minutes, which is an insufficient time to collect enough data to
train NNs. To overcome this issue, each data series xn,k has been fitted with a Gaussian Ker-
nel Density Estimation (KDE), by estimating the PDFs pxn,k

(x). New correlated data can be
generated with the following procedure [17]:

1. generate aN ×K matrix of zero-mean correlated Gaussian variables ṽ with covariances

COV(vn,k, vn′,k′) =


1 if n = n′and k = k′

α if n ̸= n′and k = k′

0 otherwise
(3.29)

where α ∈ [0, 1] is the parameter controlling the covariance between nodes.

2. compute un,k = FN
x (ṽn,k), where FN

x (ṽn,k) is the CDF of a Normal distribution, and
derive xn,k = F−1

xn,k
(un,k) via numerical methods.

22

4
Quantizer

The quantization phase is essential to map real values, i.e., the pre-processed channel measure-
ments, into a stream of bits, representing the initial key. This quantization operation should
ideally yield a sequence of independent and identically distributed bits, otherwise an eavesdrop-
per could exploit the correlation between symbols to infer future values.

We want to design a joint quantizer that takes in input both Alice’s and Bob’s channel fea-
tures x and y in such a way that each of them can independently generate the primary key by
only considering their measurements. In particular, let us consider the case where Alice and
Bob only compute one channel feature: these measurements can be arranged on the x axis and
the y axis, respectively, thus obtaining a two-dimensional space. We aim at building an algo-
rithm capable of dividing both axis into a given number of intervals, in such a way that, after
this thresholding operation, Alice andBob are capable of independently generate the initial key
by only looking in which bin their measurements fall into. We tackle this problem by group-
ing the data points inside the joint Alice-Bob input space into rectangle-shaped clusters, hence
obtaining a grid-like arrangement, and by ensuring that we select only one of this regions for
each row and column, to avoid ambiguities when each user will look only at their intervals.

In formulas, we have built two quantizersQx andQy, respectively identified by the chosen
thresholds on the abscissa and the ordinate, that Alice and Bob will use to extract the primary

23

key from their measurements. Specifically, we assign to each of the chosen regions a symbol as:

x̃ = Qx(x), ∀x ∈ X
ỹ = Qy(y), ∀y ∈ Y ,

(4.1)

where x̃, ỹ ∈ {0, . . . ,R− 1}, with R the number of regions, are the quantized values for a
particular measurement of Alice and Bob, respectively, X is the vector containing the realiza-
tions ofAlice’s channel feature, andY is the vector containing the realizations of Bob’s channel
feature. Ideally, we would like to have x̃ = ỹ and to do so, we need to train the algorithm ac-
cordingly. How to do the training is explained in the subsequent sections.

4.1 Correlated Gaussian random variables

As an example, we consider here the case where the observations of Alice and Bob are two
correlated Gaussian random variables. If we collect a reasonable number of realizations, these
will “be contained” in an ellipse. To simulate a pair of correlated normal randomvariables, start
by generating independently the observation of Alice as:

x ∼ N (0, 1) (4.2)

and another random variable n ∼ N (0, 1). Then, given a certain correlation ρAB , the obser-
vation of Bob can be generated as:

y = ρABx+ n
√
1− ρ2AB (4.3)

Let us generate, e.g., 103 pairs (x, y) as in (4.2) and (4.3) and plot them in the two dimen-
sional plane as in Fig. 4.1. The points are indeed aligned along an ellipse, the width of which
is controlled by the amount of correlation, namely the parameter ρAB . The first version of the
proposed quantizer is developed with the assumption that Alice and Bob compute only one
channel feature each. The idea is to build a two-dimensional space by putting Alice measure-
ments along the first dimension, and Bob measurements along the second dimension. In this
space, the algorithm organizes the finite region in which such measurements reside in an arbi-
trary number of rectangle-shaped clusters. As a first step, we can generate a data set as in (4.2)
and (4.3) with, e.g., ρAB = 0.9.

We would like to split such data set with rectangle-shaped regions that have, on average, the

24

Figure 4.1: Plot of Alice and Bob realizaঞons with ρAB = 0.7.

same number of points inside them but at the same time we also want not to discard toomany
samples. To achieve such result, the algorithm has been developed in the following way:

1. Drop a cross randomly within the region, defining four sub-regions;

2. If the number of points inside the two sub-regions on the diagonal is larger than the
number of points inside the two sub-regions on the anti-diagonal, choose the first, oth-
erwise the latter;

3. Search the best position for the cross (identified by current Alice and Bob’s thresholds),
that is, the position that minimizes the number of points left outside the two chosen
sub-regions and maximizes the uniformity of the two regions;

Once the two best sub-regions are identified, the above reasoning can be repeated for both
of them in a recursive manner, until we get the required number of rectangles. This process is
detailed in Algorithm 4.1.

25

Algorithm 4.1Developed joint non-uniform quantizer.
1: input data set S = (X ,Y)
2: Require in inputR even
3: ncrosses ← R− 1
4: n← 0
5: label each point in S to -1 (unassigned)
6: step← 0.1
7: ε← 10−6

8: while true
9: split S on the basis of the label
10: for each split
11: cross_position← random sample in current region
12: best_cross_position← cross_position
13: best_loss← inf
14: best_loss_old← best_loss
15: loss_old← inf
16: whileTrue
17: try moving cross making a step upleft, upright, downleft, and downright
18: re-compute regions for each movement
19: save loss value for each movement
20: choose move with minimum loss value
21: if best move loss< loss_old
22: move cross to that position
23: best_loss← best move loss
24: else
25: do not move cross
26: if best_loss = best_loss_old
27: step← step− 10−3

28: if step < ε
29: step← 0.1
30: break
31: best_loss_old← best_loss
32: save best cross position and label samples according to it
33: n← n+ 1
34: if n = n_crosses
35: return the labeled data set S
36: update data set S with labels yielded by found cross positions

26

4.1.1 Local objective function

For this algorithm to work, one needs to define a proper metric to minimize or maximize. The
following objective function has been implemented:

L(S, r1, r2) = α
∑
s∈S

1{s /∈ r1 ∧ s /∈ r2}+ (1− α)
2∑

i=1

|Ni − N̄ | (4.4)

where1{·} is the indicator function,Ni is the cardinality of the i-th region, and N̄ is the average
cardinality of the regions r1 and r2. It should be noted that this objective function operates lo-
cally, that is, it considers only the points within the current subset of the data set. The first term
represents the number of points left outside with the current choice of regions, while the sec-
ond termmeasures the non-uniformity of the two regions, that is, howmuch their cardinality
is far from the average. These two requirements represent twoplates of a scale, hence the param-
eter α allows to control the trade-off. In Fig.4.2 are shown the solutions forR = {2, 4, 8, 16}
regions with α = 0.5.

After the joint training on both Alice and Bob observations, the first coordinate of the
dropped crosses divides the first axis in a certain number of intervals, and the same does the
second coordinate of the placed crosses for the second axis. The result is a grid with different
cell size, and one can notice that for each row and column, there exist only one region. Hence,
each party obtains the initial key by only looking at their observation. In particular, they can
independently quantize their measurements by looking in which interval these fall into. Ide-
ally, bothmeasurements of both parties should fall inside the same interval, i.e, they choose the
same region, and so the same symbol. In this way, the information reconciliation phase can be
avoided and Alice and Bob would already have a secret key that can be used right away.

To assess the performance of this algorithm, we can estimate theKey Agreement Probability
(KAP) as in Algorithm 4.2, defined as:

KAP = P[KA = KB] (4.5)

whereKA andKB are the keys distilled by Alice and Bob, respectively. For comparison, a uni-
form quantizer, that simply divides each coordinate in intervals of the same length, has been
built. In Table 4.1 are reported the outcomes withR = {2, 4, 8, 16} regions of the developed
quantizer and the uniform quantizer, respectively. Here it seems that the latter is better, since
it retains a higher KAP with an increasing number of regions.

27

(a) Soluঞon withR = 2. (b) Soluঞon withR = 4.

(c) Soluঞon withR = 8. (d) Soluঞon withR = 16.

Figure 4.2: Soluঞons with α = 0.5

28

Algorithm 4.2 Key Agreement Probability Estimation
1: take in input Alice and Bob thresholds
2: iters← 106

3: create alice_keys and bob_keys as empty arrays of length iters
4: for i = 0; i < iters; i++
5: generate a pair (x, y) of correlated Gaussian distributed random variables
6: j ← 0
7: while x > j-th alice threshold
8: j ← j + 1

alice_keys[i]← j
9: j ← 0
10: while y > j-th bob threshold
11: j ← j + 1

bob_keys[i]← j

12: output key agreement probability as 1−
∑iters

i=0 alice_keys[i]−bob_keys[i]
iters

Regions KAP
Developed quantizer Uniform quantizer

2 0.86 0.82
4 0.66 0.78
8 0.42 0.46
16 0.24 0.34

Table 4.1: KAP comparison between our soluঞon and the uniform quanঞzer in funcঞon of the number of regionsR.

However, by looking at how the uniformquantizer divides the data set (Fig. 4.3), the chosen
regions are unbalanced for R > 2, and in particular the inner regions contain much more
points than the outer ones. This suggests that the symbols represented by the inner regions
will be chosen with a higher probability than the others.

To confirm this assumption, we can compute the probability of each possible symbol, de-
fined as:

Pki = P[K(i)
A = k ∧K

(i)
B = k|k = ki] (4.6)

by followingAlgorithm4.3, for both our solution and the uniformquantizer. From the results
shown in Fig. 4.4, one can indeed see that even though the uniformquantizer offers betterKAP
performance, the inner keys are selected with a much higher rate. An eavesdropper can thus
neglect all the other keys and concentrate on the most probable ones. On the other hand, our
solution yields a higher entropy, since the distribution of possible keys resembles a uniform

29

(a) Soluঞon withR = 2. (b) Soluঞon withR = 4.

(c) Soluঞon withR = 8. (d) Soluঞon withR = 16.

Figure 4.3: Joint uniform quanঞzer soluঞons.

30

distribution, i.e., each key is chosen with almost the same probability.

Algorithm 4.3 Estimation of probability for each possible key
1: input alice_keys, bob_keys, and possible_keys arrays
2: sum← 0
3: N ← length(possible_keys)
4: create empty array probs of length N
5: for i = 0; i < N ; i++
6: count← 0
7: for j = 0; i < length(alice_keys); j++
8: if alice_keys[j] = bob_keys[j] and alice_keys[j] =

possible_keys[i] and bob_keys[j] = possible_keys[i]
9: count← count+ 1

10: sum← sum+ count
length(alice_keys)

11: probs[i]← count
length(alice_keys)

12: output probs

We want to investigate how the solution changes with different values of the trade-off pa-
rameter α. Let us define the normalized standard deviation as:

σnorm =

√∑R
i=1(Ni−N̄)2

R

N̄
(4.7)

where R is the number of required regions and N̄ is the average cardinality. Moreover, we
define the exclusion probability as:

Pexclusion =

∑
s∈S 1{s /∈ ri , ∀i ∈ {1, . . . , R}}∑

s∈S 1{s /∈ ri , ∀i ∈ {1, . . . , R}}+
∑

s∈S 1{s ∈ r1 ∨ . . . ∨ s ∈ rR}
(4.8)

Then, by varying α ∈ {0, 0.1, 0.2, . . . , 1} and by running the algorithm for each value, the
graph in Fig. 4.5 is obtained. It compares the exclusion probability (orange curve) and the
normalized standard deviation (blue curve) in function ofα. If the exclusion probability curve
is behaving more or less correctly, i.e., it becomes smaller if the algorithm is more and more
penalized for points left outside the regions, the normalized standard deviation curve in a first
moment grows, thendecreases formiddle values ofα, and then goes up again. This is due to the
fact that, despite having the parameter α controlling the trade-off between region uniformity
and the count of excludedpoints, the objective functiondefined in (4.4) is local. If, e.g., one sets

31

(a)Our soluঞon withR = 2. (b) Joint uniform quanঞzer withR = 2.

(c)Our soluঞon withR = 4. (d) Joint uniform quanঞzer withR = 4.

(e)Our soluঞon withR = 8. (f) Joint uniform quanঞzer withR = 8.

(g)Our soluঞon withR = 16. (h) Joint uniform quanঞzer withR = 16.

Figure 4.4: Comparison between key probabiliঞes of our soluঞon and the joint uniform quanঞzer.

32

Figure 4.5: Normalized standard deviaঞon versus exclusion probability in funcঞon of α with the local objecঞve funcঞon
andR = 4.

α = 0 the expected outcome is to have almost perfectly balanced regions, but the algorithm
will minimize the objective function only in the portion of plane it is currently considering,
thus reaching a local minimum in a certain subset of the data set which can be different from
the local minimum obtained in another subset. The result is that the regions are uniform pair
by pair. For this reason, we need a global function.

4.1.2 Eavesdropper presence

Let us consider the situation illustrated in Fig. 4.6, in which an eavesdropper, called Eve, is
followingAlice closely. The channel betweenBob andEve, namelyhBE, will be correlatedwith
the legitimate channel hBA and this goes in favor of Eve since she can observe values similar to
what Alice observes. Moreover, we assume that the stalker knows the key extraction algorithm
employed by legitimate parties, the thresholds that they use to independently quantize their
measurements, and the channel features they are using for the SKG procedure. In particular,
we assume that Eve manages somehow to obtain the thresholds computed by Alice and then,
by computing the same feature that Alice and Bob are using, she extract her key by using Alice
thresholds to quantize her measurements.

Unfortunately, as verified by the results in Section 6.1.1, ifhBA andhBE are highly correlated
Eve will find in most of the cases the same key of Alice, and thus Bob, since the key is symmet-

33

Figure 4.6: Stalking a�ack [5].

rical. In particular, the probability of Eve extracting the same key of Alice becomes larger and
larger with a higher correlation factor ρAE between hBA and hBE, up to the point where Eve
always (i.e., with probability 1) manages to obtain the same key as Alice, and thus Bob.

One can also see what is the actual Secret Key Rate (SKR) with Eve’s presence. The SKR is
defined as:

SKR = I(x̃; ỹ)− I(x̃; z̃) (4.9)

Eve applies the same strategy of Alice and Bob with R = 2b regions – where b = {2, 3, 4} –
and with ρAE varying in the interval [0, 1], but she can only optimize her thresholds since the
ones of Alice are given and constant.

For reference, we also plot the SKR for the joint uniform quantizer, where this time the
thresholds on the x axis are found by uniformly splitting the projection on such axis of Alice
and Bob data. From the results in Section 6.1.2 clearly see that our developed joint quantizer
is capable of achieving way higher values in terms of SKR. This is because the uniform quan-
tizer divides the input 2D space by splitting the first and second axis with intervals of the same
length and thus is not capable of extracting all the possible information betweenAlice and Bob.
Our joint quantizer instead produces non-uniform thresholds along the first and second axis in
order to maximize the mutual information between Alice and Bob, resulting in a considerable
upward shift in the SKR graph.

4.1.3 Adversarial training

The joint quantizer detailed in Algorithm 4.1 can be extended to include also the presence of
the eavesdropper Eve. Consider the three-dimensional plane: we arrangeAlice’smeasurements
along the x axis, Bob’s measurements along the y axis, and Eve’s measurements along the z
axis. The planexywill still works as the original two-dimensional quantizer but nowAlice and
Bob have to optimize their thresholds also considering what Eve is doing. Specifically, the core

34

reasoning is the following:

1. the legitimate parties compute the value of the objective function in the four next possi-
ble locations of the cross and choose the next best move but do not perform the update
yet;

2. Eve to make her decision on where to shift her threshold considering only her ownmea-
surements;

3. Alice and Bob then compute the objective function on the plane xz at the coordinates
represented by the next best position of Alice’s threshold and the new Eve’s threshold
chosen at point 2;

4. Alice andBob take all the four saved values at point 1, update themby deducting the loss
compute at point 3, and make the decision again on where to move the cross identified
by their thresholds.

and it is repeated until convergence. Since Eve shift her threshold by only considering her
measurements, she will only need to “see” howmany points remains to the left and to the right
of the threshold andmove it (or choose not to, if it has already reached its optimal position) to
the left or to the right by maximizing the uniformity of the two regions.

4.2 Generalization to higher-dimensional input

Suppose thatAlice andBobwould like touse several features of all the available channel features
for the SKA protocol. In this case, the input of the developed quantizer would lie in a higher
dimensional space and in particular, we have:

x,y ∈ RL×1 (4.10)

where L ∈ {2, 3, 4} is number of features per user. This means that the quantizer input is
2L-dimensional and we cannot use the same strategy as in the two-dimensional case, in which
for dividing each user input space a point is sufficient. Inspired by the Support Vector Ma-
chine (SVM) paradigm [18], we divide each user space with a hyperplane identified by the tuple
(au, bu), whereau ∈ RL×1, bu ∈ R, and u indicates the user in consideration. To understand
if a point p lies to the left or to the right of such hyperplane, a rule similar to the Hard-SVM

35

rule is applied, i.e.,

the point p is

on the right if aT
up+ bu > 0

on the left if aT
up+ bu < 0

(4.11)

Sincewe do not have a differentiable objective function based on the hyperplane values, we can-
not apply gradient descent to update the hyperplane position. Thus, we opt for the following
sub-optimal strategy to divide the plane of each party:

1. randomly sample a measurement of user umu ∈ RL×1 from the data set;

2. get one of the many hyperplanes passing throughmu by initializing au randomly and
setting bu = −

∑
i m

i
u;

3. optimize the hyperplane by shifting it to the left or to the right by updating the bias
bu and by changing the slope by updating the vector au, on the basis of the objective
function (6.1).

In otherwords, the hyperplanes ofAlice andBob formahigher dimensional cross andwe can
indeed reuse theAlgorithm4.1with themodifications listed above. Also here, the optimization
of the hyperplane is done multiple times to avoid bad local minima, that is, the strategy above
is repeated a certain number of times and we choose the hyperplane yielding the best loss.

With L > 2 the input space of the quantization algorithm we cannot visualize the results
anymore. However, if L = 2 the measurement of each user lies in a two-dimensional space
and we can see how the algorithm divides such planes. In Fig. 4.7 and Fig. 4.8 are shown two
possible solutions for R = 4 and α = 0 projected onto Alice and Bob’s input spaces: both
are divided into four parts by the projections of the optimized hyperplanes – which are lines
– and if we intersect each part of Alice’s plane with the appropriate one in Bob’s plane we get
the correspondent region in the 2L-dimensional space. The unassigned points were omitted
from the plot as they were overlapping with the classified points because of the dimensionality
reduction.

36

(a) Alice input space. (b) Bob input space.

Figure 4.7: One possible soluঞon of the generalized algorithm with L = 2 andR = 4.

(a) Alice input space. (b) Bob input space.

Figure 4.8: Another possible soluঞon of the generalized algorithm with L = 2 andR = 4.

37

38

5
Secret Key GenerationWith Autoencoders

5.1 The autoencoder

An autoencoder (AE) is a neural network (NN) composed by an encoder, whose task is to
project the input space to lower-dimensional space, often called latent space, and a decoder,
whose task is to recover the input from the compressed information. Since the latent space has
a smaller dimensionwith respect to the input, i.e., it represents a bottleneck, the reconstruction
will not be perfect. However, in this way the AE is forced to learn the most useful properties
of input data.

Let n andm be the dimensions of input data S and latent space, respectively, with n > m.
Let us define the encoder as a function f : Rn → Rm and the decoder as a function g : Rm →
Rn. Then, the output of the AE is:

x̂ = g(f(x; θenc); θdec), x ∈ X (5.1)

where θenc, θdec are the encoder and decoder weights, respectively.
Learning occurs by minimizing an appropriate loss function. Typically, for AEs this func-

tion is the MSE, also called the average reconstruction error:

MSE =
1

|S|

|S|∑
i=1

∥∥x(i) − g(f(x(i); θenc); θdec)
∥∥2
2

(5.2)

39

5.2 System model

The setting is the following. Aswe knowAlice and Bob are the two legitimate parties that want
to generate a symmetric secret key, while Eve is the eavesdropper which tries to discover the key.
We have a data set S containing the occurrences of four channel features: we denote with xA

Alice data, with xB Bob data, and with xE Eve data.
The original data setS is split into a training (70%) set and a test (30%) set. Let the training

set be Strain and the test set be Stest.
We first make use of synthetic channel features, i.e., each channel feature of each user is gen-

erated according to a standard Gaussian distribution, and then we will repeat the experiments
with the underwater measurements detailed in Section 3.3.

5.3 Autoencoderwith uniform quantizer

We make use of an AE to reconstruct Bob’s features, xB, starting from Alice’s features, xA.
Hence, we are dealing with a denoising AE. In particular, the encoder f is composed of a single
fully-connected layer of size 4, the latent space is of size 2, and the decoder g is again a single
fully-connected layer of size 4.
The training is done by minimizing the following loss function:

LAE(Strain; θf , θg) =
1

|Strain|

|Strain|∑
i=1

∥∥∥x(i)
B − x̂

(i)
B

∥∥∥2
=

1

|Strain|

|Strain|∑
i=1

∥∥∥x(i)
B − g(f(x

(i)
A ; θf); θg)

∥∥∥2
(5.3)

Specifically, we have trained the model with the PyTorch framework with the Adam optimizer
for 250 epochs and a learning rate lr = 2 · 10−4.

After training, the encoder f followed by a uniform quantizer (UQ) Q is used to produce
the initial keys of Alice and Bob, and in particular:

zA = Q(f(xA))

zB = Q(f(xB))
(5.4)

where z is the latent vector produced by the inputs x of each user.

40

This architecture has two main issues:

1. the symbols composing the initial keys are not equally likely, and this translates into poor
key randomness that can be exploited by an eavesdropper;

2. we do not take into account the presence of an eavesdropper, and in fact the SKR

SKR = I(zA; zB)− I(zA; zE) (5.5)

goes to zero when ρAE = ρAB.

5.4 Autoencoder with Differentiable Soft Quanti-
zation

Wenow investigate the effects of training theAE inSection5.3with aquantization layer directly
embedded between encoder and decoder. However, this operation needs some adjustments
since the learning through back-propagation cannot occur as the quantization function is not
differentiable.

The proposed NN architecture is a fully-connected AE equipped with aDifferentiable Soft
Quantization (DSQ) layer [19] right after the latent space, but apart from this the architecture
remains the same of the one described in Section 5.3.
The DSQ layer consists in a differentiable piece-wise function approximating the uniform

quantizer. TheDSQ function is implemented differentlywith respect to [19], and in particular
it is defined as a finite sum of scaled and shifted tanh functions, i.e.,

Q(x) =
L−1∑
i=1

∆

2
tanh

(
κ

(
x+

(
L

2
− 1

)
∆

))
−
(
L

2
− 1

)
∆ (5.6)

where x (normalized between−1 and+1) is the signal to be quantized, L = 2b is the number
of levels required, withb the quantization bits,∆ = 2

L
is the quantization step, while the coeffi-

cientκ is responsible for the steepness of transitions between each level. For example, in Fig. 5.1
we have the DSQ for L = 4 (which means the step size is∆ = 1

2
), and κ = 100. Given that

the DSQ function is differentiable everywhere, it supports gradient back-propagation, and the
network can now be trained directly with the quantization layer embedded between encoder

41

Figure 5.1: DSQ funcঞon with L = 4 and κ = 100.

and decoder. Specifically, the model is trained with the same framework and parameters of the
AE described in Section 5.3.

5.5 Eavesdropper presence

We have seen the effect of Eve’s presence on the SKR when Eve’s channel become more and
more correlated with either Alice’s or Bob’s channel. Here we implement the MTAE and
DAAE architectures (with appropriate and necessary modifications) described in Section 3.2
to train the AE in an adversarial-aware manner and thus to yield an initial key that contain few
or (ideally) no information that Eve can exploit.

5.6 Enhance secret key uniformity

If the MTAE and DAAE architectures solve the problem of having the eavesdropper Eve at a
distance less than half a wavelength, we still have been left with the problem that the symbols
of the produced initial key are not equally likely. As it has been already pointed out, a poor
key randomness facilitates the eavesdropper in discovering the key. To avoid this, we propose
to use an architecture calledAdversarial Autoencoder (AAE), which is employed to reshape the
latent space distribution of an AE. As in Fig. 5.2, the AAE architecture consists in an encoder

42

Figure 5.2: AAE architecture.

f(·; θenc), a decoder g(·; θdec), and a discriminator h(·; θd). The encoder consists in five fully
connected layer of sizes 4 − 3 − 3 − 2 − 2, respectively. The inputs are just clamped to
the first layer which then has an identity activation function, the following three layers have a
LeakyReLU as activation function, whereas the last one has a linear activation. The decoder is
the converse of the encoder and specifically it has four fully connected layers of sizes 2 − 2 −
3− 3− 4, respectively, where the first one has an identity activation as it serves only to clamp
take data in input, the next three lares are activated with a LeakyReLU, and the last one has
a linear activation. Instead, the discriminator is made of four fully-connected layers of sizes
2 − 500 − 500 − 1, respectively. The first layer has an identity activation function, the two
hidden layers are activated with a LeakyReLU function, while the output layer has a sigmoid
activation function.

Besides the classical AE task (i.e., reduction of the average reconstruction error between out-
put and ground truth), we aim at forcing the encoder to output values following a given prior
distribution p(z). This is done by the discriminator, that tells if the data it sees comes from the
“true” distribution or from the “fake” distribution, i.e., the encoder outputs. Clearly, the en-
codermustnowbe trainedwith twogoals: tominimize the reconstruction error and toproduce
latent vectors that are distributed as close as possible to p(z), in order to fool the discriminator.

The training of an AAE is hence done in two phases: (i) reconstruction phase and (ii) regu-
larization phase.
The first is just what anAEwould do and it is the same ofwhat it is done in Section 5.3. For the
second, we first train the discriminator to recognize if the data is coming from the prior distri-

43

bution or from the encoder, i.e., it should output 1 (True) if we pass random inputs according
to p(z) and 0 (Fake) if we pass the encoder outputs. This is accomplished by computing the
[mean] binary cross-entropy loss (5.7) first by passing to the discriminator ztrue, sampled from
p(z)), with targets fixed to t(i) = 1, and then by passing zfake = f(xA; θenc)with targets fixed
to t(i) = 0. For the second pass the weights θenc of the encoder are fixed as we do not want
them to be updated in this phase.

LBCE(o, t) = −
1

m

m∑
i=1

t(i) log o(i) + (1− t(i)) log(1− o(i))

= − 1

m

m∑
i=1

t(i) log h(z(i); θd) + (1− t(i)) log(1− h(z(i); θd))

(5.7)

in which o(i) is the output of the discriminator, t(i) is the ground truth for a given i-th sample
andm is the number of samples, and back-propagating the gradient only through the discrim-
inator.

Then, we have to train the encoder to learn the required latent distribution: fix the discrim-
inator weights θd (we have already trained it and do not want it to be updated in this phase)
and the target to t = 1 (for the encoder the values that it produces are the real ones); forward
encoder’s generated data to the discriminator; compute the loss (5.7) and back-propagate the
gradient only through the encoder.

The encoder and the discriminator are in opposition, i.e., the first tries tominimize the prob-
ability of its generated values to be flagged as Fake from the second , whereas the discriminator
tries tomaximize the probability of assigning the correct label to both the real data and the fake
data.

The two goals of the AE are mutually-exclusive, that means, one must make a trade-off be-
tween how good the AE is at approximating Bob’s features xB and how good the encoder is
at approximating the required latent distribution. This leads us to the definition of the overall
loss function on which to train the AE:

LAAE(Strain; θenc, θdec, θd) = λLAE(xA,xB; θenc, θdec)

+ (1− λ)LBCE(h(f(xA; θenc); θd),1)
(5.8)

where the parameter λ controls the trade-off between the first and the second term. The latter
is updated also by the discriminator, as explained earlier. The trade-off coefficient is empirically
set to λ = 0.2 for the training with the correlated Gaussian data set, and to λ = 0.1 for the

44

Figure 5.3: Latent space distribuঞons for Alice’s (le[plot) and Bob’s (right plot) primary keys, Gaussian data set.

training with the underwater data set.

Nowwe need to define the latent space distribution that we want the encoder to reproduce.
To compare the performance of such architecture with the results in Section 5.3, a straightfor-
ward option is to have:

p(z) ∼ U(−1, 1) (5.9)

If theAAE is trainedwith such p(z), and the encoder is deployed onAlice andBob as usual, we
obtain the latent spaces in Fig. 5.3, both of them resembling a uniformdistribution, as required.
Thus, in the exploitation phase Alice and Bob can simply apply a uniform quantizer on top of
their encoder to get their primary key.

5.6.1 Eavesdropper-aware training

Todefend froman eavesdropper, wemust train theAAEarchitecture in an eavesdropper-aware
fashion, that is, we adopt the MTAE training method. More particularly, we add the second

45

term of (3.9) to the AAE loss function as a penalty term, obtaining:

LAAE(Strain; θenc, θdec, θd) = λLAE(xA,xB; θenc, θdec)

+ (1− λ)LBCE(h(f(xA; θenc); θd),1)

− β
1

|Strain|

|Strain|∑
i=1

ℓ(i)z (x
(i)
A ,x

(i)
E ; θz, θb)

(5.10)

with β, controlling the amount of the penalization, dynamically adjusted during training as in
(3.8).

46

6
Numerical results

6.1 Gaussian data set

6.1.1 Developed joint quantizer

Hereinafter we come up with several global objective functions for the two-dimensional joint
non-uniform quantizer described in Chapter 4 and present the results for each of them.

Global objective functionwith exclusion probability and normalized stan-
dard deviation

Although retaining the recursive nature of the algorithm, we let it have a sort of “memory”,
that is, in each iteration we save the optimal cardinalities found so that in the next iteration the
algorithm can benefit from this information and it should reach a local minimum that mini-
mizes the uniformity globally. Furthermore, we adapt the metrics used in the global function
to the ones in (4.7) and (4.8), obtaining:

L(S, r1, . . . , rR) = αPexclusion + (1− α)σnorm (6.1)

By running again the algorithmwith different values ofα as it has been done for the local func-
tion, Fig. 6.1 is obtained. Now the behavior of both curves is the desired one, and in particular
the normalized standard deviation is increasing with α, whereas the exclusion probability de-

47

creases. Furthermore, bothmetrics start from a higher valuewith increasing number of regions
and this is also expected becausewith a lower number of rectangles we can agglomerate a higher
number of points and it is easier for the algorithm to balance less regions.

(a)WithR = 2. (b)WithR = 4. (c)WithR = 8.

Figure 6.1: Normalized standard deviaঞon versus exclusion probability in funcঞon of α with the global objecঞve funcঞon.

Global objective functionwith entropy

We have understood that, in the end, the goal is to maximize the entropy of the initial key, so
we could rethink the objective function to optimize directly the entropy. Thus, we make use
of the objective function (3.23) of [15] and run again our algorithm.

(a) ρAB = 0.7 (b) ρAB = 0.9 (c) ρAB = 1

Figure 6.2: Soluঞons with the entropy objecঞve funcঞon,R = 4 and different ρAB values.

From Fig. 6.2 one can notice that the algorithm equipped with the objective function in
(3.23) works best when the data is highly correlated, that is, ρAB → 1. In fact, if we consider

48

the outcome for four regions, the entropy reaches its maximum – namely H(x∗) = 2 bits –
with ρAB = 1, wheres alreadywith ρAB = 0.9 the algorithm is not capable to reach such value.
This means that the regions won’t be so balanced. Instead, the algorithm equipped with our
objective function, defined in (6.1), is not hindered by data correlation and itmanages to create
quite balanced regions with any value of ρAB , if we select α = 0 for a correct comparison, but
it leaves more points outside the regions.

Global objective functionwith mutual information

The objective function in (3.23) does not consider the non-classified points. Even though we
would like to have balanced regions, the points left outside matter as they undermine the key
agreement probability. In particular, given the thresholds of Alice and Bob at a certain opti-
mization iteration, instead of considering the created regions as bins and building the empir-
ical PMD by counting the points falling in each of them and dividing by the total number
of points, we build the empirical joint PMD of Alice and Bob measurements by considering
each grid cell as a bin. Moreover, we can also obtain the marginal PMDs of Alice and Bob by
considering first only Alice’s thresholds to create the bins, and then Bob’s thresholds. We de-
fine the new objective function as the mutual information between Alice and Bob quantized
measurements:

I(x̃; ỹ) = H(x̃) + H(ỹ)− H(x̃, ỹ) (6.2)

We want to understand how the algorithm behaves with different number of regions and
correlation coefficient of channel features. Fig. 6.3 shows the solutions for different values of
ρAB and it can be seen that the objective function based on the mutual information has the
same problem of the objective function based on the entropy, that is, with highly correlated
data the algorithm manages to achieve the maximum value, creating quite balanced regions,
but with a larger σ2

AB the resulting regions are not so balanced.
We analyze the convergence of such algorithm to check if it is behaving correctly. For the

sake of clarity, let us assume ρAB = 1. In this way it will be easier to recognize if the algorithm
converges to themaximumofmutual information betweenAlice and Bob. As we can see from
Fig. 6.4, for each throwncross the algorithmmanages to obtain the highestmutual information
possible.

From Fig. 6.5 we see that with increasing correlation between the features of Alice and Bob
the achieved mutual information tends to its maximum, namely I(x̃; ỹ) = log2R. The exper-
iment is repeated for b = 2, 3, and 4 quantization bits, whichmeans withR = 2b = 4, 8, and

49

(a) ρAB = 0.7 (b) ρAB = 0.9 (c) ρAB = 1

Figure 6.3: Soluঞons with the mutual informaঞon objecঞve funcঞon,R = 4 and different ρAB values.

Figure 6.4: Convergence plot of the objecঞve funcঞon (6.2).

16 regions in which the data is split.
Fig. 6.6 shows the KAP in function of ρAE of the developed joint quantizer. It can be seen

that with, e.g., b = 2, for ρAE = 0 the KAP is just 0.25, since if Eve’s channel is com-
pletely decorrelated from Alice’s channel, trying to extract the key translates into the event
E = {“Pick a number from 0 to R-1 randomly”}, withR the number of regions which in this
case is four. Therefore, the probability of such event will be P (E) = 1

R
= 1

4
.

TheSKR,with I(x̃; ỹ) computedwithρAB = 1, is shown inFig. 6.7. It is clear thatwhen the
eavesdropper channel hBE is perfectly correlated with the legitimate channel hBA, the number
of secret bits that Alice and Bob manage to extract is practically zero. Instead, if ρAE = 0,

50

Figure 6.5: Mutual informaঞon between Alice and Bob for b = 2, 3, 4 with the developed quanঞzer.

Figure 6.6: KAP between Alice and Eve for the developed quanঞzer, with b = 1, 2, 3, 4 and ρAB = 0.9.

i.e., Eve’s measurements are completely decorrelated with respect to Alice, and since these are
distributed according to a Gaussian then, Eve and Alice measurements are independent. Thus,
the SKR becomes:

I(x̃; ỹ)− I(x̃; z̃) = I(x̃; ỹ) (6.3)

To obtain a plot spanning all SKR values we have assumed perfect correlation between Alice

51

and Bob, and (6.3) further simplifies into:

I(x̃; ỹ) = H(x̃)− H(ỹ|x̃) = H(ỹ)− H(x̃|ỹ) = H(x̃) = H(ỹ), (6.4)

due to the fact that two perfectly correlated Gaussian random variables are indeed exactly the
same. Moreover, by applying the definition of entropy for discrete random variables, we can
compute either H(x̃) or H(ỹ) (since they are the same) in closed form. Specifically, we first
recall the definition of entropy

H(x̃) = −
∑
i

pi log2 pi, (6.5)

where pi = Q(LB
(i)
x

σx
)−Q(UB

(i)
x

σx
)withQ(·) defined as

Q(x) =
1√
2π

∫ ∞

x

e−t2/2 dt (6.6)

and LB(i)
x ,UB(i)

x being the i-th and i + 1-th thresholds the projection of Alice and Bob data
on the x axis has been divided into. These are found by running our joint quantizer algorithm
with ρAB = 1. The closed-form result for each quantization bit b is marked with a cross in
Fig. 6.7, and it can be seen that it coincides perfectly with the maximum of each curve.

Figure 6.7: SKR in presence of an eavesdropper with our quanঞzer.

52

Adversarial training

We run the algorithm with a correlation between Alice and Bob measurements of ρAB = 0.9

and with Eve’s being correlated with Alice with a coefficient ρAE = 0.6. Then, in exploitation
we let the latter vary from 0 to 1 and we compute the KAP for b = 1, 2, 3, 4 quantization bits.
As shown in Fig. 6.8, each curve has a less steep behavior compared to Fig. 6.6. For example,
with ρAE = 1 and b = 2 the value now settle to 0.7 instead of 1, a nice improvement with
respect to the naive quantizer.

Figure 6.8: KAP between Alice and Eve for the developed quanঞzer with adversarial training.

Higher-dimensional input

We recall that we have generalized the developed joint quantizer by following an SVM-like ap-
proach to divide each user input space. Now it accepts an arbitrary number of features per user.
We have trained such algorithm with the objective function (6.1).

Fig. 6.9 shows the mutual information between the initial keys of legitimate parties in func-
tion of ρAB.

6.1.2 Uniform joint quantizer

To have a baseline for comparison, Fig. 6.10 shows the SKR of the joint uniform quantizer.
Also here the closed-form solutions for ρAB = 1 and ρAE = 0 coincide perfectly with the

53

Figure 6.9: Mutual informaঞon between Alice and Bob for the higher-dimensional input version of the developed quan-
ঞzer.

maximum of each curve. The SKR achieved by our algorithm is always far better with respect
to the uniform joint quantizer.

Figure 6.10: SKR in presence of an eavesdropper with the joint uniform quanঞzer.

54

6.1.3 Autoencoderwith uniform quantizer

To evaluate the performance of such architecture, we will inspect the mutual information be-
tween Alice and Bob initial keys, namely, zA and zB, the SymbolMatching Rate:

SMR(zA, zB) =

∑|Stest|
i=1 1

{
z
(i)
A ̸= z

(i)
B

}
|Stest|

, (6.7)

and the distribution of such initial keys.
Fig. 6.11 shows the distribution of the symbols constituting the legitimate parties initial keys,

and we see that the AE strongly prefers two symbols and neglect the remaining two.

Figure 6.11: Symbol distribuঞon of Alice and Bob’s iniঞal keys for the AE+UQ with b = 2, Gaussian data set.

Fig. 6.12 shows themutual informationbetweenAlice andBob initial keys in functionof the
correlation ρAB between them. We can see that for more and more correlated measurements
the mutual information tends to its maximum, which isH(z) = 2, 4, 6, and 8 bits/sample for
b = 1, 2, 3, and 4 quantization bits, respectively. This is double the normal maximum, and it
is because we have a latent space of 2 neurons, each of them quantized with a given b so it is as
we were using 2b quantization bits.

Instead, Fig. 6.13 shows the SMR between Alice and Bob initial keys. Also here, the SMR
tends to its maximum (i.e., 1) as the measurements of the two legitimate users become more
correlated.

Lastly, in Fig. 6.14, where I(zA; zB) is computed for ρAB = 0.9, is shown the SKR in
function of the correlation coefficient ρAE between Alice and Eve.

55

Figure 6.12: Mutual informaঞon between Alice and Bob iniঞal keys for the AE+UQ, Gaussian data set.

Figure 6.13: SMR between Alice and Bob for the AE+UQ, Gaussian data set.

For reference, we use PCA to perform dimensionality reduction from a four-dimensional
input space to a compressed space of two dimensions. From Fig. 6.15, 6.16, and 6.17 we see
that the mutual information, the SMR, and the SKR are almost the same to the ones achieved
by the AE, respectively. This is because the AE uses linear activation functions, and thus it
learns a mapping equivalent to the PCA [20]. However, we still prefer the AE as it can be
trained in an adversarial manner to reduce the information related to Eve in the initial key of
Alice and Bob.

56

Figure 6.14: SKR between Alice and Bob for the AE+UQ, Gaussian data set.

Figure 6.15: Mutual informaঞon between Alice and Bob iniঞal keys with PCA, Gaussian data set.

6.1.4 Autoencoderwith Differentiable Soft Quantization

In the training phase the transitions of the DSQ function change steepness, resembling more
and more the hard uniform quantizer. Specifically, parameter κ is incremented by 10 every 10
epochs, so that the transitions between levels change steepness from κ = 10 to κ = 250.
In the exploitation phase, we compute the same metrics used in Section 6.1.3.
Fig. 6.18 shows the mutual information between Alice and Bob initial keys, while Fig. 6.19

57

Figure 6.16: SMR between Alice and Bob with PCA, Gaussian data set.

Figure 6.17: SKR between Alice and Bob with PCA, Gaussian data set.

shows the SMR, both in function of ρAB. The first is higher than the mutual information
achieved by the AE+UQ for b = 1, 2 while it remains almost the same for b = 3, 4. Instead,
the SMRis abit lowerwith respect to theAE+UQfor lowcorrelationvalues,whereas it remains
almost the same for high correlation values.

However, thismodel still has the problemof yielding initial keyswith poor randomness, and
we are still doing nothing to protect from an eavesdropper. In fact, from Fig. 6.20 we see that

58

Figure 6.18: Mutual informaঞon between Alice and Bob for the AE+DSQ, Gaussian data set.

Figure 6.19: SMR between Alice and Bob for the AE+DSQ, Gaussian data set.

this architecture strongly prefers the symbols 1 and 2, and in Fig. 6.21 the SKR, despite being
higher with respect to the AE+UQ, it still goes to zero when ρAE = ρAB.

6.1.5 MTAE

Here we use the MTAE architecture and training method described in [3]. However, the ar-
chitecture is not the one illustrated in the paper as we operate with four channel features and
not CIRs of size 300× 2. The AE model is the same as the one detailed Section 5.3. Also the

59

Figure 6.20: Symbol distribuঞon of Alice and Bob’s iniঞal keys for the AE+DSQ, Gaussian data set.

Figure 6.21: SKR between Alice and Bob for the AE+DSQ, Gaussian data set.

training differs a bit from the paper: we have trained the model for 250 epochs with the an
exponential learning rate decay law

lrepoch = γlrepoch−1, (6.8)

with γ = 0.97.
To get the initial keys we can apply a uniformquantizer to the extracted featureszA, zB, and

zE in the exploitation phase, after we are done with the training in the real domain, or we can
directly train the model with the DSQ layer embedded between encoder and decoder. We will

60

do both and compare the SKR of bothmethods with the SKR of the naive AE, trained in turn
in the real domain and with DSQ.
As we can see from Fig. 6.22, the SKR starts from more or less the same values of the naive

AE+UQ, but it does not go to zero anymore, and in particular all curves converges around 0.25
bits/sample. Thismeans that theMTAE architecture is indeed capable of reducing the amount
of information related to Eve contained in the reciprocal feature of Alice and Bob.

We then proceed by comparing the MTAE and the AE, both trained with DSQ, and we
see that from Fig. 6.23 the SKR with 1-bit quantization start from a value almost the same to
the SKRof the naive AE+DSQ, but it ends up in 0.25 bits/sample instead of collapsing to zero.
Moreover, with2-bit quantization the SKRstarts lower than the naiveAE+DSQbut it remains
around 0.25 bits/sample instead of going to zero. Instead, for b = 3, 4 the gain is significant
for high ρAE, reaching values just above 0.5 and 0.75 bits/sample, respectively.

Finally, we also notice that the SKR of theMTAE+UQ architecture is slightly better for low
ρAE, but for high values of ρAE the MTAE+DSQ architecture performs better.

Figure 6.22: SKR between Alice and Eve for the MTAE+UQ architecture, Gaussian data set.

6.1.6 DAAE

Here we make use of the DAAE architecture and training method described in [4]. Also here,
the encoder and the two decoders have been refactored, and have the same structure of the

61

Figure 6.23: SKR between Alice and Eve for the MTAE+DSQ architecture, Gaussian data set.

encoder and decoder detailed in Section 5.3. Moreover, we use the same number of epochs
and the same learning rate decay law of the MTAE.

Again, we can apply a uniform quantizer to the real-valued extracted features zA, zB, and
zE in the exploitation phase, or we can directly train the model with the DSQ layer embedded
between the encoder and the two decoders. We will compare the obtained SKRwith the SKR
of the MTAE architecture, for both cases.

From Fig. 6.24 it is clear that the DAAE+UQ outperforms the MTAE+UQ for all values
of ρAE except ρAE = 0, where the achieved SKR start from slightly less values. Now we can
retain as much as∼ 0.6 bits/sample if we use 4-bit quantization.

From Fig. 6.25, for b = 1 the DAAE+DSQ is worse with respect to the MTAE+DSQ but
it is still better than the naive AE+DSQ. However, with b = 2 the SKR is improved for all
values of ρAE. Instead, with b = 3, 4 the SKR is basically the same as the one achieved by the
MTAE+DSQ.

6.1.7 AAEwith uniform quantizer

Naive AAE

FromFig. 6.26 one can notice that the symbols contained in Alice’s and Bob’s primary keys are
now almost equally likely, and the key randomness is hence higher with respect to the AE+UQ

62

Figure 6.24: SKR between Alice and Eve for the DAAE+UQ architecture, Gaussian data set.

Figure 6.25: SKR between Alice and Eve for the DAAE+DSQ architecture, Gaussian data set.

and AE+DSQ.

The AAE architecture is capable of reaching almost the highest possible values of mutual
information between Alice and Bob, while neither the AE+UQ nor the AE+DSQ are capable
of reaching such values. In fact, from Fig. 6.27 for ρAB = 1, the achieved mutual information
is I(zA, zB) = H(zA) = H(zB) = {2, 4, 6, 8} for b = 1, 2, 3, 4, respectively. As explained

63

Figure 6.26: Primary key distribuঞons for Alice (le[plot) and Bob (right plot), Gaussian data set.

before, this is double the canonical maximum, and it is because we have a latent space of 2
neurons, each of them quantized with a given b so it is as we were using 2b quantization bits.
The mutual information gain comes with the cost of a lower SMR. As can be seen in Fig. 6.28,

Figure 6.27: Mutual informaঞon between Alice and Bob for the AAE architecture, Gaussian data set.

apart from the case b = 1, for which the curve behaves more or less the same with respect
to the AE+UQ, the other three curves are way worse. Instead, the SMR of the AE+DSQ is
always higher than the AAE in all cases. Ultimately, from Fig. 6.29 we see that the SKR is in
general greatly improvedwith respect to theAE.However forb = 4wenotice that the SKR for
ρAE = 0 starts from a too low value, whereas it should start around 3 bits/sample. This strange
behavior can be explained by the high amount of mutual information that the architecture is

64

Figure 6.28: SMR between Alice and Bob for the AAE architecture, Gaussian data set.

providing even at a correlation factor of zero when b = 4, as one can see from Fig. 6.27. So
even if Eve is poorly correlated, she is capable of producing features through the encoder that
contains a lot of information regarding Alice or Bob. Aside from this, since we have not done
anything to protect ourselves from an eavesdropper when this is less than half a wavelength far
from either of legitimate parties, the SKR is bound to go to zero for ρAB = ρAE.

Figure 6.29: SKR for the naive AAE architecture, Gaussian data set.

To wrap up, the AAE architecture performs a lot better in terms of mutual information

65

between the legitimate parties, but the SKR has the same behavior of the AE architectures
described in Section 5.4 and in Section 5.5. We indeed need to train the AAE to take into
account also the eavesdropper presence.

Eavesdropper-aware AAE

We plot again the SKR in function of ρAE. From Fig. 6.30 we see that there is a small gain for
high values of ρAE and the SKR does not collapse to zero when ρAB = ρAE = 0.9.

Figure 6.30: SKR for the AAE architecture with eavesdropper-aware training, Gaussian data set.

6.1.8 Comparison betweenNN architectures

Lastly, to better realize the differences between the achieved SKRs of all the presented archi-
tectures, we plot the SKR curves of each model for a particular b in the same graph. This is
repeated for each b ∈ {1, 2, 3, 4}.
In particular, Fig. 6.31 shows the SKR curves of the AE trained in the real domain, the AE

trained withDSQ, and the AAE for 1-, 2-, 3-, and 4-bit quantization. Apart from the case b =

4 (the reason of which was already explained in Section 6.1.7), we confirm that the proposed
AAE architecture is better than the AE.

Instead, Fig. 6.32 shows the SKR curves of MTAE, DAAE (both trained in the ral domain
and with the DSQ), and the AAE with adversarial-aware training. For b = 1, 2, 3 the SKR of

66

(a) b = 1. (b) b = 2.

(c) b = 3. (d) b = 4.

Figure 6.31: Comparison of SKR curves of AE+UQ, AE+DSQ, and AAE+UQ, Gaussian data set.

the AAE architecture is better than the others until ρAE = 0.8, while beyond this value the
other architectures retain higher rates. Again, the case b = 4 is problematic as before.

67

(a) b = 1. (b) b = 2.

(c) b = 3. (d) b = 4.

Figure 6.32: Comparison of SKR curves of MTAE+UQ, MTAE+DSQ, DAAE+UQ, DAAE+DSQ, and AAE(adv)+UQ, Gaussian
data set.

68

6.2 Underwater data set

6.2.1 Developed joint quantizer

In this section we will just repeat some of the previous algorithms described in Section 6.1.1
with with the underwater data set detailed in Section 3.3.. In particular, these are stored in two
csv files: one of these represents the channel features of Eve, and call it z; from the remaining
one twodata sets are generated by adding a variable amount ofwhite noise and assigned toAlice
and Bob, respectively, and call themx andy. Specifically, ifS1 andS2 are the two original data
sets, we normalize them in order to have each feature to be zero mean and unit variance and
then we do:

x = S1 +wx

y = S1 +wb

z = S2

(6.9)

wherew(i)
x ,w

(i)
y ∼ N (µ = 0, σ2 = 1

SNR
). This operation is repeated for each correlation

value between the two original csv files.

First we discuss the results for the two-dimensional quantizer. Fig. 6.33 shows the KAP
in function of the SNR (expressed in decibels) for b = 2, 3, 4 quantization bits, i.e., for
R = 2b = 4, 8, 16 regions. As expected, increasing the number of quantization bits leads
to a lower KAP, due to the nature of the developed quantizer: with many rectangles to divide
the data into, the algorithm is forced to leave many points outside them, meaning that Alice
and Bob measurements are less likely to fall into the same regions if they are weakly correlated.
Here we have used only the first feature, as the initial version algorithm only supports one-
dimensional data as the input for each user. Then, we proceed to investigate the performance
with the presence of an eavesdropper. By varying the correlation factorρAE ∈ [0, 1] andhaving
Eve applying the same strategy described in Section 4.1.2, we plot the SKR for each of the four
channel features in Fig. 6.34. From this figure, the fourth feature seems to best to choose, since
the SKR starts from a higher point with respect to the other but also the rate of descent is lower
than the others. However, if we compute the KAP between Alice and Eve for each channel fea-
ture as a function of ρAE, for the first and second features the probability of Eve finding the
same key of Alice grows slower than for the third and fourth features. Thus from this points
of view focusing on extracting the key on the first two features leads to a less consistent initial
key with respect to Eve.

69

Figure 6.33: KAP between Alice and Bob in funcঞon of SNR.

(a) First feature. (b) Second feature.

(c) Third feature. (d) Fourth feature.

Figure 6.34: SKR of the developed joint quanঞzer in funcঞon of ρAE for each channel feature of the underwater data set.

70

Figure 6.35: KAP vs ρAE withR = 4.

6.2.2 Uniform joint quantizer

For reference, we plot the SKR of the joint uniform quantizer for each channel feature of the
underwater data set in Fig. 6.36. We see that the achieved SKR of our joint quantizer is better
than the first. For the first and second channel feature we notice that the SKR remains quite
high for ρAE = 1, around 0.5, and this confirms the fact that our developed algorithm can
better extract all the possible information. That is, for Eve the best situation is when she can
adopt the developed joint quantizer instead of the joint uniform quantizer, which does not
allow her to completely exploit the correlation with respect to Alice.

6.2.3 AEwith uniform quantizer

From now on, let the data series for Alice, Bob, and Eve be xA, xB, and xE, respectively.
As for the Gaussian data set, from Fig. 6.37 we see that the initial key randomness is quite

poor, that is, the two “inner” symbols are more probable than the other two, as expected. In-
stead, the mutual information between legitimate parties, shown in Fig. 6.38 reaches higher
values for b = 2, 3, 4. From Fig. 6.39 we verify that the SMR between Alice and Bob’s ini-
tial keys has the intended behavior, i.e, it tends to 1 for high SNR values. The SKR, shown in
Fig. 6.40, computed on the underwater data set is better than the SKR for the Gaussian data
set, and in addition it does not collapse to zero when ρAE = ρAB.

71

(a) First feature. (b) Second feature.

(c) Third feature. (d) Fourth feature.

Figure 6.36: SKR of the joint uniform quanঞzer in funcঞon of ρAE for each channel feature of the underwater data set.

Figure 6.37: Symbol distribuঞon of Alice and Bob’s iniঞal keys for the AE with b = 2, underwater data set.

6.2.4 AEwith DSQ

Also for the underwater data set, the mutual information between Alice and Bob for the AE
trained with DSQ, shown in Fig. 6.42, is worse than the AE trained in the real domain. In

72

Figure 6.38: Mutual informaঞon between Alice and Bob iniঞal keys for the AE+UQ, underwater data set.

Figure 6.39: SMR between Alice and Bob for the AE+UQ, underwater data set.

particular, for b = 1 we have half the achieved mutual information with respect to the latter,
while in the other cases the values are only slightly less. From Fig. 6.43 we see that the SMR
betweenAlice and Bob has the expected trend, going to 1 for high values of SNR.The SKR for
the AE trained with DSQ, shown in Fig. 6.44, starts from lower values with respect to the AE
trained in the real domain. However, for high values of ρAE it retains higher rates for b = 3, 4

with respect to the latter.

73

Figure 6.40: SKR between Alice and Bob for the AE+UQ, underwater data set.

Figure 6.41: Symbol distribuঞon of Alice and Bob’s iniঞal keys for the AE+DSQ, underwater data set.

6.2.5 MTAE

Here we first compare theMTAE trained in the real domain andwith anUQ applied on top of
the encoder in the exploitation phase with the AE trained in the real domain, then we compare
theMTAE+DSQand theAE+DSQarchitecture, and finallywewill discusswhether it is better
the MTAE+UQ or the MTAE+DSQ on the basis of the outcomes.

From Fig. 6.45 we do not see any improvement with respect to the AE+UQ, while from
Fig. 6.46 we realize theMTAE+DSQ is even worse than the AE+DSQ for b = 1, 2. Nonethe-
less, the MTAE trained in the real domain performs better than the MTAE trained with the

74

Figure 6.42: Mutual informaঞon between Alice and Bob iniঞal keys for the AE+DSQ, underwater data set.

Figure 6.43: SMR between Alice and Bob for the AE+DSQ, underwater data set.

DSQ.

6.2.6 DAAE

Here we first compare the DAAE trained in the real domain and with an UQ applied on top
the encoder in the exploitation phase with the AE trained in the real domain, then we compare
theDAAE+DSQand theAE+DSQarchitecture, and finallywewill discusswhether it is better
the DAAE+UQ or the DAAE+DSQ on the basis of the outcomes.

75

Figure 6.44: SKR between Alice and Bob for the AE+DSQ, underwater data set.

Figure 6.45: SKR between Alice and Bob for the MTAE+UQ, underwater data set.

From Fig. 6.47 we see that the SKR achieved by DAAE+UQ is always better than the
AE+UQ for b = 1, 2, 3, while with b = 4 there is no noticeable improvement. Instead,
from Fig. 6.48 we see that the DAAE+DSQ is worse than the AE+DSQ for every value of b
and rhoAE . The DAAE+UQ is indeed better than the DAAE+DSQ with underwater mea-
surements. Moreover, the DAAE+UQ always outperforms the MTAE+UQ, whereas the

76

Figure 6.46: SKR between Alice and Bob for the MTAE+DSQ, underwater data set.

DAAE+DSQ is better than the MTAE+DSQ for b = 1, 2, and more or less has the same
performance for b = 3, 4.

Figure 6.47: SKR between Alice and Bob for the DAAE+UQ, underwater data set.

77

Figure 6.48: SKR between Alice and Bob for the DAAE+DSQ, underwater data set.

6.2.7 AAE

We train the samemodel described in Section 5.5 with the underwater data set and report here
the results.

We recall that the objective, besides learning a reciprocal latent space z, is to have this to be
distributed uniformly. From Fig. 6.49 we see that the distribution of the produced latent space
is indeed resembling a uniform distribution. Thanks to this, when the uniform quantizer is
applied in the exploitation phase to output the initial key, the symbols composing it will be
more equally likely, as in Fig. 6.50. The key randomness is slightly worse than the one obtained
with the Gaussian data set. Due to this, also the mutual information between Alice and Bob is
lower than the achievablemaximumwith respect to theAAE trainedwith theGaussiandata set,
as evidenced by Fig. 6.51. Despite this architecture not being trained in an adversarial-aware
manner, the SKR does not go to zero when ρAE = ρAB, as shown in Fig. 6.52. Moreover, we
expect the red curve (representing 4-bit quantization per neuron) to start at a higher value with
respect to the green curve (representing 3-bit quantization per neuron). As for the Gaussian
data set, this should be because of the high mutual information that the AAE is capable of
extracting for b = 4 even at very low SNR values. If we train this model in an adversarial-
aware manner, i.e., with the MTAE paradigm, we obtain the SKR in Fig. 6.53. If for b = 2

and b = 3 there is no substantial improvement, we see that the red and blue curve are now
better for any value ρAE with respect to the naive AAE.

78

Figure 6.49: Latent space distribuঞons for Alice’s (le[plot) and Bob’s (right plot) primary keys, underwater data set.

Figure 6.50: Primary key distribuঞons for Alice (le[plot) and Bob (right plot), underwater data set.

6.2.8 Comparison betweenNN architectures

As we have done in Section 6.1.8, we plot the SKR curves of all architectures for each value of
b ∈ {1, 2, 3, 4} together to better understand the differences.

More particularly, Fig. 6.54 compares the SKR of the AE+UQ, AE+DSQ, and AAE+UQ
architectures. For b = 1, the best model is the AE+DSQ, while the worst one is the AE+UQ.
For b = 2, 3, the best is the AAE, while it is the worst for b = 4, and the reason for that has
been already explained in Section 6.1.7.

79

Figure 6.51: Mutual informaঞon between Alice and Bob for the AAE, underwater data set.

Figure 6.52: SKR between Alice and Bob for the AAE, underwater data set.

Instead, in Fig. 6.54 we have the SKR curves of theMTAE+UQ,MTAE+UQ,DAAE+UQ,
DAAE+DSQ, and AAE+UQ (with eavesdropper-aware training). The best network here is
the AAE, apart from the case b = 4which is still problematic.

80

Figure 6.53: SKR between Alice and Bob for the AAE with eavesdropper-aware training, underwater data set.

(a) b = 1. (b) b = 2.

(c) b = 3. (d) b = 4.

Figure 6.54: Comparison of SKR curves of AE+UQ, AE+DSQ, and AAE+UQ, underwater data set.

81

(a) b = 1. (b) b = 2.

(c) b = 3. (d) b = 4.

Figure 6.55: Comparison of SKR curves of MTAE+UQ, MTAE+DSQ, DAAE+UQ, DAAE+DSQ, and AAE(adv)+UQ, underwa-
ter data set.

82

7
Conclusion

This thesis addressed the quantization problem via machine learning and neural network ap-
proaches. For the first paradigmwe have designed a joint non-uniform quantizer for Alice and
Bob in such away that in the exploitation phase the legitimate parties can independently gener-
ate an initial key based solely on the observation of their channel features. The first version of
the algorithm accepted only one feature per user, which is not ideal from the key security point
of view. For this first attempt we also investigated its design taking into account the operations
done bye the eavesdropper (Eve). Subsequently, we have extended the joint quantizer to accept
an arbitrary number of features per user basing ourselves on the SVM paradigm, i.e., each user
space is divided into a given number of region with hyperplanes. As a future activity, it would
be interesting to discover a way to perform the adversarial training also with this generalized
version.

Regarding the neural network approach, we have proposed an autoencoder trained with a
soft version of a uniform quantizer (the DSQ layer) between encoder and decoder to make the
neural network distribute the latent space in such a way that, in the exploitation phase, there is
little loss when applying a hard uniform quantizer to the output of the encoder to rectify the
output of theDSQ layer. We compared it with the same architecture trained in the real domain
and with a uniform quantizer in exploitation to produce the initial key.
However, this architecture had two downsides: it does not consider the presence of an eaves-

dropper, and it produces an initial key with poor randomness. To address the first problem, we
have implemented two state-of-the-art architectures, the MTAE and the DAAE, and we have

83

seen that the eavesdropper-aware training reduces the information regarding Eve in the initial
key. Furthermore, we have equipped and trained the MTAE and DAAE with the DSQ layer,
and this time we saw some improvements with respect to the same architectures trained in the
real domain.
To address the second issue we have proposed another architecture, the AAE, that does not

use DSQ.More particularly, this architecture is trained to reshape the latent space distribution
of an autoencoder and in our case we want that to be as close as possible to a uniform distribu-
tion. In this way, in the exploitation phase, we can optimally apply the hard uniform quantizer
to the output of the encoder to produce the initial key. From the results obtained we saw a
considerable gain in the mutual information between legitimate parties. We also trained the
AAE in an adversarial manner to limit Eve’s influence. In this way, the secret key rate is better
than the naive autoencoder and we also have the high randomness of the key, making the AAE
better than the MTAE and DAAE.

84

References

[1] L. Wang, H. An, H. Zhu, andW. Liu, “Mobikey: Mobility-based secret key generation
in smart home,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7590–7600, 2020.

[2] J. Han, X. Zeng, X. Xue, and J. Ma, “Physical layer secret key generation based on au-
toencoder for weakly correlated channels,” in 2020 IEEE/CIC International Conference
on Communications in China (ICCC), 2020, pp. 1220–1225.

[3] J. Zhou and X. Zeng, “Physical layer secret key generation for spatially correlated chan-
nels based on multi-task autoencoder,” in 2022 7th International Conference on Intelli-
gent Computing and Signal Processing (ICSP), 2022, pp. 144–150.

[4] ——, “Physical-layer secret key generation based on domain-adversarial training of
autoencoder for spatial correlated channels,” Applied Intelligence, Jun 2022. [Online].
Available: https://doi.org/10.1007/s10489-022-03777-w

[5] Y. Huang, S. Zhou, Z. Shi, and L. Lai, “Channel frequency response-based secret key
generation in underwater acoustic systems,” IEEE Transactions onWireless Communi-
cations, vol. 15, no. 9, pp. 5875–5888, 2016.

[6] G. Yang, L. Dai, and Z. Wei, “Challenges, threats, security issues and new trends
of underwater wireless sensor networks,” Sensors, vol. 18, no. 11, 2018. [Online].
Available: https://www.mdpi.com/1424-8220/18/11/3907

[7] M. Stojanovic, “On the relationship between capacity and distance in an un-
derwater acoustic communication channel,” in Proceedings of the 1st ACM Interna-
tional Workshop on Underwater Networks, ser. WUWNet ’06. New York, NY,
USA: Association for Computing Machinery, 2006, p. 41–47. [Online]. Available:
https://doi.org/10.1145/1161039.1161049

[8] W.H. Thorp, “Analytic description of the low‐frequency attenuation coefficient,” Jour-
nal of the Acoustical Society of America, vol. 42, pp. 270–270, 1967.

85

https://doi.org/10.1007/s10489-022-03777-w
https://www.mdpi.com/1424-8220/18/11/3907
https://doi.org/10.1145/1161039.1161049

[9] F. H. Fisher and V. P. Simmons, “Sound absorption in sea water,” The Journal of the
Acoustical Society of America, vol. 62, no. 3, pp. 558–564, 1977. [Online]. Available:
https://doi.org/10.1121/1.381574

[10] G. Burrowes and J. Y. Khan, “Short-range underwater acoustic communication
networks,” inAutonomous Underwater Vehicles, N. A. Cruz, Ed. Rijeka: IntechOpen,
2011, ch. 8. [Online]. Available: https://doi.org/10.5772/24098

[11] C. Gussen, P. Diniz, M. Campos, W. Martins, F. Costa, and J. Gois, “A survey
of underwater wireless communication technologies,” Journal of Communication
and Information Systems, vol. 31, no. 1, Oct. 2016. [Online]. Available: https:
//jcis.sbrt.org.br/jcis/article/view/362

[12] M. Bloch and J. Barros, Physical-Layer Security: From Information Theory to Security
Engineering. Cambridge University Press, 2011.

[13] J. Zhang, T.Q.Duong, A.Marshall, andR.Woods, “Key generation fromwireless chan-
nels: A review,” IEEE Access, vol. 4, pp. 614–626, 2016.

[14] X. Zhang, G. Li, J. Zhang, A. Hu, Z. Hou, and B. Xiao, “Deep-learning-based physical-
layer secret key generation for fdd systems,” IEEE Internet ofThings Journal, vol. 9, no. 8,
pp. 6081–6094, 2021.

[15] A. V. Guglielmi, A. Muraro, G. Cisotto, and N. Laurenti, “Information theoretic key
agreement protocol based on ecg signals,” arXiv preprint arXiv:2105.07037, 2021.

[16] L. Bragagnolo, F. Ardizzon, N. Laurenti, P. Casari, R. Diamant, and S. Tomasin, “Au-
thentication of underwater acoustic transmissions via machine learning techniques,” in
2021 IEEE International Conference on Microwaves, Antennas, Communications and
Electronic Systems (COMCAS), 2021, pp. 255–260.

[17] F. Ardizzon, R. Diamant, P. Casari, and S. Tomasin, “Machine learning-based dis-
tributed authentication of uwan nodes with limited shared information,” arXiv
preprint arXiv:2208.09340, 2022.

[18] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

86

https://doi.org/10.1121/1.381574
https://doi.org/10.5772/24098
https://jcis.sbrt.org.br/jcis/article/view/362
https://jcis.sbrt.org.br/jcis/article/view/362

[19] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan, “Differentiable soft
quantization: Bridging full-precision and low-bit neural networks,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4852–4861.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

87

http://www.deeplearningbook.org
http://www.deeplearningbook.org

88

Acknowledgments

Iwant to expressmy gratitude toProfessor StefanoTomasin to havemade this researchpossible,
but also tohavebeenpresent throughout all thework an guidedmewithhis knowledge. Special
thanks also to Francesco Ardizzon, who has supported me when I did not fully understand
something, and to Laura Crosara, who has helped me with the implementation of the DSQ
function.

Then, I would like to thank Gloria who has been to my side during moments of discourage-
ment and spurred me to get back up. Last but not least, I also want to thankmy parents that if
it were not for them, I could never have the possibility to concentrate solely on my studies and
complete them in time.

89

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Underwater Acoustic Communication
	Underwater Acoustic channel
	Channel modeling

	Secret Key Generation
	Physical Layer Security
	Source and channel models
	Secret Key Agreement protocol
	Secret key capacity for source model

	SKA protocol state of the art
	Neural Network implementations
	Machine Learning implementations

	Considered channel features for SKG

	Quantizer
	Correlated Gaussian random variables
	Local objective function
	Eavesdropper presence
	Adversarial training

	Generalization to higher-dimensional input

	Secret Key Generation With Autoencoders
	The autoencoder
	System model
	Autoencoder with uniform quantizer
	Autoencoder with Differentiable Soft Quantization
	Eavesdropper presence
	Enhance secret key uniformity
	Eavesdropper-aware training

	Numerical results
	Gaussian data set
	Developed joint quantizer
	Uniform joint quantizer
	Autoencoder with uniform quantizer
	Autoencoder with Differentiable Soft Quantization
	MTAE
	DAAE
	AAE with uniform quantizer
	Comparison between NN architectures

	Underwater data set
	Developed joint quantizer
	Uniform joint quantizer
	AE with uniform quantizer
	AE with DSQ
	MTAE
	DAAE
	AAE
	Comparison between NN architectures

	Conclusion
	Bibliography
	Acknowledgments

