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Abstract 

Industrial robotics is one of the technologies that, nowadays, is experiencing a remarkable and 

continuous progress, finding more and more applications in different industries. While this 

progress leads to productivity gains, it can also have an impact on employment and the labour 

share. Through a panel cointegration analysis on the sectoral data of nine developed countries 

over the period 1996-2016, we analysed the long-run relationship between the implementation 

of industrial robots and the labour share. 
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Introduction 

We are living in the period with the highest rate of innovation in the history of humanity. Every 

object we use in everyday life has its own technology that, although minimal, comes from 

discoveries, inventions, and innovations that have led to its final form, with the primary 

objective of enhancing its usefulness. Discoveries, inventions, and innovations are part of the 

history of humanity since man first appeared on Earth, just think of the discovery of fire and its 

first uses, or the early forms of cultivation and breeding that have allowed man to move from a 

nomadic lifestyle to a sedentary one. But returning to relatively more recent times and more 

related to the topic of this dissertation, there is a precise historical period in which technological 

progress has begun to grow without ever stopping, helping to improve more and more the lives 

of men: the First Industrial Revolution started in Britain from the fields, and expanded in the 

first textile factories. It is in this period that we can identify the historical moment in which 

machines, and so first rudimental forms of industrial automation were implemented in the 

productive process of the factories, increasing productivity, but also spreading among the 

workers the first fears of being replaced and losing their job. 

Therefore, to analyse the impact of industrial automation, we started right from here, from the 

First Industrial Revolution, with the invention of the steam engine, coming then to the second 

one, with the discovery of electricity and the spread of the first cars, up to the debate around 

the third and the fourth revolution, with the concept of Industry 4.0 that starts to become more 

and more important. It is in the years of the last two revolutions that industrial robotics – which 

is part of the Industry 4.0 technologies – begins to grow, becoming a real symbol of the 

technological progress of recent decades and that we are experiencing today. But do advanced 

technologies, such as robotics, always lead to growth? There is no doubt about the positive 

contribution of robots on productivity both at a firm and industry level. Basically, robots can 

be used to perform hazardous or repetitive operations with greater precision and in less time, 

allowing to reduce production costs and increase the quality of the product. On the other hand, 

industrial robotics is expected to displace labour, by reducing the number of employees or the 

labour share. The literature about this topic is very wide and there are no agreed results on the 

direct effects of the robots’ implementation on the labour component. 

We tried to fit into the debate by conducting an econometric analysis on a panel dataset 

composed of nine developed, mostly European countries at an industry level for the period 

1996-2016. We investigated the existence of a long-term relationship between robotics and 

some key growth indicators, such as total factor productivity and value-added, and on the main 
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labour components, such as the employment and labour share. Data is provided by the 

International Federation of Robotics (IFR), the organization which collects statistics about 

robotics around the world, and EU KLEMS, an industry level, growth, and productivity 

research project, run by the Vienna Institute for International Economic Studies (wiiw). We 

focused our research on the manufacturing industry and particularly on the automotive sector, 

the one with the highest and longest tradition of industrial robots’ implementation. 

Chapter 1 addresses the issue of industrial automation and its evolution from a historical and 

geographical point of view, inspecting its diffusion with particular attention to the countries and 

sectors under analysis. 

Chapter 2 proposes a review of the literature on robotics and its impact on productivity, 

employment, and the labour share, presenting the main points of view emerged in the research 

of different authors. 

Chapter 3 shows the dataset and its construction, presenting sources, observations, and 

variables. 

Chapter 4 describes the empirical strategy used for the analysis and comments on the results 

obtained.
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Chapter 1. Industrial Automation: An Historical Overview 

Industrial automation is an innovation process which concerns the coordinated use of 

technological solutions to replace part of the human work with different devices (Enciclopedia 

Treccani 2006). To better understand the concept, we may define individually the two terms 

“industrial” and “automation”. Industrial production processes consist of procedures involving 

chemical, physical, electrical, or mechanical steps, through which a combination of raw 

material becomes a final product. According to Encyclopaedia Britannica (2020), the term 

“automation”, instead, was coined in 1946 by an engineer from Ford Motor Company, to 

describe production systems where the human effort and intelligence were substituted with 

mechanical, electrical, or computerized operations. 

The concept of “mechanisation” is the process through which an activity, previously carried out 

largely or exclusively by hand or with the help of animals, is now performed by machinery. 

Mechanization is included and, at the same time, overcome in the current definition of industrial 

automation. Now-a-days, in fact, machines can be started and function without the presence of 

humans and many activities as planning and supervision of the productive process that do not 

involve physical work are automated or can be easily automated with the current technological 

systems. This is a novelty compared to the past: the physical automation that, with machines 

and robots, replace the arms of the workers is flanked by cognitive automation that, with 

artificial intelligence (AI), can substitute a lot of intellectual tasks. 

 

1.1 Innovation and Revolutions in the History of Humankind 

We are living in the period with the highest rate of innovation in the history of humanity, but 

innovation has always accompanied mankind’s history, allowing the economic progress we are 

experiencing today. According to Magnani (2020), the first examples of how innovation has 

fostered economic growth can be found in the Stone Age, with the Neolithic revolution which 

allowed the transition from a nomadic lifestyle, based on gathering and hunting, to a sedentary 

lifestyle, growing plants and raising animals. 

Returning to focus on automation, to identify the historical moment in which machines were 

introduced for the first time in productive processes and started to support and gradually 

substitute the work of human operators, we need to go back to the First Industrial Revolution 

(1760-1840). In this period there was a process of change from an agrarian and handicraft 

economy to an economy characterized by industry, machine manufacturing, and technologies. 
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These changes introduced new ways to organize work, life, and society. This process started in 

Britain in the second half of the eighteenth century and then spread around the world. 

 

1.1.1 The First Industrial Revolution 

The First Industrial Revolution took place in Britain between 1760 and 1840 and it was 

preceded and then supported by the agricultural revolution. Instead of leaving the land 

uncultivated one year out of three, as was done since the Middle Ages, in the third year they 

began to grow forage plants, useful for feeding livestock. In this way it was possible to boost 

the productivity of the lands, but also improve breeding. In a short time, other countries tried to 

modernize their own agriculture by replicating the new English knowledge and techniques. 

This increase in production was necessary to meet the demand for more products due to the 

increase in population occurred in those years: in 140 years the population redoubled, from 100 

million in 1660 to 187 million in 1800. Given these conditions, in a short time artisans, workers, 

and farmers became unable to satisfy the increasing demand for goods coming from colonies 

and growing population. It was necessary to substitute old methods of work with new ones 

which allowed to produce more, in less time, and without additional costs. Thanks to the 

implementation of machines in the productive process and some technical innovations, the 

change was possible. For example, in the textile industry, spinning operations were completely 

mechanized and in 1833 a single worker was able to simultaneously monitor the work of four 

looms, producing twenty times more than one single operator working by hand. 

To exploit all the potential of the machines, sources of energy different from the manual force 

were needed. Watt invented the steam engine in 1765, become the symbol invention of the First 

Industrial Revolution. The new machine was able to use the heat to produce movement, 

transforming thermal energy into mechanical energy, capable of operating other machines. This 

invention was decisive for the start in the last years of the eighteenth century of the first large 

textile factories which in those years was beginning to quickly mechanize. 

As the machines for the production became bigger and bigger, in those years the first factories 

capable of containing machines and thousands of workers were born. In factories, the work 

could not be organized independently as the farmers did in the countryside, but it was 

punctuated by the rhythms of production of the machines. The working conditions in the 

factories and mines were very bad. Men, women, and children were employed indiscriminately, 

with the same heavy shifts of work of more than 12 hours per day, although the latter two were 
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paid much less than the former. The work environments were dangerous and unhealthy and the 

suburbs near the factories began to be populated by the working class who lived in tiny, bleak, 

unhealthy, and overcrowded houses. In the first years of the industrial revolution, a lot of 

workers migrated from the countryside to the cities, but the flow of people was not properly 

controlled, and the authorities failed to immediately act to accommodate the new citizens. For 

this reason, the working-class neighbourhoods grew in a short time and in a disordered way, 

without the most basic sanitary facilities. Only during the nineteenth century, the conditions of 

the working class began to improve: child labour was limited, the number of skilled workers 

increased, and given their high specialization, they were required and paid more. 

The fear of losing jobs must be added to the social and environmental problems that the 

industrial revolution brought. As mechanization spread in the factories, in fact, the first 

discontent of craftsmen and workers spread too. They feared being replaced by machines and 

losing their jobs, just like today many workers fear being replaced by robots and artificial 

intelligence. As early as 1794, English wool workers petitioned Parliament to intervene against 

the use of machines for combing wool. In those years, in Nottingham, the movement of the 

Luddites, a group of textile workers who protested the factories that used the machines, was 

born. Luddites became famous for their subversive actions, going so far as to destroy the 

machines to defend their work. 

 

1.1.2 The Second Industrial Revolution 

Between the nineteenth and twentieth centuries, the production system of the factory spread all 

over Europe and also outside, like in the United States, the new emerging power. 

Industrialization was a path a country had to take to achieve the economic development needed 

to compete with other countries. Productivity continued to increase worldwide, and Britain’s 

supremacy was gradually challenged by the growth of countries like Germany in Europe and 

the United States, outside Europe. The Second Industrial Revolution (1870-1914) began. 

In that period, the relationship between science, technology, and industry grew stronger and 

stronger and this led to new discoveries, inventions, and technologies. It was the age of steel, 

chemistry, and oil, but the real protagonist was electricity. However, it was not until 1880 that 

people learned how to store, transmit, and distribute electricity over long distances, using it to 

enlighten, heat, start machinery, and build new ones. In fact, the incandescent filament bulb 

was designed by Edison in 1879. Bringing lighting in factories led to redefine working hours, 
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allowing working day and night continuously, with no time constraints marked by sunrise and 

sunset, consistently augmenting labour productivity. Electricity started to be used also in the 

modes of transport, giving rise to mass urban transport, since steam could only be used in light 

railways and rural or suburbs tramways. In the United States, electric traction was introduced 

in 1881 and then quickly adopted in major urban centres. 

New inventions and new materials discovered allowed to the revolution also in the organization 

of the industrial production, speeding up the process or increasing labour productivity, thanks 

to innovations like conveyor belts, elevators, hoists, pipe, and valve systems. The introduction 

of these innovations in the productive process led to a more rational and scientific use of the 

workers in order to reduce working costs and time. In this period, the scientific organization of 

work, preached by Taylor, was applied for the first time. In The Principles of Scientific 

Management (1911), Taylor explained how the one best way – that is the best, cheaper, and 

efficient method to make a product – is based on the breakdown of the production cycle in 

different stages and in different operations as simple as possible. Taylorism intersects with the 

important innovations introduced in the factories by the automobile manufacturer Ford. Ford 

organized his factories around the assembly line, bringing together the various stages of car 

assembly, transporting the necessary parts to the workers who, instead, remain stationary in 

their workstation, doing simple operations. The assembly line drastically reduces production 

time and unit costs: the price of Ford Model T, “the car for all”, as written in the advertising 

slogans of the time, decreased from 950 dollars in 1908, when it was placed on the market, to 

360 dollars in 1917, and 290 of 1927, when it ceased its production. 

While in the first stages of the industrialization process, textile and metallurgical industries had 

required relatively modest investments, in that period, to build a chemical or steel plant, a large 

allocation of capital was necessary and hardly the small family businesses could afford the 

costs. New organizational and property’s forms were necessary and, in the late 1800s, joint-

stock companies and new system of raising capital through an increasingly structured financial 

market controlled by the banks spread. The need to reduce risks due to huge investments 

imposed the tendency of the enterprises to concentrate, through mergers, both vertical and 

horizontal, links between companies or between companies and banks, cartels, and holdings. A 

strong relationship of interpenetration between industries and banks started to develop. Banks 

and other financial institutions begun to allocate the deposits of their clients to industrial 

investments. The role of banks became strategic, and the phase of the financial capitalism 

started, underlining the key function of the financial capital directing the economy. 
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The revolution in the factories, from an organizational, structural, and productive point of view, 

was accompanied by the birth of new working figures and, in turn, of a different division of 

social classes. The emergence of new jobs was the natural response to the underway industrial 

and economic revolution requiring new needs, but the impact was varied and, in some respects, 

divergent. On the one hand, from 1850 to 1910, in the United States, the number of qualified 

workers – the so called “white collars” – increased from 3 percent to 12 percent in the 

manufacturing industry, and from 7 percent to 20 percent in the aggregate economy (see Table 

1). On the other hand, in the nineteenth century, the technical change was mainly “de-skilling”: 

the combination capital – unskilled labour, in fact, replaced skilled labour due to mechanization 

(Goldin and Sokoloff 1982; Atack et al. 2011). In the manufacturing industry, the de-skilling 

process is explained by the displacement of high-skilled artisans due to the quick 

industrialization of the factory system. Over the years, machinery became cheaper relative to 

output or skilled labour and, consequently, manufacturing became much more capital intensive. 

Sequentially implemented machines replaced certain operations related to the manual work of 

the artisans, but machines required anyway the presence of “operatives” to work properly. 

Operatives were workers with less skills with respect to craftsmen: the latter were able to 

manufacture a product from the beginning to the end, while the first ones could execute a limited 

set of operational tasks of the whole productive process with the support of the machines. This 

does not mean that the operatives were unskilled, indeed they started to acquire the skills 

necessary to properly run the machinery they had to use (Bessen 2012). In the following years, 

skilled workers, as engineers and mechanics, were still required to install, maintain, and design 

the equipment (Goldin and Katz 1998). However, the modern pattern of capital – skilled labour 

started emerging only between the late nineteenth century and the early twentieth century. 

According to Goldin and Katz (1998), the spread of electricity power and the technological 

shift from traditional factories to continuous-process and batch production methods had a key 

role in the emergence of the new combination capital – skilled labour. 
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Table 1. U.S. Labour Force from 1850 to 1910 

 

1850 1860 1870 1880 1900 1910 

Manufacturing industries 

       
White collar 3.1% 3.2% 4.8% 4.7% 6.8% 11.9% 

  Professional-technical-manager 3.0% 3.1% 4.2% 4.0% 5.2% 5.6% 

  Clerical-sales 0.1% 0.1% 0.6% 0.7% 1.6% 6.3% 

Skilled blue collar 39.4% 38.5% 31.8% 29.2% 28.7% 22.8% 

Operative/unskilled 57.5% 58.3% 63.4% 67.8% 64.5% 65.4% 

       
Aggregate economy 

       
White collar 6.9% 8.3% 10.6% 11.6% 17.1% 19.7% 

  Professional-technical 2.3% 2.6% 2.9% 3.4% 4.3% 4.6% 

  Manager 3.1% 3.6% 4.4% 4.3% 5.7% 5.6% 

  Clerical-sales 1.5% 2.1% 3.3% 3.9% 7.2% 9.5% 

Skilled blue collar 11.6% 11.2% 10.7% 9.1% 11.0% 11.9% 

Operative/unskilled/service 28.7% 30.1% 32.4% 37.7% 36.4% 37.9% 

Agriculture 52.7% 50.5% 46.4% 41.6% 35.3% 30.5% 

  Operator/supervisory 23.9% 23.2% 24.8% 24.8% 20.0% 16.6% 

  Farm labourer 28.8% 27.3% 21.6% 16.8% 15.5% 13.9% 

       
Source: KATZ, L. F. & MARGO, R. A., 2014. “Technical change and the relative demand for skilled labor: The United States in historical 

perspective”. In Human capital in history: The American record, pp. 15-57. University of Chicago Press. 

Capital and labour availability were not the only drivers of the economic development: growth 

was fostered by mechanisms such as increasing returns on scale, due both to the enlargement 

of production units that became cheaper to manage, and to increasingly specialized production. 

Another mechanism concerned the greater efficiency in allocating resources, by transferring 

manpower from low-productivity jobs to high-productivity ones (Pollard 2012). 

From the late 1800s until World War I, North-Western Europe and North-Eastern United States 

were the main industrialized centres where modern economic growth models had already 

succeeded. Looking more at the global numbers of this Second Industrial Revolution, according 

to Pollard (2012), we can infer that in Europe, the economic growth between 1880 and 1913 

had a rate of 1.5 percent per year. The United Kingdom was certainly the richest country, but 

the most advanced and prosperous industrial economy was represented by the United States. In 

1913, the U.S. Gross National Product (GNP) per capita was five times higher than the 

European average, and 25 percent higher than the British GNP. The average growth rate of the 

U.S. economy between 1890 and 1913 can be estimated at 1.8 percent per year, higher than the 
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one of the major advanced industrial economies. Pollard (2012) states that one of the factors 

which contributed to the economic expansion experienced in that period was certainly the 

population growth which increased because of the reduction in the death rate. There was, 

indeed, a sharp decrease in infant mortality, which in 1913 was particularly evident in 

Scandinavia and Western Europe, while in Eastern Europe the rate remained high. However, 

international emigration started to mitigate the effects of the natural demographic increase. 

From 1850 to 1914, more than 40 million people (approximately the 10 percent of the European 

population of the time) left Europe and moved to the “new world”. In the early 1900s, 

departures of migratory flows mainly concerned the Mediterranean region and the Balkans in 

response to the demographic problem which the mainly rural societies in those areas were 

facing. As observed for Europe, birth and mortality rates were falling and, while for European 

countries the international emigration represented a dry loss of workforce, the United States 

were the main recipients of the migratory flows. Since most immigrants were young, the 

average age of the U.S. population, which was 22 years in 1890, remained low in 1910, around 

the age of 24. This influx of labour from abroad contributed to the expansion of the economy. 

International immigration was supplemented by internal emigration from rural settlements to 

more developed cities, as occurred in more industrialized European urban centres. Thus, the 

workforce employed in agriculture fell from 42 percent in 1890 to 32 percent in 1910. 

Economic growth meant also higher investments in instrumental goods and specific resources 

such as machines and plants. Often, the necessary equipment was used to produce a single 

variety of product. Therefore, the specificity of the investments made the investments 

themselves riskier and more diversified between countries. However, in all countries with 

reliable data, the growth of investments was faster than the demographic growth, with the only 

exception of the United Kingdom which, in the first decade of the twentieth century, was more 

interested in investing in its overseas colonies instead of its national territory. In the United 

States, capital imports exceeded capital exports, increasing the already high rate of internal 

savings, which grew by 3.5 percent per year between 1890 and 1910 and then they slowed down 

for the following decade (Pollard 2012). 
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1.1.3 The Debate on the Third Industrial Revolution 

After the Second Industrial Revolution (1870-1914), two world wars and one of the most 

shocking crises occurred. During the wars, factories were converted and used to produce war 

material and other resources useful for military operations. However, despite the period was 

not the best, some industries grew the same, as the automotive one which experienced in those 

years a real mass diffusion, especially in the United States. Moreover, a lot of military research 

had important developments and roles in the dissemination of technologies in the civil field, 

just consider nuclear energy. 

The second and the subsequent Industrial Revolution are therefore years away. Indeed, the 

debate on the starting date of a supposed Third Industrial Revolution is very heated. According 

to Campa (2007), opinions are divided mainly because there are no useful preventive criteria to 

define a period of “revolution”. Furthermore, economic and technological transformations have 

followed different paths in the various industrialized countries and, therefore, analyses are often 

flawed from an ethnocentric perspective. Some authors agree on the fact that to define a 

“revolution”, a change in energy policy is required. In the First Industrial Revolution the key 

element was the steam engine that led to an economy based on coal and iron. In the Second 

Industrial Revolution, after the invention of the combustion and electrical engines, the economy 

relied on oil and electricity. After the use of nuclear weapons, a period of civilian use of nuclear 

energy has certainly begun, but it is also certainly true that the current economy is still based 

on oil and the turning point has not yet occurred. Other analysts stated that it makes no sense to 

compare the industrial revolutions according to the energy sources because there are other 

equally important aspects. The key element, among the most mentioned, is certainly the 

emergence of automation and artificial intelligence (AI) and their large-scale use in production 

processes. According to Sennholz (2006), since the early 2000s an industrial revolution has 

begun. Sennholz talks about an “informatic revolution” which increases the variety of 

marketable services. This enlargement is possible because, thanks to the new information 

technology, many jobs in the service sector can be shifted to workers in emerging countries. In 

these countries, people are equally experienced, but they are willing to accept a lower salary 

due to the lower cost of living in their native country. It is therefore an offshoring revolution 

that has important consequences on the labour market. 

In the final analysis, therefore, there is no single date on which economists agree to start the 

beginning of this Third Industrial Revolution. Some authors think the revolution started in the 

fifties, others state that the revolution has started in the new millennium. But the relay could be 
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halfway, and the symbolic starting date could be identified in the year 1974. According to 

Greenwood (1999), the same changes observed in the main economic parameters with the 

advent of the previous two revolutions occurred in 1974. In this year, in fact, there was a 

massive influx of new technology that had an impact comparable to the spread of the steam 

engine and electricity in the previous century. This input is favoured by a lower cost of the 

equipment, such as computers, machine calculators, and automation. Whenever a 

technological-industrial revolution has occurred, there has also been a consequent decline in 

the growth of labour productivity. The paradox is however only apparent since the decrease is 

consequent to the fact that the new technologies are difficult to use, and it requires time for 

workers to quickly adapt to the change and specialize. Greenwood pointed out that in 1974, the 

most technologically advanced countries experienced a reduction in the growth of labour 

productivity from 2 percent per year to 0.8 percent: the workers suffered the shock due to the 

change. Alongside, the pay gap increased, and this phenomenon can be explained by the 

disorientation effect: workers with useful skills to run computers and robots were rare and so 

they could obtain higher wages than non-skilled workers. Gradually, inequality has been 

redrawn thanks to the entrance in the market of more qualified workers. 

According to Martorella (2002), the Third Industrial Revolution started around 1974 with the 

introduction of new production and organizational structures: the just in time production and 

the Total Quality Management introduced by the Japanese Toyota Motor Corporation. 

Martorella believes that revolutions occur in response to serious periods of economic crisis. 

Japan suffered more the oil shock of the 1973 due to its absolute lack of oil resources compared 

to the United States and the Soviet Union. For this reason, a quick and radical restructuring of 

the Japanese productive system was necessary. This event marked the beginning of the decline 

of the Fordist model, based on a rigid division of labour and focused more on the product, rather 

than the needs of the consumer. Toyotism, instead, implies a reversal of the logic of marketing, 

oriented to the elimination of returns and stock. Through the just in time production, in fact, 

companies can forsake the push-logic that finished products have to be stored in warehouses 

waiting to be sold and embrace the pull-logic according to which only products already sold, or 

which is expected to be sold in a short time can be produced. Companies do not try anymore to 

convince their clients to purchase a finished product, designed upstream in all its details, but 

agrees the characteristics of the good with potential customers and produces it to order and 

customizes it for the specific applicant. The new Japanese production philosophy, in a short 

time, achieved important results, carrying in the Eighties, Toyota from the seventh to the third 

place in the world ranking of motor companies, after Ford and General Motors. The new model 
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was soon adopted by other countries, first the United States, leaving room for the post-Fordism 

age. Ultimately, in the opinion of Martorella (2002), the Japanese industrial revolution has 

transformed factories in information systems in which men are free from mechanical work and 

have become supervisors of the production process. This change occurred in a transition phase 

from the industrial society to the “post-industrial” society. With these words, the author means 

that the discussed Third Industrial Revolution consists in the radical transformation of the social 

and economic fabric that is leading the tertiary industry and the more advanced ones to 

dominate the secondary industry.  

In this period of intensive technological and scientific revolution, United States and Japan were 

leader in the development of new technologies based on the application of microelectronics to 

computing and communications. In 1971, the tuning of the microprocessor by Intel established 

the transition from the electronics to the microelectronics, allowing the mass commercialization 

of a large set of goods (personal computers, CD and DVD players, and mobile phones) and 

services (e-mail and Internet) that had disrupted and continue to disrupt the habits and lifestyles 

of much of the population. Moving from the information technology industry to other ones, the 

most important discoveries and inventions concern plastics, biotechnology with studies on 

DNA, nanotechnology, and the conquest of space. 

The fears of those who saw the new technologies as a threat to human work were accompanied 

by the optimism of those who were aware of the potential of this progress. Machines and 

computers displaced human work, but, at the same time, created new opportunities and opened 

the way for the tertiarization of which Martorella (2002) speaks. This totally new branch of the 

economy became known as new economy and from the Nineties, was the engine of growth, 

both in income and productivity terms. From 1995 to 2000, the productivity increased by 2.5 

percent per year, compared to the 1.4 percent in the period 1972-1995 (Pollard 2012). Then, as 

we will see in the next paragraphs, the improvement in the automation procedures and the 

introduction of increasingly intelligent and sophisticated robots have helped to increase the 

labour productivity, constituting the last achievement in the path undertaken two centuries 

earlier with mechanization. 
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1.1.4 A Fourth Industrial Revolution? 

Although there is no unanimous agreement on the occurrence and period of the Third Industrial 

Revolution, some authors speak about a Fourth Industrial Revolution. Others state that the 

period of high innovation we are experiencing is a second phase of the technological revolution 

started in the last century and described in the previous paragraph. Due to the development of 

information and communication technologies (ICT), such as Internet and wireless connection, 

industrial production has experienced significant and radical changes. As seen with the rise of 

Toyotism, factories have become more flexible and have started to understand the importance 

of vertical and horizontal integration of all participants in the production, including end 

customers. This integration led to a new way of thinking about the industrial production process 

which took the name of Industry 4.0 (Hozdić 2015). 

The term Industry 4.0 was first adopted, in 2011, by a group of representatives belonging to 

difference fields – such as business, politics, and academia – as part of a proposal aiming to 

boost the German competitiveness in the manufacturing industry. To deal with the ambitious 

project, raising a smart production environment was vital and the concept of “smart factory” 

was soon introduced. A “smart factory” is a production solution that, in a flexible and efficient 

way, fulfils the integration of participants in the production process, of needed resources, both 

physical and digital, and between people and resources into a single cyber-physical production 

system. Industrial automation and ICT are the key resources in the implementation of this 

sophisticated system which can successfully merge real and virtual world, improving 

productivity, quality, and working conditions, saving costs, and avoiding errors and bottlenecks 

(Oztemel and Gursev 2020; Hozdić 2015).  

Industry 4.0 is not a single technology, but it represents a cluster of different ones linked 

together due to “technological leaders, pivotal users, system integrators, and government policy 

makers” (Martinelli et al. 2021, p. 162). Martinelli et al. (2021) summarized the concept by 

providing a list of the core technologies related to Industry 4.0. More precisely, these 

technologies are: 

• Internet of Things (IoT). IoT concept includes all devices with self-identification 

capabilities – as localization, diagnosis status, data acquisition, processing, and 

implementation – that are connected via standard communication protocols. The scope 

is very wide: from manufacturing applications to other areas as housing and 

construction, automotive, environment, agriculture, and much more. 
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• Big Data / Industrial Analytics. This category groups methods and instruments used to 

process a large amount of data (which can come from IoT systems) for manufacturing, 

supply chain management and maintenance. The main applications of this technology 

relate to machine learning tools, a subset of artificial intelligence technology that creates 

systems able to learn or improve performance based on the data they use. This 

application is useful for planning and forecasting, providing predictive maintenance, 

and generating simulations. 

• Cloud Manufacturing. This category entails the application in manufacturing of cloud 

technologies, through on-demand IT services with easy access, available to the users 

involved, and with the aim of supporting production processes and supplying chain 

management. 

• Robotics. This cluster of technologies encompasses five subcategories, understood as 

five different ways to automate operations in the production process: Articulated, 

Cartesian, Cylindrical, Parallel, SCARA (see next paragraphs for precise definitions 

and applications). Advanced automation includes the latest developments in production 

systems that have improved the ability of robots to interact with the environment, self-

learn, self-drive, and recognize specific patterns (the so-called co-bots). 

• Artificial Intelligence (AI). It refers to knowledge and techniques developed to make 

machines “intelligent” so that they can function in a proper way in their environment of 

application. Industrial AI combines computer science-based technologies with machine 

learning tools to generate intelligent sensors and smart production systems. 

• Additive Manufacturing. Also known as 3D Printing, this technology is able to produce 

objects by depositing layer upon layer of material in precise geometric shapes. Additive 

manufacturing is widely used in prototyping and manufacturing, directly producing the 

products, and providing maintenance and repair services. 

According to Martinelli et al. (2021), the period we are living has not yet the required specifics 

to be considered as a Fourth Industrial Revolution because Industry 4.0 (which is not a 

synonymous for Fourth Industrial Revolution, but only indicates the features of the “factory of 

the future” which has introduced in its productive processes the technologies described above), 

now-a-days, has limited scale and scope effects. The three authors, in fact, tried to understand 

if these technologies are general purpose technologies (GPTs). According to Bresnahan 

(Bresnahan 2010, p. 764; Bresnahan and Trajtenberg 1995 in Martinelli et al. 2021, p. 175), a 

GPT is a technology which: 
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• “Is widely used” and characterised by “pervasiveness”, meaning the variety of possible 

application sectors. 

• “Is capable of ongoing technical improvement” and characterised by “high dynamism”, 

meaning the ability of the technology to increase efficiency. 

• “Enables innovation in application sectors” and has the ability to generate “strong 

complementarities”, meaning that the adoption of these technologies enhances rapid 

technical progress in the industries in which they are applied. 

In their analysis, Martinelli et al. (2021) worked on a sample of patents related to the main 

Industry 4.0 innovations: Internet of Things, big data, cloud, robotics, artificial intelligence, and 

additive manufacturing. Patents brings important information, as the geographical location of 

the innovators or the level of diffusion of the technology. In particular, the authors observed 

how the enabling technologies score on the basis of three indicators: 

• Generality index. It indicates the range of later generations of inventions which have 

been promoted by the same patent. In other words, it refers to the technological classes 

that have cited the specific patent. 

• Originality index. It refers to the backwards citations and measures the range of 

technological classes which are cited by the patent. A patent with high originality is 

characterized by the high technological dynamism which qualifies a GPT. 

• Longevity index. It is the average lag between the year of the patent grant and the year 

of the latest forward citation. Therefore, patent longevity is the measure of the speed of 

obsolescence of a patent. 

With their analysis, the three researchers observed that only big data and AI technologies can 

be qualified as GPTs due to their statistical significance in terms of generality, originality, and 

longevity of the related patents. It is difficult to make simple predictions about the other 

technologies, but it is certain that for the moment they do not show the same trend. They remain 

enabling technologies that are providing and can provide a substantial contribution to 

innovation and productivity growth in a wide range of industries. The implementation of 

advanced technologies remains low also according to Acemoglu et al. (2022), with only 2 

percent of U.S. firms using robotics in their processes and 3.2 percent using AI in the period 

2016-2018. The portions of workers dealing with these technologies, instead, are quite 

substantial: 15.7 percent for robotics and 12.6 percent for AI. In manufacturing industries this 

exposure becomes higher, with the 45 percent of U.S. workforce employed in firms using 

robotics and the 23 percent employed in firms using AI technologies. On the other hand, 
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Fontagné et al. (2023) report that, even if robots represent on average only the 0.6 percent of 

capital stock in manufacturing industries, the share of robots grow substantially from 1999 to 

2011 and at faster pace than ICT and machinery whose shares remained almost constant over 

these years (Figure 1). 

 

Figure 1. Technology Adoption 

  
(a) Stock (1999 = 100)  (b) Share over K 

Million $ in 2011: Robots 453; ICT 2786; Machinery 47297  % over K in 2011: Robots 0.6%; ICT 6.4%; Machinery 93.1% 

   

 

Notes: The figure reports yearly weighted averages. Country-industry value-added is used as weight. Technology is expressed in volume 

(ref. price 2010). 

Source: FONTAGNÉ, L., 2023. “Automation, Global Value Chains and Functional Specialization”. CESifo Working Papers, No. 10281. 

 

1.2 The Advance of Robots 

Even the relatively low distribution in factories and the fact that, according to Martinelli et al. 

(2021), robotics can’t be qualified as a general purpose technology, the technical progress and 

the always new application opportunities related to this field, especially in recent decades, can’t 

be ignored. The use of industrial robots and their market are destined to grow and the benefits 

deriving from their implementation are undeniable. On the other hand, there are potential threats 

to human labour that cannot be ignored too. Before addressing these issues, we need to better 

picture the industrial robotics phenomenon from a historical and geographical perspective both 

at a global level and among the selected countries in our dataset. 
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1.2.1 Finding a Robot Definition 

The idea of creating machines or beings that might perform laborious or repetitive operations 

instead of men extends back to ancient times. Already in the Greek-Hellenistic age, some 

ingenious inventors designed and tried to build devices which were defined automata. 

However, this term mainly pertains to human-like devices, whereas the word “robot” has a 

wider and more general meaning (Gasparetto and Scalera 2019). The term “robot” originates 

from ròbot which in turn derives from robota that in Czech means “work” or “hard work” and 

was used for the first time in 1920 by the writer Čapek, referencing to the automatons that 

substituted workers in his science-fiction play R.U.R.: Rossum’s Universal Robots (Čapek 

2004). It is therefore clear since the introduction of the term that robots have a function of 

replacement of man’s work which begun with the simple mechanization of part of the human 

work in the First Industrial Revolution up to the advanced industrial automation of today, in 

which machines are also able to act alone, without the necessary human presence. Moreover, 

thanks to the progress in AI technology, machines are increasingly able to support and replace 

humans in cognitive activities, not only in those more purely mechanical. The term “robotics”, 

instead, appeared for the first time in the novel Runaround (1942), then included in the famous 

series I, Robot (1950) by the writer Asimov, but the concept of “industrial robotics”, as we 

know it today, was born about ten years later, around the 1950s. 

The Robot Institute of America (1979) defined a robot as a “reprogrammable, multifunctional 

manipulator designed to move material, parts, tools, or specialized devices through variable 

programmed motions for the performance of a variety of tasks”. Robotics is therefore an 

interdisciplinary science which involves knowledge of mechanics, biology, computer science, 

linguistic, psychology, and automation (Magnani 2020). According to Magnani (2020), 

industrial robots have three main characteristics: they operate exclusively in industrial 

environments, are programmable and can interact with the physical environment, relating, for 

example, to other production devices. Industrial robotics encompasses traditional automation, 

meaning entire automated production processes, integrated robotics which consists of robots 

inserted in particular points of the production line, and the collaborative robotics referring to 

collaborative robots, better known as co-bots, able to physically interact with humans in a 

shared environment (Martinelli et al. 2021). 

The International Federation of Robotics (IFR), the organization which provides statistics about 

robotics in the world, as well as part of the data included in the dataset of this dissertation, 

identifies an “industrial robot” based on the definition provided by the Industrial Organization 
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for Standardization (ISO 8373:2021). According to ISO (2021) and IFR (2022) an “industrial 

robot” is an “automatically controlled, reprogrammable multipurpose manipulator 

programmable in three or more axes, which can be either fixed in place or mobile for use in 

industrial automation applications”. This means that an industrial robot has at least three axes 

identifying the direction in which the robot can move in a linear or rotary mode. In addition, 

according to the definition, robots are:  

• Automatically controlled. The robot is controlled by a system which operates in 

accordance with a set of instructions for motions and additional functions that define a 

specific task program. Non-automatically controlled operations are manual operations, 

performed by humans that use input devices, as joysticks or pushbuttons, to move the 

machine. 

• Reprogrammable. Robots are designed so that the programmed motions or auxiliary 

functions can be changed without physical alteration of the mechanical system. 

• Multipurpose. With physical alteration, a robot can be adapted to a different application. 

• Manipulator. Robots are machines with the purpose of grasping and/or moving objects 

like pieces or tools. 

• Fixed in place or mobile. Robots can be mounted to a stationary or non-stationary point. 

This definition is quite similar to the one mentioned before by the Robot Institute of America, 

but here a more precise and mechanical description is present. In fact, like Martinelli et al. 

(2021), IFR classifies six categories of industrial robots due to their mechanical structure and 

kinematic configuration (see Table 2):  

• Articulated robot. A robot whose arm has at least three rotary joints. This configuration 

of robot works as a human arm able to move in a spherical environment and can find 

application in spray painting or welding, as well as packaging or sealing. 

• Cartesian (linear/gantry) robot. A robot whose arm has three prismatic joints and whose 

axes are coincident with a cartesian coordinate system. Typical uses of these robots are 

Pick-and-Place work or assembly operations. 

• Cylindrical robot. A robot with axes forming a cylindrical coordinate system, allowing 

the robot to reach the workspace in a rotary movement. This class of robots is used for 

machine tool loading, forging applications, or packaging operations. 

• Parallel/Delta robot. A robot whose arms have concurrent prismatic or rotary joints. 

Usually, the end effector (the device at the end of the robotic arm) is linked to the base 

by three or six independent arms which work parallel, meaning that they work together 
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and co-ordinately, but not necessarily aligned in parallel. This configuration finds 

application in handling, assembly, and Pick-and-Place operations. 

• Selective Compliance Assembly Robot Arm (SCARA). SCARA are a type of robot with 

two parallel rotary joints allowing the robotic arm to move on the horizontal plane and 

an outlet that can rise and fall in the vertical one. This type of robots is specialized in 

high speed and repeatability operations in series assembly, such as Pick-and-Place from 

a place to another. 

• Others. This category includes robots which do not belong to the classes described 

above. 

The classes described above belong to the industrial robotics and particularly refer to stationary 

robots, the most implemented in factories. But robots are also used in the services area. The so-

called service robotics, which includes professional and personal applications, is a fast-growing 

sector whose applications range from home use to surgery (Magnani 2020). Despite the great 

variety of applications, the purpose of both industrial and service robotics was always – and 

still is – to duplicate or improve the human function, supporting or substituting him in the more 

dangerous activities (Hockstein et al. 2007). 

To avoid confusion at this point of the dissertation, it is appropriate to note that where not 

otherwise specified (especially in the following chapters), with the terms “industrial 

automation”, “industrial robotics”, “industrial robots”, “robotics”, and “robots”, we will refer 

to the industrial robots employed in factories, for which we have installation and stock data 

provided by IFR. 
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Table 2. Categories of Industrial Robots 

 
Robot Kinematic Structure Workspace Photo 

    

Articulated    

 

   

Cartesian    

 

   

Cylindrical    

 

   

Parallel    

 

   

SCARA    

Source: ISO 8373:2021       
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1.2.2 A Brief History of Industrial Robotics 

According to Zamalloa et al. (2017), four generations of robots can be identified in the history 

of industrial robotics. The first generation conventionally covers the period between 1950 and 

1967. In these almost two decades, robots were essentially programmable devices with no 

ability to effectively regulate the modality of execution of their operations. From the hardware 

point of view, they had a low-tech apparatus and arms were not so flexible. The first digitally 

operated and programmable robot was designed in 1954 by the U.S. inventor and entrepreneur 

Devol, named the “Grandfather of Robotics”. In the early 1950s, Devol developed the concept 

of “unimation”, resulting from the merger of the terms “universal” and “automation” and, a few 

years later Unimate#001, the first robot, was born. Unimate#001 was designed to carry out 

operations potentially harmful to human and it was installed for the first time on an assembly 

line at General Motors’ die-casting plant in Trenton (New Jersey, USA) in 1961. Since this 

date, other factories in the automotive industry started to adopt the new technology, innovating 

their productive process, mainly employing Unimates for spot-welding of cars and handling of 

workpieces. However, due to the difficulty to reprogram them and the rudimentary level of 

technology, Unimates were able to perform only a single and repetitive task. 

The second generation of industrial robots ranges from 1968 to 1977. In these years, robots 

were programmable machines with integrated sensors and evolved control systems 

(microprocessors or PLC – Programmable Logic Controllers) which allowed them to interact 

with the external environment, perform both point-to-point motion and continuous paths 

(Zamalloa et al. 2017; Gasparetto and Scalera 2019). Compared to the ones of the first 

generation, these robots could perform more complex operations, but their versatility was not 

particularly high because each robot was provided with its own specific software, devoted to a 

specific task and difficult to reprogram. Between 1972 and 1974, the Swedish company ASEA 

(now ABB) developed IRB-6, the first electric industrial robot that was controlled by a 

microcomputer. The robotic arm could be programmed, and it was used for material handling, 

packing, transportation, polishing, and welding. IRB-6 was crucial for the development of 

robots easier to program. 

The third generation of industrial robots spans from 1978 to 1999. Robots developed in these 

two decades were characterized by a higher level of interaction with the human operator and 

the surrounding environment, thanks to the implementation of complex interfaces which gave 

robots the ability to see and speak, for example (Gasparetto and Scalera 2019). Finally, this 

generation of robots could be reprogrammed, and some had even self-programming capabilities 
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to execute different operations (Zamalloa et al. 2017). Robots could also process data from 

sensor readings and modify their movements to account for environmental changes. Therefore, 

robots of third generation were provided of some sort of “intelligence”, with adaptive 

capabilities which enabled them to carry out more complex tasks (Gasparetto and Scalera 2019). 

In these years, several scientific and technical improvements fostered the spread of industrial 

robotics. In 1978, for example, the Japanese scientist Makino presented a new kinematic 

structure, giving life to SCARA robots (see Table 2), mainly employed in the assembly of small 

objects. In 1981, a General Motors factory implemented a new system, called Consight, through 

which three different robots could use visual sensors to pick out and sort six different auto parts 

as 1,400 parts per hour moved by on a conveyor belt. 

Industrial robots of the fourth generation, started from 2000, are characterized by the inclusion 

of advanced computing capabilities that make them able to reason and to learn (Zamalloa et al 

2017). In this period, the advances in field such as artificial intelligence, neural networks, 

logical reasoning, deep learning, and collaborative behaviour, started to be included partially 

or on an experimental basis, enabling robots to adjust more and more efficiently to the different 

circumstances they face. Improvements in the robot security systems and in the human-robot 

collaboration led men and robot to work together interacting with each other in the same 

environment, as in the case of the most recent co-bots. In an ever-closer future, thanks to the 

advance in collaborative robotics and related fields, robots will come out of the factories to 

support humans in everyday activities, simplifying and improving their life. According to 

Zamalloa et al. (2017), just the introduction of co-bots could identify a fifth generation of 

robots. The generation that will allow to move from mass customization (robots created to 

perform specific tasks) to mass integration, thus robots and humans peacefully coexist in 

society. The latest generations of robots, in addition to presenting high levels of intelligence 

and the ability to make decisions autonomously just like a human, increasingly resemble the 

human body in their set-up too, following the dream of automata, designed since the Hellenistic 

era. The recent humanoid robots presented by cutting-edge companies such as Boston 

Dynamics’ Atlas, Tesla’s Optimus Bot, or Xiaomi’s CyberOne are examples of these advanced 

robots’ configuration (Figure 2). 
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Figure 2. Examples of Humanoid Robots 

 

1.2.3 Robotics Around the World: A Geographical and Industry Framework 

According to the latest available data provided by IFR in the World Robotics 2022 Report, in 

2021, robots installations around the world reached a new record level, with the placement of 

517,000 new units. Robots installations grew by 31 percent compared to 2020 and their stock 

in 2021 amounted to 3.5 million units, with a 15 percent increase compared to 2020. Although 

the years of Covid-19 pandemic, in the five-years period from 2016 to 2021, global new 

installations of industrial robots grew with an annual average of 11 percent, while the 

operational stock of industrial robots registered an annual increment of 14 percent on average 

(Figures 3 and 4). 

 

Figure 3. Annual Installations of Industrial Robots in the World (1,000 units) 
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(b) Tesla’s Optimus Bot. (c) Xiaomi’s CyberOne. (a) Boston Dynamics’ Atlas. 
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Figure 4. Operational Stock of Industrial Robots in the World (1,000 units) 

From a geographical perspective, for years the American and European areas were the major 

adopters of industrial robotics technology, but the Asian market has grown quickly, with China 

and Japan that hold the record of annual installations in 2021, with respectively 268,200 of new 

units (+51 percent compared to 2020) and 47,200 (+22 percent). It is interesting to note that 

now China installs more industrial robots per year than all the countries of the rest of the world 

brought together, with an annual average of 23 percent in the five-years period 2016-2021. 

Looking to the future, IFR (2022) estimated a global +10 percent installations growth in 2022 

and then a 7 percent growth per year until 2025. According to forecasts, in the next three years, 

the Asian region will still be the main protagonist, with numbers ranging from 400 thousand 

new units in 2023 to over 500 thousand in 2025, distancing considerably from the number of 

annual installations that will carry out Americas and the European region, both taken separately 

and together (Figure 5). 
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Figure 5. Annual Installations of Industrial Robots 2020-2025 (1,000 units) 

 

 

According to the World Robotics 2021 Report by IFR, in 2020 the world average robot density 

in the manufacturing industry was 126 per 10 thousand of employees. In Europe, the average 

was about 123 robots per 10 thousand of employees, with Germany having the highest score of 

371. The American average is 111, with the United States having 255 robots per 10 thousand 

of employees. Lastly, the highest average in robot density in 2020, was held by Asia, with 

Singapore and Republic of Korea having the highest robot density in the manufacturing 

industry, with respectively 932 and 605 industrial robots per 10 thousand of employees, 

followed by Japan (390) and China (246). In Figure 6, we summarized the score of the countries 

in our dataset, comparing them with the European average: only United Kingdom is below 

average with 101 robots per 10 thousand of employees. 

  

277

381

416

448

484

525

68
84 87 90 88 90

39
51 56

66 70 65

0

100

200

300

400

500

2020 2021 2022* 2023* 2024* 2025*

Asia/Australia Europe The Americas

Notes: *Forecast.

Source: Data processing on World Robotics 2022 Report.



30 

 

Figure 6. Robot Density in 2020 

 

Among the countries selected in our dataset, Japan has the highest concentration of robots. 

Among all countries of the world, Japan also has the longest history in the implementation of 

industrial robots in its factories (Lynn 1983) and it is nowadays the second larger robot installer 

in the world after China (IFR 2022). In 2012, the population of Japanese robots per worker was 

10 times that in the United States and 5 times that in Europe. Furthermore, as underlined by 

Dekle (2020), Japan remains an exception regarding the social impact of robots. In this country, 

in fact, there is no public clamour about the belief that robots can pose a threat to human labour. 

Indeed, robots are more seen as a source of economic survival, as the nation suffers from a 

serious and chronic shortage of labour force, due to the aging of the population and the decline 

of births. Almost certainly, Japan will be the nation to replace the largest number of jobs with 

robots, so much so that in 2014, Prime Minister Shinzo Abe presented a series of reforms with 

the goal of growing the robot market up to 21 billion dollars by 2020. 

Germany takes second place among countries in our dataset and the fourth place in the global 

ranking for density per 10 thousand employees. German robots, in fact, are more than those in 

the United States and elsewhere except the Asian region. As reported by Dauth et al. (2017), 

since 1994 in Germany there were almost two industrial robots installed per thousand workers, 

more than twice the European average and four times as many as in the United States. 

Furthermore, Germany is the first major robot installer among European countries and fifth in 

the world. Germany continues to be one of the leading countries in terms of manufacturing 
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output and, although the higher number of robots, it boasts a significantly high percentage of 

the population working in this sector. Moreover, Germany is not only a huge user, but also a 

large producer of industrial robots: five of the twenty largest firms have German origins. 

Italy is certainly another important actor in the world of industrial robotics. Italy is, in fact, the 

second European country for robots installations and the sixth in the world, with 14,100 robots 

installed in 2021 (+65 percent than 2020) and a robot density about twice the world average 

(IFR 2021 and 2022). France and Spain are respectively the eighth and fourteenth country in 

the world ranking by number of installations, with respectively 5,900 new installations in 2021 

(+11 percent than 2020) and 3,400 (+1 percent). Both countries have a robot density well above 

the global average. As anticipated before, United Kingdom is the only country in our dataset 

which has a robot density below the average, the lowest among the G7 nations, and installs few 

robots per years, with just two thousand new units in 2019 (IFR 2020). 

From an industry point of view, as we can see in Figure 7, globally in 2021, the sectors that 

make greater use of industrial robots are electrical-electronics (137,000 installations; +24 

percent compared to 2020), automotive (119,000; +42 percent) and metal and machinery 

(64,000; +45 percent). Concerning the use (Figure 8), robots can be installed for many 

applications, but handling remains the major application for annual installations also in 2021, 

with 230,000 installations (+36 percent compared to 2020), followed by welding (96,000; +38 

percent) and assembling (62,000; +24 percent). It is interesting to note that in the last two years 

electrical-electronics industry has overcome automotive, a sub-industry with a long tradition of 

installations. 
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Figure 7. Annual Installations of Robots by Industry – World (1,000 units) 

 

 

Figure 8. Annual Installations of Robots by Application – World (1,000 units) 
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Finally, an interesting global trend to observe regarding the last three years is definitely the one 

that concerns the aforementioned co-bots (Table 9). The range of applications of this class of 

robots keeps growing, as well as the market, whose share has grown up by 50 percent in 2021. 

As stated in the World Robotics 2020 Report, although the market of collaborative robots is 

growing quickly, it is still in its initial phase, but it has excellent growth prospects for the future 

years. 

 

Figure 9. Annual Installations: Collaborative vs. Traditional Industrial Robots (1,000) 
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Chapter 2. Industrial Automation, Productivity, Employment, 

and the Labour Share: A Literature Review 

Industrial automation is a process innovation involving mostly manufacturing industries and it 

takes a key role in global competitiveness (Mazachek 2020) and, like every “creative 

destruction” (Schumpeter 1942), it can undermine previous equilibria and generate new ones. 

But do technology and innovations always lead to growth? According to Magnani (2020), all 

types of innovations (technical, scientific, organizational, commercial, and financial) that 

occurred in the course of history brought important and disruptive changes in the economy and 

in the society, as described in detail in the previous chapter. Sometimes these changes broke 

the balance achieved previously, but there has always been a strong positive correlation between 

innovation and economic growth, with positive effects also on employment. 

Even if with significant differences, innovation has a key role in the main growth theories. 

According to classicals and neoclassicals, the technological progress is an exogenous variable 

of the growth model, generally determined by external factors as inventions and new 

discoveries. For the new growth theory, instead, innovation is an endogenous variable (Romer 

1990): through the accumulation of human knowledge and the development of research 

activities, economy can grow even without external shocks by using and improving already 

available factors, including existing technology. 

Focusing on industrial automation, on the one hand, there are no doubts about the productivity 

improvements brought by the implementation of this innovation: cost reductions, quality 

upgrading, and the possibility to carry out tasks dangerous or impossible for human workers. 

Switching from the firm level to industry and country level considerations, automation is 

expected to increase labour productivity and boost economic growth, generate more jobs, and 

enhance quality of life.  

On the other hand, industrial automation brings job displacement, disruptions to local 

economies, change in demand for skills, and inequality increases (McKay et al. 2019). Frey and 

Osborne (2017) and Chui et al. (2015) estimate that 45-47 percent of U.S. jobs might be 

automated over the near future. Acemoglu and Restrepo (2020) find evidence that robots may 

have reduced aggregate employment and aggregate wages in the United States. Due to the 

relatively limited number of robots in the U.S. economy, jobs lost would amount to a range 

between 360,000 and 670,000, but according to the authors the number is expected to grow 

over the next two decades, as predicted by Frey and Osborne too (2017). A limited impact due 
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to a low operational stock was also observed in the UK economy, but the quick spread of robots, 

software, and AI could potentially increase the magnitude of the effects (Chen et al. 2022). 

Furthermore, according to Dauth et al. (2017), in Germany, a total loss of 275,000 

manufacturing jobs due to robots occurred in the period from 1994 to 2014 and it has been 

estimated that one additional robot eliminates approximately two manufacturing jobs on 

average. 

In this chapter, we review the main contributions regarding the existing literature on robotics 

and its impact on productivity, the labour share and employment, trying to distinguish between 

the different effects of this technology among the countries in our dataset, mostly for the 

manufacturing industry. 

 

2.1 Industrial Automation and Productivity 

In macroeconomic literature, there are various theoretical models supporting the positive 

perspective according to which technological progress, such as industrial automation, raises 

overall productivity. According to these models, an increase in total factor productivity (TFP) 

is associated with an increase in labour demand and salaries through four major channels 

(Compagnucci et al. 2019): 

• At the intra-industry level, an increase in labour demand is observed whenever the 

augmented productivity is reflected in an overall growth of a sector which requires new 

labour force to perform non-automated tasks. 

• Across industries: sectors which do not use industrial automation may benefit from the 

reduction of real prices in automated industries and, in turn, increase their labour 

demand. These effects are more visible in the particular case in which non-automated 

industries produce goods that are complementary to automated industries’ products. 

• Considering that industrial automation is capital-augmenting, the accumulation of this 

input alone is a boost for growth, increasing the demand for labour. 

• The introduction of new tasks and jobs that cannot become automated positively affects 

employment, and therefore, it has positive effects on aggregate demand and growth too. 

Graetz and Michaels (2018) try to bring more evidence on the implications of robotics on labour 

productivity, total factor productivity, and employment, both at a country and industry level. 

Using IFR (2012) and EU KLEMS (2007) data, they observe that the increased use of industrial 

robots from 1993 to 2007 augmented the annual labour productivity growth of 0.37 percent on 
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average across the 17 analysed countries. Figure 10 plots the shift in the labour productivity log 

from 1993 to 2007 in comparison to the change in robot density, suggesting the existence of a 

relationship between productivity growth and the percentile of robot density well approximated 

by a linear functional form. The authors estimate that robot density (calculated as the stock of 

robots per million hours worked) in 14 industries in 17 countries increased by more than 150 

percent, from 0.58 to 1.48, in the period from 1993 to 2007. They also find that industry-country 

pairs with a faster increase in robot density faced higher gains in labour productivity. On the 

other hand, results suggest that larger increases in robot density are associated with increasingly 

small gains in productivity, highlighting the presence of decreasing marginal returns from the 

use of industrial robotics. 

 

Figure 10. Growth of Productivity and Robots 1993-2007  

    

(a) Percentile of change in robot density (b) Change in robot density 

 

 

     

     

   

    

    

    

    

    

    

    
Notes: Observations are country-industry cells. The size of each circle corresponds to an industry’s 1993 within country employment share. 

Fitted regression lines are shown. Measures of robot adoption are net of country trends. In panel (a), the estimated slope is 0:57 with a robust 

standard error (clustered by country and industry) of 0:27. In panel (b), the estimated slope is 0:032 and the standard error is 0:016. 

 

Source: GRAETZ, G. & MICHAELS, G., 2018. “Robots at work”. Review of Economics and Statistics, 100 (5), pp. 753-768. 

 

Similar results are found in a report by SelectUSA Investment Research (Mazachek 2020) 

which analyses the effects of automation across industries, particularly exploring the 

relationship between industrial robots and the growth of productivity in the United States. In 

all industries, there is a positive correlation between industrial robot density and productivity: 

an increase in industrial robot density of one percent is associated with an increase in 

productivity of 0.8 percent, all else equal. An interesting point concerns the effect on slower 

robot adopter industries: a one percent increase in industrial robot density in these industries 

correlated with a 5.1 percent increase in productivity, all else equal. Mazachek (2020) proposes 
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some reasons to explain why slower adopters experienced a higher increase in productivity than 

early adopters. For instance, these latter industries may have already maximised productive 

gains deriving from the introduction of industrial robots. Furthermore, industries which have 

already deployed several industrial robots may not experience the same increase in productivity 

deriving from an additional installation. The increase in productivity could be much larger in 

industries which install robots for the first time or have few robots installed. This trend could 

indicate different investment criteria by firms belonging to slower adopter industries. These 

firms may require stronger evidence that introducing industrial robots effectively leads to 

productivity gains to justify the investment. In other words, as pointed out by Graetz and 

Michaels (2018), productivity increases with the installation of industrial robots, but this may 

be subject to diminishing returns. By analysing the impact of robotics on the labour market, the 

SelectUSA researcher finds that an increase in industrial robot density correlates with a 

decrease in hours worked. Specifically, an increase of one percent in industrial robot density is 

associated with a one percent decrease in hours worked. Again, the relationship is stronger for 

slower robot adopter industries (2.7 times as much). 

Acemoglu et al. (2022) analyse the impact of automation technologies at the firm level, by 

collecting data from over 300,000 U.S. firms about the implementation of five advanced 

technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. 

They report that the use of these technologies remains low, especially for AI and robotics, and 

varies significantly across industries. However, large, and younger firms are much more likely 

to introduce these technologies, and adopters experience a positive effect on labour productivity 

and wages, and a negative effect on the labour share. Specifically, the use of the advanced 

technologies listed above correlates with a 15 percent increase in labour productivity, which 

represents the 20-30 percent of the higher labour productivity accomplished by the largest firms 

in an industry. Autor et al. (2020) call this the superstar firm phenomenon: some large firms 

can reach high sales, without necessarily employing more workers than their competitors. 

Furthermore, as anticipated above, labour productivity decreases with the firm age, except for 

companies belonging to the oldest firm group observed in the research, which may experience 

greater effects due to their larger size achieved in the years of market presence. According to 

Acemoglu et al. (2022), adopters reach higher labour productivity for two reasons. First, 

advanced technologies used for automation lead firms to a more capital-intensive production 

which relies more on specialized equipment and software and less on labour. Second, advanced 

technologies may reduce the employment of low-skilled workers and enhance the demand for 

high-skilled workers. This increase from the change in the skill composition is different from a 
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factor-neutral increase in productivity that would leave the labour share unaltered. Focusing on 

industrial automation, the authors find a positive and significant relationship between robotics 

and labour productivity: in manufacturing sectors, the presence of this technology is associated 

to a 11.1 percent increase in labour productivity. 

 

2.2 Industrial Automation, Employment, and the Labour Share 

Another way in which the implementation of industrial automation indirectly impacts on 

productivity growth is through the effects on the labour share. Industrial automation is in fact 

expected to reduce the labour share and, in turn for this reason, increase labour productivity. 

According to multiple authors (Autor and Salomons 2018; Compagnucci et al. 2019) the 

displacement of labour from production, observable after the introduction of a new technology 

such as industrial robotics, can assume two forms. The first is the employment displacement, 

concerning a decrease in aggregate employment, the second one consists in the labour share 

displacement, concerning the erosion of the labour share of value-added in the economy. By 

comparing total factor productivity (TFP) growth and industry level employment growth in the 

period 1970-2007 for 19 OECD countries, Autor and Salomons observe that industries with 

faster TFP growth had experienced relative reductions in employment and in the labour share 

(Figure 11). 

However, according to Foster et al. (2019), theory does not give a direct linkage between the 

growth of productivity and labour demand at the industry level and the evolution of labour 

demand in the aggregate. The data in Autor and Salomons, for the period 1970-2007, seems to 

confirm these theoretical notes. During these years, in fact, employment increased significantly 

across all countries, despite a decrease in employment levels in the industries that were 

experiencing higher productivity growth. In contrast, during the 1970s, labour’s contribution to 

total value added remained constant or increased. Then, it experienced a slight decline in the 

1980s and 1990s, followed by a sharp decrease in the 2000s across various countries. Indeed, 

the effect of technological change is employment or labour share-displacing depending on two 

key factors: 

• The way in which technological innovations influence employment and the labour share 

directly in the industries where they occur. 
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• The way in which these direct effects are augmented or mitigated by changes in the 

employment and the labour share which occur elsewhere in the economy, but indirectly 

pushed by the same technological advancements. 

 

Figure 11. Industry Level Annual Average TFP Growth 1990-2007 vs. Industry Level 

Annual Changes 

        

(a) Log TFP growth versus log changes in industry 

employment 
 (b) Log TFP growth versus log changes in industry 

labour share 

 
        
AUTOR, D. & SALOMONS, A., 2018. “Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share”. 

Brookings Papers on Economic Activity, 49 (1), pp. 1-87. 

 

Autor and Salomons (2018) find that technological progress is broadly employment-

augmenting in the aggregate, but displacing at the industry level, while for the labour share of 

value-added, direct labour-displacing effects prevail. These findings are consistent with a 

substantial part of the literature, starting with Baumol (1967), for example, which shows an 

employment reallocation mechanism, concerning the shift of labour from the most 

technologically advanced to the least advanced sector, when outputs are not perfect substitutes 

(Baumol cost disease). The displacement is based, in fact, on the level of substitution and 

complementarity of the industries which adopt robot and the industries which do not (Vivarelli 

2014). If a non-adopting industry produces goods that are substitutes of the ones produced by 

automated industry, it suffers a decrease in the demand (automated industry’s goods are cheaper 

due to the lower cost of production) and so in the employment. Instead, if a non-adopting 

industry produces goods that are complementary to a robot adopter industry, it increases its 

demand and employment (with the same productivity), because the demand for goods produced 

by the automated industry has raised due to lower prices. In terms of workers’ skills, 

technological differences, due to the implementation of robots, could lead to labour dislocation 
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if there is a discrepancy between skills required for new tasks and skills owned by workers 

substituted by robots (Vivarelli 2014). 

To summarise, within-sector displacement of labour demand appears to be counterweighted by 

the rise of labour demand in the other industries. The labour share, instead, seems to have been 

eroded by automation. Actually, Autor and Salomons (2018) specify that their analysis cannot 

directly distinguish which specific technology had caused the displacement, since TFP includes 

productivity growth from all different sources. Compagnucci et al. (2019) hypothesise that 

industrial robotics may be one of the potential causes of the emerging decoupling between 

wages and productivity observed by other authors (see Brynjolfsson and McAfee 2014). 

Workers replaced by robots, in fact, move to non-automated, low-skill, and low-pay jobs, 

reducing the aggregate labour share. 

A similar result regarding the labour share is found in Dauth et al. (2017) who conduct a study 

on the effects of robotization on the careers of individual workers in the German manufacturing 

industry over the period 1994-2014. The German authors find no evidence that robots lead to a 

fall in overall employment, but that they affect its composition. According to Dauth et al. 

(2017), in fact, over 10 years, robots destroyed roughly 275,000 jobs in the manufacturing 

industry, but this damage was fully compensated by the creation of new jobs in the service 

sector. However, workers who are more exposed to robotization tend to stay in their initial 

workplace. The German researchers claim that workers remain employed, although not 

necessarily carrying out the same tasks. Therefore, the employment decline observed in the 

German manufacturing industry would not be driven by the displacement of incumbent 

manufacturing workers, but by the reduction of the number of new jobs offered to young 

entrants. In this way, incumbents achieve job stability, at the expense of lower earnings. It is, 

however, necessary to emphasise that this negative impact on wages is mainly associated with 

medium-skilled workers employed in machine-operating tasks, while high-skilled managers 

achieve higher incomes, benefiting from on-the-job gains. Dauth et al. (2017) suggest that the 

perceived threat to job losses from robots may have induced medium and low-skilled workers 

to accept lower wages in order to maintain their position in the original firms. This assumption 

is consistent with the empirical observations that robots, for these workers, negatively impact 

wages, but not employment. 

Dottori (2021), who investigates the effects of robotization on employment in Italy, both at the 

local labour market and at the worker level, finds results quite similar to Germany. By analysing 

data from 1993 to 2017 and combining local-level and worker-level approaches, Dottori 
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measures the likelihood of joining a sector and studied the inflows changes over time. He shows 

that the industries that are more exposed to robotization have consistently experienced lower 

relative labour inflows. This implies that the impact of robots on employment may have 

contributed to the redistribution of the new workforce among various sectors. Furthermore, the 

research shows that workers employed in the more robot exposed industries seemed to keep 

their jobs for longer, achieving higher lifetime earnings. Dottori (2021) associates these findings 

to the presence of firm-specific complementarities related to the on-the-job experience and the 

knowledge of workers, and the use of robots. Therefore, working in an industry which is more 

exposed to robots may have a positive within-firm effect on the duration of employment spells 

and wages. 

This phenomenon of reallocation of workers from low-productive non-adopting firms to high-

productive robot-adopters is also detected in Spanish firms by Koch et al. (2021), suggesting 

that this trend may partially explain productivity gains reported by other studies on the topic. 

Industrial robotics adoption, in fact, allowed Spanish firms to reach significant productivity 

gains, reduce the labour share, and led to net job creation. Firms adopting robots between 1990 

and 1998 increased their employee count by more than 50 percent in the period 1998-2016 

(Figure 12). Over the same period, firms which did not implement industrial robots experienced 

a loss of 20 percent of their workers. As documented by Dauth et al. (2017) for German workers, 

Koch et al. (2021) report particularly noticeable positive employment effects for high-skilled 

workers, but also for low-skilled ones, and particularly for those who were employed in the 

manufacturing industry, as seen for Italian workers by Dottori (2021). 

 

Figure 12. Evolution of Firm-Level Employment in Spain (1990-2016) 
   

 

Notes: The figure depicts the evolution of average firm employment (measured by the number of workers) in a balanced sample of firms from 

1990-2016, separately for robot adopters (solid black line) and non-adopters (dashed grey line). Robot adopters are defined as firms that 

entered the sample in 1990 and had adopted robots by 1998. Non-adopters are firms that never use robots over the whole sample period.  

 

Source: KOCH, M., MANUYLOV, I. & SMOLKA, M., 2021. “Robots and firms”. The Economic Journal, 131 (638), pp. 2553-2584. 
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Conversely to the results found by Dauth et al. (2017), Dottori (2021), and Koch et al. (2021) 

about incumbent workers, Humlum (2021) observes that in Denmark, from 1995 to 2015, 

welfare losses deriving from industrial robots mostly affected old production workers. Younger 

workers, instead, gain from the option value of changing their careers into tech and other 

professions whose premiums increase as robots become more prevalent in the market (see also 

Acemoglu et al. 2022 for the increase of labour demand for high-skilled workers deriving from 

robot implementation). Specifically, a quarter of the decline in the employment percentage of 

production employees and 8 per cent of the increase in the employment share of tech workers 

since 1990 may be attributed to industrial robots. 

Acemoglu and Restrepo, along with LeLarge (2020), study the effects of robot adoption on 

French manufacturing firms over the period 2010-2015. Consistently with other research, they 

find that, at the firm level, the implementation of industrial robotics is associated with a 

reduction in the labour share and in the number of production workers, and an increase in value-

added and productivity. Nevertheless, authors observe that overall employment has increased 

faster in firms introducing industrial robots in their productive processes. This positive effect 

may be explained by the fact that companies that have a greater potential for growth are more 

inclined to implement robotics technology. Furthermore, Acemoglu et al. (2020) suggest that 

this positive impact may be a result of the reallocation of output and labour towards firms that 

experience a reduction of costs with respect to the other competitors in the industry. In other 

words, the positive effect observed for industrial robotics adopters may derive from a potential 

for growth already present or acquired thanks to the implementation of robots itself. 

Conversely, competitors in the industry not adopting robot technology, suffer decreases in 

value-added and employment. Consequently, according to Acemoglu et al. (2020), the overall 

impact on manufacturing industry employment due to the implementation of robots in French 

firms is negative. 

The effects on the skills composition are confirmed by another work of Acemoglu et al. (2022). 

The authors report that adopter firms experience an increase in skill requirements due to the 

implementation of advanced technologies, leading to higher demand for skilled labour, but there 

are ambiguous effects on the employment level. A large percentage of firms in the sample 

declared that the use of advanced technologies had not affected their employment level in recent 

years. However, a small share of firms documented positive or negative effects on employment 

due to the adoption of the technologies, indicating robotics as the technology most tightly 

related with a reduction in the number of workers. 14 percent of firms reported a decrease in 
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employment resulting from the use of robots. On the other hand, approximately the same share 

of firms reported an increase in employment due to the use of this technology (see Figure 13). 

 

Figure 13. Reported Changes in Employment Levels and Skill Demand by Firms 

Adopting Advanced Technologies, Employment-Weighted Shares from 2019 ABS 
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Source: ACEMOGLU, D. et al., 2022. “Automation and the Workforce: A Firm-Level View from the 2019 Annual Business Survey”. 

National Bureau of Economic Research, No. 30659. 

 

Dekle (2020) studies the impact of robots use in Japan, a country with a long tradition of 

industrial robotics installations and the highest robot density among the countries mentioned in 

this chapter. Using long-term industry level data from 1979 to 2012, he proposes a model (like 

other authors, see Acemoglu and Restrepo 2020) in which he illustrates that the introduction of 

industrial robots has three effects on labour demand: 

• Negative labour displacement effect, observable at the industry level, which refers to 

the substitution of tasks from labour to robots. Dekle does not find a significant effect 

for Japan. 

• Positive industry productivity effect from the reduction of costs due to the introduction 

of robots. The reduction of costs increases output and employment in that specific 

industry. 

• Positive general equilibrium effect because industrial robotics increases productivity 

and labour demand across all industries. 
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In addition, Dekle (2020) analyses the impact of robots on different disadvantaged groups such 

as female workers, high school graduates, and part-time workers compared to the general 

workforce, finding that robots raised demand for these usually marginalised categories. For 

instance, despite the negative displacement effect of high school graduates is higher than the 

one of university graduates, the overall employment of high school graduates has expanded 

with the use of industrial robotics.  

 

2.3 Key Factors in Robot Adoption and Future Trends 

The different perspectives analysed in the previous paragraphs highlight the difficulty to find 

consistent results on the impact of industrial automation across firms, industries, and countries. 

Therefore, the prediction of the future trends is ambiguous too, and it is also important to take 

into account other influencing factors that could affect the implementation and the spread of 

industrial robots. In a McKinsey Global Institute report (Manyika et al. 2017), the researchers 

indicate five determinants that could drive or slow down robotization: 

• Technical feasibility. This element is related to the time between the invention of the 

new automation technology and its integration. In addition, the technology needs to be 

adapted into solutions for the specific uses for which they are designed, thus extending 

the effective implementation time. Furthermore, the variety in the tasks required by 

industries or firms defines the productivity and the applicability of specific types of 

automation technologies (Acemoglu et al. 2022), partly explaining the observed 

differences in the adoption of industrial robots. For instance, most of the non-

manufacturing industries does not need industrial robots, while within manufacturing 

ones, they are required for several manual tasks involved in the heavy industry, such as 

welding, painting, sorting, and assembly. 

• Cost of developing and deploying automation solutions. Both hardware and software 

components are required in the development of industrial automation technologies and 

both components represent substantial expenditure for firms which want to introduce 

them. As pointed out by the SelectUSA report mentioned before (2020), the existence 

of early and slower robot adopters may be partly explained by different investment 

preferences: due to the high costs of robotization, some firms may want more evidence 

of the gains from the implementation. The high costs could also explain why early 

adopters are larger or younger firms (Autor et al. 2020; Acemoglu et al. 2022). 

According to Acemoglu et al. (2022), the fixed costs of adopting and integrating 
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industrial automation rely on firm age because younger companies may face less 

organizational barriers, and on other firm level characteristics such as the digital 

expertise or the level of management information. 

• Labour market dynamics. The supply, the demand, and the costs of human labour 

influence the choice to automate some activities rather than others. For example, Dauth 

et al. (2017) highlight how the German trade unions’ strong preference for preserving 

elevated levels of employment and the willingness to accept flexible wages to keep jobs 

in case of negative shocks, could be an explanation of the overall positive performance 

of the employment in the German labour market. Therefore, the interaction of 

technology with different labour market institutions could shape the impact of the 

technology itself (Chen et al. 2022). 

• Economic benefits. Industrial automation can be introduced by firms in their productive 

processes for different reasons, starting from the reduction of the labour cost and 

including improvements in productivity, precision, quality, and safety. Companies’ 

sensitivity to these issues can play an important role in choosing to install robots. 

• Regulatory and social acceptance. The introduction of industrial automation technology 

can be hindered by regulation or government policies present in the countries or 

promoted by organizations of States, as the European Union. The European Parliament, 

for instance, voted on a motion to tax the usage of robots in 2017. The goal of the robot 

tax was to slow down the adoption of robots so that the economy had more time to adapt 

to the new technology. Humlum (2021) finds that a temporary tax would be a good 

strategy to curb the spread of robots, but it represents an inefficient and expensive way 

to redistribute revenue among manufacturing production workers. On the other hand, in 

countries like Japan, a series of reforms with the goal of growing the robot market up to 

21 billion dollars by 2020 was promoted in 2014. In addition, not only policies, but also 

the reactions of other stakeholders such as users and workers can be an obstacle to 

robotization, leading to a kind of contemporary Luddism that could push people to 

boycott the use of robots for fear of losing their jobs. 

These influencing factors contribute to the difficulty to predict the future impacts of robotics. 

Nomaler and Verspagen (2019) argue that the introduction of new technologies such as machine 

learning, robotization, and artificial intelligence may lead to the so-called perpetual growth, 

concerning the rise in per capita income even in a situation in which the technology lies in a 

non-progressing state. At the basis of their work there is a substantial difference in the 

consideration of the economic impact of robots compared to most other authors. While 
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traditional economic theories see robots as factor-enhancing technological progress, they think 

that robots are more factor-eliminating technical change, as described by Peretto and Seater 

(2013). In some cases, in fact, robotization is able to put workers out of their job with no chance 

of finding another one in the specific industry. The different effects on the whole economy of 

the two considerations can be summarised as follows: 

• Factor-enhancing technological change needs a constant investment in human capital, 

research, and development. These costs are some of the reasons investigated by the 

McKinsey report (2017) which can slow down robotization. 

• Instead, when a critical threshold in the advancement of factor-eliminating technologies 

is reached, investment is no longer required to maintain growth, leading to perpetual 

growth. 

The authors specify a precise parameter which indicates the threshold beyond which perpetual 

growth arise and find that the technological change currently underway may help to reach this 

threshold. There are, however, three main aspects which can determine whether industrial 

robotics will be able to generate perpetual growth in the future:  

• The degree to which technology can replace labour-intensive human tasks. 

• The cost of implementation of the technology. 

• How well human duties can be replaced by automated tasks in the overall manufacturing 

process. 

Like the results from the McKinsey report (2017), technology costs and the level of 

replaceability of human operations with automated tasks are the major elements which can help 

(or hinder) the spread of robotics, leading to perpetual growth. However, Nomaler and 

Verspagen (2019) do not investigate the effects on employment, assuming that labour supply is 

infinitely elastic. In addition, factor-eliminating technological change decreases the role of 

labour in the production process, making employment superfluous. 
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2.4 Final Remarks 

In conclusion, although the literature is very wide and diversified, the overall positive 

productivity contribution of industrial robotics, by primarily reducing the number of hours 

worked, is undeniable at the firm-level, as well as at the industry and cross-industries levels for 

papers presented in this chapter. The main used sources and their results are summarised in 

Table 3. 

The overall impact on employment and the labour share remains ambiguous, depending on the 

country-industry pair considered. There are some studies which do not find significant evidence 

about the general effect (Acemoglu et al. 2022 at the U.S. firm level), while others find a 

negative impact (Acemoglu and Restrepo 2020 for United States; Acemoglu et al. 2020 for 

France). A consistent part of the literature (Graetz and Michaels 2018; Compagnucci et al. 

2019), despite not finding statistically significant correlations between the use of robotics and 

total employment, show that robots may have affected the employment share from a skills 

composition perspective, operating through a reallocation of workers across industries (Koch 

et al. 2021). Also in this case, however, authors are not aligned on which employment share 

(high or low-skilled workers) and which sector (robot adopters or non-adopting sector) are the 

recipients of the migratory flow of workers. According to Compagnucci et al. (2019) workers 

substituted by robots move to non-automatized, low-skilled, and low-paid jobs. According to 

several authors (Koch et al. 2019; Acemoglu et al. 2020), firms adopting robots experience such 

a growth that allows them to hire workers that non-adopting firms need to fire to compete. 

These observed differences may depend on the existence of firm and industry 

complementarities (Dottori 2021), and consequently on the way in which a disruptive 

technological innovation, such as industrial robotics, influences employment and the labour 

share directly in the industry in which occur and indirectly across the other sectors (Autor and 

Salomons 2018). These complementarities cited by Dottori were also investigated by the 

McKinsey report (2017) and by Nomaler and Verspagen (2019) who found the key elements 

that can encourage or hinder robotization and, as a result, the effects that the introduction of 

this technology has on productivity growth, the labour share and employment. 
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Table 3. Industrial Robotics, Productivity, Employment, and the Labour Share: 

Literature Sources 

 
Year Authors Title Analysis Countries Results 

      

2017 Dauth et al. 
German Robots – The Impact of 

Industrial Robots on Workers 

Local level 

Worker-level 

(1994-2014) 

Germany 

• Robots do not cause a fall in overall 

employment, but they do affect its 

composition. 

• Jobs loss is fully compensated by the 

creation of new jobs in the service 

sector. 

• Employment decline in manufacturing 

industry is not driven by the 

displacement of incumbent workers, but 

by the reduction of the number of new 

jobs offered to young entrants. 

      

2018 
Autor  

& Salomons 

Is Automation Labor-

Displacing? Productivity 

Growth, Employment, and the 

Labor Share 

Country level 

Industry level 

(1979-2007) 

19 countries 

• Technological progress is broadly 

employment-augmenting in the 

aggregate, but employment-displacing at 

the industry level. 

• Technological progress is directly labour 

share-displacing. 

      

2018 
Graetz  

& Michaels 
Robots at Work 

Country level 

Industry level 

(1993-2007) 

17 countries 

• In all industries, robots contribute 

positively on annual labour productivity 

growth, raising TFP and wages and 

lowering output prices. 

• Decreasing marginal returns from the 

use of robots. 

• Robots do not significantly reduce total 

employment, but low-skilled workers’ 

employment share. 

      

2019 
Compagnucci 

et al. 

Robotization and labour 

dislocation in the 

manufacturing sectors of 

OECD countries: a panel VAR 

approach 

Country level 

Industry level 

(2011-2016) 

16 countries 

• Within-sector employment displacement 

deriving from robots is counterweighted 

by the rise of labour demand in other 

industries. 

• Labour share may have been eroded by 

robots. 

• Workers replaces by robots move to non-

automated, low-skill, and low-pay jobs, 

reducing the aggregate labour share. 

      

2020 
Acemoglu  

& Restrepo 

Robots and Jobs: Evidence 

from U.S. Labor Markets 

Local level 

(1990-2007) 
USA 

• Robots reduce aggregate employment 

and aggregate wages. 

• Response of employment and wages 

may be different once the number of 

robots exceeds a critical threshold. 

      

2020 
Acemoglu  

et al. 

Competing with Robots: Firm-

Level Evidence from France 

Firm level 

(2010-2015) 
France 

• Robot adopters experience declines in 

the labour share and number of 

production workers and increases in 

value added and productivity. 

• Overall employment increases faster in 

firms adopting robots, at expense of 

competitors. 

• Overall impact of robot on 

manufacturing industry employment is 

negative. 
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2020 Dekle 
Robots and industrial labor: 

Evidence from Japan 

Industry level 

(1979-2012) 
Japan 

• No negative displacement effect of 

robots. 

• Positive industry productivity effect of 

robots by lowering costs. 

• Positive overall equilibrium effect. 

      

2020 SelectUSA 

Robots and the Economy: The 

Role of Automation in Driving 

Productivity Growth 

Industry level 

(2003-2017) 
USA 

• Positive relationship between industrial 

robot density and productivity. 

• Negative relationship between industrial 

robot density and hours worked. 

• An additional robot leads to larger 

increase (decrease) in productivity 

(hours worked) for slower robot 

adopters. 

      

2021 Dottori 
Robots and employment: 

evidence from Italy 

Local level 

Worker level 

(1993-2017) 

Italy 

• More robot exposed industries 

experience lower relative labour inflows. 

• Robots may contribute to the 

redistribution of new workforce among 

the other industries. 

• Workers in more robot exposed 

industries keep their job for longer. 

      

2021 Humlum 
Robot Adoption and Labor 

Market Dynamics 

Firm level 

Worker level 

(1995-2015) 

Denmark 

• Robots increase average real wages, but 

lower real wages of manufacturing 

production workers. 

• Younger workers benefit from the option 

value of switching into tech and other 

occupations whose premiums rise as 

robots diffuse in the economy. 

      

2021 Koch et al. Robots and firms 
Firm level 

(1990-2016) 
Spain 

• Reallocation of workers from low-

productive non-adopting firms to high 

productive robot adopters. 

• Robots generate output gains, reduce the 

labour cost share, and lead to net job 

creation for robot adopters. 

      

2022 
Acemoglu  

et al. 

Automation and the Workforce: 

A Firm-Level View from the 

2019 Annual Business Survey 

Firm level 

(2016-2018) 
USA 

• Use of robotics increases labour 

productivity and reduces labour share. 

• Large and younger firms are more likely 

to adopt robotics. 

• Ambiguous effects of robotics on 

employment. 

      

2022 Chen et al. 

Automation or Globalization? 

The Impacts of Robots and 

Chinese Imports on Jobs in the 

United Kingdom 

Local level 

(1991-2007) 
UK 

• Cities more robot exposed experience 

significant employment declines. 

• Relatively large negative employment 

effect may depend on the small UK 

stock. 

• Due to the relatively small stock, the 

impact of robots on the number of jobs 

losses is limited. 
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Chapter 3. The Dataset  

As seen in the previous chapter, the literature about industrial automation and its effects is very 

wide. In addition, the results of the analysed studies lead to different perspectives about the 

consequences deriving from industrial robots’ implementation. In fact, even if the positive 

linkage between robots and productivity growth is unarguable and a common point of research, 

the impact on employment and the labour share does not find a unique result. 

We try to make our contribution to this topic by analysing the impact of industrial robotics use 

in nine developed, mostly European countries at an industry level for the period 1996-2016. 

Particularly, we conduct a panel cointegration analysis, described in detail in the next chapter. 

This chapter shows sources, observations, and variables of the used dataset and its construction. 

 

3.1 Sources, Observations, and Variables 

The nine countries and the eleven industries are summarised in Table 4 and Table 5. Although 

the significant importance of China and United States in the world of industrial automation, 

these countries are not included in the dataset because the sectoral data was not available for 

most of the years included in the period selected for the analysis. Industries from C1 to C8 are 

sub-sectors belonging to the manufacturing macro-industry, the largest robots’ user. 

Particularly, electrical-electronics and automotive sub-industries implement annually the 

highest number of robots (IFR 2022). For each year and for each industry within the selected 

countries we have available the values of a set of variables taken from two databases: the World 

Robotics 2020 Report (2020) for data relating to robotics and EU KLEMS Release 2019 

Database (Stehrer et al. 2019) for the industry level growth and productivity data. 
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Table 4. Countries in the Final Dataset 

   

1. DE Germany 

2. DK Denmark 

3. ES Spain 

4. FI Finland 

5. FR France 

6. IT Italy 

7. JP Japan 

8. SE Sweden 

9. UK United Kingdom 

  

 

Table 5. Industries in the Final Dataset 

   

1.  A Agriculture, forestry, hunting, and fishing 

2. B Mining and quarrying 

3. C1 Food products, beverages, and tobacco 

4. C2 Textiles, wearing apparel, leather, and related products 

5. C3 Wood and paper products; printing and reproduction of recorded media 

6. C4 Plastic, chemical, and other non-metallic products 

7. C5 Metal and industrial machinery 

8. C6 Electrical-electronics 

9. C7 Automotive 

10. C8 Other manufacturing 

11. F Construction 

  

 

3.1.1 World Robotics 2020 Report 

The data regarding industrial robot use is taken from the International Federation of Robotics 

(IFR). IFR is a non-profit organization which provides worldwide data about the annual 

installations and the operational stock by industry (𝐼𝑁𝑆𝑇 and 𝑅𝑆𝑇𝑂𝐶𝐾 in Table 6).1 

Specifically, our data comes from the World Robotics 2020 Report (2020). IFR checks annual 

installations of industrial robots by sector and by country. Since is not always practical to track 

the current number of installed robots at the customer’s location and the available data often 

pertains to the delivery of the robots, instead of their installation, shipment data is also accepted 

to calculate this quantity. The operational stock of robots is the measure which indicates the 

 
1 See more information on the IFR website. 

https://ifr.org/
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number of robots deployed in a country’s industry in a specific year. The Japanese Robot 

Association (JARA) directly provides this data, while for the other countries, IFR Statistical 

Department computes the operational stock assuming an average useful life of 12 years, 

followed by an immediate retirement from service. Concerning the type of robots that are the 

subject of the investigation, IFR collects data for industrial robots which fall within the 

definition provided by the Industrial Organization for Standardization (ISO 8373:2021), 

reported in Chapter 1. 

 

Table 6. Variables from World Robotics 2020 Report 

    

1. 𝐼𝑁𝑆𝑇  Industrial robot installations 

2. 𝑅𝑆𝑇𝑂𝐶𝐾  Operational stock (number of robots currently deployed) 

    
Source: INTERNATIONAL FEDERATION OF ROBOTICS, 2020. World Robotics 2020 Report. 

 

3.1.2 EU KLEMS Release 2019 Database 

The sectoral data regarding the national and growth accounts is provided by the EU KLEMS 

Release 2019 Database (2019). EU KLEMS is an industry level, growth, and productivity 

research project, run by the Vienna Institute for International Economic Studies (wiiw). The 

acronym EU KLEMS stands for EU level analysis of capital (K), labour (L), energy (E), 

materials (M) and service (S) inputs.2 Specifically, data belongs to the “statistical database” and 

are fully aligned with National Accounts provided by the countries’ national statistical institutes 

to Eurostat, the EU statistical office. Within the EU KLEMS database, growth accounting is 

used as a methodology to analyse the contributions of different factors to economic growth. It 

breaks down the overall growth rate of an economy into the contributions of various inputs, 

including labour, capital, energy, and technological progress. Therefore, the database includes 

various economic variables belonging to two categories: 

• National Accounts. National accounts provide a comprehensive framework for 

measuring and analysing the overall economic activity of a country. They capture data 

on various macroeconomic aggregates such as GDP (Gross Domestic Product), GNI 

(Gross National Income), consumption, investment, government spending, imports, and 

exports. National accounts aim to provide a complete and consistent picture of the entire 

 
2 See more information on the wiiw website. 

https://euklems.eu/?doing_wp_cron=1680016436.9566490650177001953125
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economy, enabling policymakers and researchers to monitor economic performance, 

assess income distribution, and analyse sectoral contributions to the economy. 

• Growth Accounts. Growth accounts focus specifically on analysing the sources of 

economic growth and changes in productivity. They disaggregate the overall growth 

rate of an economy to identify the contributions of different factors, including labour, 

capital, energy, and technological progress. Growth accounts provide insights into the 

drivers of economic growth, allowing for a more detailed understanding of the factors 

shaping productivity and competitiveness. 

In EU KLEMS database, the equation which highlights the contribution of the different factors 

to value-added growth 𝛥𝑙𝑛𝑉𝑗 in an industry 𝑗 is the following one: 

𝛥𝑙𝑛𝑉𝑗 = 𝑣𝐾,𝑗𝛥𝑙𝑛𝐾𝑗 + 𝑣𝐿,𝑗(𝛥𝑙𝑛𝐿𝐶𝑗 + 𝛥𝑙𝑛𝐻𝑗) + 𝛥𝑙𝑛𝑇𝑗  (1) 

Where: 

• 𝑣𝐾,𝑗𝛥𝑙𝑛𝐾𝑗 denotes the input of capital services. Particularly, 𝑣𝐾,𝑗 is the nominal share 

of the asset 𝐾 in the industry 𝑗. 𝐾𝑗 is the capital stock of the asset type 𝐾 in the industry 

𝑗. 

• 𝑣𝐿,𝑗(𝛥𝑙𝑛𝐿𝐶𝑗 + 𝛥𝑙𝑛𝐻𝑗) denotes the input of labour services. Particularly, 𝑣𝐿,𝑗 is the 

nominal share of labour in the industry 𝑗. 𝛥𝑙𝑛𝐿𝐶𝑗 shows the growth contribution of the 

composition effect to labour service, while 𝛥𝑙𝑛𝐻𝑗 shows the contribution of changes in 

hours worked. 

• 𝛥𝑙𝑛𝑇𝑗 represents the total factor productivity (TFP) growth in the industry 𝑗. 

In this way, it is possible to calculate TFP growth as a residual from equation (1): 

𝛥𝑙𝑛𝑇𝑗 = 𝛥𝑙𝑛𝑉𝑗 − 𝑣𝐾,𝑗𝛥𝑙𝑛𝐾𝑗 − 𝑣𝐿,𝑗(𝛥𝑙𝑛𝐿𝐶𝑗 + 𝛥𝑙𝑛𝐻𝑗)  (2) 

We include in our dataset the six EU KLEMS variables which are summarised in Table 7. 

Labour compensation (𝐿𝐴𝐵) refers to the total amount of wages, salaries, and benefits paid to 

workers in exchange for their labour and it is calculated as: 

𝐿𝐴𝐵 =  
𝐻_𝐸𝑀𝑃

𝐻_𝐸𝑀𝑃𝐸
 𝐶𝑂𝑀𝑃    (3) 

Where: 
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• 𝐻_𝐸𝑀𝑃 refers to the total hours worked by persons engaged. The value in the database 

is expressed in thousands (th). 

• 𝐻_𝐸𝑀𝑃𝐸 refers to the total hours worked by employees. The value in the database is 

expressed in thousands (th). 

• 𝐶𝑂𝑀𝑃 is the compensation of employees. The value in database is expressed in million 

units of national currency in current prices (NAC mn). 

Capital compensation (𝐶𝐴𝑃) refers to the remuneration earned by capital owners, such as 

investors and shareholders, for their contribution of financial resources in the production 

process. It is therefore calculated as value-added minus labour compensation: 

𝐶𝐴𝑃 = 𝑉𝐴 − 𝐿𝐴𝐵     (4) 

 

Table 7. Variables from EU KLEMS Release 2019 Database 

   

Labour and capital services growth (Growth Accounts) 

   

1. 𝐶𝐴𝑃 Capital compensation, NAC mn 

2. 𝐿𝐴𝐵 Labour compensation, NAC mn 

   

Contributions to value added growth (Growth Accounts) 

   

3. 𝑇𝐹𝑃 Total factor productivity (TFP), p.p. 

   

Values (National Accounts) 

   

4. 𝐸𝑀𝑃𝐸 Number of employees, th 

5. 𝐻_𝐸𝑀𝑃𝐸 Total hours worked by employees, th 

6. 𝑉𝐴 Gross value-added (GVA), current prices, NAC mn 

   
Source: STEHRER, R. et al., 2019. “Industry level growth and productivity data with special focus on intangible assets”. Vienna Institute for 

International Economic Studies Statistical Report, 8. 

 

3.2 Dataset Construction 

Together with the variables presented above, the variables shown in Table 8 have been 

calculated and included in the Final Dataset. Particularly, we obtain the density of industrial 

robots per employees (𝑅𝑂𝐵𝑂𝑇) dividing the operational stock provided by IFR (𝑅𝑆𝑇𝑂𝐶𝐾) by 

the number of employees (𝐸𝑀𝑃𝐸). Then we calculate the labour share (𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸), the 
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employment share (𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸), and the share of hours worked (𝐻𝑆𝐻𝐴𝑅𝐸), simply by 

dividing EU KLEMS variables 𝐿𝐴𝐵, 𝐸𝑀𝑃𝐸, and 𝐻_𝐸𝑀𝑃𝐸 by the Gross value-added (𝑉𝐴 in 

EU KLEMS database). 

 

Table 8. Variables calculated in the Final Dataset 

   

1. 𝑅𝑂𝐵𝑂𝑇 Robot density per employees (𝑅𝑆𝑇𝑂𝐶𝐾/𝐸𝑀𝑃𝐸) 

2. 𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸 Labour share (𝐿𝐴𝐵/𝑉𝐴) 

3. 𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸 Employment share (𝐸𝑀𝑃𝐸/𝑉𝐴) 

4. 𝐻𝑆𝐻𝐴𝑅𝐸 Share of hours worked (𝐻_𝐸𝑀𝑃𝐸/𝑉𝐴) 

   
Sources: Data processing on World Robotics 2020 Report and EU KLEMS Release 2019 Database. 

 

To summarise, all the variables included in the Final Dataset are illustrated in Table 9. For each 

variable we have sectoral data for each of the nine countries in the twenty-one years included 

in the period 1996-2016. 

 

Table 9. Variables in the Final Dataset 
   

Variables from World Robotics 2020 Report 
   

1. 𝐼𝑁𝑆𝑇 Industrial robot installations 

2. 𝑅𝑆𝑇𝑂𝐶𝐾 Number of robots currently deployed 
   

Variables from EU KLEMS Release 2019 Database 
   

3. 𝐶𝐴𝑃 Capital compensation, NAC mn 

4. 𝐿𝐴𝐵 Labour compensation, NAC mn 

5. 𝑇𝐹𝑃 TFP, p.p. 

6. 𝐸𝑀𝑃𝐸 Number of employees, th 

7. 𝐻_𝐸𝑀𝑃𝐸 Total hours worked by employees, th 

8. 𝑉𝐴 Gross Value Added (GVA), current prices, NAC mn 
   

Variables calculated in the Final Dataset 

   

9. 𝑅𝑂𝐵𝑂𝑇 Robot density per employees 

10. 𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸 Labour share 

11. 𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸 Employment share 

12. 𝐻𝑆𝐻𝐴𝑅𝐸 Share of hours worked 
 

Sources: Data processing on World Robotics 2020 Report and EU KLEMS Release 2019 Database. 

Therefore, we obtained the final dataset by merging data from World Robotics 2020 Report by 

IFR and the EU KLEMS Release 2019 Database, by year, country, and industry. Since the 
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industry classification is not the same for the two, we introduce a new one for both, illustrated 

in Table 10. Where the industry or manufacturing sub-industry classifications were not 

available or not matching, we aggregate stock variables with a sum and take means of growth 

variables expressed as percentage points. For example, the IFR aggregate Plastic and chemical 

products (19-22) does not have a corresponding sector in the EU KLEMS dataset, so we employ 

aggregates (sums or averages) of each EU KLEMS corresponding item, i.e., Chemicals; basic 

pharmaceutical products (C20_C21), Coke and refined petroleum products (C19), etc.
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Class Category Code Description Code Description

A-B Agriculture, hunting and forestry; fishing A Agriculture, forestry and fishing A Agriculture, forestry, hunting, and fishing

C Mining and quarrying B Mining and quarrying B Mining and quarrying

D Manufacturing C TOTAL MANUFACTURING

10-12 Food products and beverages; Tobacco product C10-C12 Food products, beverages and tobacco C1 Food products, beverages, and tobacco

13-15 Textiles, leather, wearing apparel C13-C15 Textiles, wearing apparel, leather and related products C2 Textiles, wearing apparel, leather, and related products

16 Wood and wood products (incl. furniture) C16-C18 Wood and paper products; printing and reproduction of recorded media

17-18 Paper and paper products, publishing & printing C16-C18 Wood and paper products; printing and reproduction of recorded media

19-22 Plastic and chemical products

C20_C21 Chemicals; basic pharmaceutical products

C20 Chemicals and chemical products

C21 Basic pharmaceutical products and pharmaceutical preparations

20-21 Unspecified chemical, petrolium products C19 Coke and refined petroleum products

22 Rubber and plastic products without automotive parts* C22_C23 Rubber and plastics products, and other non-metallic mineral products

229 Chemical products, unspecified

23 Glass, ceramics, stone, mineral products n.e.c. (without automotive parts*) C22_C23 Rubber and plastics products, and other non-metallic mineral products

24-28 Metal

24 Basic metals (iron, steel, aluminium, copper, chrome) C24_C25 Basic metals and fabricated metal products, except machinery and equipment

25
Metal products (without automotive parts*), except machinery and 

equipment
C24_C25 Basic metals and fabricated metal products, except machinery and equipment

28 Industrial machinery C28 Machinery and equipment n.e.c.

289 Metal, unspecified

26-27 Electrical-electronics C26_C27 Computer, electronic, optical products; electrical equipment

275 Household/ domestic appliances C27 Electrical equipment

271 Electrical machinery and apparatus n.e.c. (without automotive parts*)

260 Electronic components/devices

261 Semiconductors, LCD, LED (incl solar cells and solar thermal collectors)

262 Computers and peripheral equipment C26 Computer, electronic and optical products

263
Info communication equipment domestic and professional (TV, radio, CD, 

DVD-Players, pagers, mobile phones, VTR etc.) without automotive parts*

265 Medical, precision and optical instruments C26 Computer, electronic and optical products

279 Electrical machinery unspecified

29 Automotive C29_C30 Transport equipment

291 Motor vehicles, motor vehicle engines and bodies

293 Parts and accessories for motor vehicles:

2931 Metal products

2932 Rubber and plastic

2933 Electrical/electronics

2934 Glass

2939 Other

2999 Parts and accessories unspecified

299 Automotive unspecified

30 Other transport equipment C29_C30 Transport equipment

91 All other manufacturing branches C31-C33 Other manufacturing; repair and installation of machinery and equipment C8 Other manufacturing

F Construction F Construction F Construction

Sources: Data processing on World Robotics 2020 Report  and EU KLEMS Release 2019 Database.

C5 Metal and industrial machinery

C6 Electrical-electronics

C7 Automotive

IFR EU-KLEMS Final Dataset

C3 Wood and paper products; printing and reproduction of recorded media

19 Chemical products, pharmaceuticals, cosmetics

C4 Plastic, chemical, and other non-metallic products

Table 10. Industry Classification 
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Chapter 4. Empirical Analysis 

Chapter 2 illustrates the different results about the impact of industrial robotics on the 

economies of sectors and countries. The purpose of this analysis is to identify and quantify, in 

countries and industries included in our dataset, a long-run relationship between the use of 

industrial robots (captured by the IFR variables) and the main growth indicators from the EU 

KLEMS database, such as total factor productivity (TFP), value-added, employment share, the 

share of hours worked, and the labour share. Specifically, in accordance with part of the 

literature reviewed in Chapter 2, we expect to observe that an increase in the robotics variable 

leads to an increase in value-added and TFP, and to a reduction in the labour share. 

The starting equation of our model is the following one: 

𝑦𝑖𝑡 = 𝜇𝑖 + 𝛾𝑓𝑡 + 𝛽𝑖𝑅𝑂𝐵𝑂𝑇𝑖𝑡 + 𝜀𝑖𝑡    (5) 

Where: 

• 𝑦𝑖𝑡 represents the dependent variable for a specific country-industry combination 𝑖 at 

time 𝑡. In our model 𝑦𝑖𝑡 stands for each of the variables from the EU KLEMS database 

whose relationship with the industrial robotics variable we are investigating. 

• 𝜇𝑖 is the term which captures unobserved country and industry-specific fixed effects. 

• 𝑓𝑡 represents unobserved year-specific common factors, like the business cycle, the 

economic crisis, and other macroeconomic shocks. 

• 𝛽𝑖 measures the impact of 𝑅𝑂𝐵𝑂𝑇𝑖𝑡 on the dependent variable 𝑦𝑖𝑡. 𝑅𝑂𝐵𝑂𝑇𝑖𝑡 is the 

independent variable and represents the industrial robot density in the country-industry 

combination 𝑖 at time 𝑡. 

• 𝜀𝑖𝑡 is the error term or residual that represents the unexplained or random component of 

the model for individual 𝑖 at time 𝑡. It accounts for factors that are not captured by the 

other variables in the equation. 

To achieve the aim of this study and discover the existence of a non-spurious long-run 

relationship between robotics and the dependent variables, we conduct a panel cointegration 

analysis, following the empirical strategy employed by Herzer and Donaubauer (2018) who 

examine the long-run effect of foreign direct investments (FDI) on TFP. 
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4.1 Empirical Strategy 

Figures 14-19 represent the natural logarithm of the analysed variables by industry over the 

period 1996-2016. These figures illustrate that the individual time series of the analysed 

variables graphically present a trend, suggesting that they are non-stationary. The first step of 

the empirical analysis concerns precisely the identification of the variables that are non-

stationary. In its most basic form, stationarity refers to the absence of changes over time in the 

statistical characteristics of a process producing a time series. This does not mean that the series 

does not show variations during the observed years, but that the way it changes over time 

remains constant. Conversely, a non-stationary time series is one whose statistical 

characteristics change over time. Therefore, a time series containing a trend or seasonality is 

non-stationary. This is because trends and seasonality will always have an impact on the mean, 

variance, and other statistical properties of the series. To verify if it is correct to reasonably 

assume that the variables in our dataset are non-stationary, it is necessary to test the presence 

of a unit root. A unit root refers to a characteristic of time series data that exhibits a stochastic 

trend, implying that the variable does not revert to a stable mean over time. Therefore, the 

existence of a unit root suggests that the series has a long-term dependence on its past values 

and lacks stationarity, making it difficult to predict or analyse using traditional statistical 

methods. 

Once the assumptions concerning the non-stationarity of our variables are confirmed by the 

panel unit root tests (described in more detail in the next paragraphs), we need to demonstrate 

that the detected relationship is not spurious. In other words, we must establish that the 

correlation is not coincidental or unrelated. For this purpose, we need to check if the variables 

share a common unit root and thus, a common stochastic trend. This second step of our 

investigation is carried out by a panel cointegration analysis, useful to examine the long-term 

equilibrium relationship between the variables in the panel dataset. Specifically, a panel 

cointegration analysis allows for the investigation of common trends and co-movements among 

variables across multiple individuals or entities (such as the nine countries and the eleven 

industries in our dataset) over time. If we have one or more cointegrated variables, the error 

term in the regression is stationary, implying that no relevant non-stationary variables are 

omitted from the model. In fact, if a relevant non-stationary variable is omitted from the 

regression, it would introduce a spurious relationship, leading to a non-stationary error term. In 

this case, cointegration would not be found. Therefore, the estimates obtained through 

cointegrating regressions remain robust even if there are variables omitted from the 

cointegrating relationship. 
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To estimate the coefficients consistently and efficiently, in the case of cointegrated variables, 

we use the Dynamic Ordinary Least Squares (DOLS) which helps mitigate the problems 

associated with spurious regression and provides more reliable and meaningful results. One of 

the main properties of the DOLS estimator is that it is super-consistent and asymptotically 

unbiased, meaning that any endogeneity between the dependent and independent variables does 

not influence the estimated long-term coefficients. 

Although the presence of cointegration implies long-run causality in at least one direction, the 

estimation by DOLS does not give us any guarantee on this identified direction of causality. 

This means that, for example, a significant cointegrating relationship between the operational 

stock of robots and the labour share does not automatically imply that, in the long run, changes 

in the number of robots deployed cause changes in the labour share. The direction of causality 

can be reversed or operate in both directions at the same time. It is, therefore, necessary to 

conduct tests of causality and exogeneity, employing an Error Correction Model (ECM) and 

Granger causality tests. The ECM incorporates both the short-term dynamics and the long-term 

equilibrium properties of the variables and estimates the speed at which the variables adjust to 

deviations from their long-term relationship, capturing the error correction mechanism. In this 

way, the estimation of the ECM allows us to define the direction of the long-run causality. 

Granger causality is an approach which explores whether one time series can predict or provide 

relevant information about the dynamics of another time series. It is based on the idea that if a 

variable 𝑥 “Granger-causes” a variable 𝑦, the past values of 𝑥 should contain useful information 

for predicting future values of 𝑦 beyond what can be predicted using the past values of 𝑦 only 

(see Granger 1988). 
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Figure 14. Natural Logarithm of ROBOT by Industry over the Period 1996-2016 

 

Notes: The industries from left to the rights are: (1) Agriculture, forestry, hunting, and fishing; (2) Mining and quarrying; (3) Food products, 

beverages, and tobacco; (4) Textiles, wearing apparel, leather, and related products; (5) Wood and paper products; printing and reproduction 

of recorded media; (6) Plastic, chemical, and other non-metallic products (7) Metal and industrial machinery; (8) Electrical-electronics; (9) 

Automotive; (10) Other manufacturing; (11) Construction. 

 

Figure 15. Natural Logarithm of LABSHARE by Industry over the Period 1996-2016 

 

Notes: The industries from left to the rights are: (1) Agriculture, forestry, hunting, and fishing; (2) Mining and quarrying; (3) Food products, 

beverages, and tobacco; (4) Textiles, wearing apparel, leather, and related products; (5) Wood and paper products; printing and reproduction 

of recorded media; (6) Plastic, chemical, and other non-metallic products (7) Metal and industrial machinery; (8) Electrical-electronics; (9) 

Automotive; (10) Other manufacturing; (11) Construction. 
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Figure 16. Natural Logarithm of EMPESHARE by Industry over the Period 1996-2016 

 

Notes: The industries from left to the rights are: (1) Agriculture, forestry, hunting, and fishing; (2) Mining and quarrying; (3) Food products, 

beverages, and tobacco; (4) Textiles, wearing apparel, leather, and related products; (5) Wood and paper products; printing and reproduction 

of recorded media; (6) Plastic, chemical, and other non-metallic products (7) Metal and industrial machinery; (8) Electrical-electronics; (9) 

Automotive; (10) Other manufacturing; (11) Construction. 

 

Figure 17. Natural Logarithm of HSHARE by Industry over the Period 1996-2016 

 

Notes: The industries from left to the rights are: (1) Agriculture, forestry, hunting, and fishing; (2) Mining and quarrying; (3) Food products, 

beverages, and tobacco; (4) Textiles, wearing apparel, leather, and related products; (5) Wood and paper products; printing and reproduction 

of recorded media; (6) Plastic, chemical, and other non-metallic products (7) Metal and industrial machinery; (8) Electrical-electronics; (9) 

Automotive; (10) Other manufacturing; (11) Construction. 
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Figure 18. Natural Logarithm of TFP by Industry over the Period 1996-2016 

 

Notes: The industries from left to the rights are: (1) Agriculture, forestry, hunting, and fishing; (2) Mining and quarrying; (3) Food products, 

beverages, and tobacco; (4) Textiles, wearing apparel, leather, and related products; (5) Wood and paper products; printing and reproduction 

of recorded media; (6) Plastic, chemical, and other non-metallic products (7) Metal and industrial machinery; (8) Electrical-electronics; (9) 

Automotive; (10) Other manufacturing; (11) Construction. 

 

Figure 19. Natural Logarithm of VA by Industry over the Period 1996-2016 

 

Notes: The industries from left to the rights are: (1) Agriculture, forestry, hunting, and fishing; (2) Mining and quarrying; (3) Food products, 

beverages, and tobacco; (4) Textiles, wearing apparel, leather, and related products; (5) Wood and paper products; printing and reproduction 

of recorded media; (6) Plastic, chemical, and other non-metallic products (7) Metal and industrial machinery; (8) Electrical-electronics; (9) 

Automotive; (10) Other manufacturing; (11) Construction. 
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4.2 Empirical Analysis 

The methodology described above can be recapped in the following four major steps: 

• First, we need to verify if our variables show a long-run trend and thus, if they are non-

stationary, through the presence of a unit root. 

• Once established the non-stationarity of our variables, we test whether they share a 

common unit root, through a panel cointegration analysis. If our variables are 

cointegrated, we can detect a long run-relationship which is not spurious. 

• Then, we estimate the coefficients consistently and efficiently through Dynamic 

Ordinary Least Squares (DOLS). 

• To detect the direction of causality, we estimate the Error Correction Model (ECM) and 

assess the directional influences between variables through weak and strong exogeneity 

and Granger causality tests. 

 

4.2.1 Unit Root Tests 

The first step of the analysis consists in testing the presence of unit roots in the variables of 

interest. To deal with the issue of potential cross-sectional dependence because of omitted 

common factors, we employ a second-generation panel unit root test. Particularly, the test at 

stake is the cross-sectionally augmented panel unit test, known as CIPS (Cross-sectional Im, 

Pesaran, and Shin) test, proposed by Pesaran (2007). This test is developed to rule out the cross-

sectional dependence which occurs when the observations from different individuals or entities 

in the dataset are not independent but rather exhibit some form of mutual influence or 

correlation. To deal with this issue, the procedure is to increase the individual Augmented 

Dickey-Fuller (ADF)3 regressions with the cross-sectional averages of lagged levels and first 

differences of the individual series as proxies for the unnoticed common factors. The general 

equation to be estimated for each of our variables is the following one: 

𝛥𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖  𝑦𝑖𝑡−1 + 𝛾𝑖 𝛥𝑦𝑖𝑡 + 𝛿𝑖 𝑦𝑖𝑡−1 + 𝜀𝑖𝑡   (6) 

Where: 

 
3 The Augmented Dickey-Fuller (ADF) regression is a statistical test used to assess the presence of a unit root in 

a time series variable. It extends the traditional Dickey-Fuller test by including lagged differences of the variable 

as additional explanatory variables in the regression model. 
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• 𝛥𝑦𝑖𝑡 is the first difference of the dependent variable for a specific country-industry 

combination 𝑖 at time 𝑡. In other words, it represents the change in the variable 𝑦 from 

one period to the next. 

• 𝛼𝑖 is the intercept and it captures the baseline value of the first difference 𝛥𝑦𝑖𝑡 for 

country-industry combination 𝑖 when all the other variables are zero. 

• 𝛽𝑖 is the coefficient which measures the effect of 𝑦𝑖𝑡−1 on the current first difference 

𝛥𝑦𝑖𝑡 for country-industry combination 𝑖. 𝑦𝑖𝑡−1 is the lagged level of the dependent 

variable 𝑦. In other words, 𝛽𝑖 indicates how much the previous value of the variable 𝑦 

influences the change in 𝑦. 

• 𝛾𝑖 is the coefficient which measures the impact of 𝛥𝑦𝑖𝑡 on the first difference 𝛥𝑦𝑖𝑡 for 

country-industry combination 𝑖. 𝛥𝑦𝑖𝑡 is the average of the first difference across the 

sample. 

• 𝛿𝑖 is the coefficient that captures the effect of 𝑦𝑖𝑡−1 on the first difference 𝛥𝑦𝑖𝑡 for 

individual 𝑖. 𝑦𝑖𝑡−1 represents the cross-sectional average of the lagged levels of the 

dependent variable 𝑦 across the sample. 

• 𝜀𝑖𝑡 is the error term or residual that represents the unexplained or random component of 

the model for individual 𝑖 at time 𝑡. It accounts for factors that are not captured by the 

other variables in the equation. 

Following this statistical approach (Pesaran 2007; Burdisso and Sangiacomo 2016), we test the 

null hypothesis of the presence of a unit root in the panel data (and therefore the non-stationarity 

of the variable across both individual units and time) against the alternative hypothesis that the 

panel data does not have a unit root (and therefore the stationarity of the variable across both 

individual units and time). The two hypotheses can be expressed analytically in this form: 

𝐻0: 𝛽𝑖 = 0 for all 𝑖, versus the alternatives 

𝐻1: 𝛽𝑖 < 0 for 𝑖 = 1, … , 𝑁1, 

𝐻1: 𝛽𝑖 = 0 for 𝑖 = 𝑁1 + 1, 𝑁1 + 2 … , 𝑁,  with 0 < 𝑁1 ≤ 𝑁 

We first test the presence of a unit root in our variables in levels and then in their first 

differences. To state that our variables are non-stationary, the test should not reject 𝐻0 when 

variables are in levels, while it has to reject it when variables are in first differences. In this case 

we can point out that our variables are integrated of order 1 and non-stationary. 
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Table 11 reports the results of the CIPS tests for the levels and first differences of the series of 

our variables using one lag4. Comparing the values resulting from the test with the critical 

values at 1, 5, and 10 percent levels of significance, we reject 𝐻0 at all thresholds when variables 

are in levels. On the contrary, when we analyse the test results of the variables in first difference, 

we reject 𝐻0. Ultimately, we can state that all our selected variables have a unit root, so they 

are integrated of order 1, non-stationary, and exhibit a long-term trend. 

 

Table 11. Pesaran (2007) Panel Unit Root Tests         

     

 Variables CIPS Non-stationarity 

     

Levels 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 -2.267  ✓ 

First difference 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 -4.702 *** ✗ 

     

Levels 𝑙𝑛𝐸𝑀𝑃𝐸 -1.683  ✓ 

First difference 𝛥𝑙𝑛𝐸𝑀𝑃𝐸 -3.567 *** ✗ 

     

Levels 𝑙𝑛𝐻_𝐸𝑀𝑃𝐸 -1.907  ✓ 

First difference 𝛥𝑙𝑛𝐻_𝐸𝑀𝑃𝐸 -3.639 *** ✗ 

     

Levels 𝑙𝑛𝑉𝐴 -2.083  ✓ 

First difference 𝛥𝑙𝑛𝑉𝐴 -3.945 *** ✗ 

     

Levels 𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸 -2.048  ✓ 

First difference 𝛥𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸 -4.068 *** ✗ 

     

Levels 𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸 -2.363  ✓ 

First difference 𝛥𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸 -4.172 *** ✗ 

     

Levels 𝑙𝑛𝑇𝐹𝑃 -2.483  ✓ 

First difference 𝛥𝑙𝑛𝑇𝐹𝑃 -4.615 *** ✗ 

     

Levels 𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸 -2.098  ✓ 

First difference 𝛥𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸 -4.232 *** ✗ 

     

Levels 𝐿𝐴𝐵 -1.458  ✓ 

First difference 𝛥𝐿𝐴𝐵 -3.904 *** ✗ 

     

Levels 𝐶𝐴𝑃 -2.094  ✓ 

First difference 𝛥𝐶𝐴𝑃 -3.904 *** ✗ 

     
Notes: The panel has N = 99 observations (9 countries x 11 industries) and T = 21 (levels), T = 20 (first difference). 

*** Indicate the rejection of the null hypothesis of a unit root at the 1% level. 

 
4 Some variables are taken in natural logarithm. The industrial robotics variable 𝑅𝑂𝐵𝑂𝑇 is substituted by the 

natural logarithm of its moving average to three years (𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇) to smooth out fluctuations. 
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4.2.2 Cointegration Tests 

Now that we know that the variables of our interest are non-stationary, we check if they share 

a common unit root, i.e., whether they are cointegrated. The presence of cointegration indicates 

that there exists a non-spurious long-term relationship between the variable under investigation. 

Specifically, we want to investigate the long-run relationship between the variable 

𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇, our industrial robotics diffusion level indicator, and the other variables. To deal 

with this purpose, we need to conduct a panel cointegration test, useful to assess common trends 

and co-movements among our variables, across countries and industries in the panel dataset. 

The test at hand is the bootstrap approach developed by Westerlund (2007) which provides a 

more accurate and robust inference for panel cointegration tests because it considers potential 

issues such as heterogeneity, dependence, and non-normality that may be present in the data. 

Westerlund (2007) test consists of a second-generation approach composed, in turn, of two 

group of two tests. The first ones (𝐺𝜏 and 𝐺𝛼, using the nomenclature in Westerlund 2007) are 

designed to test the null hypothesis of no cointegration between the selected variables versus 

the alternative hypothesis that the panel is cointegrated as whole. The other two tests (𝑃𝜏 and 

𝑃𝛼) test the alternative that at least one cross-sectional unit in the panel dataset is cointegrated. 

Therefore, to conclude that we are in presence of a shared unit root and assess that our variables 

are cointegrated, we need to reject the null hypotheses of no cointegration in both the groups. 

We first conduct the Westerlund (2007) tests on the whole panel, but we do not find any 

evidence of panel cointegration between the robotics variable 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 and the other ones 

included in the panel dataset. Therefore, we choose to focus our investigation at the industry-

level, following the approach of several authors reviewed in this dissertation (see Table 3 from 

Chapter 2 for a summary) who conduct the analysis among the different sectors. Particularly, 

we decide to include in our industry level analysis only manufacturing sub-sectors, excluding 

Agriculture, Mining, and Construction industries. Moreover, as shown by IFR (2022), the 

manufacturing industry is one of the sectors with the longest and highest tradition of 

implementation of industrial robots and several authors find significative results focusing on 

this industry in their works (e.g., Dauth et al. 2017, Acemoglu et al. 2020, Humlum 2021, and 

Dottori 2021). Therefore, conducting the analysis at a manufacturing sub-sector level may lead 

to more interesting outcomes. 
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With the new adjustments, we find some significative evidence of cointegration between 

𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 and some other variables in the automotive sub-industry. Specifically, Table 12 

reports results of the Westerlund (2007) tests for this sector. When we test the presence of 

cointegration between 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 and variables 𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸, 𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸, 

𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸, 𝑙𝑛𝑉𝐴, and 𝑙𝑛𝑇𝐹𝑃, 𝐺𝜏 and 𝑃𝜏 tests strongly reject the null hypothesis of no 

cointegration at 1 and 5 percent levels of significance. At this point, we can state that a long-

term relationship, which is not spurious, among 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 and the variables listed above 

exists. Indeed, it could also be true the opposite (𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 may be influenced by the other 

variables) or we can be in the presence of mutual influence (𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 and the other 

variables explain each other). In fact, as mentioned above, the panel cointegration tests 

proposed by Westerlund (2007) do not provide any information about the direction of causality. 

In the next paragraphs, to deal with this issue, first, we estimate the cointegration relationship 

through Dynamic OLS (DOLS), and an Error Correction Model (ECM) followed by a series of 

Granger causality tests. 

 

Table 12. Westerlund (2007) Cointegration Tests in the Automotive Industry  

       

 𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸 𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸 𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸 𝑙𝑛𝑉𝐴 𝑙𝑛𝑇𝐹𝑃  

       

𝐺𝜏 
-3.770 *** -3.815 *** -3.252 *** -3.485 ***  -3.529 ***  

(0.000) (0.000) (0.001) (0.000) (0.000)  

𝐺𝛼 -9.008 -8.979  -9.137  -7.409 -9.580  

(0.908) (0.910) (0.898) (0.979) (0.858)  

𝑃𝜏 -9.322 *** -10.425 *** -8.413 *** -9.045 *** -9.233 ***  

(0.000) (0.000) (0.009) (0.001) (0.001)  

𝑃𝛼 -8.900 -9.422 -8.653 -7.382 -4.951  

(0.506) (0.405) (0.554) (0.776) (0.974)  
 

      
Notes: Bootstrap p values (based on 100 replications) in parentheses. 

*** Indicate the rejection of the null hypothesis of no cointegration at the 1% level. 

 

4.2.3 Long-Run Relationship 

Considering that in the previous step, we found significant evidence of cointegration only in 

the automotive sector, we opt to continue the analysis focusing only on this industry. Therefore, 

as a third step, we estimate the long-run cointegration relationship between 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 and 

the other variables, through the Dynamic Ordinary Least Squares (DOLS), following the 

approach developed by Kao and Chiang (2000). This estimator is super-consistent and, unlike 
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the standard OLS approach, is asymptotically unbiased and normally distributed, even if we are 

in presence of endogenous regressors. DOLS estimator accounts for potential autocorrelation 

and endogeneity, by augmenting the cointegrating regression with lead (future values of the 

independent variable), lag, and current values of the first differences. Therefore, in analytical 

terms, the specification of the DOLS regression estimated in the analysis is as follows: 

𝑙𝑛𝑦𝑖𝑡 = 𝜇𝑖 + 𝛾𝑓𝑡 + 𝛽𝑖𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 + ∑ 𝜆𝑖𝑗𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡
𝑘
𝑗=−𝑘 + 𝜀𝑖𝑡  (7) 

Where: 

• 𝑙𝑛𝑦𝑖𝑡 represents the dependent variable whose relationship with the robotic variable we 

are investigating (e.g., 𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸, 𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸, etc.). 

• 𝜇𝑖 represents country-specific fixed effects or unobserved factors that are unique to each 

country 𝑖, but remain constant over time. These effects capture country-specific 

characteristics that may affect the dependent variable 𝑙𝑛𝑦𝑖𝑡. 

• f𝑡 represents time-specific fixed effects or unobserved factors that are unique to each 

time 𝑡 but are the same across countries. These effects capture time-specific factors that 

may influence the dependent variable 𝑙𝑛𝑦𝑖𝑡. 

• 𝛽𝑖 is the coefficient which measures the impact of 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 on the investigated 

dependent variable. 

• ∑ 𝜆𝑖𝑗𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡
𝑘
𝑗=−𝑘  represents the sum of lagged changes in 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 for 

a range of 𝑘 periods. It captures the potential lagged effects of changes in 

𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 on 𝑙𝑛𝑦𝑖𝑡. The coefficient 𝜆𝑖𝑗 measures the magnitude and direction of 

these effects. 

• 𝜀𝑖𝑡 is the error term or residual that represents the unexplained or random component of 

the model for individual 𝑖 at time 𝑡. It accounts for factors that are not captured by the 

other variables in the equation. 

Table 13 reports the coefficients estimated with the DOLS approach. In row (1) the lag order 

for the dependent variables is set to 2 using automatic lag selection, meaning that the DOLS 

model is considering two lagged values of the dependent variable in the estimation. Moreover, 

in row (1), the number of leads is set to 1, meaning that no future values of the independent 

variable are included. In row (2), both the lag order and the number of leads are set to 1. These 

options allow the DOLS specification to automatically ascertain the appropriate lag order for 

the dependent variable and exclude future values of the independent variable, helping to avoid 

potential endogeneity issues and improve the model’s reliability. 
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As shown by the data, the p value in the model specifications of the dependent variables 

𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸, 𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸, and 𝑙𝑛𝑉𝐴 is lower than the common significance level of 5 

percent and suggests that the coefficients of 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 are highly statistically significant. 

In the model specification for 𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸 the coefficient of 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 is not 

statistically significant. Nevertheless, we can still comment on the results, bearing in mind that 

the coefficient is representative of all nine countries and could therefore have distortive effects 

which would not arise if the countries were taken individually. Therefore, we can state that 

almost all variables have a significant long-term relationship with 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡. Particularly, 

considering row (2), a one percent increase in 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 leads to a 0.008, 0.464 and 0.465 

percentage decrease respectively in 𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸, 𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸, and 𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸, and to 

a 0.245 and 0.089 percentage increase respectively in 𝑙𝑛𝑉𝐴 and 𝑙𝑛𝑇𝐹𝑃. Consequently, we can 

observe how the effects on quantitative labour variables, such as the number of employees 

(𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸) and the number of hours worked (𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸), are more evident than the 

impact on the labour share, a variable that takes into account a quality aspect of the labour such 

as the salaries of the employees. This lower decrease in the labour share can be partly explained 

by trade unions polices who may mitigate the direct effects on salaries by requesting wage 

adjustments (see Dauth et al. 2017 and Dottori 2021). 

Table 13. The Long-Run Relationship: DOLS Estimates         

      

 Dependent variables 

 
     

 𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸 𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸 𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸 𝑙𝑛𝑉𝐴 𝑙𝑛𝑇𝐹𝑃 

      

(1) 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 
-0.097 -0.480 *** -0.480 *** 0.253 *** 0.098 ** 

(0.180) (0.000) (0.000) (0.000) (0.028) 

No. of countries 9 9 9 9 9 

No. of observations 153 153 153 153 153 

      

(2) 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 
-0.008 -0.464 *** -0.465 ***  0.245 *** 0.089 ** 

(0.267) (0.000) (0.000) (0.000) (0.035) 

No. of countries 9 9 9 9 9 

No. of observations 162 162 162 162 162 

      
Notes: p values in parentheses. *** (**) Indicate significance at the 1% (5%) level.  
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4.2.4 Long-Run Causality 

Even if cointegration implies Granger causality in at least one direction, the DOLS coefficients 

estimated in the previous paragraph do not tell us anything about this direction of causality. 

This means that, at this point of the empirical analysis, we cannot yet determine whether the 

variables are influenced by 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 or vice versa, or whether both affect each other. 

Moreover, we don’t know if a short-run relationship exists too. Therefore, we must proceed 

with next and final step, using the Error Correction Model (ECM). The ECM is able to describe 

the dependent variable and the independent variable changes in the short run consistently with 

a long-term cointegrating relationship. 

As a preliminary first step, we need to reduce as much as possible the issue of cross-sectional 

dependence, that is unobserved effects or country-industry common shocks that could make 

endogenous the relationship between the variables. To control for cross-sectional dependence, 

we use an econometrics technique concerning the demeaning of the dependent set of variables 

in the panel dataset (Pedroni 1999). In this way, we calculate six new variables (𝛥𝑙𝑛𝑦𝑖𝑡) simply 

subtracting cross-section averages (𝑦𝑡) from the observations (𝑦𝑖𝑡) of each of the variables 

analysed so far (𝑙𝑛𝑀𝐴_𝑅𝑂𝐵𝑂𝑇, 𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸, 𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸, 𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸, 𝑙𝑛𝑉𝐴, and 

𝑙𝑛𝑇𝐹𝑃). As a second preliminary step, we take the new variables in their first differences to 

control for year-fixed common factors specific for countries and industries. 

To test for causality, we employ the Pooled Mean Group (PMG) regression developed by 

Pesaran, Shin, and Smith (1997, 1999). PMG consists of a Panel Vector Error Correction Model 

(PVCEM), that is an econometrics technique which employs the long-term cointegrating 

regression coefficient estimated with the DOLS to compute the lagged Error Correction (EC) 

term. The EC term corresponds to the error-correcting speed of adjustment to the long-run 

equilibrium. We obtain it from the long-run relationship equation estimated with the DOLS 

coefficient of each variable (see Table 12): 

𝑒𝑐𝑖𝑡 = 𝑙𝑛𝑦𝑖𝑡 − (𝛽𝑖𝑙𝑛𝑥𝑖𝑡 + 𝜇𝑖)    (8) 

To establish the long-run causality between our variables we need now to estimate two 

equations in which we incorporate the lagged EC term. 

𝛥𝑙𝑛𝑦𝑖𝑡 = 𝜇1𝑖 + 𝑎1𝑒𝑐𝑖𝑡−1 + ∑ 𝛽11𝑗𝛥𝑙𝑛𝑦𝑖𝑡−𝑗 +  ∑ 𝛽12𝑗𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡−𝑗 + 𝑒𝑖𝑡
𝑦𝑘

𝑗=1
𝑘
𝑗=1    (9.1) 

𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 = 𝜇2𝑖 + 𝑎2𝑒𝑐𝑖𝑡−1 + ∑ 𝛽21𝑗𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡−𝑗 +  ∑ 𝛽22𝑗𝛥𝑙𝑛𝑦𝑖𝑡−𝑗 + 𝑒𝑖𝑡
𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑘

𝑗=1
𝑘
𝑗=1  (9.2) 



72 

 

In the first one, 𝛥𝑙𝑛𝑦𝑖𝑡 represents one of the demeaned dependent variables taken in first 

difference, while 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 is the main regressor, demeaned as well. In the second one, 

on the contrary, 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇𝑖𝑡 is the demeaned dependent variable, while 𝛥𝑙𝑛𝑦𝑖𝑡 is the main 

regressor, demeaned as well. At this point we need to check the significance of the two 

coefficients 𝛽12𝑗 and 𝛽22𝑗. 

As a second step, we need to look at the estimated coefficient of the lagged EC terms in all the 

equations: 

• If the coefficient is not significant, it means that the regressor is weakly exogenous in 

the considered equation and therefore, there is no long-run Granger causality between 

the two variables. 

• If the coefficient is statistically different from zero and negative in one equation, there 

is Granger causality between the two variables in the direction indicated by the 

coefficient of the independent variable in the regression. 

• If the coefficient is statistically different from zero and negative in both the equations, 

the long-run Granger causality operates in both directions, so there is mutual causality. 

Table 14 reports the PVECM estimates and the results of the short-run Granger causality, and 

weak and strong exogeneity tests (explained in detail below). Specifically, in the upper part of 

the table, we summarise parameters and test results of equation (9.1), that is when 

𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 is used as the independent explanatory variable and the other ones are the 

dependent variables. The lower part of the table, instead, reports the estimates and results of 

equation (9.2), that is when 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 is the dependent variable, while the other ones are 

used as explanatory variables. First, we need to check if the coefficients of our variables are 

significant. Looking at 𝛽12𝑗 and 𝛽22𝑗, we observe that they are statistically different from zero 

in both the equations for 𝛥𝑙𝑛𝑀𝐴_𝑅𝑂𝐵𝑂𝑇, 𝛥𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸, 𝛥𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸, and 

𝛥𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸. For 𝛥𝑙𝑛𝑉𝐴 and 𝛥𝑙𝑛𝑇𝐹𝑃, instead, the coefficients are significant only in the 

second specification when 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 is the dependent variable. 

Following the instructions summarised above, we now compare the EC terms of the two 

equations. As data shows, for 𝛥𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸, 𝛥𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸, and 𝛥𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸 variables, 

EC terms are statistically different from zero and negative in both the equations. Therefore, we 

can state that long-run Granger causality operates in both directions for these three variables. 

Particularly, looking at the 𝛽12𝑗 and 𝛽22𝑗 coefficients, a one percent increase in 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 

leads to a percentage decrease of 0.282 in 𝛥𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸, and of 0.208 for both 
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𝛥𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸 and 𝛥𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸. Conversely, the one percent increase contribution to 

𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 of these three variables when they are taken as independent variables is 

respectively 15.41 percent, -2.168 percent, and -2.612 percent. Concerning 𝛥𝑙𝑛𝐸𝑀𝑃𝐸𝑆𝐻𝐴𝑅𝐸 

and 𝛥𝑙𝑛𝐻𝑆𝐻𝐴𝑅𝐸 variables, there is a long-run reciprocal relationship: a higher exposition to 

industrial robotics reduces the weight of labour on value-added and vice versa. This means that 

as the weight of labour decreases, automotive firms increasingly invest in industrial robotics 

which in turn reduce this weight. It is interesting to note, instead, that an increase in 

𝛥𝑙𝑛𝐿𝐴𝐵𝑆𝐻𝐴𝑅𝐸 leads to an increase in the industrial robotics variable 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇. 

Therefore, on one side, robotics causes a decrease in the labour compensation, but, on the other 

side, a higher labour compensation induces automotive firms to invest more in robotics. With 

regard to the variables 𝛥𝑙𝑛𝑉𝐴 and 𝛥𝑙𝑛𝑇𝐹𝑃 we find a negative long-run causality between 

𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 and these variables. Particularly, a one percent increase in 𝛥𝑙𝑛𝑉𝐴 and 𝛥𝑙𝑛𝑇𝐹𝑃 

leads to a decrease in 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 of respectively 9.848 percent and 46.161 percent. These 

last results suggest that lower productivity may enhance investments in industrial robotics. 

Moreover, we perform three additional tests to check for weak exogeneity, short-run Granger 

causality, and for strong exogeneity. For the weak exogeneity, we use a χ2 statistics to test the 

null hypothesis that the EC term’s adjustment coefficients (𝑎1 and 𝑎2 in equations (9.1) and 

(9.2)) are equal to zero. If the adjustment coefficient is not significant in equation (9.1) – which 

investigates the relationship in the direction 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 → 𝛥𝑙𝑛𝑦 – it means that 𝑙𝑛𝑦 is 

weakly exogenous and 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 has no long-term causal effect on the dependent variable. 

Hence, the long-run causality runs from 𝑙𝑛𝑦 to 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇. The same findings apply to 

equation (9.2) in which the relationship goes in the direction 𝛥𝑙𝑛𝑦 → 𝛥𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇: if the 

coefficient is not significant, 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇 is weakly exogenous and 𝑙𝑛𝑦 has no long-term 

causal effect on 𝑙𝑛𝑀𝐴𝑅𝑂𝐵𝑂𝑇. If both coefficients are different from zero, the long run Granger 

causality runs in both directions. Looking at the results reported in Table 14, we observe that 

all coefficients are strongly different from zero, rejecting the null hypothesis of exogeneity and 

bringing further evidence of the presence of a non-spurious long-run relationship between the 

variables which runs in both directions. 

To test for the presence of short-run Granger causality, we use a χ2 statistics in which the null 

hypothesis is that the coefficient of the demeaned independent variable is equal to zero. If we 

reject the null hypothesis, therefore, we are in presence of Granger causality also in the short 

run. Results show that none of the coefficients are statistically significant, meaning that Granger 

causality in the short run is not observable and it requires more time to see the impact of the 
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variables. Since a relatively short number of years is included in our panel, we set a lag of a 

single year. 

Finally, to test for strong exogeneity, we employ a χ2 statistics in which the null hypothesis tests 

that adjustment coefficient and the coefficient of the demeaned variable are both equal to zero. 

This test does not distinguish between short-run and long-run causality, but as reported in Table 

14, we observe that we strongly reject the null hypothesis for all variables and both the 

specifications, getting proof again that Granger causality runs in both directions. 
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Table 14. PVECM Estimates and Causality Tests         

      

𝜟𝒍𝒏𝑴𝑨𝑹𝑶𝑩𝑶𝑻 → 𝜟𝒍𝒏𝒚 𝜟𝒍𝒏𝑳𝑨𝑩𝑺𝑯𝑨𝑹𝑬 𝜟𝒍𝒏𝑬𝑴𝑷𝑬𝑺𝑯𝑨𝑹𝑬 𝜟𝒍𝒏𝑯𝑺𝑯𝑨𝑹𝑬 𝜟𝒍𝒏𝑽𝑨 𝜟𝒍𝒏𝑻𝑭𝑷 

      

𝛽12𝑗 
-0.282 *** 

(0.000) 

-0.208 ** 

(0.037) 

-0.208** 

(0.011) 

-0.001 

(0.941) 

-0.0003 

(0.759) 

EC 
-0.432 *** 

(0.000) 

-0.447 *** 

(0.000) 

-0.407 *** 

(0.000) 

-0.280 *** 

(0.001) 

-0.550 *** 

(0.000) 

Demeaned data Yes Yes Yes Yes Yes 

No. of countries 9 9 9 9 9 

No. of observations 180 180 180 180 180 

Weak exogeneity test 
21.18 *** 

(0.000) 

24.80 *** 

(0.000) 

17.03 *** 

(0.000) 

12.11 *** 

(0.001) 

55.34 *** 

(0.000) 

Short run Granger 

causality test 

0.89 

(0.344) 

0.89 

(0.346) 

0.55 

(0.459) 

1.01 

(0.315) 

0.98 

(0.323) 

Strong exogeneity test 
21.31 *** 

(0.000) 

24.87 *** 

(0.000) 

17.07 *** 

(0.000) 

12.11 *** 

(0.002) 

63.35 *** 

(0.000) 

      

𝜟𝒍𝒏𝒚 → 𝜟𝒍𝒏𝑴𝑨𝑹𝑶𝑩𝑶𝑻 𝜟𝒍𝒏𝑳𝑨𝑩𝑺𝑯𝑨𝑹𝑬 𝜟𝒍𝒏𝑬𝑴𝑷𝑬𝑺𝑯𝑨𝑹𝑬 𝜟𝒍𝒏𝑯𝑺𝑯𝑨𝑹𝑬 𝜟𝒍𝒏𝑽𝑨 𝜟𝒍𝒏𝑻𝑭𝑷 

      

𝛽22𝑗 
15.410 *** 

(0.000) 

-2.168 ** 

(0.017) 

-2.612 *** 

(0.001) 

-9.848 *** 

(0.000) 

-46.161 *** 

(0.000) 

EC 
-0.224 *** 

(0.001) 

-0.267 *** 

(0.001) 

-0.275 *** 

(0.001) 

-0.242 *** 

(0.000) 

-0.183 *** 

(0.007) 

Demeaned data Yes Yes Yes Yes Yes 

No. of countries 9 9 9 9 9 

No. of observations 180 180 180 180 180 

Weak exogeneity test 
11.25 *** 

(0.001) 

19.12 *** 

(0.000) 

16.85 *** 

(0.000) 

15.40 *** 

(0.000) 

7.30 *** 

(0.007) 

Short run Granger 

causality test 

1.90 

(0.169) 

0.02 

(0.886) 

0.000 

(0.970) 

0.51 

(0.475) 

0.25 

(0.615) 

Strong exogeneity test 
12.16 *** 

(0.002) 

20.44 *** 

(0.000) 

18.06 *** 

(0.000) 

17.19 *** 

(0.000) 

7.49 ** 

(0.024) 

      
Notes: p values in parentheses. *** (*) Indicate significance at the 1% (5%) level. Short run Granger causality, weak and strong exogeneity 

tests are computed as a χ2 statistics. 
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Conclusions 

The implementation of advanced technologies, such as industrial robotics, has changed the 

world from different points of view. Like every disruptive innovation, it brought benefits, but 

also broke balances previously achieved and reached new ones. On the one side, industrial 

robots positively contribute to the productive process by enhancing productivity, precision, and 

quality of the product, by reducing costs of production and hours worked, and by relieving man 

from difficult, dangerous, or repetitive operations. On the other side, industrial robots are 

expected to displace the labour component by reducing the employment and the labour share 

depending on direct effects that robots adoption has on the industry which implements them 

and indirect effects across the other industries (Author and Salomons 2018). As evidenced by 

the literature reviewed in Chapter 2, there are no unique results about the impact of robotics on 

this aspect. There are some studies which do not find significant evidence about the general 

effect (Acemoglu et al. 2022 at the U.S. firm level), while others find a negative impact 

(Acemoglu and Restrepo 2020 for the United States; Acemoglu et al. 2020 for France). 

Furthermore, the impact can be augmented or mitigated according to country or industry-

specific complementarities (Dottori 2021). 

We investigate the existence of a long-run relationship between industrial robotics and other 

growth indicators such as total factor productivity and value-added, and other variables such as 

the labour share, the employment share, and the share of hours worked. More precisely, we 

conduct a panel cointegration analysis at an industry level among nine developed, mostly 

European countries, particularly focusing on the manufacturing industry’s sub-sectors. As 

shown by IFR (2022), the manufacturing industry is one of the sectors with the longest and 

highest tradition of implementation of industrial robots and several authors find significative 

results focusing on this industry in their works (e.g., Dauth et al. 2017, Acemoglu et al. 2020, 

Humlum 2021, and Dottori 2021). We find evidence of the effectiveness of this procedure from 

the results of our panel cointegration analysis because when it is conducted on the whole panel 

it does not generate significant coefficients. Conducting the analysis at the sectoral level, 

instead, brings us statistically significant results for the automotive industry. It is not a 

coincidence: automotive is the industry which, until 2020, adopted the largest stock of industrial 

robots, surpassed in recent years only by the electrical-electronics industry (IFR 2022). 

Talking about the outcomes of the analysis, through the Dynamic Ordinary Least Squares 

(DOLS), we found that there is a non-spurious long-run relationship between the industrial 

robot density and the labour share, the employment share, the share of hours worked, TFP, and 
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value-added. Specifically, an increase in industrial robot density leads to a decrease in the 

labour share, the employment share, and the share of hours worked, and to an increase in value-

added and total factor productivity (TFP). Additionally, we test for presence of short-run and 

long-run Granger causality. We found no evidence of a short-run relationship among our 

variables, suggesting that it requires more time to see the impact of industrial robotics on growth 

and labour components. Conversely, the weak and strong exogeneity tests brought us further 

evidence of the presence of a non-spurious long-run mutual relationship between the variables. 

An aspect we do not consider in the analysis concerns the skills composition of the labour 

components among the industries. Consistent part of the reviewed literature (Graetz and 

Michaels 2018; Compagnucci et al. 2019; etc.), show that robots may have affected the 

employment share from a skills composition perspective, operating through a reallocation of 

workers across industries (Koch et al. 2021), but also in this case authors are not aligned on 

which employment share (high or low-skilled workers) and which sector (robot adopters or 

non-adopting sector) are the recipients of the migratory flow of workers. Therefore, conducting 

an analysis at a worker level could give us a more precise explanation of the effects of industrial 

robots on the labour share. 

In addition, it is important to underline that, despite the quick growth in the last decades of 

industrial robotics, this technology has a lower weight relatively to the whole capital stock of 

manufacturing industries which is composed for a major part of traditional machinery 

(Acemoglu et al. 2022; Fontagné 2023). Therefore, the long-run relationship could become 

more evident when the stock of industrial robots reaches a certain threshold, as reported by 

Acemoglu et al. (2022). 
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