
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Cybersecurity

AGIR: Automatic Generation of

Intelligence Reports

Supervisor Master Candidate
Prof. Mauro Conti Filippo Perrina
University of Padova

Co-supervisors Student ID
Dr. FrancescoMarchiori 2057216
Dr. Nino Vincenzo Verde

Academic Year
2022-2023

ii

Abstract

Natural Language Generation (NLG) tools are becoming increasingly important in today’s
fast-paced business environment. These tools can save organizations significant amounts of
time and resources by automating the process of generating written content from structured
data. NLG is widely employed in many fields producing computer-generated medical reports,
weather forecasts or newspaper articles, however, little work has been done so far in the cyber-
security field. Nowadays, security analysts have to manually write reports starting from struc-
tured data such as STIX (StructuredThreat Information eXpression) graphs and network logs,
this task is very time-consuming.
In this thesis, carried out in collaboration with Leonardo S.p.A., we implement AGIR (Auto-
matic Generation of Intelligence Reports), a NLG tool able to write intelligence reports start-
ing from the JSON representation of STIX graphs. The purpose of AGIR is to assist analysts
in the report writing process by providing them significant information and starting them off
with a report that is as close as possible to an ideal final version of the report.
AGIRproduces the final report in a two-stage pipeline. In the first step, it uses a template-based
approach to build a baseline text that, in the second phase, is further refined through the use of
ChatGPTAPIs. The generated reports are then evaluated through the syntactic log-odds ratio
(SLOR), a referenceless model-dependent metric for fluency evaluation, and a questionnaire-
based human evaluation on three dimensions: correctness, fluency and utility. The generated
reports overall reach good scores on all three levels, but there is room for improvement in the
implementation of both steps. The first step introduces maintainability issues that can be cir-
cumvented by using a neural-based approach for the creation of the draft text. The second step
can be improved by using a free and local deep learning model.

iii

iv

Contents

Abstract iii

List of figures vii

List of tables ix

Listing of acronyms xi

1 Introduction 1

2 Background 3
2.1 Cyber Threat Intelligence . 3

2.1.1 CTI types . 4
2.1.2 Threat Intelligence Life Cycle . 4
2.1.3 Pyramid of Pain . 5
2.1.4 CTI reports . 7

2.2 Structured Threat Information eXpression 8
2.2.1 STIX Entities . 9
2.2.2 STIX Relationship Objects . 10
2.2.3 Example of a STIX Graph . 13

3 RelatedWorks 17

4 Methodology 21
4.1 Input . 21
4.2 Content selection and text generation . 23
4.3 ChatGPT APIs . 25
4.4 Output . 25
4.5 Full Example . 27

5 Evaluation 35
5.1 Quantitative evaluation . 36
5.2 Qualitative evaluation . 37

5.2.1 SLOR . 37
5.2.2 Fluency, Correctness and Utility 38

v

6 Conclusion 41

Appendix A Questionnaire results divided by report type 43

References 45

Acknowledgments 49

vi

Listing of figures

2.1 Threat Intelligence Lifecycle. 6
2.2 Pyramid of Pain. 7
2.3 Example of a simple STIX Graph. 13

3.1 Example of template text generation. 18

4.1 AGIR pipeline. 22
4.2 Example of a ChatGPT interaction. 26
4.3 Report of the graph in Figure 2.3. 31
4.4 Overview and stats section of a complete subject report. 32
4.5 Relationship and TTP section of a complete subject report. 33
4.6 IOC and useful resources of a complete subject report. 34

vii

viii

Listing of tables

2.1 STIX entities and their description. 11
2.2 STIX relationships supported by AGIR. 12

5.1 AGIR accuracy results. 37
5.2 Average and standard deviation of SLOR scores. 39
5.3 Questionnaire results grouped by dimension. 40

A.1 Questionnaire results for overview report. 43
A.2 Questionnaire results for subject report. 44
A.3 Questionnaire results for timeline report. 44
A.4 Questionnaire results for vulnerability report. 44

ix

x

Listing of acronyms

AGIR Automatic Generation of Intelligence Reports

API Application Programming Interface

APT Advanced Peristent Threats

BLEU Bilingual Evaluation Understudy

CTI Cyber Threat Intelligence

CTIS Cyber Threat Intelligence System

CVSS Common Vulnerability Scoring System

IOC Indicator Of Compromise

JSON JavaScript Object Notation

LM Language Model

METEOR Metric for Evaluation of Translation with Explicit ORdering

NLG Natural Language Generation

NLP Natural Language Processing

OSINT Open Source Intelligence

RNN Recurrent Neural Networks

ROUGE Recall-Oriented Understudy for Gisting Evaluation

SCO Stix Cyber-Observable Object

SDO Stix Domain Object

SLOR Syntactic log-odds ratio

SOC Security Operation Center

SRO Stix Relationship Object

xi

STIX Structured Threat Information eXpression

TI Threat Intelligence

TTP Tactics Techniques and Procedures

WPSLOR Word-Piece Syntactic log-odds ratio

xii

1
Introduction

In recent years, the world has witnessed an exponential increase in the number and sophistica-
tion of cyberattacks. Cyberattacks can range from simple phishing emails to complex attacks
carried out by advanced persistent threats (APTs), which are highly sophisticated and stealthy
cybercriminal groups that use a range of tactics, such as social engineering, malware and exploit
kits to infiltrate and compromise targeted networks.

To defend against these threats, organizations need to have robust cybersecurity strategies
that include the collection, analysis and dissemination of Cyber Threat Intelligence (CTI).
CTI is a process that involves collecting and analyzing data from various sources, such as net-
work logs, socialmedia anddarkweb forums, to identify, understand andmitigate cyber threats.
CTI provides organizations with actionable insights into the tactics, techniques, and proce-
dures (TTPs) usedby cybercriminals, aswell as the indicators of compromise (IOCs) associated
with their attacks. By leveraging CTI, organizations can improve their situational awareness,
detect and respond to attacks more quickly reducing their overall risk exposure.

One important aspect of CTI is the production of security reports. Security reports are
documents that provide detailed information about cyber threats, such as the TTPs used by
cybercriminals, the vulnerabilities they exploit, and the IOCs associated with their attacks. Se-
curity reports are critical for sharing CTI within an organization and with external partners,
such as law enforcement agencies and other cybersecurity organizations. However, writing a
security report can be an incredibly time-consuming and resource-intensive task, requiring an-
alysts to manually gather and analyze large amounts of data before summarizing their findings

1

in a clear and concise report.
To address this challenge, NLG techniques have been developed to automate the process

of report writing. These techniques can help security analysts to save time and resources by
automating the process of generating written content from structured data. However, despite
the significant benefits of NLG, little work has been done so far in the cybersecurity field to
develop and evaluate NLG tools for the generation of security reports.
The objective of this thesis is to address this gap in the literature by developing and evaluat-

ing AGIR, a NLG tool that can produce cybersecurity reports starting from the JSON repre-
sentation of STIX graphs. This work has been done in collaboration with Leonardo S.p.A., an
Italianmultinational company active in different sectors. In particular, their cybersecurity divi-
sion is specialized in CTI and through the construction of a Security Operation Center (SOC)
and the launch of a new software called “Cyber Threat Intelligence System” (CTIS) they aim
at protecting institutions, enterprises and citizens. AGIR constitutes a micro-service of the
CTIS platform, through which clients will be able to automatically generate reports starting
from STIX graphs contained in the CTIS knowledge base.
AGIR is able to generate cybersecurity reports using a two-stage pipeline. In the first step, it

generates an automatic report using a template-based approach and then this report is refined
using ChatGPT APIs to improve its fluency. At the moment, the tool is able to produce four
different types of reports but the pipeline is easily extendable to other types of reports.
This thesis is organized as follows. In Chapter 2, we will introduce some key CTI concepts.

In Chapter 3, we will talk about NLG and its state of the art in the cybersecurity field, then in
Chapter 4, we will discuss the implementation of AGIR, going into the details of its pipeline.
In Chapter 5 we will evaluate the model using both human evaluation and SLOR metric. Fi-
nally, Chapter 6 concludes this work.

2

2
Background

In this chapter, we introduce Cyber Threat Intelligence. In particular, we will focus on how
CTI information is exchanged through the use of STIX graphs, in order to fully understand
the inputs of AGIR.

2.1 Cyber Threat Intelligence

Crowdstrike, an American security company, defines Threat Intelligence as: “Data that is col-
lected, processed, and analyzed to understand a threat actor’s motives, targets, and attack be-
haviours. Threat intelligence enables faster, more informed, data-backed security decisions and
change in the behaviour from reactive to proactive in the fight against threat actors.” [1]. From
the first part of the definition, we can clearly understand that Threat Intelligence is a process
that starts by collecting data from different sources and aims to understand the habits of attack-
ers. Sources of threat intelligence data include open source intelligence, socialmedia, device log
files, internet traffic logs and data derived from the deep and dark web. From the second part
of the definition, we can realize the importance of threat intelligence. Nowadays, threat intelli-
gence has become a crucial part of companies’ cyber security strategy since it allows them to be
more proactive in their approach and determine which threats represent the greatest risks to a
business. This puts companies on a more proactive front, actively trying to find their vulnera-
bilities and preventing hacks before they happen.

3

2.1.1 CTI types

CTI programs can provide different types of intelligence based on the targeted audience and
what information it mainly focuses on. There are three types of CTI [2]:

• Strategic Intelligence: This less-technical, high-level threat intelligence provides an
overviewof the organization’s threat landscape. Theprimary audience targetedby strate-
gic threat intelligence is the non-technical audiences, like the companyboard of directors
and the executive-level security professionals. Strategic intelligence helps high-level staff
to understand the risks and vulnerabilities associatedwith the organization and the goals
of threat actors and provide preventivemechanisms. Based on the intelligence, it enables
executive staff to drive high-level organizational strategy.

• Tactical intelligence: This type of intelligence targets more technically proficient audi-
ences and focuses on the immediate future. It reveals simple indicators of compromise
(IoCs) such as: malicious domain names, URLs, IP addresses and unusual traffic. IT
teams can identify certain threats and mitigate the organization’s risks. Tactical intel-
ligence is simple and automated, which can be consumed through techniques like data
feeds andAPIs. Since IoCs can easily be changed or obsolete quickly, tactical intelligence
has a shorter lifespan than the other two types.

• Operational intelligence: Operational intelligence targets the cybersecurity profession-
als who are responsible for conducting daily operations in a SOC. It provides a more
in-depth understanding of how attackers plan, execute and maintain cyberattacks and
operations by understanding the attributes of adversaries likeTTPused for cyberattacks.
Operational intelligence helps improve threat monitoring, threat management and in-
cident response tasks. Since TTPs cannot be changed easily, operational intelligence
lasts longer than tactical intelligence. Still, there are challenges in accumulating oper-
ational Intelligence. For example, encrypted messaging apps like WhatsApp and Tele-
graph, used by attackers for communications, are not easy to access, and the language
some threat groups use can be difficult to decipher.

2.1.2 Threat Intelligence Life Cycle

From the previous paragraphs we have understood that threat intelligence is a continuous pro-
cess, and for this reason, is often referred to as a lifecycle (Figure 2.1). The threat intelligence
lifecycle provides a framework for your security teams to plan and implement their protective
tactics and strategies against malicious digital behaviours. There are six phases in the Cyber
Threat Intelligence Cycle [3, 4]:

4

1. Direction: The direction phase of the lifecycle is when you set goals for the threat intel-
ligence program. This involves understanding and articulating: the information assets
and business processes that need to be protected, the potential impacts of losing those
assets or interrupting those processes, the types of threat intelligence that the security
organization requires to protect assets and respond to threats and the priorities about
what to protect. Once high-level intelligence needs are determined, an organization can
formulate questions that channel the need for information into discrete requirements.

2. Collection: During TI collection, the intelligence team is gathering information and
context that fulfil the requirements laid out earlier. The intelligence is collected from
sources such as social media, deep and dark web, network data and other open source
intelligence (OSINT).

3. Processing: Processing is the transformation of collected information into a format us-
able by the organization. Almost all raw data collected needs to be processed in some
manner, whether by humans or machines. Different collection methods often require
different means of processing. For example, human reports may need to be correlated
and ranked, deconflicted, and checked.

4. Analysis: Analysis is a humanprocess that turns processed information into intelligence
that can informdecisions. Depending on the circumstances, the decisionsmight involve
whether to investigate a potential threat, what actions to take immediately to block an
attack, how to strengthen security controls, or how much investment in additional se-
curity resources is justified. The form in which the information is presented is especially
important. It is useless and wasteful to collect and process information and then deliver
it in a form that can’t be understood and used by the decision maker.

5. Dissemination: The threat Intelligence is now ready to be shared with the user, either
through a report, feed, or automatedplatform. The security teamwill use theTI tobuild
and act on priority plans for mitigation and proactive protection, focusing on alerts of
the highest importance or impact to their organization. This is also the stagewhere auto-
mated remediation actionsmay occur – such as takedown requests, publishing of attack
indicators, defense hardening, etc.

6. Feedback: Once intelligence has been sent to relevant business units and individuals, it
is time to collect feedback from the organization to determine whether the intelligence
analysis was timely, relevant, and actionable.

2.1.3 Pyramid of Pain

After identifying the threats, security professionals must implement countermeasures in order
to avoid receiving successful exploits. When devising countermeasures and mitigations, vari-

5

Figure 2.1: Threat Intelligence Lifecycle.

ous conceptual models can be employed. However, the Pyramid of Pain (Figure 2.2) stands as
the most commonly utilized. The Pyramid of Pain is a conceptual model for understanding
cybersecurity threats that organizes IOCs into six different levels. Information security expert
David J. Biancowas the first to formalize this idea in his article “The Pyramid of Pain” [5]. The
six levels of IOCs in the Pyramid of Pain are organized in order of how “painful” they would
be to the attacker if the victim discovered them and took action against them [6]. From the
bottom to the top of the pyramid—from least painful to most painful—these IOCs are:

• Hash values: Ahash value is a software or file “signature” that is the output of a complex
cryptographic hash function such as SHA-1 andMD5. These hash functions practically
guarantee that two different files will not have the same hash value.

• IP addresses: An Internet Protocol (IP) address is a set of numbers that uniquely iden-
tifies a computer or other device connected to the Internet.

• Domain names: A domain name is a string of text that uniquely identifies an Internet
resource such as a website or server.

• Network artifacts/host artifacts: A network artifact is produced as the result of some
network activity, while a host artifact is produced as the result of some activity on a host
machine.

6

Figure 2.2: Pyramid of Pain.

• Tools: Attackers use various software tools and platforms to carry out attacks (such as
backdoors or password crackers).

• Tactics, techniques, and procedures (TTPs): Attackers often have a modus operandi
that identifies them—everything from the initialmethodof entry to themeans of spread-
ing throughout the network and exfiltrating data.

Using the Pyramid of Pain security professionals can prioritize the countermeasure to imple-
ment and maximize their impact.

2.1.4 CTI reports

One key result of the TI lifecycle is the production of documentation providing information
on a certain subject or event. One of the main means of sharing this information is through
the use of CTI reports. The process of writing a cybersecurity report involves these steps:

1. Identify the purpose and scope of the report: The first step in writing a cybersecurity
report is to determine its purpose and scope. In fact, there are a lot of different types of

7

CTI reports, for example, we canwrite a report to summarize the results of a penetration
testing exercise or to investigate a security incident. Defining the purpose and scope of
the report will help to organize the report and choose the appropriate information.

2. Gather information: The next step is to gather information relevant to the purpose
and scope of the report. This may involve collecting data from various sources, such as
logs, system configurations, and network traffic.

3. Analyze the data: Once the necessary information is gathered, you’ll need to analyze it
to identify any security vulnerabilities or incidents. This may involve reviewing logs and
system configurations to identify potential weaknesses or examining network traffic to
identify signs of a breach.

4. Organize the report: The next step is the organization of the report, which is very de-
pendent on its type. At the start, there is usually an outline of the key findings, such
as the vulnerabilities or incidents identified during your analysis. Then, an overview of
the methodology used to gather and analyze the data. Finally, recommendations for ad-
dressing any vulnerabilities or incidents identified.

5. Write the report: Once the report is organized the analyst has to manually write it,
including in the report relevant screenshots, graphs andother visual aids tohelp illustrate
findings and recommendations.

2.2 Structured Threat Information eXpression

Structured Threat Information Expression, better known as STIX, is a free and open source
language for the representation and sharing of Cyber Threat Intelligence [7]. STIX enables
organizations to share CTI with one another in a consistent and machine readable manner, al-
lowing security communities to better understand what computer-based attacks they are most
likely to see and to anticipate and/or respond to those attacks faster andmore effectively. STIX
is designed to improve many different capabilities, such as collaborative threat analysis, auto-
mated threat exchange, automated detection and response, and more. Nowadays, although
other languages still exist and are used for CTI, it is considered by the majority of security peo-
ple as the de-facto standard in this field. In addition to information sharing, STIX can also be
utilized for cyber threat analysis. In fact, information inside a cybersecurity report can be easily
represented by an equivalently descriptive STIX file. These STIX files from version 2.0 are in
JSON format, currently, we are at version 2.1 of the STIX language. STIX objects extracted

8

from a report can be represented as a connected graph of nodes and edges, in which each node
represents an entity and each edge represent a relationship between entities. Thus, a CTI re-
port can be also represented by this graph of STIX objects, these are the inputs of AGIR. In
the following subsections, STIX’s main features are presented.

2.2.1 STIX Entities

STIX entities are the nodes of a STIX graph and they include precise information about the
entity. They are of two types: STIX Domain Objects and STIX Cyber-Observable Objects.

• STIX Domain Objects: high-level intelligence objects that represent behaviours and
constructs that threat analysts would typically create or work with while understanding
the threat landscape. In STIX 2.1 there are 18 SDOs and they are characterized by the
property and relationship information that are provided for them.

• STIX Cyber-Observable Objects: represent observed facts about a network or host
that may be used and related to higher level intelligence to form amore complete under-
standing of the threat landscape.

Both categories have associated properties and relationships. Properties are attributes of an
object, they specify certain information about the subject, for example, the type of an object.
Each object has associated just a subset of all the possible properties and of that subset some
properties are defined as required and others as optional.

Properties are divided into two categories: Common Properties which are shared by all ob-
jects and Specific Properties which are used just by a subset of objects. Themost relevant Com-
mon Properties are:

• type: identifies the type of STIXObject.

• id: uniquely identifies this object.

• created: represents the time at which the object was originally created.

• external_references: specifies a list of external references which refers to non-STIX in-
formation. This property is used to provide one or more URLs, descriptions, or IDs to
records in other systems.

Specific Properties tend to givemore useful information because they are specific to a subset
of objects, examples of such properties are:

9

• name: A name used to identify the entity.

• description: A description that provides more details and context about the entity, po-
tentially including its purpose and its key characteristics.

• aliases: Alternative names used to identify the entity.

• first and last seen: The first and last time that the entity was first seen in action.

• objective: The entity’s primary goal, objective, desired outcome, or intended effect.

• entity_types: The type of the entity being described (e.g. entity_types for a malware
could include backdoor, dropper...).

AGIR supports 13 out of the 18 entity types, the remaining five (grouping, malware analy-
sis, note, observed data and opinion) are not included. This limitation is due to the fact that
the excluded entity types are not used in Leonardo’s CTI platform, however, the tool remains
extensible to any new entity type that may be added. A complete list of STIX entity types and
their description is present in Table 2.1.

2.2.2 STIX Relationship Objects

STIXRelationshipObjects (SROs) are the edges of a STIXGraph and connect STIXDomain
Objects together, STIX Cyber-observable Objects together, and connect STIX Domain Ob-
jects and STIXCyber-observable Objects together to form a more complete understanding of
the threat landscape. STIX defines many relationship types to link together SDOs and SCOs.
All these relationships can be seen in Table 2.2. Like Objects also SROs have some Common
Properties that convey information on a specific relationship, some relevant properties are:

• relationship_type: The name used to identify the type of Relationship.

• description: A description that provides more details and context about the Relation-
ship, potentially including its purpose and its key characteristics.

• source_ref: The id of the source object.

• target_ref: The id of the target object.

10

Entity Type Description
Attack Pattern A type of TTP describing ways adversaries attempt to compromise

targets.

Campaign A grouping of adversarial behaviours that describes a set of
malicious activities or attacks (sometimes called waves) that occur over
a period of time against a specific set of targets.

Course of Action An action taken either to prevent an attack or to respond to
an attack that is in progress.

Grouping Represent a set of data that, in time, given sufficient analysis,
would mature to convey an incident or threat report.

Identity Represents actual individuals, organizations, or groups as well as
classes of individuals, organizations, systems or groups.

Indicator Contains a pattern that can be used to detect suspicious or
malicious cyber activity.

Infrastructure Represents a type of TTP and describes any systems, software
services and any associated physical or virtual resources intended
to support some purpose.

Intrusion Set A grouped set of adversarial behaviours and resources with common
properties that is believed to be orchestrated by a single organization.

Location A Location represents a geographic location.

Malware A type of TTP that represents malicious code.

Malware Analysis Captures the metadata and results of a particular static or dynamic
analysis performed on a malware instance or family.

Note Informative text to provide further context.

Observed Data Conveys information about cyber security related entities such as files,
systems, and networks using the STIX Cyber-observable Objects (SCOs).

Opinion An assessment of the correctness of the information in a STIXObject
produced by a different entity.

Report Collections of threat intelligence focused on one or more topics.

Threat Actor Actual individuals, groups, or organizations believed to be operating
with malicious intent.

Tool Legitimate software that can be used by threat actors to perform attacks.

Vulnerability A weakness that can be exploited to negatively impact a system.

Table 2.1: STIX entities and their description.

11

Source Type Target
Attack Pattern delivers Malware

Attack Pattern targets Identity, Location, Vulnerability

Attack Pattern uses Malware, Tool

Campaign attributed-to Intrusion Set, Threat Actor

Campaign compromises Infrastructure

Campaign originates-from Location

Campaign targets Identity, Location, Vulnerability

Campaign uses Attack Pattern, Infrastructure, Malware
Tool

Course of Action investigates Indicator

Course of Action mitigates Attack Pattern, Indicator, Malware, Tool
Vulnerability

Identity located-at Location

Indicator indicates Attack Pattern, Campaign, Infrastructure,
Malware, Threat Actor, Tool

Indicator based-on Observed Data

Infrastructure communicates Infrastructure
with

Infrastructure consists-of Infrastructure, Observed Data

Infrastructure controls Infrastructure, Malware

Infrastructure delivers Malware

Infrastructure has Vulnerability

Infrastructure hosts Tool, Malware

Infrastructure located-at Location

Infrastructure uses Infrastructure

Intrusion Set attributed-to Threat Actor

Intrusion Set compromises Infrastructure

Intrusion Set hosts Infrastructure

Intrusion Set owns Infrastructure

Intrusion Set originates-from Location

Source Type Target
Intrusion Set uses Attack Pattern, Infrastructure, Malware

Tool

Intrusion Set targets Identity, Location, Vulnerability

Malware authored-by Threat Actor, Intrusion Set

Malware beacons-to Infrastructure

Malware exfiltrate-to Infrastructure

Malware controls Malware

Malware downloads Malware, Tool, File

Malware drops Malware, Tool, File

Malware exploits Vulnerability

Malware originates-from Location

Malware targets Identity, Infrastructure, Location
Vulnerability

Malware uses Attack Pattern, Infrastructure
Malware, Tool

Malware variant-of Malware

Threat Actor attributed-to Identity

Threat Actor compromises Infrastructure

Threat Actor hosts Infrastructure

Threat Actor owns Infrastructure

Threat Actor impersonates Identity

Threat Actor located-at Location

Threat Actor targets Identity, Location, Vulnerability

Threat Actor uses Attack Pattern, Infrastructure
Malware, Tool

Tool delivers Malware

Tool drops Malware

Tool has Vulnerability

Tool targets Identity, Infrastructure, Location
Vulnerability

Table 2.2: STIX relationships supported by AGIR.

12

Figure 2.3: Example of a simple STIX Graph.

2.2.3 Example of a STIX Graph

In this section, we analyze a complete example of a STIX Graph in order to fully understand
what is the input that both analysts and AGIR use when writing a report and how is possible
to obtain useful information from this input.
In Figure 2.3, we can see a very simple example of a STIXGraph consisting of just three entities:
1 infrastructure, 1malware and 1 domain name. Looking at the graphwe can see just the name
property of the entities but from the JSON representation of the graph, we can extract more
insightful information. For every entity in the graph, we have a corresponding object in the
JSONthat contains the properties associatedwith the entity. For example, looking at the JSON
we can understand that the malware IMDDOS is a bot malware. In the graph, we can also see
two relationships: 1 uses and 1 consists-of. As for the entities, also every relationship has a
related JSON object that contains its properties.

Listing 2.1: JSON representation of a STIX graph.

1 {
2 "type": "infrastructure",
3 "spec_version": "2.1",
4 "id": "infrastructure--d09c50cf-5bab-465e-9e2d-543912148b73",
5 "created": "2016-11-22T09:22:30.000Z",
6 "modified": "2016-11-22T09:22:30.000Z",
7 "name": "Example Target List Host",
8 "infrastructure_types": ["hosting-target-lists"]

13

9 },
10 {
11 "type": "relationship",
12 "spec_version": "2.1",
13 "id": "relationship--37ac0c8d-f86d-4e56-aee9-914343959a4c",
14 "created": "2016-11-23T08:17:27.000Z",
15 "modified": "2016-11-23T08:17:27.000Z",
16 "relationship_type": "uses",
17 "source_ref": "malware--3a41e552-999b-4ad3-bedc-332b6d9ff80c",
18 "target_ref": "infrastructure--d09c50cf-5bab-465e-9e2d-543912148b73"
19 },
20 {
21 "type": "malware",
22 "spec_version": "2.1",
23 "id": "malware--3a41e552-999b-4ad3-bedc-332b6d9ff80c",
24 "created": "2016-11-12T14:31:09.000Z",
25 "modified": "2016-11-12T14:31:09.000Z",
26 "is_family": true,
27 "malware_types": [
28 "bot"
29],
30 "name": "IMDDOS"
31 },
32 {
33 "type": "relationship",
34 "spec_version": "2.1",
35 "id": "relationship--81f12913-1372-4c96-85ec-E9034ac98aba",
36 "created": "2016-11-23T10:42:39.000Z",
37 "modified": "2016-11-23T10:42:39.000Z",
38 "relationship_type": "consists-of",
39 "source_ref": "infrastructure--d09c50cf-5bab-465e-9e2d-543912148b73",
40 "target_ref": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5"
41 },
42 {

14

43 "id": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5",
44 "type": "domain-name",
45 "value": "example.com"
46 }

Usually, CTI analysts start writing a report by looking at the STIX graph describing the
subject of the report. The STIX graph can be either manually made by a human or automat-
ically built starting from the information present in the knowledge base of the company writ-
ing the report. Leonardo is an example of this process, it has a software called Cyber Threat
Intelligence System (CTIS) where employees can manage all the intelligence contained in the
knowledge base under the CTIS. One feature of CTIS is that employees can visualize the infor-
mation related to a specific entity/incident using a STIX Graph, this representation is used by
analysts as a starting point for the writing process. AGIR constitutes one of the micro-services
of the CTIS platform. Analysts when visualizing the graph can request to AGIR one of the
four reports and the tool will produce the final report and return it in output inside the CTIS.

15

16

3
RelatedWorks

Natural Language Generation (NLG) is the subfield of Natural Language Processing (NLP)
that focuses on building computer systems that can produce natural language output (e.g., doc-
uments, reports, summaries, etc.).
NLG technologies can be divided into twomain categories: text-to-text and data-to-text. Text-
to-text applications utilize existing texts as their input and generate a new, coherent text as
output through automatic processes. Examples of such applications include machine transla-
tion, summarization, and paraphrasing. On the other hand, data-to-text systems convert non-
linguistic structured data (e.g., a table or a graph) into natural language text, these technologies
can be applied in tasks such as weather forecasting, patient reports or sports summaries.
The methods for the two categories are similar, but since our contribution falls in the second
one we will proceed by focusing on data-to-text generation.

Themainstreammethods to approachdata-to-text generation are three: rule-based, template-
based and neural-based.

• rule-based: Thesemethods usually follow a three-staged pipeline architecture. The first
module, theDocument Planner, combines content selection and text structuring. Thus,
it is concerned mainly with the choice of ‘what to say’ [8]. The resulting text plan, a
structured representation ofmessages, is the input to theMicroplanner, which typically
combines sentence aggregation, lexicalisation and referring expression generation [9]. If

17

Figure 3.1: Example of template text generation.

text planning amounts to deciding what to say, sentence planning can be understood as
deciding how to say it. All that remains then is to actually say it, i.e., generate the final
sentences in a grammatically correct way, by applying syntactic andmorphological rules.
This task is performed by the Linguistic Realiser [10].

• template-based: Template-based approaches, unlike the previous ones, map their non-
linguistic input directly (i.e., without intermediate representations) to the linguistic sur-
face structure. In these systems, text generation is done via stringmanipulation; the user
writes a program which includes string patterns that contain empty slots where other
strings must be filled in. An example of such manipulation can be seen in Figure 3.1.

• neural-based: Neural-based approaches, are usually data-driven and do not need any
formofmanual feature engineering,managing to learn how to produce high quality text
descriptions by themselves. These approaches usually form end-to-end models, mean-
ing that none of the aforementioned stages is explicitlymodelled; instead, neural models
learn to directly generate the utterances from the input data.

18

The first two approacheswere the leading paradigms in the early stages ofNLGand their dif-
ferenceswere a huge discussion topic [11]. Template-based systemswere considered inferior to
rule-based systems, despite being “Turing equivalent”, because they don’t embody generic lin-
guistic insights [12]. This perception was later dispelled by the development of more complex
template-based systems, such asD2D [13], whichwere capable of varying output based on con-
text and performing complex syntactic operations such as aggregation. In general, we can say
that template-based systems offer ease of development, higher control of the output and com-
putational speed at the cost of fluency, maintainability and flexibility, whereas for rule-based
systems the opposite holds.
With the advent of machine and deep learning the neural-based approach has become the lead-
ing paradigm inmodernNLG.Neural-based systems are preferred due to their increased ability
in generalization and output variance. These upsides, however, come at the cost of being com-
pletely unable to control the generation procedure, often ending up in having texts which do
not accurately reflects the input information. Moreover, these systems need to be trained on
large datasets, making this approach unfeasible in cases where such a set is not available.

In addition to these methods, there are also hybrid approaches that combine two or more
methods in order to leverage the distinct advantages of each approach.
For example, Kale and Ratsogi [14] implemented automatic responses for virtual assistants
with a two-stage pipeline. In the first step, they used a template-based approach to build a
schematic baseline response. In the second step, they trained T5, a pre-trained languagemodel,
to rewrite the robotic response into coherent, natural-sounding text. Using this method they
were able to combine the strengths of both approaches, obtaining a fluent and diverse response
thanks to the neural approach, while having also control and ease of development offered by
the template method.

NLG is used in many sectors including journalism, medicine, weather and sports, however,
in cybersecurity there are almost no traces of NLG methods. To the best of our knowledge,
there are only two examples of NLG systems used in the cybersecurity realm. In the first exam-
ple, Das and Varma [15] built a system for advanced email masquerading in which the text of
the email is automatically generated using Recurrent Neural Networks (RNN). In the second
example, S. Polzunov and J. Abraham [16] implemented Narrator1, a tool that is able to build
intelligence reports starting from the JSON representation of STIX graphs. Using Narrator,

1https://polzunov.com/narrator/

19

https://polzunov.com/narrator/

an operator is able to see an interactive visualization of the graph and obtain four types of re-
ports, produced using a rule-based approach. The reports can be edited and exported in PDF
format.

AGIRbuilds on top ofNarrator by leveraging different approaches that improves the overall
performances. In the first step of the pipeline, we use a template-based approach inspired by
theD2S system. In the second one, we use a technique similar to the one implemented by Kale
and Ratsogi [14], using ChatGPT to rewrite a more human-like report.

20

4
Methodology

The multiple issues stated in the related works chapter, in particular, the lack of a large dataset
and the need to have control over the output, lead to the selection of a template-based approach
for the first two stages of the pipeline. The final pipeline (shown in Figure 4.1) is composed of
three segments:

1. AGIR_entity_type: content selection from the input JSON.

2. AGIR_report_type: text generation through the use of templates.

3. ChatGPT_API: text paraphrase in order to obtain a more human-like text.

4.1 Input

Previously we have shown an example of a standard JSON representation of a STIX graph.
Nowwe see the structure of a JSON input used in the Leonardo companywhich is the specific
input toAGIR. From STIX graphs theCTISwill produce a JSON representation that has this
structure:

21

JSON graph, report_type

AGIR_report_type

first stage
output report

for entity
in the
graph

id

dict

AGIR_entity_type

for dict
generate

text

chatGPT_API

final output
report

Figure 4.1: AGIR pipeline.

22

Listing 4.1: Skeleton of AGIR’s input.

1 {
2 "selectedEntity": { "properties of the subject entity" },
3 "relationshipByID": { "relationships of the subject entity" },
4 "idNodeRelation": { "relationships created real-time" },
5 "edgeGraph": { "entities highlighted by the analyst and their

relationships" },
6 "graphItemsTrash": { "discarded/hidden entities" }
7 }

It’s important to note that from this input we are able to obtain information about all the
nodes and edges in any possible graph. In fact, every STIX graph in the CTIS is represented us-
ing a star structurewith the subject being the centre of the star. Thenodes and edges for this star
are covered by the first two sections of the JSON: selectedEntity and relationshipByID.
From the starting star, we have three possible ways to add nodes and edges to the graph.

1. Expand a node: The first one is to highlight an existing node and expand it. Performing
this action all the entities and relationships related to the selected node will be retrieved
from the knowledge base and added to the graph using a star structure having the high-
lighted node as the centre. The IDs for all these added edges and relationships are con-
tained inside edgeGraph, using the id we can query the knowledge base to retrieve the
information related to that entity or relationship.

2. Create a relationship real-time: Analysts can create a new relationship in real time
between two entities when visualizing the STIX graph. The information for these rela-
tionships is contained in the idNodeRelation section.

3. Hide an edge/node: There is also the case where we have a starting graph having ele-
ments that we will like to exclude in the final report. Analysts can select a certain com-
ponent of the graph and hide it. The IDs of such hidden elements are included in the
graphItemsTrash section.

Associated with the graph is a second parameter called report_type in the input that spec-
ifies the report type we want in the output.

4.2 Content selection and text generation

In the above pipeline both AGIR_report_type and AGIR_entity_type, for ease of represen-
tation, are described as a single module, but they represent respectively 4 and 13 modules. For

23

each of the four report types we have a module that handles the text selection and structuring,
based on the report_type parameter we choose among the 4 possible modules. Similar to
this, for every supported entity type we have a corresponding module that retrieves the infor-
mation for that entity and performs content selection.

In the first step of our system,we look at the report type parameter and select the correspond-
ing report_typemodule. The selectedmodule will receive as input the JSON representation
of the graph presented before. Then, report_type selects from the JSON the entities to be
included in the report based on predefined rules. Each report_type has different rules, so it
will select different entities from the same input. For each selected entity, the id and type are ex-
tracted, and based on the entity typewe call and pass the id to the corresponding entity_type
module.

The role of each entity_type module is to retrieve the information associated with the
entity from the knowledge base, filter only the relevant information and return the selected
content to the report_type module. The steps to perform this task are the same for each
entity_typemodule:

1. Initialization of a dictionary with six keys, each representing different categories of in-
formation for the final report. The six keys are: overview, relationships, stats, useful
resources, IOC and TTP.

2. Querying the knowledge base through multiple API calls that, based on the entity id,
return dictionaries containing information about the entity and its relationships.

3. Performing content selection on the obtained information. This filtering is based on
rules defined during the implementation phase with Leonardo employees. The informa-
tion is inserted into the initial 6-key dictionary based on its nature. For example, prop-
erties specific to the entity are inserted in the overview section while information about
related IOC is inserted in the IOC section.

4. The dictionary containing the information is returned to the report_typemodule.

At this point, report_typewill have a dictionary for every previously selected entity. The
next step is to check for relationships created in real-time by the operator. In case there is one or
more of these relationships, report_type will extract the id of the relationship from the graph
and create a newdictionary containing the information about these created relationships. Now
report_type has all the necessary information to write the first stage report. The report is

24

written in two phases. In the first one, the text is written, for every dictionary report_type
loops over all the sections generating some text. In particular, for every piece of information in a
section, it will select the corresponding template and insert the elements of that information in
the placeholders. Once a section is finished it will pass to the following one iterating through
all sections and dictionaries. At the end of this phase, we will have all the sentences of our
report grouped by section and subject. The last thing to do is to insert these paragraphs in the
predefined text structure of the report. For all four report types, a total of 85 templates were
used.

4.3 ChatGPT APIs

The final step of the pipeline is the use of ChatGPT APIs in order to improve the fluency of
some sections of the report. In particular, the overview and relationship texts are passed to the
APIs of ChatGPTwith a prompt asking for a more fluent version of the text while keeping the
information in the text unchanged. The text returned by the deep learning model is inserted
in the final report replacing the original text, an example of such an interaction can be seen in
Figure 4.2. After this step, we have the final output report of AGIR. Two problems may arise
in the use of ChatGPT for this paraphrasing task: the cost of such an approach and the lack of
control over the text produced by the model. However, running an experiment on a sample of
36 reports the results were satisfying. The cost of the production of a single report is on average
0,0024 dollars, making it feasible for a large company such as Leonardo. As regards the lack of
control, we will discuss the results in the following chapter.

4.4 Output

The output of AGIR is a docx document containing the intelligence report, built using the
python-docx1 library. There are four types of reports: overview, subject, timeline and vulnera-
bility. They have different structures and different use cases, however, they all derive from the
six-section layout mentioned before, which now we see in detail. As we said before for every
selected entity we produce text divided into six sections:

• Overview: Contains specific information about the entity. The intent of this section is
to introduce the entity and tell us its properties. Name, motivations and description are
examples of information conveyed in this section.

1https://pypi.org/project/python-docx/

25

https://pypi.org/project/python-docx/

Figure 4.2: Example of a ChatGPT interaction.

• Relationships: Contains information about the relationships of the entity, such as the
entities linked to it and the nature of those relationships. This section helps to locate the
entity in the threat landscape.

• Stats: This section exploits the information contained in the knowledge base to provide
more details about the nature of related entities. In particular, this section shows statis-
tics about the nature of some entity types, namely: Attack Pattern, Malware, Intrusion
Set, Infrastructure, Threat Actor and Tool. For example, looking at this section we can
understand that an intrusion set is related to 8 malware, 4 of them being droppers and
the other 4 being backdoors.

• Useful Resources: External links to retrieve more information about the entity are in-
serted here.

• IOC Table: The table consists of all the IOCs, with the specific type and value, related
to the entity. The supported IOC types are sha-256, sha-1, md5, url, mac-address, ipv4-
address, ipv6-address and domain-name.

• Mitre Matrix: The matrix contains the attack patterns related to the entity. For every
attack pattern, the matrix shows the name, the tactic, the ATT&CK code and the de-
scription.

Let’s now understand how each report type is structured and how the information from
these sections is used to form each final report. As we know we have 4 report types:

1. Overview report: The purpose of this report is to provide a clear overview of the entire
graph allowing the analyst to obtain a clear understanding of the situation depicted in

26

the graph. This report is useful if we want to provide generic information about an
incident. For every selected entity all the texts from the six entities will be included. For
example, if we have 4 selected entities the report will include 4 concatenated sub-reports
all having the 6 sections described before.

2. Subject report: This report is useful when we already have in mind a clear subject and
we want to focus the report on this entity. This report will contain all the information
from the six sections of the subject. Moreover, will include texts for the relationship,
IOC and mitre sections for all other selected entities. This choice is driven by the fact
that these details help us to better understand the landscapewhere the subject is inserted.

3. Timeline Report: This report provides a timeline overview of all the entities related
to a certain graph. It helps to view the chronological order of the events in the graph
and to report them in order to understand their sequencing. For all the entities only
the overview section is provided and every date property of the entities is reported in
chronological order in the report.

4. Vulnerability Report: The last report is the most specific one, it is used when we want
to report about specific vulnerabilities related to a certain entity. For example when we
found a vulnerability in a well know tool and wewant to report our findings to the com-
munity. Vulnerability reports contain the overview section for the subject entity and
all the vulnerabilities related to that entity. Moreover, for each vulnerability it includes
tables showing specific properties such as CVSS score, recommended mitigations and
vulnerable configurations.

4.5 Full Example

In this section, we will see a complete example of generating a report using AGIR to better
understand its functioning. Let’s suppose we want a subject report on the graph shown in Fig-
ure 2.3. The input will consist of the JSON representation of the graph and the report_type
parameter with a value of “subject”.
Firstly, the input is sent to theCTIS endpoint whereAGIR is working. AGIR checks the value
of the report_type parameter and accordingly passes the JSON to the subject module. As
mentioned earlier, the subject module selects the subject and all other entities highlighted by
the analyst from the JSON. In our case, only the infrastructure entity is selected, and its id is
added to a list. This list is then iterated, and for each id, we perform two steps. The first step
is to retrieve the corresponding entity type from the id by querying the knowledge base. The

27

second step is to call the corresponding entity_type module based on the entity type. In
our example, we take the first id from the list (i.e., the id of the “Example Target Host List”)
and query the knowledge base to discover that it is an infrastructure entity. Therefore, we pass
the ID to the get_report_infrastructuremodule (i.e., the entity_typemodule for the
infrastructure type).
At this point, the control temporarily switches to the entity_typemodule, which performs
the following steps:

• Initialize the dictionary with 6 keys, where the initial value of each key is an empty list.

• Using the received id as a parameter, make a call to the knowledge base that returns a
JSONwith specific information about that entity. In our case, it queries the knowledge
base using the infrastructure’s id and receives back the JSONcontaining the information
about that entity. Let’s assume that the returned JSON is as follows:

{ “name”: “Example Target List Host”,
“type”: “infrastructure",

“created": “2016-11-22T09:22:30.000Z"}

• Check if the JSON contains significant properties and insert them into the overview sec-
tion. The properties are extracted based on rules agreed upon with Leonardo’s analysts.
In our example, we extract only the first two entities because the “created” property is
not considered significant. If there are links to articles/information pages about the en-
tity in the JSON, they will be placed in the useful resources section.

• Query the knowledge base for the relationships of the entity. In our case, we will receive
a JSON response of this type.

{ “relationship-list-source”: [{“type” : “consists-of”, “target”
: “example.com”, “target-type” : “domain-name”}],

“relationship-list-target": [{“type” : “uses”, “target” :
“IMDDOS”, “target-type” : “malware”}]}

• Checks if the JSON contains supported relationships (listed in Table 2.2) and, based on
the entity that the subject is related to, place it in different sections of the dictionary. If
the relationship is with entities of the type indicator, the information will be placed in
the IOCs section. If the type is attack pattern, it will be placed in theTTPs section. In all
other cases, the information is placed in the relationships category. In our case, the first
relationship would be placed in the IOCs category, and the second relationship would
be placed in the relationships section.

28

• Query the knowledge base for statistics related to the entity. In our case, we will receive
a JSON response of this type.

{ “attack-pattern”: [],
“intrusion-set": [{“name" : “IMDDOS", “type" : “bot"}],

“malware": [],
“infrastructure": [],
“threat-actor": [],

“tool": [] }

• Insert the statistics information into the stats section of the JSON.

• At this point, we have extracted all possible information about that entity from the
knowledge base, andwe return the compiled JSONto the subjectmodule. Our returned
JSONwould look like this:

{ “overview”: [{“names”: {“name”: “Example Target List Host'',
“type”: “infrastructure”}}],

“relationships": [{ “uses”: { “type”: “malware”, “objects”:
[“IMDDOS”]}}],

“stats": [{“type”: “malware”, “stats”: [“count”: 1, “type”: “bot”,
“names”:[“IMDDOS'']}],

“TTP": [],
“IOC": [{“type”: “domain-name”, “value”: “example.com”}],

“useful resources": [] }

The IDs in the list have been exhausted, as only the infrastructure entity was selected from
the input JSON.The last step of the content selection process is checking created relationships,
looking at the idNodeRelation section. In our case, this section is empty so we can move on.
At this point, we have all the necessary information about the graph to write the report. Stored
in a list, we have all the dictionaries containing the information about the entities we want to
describe (in our case, just one). To write the text, we proceed as follows:

1. For each dictionary, we initialize another dictionary containing four strings correspond-
ing to the four text sections of the report (excluding IOC andTTP, which are tables and
do not require generating text).

2. We iterate over the four subsections of the dictionary, and for each of them we loop
through every piece of information (i.e., every dictionary containing information in one
of the four sections) they have.

29

3. For each piece of information, there is a corresponding template. When processing this
piece of information, we pass the values of the information and its name to a function
that handles the insertion of these values into the template. For example, in our case,
we start by processing the “names” piece of information. We first retrieve the “names”
template that is “_ is _ _”. Then, in the three placeholders, we insert “name”, “an” and
“type” respectively, resulting in the final text being ”Example Target List Host is an in-
frastructure”. In this case, we see an example of a referring expression problem, when
generating the sentencewe have to decidewhether to insert “a” or “an” based on the next
word. All these syntactic decisions are handled using the inflect2 library.

4. Once the sentence has been completed, it is added to the respective text section (in the
previous case, “overview”), and we move on to the next piece of information.

5. In the end, wewill have a dictionary containing four text sections that correspond to the
report text for the entity.

Before creating the final report we process each overview and relationship text using Chat-
GPT. The text for these sections is sent to ChatGPT APIs in order to improve its text quality.
The output of this step will replace the original text in the dictionary.
The final step of the report is the actual document creation. As mentioned earlier, this step
follows predefined rules and varies depending on the report. In our case, we want to include
all sections from the subject entity and the relationship, IOC andTTP sections from the other
selected entities.
To do this, we insert the overview and stats sections of the subject entity into the document
first. Next, we iterate over all the dictionaries containing the text sections and insert each text
from the relationships section labelled with the corresponding entity it refers to.
We repeat the same procedure for inserting the IOC and TTP tables. Finally, we include only
the useful resources section from the subject entity. With that, we have completed the report
generation process. Since we have only the subject in our final report we will have just the
overview section, the relationship section, the stats section and the IOC section of the subject.
TTP and useful resources sections are not inserted because we have no piece of information
for these categories. Our final report can be seen in Figure 4.3. As we can see, it is very sparse,
and this is because the final report heavily depends on the quantity and quality of information
contained in the input JSON. In our case, the graph consisted of 3 entities and the JSON had
only a few properties for each entity. By leveraging a broader knowledge base like Leonardo’s,

2https://pypi.org/project/inflect/

30

https://pypi.org/project/inflect/

Report on Example Target List Host

Overview
The Example Target List Host is an infrastructure specifically designed for hosting target
lists.

Stats
The infrastructure is related to this malware:
- 1 bot (IMDDOS)

Relationships

Example Target List Host
Example Target List Host is utilized by the IMDDOS malware.

IOCs
Source Type Value
Example Target List Host domain-name example.com

Figure 4.3: Report of the graph in Figure 2.3.

the reports are able to convey more information and prove more useful, as seen in the example
report shown in Figure 4.4, Figure 4.5 and Figure 4.6.

31

Report on Whitefly

Overview
Whitefly is an intrusion group, also known as Whitefly, whose main objective is to steal
sensitive information through espionage. It was first observed on May 26, 2020, and its most
recent activity was detected on October 12, 2021. This cyber espionage group has been in
operation since 2017, targeting various organizations in Singapore from different sectors.
Their primary focus is to obtain a significant amount of confidential data. Whitefly has been
connected to an attack against SingHealth, Singapore's largest public health organization.

Stats
The group is related to these malwares:
- 2 loaders (Vcrodat and Nibatad)
- 2 downloaders (Vcrodat and Nibatad)
- 1 backdoor (ShimRAT)
- 1 info stealer (ShimRAT)
- 1 exfiltration (ShimRAT)
The group is related to these tools:
- 1 tunneling (Termite)
- 1 exfiltration (Termite)
- 1 backdoor (Termite)
- 1 downloader (Termite)
- 1 credential stealer (Mimikatz)
- 1 keylogger (Mimikatz)
It is related to these attack-patterns:
- 1 command-and-control (T1105 - Ingress Tool Transfer)
- 1 credential-access (T1003.001 - LSASS Memory)
- 1 resource-development (T1588.002 - Tool)
- 1 privilege-escalation (T1068 - Exploitation for Privilege Escalation and T1574.001 - DLL
Search Order Hijacking)
- 2 executions (T1059 - Command and Scripting Interpreter and T1204.002 - Malicious File)
- 3 defense-evasions (T1027 - Obfuscated Files or Information, T1036.005 - Match
Legitimate Name or Location and T1574.001 - DLL Search Order Hijacking)

Figure 4.4: Overview and stats section of a complete subject report.

32

Relationships

Whitefly
Whitefly has set its sights on various identities, including those belonging to unknown
media, defense and telecommunications entities, in addition to locations such as Myanmar,
South Korea and Singapore. In order to carry out these attacks, the group employs malwares
such as ShimRAT and Vcrodat, as well as tools like S0002 - Mimikatz and Termite. The attack
pattern used by Whitefly is identified as T1204.002 - Malicious File.

S0002 - Mimikatz
The tool operates within the INFR_MF infrastructure and serves the needs of the Operation
Wocao campaign, as well as the intrusion-sets Turla, APT1 and APT28.

Mitre Matrix
Source Name Tactic ATT&CK

Code
Description

S0002 -
Mimikatz

T1098 -
Account
Manipulation

persistence Adversaries may manipulate
accounts to maintain access to
victim systems. Account
manipulation may consist of any
action that preserves adversary
access to a compromised
account, such as modifying
credentials or permission
groups. These actions could also
include account activity
designed to subvert security
policies, such as performing
iterative password updates to
bypass password duration
policies and preserve the life of
compromised credentials.

In order to create or manipulate
accounts, the adversary must
already have sufficient
permissions on systems or the
domain. However, account
manipulation may also lead to
privilege escalation where
modifications grant access to
additional roles and
permissions.

Figure 4.5: Relationship and TTP section of a complete subject report.

33

IOCs
Source Type Value
Whitefly mac-addr 00-08-74-4C-7F-1D

Useful Resources
Useful material to know better the set can be found at:
https://attack.mitre.org/groups/G0107 and
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/whitefly-espiona
ge-singapore.

Figure 4.6: IOC and useful resources of a complete subject report.

34

5
Evaluation

This chapter is dedicated to presenting and analysing the results obtained by AGIR. First, we
analyze the accuracy obtained by AGIR and then we confront AGIRwith two similar systems.
We recall that our aim is towrite a precise human-like report that supports analysts and reduces
the time they spend in the report-writing process.

Assessing the quality of NLG model output is challenging, mainly because the majority of
NLG tasks are open, in the sense that the target for a given inputmight not be unique. For this
reason, there are different ways of evaluating NLG systems. In particular, we can distinguish
between intrinsic and extrinsic evaluation methods [17]. In the case of NLG, an intrinsic eval-
uation measures the performance of a system without reference to other aspects of the setup,
such as the system’s effectiveness in relation to its users. In our example scenario, questions
related to text quality and correctness of the report qualify as intrinsic, whereas the question
of whether the system actually achieves its goal in supporting the report writing process is ex-
trinsic.

Intrinsic evaluation in NLG is dominated by two methodologies, one relying on human
judgements (and hence subjective), and the other on automatic metrics.

• Human ratings: Human judgements are typically elicited by exposing naive or expert
subjects to system outputs and getting them to rate them on some criteria. Outputs are
usually evaluated using Likert scales [18].

35

• Metrics: Automatic metrics take in input the text and provide a score applying some
formulas. The majority of metrics (e.g. BLEU, METEOR and ROUGE) require a ref-
erence text to compute a score, however, in recent years, referencelessmetrics (e.g. SLOR
andWPSLOR) have been developed.

In contrast to intrinsic methods, extrinsic evaluations measure effectiveness in achieving a
desired goal, this evaluation is dependent on the application domain and purpose of a system.

In the next sections, we show the results achieved by AGIR by using both intrinsic and ex-
trinsic methods. In particular, AGIR was evaluated both quantitatively using precision, recall
and F1-score, and qualitatively using SLOR and a human questionnaire.

5.1 Quantitative evaluation

We evaluate the accuracy of AGIR to understand if the use of ChatGPT has introduced phe-
nomena of omission or hallucination in the final text. For this analysis, we do not compare
AGIR with Narrator and first step AGIR, because these two models are entirely rule or tem-
plate based and, unless there are implementation errors, theywill not introduce accuracy issues.
We use three different metrics for the evaluation of AGIR accuracy: precision, recall and F1-
score. We define asTrue Positives (TP) information that are present both in the final report and
in the starting JSON, False Positives (FP) information that are present in the report but not in
the initial JSONand FalseNegatives (FN) information that are present in the input but are not
found in the report. In this context, we describe information as a field of the input JSON that
we expect to find in the final report. We define precision, recall and f1-score as follows.

Precision =
TP

TP+ FP
,

Recall =
TP

TP+ FN
,

F1 = 2
Precision ∗ Recall
Precision+ Recall

.

To evaluate the model, a sample of 12 reports (3 reports for each type) was used. For each
JSONfile, the information thatwas supposed to be included in the report was highlighted, and
later checked if this information was present in the report. The entire process was manual.

36

Precision Recall F1-Score
1.000 0.993 0.996

Table 5.1: AGIR accuracy results.

The metrics scores are shown in Table 5.1. As we can see from the results, in no case the use
of ChatGPT has introduced a new information in the report (i.e. hallucination) and in just a
few cases the model has omitted information from the JSON.

5.2 Qualitative evaluation

In this section, we first introduce SLOR and then we compare our system with two similar
systems: Narrator and first step AGIR (i.e., without ChatGPT intervention).

5.2.1 SLOR

In this section, we present SLOR [19], the metric used for the evaluation of the reports. The
choice of this metric was driven by the fact that is the de-facto standard metric for the evalua-
tion of text fluency in the case of referenceless evaluation, that is our case. SLOR assigns to a
sentence S a score which consists of its log-probability under a given Language Model (LM),
normalized by unigram log-probability and length:

SLOR(S) =
1
S
(ln(pM(S))− ln(pu(S)),

where pM(S) is the probability assigned to the sentence under the LM, which can be ex-
pressed in the following product using Bayes rule:

pM(S) = p(⟨t1, t2, . . . , t|S|⟩) = p(t1)
|S|∏
i=2

p(ti|t1, . . . , ti−1)

and pu(S) is the unigram probability of the sentence S computed as follows:

pu(S) =
∏
t∈S

p(t).

The intuition behind subtracting unigram log-probabilities is that a token which is rare on
its own (in contrast to being rare at a given position in the sentence) should not bring down

37

the sentence’s rating. The normalization by sentence length is necessary in order to not prefer
shorter sentences over equally fluent longer ones. Finally, note that the sentence log-probability
normalized by sentence length corresponds to the negative cross-entropy of that sentence ac-
cording to the language model employed during the evaluation. SLOR scores have no theo-
retical limit, however taking as reference a previous study by Kann, Rothe and Filippova [20],
we see SLOR scores generally ranging in the interval [1,3] , the higher they are the better the
fluency of that text. We calculate the probability of a sentence using the pre-trained XLNet
language model [21].

5.2.2 Fluency, Correctness and Utility

In this section,we show the results obtained evaluating threemodels: Narrator, first stepAGIR
and final AGIR (i.e., AGIR with ChatGPT intervention). Narrator scores are useful to have
a reference for the evaluation of AGIR since our evaluation is the first example of NLG eval-
uation on systems producing intelligence reports. The distinction between the two steps of
AGIR can let us understand what is the impact of using a paraphrasing model (i.e., ChatGPT)
to improve text quality. For the evaluation of the three models we have used two methods:

1. referenceless automatic fluency evaluation through SLOR;

2. questionnaire-based intrinsic and extrinsic human evaluation.

For both the evaluation methods we have taken 12 random JSON representations of STIX
graphs and from this set, we have produced 12 reports for each model, 3 for each report type.

First, we analyze SLOR results. We recall that SLOR evaluates the fluency of a sentence. In
order to analyze all three models we have extracted all the sentences from the overview and re-
lationship sections of the 12 aforementioned reports. At the end of this process, we ended up
having a set of 228 sentences forNarrator, 216 for first step AGIR and 178 for final AGIR. For
each model, we evaluated each sentence using SLOR. The average and standard deviation of
the obtained SLOR scores is reported in Table 5.2: as we can see, the average values are very
close to each other for the first two systems, while for the third model, we have a significantly
higher score. From this result we can derive that implementation solely relying on rule or tem-
plates struggles in producing human-like text, whereas systems using deep-learning models to
generate or paraphrase text have better fluency results. Hence, from this analysis, we can con-
clude that the use of ChatGPT to improve the text quality was successful.

38

Model Avg SLOR Stdev SLOR
Narrator 2.13 0.90

First Step AGIR 2.16 1.07

Final AGIR 2.75 0.72

Table 5.2: Average and standard deviation of SLOR scores.

Let us now discuss the questionnaire-based human evaluation. This procedure involves rating
the quality of a small sample of texts according to three dimensions:

• Fluency, whether the text is easy to read and understand;

• Correctness, whether the content of the text is true and derivable from the input data;

• Utility, whether the text helps the user to do a task. In our case if the text helps the user
to write the final report faster.

The judges for this human questionnaire are 38 analysts from the Leonardo company. Flu-
ency and correctness dimensions are evaluated using a Likert scale from 1 (not good) to 5 (very
good). Utility, instead, is measured by asking judges how long they think it will take to write
the final report starting from the output of the systems. The utility scores are compared with
a baseline value (i.e., how long is, on average, the report writing process). The baseline score is
127,3 minutes (i.e., 2 hours and 7 minutes), obtained by asking to all analysts on average how
long they take to write a report. In order to avoid results being influenced by a single ques-
tionnaire instance, we have created 3 of them with the same structure and divided the analysts
into three groups of equal size. The questionnaires are composed of four sections, one for each
report type, containing one report for each system for a total of 12 reports for each question-
naire. Each report is evaluated on the three dimensions cited before. In Table 5.3 we report the
summary of the received feedback, grouped by dimension evaluation. As we can see, our sys-
tem outperforms the baseline reference in every category. Regarding the intrinsic dimensions,
AGIR has achieved more than sufficient values for both categories. Looking at the fluency val-
ues, we have confirmation that using a deep learningmodel for the paraphrasing part of the text
significantly improves the fluency of the output, resulting in a 0.65 increase compared to First
StepAGIR.We can see amore surprising result if we look at the correctness. For both instances
of AGIR, we observe good results. In particular, for Final AGIR, we obtain a slightly better

39

Model Fluency Correctness Utility
Narrator 2,98 3,00 97,5

First Step AGIR 3,48 3,77 79,6

Final AGIR 4,13 3,90 74,3

Table 5.3: Questionnaire results grouped by dimension.

value, which dispels previous doubts about the introduction of hallucination or omission phe-
nomena caused by the use of the deep learning model. Regarding the usefulness of the model,
analysts believe that AGIR is able to reduce the time required for report production by 42.6%,
resulting in a total time reduction of 54 minutes. It should be noted that this result is only
an estimate extracted from this questionnaire, and to obtain a more reliable result, it would be
necessary to test it in the actual production of a report. Results divided by report type can be
seen in Appendix A.

40

6
Conclusion

In this thesis, we discussed the intelligence report generation problem in the cybersecurity field.
This task is particularly relevant in order to save time in the report-writing process. In order to
address this problem, we proposed AGIR, a NLG system able to produce 4 different types of
reports, composed of two blocks:

1. template-based approach to build a baseline report;

2. use of ChatGPT to improve the fluency of the report.

The first part of the pipeline does the majority of the work by creating an initial version of
the report from the input JSON. In this phase, the tasks of content selection, text structuring,
and sentence creation are performed. The second part focuses on improving the fluency of the
report by leveraging ChatGPT API to perform paraphrasing.
The obtained results have been then analyzed through the means of intrinsic human evalu-
ation, extrinsic human evaluation and the SLOR metric for fluency. The generated reports
overall reached good levels of fluency and correctness. In particular, the use of ChatGPT as
a paraphrasing tool has increased the fluency of the reports (as demonstrated by the question-
naire and SLOR scores). Furthermore, the use of the deep learningmodel has slightly increased
the correctness value, which shows that it has not introduced phenomena of hallucination or
omission. Regarding extrinsic evaluation, analysts have positively evaluated AGIR, believing
that it can contribute to reducing report writing time by 42.6%.

41

For future work, we would like to verify the correctness of the obtained values for the extrin-
sic evaluation by having experts in the field test AGIR in the context of writing a real security
report. Currently, AGIR uses ChatGPT, which can introduce cost and privacy issues. An in-
teresting research direction would be the development of an equivalent deep learning model
that can be used locally, avoiding the aforementioned problems. Another contribution could
be the production of a large dataset containing the relevant STIXproperties for a set of entities,
on which a language model can be trained to generate the initial report. This would eliminate
the maintainability issue introduced by the use of templates. Finally, it would be interesting
to analyze the use of AGIR as an aggregator of different reports. Security companies, such as
Leonardo, receives everyday dozens of security reports even on the same incident or threat actor.
Then, they usually employ an information extraction tool such as STIXnet [22] or TIM [23]
to extract the entities and relations from the report and populate the database. From the infor-
mation, retrieved from different reports, contained in the database, AGIR could automatically
generate a single report merging the information from all the various sources.

42

A
Questionnaire results divided by report type

Model Correctness Fluency Utility
Narrator 2,92 2,77 109,23

First Step AGIR 3,85 3,46 86,92

Final AGIR 4,08 4,23 78,85

Table A.1: Questionnaire results for overview report.

43

Model Correctness Fluency Utility
Narrator 2,85 2,92 91,15

First Step AGIR 3,92 3,54 68,08

Final AGIR 4 4,15 72,31

Table A.2: Questionnaire results for subject report.

Model Correctness Fluency Utility
Narrator 3,38 3,15 111,53

First Step AGIR 3,46 3,38 114,61

Final AGIR 3,61 3,92 104,61

Table A.3: Questionnaire results for timeline report.

Model Correctness Fluency Utility
Narrator 2,84 3,07 78,07

First Step AGIR 3,84 3,53 48,84

Final AGIR 3,92 4,23 41,53

Table A.4: Questionnaire results for vulnerability report.

44

References

[1] K. Baker, “What is cyber threat intelligence?” 2023. [Online]. Available: https:
//www.crowdstrike.com/cybersecurity-101/threat-intelligence/

[2] S. Wickramasinghe, “Cti: The cyber threat intelligence guide,” 2022. [Online].
Available: https://www.splunk.com/en_us/blog/learn/cyber-threat-intelligence-cti.
html

[3] M. Kirschner, “Understanding the cyber threat intelligence cycle,” 2021. [Online].
Available: https://www.zerofox.com/blog/cyber-threat-intelligence-cycle/

[4] “What the 6 phases of the threat intelligence lifecycle mean for your team,” The
recorded future team, 2020. [Online]. Available: https://www.recordedfuture.com/
threat-intelligence-lifecycle-phases

[5] D. Blanco, “The pyramid of pain,” 2013. [Online]. Available: https://detect-respond.
blogspot.com/2013/03/the-pyramid-of-pain.html

[6] D. Tidmarsh, “What is the pyramid of pain, and why is it important in threat detec-
tion?” 2022. [Online]. Available: https://www.eccouncil.org/cybersecurity-exchange/
threat-intelligence/pyramid-pain-threat-detection/

[7] “Stix version 2.1,” Oasis Open, 2021. [Online]. Available: https://docs.oasis-open.org/
cti/stix/v2.1/os/stix-v2.1-os.html

[8] D. D. McDonald, “Issues in the choice of a source for natural language generation,”
Comput. Linguist., vol. 19, no. 1, p. 191–197, mar 1993. [Online]. Available:
https://aclanthology.org/J93-1009.pdf

[9] E. Reiter and R. Dale, Building Natural Language Generation Systems, ser. Studies in
Natural Language Processing. Cambridge University Press, 2000.

45

https://www.crowdstrike.com/cybersecurity-101/threat-intelligence/
https://www.crowdstrike.com/cybersecurity-101/threat-intelligence/
https://www.splunk.com/en_us/blog/learn/cyber-threat-intelligence-cti.html
https://www.splunk.com/en_us/blog/learn/cyber-threat-intelligence-cti.html
https://www.zerofox.com/blog/cyber-threat-intelligence-cycle/
https://www.recordedfuture.com/threat-intelligence-lifecycle-phases
https://www.recordedfuture.com/threat-intelligence-lifecycle-phases
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/pyramid-pain-threat-detection/
https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/pyramid-pain-threat-detection/
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html
https://aclanthology.org/J93-1009.pdf

[10] A. Gatt and E. Krahmer, “Survey of the state of the art in natural language
generation: Core tasks, applications and evaluation,” 2018. [Online]. Available:
https://arxiv.org/abs/1703.09902

[11] E. Reiter, “Nlg vs. templates,” 1995. [Online]. Available: https://arxiv.org/abs/
cmp-lg/9504013

[12] K. van Deemter, E. Krahmer, and M. Theune, “Squibs and discussions: Real versus
template-based natural language generation: A false opposition?” Computational
Linguistics, vol. 31, no. 1, pp. 15–24, 2005. [Online]. Available: https://aclanthology.
org/J05-1002

[13] M. Theune, E. Klabbers, J. R. De Pijper, E. Krahmer, and J. Odijk, “From
data to speech: a general approach,” Natural Language Engineering, vol. 7, no. 1,
p. 47–86, 2001. [Online]. Available: https://www.cambridge.org/core/journals/
natural-language-engineering / article / abs / from-data-to-speech-a-general-approach /
0F7AE15E130F64C36E98826ABED68C0E

[14] M. Kale and A. Rastogi, “Template guided text generation for task-oriented dialogue,”
in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Association for Computational Linguistics, nov 2020, pp.
6505–6520. [Online]. Available: https://aclanthology.org/2020.emnlp-main.527

[15] A. Das and R. Verma, “Automated email generation for targeted attacks using natural
language,” 2019. [Online]. Available: https://arxiv.org/abs/1908.06893

[16] S. Polzunov and J. Abraham, “Narrator: Generating intelligence reports from
structured data,” 2020. [Online]. Available: https://www.eclecticiq.com/resources/
narrator-generating-intelligence-reports-from-structured-data

[17] K. S. Jones and J. R. Galliers,Machine Translation, vol. 12, no. 4, pp. 375–379, 1997.
[Online]. Available: http://www.jstor.org/stable/40008377

[18] E. Reiter, “How to do an nlg evaluation: Human ratings in artifi-
cial context,” 2017. [Online]. Available: https://ehudreiter.com/2017/01/09/
human-ratings-nlg-evaluation/

46

https://arxiv.org/abs/1703.09902
https://arxiv.org/abs/cmp-lg/9504013
https://arxiv.org/abs/cmp-lg/9504013
https://aclanthology.org/J05-1002
https://aclanthology.org/J05-1002
https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/from-data-to-speech-a-general-approach/0F7AE15E130F64C36E98826ABED68C0E
https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/from-data-to-speech-a-general-approach/0F7AE15E130F64C36E98826ABED68C0E
https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/from-data-to-speech-a-general-approach/0F7AE15E130F64C36E98826ABED68C0E
https://aclanthology.org/2020.emnlp-main.527
https://arxiv.org/abs/1908.06893
https://www.eclecticiq.com/resources/narrator-generating-intelligence-reports-from-structured-data
https://www.eclecticiq.com/resources/narrator-generating-intelligence-reports-from-structured-data
http://www.jstor.org/stable/40008377
https://ehudreiter.com/2017/01/09/human-ratings-nlg-evaluation/
https://ehudreiter.com/2017/01/09/human-ratings-nlg-evaluation/

[19] A. Pauls and D. Klein, “Large-scale syntactic language modeling with treelets,” in
Proceedings of the 50th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, 2012, pp.
959–968. [Online]. Available: https://aclanthology.org/P12-1101

[20] K. Kann, S. Rothe, and K. Filippova, “Sentence-level fluency evaluation: References
help, but can be spared!” in Proceedings of the 22nd Conference on Computational
Natural Language Learning. Brussels, Belgium: Association for Computational
Linguistics, oct 2018, pp. 313–323. [Online]. Available: https://aclanthology.org/
K18-1031

[21] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le,
“Xlnet: Generalized autoregressive pretraining for language understanding,” CoRR,
vol. abs/1906.08237, 2019. [Online]. Available: http://arxiv.org/abs/1906.08237

[22] F. Marchiori, “Stixnet: entity and relation extraction from unstructured cti reports,”
Master’s thesis, University of Padova, 2022. [Online]. Available: https://hdl.handle.
net/20.500.12608/33779

[23] Y. You, J. Jiang, Z. Jiang, P. Yang, B. Liu, H. Feng, X. Wang, and N. Li, “Tim: threat
context-enhanced ttp intelligence mining on unstructured threat data,” Cybersecurity,
vol. 5m no.1, 2022. [Online]. Available: https://cybersecurity.springeropen.com/
articles/10.1186/s42400-021-00106-5

47

https://aclanthology.org/P12-1101
https://aclanthology.org/K18-1031
https://aclanthology.org/K18-1031
http://arxiv.org/abs/1906.08237
https://hdl.handle.net/20.500.12608/33779
https://hdl.handle.net/20.500.12608/33779
https://cybersecurity.springeropen.com/articles/10.1186/s42400-021-00106-5
https://cybersecurity.springeropen.com/articles/10.1186/s42400-021-00106-5

48

Acknowledgments

I would like to express my gratitude to everyone who has played a practical role in bringing
this project to fruition. First, I am immensely grateful to Professor Mauro Conti for giving
me the opportunity to work on this project and for providing guidance throughout these 10
months. I extend my sincere appreciation to Francesco Marchiori for consistently being avail-
able to offer invaluable advice. I would also like to thank the team at Leonardo: Nino, Andrea
and Davide, for welcoming me into their company and providing support during my intern-
ship. Additionally, I am grateful to Sergey Polzunov and Professor Giorgio Satta for providing
assistance when needed.
Moving on, I would like to thank those who have supported me and continue to support me
daily in everything I do, contributing indirectly but significantly to this project. I begin by
expressing my heartfelt gratitude to my family for always supporting me, without putting any
pressure, and for the love they give me every single day. To my cherished friends, “I regaz”, I
am grateful for the countless smiles and carefree moments we share, I know that I can always
count on you. Lastly, I reserve the most profound appreciation for Sara, the beacon of my life,
who daily guides me with her light towards the harbour. Throughout the completion of this
thesis, I have often been at open sea, and your light, as always, has led me to safety.

49

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Background
	Cyber Threat Intelligence
	CTI types
	Threat Intelligence Life Cycle
	Pyramid of Pain
	CTI reports

	Structured Threat Information eXpression
	STIX Entities
	STIX Relationship Objects
	Example of a STIX Graph

	Related Works
	Methodology
	Input
	Content selection and text generation
	ChatGPT APIs
	Output
	Full Example

	Evaluation
	Quantitative evaluation
	Qualitative evaluation
	SLOR
	Fluency, Correctness and Utility

	Conclusion
	Appendix Questionnaire results divided by report type
	References
	Acknowledgments

