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Abstract

In this thesis a pair of energy harvesting devices (EHDs) is considered, whose
state at any given time is determined by the energy level and an importance
value, associated to the transmission of a data packet to the receiver at that
particular time. For each device, the objective is to optimize the transmission
strategy of the two nodes over a shared wireless channel, with the goal of max-
imizing the long-term average importance of the transmitted data.

In the first part of this work, under the assumption of i.i.d. Bernoulli energy
arrivals and a collision channel model, a central controller with perfect infor-
mation on the energy level and packet importance of both nodes is examined,
showing the optimality of threshold policies with respect to the data impor-
tance level, i.e., the sensor nodes should report only data with an importance
value above a given threshold. In addition, numerical results are provided, in
order to evaluate the impact on the performance of factors such as the bat-
tery capacity size and the energy harvesting rate, as well as the interactions
between the two nodes.

In the final part, recognizing that the estimate of the energy level of the
batteries employed in real-world EHDs is not trivial, the focus is shifted on the
design of optimal operation policies maximizing the long-term reward under
imperfect knowledge of the State-Of-Charge (SOC) of the two devices. In
particular, the case of a four-state controller only knowing if each SOC is
HIGH or LOW is studied, providing numerical results to be compared with
the case of a controller with perfect SOC knowledge.
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Sommario

Questa tesi considera una coppia di dispositivi Energy Harvesting, il cui stato,
in ogni istante temporale, è determinato dal livello di energia e da un valo-
re di importanza associato alla trasmissione di un pacchetto di dati verso il
ricevitore. L’obiettivo di ogni dispositivo è quello di ottimizzare la strategia
di trasmissione dei due nodi attraverso un canale wireless condiviso, al fine di
massimizzare l’importanza asintotica media dei dati trasmessi.

Nella prima parte della tesi, assumendo che il recupero dell’energia sia mo-
dellato da un processo stocastico bernoulliano i.i.d. e che trasmissioni simul-
tanee collidano, si mostra l’ottimalità di una politica a soglia rispetto al livello
di importanza, utilizzando un controllore centrale con conoscenza perfetta del
livello di energia e dell’importanza del pacchetto di ogni sensore. Questo signi-
fica che i nodi debbano trasmettere soltanto i dati il cui valore di importanza
si trova al di sopra di una data soglia. Vengono inoltre presentati risultati
numerici con cui valutare l’interazione tra i due dispositivi e l’impatto sulle
performance di fattori come la capacità della batteria e il tasso di recupero
dell’energia.

Nella parte finale, dopo aver riconosciuto le difficoltà pratiche che impe-
discono una corretta stima del livello energetico delle batterie utilizzate nei
sensori reali, vengono individuate delle politiche di trasmissione ottime che
portino ad una massimizzazione del guadagno nel caso di conoscenza imper-
fetta dello stato energetico dei due dispositivi. In particolare, viene studiato
un controllore a quattro stati, in grado di sapere soltanto se lo stato di carica
di ogni nodo è alto o basso. Anche in questo caso vengono forniti dei risultati
numerici che possano permettere un confronto con un controllore dotato di
conoscenza perfetta della carica.
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Chapter 1

Introduction

Recently, multifunctional sensor nodes capable of communicating over short
distances have been developed, thanks to the advances in micro-electro-mechanical
systems technology, digital electronics and wireless communications. The pos-
sibility of producing such sensors in a low-power, low-cost and small-size way,
leverages the idea of sensor networks based on collaborative efforts of a large
number of nodes.
These small devices, also named motes, are able to sense physical quantities
(position, temperature, humidity, etc), to process data and to communicate to
each other (see Figure 1.1). The sensor nodes constituting the network can be
deployed very close to the phenomenon and their position does not need to be
predetermined, thus allowing random deployment in inaccessible or disaster
areas [2].
Sensor networks can be used in a lot of applications whose realizations require

http://www.eecs.berkeley.edu/XRG/Summary/Old.summaries/03abstracts/polastre.1.fig.2.jpg[28/09/2013 11.55.08]

Figure 1.1: A practical sensor node [1]

wireless ad hoc networking techniques. However, most of the algorithms used

1



2 1. Introduction

in ad hoc networks are not well suited for the requirements of the sensors. In
fact, the most important differences between the two types of networks are [3]:

• sensor nodes are typically densely deployed;

• the number of nodes constituting a sensor network can be much bigger
than that of an ad hoc network;

• sensor nodes are prone to failures;

• sensor nodes mostly use broadcast communications whereas ad hoc net-
works are based on point-to-point communications;

• the topology of a sensor network can frequently change due to mobility
or damages;

• nodes are limited with respect to energy, memory and computational
power.

Due to these reasons, this type of network needs algorithms realized specifi-
cally to manage data communication and routing.

The communication is usually performed in an asymmetric way: nodes
send the data to one or more special nodes, called sink (or base station),
whose aim is to collect data. The base station is a component of the WSN
with much more computational power, memory, energy and communication
resources, which acts as a gateway between sensor nodes and the end user,
typically forwarding data from the WSN on to a server. A transmission can be
initialized autonomously by the sensor (if a certain event occurs) or by the sink
(by sending a query towards a specified node). On the other hand, it is possible
to exploit the great density of nodes performing multihop communication,
which is able to consume less power than the traditional single hop strategy
(Figure 1.2). In addition, this technique can lower the transmission power
levels (highly desirable in most scenarios) and overcome some of the signal
propagation effects experienced in long-distance wireless communications.
One of the most important constraints on sensor nodes is the low-energy

consumption requirement: a node generally carries a limited and irreplaceable
power source. As a result, while traditional wired networks aim to meet high
quality of service constraints, sensor network protocols have to focus primarily
on power conservation: a permanent trade-off between network lifetime and
transmission throughput has to be taken into account.
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Figure 1: A sensor network with multihop transmission.

1.1 The use of sensor network

A sensor network may be used for many tasks: one field of application is
surveillance. If sensors are distributed from an airplane over a war front,
enemy movements can be monitored without the enemy’s knowledge. The
benefit of a sensor network in this case is that there is no need for troops to
enter the war zone to place the network. The main task for the processor
is then to distinguish between movements from the enemy and movements
from animals and friendly troops. A more peaceful but similar application
of a sensor network is to find the origin of a forest fire and then track its
spread.

Zoologists are often interested in the movements and the behavior of
animals. Sensor nodes that can be attached to the animals allow for this
kind of monitoring. This is an example of a dynamical sensor network where
the locations of the sensor nodes change when the animals move.

Maybe it will be possible in the future to build very small moving sensors
that can be deployed over areas struck by an earthquake. Once these nodes
hit the ground they start to move around in the collapsed structures to
locate survivors.

1.2 Performance measurements

When analyzing the performance of a sensor network it is common to as-
sume that the sensors are distributed according to a Poisson point process
with fixed intensity λ and that the sensors have a fixed transmission radius
r. Thus, if the distance between two sensors are less than r, it is possible
to transfer a message between them. Transmission is assumed to be instan-
taneous. We also assume that once a node starts to transmit it does so
during the evolution of the system. Figure 2 below illustrates a sensor net-
work in two dimensions, the dots are sensor nodes and the circles represent

2

Figure 1.2: A sensor network with multihop transmission

1.1 Applications

A sensor network can be seen as a set of different types of sensors able to sense
a wide variety of ambient conditions like pressure, humidity, temperature,
lighting, noise but also vehicular movement, soil makeup, mechanical stress on
attached objects and also the presence or absence of certain kinds of objects [4].
Moreover, nodes can be used for event detection, continuous sensing or local
control of actuators useful in many application areas.

1. Environmental
The term environmental sensor network has evolved to cover many ap-
plications of WSNs to earth science research [5]. Some of the major fields
are listed below.

• Air quality monitoring: in urban areas the degree of pollution of
the air needs to be frequently measured in order to protect people
from any kind of damage due to air pollution.

• Natural disaster prevention: wireless sensor networks can prevent
the consequences of natural disasters like earthquakes or floods. For
instance, wireless nodes have successfully been installed in rivers to
monitor the water levels in real time.

• Forest fire detection: a network of sensor nodes can be deployed in
a forest to detect when a fire has started. Nodes can be capable
of measuring temperature, gases and humidity produced by fires
among the vegetation. Thanks to WSNs, fire fighters would be able
to early detect a fire and track its spreading.
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• Water quality monitoring: water properties in rivers, lakes, dams
and oceans, as well as underground reserves [6], can be monitored
avoiding manual data retrieval in difficult-access locations.

2. Military
The possibility to easily and rapidly spreading as well as self-organization
and tolerance to damages make a sensor network a promising technique
towards military application. Since sensor networks are based on dense
deployment of low cost and disposable nodes, destruction of some nodes
by enemy actions does not damage military operations as much as the
destruction of a traditional sensor. A possible application is the monitor-
ing of friendly forces, equipment and ammunition: every troop, vehicle
and critical device could be attached with a small sensor to report its sta-
tus. These reports could be gathered in sink nodes and sent to the troop
leader or directly forwarded to the upper level of the hierarchy together
with the data from the other units. Different applications are battlefield
surveillance, battle damage assessment as well as nuclear, biological and
chemical attack detection.

3. Health
Some applications in this field are addressed to provide an interface for
disabled people, to monitor human physiological data, to administer
drugs in hospitals (avoiding the chance to prescribe the wrong medi-
cations to patients) and also to track doctors and patients inside hospi-
tals [2, 7].

4. Home
Sensor nodes inside the domestic appliances can interact with each other
and with the external network by an Internet point. This could allow
users to easily manage home appliances locally or remotely.

5. Others
Some other commercial applications are virtual keyboards, interactive
toys and museums, factory process control and automation, robot control
and guidance in automatic manufacturing environments. Finally, also
local control of actuators and vehicle tracking and detection are today
available.
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1.2 Characteristics of a sensor network

1.2.1 Scalability

A sensor network can be composed by thousands of nodes, and, depending on
the application, this number may reach an extreme value of millions. Conse-
quently, the implemented algorithms must be able to cope with such a hetero-
geneous framework. The number of nodes in a region is connected to the node
density of the network, that in [7] is calculated as:

ρ(r) = Nπr2

A
,

where N is the number of nodes in region A and r is the radio transmission
radius. Practical densities that have been used, depending on the particular
application [8–10], are shown in Table 1.1.

Application Number of nodes Area
Machine diagnosis 300 5× 5 [m2]
Habitat monitoring 25− 100 grid of observation

Person ∼ 100 glasses, shoes, clothing
Vehicle tracking 10 5× 5 [m2]
Home appliances 24 home

Table 1.1: Sensor nodes densities per application

1.2.2 Fault tolerance

Fault tolerance is the ability to maintain sensor network functionality without
any interruption in case of node failures. Possible arising events can be lack of
power, environmental interference or physical damages. In [11], the occurrence
of faults Rk(t) is modelled using a Poisson process: the probability of not
having a failure at node k in the time interval (0, t) is

Rk(t) = e−λkt,

where λk and t are the failure rate of sensor node k and the time period, re-
spectively.
Clearly, algorithms and protocols can be designed based on the level of fault
tolerance required by the application: if the environment has no interference,
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the protocol can be more relaxed. However, if the working area is the battle-
field, fault tolerance must be higher, as sensed data are critical and nodes can
be destroyed by hostile actions.

1.2.3 Production costs

An important constraint on a sensor node is its cost: since sensor networks
consist of a large number of nodes, if the cost of this type of network is greater
than that of a traditional one, then the sensor network is not cost-justified.
Consequently, the cost of each sensor node has to be maintained low: in [12],
it is claimed that it should be less than 1$ for the network to be feasible.
However, this is a very challenging issue, since just a Bluetooth radio, which
is only one of the components listed in Section 1.4, currently costs 10$ [13].

1.2.4 Topology

As sensor networks consist of up to thousand of nodes, topology issues have to
be considered. Nodes can be either thrown together (for example by a plane or
a rocket) or individually placed by a human or a robot. In any case, the initial
deployment has to reduce the installation cost, to eliminate the need for any
pre-organization and pre-planning and to facilitate self-connection and fault
tolerance. Commonly, it is assumed that sensors are distributed according to
a Poisson process, with fixed intensity λ. If the transmission radius is r, it is
possible to transfer a message between two sensors whose distance is less than
r. Figure 1.3 shows a two-dimensions network, where the dots are sensor nodes
and the circles represent half their transmission radius. If two circles overlap,
the communication can be efficiently established and the nodes are connected.
Thanks to multihop transmission it is possible to transfer a message from A

to B if there is a path of connected circles between A and B.

1.2.5 Power consumption

Some of the most important tasks of a sensor node are the event detection,
the quick processing of local data and their transmission. Thus, power con-
sumption can be divided into three areas: sensing, communication and data
processing.
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half the transmission radius r of the sensor nodes. If two circles overlap,
the corresponding nodes can communicate and we say that the nodes are
directly connected. Because of multihop transmission of messages it is pos-
sible to transfer a message from A to B instantaneously if there is a path of
connected circles between A and B.

PSfrag replacements
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Figure 2: Multihop transmission between A and B.

In this model, if the dimension is greater than one, there exists a critical
intensity λc = λc(r, d) depending on both the transmission radius r and the
dimension d of the network. If the intensity λ of the Poisson process is less
than the critical intensity λc we say that the network is subcritical. In this
state, illustrated to the left in Figure 3, the network consists of small isolated
islands of connected nodes, hence a message can only be transferred a finite
distance. On the other hand if the intensity λ is greater than the critical
intensity λc, right of Figure 3, there exists a unique unbounded cluster of
connected nodes. The network is then called supercritical. So if a node
belongs to this unbounded cluster its message can be transferred arbitrarily
far away.
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Figure 3: Left: subcritical λ < λc. Right: supercritical λ > λc.

A one-dimensional sensor network is always subcritical [2]. Intuitively
this is obvious. Pick an arbitrary node and transmit a message in one of

3

Figure 1.3: Multihop transmission between A and B

Sensing

Sensing power normally varies with the application: clearly, infrequent sensing
generally consumes less power than constant event monitoring. In addition, it
must be noted that sensing power is also highly influenced by the complexity
of event detection: higher environmental noise levels can cause corruption and
increase detection complexity.

Communication

In a sensor node the maximum quantity of energy is consumed for data com-
munication, which involves both data transmission and reception. In fact, it
has been proved that transmission cost is nearly the same as in reception in
the case of short range communication. It is worth noting that these figures in-
clude also the circuitry start-up power consumption: as the transmitted packet
size is reduced, this element starts to dominate the active power consumption.
As a consequence, it may not be efficient to turn the transceiver ON and OFF
too often.
[8] presents a formulation for the radio power consumption Pc as:

Pc = NT [PT (TON + Tst) + Pout (TON)] +NR [PR (RON +Rst)] ,

where PT and PR are the powers consumed by the transmitter and the receiver,
Pout is the output power of the transmitter, TON and RON are the transmitter
and receiver ON time, Tst and Rst are the transmitter and receiver start-up
times and NT and NR are the numbers of times transmitter and receiver are
switched on per unit time. Note that TON = L/R, L being the packet size and
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R the data rate.

Data processing

With respect to data communication, the energy required for data processing
is much lower. In [14], it is demonstrated that, in a generic WSN environment,
the energy cost of transmitting 1 KB at a distance of 100 m is approximately
the same as that of executing 3 million instructions by a 100 million instruc-
tions per second processor. Consequently, instead of sending the raw data,
sensor nodes can use their processing abilities to locally carry out simple com-
putations and transmit only the required and partially processed data.

Being a micro-electronic device, a wireless sensor node can only be provided
with a limited power source. Due to the fact that, in some particular inac-
cessible scenarios, battery replenishment is impossible, sensor node lifetime is
highly dependent on battery lifetime. As each node can play both the roles of
data source and data router, for example in a multihop transmission strategy,
the malfunctioning of just a few nodes can cause huge topological changes and
might imply re-routing of packets and the re-organization of the network.
In traditional ad hoc networks, where power sources are assumed to be replace-
able by the users, power consumption is considered a prominent design factor,
but not of primary importance: the emphasis is devoted to QoS provisioning
rather than power efficiency. On the other hand, in sensor networks, the latter
is a very important performance metric, directly influencing the network life-
time: this thesis deals with the design of specific protocols that are designed
to appropriately trade off power consumption and transmission throughput.

1.3 Harvesting capabilities

Energy harvesting (EH), also known as energy scavenging, is the process by
which ambient energy is captured and, if necessary, stored to provide electricity
for small autonomous devices, such as satellites, mobile phones or nodes in
sensor networks. EH is used for many reasons, from providing long life and no
maintenance to saving costs. Examples are given in Table 1.2 [15].

Energy management is one of the main issues in WSN because it critically
threats their sustainability. Since the nodes may be distributed in extensively
wide and complex environments, it becomes very difficult to replace the bat-
tery: various studies have been performed to increase the lifetime of the battery
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Device Primary reason for EH
Mobile phones, e-books, laptops Convenience: no drained batteries,

never need to find a charging point
or carry a charger

Wireless sensor networks Mobile and inaccessible nodes
become feasible in challenging

deployments like forests or engines;
support costs greatly reduced

Military equipment Operational availability: security of use
Medical implants Safety; intrusive procedures reduced

Health care disposables Cost, convenience, reliability
Consumer goods and packaging Cost, new merchandising features

Table 1.2: Reasons for Energy Harvesting

of a node by choosing the best modulation strategy [16], by exploiting power
saving modes (sleep/listen) periodically [17], by reducing the number of bits
to transmit [18,19], by using energy efficient routing [20,21] and MAC [22] and
by using efficient transmission scheduling to take advantage of charge recovery
phenomenon [23].
In addition to these, another very interesting strategy is that of exploiting En-
ergy Harvesting techniques [24], among which solar cells are maybe the most
intuitive and well-working. A list of some scavenging sources is presented
below.

1.3.1 Types of scavenging

There are many free energy sources in nature [25,26]: how to harvest and store
this energy efficiently in small devices is still an open topic for research.

• Solar The basic principle of optical collection is to absorb a large num-
ber of photons by the use of photovoltaic materials. The main disadvan-
tage of this energy source is the great dependence on time and on solar
environment exposure. Indeed during night and cloudy days sufficient
incoming energy cannot be guaranteed.

• Thermal Thermoelectric scavenging exploiting the differences of tem-
perature is nowadays a very well known technology. Devices of this type
can be small, light and are able to work in harsh environments.

• Motion If nodes are subject to movements, oscillations and vibrations,
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energy could be scavenged according to Faraday’s law of electromagnetic
induction. The main advantage of this source is that, in some particular
scenarios, it could provide constant energy.

• Electromagnetic When a node is exposed to an electromagnetic field,
energy can be drawn with the use of an inductor. Manos Tentzeris, a
professor in the Georgia Tech School of Electrical and Computer Engi-
neering, and his team state: “There is a large amount of electromagnetic
energy all around us, but nobody has been able to tap into it. We are
using an ultra-wideband antenna that lets us exploit a variety of signals
in different frequency ranges, giving us greatly increased power-gathering
capability” [27]. It is believed that the technique could provide a promis-
ing new way to power wireless sensors networks.

Thanks to EH, energy conservation does not need to be the most impor-
tant concern any more, and energy efficient policies and harvesting techniques
can be jointly developed. However, some issues related to scavenging are still
present: harvested energy could not always be available (for example with solar
cells), despite sensor nodes’ constant needs, or energy generation rates could
be limited and hence the energy generation profile of the harvesting source
should be matched with the energy consumption profile of the sensor node, in
a way avoiding energy starvation from being the main reason for the node to
die (energy neutral operation [24]). Furthermore, it must be noted that, treat-
ing energy arrivals as a random process, the way in which harvesting occurs is
random and barely predictable.

1.3.2 Paradigms for energy efficient operations

In conclusion, differently from traditional sensors, where the objective is to
minimize energy consumption under a performance constraint (for example the
delay [28]), with Energy Harvesting Devices, which are utilized in this thesis,
the objective is the “management” of the harvested energy. Intuitively, when
a finite battery is available, an EHD should judiciously perform its assigned
task based on its available energy, becoming more “conservative” as its energy
supply runs low to ensure uninterrupted operation, and more “aggressive”
when energy is abundant, to avoid that harvested energy is wasted due to lack
of storage space.
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1.4 Node architecture

The overall architecture of a sensor node consists in five basic components as
shown in Figure 1.4:

MEMORY

MICRO-CONTROLLER

SENSORS

ENERGY
HARVESTING

Figure 1.4: Architecture of a wireless sensor node

• The power supply unit of the sensor node provides power to all its
components. In the majority of cases it consists of a rechargeable DC
battery and can be supported by a power scavenging unit such as solar
cells.

• Micro controller is responsible for all processing and decision making.

• Sensing units monitor the surrounding environment and inform the
controller about what is being observed. For example, they can sense
light, temperature, humidity, pressure. Sensing units are usually com-
posed by two subunits: a sensor and an analog to digital converter
(ADC). The analog signal produced by the sensor is converted to digital
by the ADC, and then passed to the processing unit.

• The Transceiver deals with transmission and reception of the data to
and from the base station. Usually RF based communication is preferred,
as Infrared or Laser technologies need a direct propagation path for a
correct communication.

• Sensor nodes are equipped with a programmable Flash memory. Usu-
ally storage capacity is limited, so the protocols that are designed for
sensor networks should be simple enough to be loaded into the small
available memory.
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• There can also be some applications-dependent additional components,
such as a location finding system (GPS).

1.5 Aim of the thesis

This thesis focuses on the case of a Wireless Sensor Network (WSN) consisting
of two EHDs, which report incoming data of different “importance” levels to a
receiver “RX” (also called Central Controller “CC”), with the overall goal to
maximize the long-term aggregate average importance of the reported data.
A number of practical examples fall under this general model: a network of
temperature sensing EHDs, where the importance is an increasing function
of the temperature value, higher temperatures being the indicator of over-
heating or fire; an EHD which relays different priority packets in a sensor
network [29]; an EHD which adjusts the packet information rate based on the
channel condition to the RX, in which case the importance level corresponds to
the instantaneous rate and the objective is to maximize the longterm average
throughput [24].
Specifically, the model in [30] is generalized, which is devoted to the analy-
sis and design of optimal energy management policies for the scenario with
a single EHD, thus making a first step towards the analysis of more general
networking scenarios for EHDs.
With respect to [31], which considers the design of decentralized multiaccess
policies for EH wireless sensor networks, the majority of this work, which is
derived from [32], assumes a centralized approach, where a central unit has
perfect knowledge of the amount of energy currently available in the battery
of each device, as well as the importance of the current data packets, and
allocates transmission to either user accordingly. Such framework serves as a
performance benchmark for the analysis of decentralized approaches.
Finally the last chapter, extending [33], relaxes the previous assumption of
perfect knowledge of the batteries states-of-charge (SOC), and deals with the
quantification of the performance degradation due to imperfect SOC knowl-
edge, identifying the optimal amounts of energy to be drawn by the CC to
maximize the chosen reward metric, in the special case of a two-equal interval
energy level uncertainty.



Chapter 2

System model

AWireless Sensor Network (WSN) consisting of two EHDs is considered, where
each device is able to transmit to a unique Central Controller (CC). The time is
divided into slots, and slot k corresponds to the time interval [k, k+1), k ∈ Z+.
It is assumed that at every time instant k each EHD has a new data packet
to send to the CC, whose duration is one slot; in addition, no data buffer is
provided, so not packets that are not transmitted are discarded. The collision
model used imposes that two simultaneous transmissions of the two EHDs
incur a transmission failure: to prevent this from happening a centralized con-
troller is employed, which has to allocate the transmissions of both sensors in
order to allow only one of them in a single time slot.

The energy storage capability of each EHD is modeled by a buffer. As in
previous works [34] and [35], the simplifying assumption that each position
in the buffer can hold exactly one energy quantum and that the transmission
of one data packet requires the expenditure of exactly one energy quantum
is used. As a result, the maximum number of quanta that can be stored in
EHD i is emax,i and the set of its possible energy levels is denoted by Ei =
{0, 1, . . . , emax,i}, i = 1, 2.
If the amount of energy quanta at time k at EHD i are denoted as Ei,k, the
evolution of Ei,k is determined by the following equation

Ei,k+1 = min
{

[Ei,k −Qi,k]+ +Bi,k, emax,i
}
, (2.1)

where:

• {Bi,k} is the energy arrival process, which models the randomness in
the energy harvesting mechanism, e.g., due to an erratic energy supply.

13
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{Bi,k} is assumed to be an i.i.d. Bernoulli process with mean b̄i ∈ (0, 1),
independent across EHDs;

• {Qi,k} is the action process, whose value is one if the current data packet
is transmitted by EHD i, resulting in the consumption of one energy
quantum, drawn from the buffer, and zero otherwise. Clearly, due to
the collision model employed and the centralized controller, Q2,k = 0 if
Q1,k = 1, and vice versa.

Finally, it is assumed that a new energy quantum harvested in slot k can only
be used at a later time instant > k.

7

Data pkt

Battery capacity

Data pkt

Battery capacity CC

Figure 2.1: Decision process

The energy harvesting mechanism described in (2.1) and Figure 2.1 entails
the following two important phenomena: energy outage and energy overflow.

Definition 1. In slot k, for EHD i, energy outage occurs if Ei,k = 0

Outage corresponds to the EHD running out of energy before the comple-
tion of the requested task, which happens when Qk > Ek. In this case, no
transmission can be performed, regardless of the importance of the current
data packet, and the battery is depleted. If perfect knowledge of Ek is avail-
able at the EHD controller, then outage can always be avoided by choosing
Qk ≤ Ek.
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Definition 2. In slot k, for EHD i, energy overflow occurs if (Ei,k = emax,i)∩
(Bi,k = 1) ∩ (Qi,k = 0)

When energy overflow occurs, the incoming energy quantum cannot be
stored in the energy buffer of EHD i, due to its finite storage capacity: as a
result, since energy is lost, energy overflow potentially represents a lost trans-
mission opportunity in the future.

At time k, the state of the system is defined as Sk = (E1,k, E2,k, V1,k, V2,k),
where Vi,k is the importance value of the current data packet at EHD i. It
is assumed that Vi,k ∈ R+ is a continuous random variable with probability
density function (pdf) fVi(vi), vi ≥ 0, and that {Vi,k} are i.i.d. across time
and EHDs (see Figure 2.2).

EHD 1 EHD 2

CC
𝑉2,𝑘𝑉1,𝑘

𝐵2,𝑘𝐵1,𝑘

Figure 2.2: System model

2.1 Policy definition and general optimization
problem

Given Sk, a policy determines (Q1,k, Q2,k) ∈ {(0, 0), (1, 0), (0, 1)} at time k.
Formally, a policy µ is a probability measure on the action space {(0, 0), (1, 0), (0, 1)},
parameterized by the state Sk, i.e., given that Sk = (e1, e2, v1, v2) ∈ E1×E2×
(R+)2, µ((i, j); e,v) is the probability of drawing i and j energy quanta from
EHDs 1 and 2, respectively1. Obviously, as collisions are avoided by a central-
ized controller, it results that (Q1,k, Q2,k) 6= (1, 1).

Given an initial state S0, the long-term average reward under policy µ is
1For the sake of maximizing a long-term average reward function of the state and action

processes, it is sufficient to consider only state-dependent stationary policies [36].
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defined as

G(µ,S0) = lim
K→∞

inf 1
K

E
[
K−1∑
k=0

(Q1,kV1,k +Q2,kV2,k)
∣∣∣∣∣S0

]
,

where the expectation is taken with respect to {B1,k, B2,k, Q1,k, Q2,k, V1,k, V2,k}
and (Q1,k, Q2,k) is drawn according to µ. The optimization problem at hand
is to determine the optimal µ∗ such that

µ∗ = arg max
µ

G(µ,S0). (2.2)

As for the single user scenario [37], it can be proved (using the Lagrangian
multiplier method) that the optimal policy µ∗ must have a threshold structure
with respect to the importance of the current data packet. Specifically, for
each pair of joint energy levels e = (e1, e2) ∈ E1 × E2, there exists a pair of
thresholds (v1,th(e1, e2), v2,th(e1, e2)) such that



µ((1, 0); e, v1, v2) = 1, v1 > v1,th(e),
v1 − v1,th(e) ≥ v2 − v2,th(e),

µ((0, 1); e, v1, v2) = 1, v2 > v2,th(e),
v2 − v2,th(e) > v1 − v1,th(e),

µ((0, 0); e, v1, v2) = 1, v1 ≤ v1,th(e), v2 ≤ v2,th(e).

Intuitively, this means that, for the two possible transmission probability bud-
gets EV [µ((1, 0); e, v1, v2)] or EV [µ((0, 1); e, v1, v2)], the optimal policy priori-
tizes the transmission of high over low importance data. A graphical scheme
of the threshold-based transmission model can be seen in Figure 2.3. As a
result, only the subset of policies with such threshold structure are henceforth
considered.
For a policy with the above threshold structure the marginal transmission
probability of EHD i when the joint energy level state is e = (e1, e2) is

ηi(e) = E[Qi,k = 1|E1,k = e1, E2,k = e2], i = 1, 2 (2.3)

whereas the probability that neither node transmits is η0(e) = 1 − η1(e) −
η2(e). Correspondingly, the expected reward as a function of the marginal
probabilities η1(e) and η2(e) is defined as

g(η1(e), η2(e))= E [Q1,kV1,k+Q2,kV2,k|E1,k = e1, E2,k = e2] . (2.4)
Due to the threshold structure, the mapping between µ, vth,i(·) and ηi(·) is
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2 TXs

1 TXs

NO TX

𝑣1

𝑣2

𝑣1,𝑡ℎ

𝑣2,𝑡ℎ

Figure 2.3: Threshold structure of the optimal policy

one-to-one, and the transition probabilities of the time-homogeneous Markov
chain {(E1,k, E2,k)} are governed by η. As a consequence, policy µ can be
referred in terms of the corresponding pair of marginal transmission probabili-
ties (η1, η2). Then, assuming that (η1, η2) induces an irreducible Markov chain,
the long-term reward does not depend on the initial state, hence the average
reward becomes

G(η1, η2)=
emax,1∑
e1=0

emax,2∑
e2=0

πη(e1, e2)g(η1(e1, e2), η2(e1, e2)), (2.5)

where πη(e1, e2) is the steady state distribution of the joint energy levels in-
duced by the policy (η1, η2). The optimization problem in (2.2) can thus be
restated as

(η∗1, η∗2) = arg max
η1,η2

G(η1, η2), (2.6)

and can be solved using standard stochastic optimization techniques, such as
the Policy Iteration Algorithm (PIA) [38].

The problem of maximizing the average value of the reported data from an
energy-aware replenishable sensor was formulated in [39]. However, [39] con-
sidered a continuous-time system and employed Policy Iteration to determine
the optimal thresholds. [29] investigated the relaying of packets of different pri-
orities in a network of energy-limited sensors, but did not account for energy
harvesting capabilities. In [24], an EHD with a data queue was considered and
sufficient stability conditions, as well as heuristic delay-minimizing policies,
were derived. Other related work on EHDs includes [34, 35], which consider
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variants of the system model employed in this work, but are concerned with a
different performance metric, namely the probability of detection of a randomly
occurring event, and [35], which proposes the use of RF-energy harvesting to
enhance the performance of passive RFID systems.

Example 1. (emax,1 = emax,2 = 1)
As an example, the Markov chain for the case emax,1 = emax,2 = 1 is drawn
in Figure 2.4, where each edge shows the probability of reaching every possible
energy state ∈ E1 × E2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. In particular, it can be
seen that in the states where ei = emax,i, the probability of going to an energy
state where still ei = emax,i, if no energy from EHD i is drawn, does not depend
on bi: this is a consequence of energy overflow. Furthermore, comparing this
Markov chain with that for emax,1 = emax,2 = 2 of Figure 2.5, it is evident that
the complexity of the model grows as the square of the capacity of the batteries
of the two EHDs: the number of states passes from 4 to 9.

(0 , 1) (1 , 1)

(0 , 0) (1 , 0)(1− b̄1)(1− b̄2)

(1− b̄1)b̄2

b̄1(1− b̄2)

b̄1b̄2

η2(1− b̄1)(1− b̄2)

(η0 + η2b̄2)(1− b̄1)

η2b̄1(1− b̄2)

(η0 + η2b̄2)b̄1

η1(1− b̄1)(1− b̄2)

η1(1− b̄1)b̄2

(η0 + η1b̄1)(1− b̄2)

(η0 + η1b̄1)b̄2

η1(1− b̄1)

η2(1− b̄2)

η0 + η1b̄1 + η2b̄2

Figure 2.4: Markov chain for emax,1 = emax,2 = 1
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(0 , 2) (1 , 2) (2 , 2)

(0 , 1) (1 , 1) (2 , 1)

(0 , 0) (1 , 0) (2 , 0)

Figure 2.5: Markov chain for emax,1 = emax,2 = 2: labels have been omitted for
clarity
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2.2 Upper bound calculation for the optimal
policy

It can be proved that, for any distribution of the importance values fVi(vi), i ∈
{1, 2}, g(x1, x2) is a concave function of (x1, x2), increasing in x1 and x2. Thus,
from (2.5),

G(η1, η2) ≤ g (η̄1, η̄2) , (2.7)

where the average transmission probability of EHD i is defined as

η̄i =
emax,1∑
e1=0

emax,2∑
e2=0

πη(e1, e2)ηi(e1, e2). (2.8)

Moreover, since the EH operation enforces a constraint on the maximum av-
erage transmission probability of each EHD, η̄i ≤ b̄i, and the shared channel
enforces the constraint η̄1 + η̄2 ≤ 1, it results that

G(η1, η2) ≤ max
η̄1≤b̄1
η̄2≤b̄2

η̄1+η̄2≤1

g (η̄1, η̄2) . (2.9)

Finally, in the special case b̄1 + b̄2 ≤ 1 (energy-limited multiuser system),
since g (η̄1, η̄2) is increasing in η̄i,

G(η1, η2) ≤ g
(
b̄1, b̄2

)
. (2.10)

The upper bound in (2.10) is asymptotically achievable when emax,1, emax,2 →
∞ by the balanced policy ηi(e1, e2) = b̄i,∀(e1, e2) : ei 6= 0, which is studied
in [30] for the single EHD scenario. In fact, when emax,1, emax,2 → ∞, the
battery of each EHD is seldom fully discharged, hence the two EHDs transmit
with probability b̄1 and b̄2, respectively, in each slot. A similar consideration
holds for the bound in (2.9).



Chapter 3

Maximization of the
transmission rate in the low
SNR regime

In this chapter, the optimization of (2.6) is considered, for the specific situation
in which the long-term average transmission rate from the EHDs to the CC
is to be maximized. The normalized channel gains H1,k and H2,k are assumed
i.i.d. (over time and across EHDs) and exponentially distributed with unit
mean, i.e., with pdf fHi(hi) = e−hi , hi > 0 (Rayleigh small scale fading).
The average Signal-to-Noise-Ratio (SNR) of link i at the receiver RX is Λi,
thus the overall SNR experienced by node i at the receiver in slot k is ΛiHi,k.
The achievable rate in slot k for EHD i is proportional to

Vi,k = ln(1 + ΛiHi,k), (3.1)

and with the above choice of the importance value, a threshold on the im-
portance level vi,th corresponds to a threshold on the normalized channel gain
hi,th = e

vi,th−1
Λi .

Since sensor nodes are energy constrained, a practical important case is the
low SNR regime Λi � 1 [24]. In this case, the Shannon capacity expression
(3.1) can be substituted with its linear approximation

Vi,k ' ΛiHi,k. (3.2)

As a consequence, the maximization of the transmission rate can be performed
using either (3.1) or (3.2): the latter will be treated in the next section, the
former in Chapter 5.

21
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3.1 Variables calculation

From (2.3) and (3.2), exploiting the independence between the channels, it
results that:

η0(e) = P [h1 < h1,th(e), h2 < h2,th(e)]

=
∫ h1,th(e)

0

∫ h2,th(e)

0
fH1,H2(h1, h2)dh2dh1

=
∫ h1,th(e)

0

∫ h2,th(e)

0
e−(h1+h2)dh2dh1

=
(∫ h1,th(e)

0
e−h1dh1

)(∫ h2,th(e)

0
e−h2dh2

)
=
(
1− e−h1,th(e)

) (
1− e−h2,th(e)

)
(3.3)

η1(e) = P [h1 ≥ h1,th(e), h1 − h1,th(e) ≥ h2 − h2,th(e)]

=
∫ ∞
h1,th(e)

∫ Λ1
Λ2
h1−

Λ1
Λ2
h1,th(e)+h2,th(e)

0
fH1,H2(h1, h2)dh2dh1

=
∫ ∞
h1,th(e)

∫ Λ1
Λ2
h1−

Λ1
Λ2
h1,th(e)+h2,th(e)

0
e−(h1+h2)dh2dh1

= e−h1,th(e)
(

1− Λ2

Λ1 + Λ2
e−h2,th(e)

)
(3.4)

and, by symmetry,

η2(e) = e−h2,th(e)
(

1− Λ1

Λ1 + Λ2
e−h1,th(e)

)
. (3.5)

Moreover, from (2.4), the reward is given by

g(η1(e), η2(e)) =
∫ ∞
h1,th(e)

∫ Λ1
Λ2
h1−

Λ1
Λ2
h1,th(e)+h2,th(e)

0
Λ1h1e

−(h1+h2)dh2dh1+

+
∫ ∞
h2,th(e)

∫ Λ2
Λ1
h2−

Λ2
Λ1
h2,th(e)+h1,th(e)

0
Λ2h2e

−(h1+h2)dh1dh2

= Λ1e
−h1,th(e)(h1,th(e) + 1) + Λ2e

−h2,th(e)(h2,th(e) + 1)+

− Λ1Λ2

Λ1 + Λ2
e−(h1,th(e)+h2,th(e))(h1,th(e) + h2,th(e) + 1). (3.6)

For the case of low SNR regime, it is possible to perform the inversion of
(3.4) and (3.5), obtaining the channel thresholds h1,th(e), h2,th(e) correspond-
ing to the probabilities η0, η1, η2. This values are calculated in the following
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Lemma.

Lemma 1. The values of the channel thresholds h1,th(e), h2,th(e) corresponding
to the transmission probabilities η0, η1, η2 are:


h1,th(e) = ln

(
(η0 − 1)Λ2 + (Λ1 + Λ2)(η1 + 1) + ∆

2(Λ1 + Λ2)η1

)

h2,th(e) = ln
(

2Λ2

(η1 + η2)Λ2 + (Λ1 + Λ2)(1− η1)−∆

)
,

(3.7)

where

∆=
√

[(η1 + η2)Λ2+(Λ1+Λ2)(1− η1)]2−4Λ2η2(Λ1+Λ2).

Proof. The inversion of (3.3) and (3.4) leads to two possible pairs of solutions:

h

(i)
1,th(e) = ln

(
(η0 − 1)Λ2 + (Λ1 + Λ2)(η1 + 1) + i∆

2(Λ1 + Λ2)η1

)

h
(i)
2,th(e) = ln

(
2Λ2

(1− η0)Λ2 + (Λ1 + Λ2)(1− η1)− i∆

)
,

where i ∈ {−1, 1}. Of these two solutions, the pair (h(−1)
1,th (e), h(−1)

2,th (e)) is not
feasible because either h(−1)

1,th (e) < 0 or h(−1)
2,th (e) < 0, as is shown below. In fact,

the values of η0 and η1 leading to nonnegative h(−1)
1,th (e) and h

(−1)
2,th (e) are the

solutions of the system


ln
(

(η0 − 1)Λ2 + (Λ1 + Λ2)(η1 + 1)−∆
2(Λ1 + Λ2)η1

)
≥ 0

ln
(

2Λ2

(1− η0)Λ2 + (Λ1 + Λ2)(1− η1) + ∆

)
≥ 0

i.e.
 (η0 − 1)Λ2 + (Λ1 + Λ2)(η1 + 1)−∆ ≥ 2(Λ1 + Λ2)η1

2Λ2 ≥ (1− η0)Λ2 + (Λ1 + Λ2)(1− η1) + ∆

which leads to
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

∆2 = ((η0 − 1)Λ2 + (Λ1 + Λ2)(η1 − 1))2 − 4Λ2η2(Λ1 + Λ2) ≥ 0

(η0 − 1)Λ2 + (Λ1 + Λ2)(1− η1) ≥ 0

(η0 + 1)Λ2 + (Λ1 + Λ2)(η1 − 1) ≥ 0

∆2 ≤ ((η0 − 1)Λ2 + (Λ1 + Λ2)(1− η1))2

∆2 ≤ ((η0 + 1)Λ2 + (Λ1 + Λ2)(η1 − 1))2

whose only solution is

η0 = 0, η1 = Λ1

Λ1 + Λ2
, η2 = Λ2

Λ1 + Λ2
,

but for these values, the pair of solutions (h(−1)
1,th , h

(−1)
2,th ) and (h(1)

1,th, h
(1)
2,th) are

equivalent, as ∆ = 0. Otherwise, if (η0, η1, η2) 6=
(
0, Λ1

Λ1+Λ2
, Λ2

Λ1+Λ2

)
, (h(−1)

1,th , h
(−1)
2,th )

is not feasible.
Finally, it must be proved that (3.7) always leads to nonnegative values of

h1,th(e) and h2,th(e): independently solving the inequalities

h1,th(e) = ln
(

(η0 − 1)Λ2 + (Λ1 + Λ2)(η1 + 1) + ∆
2(Λ1 + Λ2)η1

)
< 0

and

h2,th(e) = ln
(

2Λ2

(η1 + η2)Λ2 + (Λ1 + Λ2)(1− η1)−∆

)
< 0,

it results that h1,th(e) < 0 for η0η1 < 0 and h2,th(e) < 0 for η0 < 0. Clearly, as
ηi ≥ 0 ∀i ∈ {0, 1, 2}, these conditions never occur.

Finally, in the special case where a symmetric SNR is assumed for the two
links1, i.e., Λ1 = Λ2 = Λ, (3.4), (3.5) and (3.6) become

η1(e) = e−h1,th(e)
(

1− e−h2,th(e)

2

)

η2(e) = e−h2,th(e)
(

1− e−h1,th(e)

2

)
g(η1(e), η2(e)) = Λe−h1,th(e)(h1,th(e) + 1) + Λe−h2,th(e)(h2,th(e) + 1)+

− Λe
−(h1,th(e)+h2,th(e))

2 (h1,th(e) + h2,th(e) + 1),

(3.8)

1This setting will be used in the following sections.
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which shows that the SNR Λ affects the average long-term reward (2.5) as
a scalar multiplication factor. Therefore, without loss of generality, in this
Chapter Λ = 1 is henceforth assumed, since any other value of Λ can be
obtained by scaling (notice that this is true only for low SNR, and when
Λ1 = Λ2).

3.2 Algorithm implementation

The Policy Iteration Algorithm (PIA) [38] has been used to compute (2.6):
starting from an initial policy η0, this algorithm iteratively computes the Policy
Evaluation and Policy Improvement steps, until convergence. Firstly, using the
initial values of η0, the value of (2.5) is computed, and then the relative value
function vη : E1 × E2 → R is determined as the unique solution of the linear
system of equations

vη(0, 0) = 0

vη(e) =
∑

j∈E1×E2
Pη(Ek+1 = j|Ek = e)vη(j) = g(η1(e), η2(e))−G(η1, η2),

(3.9)
∀e ∈ E1 × E2.

Example 2. (emax,1 = emax,2 = 1)
Here E1 × E2 = {(0, 0), (0, 1), (1, 0), (1, 1)} and for a current policy ηk = η:

v′η = A−1c (3.10)

where

A =


−Pη((0, 0), (0, 1)) −Pη((0, 0), (1, 0)) −Pη((0, 0), (1, 1))

1− Pη((0, 1), (0, 1)) −Pη((0, 1), (1, 0)) −Pη((0, 1), (1, 1))
−Pη((1, 0), (0, 1)) 1− Pη((1, 0), (1, 0)) −Pη((1, 0), (1, 1))
−Pη((1, 1), (0, 1)) −Pη((1, 1), (1, 0)) 1− Pη((1, 1), (1, 1))



v′η =


vη(0, 1)
vη(1, 0)
vη(1, 1)

 c =


g(η1(0, 1), η2(0, 1))
g(η1(1, 0), η2(1, 0))
g(η1(1, 1), η2(1, 1))

−G(η1, η2)

Secondly, in the Policy Improvement step, an improved policy ηk+1 is de-
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termined by solving, ∀e ∈ E1 × E2 \ {(0, 0)}, the convex optimization problem

ηk+1(e) = arg max
η̃1(e)∈[0,1]
η̃2(e)∈[0,1]

g(η̃1(e), η̃2(e)) +
∑

j∈E1×E2
Pη̃(Ek+1 = j|Ek = e)vηk(j)


(3.11)

The process is repeated with ηk+1 substituting ηk until |G(ηk+1)− G(ηk)| <
εPIA, with εPIA being a defined (small) threshold: in this case the algorithm
terminates providing the policy ηk. The following proposition establishes the
validity of PIA.

Proposition 1. Assuming that there exists an integer m such that, regard-
less of the policy used and the initial state, there is positive probability that
the termination state will be reached after no more than m stages, the pol-
icy iteration algorithm generates an improving sequence of policies (that is,
G(ηk+1) ≥ G(ηk) ∀k), and terminates with an optimal policy.

Proof. See [38].

Example 3. (emax,1 = emax,2 = 1)
The policy improvement step for the case emax,1 = emax,2 = 1 consists in:


ηk+1(0, 1)
ηk+1(1, 0)
ηk+1(1, 1)

 = arg max



g(η̃1(0, 1), η̃2(0, 1))
g(η̃1(1, 0), η̃2(1, 0))
g(η̃1(1, 1), η̃2(1, 1))

+ A′


vηk(0, 1)
vηk(1, 0)
vηk(1, 1)




where

A′ =


Pη̃((0, 1), (0, 1)) Pη̃((0, 1), (1, 0)) Pη̃((0, 1), (1, 1))
Pη̃((1, 0), (0, 1)) Pη̃((1, 0), (1, 0)) Pη̃((1, 0), (1, 1))
Pη̃((1, 1), (0, 1)) Pη̃((1, 1), (1, 0)) Pη̃((1, 1), (1, 1))

 .

3.3 Calculation of the optimal thresholds

Using the simplified framework of (3.8), it is now possible to analytically obtain
the optimal values ĥ1,th(e) and ĥ2,th(e) for every energy state (e1, e2) ∈ E1×E2,
calculating the partial derivatives of the inner argument of (3.11)2:

J = g(η̃1(e), η̃2(e)) +
∑

j∈E1×E2
Pη̃(Ek+1 = j|Ek = e)vηk(j).

2In this section the dependence on (e) is dropped for notational convenience.
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States (0, e2), e2 6= 0, emax,2

J = e−h2,th

(
1− e−h1,th

2

)
A+

(
1− e−h1,th

) (
1− e−h2,th

)
B+

+ e−h1,th(h1,th + 1) + e−h2,th(h2,th + 1)− e−(h1,th+h2,th)

2 (h1,th + h2,th + 1)

∂J

∂h2,th
= e−h2,th

[(
e−h1,th

2 − 1
)
A+ (1− e−h1,th)B + e−h1,th(h1,th + h2,th)

2 − h2,th

]
ĥ1,th = +∞

ĥ2,th = e−h1,thh1,th + (e−h1,th − 2)A+ 2(1− e−h1,th)B
2− e−h1,th

with

A = (1− b̄1)(1− b̄2)v(0, e2 − 1) + b̄1(1− b̄2)v(1, e2 − 1) + 1− b̄1)b̄2v(0, e2)+

+ b̄1b̄2v(1, e2)

B = (1− b̄1)(1− b̄2)v(0, e2) + b̄1(1− b̄2)v(1, e2) + (1− b̄1)b̄2v(0, e2 + 1)+

+ b̄1b̄2v(1, e2 + 1)

States (e1, 0), e1 6= 0, emax,1

J = e−h1,th

(
1− e−h2,th

2

)
A+

(
1− e−h1,th

) (
1− e−h2,th

)
B+

+ e−h1,th(h1,th + 1) + e−h2,th(h2,th + 1)− e−(h1,th+h2,th)

2 (h1,th + h2,th + 1)

∂J

∂h1,th
= e−h1,th

[(
e−h2,th

2 − 1
)
A+ (1− e−h2,th)B + e−h2,th(h1,th + h2,th)

2 − h1,th

]
ĥ1,th = e−h2,thh2,th + (e−h2,th − 2)A+ 2(1− e−h2,th)B

2− e−h2,th

ĥ2,th = +∞

with

A = (1− b̄1)(1− b̄2)v(e1 − 1, 0) + b̄1(1− b̄2)v(e1, 0) + (1− b̄1)b̄2v(e1 − 1, 1)+

+ b̄1b̄2v(e1, 1)

B = (1− b̄1)(1− b̄2)v(e1, 0) + b̄1(1− b̄2)v(e1 + 1, 0) + (1− b̄1)b̄2v(e1, 1)+

+ b̄1b̄2v(e1 + 1, 1)
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State (emax,1, emax,2)

J = e−h2,th

(
1− e−h1,th

2

)
A+ e−h1,th

(
1− e−h2,th

2

)
B +

(
1− e−h1,th

) (
1− e−h2,th

)
C+

+ e−h1,th(h1,th + 1) + e−h2,th(h2,th + 1)− e−(h1,th+h2,th)

2 (h1,th + h2,th + 1)

∂J

∂h1,th
= e−h1,th

[
e−h2,th

2 A−
(

1− e−h2,th

2

)
B + (1− e−h2,th)C + e−h2,th(h1,th + h2,th)

2 − h1,th

]
∂J

∂h2,th
= e−h2,th

[(
e−h1,th

2 − 1
)
A+ e−h1,th

2 B + (1− e−h1,th)C + e−h1,th(h1,th + h2,th)
2 − h2,th

]
ĥ1,th = e−h2,thh2,th + e−h2,thA+ (e−h2,th − 2)B + 2(1− e−h2,th)C

2− e−h2,th

ĥ2,th = e−h1,thh1,th + (e−h1,th − 2)A+ e−h1,thB + 2(1− e−h1,th)C
2− e−h1,th

with

A = (1− b̄2)v(emax,1, emax,2 − 1) + b̄2v(emax,1, emax,2)

B = (1− b̄1)v(emax,1 − 1, emax,2) + b̄1v(emax,1, emax,2)

C = v(emax,1, emax,2)

State (0, emax,2)

J = e−h2,th

(
1− e−h1,th

2

)
A+

(
1− e−h1,th

) (
1− e−h2,th

)
B+

+ e−h1,th(h1,th + 1) + e−h2,th(h2,th + 1)− e−(h1,th+h2,th)

2 (h1,th + h2,th + 1)

∂J

∂h2,th
= e−h2,th

[(
e−h1,th

2 − 1
)
A+ (1− e−h1,th)B + e−h1,th(h1,th + h2,th)

2 − h2,th

]
ĥ1,th = +∞

ĥ2,th = e−h1,thh1,th + (e−h1,th − 2)A+ 2(1− e−h1,th)B
2− e−h1,th

with

A = (1− b̄1)(1− b̄2)v(0, emax,2 − 1) + b̄1(1− b̄2)v(1, emax,2 − 1)+

+ (1− b̄1)b̄2v(0, emax,2) + b̄1b̄2v(1, emax,2)

B = (1− b̄1)v(0, emax,2) + b̄1v(1, emax,2)
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State (emax,1, 0)

J = e−h1,th

(
1− e−h2,th

2

)
A+

(
1− e−h1,th

) (
1− e−h2,th

)
B+

+ e−h1,th(h1,th + 1) + e−h2,th(h2,th + 1)− e−(h1,th+h2,th)

2 (h1,th + h2,th + 1)

∂J

∂h1,th
= e−h1,th

[(
e−h2,th

2 − 1
)
A+ (1− e−h2,th)B + e−h2,th(h1,th + h2,th)

2 − h1,th

]
ĥ1,th = e−h2,thh2,th + (e−h2,th − 2)A+ 2(1− e−h2,th)B

2− e−h2,th

ĥ2,th = +∞

with

A = (1− b̄1)(1− b̄2)v(emax,1 − 1, 0) + b̄1(1− b̄2)v(emax,1, 0)+

+ (1− b̄1)b̄2v(emax,1 − 1, 1) + b̄1b̄2v(emax,1, 1)

B = (1− b̄2)v(emax,1, 0) + b̄2v(emax,1, 1)

States (emax,1, e2), e2 6= 0, emax,2

J = e−h1,th

(
1− e−h2,th

2

)
A+ e−h2,th

(
1− e−h1,th

2

)
B +

(
1− e−h1,th

) (
1− e−h2,th

)
C+

+ e−h1,th(h1,th + 1) + e−h2,th(h2,th + 1)− e−(h1,th+h2,th)

2 (h1,th + h2,th + 1)

∂J

∂h1,th
= e−h1,th

[(
e−h2,th

2 − 1
)
A+ e−h2,th

2 B + (1− e−h2,th)C + e−h2,th(h1,th + h2,th)
2 − h1,th

]
∂J

∂h2,th
= e−h2,th

[
e−h1,th

2 A−
(

1− e−h1,th

2

)
B + (1− e−h1,th)C + e−h1,th(h1,th + h2,th)

2 − h2,th

]
ĥ1,th = e−h2,thh2,th + (e−h2,th − 2)A+ e−h2,thB + 2(1− e−h2,th)C

2− e−h2,th

ĥ2,th = e−h1,thh1,th + e−h1,thA+ (e−h1,th − 2)B + 2(1− e−h1,th)C
2− e−h1,th

with

A = (1− b̄1)(1− b̄2)v(emax,1 − 1, e2) + b̄1(1− b̄2)v(emax,1, e2)+

+ (1− b̄1)b̄2v(emax,1 − 1, e2 + 1) + b̄1b̄2v(emax,1, e2 + 1)

B = (1− b̄2)v(emax,1, e2 − 1) + b̄2v(emax,1, e2)

C = (1− b̄2)v(emax,1, e2) + b̄2v(emax,1, e2 + 1)
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States (e1, emax,2), e1 6= 0, emax,1

J = e−h2,th

(
1− e−h1,th

2

)
A+ e−h1,th

(
1− e−h2,th

2

)
B +

(
1− e−h1,th

) (
1− e−h2,th

)
C+

+ e−h1,th(h1,th + 1) + e−h2,th(h2,th + 1)− e−(h1,th+h2,th)

2 (h1,th + h2,th + 1)

∂J

∂h1,th
= e−h1,th

[
e−h2,th

2 A−
(

1− e−h2,th

2

)
B + (1− e−h2,th)C + e−h2,th(h1,th + h2,th)

2 − h1,th

]
∂J

∂h2,th
= e−h2,th

[(
e−h1,th

2 − 1
)
A+ e−h1,th

2 B + (1− e−h1,th)C + e−h1,th(h1,th + h2,th)
2 − h2,th

]
ĥ1,th = e−h2,thh2,th + e−h2,thA+ (e−h2,th − 2)B + 2(1− e−h2,th)C

2− e−h2,th

ĥ2,th = e−h1,thh1,th + (e−h1,th − 2)A+ e−h1,thB + 2(1− e−h1,th)C
2− e−h1,th

with

A = (1− b̄1)(1− b̄2)v(e1, emax,2 − 1) + b̄1(1− b̄2)v(e1 + 1, emax,2 − 1)+

+ (1− b̄1)b̄2v(e1, emax,2) + b̄1b̄2v(e1 + 1, emax,2)

B = (1− b̄1)v(e1 − 1, emax,2) + b̄1v(e1, emax,2)

C = (1− b̄1)v(e1, emax,2) + b̄1v(e1 + 1, emax,2)

States (e1, e2), e1 6= 0, emax,1, e2 6= 0, emax,2

J = e−h1,th

(
1− e−h2,th

2

)
A+ e−h2,th

(
1− e−h1,th

2

)
B +

(
1− e−h1,th

) (
1− e−h2,th

)
C+

+ e−h1,th(h1,th + 1) + e−h2,th(h2,th + 1)− e−(h1,th+h2,th)

2 (h1,th + h2,th + 1)

∂J

∂h1,th
= e−h1,th

[(
e−h2,th

2 − 1
)
A+ e−h2,th

2 B + (1− e−h2,th)C + e−h2,th(h1,th + h2,th)
2 − h1,th

]
∂J

∂h2,th
= e−h2,th

[
e−h1,th

2 A−
(

1− e−h1,th

2

)
B + (1− e−h1,th)C + e−h1,th(h1,th + h2,th)

2 − h2,th

]
ĥ1,th = e−h2,thh2,th + (e−h2,th − 2)A+ e−h2,thB + 2(1− e−h2,th)C

2− e−h2,th

ĥ2,th = e−h1,thh1,th + e−h1,thA+ (e−h1,th − 2)B + 2(1− e−h1,th)C
2− e−h1,th

with

A = (1− b̄1)(1− b̄2)v(e1 − 1, e2) + b̄1(1− b̄2)v(e1, e2)+

+ (1− b̄1)b̄2v(e1 − 1, e2 + 1) + b̄1b̄2v(e1, e2 + 1)

B = (1− b̄1)(1− b̄2)v(e1, e2 − 1) + b̄1(1− b̄2)v(e1 + 1, e2 − 1)+

+ (1− b̄1)b̄2v(e1, e2) + b̄1b̄2v(e1 + 1, e2)

C = (1− b̄1)(1− b̄2)v(e1, e2) + b̄1(1− b̄2)v(e1 + 1, e2)+

+ (1− b̄1)b̄2v(e1, e2 + 1) + b̄1b̄2v(e1 + 1, e2 + 1)



Chapter 4

Numerical results in the low
SNR regime

In this chapter, some numerical results for the two EHDs model are presented,
in the low SNR regime Λi � 1, using the framework given by (3.3), (3.7) and
(3.8), and assuming Λ1 = Λ2 = 1 as discussed in Chapter 3.

Figure 4.1, plots the long-term reward (throughput) for different values
of b̄ with b̄1 = b̄2 = b̄. It can be seen that the reward keeps increasing in
the capacity of the two batteries, until emax,1 = emax,2 ' 20, after which
the performance saturates at a constant value. This is because, the larger
the battery, the smaller the impact of energy outage and overflow, hence the
better the performance. When the battery capacity becomes larger than 20,
the improvement due to the decreased occurrence of overflow and outage events
becomes negligible, and the performance is very close to the upper bound. An
important implication of this result is that EHDs do not need to be equipped
with very large energy buffers to achieve maximum performance. Moreover, as
expected, the reward increases with the harvesting rate of the EHDs: however,
due to the fact that the practical values of b̄i are not very large, it cannot grow
too much.

31
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Figure 4.1: Long-term reward versus battery capacity emax,1 = emax,2

Figure 4.2 shows a three-dimensional plot representing the normalized long-
term reward as a function of emax,1 and emax,2, when b̄1 = b̄2 = 0.1. The
normalization is done with respect to the upper bound g(b̄1, b̄2), given in (2.10).
The reward increases with the capacity of the two batteries in a “symmetric”
way, in the sense that the two EHDs are interchangeable: the result achieved
when emax,1 = e1 and emax,2 = e2 is the same that can be obtained when
emax,1 = e2 and emax,2 = e1. This is due to the symmetry of the system, since
b̄1 = b̄2 and Λ1 = Λ2. Furthermore, as in Figure 4.1, it can be seen that
saturation occurs at emax,1 = emax,2 ' 20, where the upper bound (2.10) is
closely approached.

The battery capacity requirements needed to achieve a specific performance
are depicted in Figure 4.3, where a contour plot of Figure 4.2 has been made
selecting different reward levels. 90% of the maximum performance is achieved
even when the EHDs have small capacities (emax,1 = emax,2 = 5), whereas
99% can be attained only with larger batteries (in particular, in this case
emax,1 = emax,2 = 20).
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Figure 4.2: Normalized long-term reward versus battery capacities, b1 = b2 =
0.1
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Figure 4.3: Contour plot of Figure 4.2

In Figure 4.4, the long-term reward for different values of the battery capac-
ity emax,1 of the first EHD is plotted, as a function of the battery capacity emax,2

of the other EHD. As in Figure 4.1, the reward presents an increasing behav-
ior until saturation occurs. Moreover, good performance is achieved when at
least one user can afford high energy capacity: the situation where emax,1 = 40
and emax,2 is just a tenth of emax,1 provides a throughput that is 94.3% of that
obtained having both sensors with maximum capacity (emax,i = 40). Conse-
quently, if one of the two devices has a relatively large battery, the requirement
on the battery of the other device becomes much looser.

In Figure 4.5, the long-term reward versus the harvesting probability of
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Figure 4.4: Long-term reward versus batteries capacity of EHD 2, for different
values of emax,1 and energy harvesting rate b̄ = 0.1 (upper bound shown as the
dotted line)

the second EHD b̄2 is represented, for different values of emax,1. It can be seen
that the curves from emax,1 = 10 to emax,1 = 30 roughly present the same
behavior. This behavior is consistent with Fig. 4.1, where the performance
quickly saturates as the battery capacity grows. As seen in Figure 4.4, this
implies that having just one well-equipped EHD is sufficient to achieve good
results for the entire sensor system. Moreover, even if, as expected, the reward
increases with the harvesting rate of the second EHD, it must be noticed that,
in real scenarios, it is very unlikely to enjoy a constant high rate for a long
period of time: consequently the right-most part of the figure is practically
infeasible. Nevertheless, the study of practical cycles of harvesting rate is
currently ongoing.

Finally, Figure 4.6 shows the long-term reward versus the harvesting rate
of the second EHD, b̄2, for different values of b̄1/b̄2 and emax,1 = emax,2 = 20.
It can be seen that, when the two EHDs have the same harvesting rate, the
reward increases with b̄i until the value b̄1 = b̄2 = 0.5 is reached. This is because
the two EHDs share a common channel, and only one of them is allowed to
transmit at any given time, so that b̄1 = b̄2 = 0.5 saturates the channel,
whereas, when b̄1 = b̄2 > 0.5, some of the energy is lost because of overflow.
This saturation effect cannot be observed in the other cases where b1 < b2

and b1 + b2 ≥ 1. The reason can be understood by considering the extreme
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Figure 4.5: Long-term reward versus EH probabilities of the second EHD, for
different values of emax,1

scenario b1 = 0, b2 = 1. In this case, only EHD 2 transmits, with probability
1, hence the long-term reward is E[V1]. On the other hand, when b1 = b2 = 0.5,
assuming the balanced policy ηi(e) = b̄i = 0.5 for both EHDs, the EHD whose
packet has maximal importance transmits, so that the asymptotic long-term
reward (for emax,1, emax,2 →∞) is E[max{V1, V2}] > E[V1]. It can be concluded
that a performance degradation is incurred when the harvesting rates of the
two EHDs are unbalanced.
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Chapter 5

Rate maximization in a general
scenario

The purpose of this chapter is to resume the framework in Chapter 3, perform-
ing the mathematical analysis in a more general setting: the low SNR regime
scenario will be dropped and the expressions of (3.4), (3.5) and (3.6) will be
generalized.
This new environment has the advantage of allowing a more realistic compari-
son of the performance achieved with different measures of the SNRs of the two
EHDs, which will be able to take values in a generic set, but at the cost of an
increased complexity both in the mathematical analysis and in the algorithm.

5.1 Variables calculation

Using the exact expression of the achievable rate in slot k for EHD i (3.1):

Vi,k = ln(1 + ΛiHi,k),

and remembering that a threshold on the importance level vi,th corresponds
to a threshold on the normalized channel gain hi,th = e

vi,th−1
Λi , exploiting again

the independence between the exponentially distributed channels, it can be
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obtained:

η1(e) = P [H1,k > h1,th(e), H2,k < α1 + β1H1,k]

=
∫ ∞
h1,th(e)

∫ α1+β1h1

0
fH1(h1)fH2(h2)dh2dh1

=
∫ ∞
h1,th(e)

∫ α1+β1h1

0
e−(h1+h2)dh2dh1

= e−h1,th(e)
(

1− e−α1−β1h1,th(e)

1 + β1

)
, (5.1)

where

α1 = 1
1 + Λ1h1,th(e)

(
h2,th(e)− Λ1

Λ2
h1,th(e)

)
,

β1 = 1 + Λ2h2,th(e)
1 + Λ1h1,th(e)

Λ1

Λ2
;

then, by symmetry,

η2(e) = e−h2,th(e)
(

1− e−α2−β2h2,th(e)

1 + β2

)
, (5.2)

where

α2 = 1
1 + Λ2h2,th(e)

(
h1,th(e) −

Λ2

Λ1
h2,th(e)

)
,

β2 = 1 + Λ1h1,th(e)
1 + Λ2h2,th(e)

Λ2

Λ1
;

and η0 maintains its usual expression:

η0(e) = 1− η1(e)− η2(e) =
(
1− e−h1,th(e)

) (
1− e−h2,th(e)

)
.

The exact expression of (2.4) is

g(η1(e), η2(e)) = E[Q1,kV1,k +Q2,kV2,k|(E1,k, E2,k) = e]

=
∫ ∞
h1,th(e)

∫ α1(e)+β1(e)h1

0
ln(1 + Λ1h1)e−(h1+h2)dh2dh1

+
∫ ∞
h2,th(e)

∫ α2(e)+β2(e)h2

0
ln(1 + Λ2h2)e−(h1+h2)dh1dh2

, g1 + g2 (5.3)



5.2. Algorithm implementation 39

g1 =
∫ ∞
h1,th(e)

∫ α1(e)+β1(e)h1

0
ln(1 + Λ1h1)e−(h1+h2)dh2dh1

=
∫ ∞
h1,th(e)

ln(1 + Λ1h1)e−h1dh1 − e−α1(e)
(∫ ∞

h1,th(e)
ln(1 + Λ1h1)e−h1(1+β1(e)dh1

)

= −e
1

Λ1Ei

(
−Λ1h1,th(e) + 1

Λ1

)
+ e−h1,th(e) ln(Λ1h1,th(e) + 1)+

+ e−α1(e)

 e
1+β1(e)

Λ1

1 + β1(e)Ei
(
−(1 + β1(e))(Λ1h1,th(e) + 1)

Λ1

)
+

−e
−(1+β1(e))h1,th(e)

1 + β1(e) ln(Λ1h1,th(e)) + 1)
]

and analogously

g2 = −e
1

Λ2Ei

(
−Λ2h2,th(e) + 1

Λ2

)
+ e−h2,th(e) ln(Λ2h2,th(e) + 1)+

+ e−α2(e)

 e
1+β2(e)

Λ2

1 + β2(e)Ei
(
−(1 + β2(e))(Λ2h2,th(e) + 1)

Λ2

)
+

−e
−(1+β2(e))h2,th(e)

1 + β2(e) ln(Λ2h2,th(e)) + 1)
]

where the calculation has exploited the following

Definition 3. (Exponential integral)
For real nonzero values of x, the Exponential Integral Ei(x) is defined as

Ei(x) , −
∫ ∞
−x

e−t

t
dt (5.4)

5.2 Algorithm implementation

Given the complexity of (5.1) and (5.2) compared to (3.4) and (3.5), an analyt-
ical expression of h1,th(e) and h2,th(e) as a function of ηi(e) is not computable
and, as a consequence, the optimization (3.11) over the values of ηi(e), as per-
formed in Section 3.3, is not feasible. However, due to the one-to-one mapping
between the transmission probabilities and the thresholds of the channels, it
is still possible to maximize (2.5) over hi,th(e) and then, by (5.1) and (5.2)
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obtain the optimal ηi(e).
Therefore, for the unconstrained scenario, the Policy Improvement step of PIA
has been implemented numerically, using the MATLAB R© function fmincon,
which allows to find the minimum of a constrained nonlinear multivariable
function. Among MATLAB R©’s optimization Algorithms, namely “Trust Re-
gion Reflective”, “Active Set”, “SQP”, “Interior Point”, the last has been used,
due to the fact that

• it satisfies bounds at all iterations

• it handles large sparse problems, as well as small dense problems

• it produces warnings when NaN or Inf results occur.

Briefly speaking, the interior-point approach to constrained minimization is to
solve a sequence of approximate minimization problems: if the original problem
is 

min
x
f(x)

h(x) = 0

g(x) ≤ 0

(5.5)

then, ∀µ > 0, the approximate problem is


min
x,s

fµ(x, s) = min
x,s

f(x)− µ
∑
i

ln(si)

h(x) = 0

g(x) + s = 0

(5.6)

It can be seen that as many slack variables si as inequality constraints g are
added, with si restricted to be positive to keep ln(si) (called barrier function)
bounded. As µ decreases to zero, the minimum of fµ should approach that of
f . Consequently, as the approximate problem (5.6) is a sequence of equality
constrained problems rather than an inequality-constrained problem as (5.5),
it is easier to solve [40].



Chapter 6

Numerical results in the
unconstrained scenario

Figure 6.1 shows the long-term reward for emax,1 = emax,2 = 20 and b̄1 = b̄2 =
0.1 in the case where the reward g is calculated by (3.6) or (5.3). Since the
relation between the two expressions is that the first is the linear approxima-
tion of the second, it can be seen that their behavior is the same only for small
values of Λ1 = Λ2 = Λ. In fact, although for Λ = 0.1 the approximated value
is just 16% greater than the exact one, for Λ = 1 the ratio is 129% which
becomes even 478% for Λ = 5.
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Figure 6.1: Comparison between the values of G calculated using (3.6) and
(5.3)
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In Figure 6.2 the long-term rewardG for different values of the Λ1 is plotted,
as a function of the batteries capacity emax,1 = emax,2. It can be noted that
the throughput saturates for emax,1 = emax,1 ' 10, which is analogous to
what noted for the low SNR scenario of Chapter 3. Moreover, the result
obtained when just an EHD benefits from a high SNR is much better than
that achieved with an equal-SNR scenario: the reward for Λ1 = 20Λ2 is twice
that for Λ1 = Λ2. Consequently this means that, if at least one EHD is in
a good transmission environment, the obtained reward can be high, even if
probably come from a single node.
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Figure 6.2: Long-term reward G for different values of the Λ1 and Λ2 = 1

The optimal policy is depicted in Figure 6.3, for emax,1 = emax,2 = 40
and b1 = b2 = 0.1. It can be seen that it is conservative in the low energy
levels (the value of η1 and η2 is low in the first states), thus avoiding energy
outage, and aggressive in the higher ones (η1 and η2 increase as energy becomes
abundant), thus avoiding energy overflow. Moreover, another important fact is
that there is a “symmetry” between the values assumed by the two transmission
probabilities: η1(x, y) = η2(y, x), ∀(x, y) (this occurs only when emax,1 =
emax,2, Λ1 = Λ2 and b1 = b2 = 0.1, i.e., the system is symmetric). Finally,
it results that η1 mainly depends on e1 and, for a fixed value of e1, is almost
independent of e2 (and analogously for η2): this observation can be exploited
to create some approximated lower-complexity solutions, like the one presented
in the next Section.



6.1. Low-complexity policy 43

0

20

40

60

0
10

20
30

40
50
0

0.2

0.4

0.6

0.8

1

 

e
2

e
1

 

η
0

η
1

η
2

Figure 6.3: η0,η1 and η2 for the optimal policy (emax,1 = emax,2 = 40)

6.1 Low-complexity policy

Usually the PIA is computationally intensive for the low-power electronics
typically present in practical EHDs. As a consequence, the design of low-
complexity policies, able to achieve almost optimal performance, can be an
important step towards an energy-efficient realistic implementation of an op-
timal transmission strategy. If the framework parameters are expected to be
mainly constant, it is possible to directly store the transmission probabilities
ηi(e), previously determined offline, in a register of the devices, so as to com-
pletely avoid the energy-draining PIA. However, if the policy is complex and
the size of the batteries is large, the number of elements to be stored becomes
too big to be contained in such register. As a result, a possible solution is that
of utilizing approximated policies which, although using a smaller number of
elements, still achieve good performance.
In this section an example of this approach is described: exploiting the last
two remarks about the optimal policy of Figure 6.3, it is possible to develop a
transmission strategy that:

• for every value of e1, substitutes η1(e1, e2), e2 = 0, . . . , emax,2 with the
mean value of η1(e1, 0), η1(e1, 1), η1(e1, 2), . . . , η1(e1, emax,2)

• for every value of e2, substitutes η2(e1, e2), e1 = 0, . . . , emax,2 with the
mean value of η2(0, e2), η2(1, e2), η2(2, e2), . . . , η2(emax,1, e2)
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• sets the values of η0(e1, e2) as 1− η1(e1, e2)− η2(e1, e2), ∀e1, e2.

The results obtained with this approach are depicted in Figure 6.4, which
shows the difference between the long-term reward G achieved by the optimal
policy and that obtained by the LCP, as a function of emax,1 = emax,2 = emax.
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It can be seen that the LCP already performs very well even for low values of
emax, and almost overlaps with the optimal policy as this parameter increases.
The memory savings can be estimated considering that, while the optimal
policy saves 3(emax + 1)2 different values, the LCP only stores (emax+1)(emax+4)

2

elements, with a reduction in the need for memory space of roughly 80%.

Finally, the significant independence of the energy level of a node from that of
the other suggests the possibility to develop heuristic distributed transmission
strategies, to be studied in a future research activity.



Chapter 7

Dealing with Imperfect
State-of-Charge Knowledge

So far, the implicit assumption of perfect knowledge of the energy available
in the EHDs has been made. However, estimating the energy level of the
batteries or super-capacitors employed in real-world EHDs, commonly known
as State-Of-Charge (SOC), is actually a non-trivial task. This Chapter deals
with the design of an EHD operation policy in which the central controller has
only imperfect knowledge of the available amount of energy stored in the two
sensors. In [41], it is stated that variations in the super-capacitor capacitance
relative to the data-sheet value, due to age or temperature fluctuations, may be
of the order of 30%. An online SOC estimation algorithm based on controlled
discharge is thus proposed and shown to perform well, albeit at a small energy
loss. In [42] and [43] different high-complexity algorithms are designed for
the estimation of the open circuit voltage of an electrochemical battery, which
is linearly related to the SOC, showing that precise knowledge of the SOC
may be unreliable or too expensive. Motivated by the aforementioned real-
world concerns, this Chapter extends [33], which is devoted to the analysis and
design of optimal energy management policies for the imperfect-SOC scenario
of a single EHD, carrying out the mathematical analysis and identifying new
results, with the aim of characterizing the more general scenario consisting in
two EHDs.

7.1 System model

The system model for the imperfect-SOC scenario is similar to that described
in Chapter 2. The evolution at time k of the amount of energy quanta Ei,k at
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46 7. Dealing with Imperfect State-of-Charge Knowledge

EHD i is now determined by

Ei,k+1 = min{[Ei,k −Qi,k]+ +Bi,k, emax,i} (7.1)

where:

• {Bi,k}, the energy arrival process, takes values in Bi = {0, 1, . . . , bmax,i}
and has a geometric probability mass function pBi(b), b ∈ Bi, with mean
b̄i;

• Qi,k is the number of energy quanta requested by the central controller
to EHD i, in slot k. Qi = {0, . . . , qmax,i} is the action space related to
EHD i, for some 0 < qmax,i ≤ emax,i, so that Qi,k ∈ Qi,∀k. Finally, the
joint energy requested from CC to the couple (EHD1,EHD2) at time k
is Qk, with Qk ∈ Q:

Q = {(0, 0), (0, 1), . . . , (0, qmax,2), (1, 0), . . . , (qmax,1, 0)}, (7.2)

∀k. The parameter qmax,i reflects a physical constraint on the maximum
amount of energy that can be drawn from the buffer at any given time.
Clearly, due to the usual collision model employed and the centralized
controller, Q cannot include (q1, q2) with q1 and q2 simultaneously posi-
tive.

Assuming that the two EHDs are symmetric (emax,1 = emax,2 = emax,
B1 = B2, pB1(b) = pB2(b) and Q1 = Q2) and only partial knowledge of Ei,k is
available at the controller, let I(n), n = {0, 1, 2, 3} be a partition of the state
space E2, defined as

• I(0) = {(e1, e2), 0 ≤ e1, e2 ≤ ẽ− 1} (“LL”)

• I(1) = {(e1, e2), 0 ≤ e1 ≤ ẽ− 1, ẽ ≤ e2 ≤ emax} (“LH”)

• I(2) = {(e1, e2), ẽ ≤ e1 ≤ emax, 0 ≤ e2 ≤ ẽ− 1} (“HL”)

• I(3) = {(e1, e2), ẽ ≤ e1, e2 ≤ emax} (“HH”)

with ẽ = d emax2 e. The assumption is that, at time k, (E1,k, E2,k) ∈ I(Nk), with
Nk ∈ {0, 1, 2, 3}, and the central controller knows only that Ek = (E1,k, E2,k) ∈
I(Nk), i.e., Nk rather than the exact SOC Ek.
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The definitions of energy outage and overflow have to be updated in the
following way:

Definition 4. Energy outage occurs, for EHD i, when Qi,k > Ei,k, as a con-
sequence of the imperfect knowledge of Ei,k, due to which the controller may
attempt to draw more energy than what is available

Definition 5. Energy overflow occurs if Bi,k > emax − [Ei,k −Qi,k]+, i.e., the
energy buffer is unable to store all of the harvested energy Bi,k.

7.2 Policy definition and optimization prob-
lem

Given the interval index Nk, a policy µ decides on the amount of energy Qk

to be drawn from the pair of sensors. Formally, µ is a probability measure
on the action space Q, parameterized by Nk, i.e., given Nk, µ(q;Nk) is the
probability of choosing action q ∈ Q in slot k.

The reward g : Q× E2 → R+ is defined as

g(Q1,k, Q2,k, E1,k, E2,k) =

0 Q1,k > E1,k or Q2,k > E2,k

g̃(Q1,k, Q2,k) Q1,k ≤ E1,k and Q2,k ≤ E2,k

(7.3)

where g̃ : Q → R+ is a concave increasing function of Q1,k and Q2,k, with
g̃ (0, 0) = 0.
When Qi,k > Ei,k the reward is 0, which models the inability of the sensor
node i to complete the requested task, when there is energy outage. As an
example, if the reward function is the transmission rate, then, according to the
Shannon formula, g̃(Q1,k, Q2,k) = ln(1 + αQ̄k), where α > 0 is an SNR scaling
factor and Q̄k is the positive element of the couple (Q1,k, Q2,k). The controller
spreads the energy Q̄k over the entire codeword. If Q̄k is greater than the
corresponding value of Ek, that EHD runs out of energy when only a fraction
of the codeword has been transmitted, hence the codeword is discarded.
Given E0 = (E1,0, E2,0), the long-term average reward per time-slot under
policy µ is defined as

G(µ,E0) = lim
K→∞

inf 1
K

E
[
K−1∑
k=0

g(Q1,k, Q2,k, E1,k, E2,k)
∣∣∣∣∣E0

]
(7.4)
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where the expectation is over {Bi,k, Qi,k, k = 0, . . . , K − 1}.
The general problem is to obtain a policy µ∗ such that

µ∗ = arg max
µ

G(µ,E0) (7.5)

Under SOC uncertainty, by definition of the policy µ, Qk is the same for
all (E1,k, E2,k) ∈ I(Nk). This constraint is not linear, hence (7.5) cannot be
solved via standard optimization techniques: in this work an exhaustive search
method is thus employed. Furthermore, in order to reduce the complexity, only
deterministic policies are considered, in which

µρ(q;n) = 1 q = ρ(n)

µρ(q;n) = 0 q ∈ Q \ {ρ(n)}
(7.6)

where ρ : {0, 1, 2, 3} → Q is a function mapping the interval index n ∈
{0, 1, 2, 3} to the action q ∈ Q. As a result, (7.5) can equivalently be written
as

ρ∗ = arg max
ρ

G(µ,E0), (7.7)

where, from (7.4),

G(µρ,E0) =
3∑

n=0

∑
e∈I(n)

πρ(e; e0)g(ρ(n), e) (7.8)

and πρ(e; e0) is the asymptotic distribution of the SOC e ∈ E2, given that the
initial state is E0 = e0:

πρ(e; e0) = lim
K→∞

1
K

K−1∑
k=0

Pρ(Ek = e|E0 = e0), (7.9)

where Pρ(Ek = e|E0 = e0) is the k-step transition probability of the chain
under policy ρ. The asymptotic distribution can be evaluated as the unique
solution of the system of steady-state equations

3∑
n=0

∑
e∈I(n)

πρ(e) = 1 (normalization)

πρ(e) ≥ 0, ∀e ∈ E2 (non-negativity)
3∑

n=0

∑
s∈I(n)

πρ(s)Pρ(E1 = e|E0 = s) = πρ(e), ∀e ∈ E2 (steady-state equations)
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and so πρ is independent of the initial state E0 = e0.

In the next Section, the optimal long-term reward is numerically deter-
mined for the particular case considered so far, comparing it with that obtained
by a controller with perfect SOC knowledge.

7.3 Numerical results

This section deals with the maximization of (7.5) for b̄ = 20 and a geometric
energy arrival distribution truncated at bmax = 4b̄. The reward function is the
normalized throughput

g̃(Q1,k, Q2,k) = ln(1 + αQ̄k)
ln(1 + αb̄)

, (7.10)

where α is an SNR scaling factor and Q̄k is the positive element of the couple
(Q1,k, Q2,k). As a result of the partition performed, the state space is subdi-
vided into 4 regions, namely LL,LH,HL,HH.
As regards the throughput obtained by the optimization performed with per-
fect SOC knowledge, in this case the controller selects action Qk = q when
the SOC is Ek, ∀Ek ∈ E2. Note that the long-term reward under perfect SOC
knowledge represents an upper bound to the performance for the imperfect
SOC case. Figure 7.1 shows the throughput G versus the battery capacities
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of the devices: it can be seen that, as emax increases, the degradation of the
imperfect policy with respect to the perfect policy becomes bigger. This is
due to several factors, like the growing number of states included in each of
the four partitions of the state space, the choice of not taking into account the
previous history of the EHDs pair, and the utilization of a deterministic policy
between the energy states and the energy quanta requested by the controller.

The elimination of some of these assumptions will be the goal of future
research activities.



Chapter 8

Conclusions

This thesis has studied the case of a Wireless Sensor Network (WSN) con-
sisting of two EHDs which report data of different “importance” levels to a
receiver (RX), with the overall goal to maximize the long-term aggregate av-
erage importance of the reported data.

In the case of perfect knowledge of the State-Of-Charge (SOC) of EHDs
batteries, it has been shown that, for the class of binary (transmit/no transmit)
policies, the optimal policy dictates the transmission of data with importance
above a given threshold, which is a function of the joint energy levels available
in the two devices. Numerical results have been provided, to evaluate the im-
pact on the performance of factors such as the battery capacity size and the
energy harvesting rate.

Finally, motivated by real-world EHD implementations, it has been in-
vestigated the performance of a transmission policy for a central controller
operating under imperfect SOC knowledge. Simulation results for a simple
four-state controller, only knowing if the SOC of each node is LOW or HIGH,
have shown that the obtained reward may be significantly lower than that
achieved by a policy with perfect SOC knowledge.
Future work will further investigate how the energy buffer capacities and the
energy arrival distribution influence the performance of EHDs operation poli-
cies with imperfect SOC knowledge.
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