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Introduction

Quantum mechanics is at the foundation of modern physics. It introduced several groundbreaking
concepts, among which entanglement stands out. This phenomenon describes a deep connection
between different parts of a quantum system, where to understand a part fully, information about
another is needed, regardless of the distance separating them. This spatial independence highlights
the unique and non-intuitive nature of quantum correlations, setting quantum mechanics apart from
classical physical theories.
The exploration of entangled states has long been a central theme within atomic and solid-state
physics, but it’s only in recent times that the high-energy physics field has begun to actively engage
with this research area, making it quite a hot topic. In quantum field theory, states are characterized
by their mass, momentum, and spin, as they form the irreducible representations of the Poincaré group.
However, within the framework of the perturbative S-matrix, calculations are feasible exclusively in
momentum space. As a result, entanglement manifests in the spin correlations of particles and must
be examined as such. The process of analyzing these correlations to deduce the complete quantum
state post-scattering is known as quantum state tomography. As of today, there are multiple reasons
that make this exploration relevant:

• It provides a confirmation of the most counter-intuitive phenomenon of quantum mechanics in
a new context.

• It gives us a probe of new physics, exploring well-established forces of nature, and possibly new
ones.

• The less control over the experimental setup is well balanced by the enormous amount of data
collected.

In this thesis, I introduce the concept of quantum entanglement, a few basic ideas related to the
standard model of particle physics and three HEP scenarios involving entanglement and/or non-
locality. In particular I explore the production of top quarks, the decay of the Higgs boson into
leptons and the decay of charmonium. The numerical results are reproduced using software such as
python, MadAnalysis5 [1] and MadGraph5 aMC [2].
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Chapter 1

Quantum entanglement

1.1 Historical Overview

The word entanglement was coined in 1935 by Schrödinger following a paper published months ear-
lier by Einstein, Podolsky, and Rosen [3], commonly known as the EPR paper. Schrödinger was
referring to an inherently quantum mechanical effect which the authors used as a proxy to disprove
quantum mechanics’ completeness. Ironically, this phenomenon would later become a key feature
of the theory itself. Following the EPR paper, a few concepts are defined: e.g. a theory is said to
be complete if to every element of reality an element of the physical theory is assigned, moreover a
quantity is said to be real if it can be predicted with certainty without disturbing in any way the
system. In that regard, it is well known that QM doesn’t simultaneously predict the values of two
conjugated observables, such as position and momentum. One might argue that these quantities can’t
be both real, but in the gedankenexperiment they make use of a causality principle to negate such
possibility. They imagine two entangled systems, that have interacted in the past, and that are now
spatially apart (such that light and information can’t be exchanged between the two). Changing the
type of measurement conducted on the first one, it is possible to predict with certainty two conju-
gated quantities of the second one. Mathematically, they describe an entangled state of the kind
|ψ⟩ =

∫︁
dpeipx0 |p⟩| −p⟩ =

∫︁
dx|x + x0⟩|x⟩, of particles with definite relative position (x0) and center

of mass, where x is the coordinate along the direction of motion. We could say that this state allows
multiple bi-orthonormal expansions and different types of measurements on the first system trigger
the reduction of the wave packet onto two incompatible states of the second one (from the position
of particle A we deduce the position of particle B, likewise for the momentum). By the definition of
the authors, these quantities associated with the second particle are real, because are predictable with
certainty without in any way disturbing the second system, thanks to the causal separation. Yet, QM
does not simultaneously define them, thus disproving its completeness. This assumption relies on the
local idea that two non-interacting systems can’t influence each other’s reality.
Just two months later, N. Bohr replied to their article with a homonymous paper. As one of the main
defenders of quantum mechanics, he attempted to counter their arguments by introducing the concept
of complementarity. This principle involves the experimentalist’s renunciation of knowledge about
one physical quantity due to the act of measuring another. However, this argument did not convince
the authors of the EPR paper and failed to address their main concern. Ironically, Bohr was a harsh
critic of many last-century scientific breakthroughs, including Einstein’s photon, Schrödinger’s equa-
tion, Dirac’s equation, the neutrino, and pions.
In an article published by J.S.Bell [4] in 1964 it is clearly shown that adding additional parameters
to restore QM locality would not reproduce the high level of correlation predicted by the theory. The
original example is that of two spin one-half (σ1⃗ and σ2⃗) particles in a singlet state moving freely in
opposite directions. Being a⃗ and b⃗ two possible orientations of the spin measurement, the quantum
theory predicts P (a⃗, b⃗) = ⟨(σ1⃗ · a⃗) · (σ2⃗ · b⃗)⟩ = −a⃗ · b⃗. This value is a representation of the correlation
between the two spins. We could use a parameter λ to describe the hidden variable, which could be
continuous or discreet, a scalar or a vector, fixed or with his laws of motion (as intended by Ein-
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1.2. BELL TESTS CHAPTER 1. QUANTUM ENTANGLEMENT

stein), which means that it is a dynamical variable that evolves. Through a few inequalities it can be
proven that the quantum mechanical explanation cannot be represented, either accurately or arbitrar-
ily closely, by a hidden variable perspective. In conclusion, Bell says that in a hidden-variable theory,
there must be a mechanism whereby the setting of one measuring device can affect the reading of
another instrument, however remote. Such a theory would not be Lorentz invariant. Thus, it becomes
crucial to perform experiments in which the settings are changed mid-flight to test QM validity. In
quantum information theory, tests of quantum entanglement are often referred to as Bell tests.

1.2 Bell Tests

In the last 60 years, there have been many attempts at confirming the existence of entanglement [5],
that spooky action at a distance as Einstein used to call it. Many observables have been proposed and
studied to partially or completely disprove any hidden-variable theory. These tests are often expressed
in the form of an inequality and each one may come at hand for different use cases. In particular, the
original one put forward by Bell isn’t the simplest to violate in an actual experiment. A more common
one is the famous Clauser-Horne-Shimony-Holt inequality, or CHSH inequality [6]: two separate
Stern–Gerlach devices A and B measure a quantity that can be equal to +1 or -1 (e.g. the spin) over
two random directions each (A1,A2,B1,B2). If we assume realism (the quantities ai, bi existing before
measurement) and locality (the choices of Ai, Bi have no effect on bi or ai respectively) than

⟨A1B1⟩ + ⟨A1B2⟩ + ⟨A2B1⟩ − ⟨A2B2⟩ ≤ 2. (1.1)

That is because the result of a single measurement (averaged over the possible directions) is (a1 +
a2)b1 + (a1 − a2)b2 = ±2 and the mean over multiple measurements must be in between these values.
CHSH-type inequalities exist even at dimensions d > 2, possibly infinite [7].
Other noteworthy Bell tests are the class of Greenberger–Horne–Zeilinger experiments or GHZ ex-
periments [8], which use three or more entangled particles and give rise to starkly contrasting pre-
dictions between QM and local hidden-variable theories. They make an effort to produce a test that
doesn’t rely on inequalities. An example of the kind is that of three particles in the state given by
|ψ⟩ = 1√

2
(|-1-1-1⟩ − |111⟩) where each | ± 1⟩ is the corresponding eigenstates of σz. |ψ⟩ is easily

shown to be an eigenstate of every permutation of σx ⊗ σy ⊗ σy with an eigenvalue equal to 1. If
we assume a realist approach and imagine that the result of a spin measurement over every direction
ax, ay, az, bx, by, cx, cy is predefined for each particle, we can multiply together the permutations of
axbycy = 1 (aybxcy = 1, aybycx = 1) and use a2y = b2y = c2y = 1 to get axbxcx = 1. Yet, the quantum
mechanical prediction for the observable σx ⊗ σx ⊗ σx is -1. Thus the contradiction.
It is important to notice that while inequalities true in local hidden-variable theories can be violated
in quantum mechanics, this violation can’t be arbitrarily big. The maximum value of violation of a
Bell-type inequality is called Tsirelson’s bound [9]. In the case of the CHSH inequality (if the variables
commute like [Ai, Bj ] = 0), this limit is equal to 2

√
2. We want it to be as large as possible to ease

the experimental burden (difficulty of making precise and relevant measurements), putting it differ-
ently it would be easier to detect a violation if this violation can be big in the first place. Often, the
inequality is expressed using a Bell operator B, whose expected value gives the quantity of interest.
For example, for CHSH we define

B = (n⃗1 · σ⃗) ⊗ [(n⃗2 − n⃗4) · σ⃗] + (n⃗3 · σ⃗) ⊗ [(n⃗2 + n⃗4) · σ⃗], (1.2)

where ni are the unit vectors along which we make the measurements and σ⃗ it the vector of Pauli
matrices. The expression in eq. (1.2) is based on the correspondence ⟨AiBj⟩ = ⟨Ψ|(n⃗i · σ⃗)⊗ (n⃗j · σ⃗)|Ψ⟩,
where n⃗ · σ⃗ is the spin observable along a specific direction n⃗.
It is quite relevant to poise on the hierarchy of quantum correlation phenomena. Indeed, the violation
of Bell inequalities is just a sufficient but not necessary condition for entanglement. In summary,

Bell inequality violation ⊂ Entanglement ⊂ Quantum correlations ⊂ Classical correlations. (1.3)
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Entanglement loopholes

One needs to be aware of loopholes, or ways that quantum mechanical results may be misleadingly
reproduced. The most common ones are the following

• Detection Loophole: Arises when not all entangled particles are detected, potentially biasing
the sample towards more detectable events and misrepresenting the strength of entanglement.

• Locality Loophole: Occurs if the measurement on one particle could influence the outcome
on the entangled partner, violating the principle that these measurements should be causally
disconnected.

• Memory Loophole: Suggests that successive measurements on entangled particles are not
independent, with particles remembering previous measurements and adjusting their behavior,
which could falsely suggest quantum correlations.

• Coincidence Loophole: Involves incorrectly identifying or pairing the measurement outcomes
of entangled particles, leading to inaccurate conclusions about correlations.

• Super-determinism: Proposes that all events, including choices of measurement settings, are
predetermined, thus challenging the foundation of free will assumed in Bell tests.

During the years, many of these backdoors have been closed, especially at low energies. Aspect in 1982
performed the first experimental test following Bell’s initial suggestion about space-like separation [10].
Even though his results, and many thereafter, have been found inconsistent with local realism, only
in 2015 a (practically) loophole-free Bell test was executed [11]. Aspect claimed that no test can be
considered completely loophole-free, as there are explanations of the observations that can’t be tested
such as superdeterminism, but that reasonable hidden variable theories can now be excluded.

1.3 Mathematics of entangled states

In quantum mechanics, a particle is completely described by its state, denoted as |ψ⟩, which is a
vector ray in an appropriate Hilbert space. When expressing this state in the framework of generalized
position eigenstates with the projection ⟨Ψ|x⟩, we obtain the more familiar wave function Ψ(x). To
complete the picture we could consider another intrinsic property of the particle: its spin along a
specified direction. This corresponds to a Hilbert space of dimension 2s + 1 and mathematically the
state vector has to live in the tensor product space between the spatial and spin component. The same
reasoning applies in the presence of more than one particle, where a Hilbert space Hi is associated
with each of the particles and the system state is simply |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ and it is an element of
H1 ⊗ H2. Yet, it is not always possible to do the inverse or write a generic state of two particles in
H1 ⊗H2 as a tensor product. A pure state for which it is possible is called separable. In the opposite
case, states are referred to as entangled. Later it will become clear as to why this develops into the
properties explored before. For a pure or maximally known state, a simple indicator of entanglement
is the Schmidt rank. It is equal to the total number of coefficients, counted with multiplicity, in the
Schmidt decomposition |ψ⟩ =

∑︁m
i αi|ϕi⟩ ⊗ |χi⟩ where |ϕi⟩m and |χi⟩n are respectively orthonormal

basis of H1 and H2, with dimension m ≤ n. Moreover, the coefficients αi can be shown to be real,
non-negative, and unique up to reordering.

It is now useful to introduce the concept of the density matrix, which allows us to describe a system
not maximally known. This is often the case in experimental physics, where the observations are over
an ensemble of events. If the state is thus a statistical mixture of the kind {(|ψk⟩, pk)}k, where pk are
classical probabilities, we define

ρ =
∑︂
k

pk|ψk⟩⟨ψk| (1.4)

This operator holds relevant physical information and has very useful properties:

• Hermitian: ρ = ρ† (Hermitian conjugate), implying real eigenvalues.
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1.4. SEPARABILITY PROBLEM CHAPTER 1. QUANTUM ENTANGLEMENT

• Positivity: All eigenvalues of ρ are non-negative.

• Trace: Tr(ρ) = 1, indicating that the probabilities sum to one.

• Expectation Values: Expectation values of observables A are given by ⟨A⟩ = Tr(ρA).

• Basis Independence: The density matrix representation is basis-independent.

• Purity: The purity of a state is given by Tr(ρ2) and ranges from 0 (completely mixed) to 1 (pure
state).

The collection of density matrices that describe a quantum system constitutes a convex subset. This
arises because any convex combination of density matrices, also forms a density matrix. Pure states
stand as the extremal points of this subset, meaning they cannot be depicted as convex combinations
of other density matrices. These pure states are fundamental in decomposing non-pure states, thereby
generating the entire set of density matrices. Given a set of positive operators satisfying

∑︁
ViV

†
i = I,

we can call a quantum channel or quantum operation [12] the linear map over the space of density
matrices given by

ρ→ E[ρ] =
∑︂
i

ViρV
†
i

A trivial quantum channel is given by the Hamiltonian unitary evolution, defined as V = e−
i
ℏHt.

If the system is composite, we define the reduced density matrix relative to the first subsystem ρ1 =
Tr2(ρ), obtained by taking the partial trace with respect to the base of the second one. A noteworthy
possibility is that the resulting reduced matrix represents a mixed state, even though the initial state
was pure. A necessary and sufficient condition for the initial state to be separable is that the purity of
the state is conserved after taking the partial trace. This criterion is not particularly useful, because
we rarely start with a pure state in the first place.

1.4 Separability problem

In general, it is not an easy task to determine whether a given density matrix describes a separable
or an entangled state, we may refer to it as the separability problem. In particular, we have not yet
identified a necessary and sufficient condition for the separability of a bipartite system with arbitrary
dimension, as is the focus of the cases explored hereafter. Nevertheless, we cannot hope to change the
locality of a state by only performing local operations and classical communication (LOCC for short),
of the kind OA ⊗ OB, where Oi is a positive map. Measures of entanglement that are non-negative
and do not increase under LOCC are called entanglement monotones.

Positivity violation

From this simple idea we get an immediate entanglement witness (i.e. a quantity that gives sufficient
conditions for entanglement).

A bipartite system ρ is classified as entangled if and only if there exists a positive map ΛA

acting on the subsystem SA, such that the resulting matrix ρ

is not positive semi-definite after the application of the combined map ΛA ⊗ IB,

or (ΛA ⊗ IB)[ρ] ⪯̸ 0.

(1.5)

Being this condition theoretically sound, from an experimental perspective not all positive maps have
physical significance.
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Peres-Horodecki Criterion

The criterion, also known as Positive Partial Transpose criterion (PPT), states that:

If ρ is separable, then its partial transpose ρTB has non-negative eigenvalues. (1.6)

Here, ρTB denotes the partial transpose of ρ with respect to system B and it is just an application of
the previous witness. The proof of this necessary condition for separability is straightforward. Indeed,
given a separable state, it can be written as ρ =

∑︁
piρ

A
i ⊗ρBi . After the partial transposition we simply

get ρTB =
∑︂

piρ
A
i ⊗ (ρBi )T . But because this operation preserves eigenvalues, we have that (ρBi )T is

still positive semi-definite. The PPT criterion can be shown to be also a sufficient condition for the
two-qubits (2 ⊗ 2 dimension) and qutrit-qubit (3 ⊗ 2) cases. We can also quantify the entanglement
by defining the negativity, that is the sum of all the negative eigenvalues of the partially transposed
density matrix [13].

Entropy of Entanglement

In classical information theory, Shannon entropy measures the level of uncertainty or surprise asso-
ciated to a variable’s possible outcomes. For a discrete random variable X : Ω → X that induces
the probability density p : X → [0, 1], Shannon entropy is defined as H = −

∑︁
x∈X p(x) log p(x). The

natural extension of Shannon entropy for quantum information is Von Neumann’s [12], which is de-
fined as −Tr(ρ log ρ) and describes the uncertainty we have about the state of the system, or likewise
the expected update in information we would get by performing a measurement. Because the trace
is invariant over a change of basis, this definition is equivalent to stating H = −

∑︁
ηi log ηi where

ηi are the eigenvalues of ρ. This means that the expression is equivalent to Shannon entropy, when
expressed in the appropriate orthonormal basis. We also deduce that a pure state has an null entropy,
because the density matrix is idempotent and each eigenvalue equals one. Given two subsystems A
and B, than a measure of entanglement is given by −Tr(ρA log ρA) = −Tr(ρB log ρB). A pure state is
entangled if and only if this value is different from 0. For mixed state we get the following condition

If the state ρ is separable, than S[ρ] ≥ S[ρA] (1.7)

This inequality is related to a feature of quantum formalism already noted by Schrodinger in 1935: full
knowledge on a system does not imply full knowledge of its parts. In the presence of entanglement,
the entropy (i.e. the uncertainty) could increase when considering the subparts of an ensemble.

Concurrence

Concurrence is an entanglement monotone defined for a pure bipartite state as

CA(ρ) =
√︂

2(1 − Trρ2A) (1.8)

Concurrence is mostly useful due to its computational simplicity.

1.5 Qubit-Qubit System

The state of two spin-1/2 particles can be described by a 4 by 4 complex-valued density matrix. It
can be decomposed in the following sum

ρ =
1

4

⎡⎣I2 ⊗ I2 +
3∑︂

i=1

B+
i (σi ⊗ I2) +

3∑︂
i=1

B−
i (I2 ⊗ σi) +

3∑︂
i,j=1

Cij(σi ⊗ σj)

⎤⎦ (1.9)

where σi are the Pauli matrices. In this expression, the values B+
i = Tr [ρ(σi ⊗ I2)], B−

i and Cij are
real, being the expected values of some spin observable. The latter are evidently an expression of the
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1.6. QUTRIT-QUTRIT SYSTEM CHAPTER 1. QUANTUM ENTANGLEMENT

classical and quantum correlations between the two. While ρ being automatically normalized (indeed
we have 16 − 1 = 15 degrees of freedom), the positivity is not guaranteed, and needs to be enforced
separately: this limits the range of possible values. An example of this kind of decomposition is given
by the pure singlet state

|Ψ⟩ =
1√
2

(| ↑n⃗⟩ ⊗ | ↓n⃗⟩ − | ↓n⃗⟩ ⊗ | ↑n⃗⟩) =⇒ Cij = −δij

along any particular direction n⃗. In such a framework, the CHSH inequality is expressed by the
Horodecki criterion [14].

The bipartite spin state ρ described in eq. (1.9) contradicts the CHSH inequality (1.1) if and only if

the sum of the two largest eigenvalues of the matrix M = CCT exceeds 1,

m12 ≡ m1 +m2 > 1. (1.10)

Equivalently, there exist a particular choice of ni⃗ (i.e. the directions of measurements) such that, given
the Bell operator defined in 1.2, we get

|Tr(ρB)| = |n3⃗ · C · (n2⃗ − n4⃗) + n1⃗ · C · (n2⃗ + n4⃗)| > 2. (1.11)

1.6 Qutrit-Qutrit System

The description of a spin 1/2 particle coincides with the SU(2) symmetry group. Exactly the same
can be said for a spin 1 particle with SU(3). The Lie algebra associated with the latter has dimension
8 (instead of 3 for SU(2)) and there are different choices for the generators that can be made.

Gell-mann matrices

These are a set of eight linearly independent 3×3 traceless Hermitian matrices, i.e. λi. They are
quite often used in physics of the fundamental interaction for the description of the strong force.
Importantly, they are a simple generalization of the Pauli matrices. Peculiar is their orthonormality
condition, which reads λiλj = 2δij .

The irreducible tensor operator parametrization

Another way of describing the system is by the combination of cross products TM1
L1

⊗TM2
L2

of operators
whose definition depends on the spin-1 components Jx, Jy, Jz as follows

T±
1 = ∓

√
3

2
(Jx ± iJy) T 0

1 =

√︃
3

2
Jz (1.12)

T±2
2 =

2√
3

(T±
1 )2 T±1

2 =

√︃
2

3

(︁
T±
1 T

0
1 + T 0

1 T
±
1

)︁
T 0
2 = 1frac

√
23

(︁
T−1
1 T+1

1 + T+1
1 T−1

1 + 2(T 0
1 )2

)︁
.

In matrix form they read

Jx =
ℏ√
2

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠ Jy =
ℏ√
2

⎛⎝ 0 i 0
−i 0 i
0 −i 0

⎞⎠ Jz = ℏ

⎛⎝−1 0 0
0 0 0
0 0 1

⎞⎠ (1.13)
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T+
1 = −ℏ

√︃
3

2

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ T−
1 = ℏ

√︃
3

2

⎛⎝0 0 0
1 0 0
0 1 0

⎞⎠ T 0
1 = ℏ

√︃
3

2

⎛⎝1 0 0
0 0 0
0 0 -1

⎞⎠
T+2
2 = ℏ2

√
3

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ T−2
2 = ℏ2

√
3

⎛⎝0 0 0
0 0 0
1 0 0

⎞⎠ (1.14)

T+1
2 = ℏ2

√
3

⎛⎝0 1 0
0 0 -1
0 0 0

⎞⎠ T−1
2 = ℏ2

√
3

⎛⎝ 0 0 0
-1 0 0
0 1 0

⎞⎠ T 0
2 =

ℏ2√
2

⎛⎝-1 0 0
0 2 0
0 0 -1

⎞⎠ .

Clearly, they are a generalization of the bi-dimensional rising and lowering operators for SU(2). The
normalization is such that Tr(TL

M (TL
M )†) = 3. Using these operators, the generic density matrix can

be written as

ρ =
1

9

[︂
I3 ⊗ I3 +A1

LMT
M
L ⊗ I3 +A2

LMI3 ⊗ TM
L + CL1M1L2M2T

M1
L1

⊗ TM2
L2

]︂
(1.15)

In order for ρ to be Hermitian, the coefficients must satisfy A1,2
LM = (−1)M (A1,2

L,−M )∗ and CL1M1L2M2 =

(−1)M1+M2(CL1,−M1,L2,−M2)∗. These sum up to 80 independent real parameters. This decomposition
allow for an easier extraction of the relevant information from the angular distributions of the final
leptons, as I will explore in the next chapters.

9
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Chapter 2

High-Energy Physics

High-energy physics is the science that studies elementary particles and the fundamental forces. It
aims to understand the underlying principles that describe nature at the smallest scales, an endeavor
inevitably associated with high resolution, short wavelengths, and high energy. We could say, some-
what artificially, that the beginning of the classical era dates back to 1897, when Thomson discovered
the electron by observing cathode rays, and it ends in 1932, with Chadwick’s discovery of the neutron
completing the picture. Since then, many new discoveries have taken place, expanding our under-
standing far beyond that initial framework. Though, at that particular moment in time, it seemed
remarkably clear what constitutes ordinary matter.

The Standard Model

In the following years, many more particles were discovered, particularly through the detection of
cosmic rays, making it increasingly challenging to organize them into a simple, efficient, and revelatory
scheme. As the 1955 Nobel winner Willis Lamb [15] humorously suggested:

“The finder of a new elementary particle used to be rewarded with a Nobel Prize, but such
a discovery now ought to be punished with a $10,000 fine.”

Noteworthy is the discovery of the photon (proposed by Planck as an emission phenomenon and then
generalized by Einstein as an intrinsic property of light itself), the pion (recognized by Yukawa as
the mediator of the strong force between nucleons), strange particles (such as the neutral K and Λ,
also known as V particles due to the shape their decay products make), quarks (which Gell-Mann
predicted with his Eightfold Way), and intermediate vector bosons. The developments in theoretical
physics led to the modern Standard Model, a collection of related theories such as QED, the Glashow-
Weinberg-Salam theory of electroweak processes, and QCD. This assortment became orthodoxy in
1978 [16], meeting every experimental test ever since. Moreover, this theory features an elegant and
pleasing aesthetic principle: the need for local gauge invariance. Summarizing, the Standard Model
describes a total of 61 particles, organized into the following families:

• 36 quarks, fermions existing in 6 flavors (up, down, charm, strange, top, bottom), 3 colors
(historically RGB) or anticolors (for the antiparticles), and 2 choices of electric charge (positive
+2

3 or negative −1
3). Given the color neutrality rule, at low energies these bind together to form

hadrons: 9 mesons, 8 baryons, and 8 anti-baryons, plus their excited states.

• 8 gluons, massless bosons that mediate the strong force. They are bi-colored and satisfy the
same confinement rule as quarks (e.g. glueballs).

• 12 leptons, fermions diversified in 3 flavors and electric charge (positive, negative, or neutral).
The precise count assumes the existence of Dirac’s neutrino, or two kinds of neutral leptons for
each flavor (the neutrino and its anti-particle).

• 1 photon, the boson mediator of the electromagnetic force.

11
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• 3 intermediate vector bosons, massive mediators of the weak force.

• 1 Higgs boson, responsible for the masses of elementary particles. Despite being predicted
some time ago in 1964 by Peter Higgs [17], it was detected just in 2012 at LHC [18]. It is one of
the greatest theoretical predictions of this framework.

The Standard Model, however, requires the empirical calibration of 20 parameters: the masses of
quarks and leptons; three angles and a phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix for
the inter-generational quark coupling (the angles are analogs of the Euler angles in 3D rotation, and
the phase introduces CP violation); and the Weinberg angle, which is related to the masses of the
intermediate vector bosons. Moreover, gravity gets completely ignored due in part to its weakness
(which makes it negligible in most subatomic processes). The search for a candidate particle for dark
matter also remains a hot topic. It is anticipated that the model will be expanded in the future to
accommodate these unknowns (e.g., Grand Unified Theories (GUTs), string theory). However, as of
today, there is no experimentally confirmed extension [19].

Feynman diagrams

Scattering and decay processes are often depicted using Feynman diagrams, where time flows from
the left to the right while the vertical axis does not represent anything physical. Antiparticles are
distinguished by particles through a time reversal convention. Every such diagram results from the
composition of more interaction vertices (Fig. 2.1). One diagram can be twisted or rotated to represent
more than one process, this reflects the fact that they share the same kind of equations. It is important
to clarify that the only observables are the incoming and outgoing particles. Every completion of the
inner graph is not just a possibility, but a necessity. However, from the order of the diagram (i.e. the
number of vertices) we infer the contribution of a particular graph to the total cross section. For
example, in QED each vertex contributes with a factor of α to the cross section associated with a
particular diagram, so it is always diminishing (i.e. the more vertices, the more suppression). This
property is apparent in QED and less obvious for the strong force, due to a constant greater than
one at low energies. As the coupling constants run with the energy scale, QCD becomes perturbative
at high energies, i.e. the cross section can be evaluated making use of perturbation theory with the
dominant contribution being the simplest tree-level diagram.

e e

γ

QED interaction vertex

e

e

e

e

γ

Bhabha scattering

Figure 2.1: From an interaction vertex to a physical process

2.1 Kaon mixing and oscillations

Due to quantum superposition, it is not straightforward or even necessary to define exactly what con-
stitutes a particle in itself. Kaons, neutral pseudo-scalar mesons, are often cited as an example. They
are usually produced via the strong interaction in pairs as eigenstate of flavor (i.e. strangeness), called
K0 and K0¯ and decay through the weak interaction as approximate eigenstate of CP , called KL and
KS . One might argue that the latter are the real particles, having a well defined and exponential decay
time. This conversion can happen due to the flavour changing kaon mixing, given by the diagrams in
figure 2.2.

Kaon mixing is a topic closely related to CP violation. Indeed, experimental observation suggests
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s̄ d̄

d s

q q

W−

W+
s̄ d̄

d s

W+ W−

q

q

Figure 2.2: Strange oscillation diagrams

that KL might decay in 2 pions, with a CP eigenvalue equal to 1. This suggests that either we have a
direct CP violation or KL is not exactly an eigenstate of CP, which would entail a violation in itself.
Different experiments showed that both hypotheses are actually true. Indeed, if we call K+ and K−
the effective eigenstates of CP then

|K±⟩ =
1√
2

(|K0⟩ ± |K̄0⟩) −→ |KL⟩ =
1√

1 + ϵ2
(|K+⟩ + ϵ|K−⟩)

where ϵ is the CP violation parameter. Many experiments have been conducted to also study CPT
and T violations. For our purposes, a notable feature of a kaon system is strange entanglement and
its decoherence. The latter is modelled by the so called master equation and will be explored in the
following chapter. Kaon mixing can be easily described by the time-dependent Schrödinger equation,
with an Hamiltonian that can be written as

iℏ
∂

∂t
|Ψ(t)⟩ = H|Ψ(t)⟩ H = M − i

2
Γ (2.1)

M and Γ are both hermitian matrices with a constant diagonal. H needs not to be unitary, because
we want to account for the decay of the particle itself. In particular, the eigenstates of H are KL and
KS and they evolve exponentially as such{︄

H|KS(t)⟩ = (mS − iℏ2ΓS)|KS(t)⟩
H|KL(t)⟩ = (mL − iℏ2ΓL)|KL(t)⟩

(2.2)

where the state widths are defined as Γ = 1
τ (decay rates of each particle) and are related to the

intrinsic uncertainty on the rest energy due to the uncertainty principle. From this, we can derive
quite simply the shape of the oscillations in the probability space. The function is drawn in Fig. 2.3,
with a survival amplitude given by

⃓⃓
⟨K0|K0(t)⟩

⃓⃓2
=

1

4

(︃
e−ΓSt + e−ΓLt + 2e−

1
2
(ΓS+ΓL)t cos

(︃
(mL −mS)t

ℏ

)︃)︃
(2.3)

Moreover, due to the shorter lifetime of KS , the fraction of KL progressively increases inside a beam
of neutral kaons, however originally composed. Yet, when the beam travels through matter it exhibits
a process of regeneration and loss of coherence, due to the different kinds of interaction possible for
K0 and K̄

0
. While the first undergoes quasi-elastic scattering with the nuclei, the latter participates

in the formation of hyperons (baryons containing at least one strange quark).

Basis in quasi-spin space

We can treat the two strangeness eigenstates K0 and K̄
0

as members of a quasi-spin doublet, respec-

tively

(︃
1
0

)︃
and

(︃
0
1

)︃
. In this framework, every operator acting on the kaons can be expressed in terms

of the Pauli matrices. ⎧⎪⎨⎪⎩
-σx ⇐⇒ CP operator

σy ⇐⇒ CP violation operator

σz ⇐⇒ strangeness operator

(2.4)
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Figure 2.3: Kaons oscillations for a beam of initially pure K0.

With this notation it is possible to write the Hamiltonian in (2.1) as

H = αI + β (sin θσx + cos θσy) (2.5)

where α = 1
2 (mL +mS − i(ΓL + ΓS)), β = 1

2 (mL −mS − i(ΓL − ΓS)) and the phase θ corresponds
to the CP parameter ε such that eiθ = 1−ε

1+ε . Now there are different basis we can use depending on
the context:

• The eigenbasis of Strangeness, comprising {K0,K
0}, is useful in the study of electromagnetic

and strong interactions that preserve strangeness. For example, in generation processes such

as e+e− → ϕ(1020) → K0K
0

and pp → K0K
0
, as well as the identification of neutral kaons

through powerful kaon-nucleon interactions. This basis is characterized by its orthonormality,

i.e., ⟨K0|K0⟩ = 0.

• The eigenbasis of {KS ,KL}, which aligns with weak interaction eigenstates that parallel the CP
eigenstates denoted as |K1⟩ and |K2⟩. This basis is pertinent for the analysis of kaon propagation
in a vacuum and contrasts with the CP basis, which is tailored for the study of weak interaction-
induced kaon decay processes. It is defined as quasi-orthonormal since ⟨KS |KS⟩ = ⟨KL|KL⟩ = 1
and the overlap ⟨KS |KL⟩ = ⟨KL|KS⟩ is nominally zero, described by ϵ+ϵ∗

1+|ϵ|2 .

• The eigenbasis for interaction with matter, labelled as {K ′
S ,K

′
L}, is defined for understanding

the interactions of neutral kaons transiting a homogenous nucleonic substance, which acts simul-
taneously as a regenerator and absorber. The behavior within this medium is dictated by the
Hamiltonian of the medium, modified by an additional term accounting for strong interactions:

Hmedium = H − 2πν

mK

(︃
f0 0

0 f0

)︃
(2.6)

where ν represents the nucleonic density of the medium, mK is the median mass of the KS and

KL states, and f0 alongside f0 signify the forward scattering amplitudes for K0 and K
0
, corre-

spondingly. Apart from a small CP violating correction, we get that the relative contribution of
K̄

0
on the eigenstate of Hmedium is equal to ρ̄ and ρ̄−1, for KS and KL respectively, where the

dimensionless regeneration parameter ρ is equal to [20]

ρ =
πν

mK

f0 − f0
mL −mS − i

2(ΓL − ΓS)
, ρ̄ =

√︁
1 + 4ρ2 + 2ρ, ρ̄−1 =

√︁
1 + 4ρ2 − 2ρ (2.7)

We have two limiting cases:
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1. At low matter density: |K ′
S⟩ → |KS⟩ and |K ′

L⟩ → |KL⟩

2. At high density: |K ′
L⟩ → |K0⟩ and |K ′

S⟩ → |K0⟩

T and CPT violations

Neutral kaons system can be exploited to study discreet symmetry breaking such as T, CP and CPT.
The latter, being preserved due to the so called CPT theorem, implies the breaking of T, which of
course needs to be observed experimentally as well. In particular, by producing K0K̄

0
pairs through

ϕ − factories and studying one transition process as a reference, it is possible to study T reversal by
exchanging the in and out states [21]. In the process ϕ → K0 + K̄

0
, the products are formed in the

singlet state given by

|i⟩ =
1√
2

(|K0K̄
0⟩ − |K̄0

K0⟩) =
1√
2

(|K+K−⟩ − |K−K+⟩) (2.8)

where we are making two assumptions: firstly neglecting the direct CP violation which entails the
orthogonality of the states ⟨K+|K−⟩ = 0 and secondly we identify the decay particle through the
sign of the its semileptonic decay based on the rule ∆S = ∆Q. The latter associates the variations of
charge and strangeness for mesons decaying via the weak interaction, which is known to permit flavour
changes (CKM mixing matrix). Using the property of the doubly singlet state, we can construct a
flavor-tag or CP -tag. Based on the type of decay of one kaon, weak semileptonic (πl+ ν̄ or πl+ ν̄) or
strong (ππ or 3π ), we can infer respectively the flavor or CP state of the other. Here, entanglement
is indirectly tested, using it as an efficient tool in the experiments.
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Chapter 3

Measurements at colliders

In colliders such as the LHC, we have the privilege of observing phenomena in high-energy regimes
through processes like scattering and decay, as well as the production of heavy, albeit short-lived,
particles. We deal with different than usual applications of quantum mechanics, in the form of quan-
tum field theory. It is of most importance to study how its extravagant consequences develop, and
confirming the presence of entanglement in such experimental conditions establishes the generality of
the theory. Moreover, we get the rare opportunity of studying entanglement beyond electromagnetic
interactions through processes mediated by the strong and/or weak forces, and systems with more than
2 degrees of freedom, i.e. total spin of 1, such as in the decay products of massive bosons. Quantum
entanglement observables can at the same time provide additional sensitivity to new physics [22].

Quantum correlations at colliders usually take the form of spin coupling. It is the aim of quantum
tomography to predict and study the density matrix after the scattering process. As of today, we
have to infer this properties just from the variation of momenta of the outgoing particles. The same
happens in the classical Stern-Gerlach apparatus, where particles deviate based on their spin states.
We should notice that these momenta commute, but entanglement still remains accessible. The decay
time of the entangled pairs ranges from 10−25 s for the top quark and the weak gauge bosons to
10−20 s for vector mesons and 10−13 s for the τ leptons, which is still well under the time taken for the
products of the collision to reach the detector 1 . There, we would assist to a loss of correlation due
to the interaction with the atoms of the experimental apparatus. In the case of top quarks, the same
ideas apply to hadronization, which would happen on a longer timescale of around 10−23 s, making it
completely irrelevant for our purpose.

3.1 Boosted tt̄ pair production

One of the most recent attempts to detect entanglement at the LHC involves the production of top
quarks. These quarks are boosted, or moving at relativistic speeds, such that the locality loophole
is avoided, and the measurements occur at space-like separated positions. The channel studied is
the semi-leptonic one, meaning that one quark decays into two leptons, while the other decays into
hadrons. Even though the polarization of the latter is known to be challenging to detect, it is possible
to reconstruct the spin density matrix of the system using a sophisticated hadronic polarimeter, in
combination with jet substructure techniques and neural network-inspired methods [23]. Moreover,
the dilepton channel suffers from lower statistics (6 times lower), the reconstruction is not less difficult
and most of the decay events happen in causally connected regions [24]. At LHC top pairs are
produced mainly through 3 processes: quark-anti quark annihilation, pair production and gluon-gluon
annihilation (diagram 3.1). The production of top quark pairs via the strong interaction is a process
that respects both parity (P) and charge-parity (CP) conservation. This means that the parameters
in the decomposition of the final density matrix 1.9 are quite simpler: B+

i = B−
j = 0 and C = CT . In

1The time it takes for the products to reach the detector walls at the speed of light, given a tube size of approximately
1 cm, is about 10−11 s.
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Figure 3.1: Main tt̄ production processes

this scenario, any small deviation caused by the weak force is so minor that they can be ignored. We
can now define the following pure and mixed density matrices:

ρ(±) = |±⟩ ⟨±| , |±⟩ =
1√
2

(|↑↓⟩ ± |↓↑⟩) , (3.1)

ρ
(1)
mix =

1

2
(|++⟩ ⟨++| + |−−⟩ ⟨−−|) , (3.2)

ρ
(2)
mix =

1

2
(|LR⟩ ⟨LR| + |RL⟩ ⟨RL|) , (3.3)

ρ
(3)
mix =

1

2
(|↑↓⟩ ⟨↑↓| + |↓↑⟩ ⟨↓↑|) , (3.4)

where |↑⟩ and |↓⟩ are the eigenvectors of the Pauli matrix σz with eigenvalues +1 and −1, respectively;
similarly, |±⟩ are the eigenvectors of σx and |L⟩, |R⟩ those of σy. We ought to treat a little differently
the quark and gluon production mechanisms. It is possible to prove that the state of the tt̄ pair is
given in the two cases by the convex combinations [25]

ρ
(qq̄)
tt̄

= λρ(+) + (1 − λ)ρ
(1)
mix, with λ =

β2t
2 − β2t

∈ [0, 1] (3.5)

ρ
(gg)
tt̄

= aρ(+) + bρ(−) + cρ
(1)
mix + dρ

(2)
mix, (3.6)

with a =
β4t

1 + 2β2t − 2β4t
, b =

(1 − β2t )2

1 + 2β2t − 2β4t
, c = d =

2β2t (1 − β2t )

1 + 2β2t − 2β4t

where βt is the transverse velocity of the products. We see that for the quarks annihilation, at
threshold the state is completely mixed and that correlations become dominant only at high transverse
momentum. In the other case, the state is maximally entangled in both limit (when βt approaches 0
or 1). Both this cases must be included when making a comparison with real data, making the state
more mixed as a whole. In [27] it was shown that concurrence, as a measure of entanglement, follows

Figure 3.2: Concurrence and m12 for top spins, over the whole kinematical space. Image from [26].

18
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the relation

C[ρ] =
1

2
max(−1 − 3D, 0), where D =

1

3
Tr(C). (3.7)

Here, C[ρ] is the concurrence defined as in eq. (1.8), while C is the correlation matrix defined in
eq. (1.9). Experimentally, it was shown that D < −1

3 with a significance over 5σ [28], making it the
first evidence of entanglement in top quarks spins. The violation of the Bell inequality can be probed
using the Horodecki condition presented in the Chapter 1, in particular I compute the value m12. The
violation becomes apparent with the appropriate kinematical conditions, as seen in Fig. 3.2, where θ
is the angle of the products of the decay with respect to the transverse direction.

3.2 H → ZZ decay process

This process suffers from a much lower statistics than the top pair production, especially when we
limit ourselves to study the decay of the intermediate vector bosons into one lepton pair each i.e.
H → ZZ → e+e−µ+µ−. Such a selection allows us to easily identify which leptons come from the
same parent particle, so that we can compute indirectly its invariant mass. Moreover, this process has
also an historical relevance, because the decay into four leptons was one of the main channels through
which the Higgs boson was firstly detected. This mainly happened by noticing a bump in the cross
section of proton-proton collision with the ATLAS detector, largely due to its excellent momentum
resolution [18].

Mathematically, we have to deal with a qutrit-qutrit system, that is because the Z is known to be a
spin 1 particle. Moreover, the two bosons are off-shell (virtual), clearly because the some of their rest
energies is greater than the mass of the Higgs. For this analysis, we set a frame of reference such that
the z-axis is in the direction of the momentum of the Z with the greatest invariant mass, the third
component of its spin coincides with the helicity. The density matrix of the joint system is expected
to be a 9 × 9 complex-valued matrix. From symmetry considerations we can reduce the degrees of
freedom. A generic pure state in the ensemble needs to conserve the total spin along any particular
axis, thus it can be written as the following superposition

|ψ⟩ = α1| +−⟩ + α2|00⟩ + α3| −+⟩ (3.8)

Moreover, this decay satisfies parity conservation due to how the appropriate Lagrangian term trans-
form under such symmetry. We can limit ourselves to study a state of the type

|ψZZ⟩ =
1√︁

2 + β2
(| +−⟩ − β|00⟩ + | −+⟩), with β ∈ R ∪ {∞} (3.9)

The decay has clearly spherical symmetry (in CM frame), thus the value of β can only depend on non
trivial kinematical variables such as the invariant masses of the bosons m1 and m2, and the modulo
of the momentum |k⃗|. An expression for β can be obtained considering the Lorentz structure of the
interaction term ∝ ηµνHZ

µZν in the SM. Given

Zµ =
∑︂
λ

d3p⃗

(2π)3
(a

p,λ⃗
e−ip⃗·x⃗ · ϵµλ(p⃗) + c.c.) (3.10)

where ap⃗,λ is called the destruction operator, such that ãp⃗,λ|0⟩ = |p⃗, λ⟩ then the state of the ZZ pair
is written as

|ψZZ⟩ = ηµνϵ
µ
σ(m1, k⃗)ϵνλ(m2,−k⃗)|k, σ⟩| − k⃗, λ⟩, (3.11)

where σ, λ represent spin states and

ϵµσ(m, k⃗) =

⎛⎜⎜⎜⎜⎝
0 |k⃗|

m 0
− 1√

2
0 1√

2
i√
2

0 i√
2

0 −
√

|k⃗|2+m2

m 0

⎞⎟⎟⎟⎟⎠ . (3.12)
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Comparing eq. 3.9 with eq. 3.11 we get

β = 1 +
m2

H − (m1 +m2)
2

2m1m2
(3.13)

From this expression, we see that the larger the mass of the lightest off-shell Z, the less correlations
are present. Indeed, for m1 +m2 = mH and β = 1, we get a maximally entangled state. Meanwhile,
for β → +∞ we get a separable state (|ψZZ⟩ = |0⟩ ⊗ |0⟩). A more precise measure of the expected
entanglement is shown in Fig. 3.3. If we ignore noise and other types of contamination, the resulting

Figure 3.3: Measures of entanglement for the state in eq. (3.9)

density matrix has the following structure, once it has been weighted over different possible pure
states.

ρ =
1

2 + ω2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −y 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 −y 0 ω2 0 −y 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −y 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.14)

The precise values of w and y in (3.14) depend on the probability distribution functions of β, which
internally depends on the physics of the process. Usually it is obtained through Monte Carlo simula-
tions. In particular, I reproduced some previous results [29] using the software MadGraph5 aMC [2]
and MadAnalysis5 [1]. The probability distribution function for β is shown in Fig. 3.4.

From a simple fit, we see that the tail follows a power law (∝ β−2.87), which means the mean value is
well-defined. It is now possible to compare the theoretical density matrix with the decomposition in
tensor operators introduced in a previous chapter, which simply reads
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Figure 3.4: Distribution of β obtained with a Monte Carlo simulation.

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 1
6

(︁√
2A2,1,0 + 2

)︁
0 1

3C2,1,2,−1 0 1
3C2,2,2,−2 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,1,2,−1 0 1

3(1 −
√

2A2,1,0) 0 1
3C2,1,2,−1 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,2,2,−2 0 1

3C2,1,2,−1 0 1
6

(︁√
2A2,1,0 + 2

)︁
0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.15)

with

with
1√
2
A1

2,0 + 1 = C2,2,2,−2 (3.16)

The latter expression could be used to estimate the uncertainty and systematics of the experimental
apparatus. Intuitively, if more than one coefficient in (3.8) is non-zero, than the state is entangled.
This is easily shown by using the Peres-Horodecki criterion. Indeed, taking the partial transpose of
a generic density matrix with non-zero entries in the same position as (3.14), we see only positive
eigenvalues if the off-diagonal terms are null. As the authors state, this case is one for which we
obtain a necessary and sufficient condition for entanglement. The condition for entanglement can also
be written as

C2,1,2,−1 ̸= 0 or C2,2,2,−2 ̸= 0 (3.17)

While it is quite easy to find the optimal Bell operator in the non-relativistic limit (β = 1), in general
one should search in the space of all possible operators for the one that maximizes the violation, a
hard endeavor due to the huge parameter space. For slow particles in the state 1√

3
(|-1-1⟩+ |00⟩+ |11⟩),

the right operator has already been found [30] and it can be written as

O′
Bell =

4

3
√

3

(︁
T 1
1 ⊗ T 1

1 + T 1
−1 ⊗ T 1

−1

)︁
+

2

3

(︁
T 2
2 ⊗ T 2

2 + T 2
−2 ⊗ T 2

−2

)︁
(3.18)

For the state at hand, we need to make a little modification in (3.18), and we can just perform a
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change of basis as follows

OBell = (UOA ⊗ U∗)†O′
Bell(UOA ⊗ U∗) with OA =

⎛⎝0 0 1
0 −1 0
1 0 0

⎞⎠ (3.19)

where the choice of the unitary operator U is actually irrelevant. The idea behind this expression
is that we can vary U , which cannot be ignored for β ̸= 1, to explore a subset of all possible Bell
operators. Even though this strategy could seem a bit crude, it improves the violation well over
what would be necessary. In Fig. 3.5 the advantage of the optimal choice becomes apparent, where
I3 = Tr(ρOBell). The trivial identity matrix would not show any significant entanglement (being the
vertical dashed line the average of beta over simulated events).

Figure 3.5: Variation of the violation parameter with β, depending on the choice of U

Before performing the actual experiment, it is possible to produce relevant numerical simulations [29].
It has been shown that entanglement can be probed to a significance of 5σ, computing the deviations
of C2,1,2,−1 or C2,2,2,−2 from 0, and the violation of the Bell-type inequality at 4.5σ [29].

3.3 J/Ψ → KSKS decay process

Another relatively straightforward test of non-locality involves the production of neutral kaons through
the decay of charmonium [31]. In this analysis, charmonium can be substituted with any vector meson
possessing the quantum numbers JPC = 1−−. Specifically, quantum mechanics predicts that when
one particle disintegrates as KS , the other should collapse into KL, since the two kaons are produced
in a flavor singlet state and ⟨KS |KL⟩ ≈ 0 (ignoring CP violations for this discussion). If Einstein’s
concerns about locality were valid, then it would be possible to observe the process J/Ψ → KSKS in
a space-like region.

It is crucial to emphasize that this experimental test does not verify quantum entanglement conclu-
sively because it does not eliminate the possibility of a hidden variable theory. Hence, this test can
be interpreted as a confirmation that, under the assumption of the non-existence of hidden variables,
quantum mechanics exhibits non-local characteristics.

We can compute the expected amplitude of the J/Ψ → KSKS process assuming locality, namely one
kaon must not know the state of the other until the information has had time to travel the appropriate
distance. The decay rate can be expressed as

Γ(ta, tb)non-ent ≈
N

2
ΓLΓS

{︁
e−ΓSta−ΓLtb + e−ΓLta−ΓStb

−2 cos((mL −ms)(tb − ta))e−
1
2
(ta+tb)(ΓS+ΓL)

}︂
(3.20)
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where N ≈ 1.0035 is a normalization factor, ti is the proper time of particle i and the blue term is a
manifestation of quantum interference, that vanishes after we know that one particle has decayed. If
the action at a distance were real, than we would get

Γa(ta) =

∫︂ ta

0
dtb Γnon-ent(ta, tb) +

∫︂ ∞

ta

dtb Γent(ta, tb) (3.21)

Γ1(t1) = 2

∫︂ ∞

t1

dt2 Γent(t1, t2) (3.22)

Γ2(t2) = 2

∫︂ t2

0
dt1 Γnon-ent(t1, t2) (3.23)

(3.24)

where we have the decay rate of particle a, the rate of the first decay and the second respectively.
These obviously satisfy Γa(t) = 1

2(Γ1(t) + Γ2(t)), being the two situations equiprobable. Both QM
and hidden-variable theories predict that both kaons can be described by a decay rate equal to Γ1,
while after one particle decays the other’s decay rate changes instantaneously to Γ2. Yet, for our
assumption of locality we must introduce a delay in this update. In particular, if t1 is the proper
time of the first particle at decay, the second one gets the information at time t′1 = 1+β

1−β t1. There are
two main ways the experimental results could be misinterpreted, resulting in an overestimation of the
analysed process:

• CP violation: The identification of the particles is based on the subsequent decays, namely
KS → π+π− and KL → 3π. The possible direct violation of CP gives rise to the process
KL → π+π−, which we need to consider. In particular, the branching factor equals 1.96710−3.

• Regeneration: A KL could transform into a KS when interacting with matter, due to the
different cross sections of its components. In Chapter 1 this phenomenon is explained in detail.

Considering these corrections, the experiments give contrasting results with a local theory. In par-
ticular, the BESIII collaboration found a cross section 2 orders of magnitude lower than expected
[32].

CPT violation and decoherence

The previous analysis also enables the investigation of minute decoherence and CPT violation effects,
which could be significant within the context of quantum gravity theories. Namely, fluctuations in
the topology and metric at the Plank scale, i.e. space-time foam, could result in decoherence of the
state, even when isolated. This has been shown to be in contrast with the CPT theorem. The relevant
parameters can be obtained by fitting the distribution of time intervals between the decay of the two
kaons [33].
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Conclusions

In this thesis, I explored the phenomenon of quantum entanglement within the context of high-energy
physics, focusing on its manifestation and detectability in particle physics experiments. Starting from
a theoretical foundation, I drew the mathematical framework of quantum mechanics that allows for
entangled states, and explained some basic concepts at the core of the Standard Model. I then tran-
sitioned to practical aspects, discussing how entanglement can be studied through specific processes
observable at particle colliders, such as the Large Hadron Collider (LHC). Based on the papers re-
viewed, I can clearly state that the experiments at high energies have been found consistent with
expectations. Entanglement appears to be a resilient feature of quantum mechanics, even in this con-
text. Nevertheless, the study of this phenomenon in particle physics is just at its beginnings and new
ideas and applications are emerging and need to be uncovered. Its relevance as a quantum probe into
the fundamental forces remains a pivotal aspect of future research.
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