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Abstract

Gynecological tumors include four tumor types from TCGA: ovarian cancer
(OV), cervical cancer (CESC), endometrial cancer (UCEC) and the rare uter-
ine carcinosarcoma (UCS). Breast cancer (BRCA) can also be included among
gynecological tumors, since it shares the same embryonic origin and the in-
fluence of female hormones. In order to shed light on the common molecular
features characterizing the five tumors, molecular profiles from patients with
di↵erent patterns of chromosomal instability (CIN), underlying di↵erent mech-
anisms of dysregulation (signatures), were compared at both expression and
methylation level. A pathway analysis was performed using SourceSet soft-
ware, whose topological approach allows to discriminate genes that are the
primary source of dysregulation from those that are indirectly a↵ected. Two
signatures were investigated: CX1 and CX3. CX1 is characterized by defec-
tive mitotic spindle checkpoint, resulting in incorrect chromosome segregation,
while CX3 shows replication stress, leading to double strand breaks that are
not properly corrected by homologous recombination and result in structural
aberrations. Results revealed that OV, UCEC and BRCA tend to have similar
expression and methylation profiles, while UCS and CESC are the most diver-
gent tumors. Primary genes are more uniformly detected across tumor types
compared to secondary genes, reflecting the common origin of perturbation
generating the observed pattern of CIN and the di↵erent molecular profiles
characterizing di↵erent tissues, respectively.
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1 Introduction

1.1 Gynecological tumors

Gynecological tumors have an estimated incidence of almost 400,000 cases
and more than 70,000 deaths among United States female population in 2023
(Table 1).

Tumor type Incidence Mortality

Breast 297,790 43,170
Uterine cervix 13,960 4,310
Uterine corpus 66,200 13,030

Ovary 19,710 13,270
Total 397,660 73,780

Table 1: Estimated new cases and deaths for gynecological cancers among
USA female population updated to 2023[1].

Figure 1: Location of
gynecological tumors in
female body.

Gynecological tumors (Figure 1) include four tumor
types from TCGA: high-grade serous ovarian cys-
tadenocarcinoma (OV), cervical squamous cell car-
cinoma and endocervical adenocarcinoma (CESC),
uterine corpus endometrial carcinoma (UCEC), uter-
ine carcinosarcoma (UCS). A fifth tumor type can
be included in the list of gynecological tumors: in-
vasive breast carcinoma (BRCA), as it shares impor-
tant characteristics with proper gynecological can-
cers: they arise from the same embryonic tissues,
they are all influenced by female hormones, they are
treated by the same medical specialty, gynecologic
oncology. Despite recent clinical advances, molecular
characteristics of these tumors are not completely un-
covered. In the following sections a brief description
of the five gynecological cancer types is proposed,
focusing on their similarities and unique molecular
features, as they were derived from multi-platform
studies by TCGA Research Network.

1.1.1 Ovarian cancer

Ovarian cancer is the fifth most mortal cancer type among women in United
States (5%), most deaths (⇠70%) are imputable to the most aggressive high-
grade serous ovarian cancer (HGSOC), characterized by P53 mutations and
genomic instability due to defects in DNA repair pathways. Familial cases are
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found due to germline mutations in homologous recombination-mediated repair
genes BRCA1 and BRCA2 (10-20% cases). The principal factor influencing
the elevated mortality of HGSOC patients is the inability to diagnose the
disease at early stages, due to a lack of screening methods and symptoms.
Integrated genomic analyses on HGSOC patients[2] found TP53 is ubiquitously
mutated across tumors (96%), with only a few other genes showing recurrent
mutations, including BRCA1 and BRCA2. Genome instability is profound,
with amplifications on MYC and CCNE1. Homologous recombination pathway
of DNA repair is defective in 51% of cases, with genes a↵ected BRCA1/2,
PTEN, RAD51C, ATM, ATR and Fanconi anaemia genes. Other frequently
altered pathways include: RB1, PI3K/Ras, NOTCH, FOXM1. Treatments
currently available include PARP inhibitors, anti-angiogenic factors, platinum-
based chemotherapy.

1.1.2 Endometrial cancer

Endometrial cancer arises from the inner epithelial lining of the uterus. It is
the third most common cancer type a↵ecting women in the United States, with
incidence rates constantly increasing since the mid-1990s of 2% cases per year
among young women. Most patients present with low-grade, early-stage dis-
ease. Among this cancer type, two groups have been distinguished: endometri-
oid tumors, linked to estrogen excess, obesity, receptor-positivity and favorable
outcome, and serous tumors, more frequent in older, non-obese women, asso-
ciated with a worse prognosis. A study from TCGA Research Network[3]
identified four molecular subgroups. The first subgroup is characterized by
extensive copy number changes and includes high-grade aggressive cancers,
mainly from the serous histological type. TP53 is mutated in most of the tu-
mors, with frequent mutations also in FBXW7 and PPP2R1A, while CCNE1
and ERBB2 are frequently amplified. Uterine serous carcinomas share many
molecular features with HGSOC and basal-like breast carcinoma. Another sub-
group is characterized by microsatellite instability. Commonly altered genes
are PTEN, ARID1A, PIK3CA, RPL22, MLH1. The third subgroup shows
recurrent mutations in the exonuclease domain of POLE, polymerase-✏, with
consequent increased replication error frequency, leading to a great mutational
burden. This subgroup presents the most favorable outcome, thanks to the
high lymphocytic infiltration. The fourth subgroup presents a low amount of
copy number alterations and low mutational burden. It contains low grade
tumors.

1.1.3 Breast cancer

Breast cancer is the most common cancer among women worldwide. Clin-
ically it is categorized into three therapeutic groups: the estrogen receptor
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positive, that can be treated with endocrine therapy, the HER2 amplified
group, treated by targeting HER2, and the triple negative cancers (TNBC),
with only chemotherapy options. When combining information from di↵er-
ent platforms[4], a large heterogeneity of molecular features is identified for
this cancer type, with only three genes, TP53, PIK3CA and GATA3 showing
somatic mutations at > 10% incidence. TNBC and HGSOC comparison in-
dicated several molecular commonalities, such as TP53, RB1, BRCA loss and
MYC amplification.

1.1.4 Cervical cancer

95% cases of cervical cancer are caused by persistent infections by HPV. Cer-
vical cancer incidence is clearly decreasing since 1970s worldwide, more than
any other gynecological tumor, because of the di↵usion of HPV screenings.
Vaccination campaigns and novel strategies for screening are now available in
developed countries, producing disparities in the incidence rates of the tumor in
developed and under-developed countries. PI3K-MAPK and TGF� signaling
pathways are frequently altered. APOBEC mutational signature correlates
with the total number of mutations per sample, suggesting a role of cyti-
dine deaminases and mRNA editing in cervical carcinogenesis. A subgroup of
endometrial-like cervical cancers was identified by multi-platform studies[5],
composed predominantly of HPV-negative tumors, with high frequencies of
KRAS, ARID1A and PTEN mutations.

1.1.5 Uterine carcinosarcoma

UCS tumors are biphasic carcinomas, showing morphological components of
both epithelial and mesenchymal cell types. These tumors are very rare, they
represent 5% of the total number of uterine cancers and are associated with
poor prognosis (15% of deaths for uterine malignancies). They arise from
epithelial cells of the uterus that undergo di↵erentiation into mesenchymal
cells. Frequently mutated genes were also found in endometrial cancer, such as
TP53, FBXW7, PPP2R1A and genes from the PI3K pathway. Transcriptome
analyses revealed a strong epithelial-to-mesenchymal transition gene signature,
with altered expression of E-cadherin, and SNAI1/2 and ZEB1/2 regulation by
members of miR-200 family. These miRNAs are in turn regulated by methy-
lation at their promoters[6].

1.2 Chromosomal instability signatures

One of the most recognizable hallmarks of cancer is chromosomal instability
(CIN), deriving from the accumulation of genomic alterations that can in-
volve either a gain or loss of whole chromosomes or structural aberrations,
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ranging from small-scale insertions or deletions to large DNA rearrangements.
CIN is responsible for the intratumoral heterogeneity that drives phenotypic
adaptation during tumor evolution and it is often involved in anticancer drug
resistance.

Aberrant chromosome segregation is often responsible for CIN and may derive
primarily from mitotic defects, such as altered microtubule-spindle dynam-
ics and defects a↵ecting the mitotic checkpoint or sister-chromatid cohesion.
Multiple centrosomes are often observed in cancer cells, causing defects on
microtubule-kinetochore attachment, that lead to inactivation of mitotic check-
point. Genome doubling, or tetraploidization, arising from failed cell division
or endoreplication, is also frequent across several cancers and responsible for
an increased risk of chromosome missegregation. Pre-mitotic defects, such as
replication stress, can generate chromosome fusions, that lead to formation of
acentric or dicentric chromosomes and consequently unequal distribution of
genetic material, even without defects in chromosome segregation machinery.
Furthermore, aberrantly segregated chromosomes may involve the formation
of isolated DNA surrounded by nuclear envelope, i.e., micronuclei, that are
associated to disruption of nuclear envelope with consequent exposure of nu-
clear DNA to reactive oxygen species and cytoplasmic enzymes, such as RNA
editing enzymes from the APOBEC family, resulting in the accumulation of
mutations and further structural defects.
For the propagation of CIN across cancer cells the disruption of DNA damage
response is fundamental: P53 pathway is inactivated, by mutations on TP53
or indirectly by a↵ecting other genes of the pathway. Immune evasion is also
responsible for the proliferation of chromosomally unstable cancer cells, e.g.,
by decreasing expression of genes involved in adaptive immunity or cytotoxic-
ity mediated by CD8+ T cells and natural killer cells.
Understanding the molecular heterogeneity of CIN and its connection with
di↵erential clinical outcomes may be exploited to develop new approaches for
cancer treatment and diagnosis, especially in the perspective of personalized
medicine[7].

A study by Drews et al.[8] published in 2022 investigated the di↵erent features
of CIN in a pan-cancer analysis, linking a specific aetiology to a particular pro-
file of CIN. Copy number profiles across 33 TCGA tumor types were collected
and samples with detectable CIN were selected. Distributions of fundamen-
tal copy number features (e.g., breakpoint counts per chromosome arm, copy
number change between a segment and the neighboring, segment length) rep-
resenting di↵erent causes of CIN were computed. Using a mixture modeling
approach, they derived 17 pan-cancer copy number signatures (Figure 2).
To determine the putative aetiology for each signature, they considered both
patterns of copy number change and signature association with known cancer
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driver mutations. A confidence score was also assigned to each signature aeti-
ology based on the quality and extent of supporting data. Finally, they were
able to quantify the activity of each signature across patients.
Considering only gynecologic cancer patients, signature 1 (CX1) and 3 (CX3)
are the most active (Figure 3).

Figure 2: Heatmap showing the prevalence of each signature across 33 TCGA
tumor types. Each signature is described with its putative cause, confidence
score and pattern of CNV[8].

1.2.1 Signature 1

Signature 1 is characterized by whole-arm or whole-chromosome changes, sug-
gesting as a putative cause chromosome missegregation via defective mitosis
and telomere dysfunction; indeed, it is negatively correlated with telomerase
expression and telomere length. The signature has higher activity in mutated
CIC, VHL and PBRM1 carriers.

1.2.2 Signature 3

Signature 3 exhibits long-sized, single-copy changes, patterns that are asso-
ciated to impaired homologous recombination. Activity of this signature is
increased in patients with germline mutation of BRCA1 and BRCA2 and
methylated RAD51C. Replication stress is also involved in the aetiology of

11



the signature (via amplification of MAPK1, PPP2R1A, U2AF1). In addi-
tion, key nucleotide excision repair genes are downregulated, as well as TP53,
suggesting impaired damage sensing.

Figure 3: Heatmap showing signature levels for each gynecologic tumor patient.
Low values are yellow, high values are red.

1.3 DNA methylation in cancer

Chromosomal instability is known to influence gene expression in cancer cells,
but other factors are frequently involved. DNA methylation, histone mod-
ifications and chromatin remodeling are epigenetic factors able to influence
gene expression without requiring any modification in DNA sequence. DNA
methylation is contributing to the final pattern of gene expression that we can
observe in cancer cells, where these changes are then inherited throughout cell
divisions thanks to DNA methylation maintenance machinery.
DNA methylation occurs mainly on cytosine, forming 5-methylcytosine. This
modification is observed with high frequency on CpG islands, regions rich in
the dinucleotide CG in 5’-3’ direction. CpG islands are DNA sequences roughly
1000 bp long with a GC content > 50%. About 70% of human genes contain
CpG islands in their promoter.
Most often, DNA methylation acts by silencing genes via hypermethylation
on CpG islands in the promoter region of genes, but there are di↵erent pos-
sible mechanisms in which it can regulate gene expression, for example, by
a↵ecting expression of miRNAs. Based on this knowledge, DNA methylation
is expected to be responsible for transcriptional gene silencing more often than
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DNA sequence mutation.

The silencing of DNA repair genes via hypermethylation may be an early step
in carcinogenesis: deficiency of DNA repair genes leads to accumulation of
DNA damages that give rise to cancer. miRNAs are involved in gene silenc-
ing by targeting mRNAs of protein coding genes; di↵erential methylation on
miRNA promoters may influence their expression, and thus indirectly a↵ect
gene expression. DNA hypermethylation is observed in the promoter regions
of tumor suppressor genes, involved in several cancer types, such as RB1,
CDKN2A, CDKN2B (regulating cell cycle), DAPK1 (involved in apoptotic
signaling), and cell adhesion molecules (CDH1, CDH13). Hypermethylated
promoters act by recruiting transcriptional repressors and histone-modifying
enzymes, while inhibiting the binding of transcription factors to DNA.
In contrast, oncogenes are often associated with hypomethylation of cancer-
specific CpG islands. However, in cancer cells genome-wide hypomethylation is
observed, that can be responsible for chromosomal instability, derepression of
imprinted genes and retrotransposons, as well as aberrant gene expression[9].

1.4 Pathway enrichment analysis

To study the impact of DNA methylation on gene expression, high-throughput
experiments are performed, such as RNA sequencing and DNA methylation
arrays. They return a value for each single gene or CpG island that is used
to quantify its level of expression or methylation. Generally, an RNAseq ex-
periment quantifies more than 20,000 genes across a large number of samples.
Similarly, Illumina arrays for genome-wide methylation studies can contain ei-
ther 27,000 or 450,000 probes for known CpG islands. Indeed, the challenge
of working with high amounts of data is to analyze them and extract useful
information. When comparing two conditions, we can search for groups of
related genes that are significantly altered, in order to reduce the dimension
of the results and make them more informative: this is the main purpose of a
pathway enrichment analysis.

Di↵erent methods of enrichment analysis have been developed[10]. The first
method for enrichment analysis, the most simple one, is over- representation
analysis: starting from a list of selected di↵erentially expressed genes (DEGs),
it detects as significantly enriched pathways those containing a greater pro-
portion of DEGs than expected by chance. With this approach a pathway is
represented as a list of genes, without any knowledge about the interactions
between them.
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1.4.1 Topological pathway analysis

Indeed, a pathway can be described not only as a group of genes involved in the
same biological theme, but also as a set of genes and the pairwise interactions
between them: it can be represented as a graph with nodes as genes and edges
as their biochemical interactions. The character of these interactions can be
directed, if the presence of a gene is a↵ecting in a specific direction another
gene, or undirected.
With this definition, it is possible to perform topological pathway analysis:
for each component of the pathway, this approach takes into account both its
di↵erential expression and the e↵ect of its dysregulation on interacting genes,
i.e., how the entire pathway would be a↵ected by a specific gene dysregulation.
The final significance of the pathway is corrected by multiple-testing error cor-
rection.
Topological pathway analysis is the most recent generation of enrichment anal-
ysis methods; it allows to highlight the most interesting pathways that are
clearly altered between two conditions by testing simultaneously gene expres-
sion level and pathway structure.

1.4.2 SourceSet

Multiple methods are now available for topological pathway analysis. Source-
Set is one of few methods that is able to distinguish genes that are the source
of perturbation from genes that merely respond to the dysregulation, as the
e↵ect of network propagation[11]. Primary genes detected by SourceSet show
few overlaps with top ranked di↵erentially expressed genes, suggesting that a
slightly altered gene can deeply a↵ect several downstream genes and be the
cause of perturbation. This novel approach is fundamental to prioritize the
e↵ect of biological perturbations in network medicine, allowing a better under-
standing of drug treatments and diseases. It works comparing gene profiles in
control and in perturbed conditions and detects di↵erences in both the mean
and the covariance parameters. Briefly, this is the workflow of the algorithm.

• Pathways are treated as graphs and they are converted into decomposable
undirected graphs.

• After decomposition each graph is made of cliques and separators (Figure
4).

• Marginal test statistics are calculated for each clique and separator. Con-
ditional test statistics is also calculated as the di↵erence between clique
and separator marginal test statistics. Both equality of mean and co-
variance parameters are tested for each component of the clique (gene)
by likelihood ratio test. Multiple testing error correction is applied to
estimate the significance of the clique.
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• The union of cliques found to be significantly dysregulated is computed:
this is the secondary set.

• The source set is the intersection of cliques found dysregulated across
decompositions.

Figure 4: Example of cliques and separators from the authors paper[11].

1.5 Aim of the project

Gynecological tumors have been widely analyzed separately, but few studies
exist that aim to investigate their common molecular features. One of the
most complete studies that compared gynecologic tumors at molecular level
was performed by TCGA Research Network[12]. They were able to detect gy-
necologic tumor-specific molecular features that di↵er in frequency compared
to 28 non-gynecologic TCGA tumor types, including amplifications, deletions
and mutations; with these results the authors were able to identify prognostic
molecular subtypes that could be interesting also as therapeutic targets in a
cross-cancer approach.

Focusing on the two signatures illustrated above, in this study we decided to
investigate and characterize gynecological cancer patients with di↵erent sig-
nature activity, in order to find which pathways are dysregulated as a result
of a specific pattern of chromosomal instability, and thus shed light to the
molecular commonalities of gynecological cancers.
For this purpose, a pathway analysis is performed, comparing molecular pro-
files of gynecologic tumor patients exhibiting high activity of a signature with
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patients where the same signature is consistently inactivated. To have a more
global overview of the di↵erent profiles of patients, the analysis is performed
at both expression and methylation level. Indeed, expression levels of a gene
are often regulated by methylation, frequently in the promoter region. The
analysis will reveal more in detail which mechanisms are involved in the ae-
tiology and e↵ects of the di↵erent signatures, by returning a↵ected pathways
and genes. Results will also allow the recognition of similarities and di↵er-
ences between the five tumors and the e↵ects of methylation perturbations on
expression profiles (Figure 5).
These findings would be useful for prognostic and therapeutic purpose: it
is possible to associate a specific signature to a better or worse clinical out-
come and resistance to specific treatment. Moreover, based on the signature
activation, specific treatments could be developed for single cancer and also
cross-cancer therapies, considering the similarities between the five gynecologic
cancers.

Figure 5: Workflow of the analysis.
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2 Materials and Methods

2.1 Data download

Experimental assays for gene expression and methylation were retrieved from
TCGA data portal by curatedTCGAData R package (2.0.1 data version). Dis-
ease codes for gynecologic tumor types were BRCA, OV, UCEC, UCS, CESC.
Selected data types were RNASeq2GeneNorm and Methyl*. Male BRCA pa-
tients were discarded.

RNAseq data contain upper-quartile normalized RSEM TPM counts (UCEC
has two RNAseq assays available, obtained from di↵erent Illumina sequencing
platform: the Genome Analyzer data was preferred, since it contained more
samples).

Methylation data are composed of �-values obtained from Illumina BeadChip
arrays, where DNA fragments are applied after bisulfite conversion. DNA
molecules hybridize with CpG locus-specific oligomers, linked to two di↵erent
bead types, one for the methylated and one for the unmethylated state; single-
base extension using a labeled nucleotide follows the hybridization. Beta-values
are continuous variables spanning from 0 to 1, calculated as the ratio of the flu-
orescence intensity of the methylated bead type with respect to the combined
locus intensity1. For some cancer types assays from Illumina HumanMethyla-
tion 27k and Infinium HumanMethylation 450k BeadChip were both available:
450k assay was preferred (only for OV 27k assay was used since it contained
more samples).

The matrix defining the levels of each signature across patients was down-
loaded from the GitHub page of the authors of the study on chromosomal
instability[8]. The table of the metadata to map each patient to a specific
cancer type was also downloaded from the page.

2.2 Data preparation

2.2.1 RNAseq

RNAseq counts were log-transformed. Genes that were not expressed in more
than 50% samples were discarded. Gene names were converted into Entrez
IDs.

1Comprehensive DNA Methylation Analysis on the Illuminar Infiniumr Assay Plat-
form, Contributed by Daniel J. Weisenberger, David Van Den Berg, Fei Pan, Benjamin P.
Berman, and Peter W. Laird, University of Southern California, Keck School of Medicine,
USC/Norris Comprehensive Cancer Center, Los Angeles, CA 90033
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2.2.2 Methylation beta-values

Mean �-value is calculated from CpG islands falling in the same gene (infor-
mation retrieved from metadata). �-values were transformed into quantiles of
standard normal distribution. Genes with NA values across all samples were
discarded. Gene symbols were converted to Entrez IDs. The remaining NA
values were imputed by K-nearest neighbors algorithm (impute.knn function
from impute R package).

2.2.3 Pathways

Lists of pathways from Reactome and KEGG databases were retrieved by
graphite R package. Gene names were converted into Entrez IDs. Pathways
topology was built with pathwayGraph function, in order to obtain graphNEL
objects. Graphs with more than 300 or less than 5 nodes were discarded.
The final number of pathways on which the analysis was performed is 306 for
KEGG and 1712 for Reactome.

2.2.4 Clustering

Patients for each tumor were clustered according to the level of each signa-
ture activation preferentially by mclust R package with a Gaussian mixture
modeling approach. When multiple groups were detected, groups with high
signature or low signature were joined together, in order to obtain two groups.
For BRCA, UCEC, UCS CX3 it was not possible to identify two groups of
patients with mclust : in this case hierarchical clustering was used.

2.3 SourceSet analysis

SourceSet analysis was run with permute and shrink parameters set to TRUE
and seed=111 (version 0.1.5). Input data were the list of graphs, the expression
or methylation matrix with genes as columns and samples as rows and a vector
defining the lengths of each group of patients.
The analysis is run for each tumor and each signature at both expression and
methylation level for a total of 20 analyses (Table 2).
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Table 2: SourceSet analyses with size for each class of patients.

2.4 Processing of the results

Results from each analysis were first processed independently. The output
of SourceSet is a list of lists, one for each input graph. For each pathway a
primary and a secondary set of genes are detected. Primary and secondary
genes were extracted from each graph and merged together in order to have
two sets of genes for each analysis. An enrichment analysis on Gene Ontology
is performed for both primary and secondary genes with the ClusterProfiler

package. For each input graph and for each node of input graphs, parameters
were calculated with the infoSource function from SourceSet.

Moreover, since SourceSet was not able to distinguish whether a gene was acti-
vated or inactivated is a specific class of patients, an additional parameter was
calculated for each gene, i.e., the logFC, comparing expression or methylation
level of the gene from patients with high CX1 against patients with high CX3,
or vice versa (based on which signature was considered for clustering patients).
To avoid overlappings in the two groups of patients, only the third quartile
of patients was used to calculate the fold-change. The same measure is also
included in graphs and GO enrichment results, where it is calculated as the
median logFC of primary genes belonging to the pathway.
Plots were generated using ggplot2 and UpSetR packages.
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2.4.1 Example of results

Using the infoSource function, several variables are calculated for each graph
and node of the graphs. The logFC variable is calculated separately and ap-
pended to the tables.

(a) Top 7 Reactome pathways, sorted by primary.impact and absolute value of
logFC.

(b) Top 7 dysregulated genes from Reactome pathways, sorted by relevance and
absolute value of logFC.

Table 3: Example of the output generated by infoSource function on the results
for the analysis on signature 1 of OV expression data, with the addition of the
logFC column.

Variables calculated for each graph (Table 3a) include:

• number of primary and secondary genes detected for the pathway
(n.primary, n.secondary),

• total number of nodes composing the graph (n.graph),

• number of connected components of the graph (n.cluster),

• proportion of primary genes with respect to the total size of the graph
(primary.impact),

• proportion of all dysregulated genes over the total graph size
(total.impact),

• adjusted p-value for the hypothesis of equality of the two distributions
associated to the graph (adj.pvalue),
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• median logFC of primary genes belonging to the pathway, calculated
between patients with high CX1 and patients with high CX3 (logFC).

Variables calculated for each node of the graph (Table 3b) include:

• number of graphs whose primary set contains the gene (n.primary),

• number of graphs whose secondary set contains the gene (n.secondary),

• number of graphs containing the gene (n.graph),

• proportion of graphs containing the gene over the total number of input
graphs (specificity),

• percentage of graphs whose source set contains the gene over the number
of graphs in which the gene appears (primary.impact),

• percentage of graphs in which the gene was found dysregulated with re-
spect to the number of input graphs containing the gene (total.impact),

• combination of p-values from all graphs containing the variable, ranging
from 0 to +1, where higher values indicate higher significance (score),

• percentage of input graphs that contain the gene in their source set, with
respect to the total number of input graphs (relevance),

• di↵erential level of expression between patients with high CX1 and pa-
tients with high CX3 (logFC).

Significant pathways were selected using a threshold of adjusted p-value (by
default set to 0.05); when the number of available samples was too small,
the threshold was set on higher values in order to keep a reasonable amount of
significant pathways. Selected pathways were sorted according to their primary
impact and absolute logFC. Pathways with a primary impact equal to 0 were
discarded.
Genes were separated into primary and secondary genes and sorted according
to their relevance or total impact, respectively. Genes with the same relevance
or total impact were further sorted according to their absolute value of logFC.
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3 Results

The amount of pathways detected as significant (Tables 4a, 4b) and the size of
the primary and secondary set of genes (Tables 5a, 5b) may vary a lot among
analyses, mainly due to the di↵erent availability of samples across tumors,
a↵ecting the sensitivity of the algorithm to smaller perturbations. Breast
cancer with the highest number of samples (expression = 673, methylation =
458) shows the largest amount of primarily dysregulated genes and significant
pathways detected, for both KEGG and Reactome pathways, while UCS with
the least amount of samples (54) is most frequently the tumor with the smallest
estimated source set and the least amount of significant pathways.

(a) Significant Reactome pathways.

(b) Significant KEGG pathways.

Table 4: Number of significant pathways detected in each analysis. The thresh-
old of adjusted p-value used to filter the results for significant pathways is
specified inside parentheses (when not present it was the default 0.05).

(a) Primary and secondary genes detected for Reactome pathways.
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(b) Primary and secondary genes detected for KEGG pathways.

Table 5: Number of primary and secondary genes detected for each analysis.

The peculiarity of Reactome database is the hierarchical organization: di↵erent
pathways represent the same process with more or less details, going from very
specific and small pathways to very large and general ones. Indeed, they are
more focused on the specific portions of a biological process, even taking into
account the action of specific molecules on them and how their dysregulations
are implicated in specific diseases. On the other side, KEGG pathways are way
more general, depicting complex biological processes in a single pathway. This
di↵erent approach in building pathways leads to an average number of nodes
that di↵ers between the two pathway databases, with KEGG pathways having
a higher average number of nodes (⇠79) compared to Reactome pathways
(⇠44).
For simplicity, the plots representing the results in the next sections will be
relative to SourceSet analyses on Reactome pathways. Results relative to
KEGG pathways are included in the Appendix section.

3.1 Expression

3.1.1 Pathways

Results obtained from expression data are compared considering only a subset
of the large amount of significant pathways detected by the software, consist-
ing of the top 10 pathways for primary impact and absolute value of logFC for
each analysis (Figure 6).

Pathways related to chromosome segregation including centrosome matura-
tion, recruitment of NuMA to mitotic centrosomes anchoring of the basal
body to the plasma membrane, deposition of CENPA containing nucleosomes
at the centromere and condensation of prometaphase chromosomes tend to
be inactivated in CX1. Moreover, the inhibition of the anaphase-promoting
complex (APC/C) by mitotic spindle checkpoint components is a↵ected in
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Figure 6: Heatmap showing the top 10 Reactome pathways for primary impact
and absolute value of logFC detected across analyses at expression level. The
color of cells corresponds to the median logFC for the pathway, while the
number inside cells is the primary impact. Grey cells correspond to pathways
that were not detected as significant or having a primary impact equal to 0.

CX1, suggesting the ability of cells to overcome incorrect spindle/kinetochore
attachments[13]. APC/C inhibition is connected to the loss of its phospho-
rylation, required for its activation, and the inability to degrade its activator
Cdh1 in G0 and G1 and cell cycle proteins prior to satisfaction of the cell
cycle checkpoint. Genes involved in phosphorylation of the APC/C inhibitor
Emi1, required for its degradation, are downregulated in BRCA and OV at
CX1. Emi1 overexpression is a strong marker for CIN in solid tumors and it
is frequently associated with aneuploidy[14].
E2F enabled inhibition of pre-replication complex formation is also negatively
regulated in CX1 (BRCA, OV), as well as TP53 regulation of transcription of
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genes involved in G1 cell cycle arrest (BRCA, UCEC, OV).
Pathways related to DNA replication initiation are also inactivated in CX1
(BRCA, UCEC), as well as CDC6 association with ORC origin complex and
unwinding of DNA (BRCA, UCEC, OV).
Immune system response appears to be more active in CX3 with interleukin 36
pathway, TRAF6 mediated activation of interferon regulatory factor 7 (IRF7)
(BRCA, UCEC) and cross presentation of soluble exogenous antigens (BRCA,
UCEC, CESC) significantly altered. Release of apoptotic factors from the mi-
tochondria is also present in CX3 (BRCA, OV).
The metabolism of high CX3 patients appears to be predominantly based on
oxidative phosphorylation, as demonstrated by the upregulation of genes in-
volved in respiratory electron transport and complex I biogenesis in CX3 for
BRCA, UCEC and OV.
Interestingly, nuclear pore complex (NPC) disassembly and several pathways
involved in protein import and export from nucleus, including TPR, are ac-
tive in CX3 (BRCA, OV, CESC). mRNA tra�cking between nucleus and
cytoplasm is often aberrant in cancer, and this may result from chromo-
somal translocations a↵ecting several nucleoporins, e.g. Nup98, TPR and
RANBP2[15]. Pathways involved in RNA processing are also more active in
CX3, e.g., mRNA decay and U12 dependent splicing of minor introns (BRCA,
UCEC, OV), responsible for the correct splicing of several cancer related genes,
including PTEN[16].
Finally, deficiencies of glycosyltrasferases are frequently detected as significant
across analyses.

3.1.2 Genes

The same type of comparison is performed at the level of both primary and
secondary genes detected across analyses at expression level. The heatmap in
Figure 7 shows the top 10 primary genes for relevance and absolute value of
logFC detected for each analysis.

Genes coding for nucleoporins, proteasome components, RNA polymerase II
(L, E, G, H), and the oncogenes SRC and GRB2, tend to be upregulated in
CX3 across tumors, except UCS.
DNA repair genes are also dysregulated, including NEIL3, involved in base-
excision repair, overexpressed in CX3 (BRCA, OV, UCS), and genes partici-
pating in DNA double strand break repair (RAD50 and NBN). Genes involved
in DNA damage sensing (TP53, ATM) are upregulated in CX1 across all tu-
mors (TP53 was not detected as dysregulated in UCS). Genes involved in
autophagy activation (BECN1, UVRAG), are downregulated in BRCA, OV,
UCS in CX3. PIK3R1, believed to function as a tumor suppressor[17], is up-
regulated in CX1 across all tumors, except CESC.
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Lysyl oxidase, LOX, and LOX-like genes, involved in extracellular matrix for-
mation and associated with poor prognosis when overexpressed in gastric can-
cer[18], are also dysregulated.
The most divergent tumor is UCS that is not sharing many genes with other
tumor types. Specific genes that were detected as primary in CX1 analysis are
the peroxidase PXDN (downregulated), the proteoglycan GPC5 (downregu-

Figure 7: Heatmap showing the top 10 primary genes from Reactome pathways
for relevance and logFC detected across analyses at expression level. The color
of each cell corresponds to the logFC for the gene, while the number inside
cells is the relevance. Grey cells correspond to genes that were not detected
as primary in any pathway (relevance = 0).
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lated) and the oxidoreductase NQO1 (upregulated). These genes were found
also in UCEC with a similar behavior. In CX3 analysis genes with the highest
relevance are involved in telomere function (TERF1/2, TINF2, POT1, ACD).

KEGG results (Appendix Figure 2) revealed tumor suppressors CDKN1A and
RB1, apoptotic protein CASP9 are upregulated in CX1, while members of the
E2F family of transcription factors are upregulated in CX3. Among the top
10 genes for relevance detected across analyses, 7 genes were found in both
KEGG and Reactome analyses (NQO1, PIK3R1, TP53, MAPK1, MAPK3,
SRC, PRKACA).

Figure 8: Heatmap showing a selection of significant GO terms enriched on pri-
mary genes detected across expression analyses. Each cell is colored according
to the value of adjusted p-value. Inside each cell the median logFC of primary
genes belonging to the gene set is depicted, colored in red or blue when it is
positive or negative respectively. Dark grey cells represent non-significant GO
terms.

Starting from the set of primary genes detected by SourceSet, an enrichment
analysis on Gene Ontology is performed, focusing on biological processes where
dysregulated genes are over-represented. While SourceSet detects a↵ected
pathways considering the e↵ect of altered genes on downstream ones, in a
graph structure, the enrichment analysis on Gene Ontology, instead, estimates
the significance of a biological process based on how many genes from a given
list of dysregulated genes belong to that process, without considering their
level of dysregulation or their reciprocal interactions.
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A large number of significant results were obtained from the enrichment anal-
ysis. The heatmap in Figure 8 shows some of the most interesting GO terms
among the significantly enriched ones across analyses. They were selected
based on interesting genes and pathways that were observed among Source-

Set results. CX1 analyses show negative logFCs for several processes involved
in chromosome segregation, including the metaphase/anaphase transition and
mitotic spindle organization. DNA damage checkpoint at G2 is frequently in-
activated in CX1 analyses.
Response to growth hormone is inactivated in CX3 (BRCA, CESC, UCS).
DNA replication appears to be active in CX3 compared to signature 1. Res-
piratory electron transport is also active, as well as nuclear pore complex
organization. Unexpectedly, homologous recombination is not inactivated in
CX3; indeed, considering for example ovarian cancer results, several genes in-
volved in homology-directed DNA repair are upregulated in CX3, with few
exceptions, including BRCA1 (logFC = -0.26) and BARD1 (logFC = -0.11).
Moreover, Reactome pathways relative to defective homologous recombination
due to loss of BRCA1 and PALB2 functions are significant in CX3 analysis
(primary.impact = 0.78).

Looking at the heatmap in Figure 9a, showing the top 10 secondary genes
detected for each analysis, results appear to be more variable across tumors,
compared to primary genes. Among the genes that were found dysregulated,
there are immune response related genes (SELE, IL7, BTN1A1), several genes
coding for ion channels (ANO3, CLCN4/5, P2RX2, SCN1A, KCNMB2), fatty
acid metabolism (HAO2, ALOXE3, ALOX12B), transcription factors control-
ling cell proliferation and di↵erentiation (FOXA1, ANKRD1, ARID3A), genes
involved in keratinization (SPRR2D, KRT13) and ECM structure (ITIH2,
SPOCK3), and, finally, PTTG1, that prevents separation of sister chromatid
and is degraded by APC/C. Performing a GO enrichment analysis on sec-
ondary genes, it is possible to have a general overview of their main functions.
Specific modules of enriched GO terms can be identified in Figure 9b (showing
the top 10 most significant biological processes detected for each analysis), in-
cluding calcium and cAMP signaling, ion transmembrane transport, regulation
of tyrosine kinase activity, glycerophospholipid biosynthetic process, nucleotide
metabolic process and RNA processing.
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(a) Heatmap showing the top 10 secondary genes for total impact and absolute
value of logFC detected across expression analyses. Cells are colored according to
the logFC of the gene, inside each cell the total impact is depicted.
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(b) Heatmap showing the top 10 GO terms enriched on secondary genes. Cells are
colored according to the adjusted p-value.

Figure 9: Heatmaps relative to secondary genes.

3.1.3 Comparison of significant pathways detected across tumors

While the previous heatmaps were relative only to the top 10 pathways de-
tected for each analysis, it is also worth looking at the global results. Upset
plots in Figures 10a, 10b show the intersections of significant Reactome path-
ways across each combination of tumors. BRCA, UCEC and OV are sharing
the greatest amount of pathways in both CX1 and CX3 analyses (253, 86).
CESC and UCS appear to be the most divergent tumors, with very few or
zero significant pathways detected. Both of them are sharing more pathways
with UCEC in CX1 analyses and more pathways with OV in CX3 analyses.
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However, these findings may be related to the unbalancement on the size of
the two groups of patients that have been compared, resulting in a decreased
e�cacy of the software on estimating the source set, as well as to the di↵erent
amount of available samples across di↵erent tumors.

(a) Results relative to analyses on CX1.

(b) Results relative to analyses on CX3.

Figure 10: Intersection sizes of Reactome pathways detected as significant
across each combination of tumors at expression level.
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3.2 Methylation

3.2.1 Pathways

Figure 11: Heatmap showing the top 10 Reactome pathways for primary im-
pact and absolute value of logFC detected across analyses at methylation level.
The color of cells corresponds to the median logFC for the pathway, while the
number inside cells is the primary impact. Grey cells correspond to pathways
that were not detected as significant or having a primary impact equal to 0.

At the level of methylation (Figure 11), the classical antibody mediated ac-
tivation of complement shows positive logFCs across cancer types in CX1.
Several pathways involved in immune system response are dysregulated be-
sides those relative to complement activation, including the alpha defensins
(BRCA, UCEC and OV), the action of RUNX1 on the transcription of genes
involved in BCR signaling and on the development of regulatory T lympho-
cytes (BRCA, UCEC, OV, CESC), the activation of TAK1 complex by IRAK2
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(UCEC, OV).
mRNA editing, especially the C to U conversion, has a high primary impact in
OV CX1. mRNA editing involving the dysregulation of APOBEC enzymes is
frequently observed in cancer; these enzymes are also able to edit DNA intro-
ducing mutations and they are known to a↵ect immune system response[19].
The peroxisomal metabolism of long chain fatty acids is altered in UCEC
and CESC CX1, where genes belonging to linoleic acid metabolism and beta-
oxidation of very long chain fatty acids tend to be hypermethylated. Cell
adhesion is a↵ected at the level of Nectins and Nectin-like dimerization in ad-
herens junctions (negative logFCs in BRCA, UCEC CX1) and gap junctions
(BRCA, UCS CX1).
Some pathways that were found a↵ected starting from expression data were
detected also by methylation analyses, such as PI3K activation of NTRK3
(positive logFCs in BRCA, UCEC and OV CX1), several pathways involved in
glycosylation diseases, telomere extension by telomerase, nuclear pore complex
disassembly and phosphorylation of Emi1.

3.2.2 Genes

Among genes that were found dysregulated both at the level of expression and
methylation (Figure 12) were found proteasome components (UBC, UBA52,
UBB), NPC components, telomere functioning genes, PI3KR1, NEIL3, GRB2.
New genes that were not already detected in the previous analyses, include
components of the transcriptional corepressor SMRT (TBL1X, HDAC3) and
immune response (TRAF6, IRAK2, CR1), the DNA polymerase � cofactor
PCNA and microtubule associated EML4 (essential for mitotic spindle assem-
bly and kinetochore attachment[20]).

Focusing on genes with the highest logFCs, interesting genes are the RNA
binding protein KHSRP (CESC cx1 = 1.15, BRCA cx1 = 1.84), promoting
metastasis and cell growth in non-small cell lung cancer[21], the hydroxylase
involved in the formation of steroid hormones CYP21A2 (BRCA cx1 = 3.62),
the cell proliferation-promoting genes NEK6 (BRCA cx1 = 3.28) and NEK7
(BRCA cx1 = -4.07), the IL-1-receptor-associated kinase IRAK2 (UCEC cx3
= -1.77), fibrinogen chains FGG (OV cx3 = -4.80) and FGA (OV cx3 = 2.50),
growth factor FGF1 (OV cx3 = 4.33), BDH2 (UCEC cx1 = 3.03), involved
in ketone bodies metabolism, genes involved in peroxisomal beta-oxidation of
fatty acids ABCD1 (CESC cx1 = 1.86) and ACOX1 (BRCA cx1 = -1.04).
Comparing the top 10 genes detected across tumors between Reactome and
KEGG (Appendix Figure 8), 9 genes overlap: GABBR1, GABBR2, GNB5,
GNB3, MAPK1, MAPK3, PIK3CA, PIK3R1, ADCY1.
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Figure 12: Heatmap showing the top 10 primary genes from Reactome path-
ways for relevance and logFC detected across analyses at methylation level.
The color of each cell corresponds to the logFC for the gene, while the num-
ber inside cells is the relevance. Grey cells correspond to genes that were not
detected as primary in any pathway (relevance = 0).
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Figure 13: Heatmap showing a selection of significant GO terms enriched
on primary genes detected across methylation analyses. Each cell is colored
according to the value of adjusted p-value. Inside each cell the median logFC
of primary genes belonging to the gene set is depicted, colored in red or blue
when it is positive or negative respectively. Dark grey cells represent non-
significant GO terms.

The heatmap (Figure 13) shows the results for the enrichment analysis on pri-
mary genes detected by SourceSet from methylation data for the same selec-
tion of GO biological processes that was considered for expression data. Many
biological processes are still significant at the level of methylation; however
values of logFC are close to zero for the majority of the pathways. Inter-
estingly, complement activation and huomral immune response mediated by
immunoglobulin have slightly positive logFC across tumors for signature 1,
with the exception of UCEC.

Secondary genes detected across methylation analyses (Figures 14a, 14b) are
less overlapping between tumor types compared to primary genes, confirming
the higher variability of these genes that was previously observed at the level
of expression. The most represented processes include ion channels (KCNN4,
KCNQ5, GABRA4), immune system response (LAG3, FCGR3B, FCN1), mei-
otic chromosome organization (SYCP2, REC8, STAG3), tumor metabolism
(CKMT1A/B, THRSP, LDHA, LDHB, LDHC), cell adhesion (RHOJ, AN-
TXR1, TAX1BP3).
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(a) Heatmap showing top 10 secondary genes for total impact and absolute value
of logFC detected across methylation analyses. Cells are colored according to the
logFC of the gene, inside each cell the total impact is depicted.
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(b) Heatmap showing the top 10 GO terms enriched on secondary genes. Cells are
colored according to the adjusted p-value.

Figure 14: Heatmaps relative to secondary genes.
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3.2.3 Comparison of significant pathways detected across tumors

(a) Results relative to analyses on CX1.

(b) Results relative to analyses on CX3.

Figure 15: Intersection sizes of Reactome pathways detected as significant
across each combination of tumors at methylation level.

At the level of methylation, the number of significant pathways detected by
SourceSet (Figures 15a, 15b) is slightly lower compared to analyses on ex-
pression data. Again, for signature 1 BRCA and UCEC are the most similar
(1260), and they also have many pathways in common with OV (159). The
amount of significant pathways detected for CESC and UCS is limited or null,
with also UCEC having only one significant pathway in CX3 analysis.
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3.3 Expression VS Methylation: anticorrelated genes

Among genes that were detected from both expression and methylation data
(Table 6), a proportion (45% - 50%) show anticorrelated expression and methy-
lation profiles, with opposite signs of logFC; however, for many of these genes
the di↵erential level of expression or methylation was very small. A threshold
of 0.1 is applied to select genes with a reasonably high absolute value of logFC
for both omics.

Table 6: Number of primary genes detected in expression and methylation
analyses on Reactome, the amount of genes that were found in both omics and
the number of anticorrelated genes which show opposite logFC signs between
expression and methylation.

3.3.1 Anticorrelated genes in ovarian cancer

Considering the results relative to ovarian cancer, tumor suppressors TP73
and TP63 are hypomethylated genes with increased expression in patients
with high CX1 levels (Figure 16a). NTF3, CD80 and POLA1 show opposite
behavior, being hypermethylated and underexpressed in patients bearing high
levels of signature 1.
In CX3 analysis (Figure 16b), among genes whose anticorrelated expression
and methylation levels have been already associated with cancer there are
CFTR[22], PTK6[23], RHOD[24], FES[25], ANK1[26], LEFTY2[27]. Comple-
ment system components frequently show opposite logFC (C1QA, C1QB, C3,
C1R). The oncogene FURIN was also found in CESC analysis for signature 3,
with opposite behavior.

Interestingly, the already mentioned IRAK2 and the oncogene ERBB2 were
among the anticorrelated genes in UCEC. Additional plots relative to the other
tumors are available in Appendix.
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(a) Results relative to CX1.

(b) Results relative to CX3.

Figure 16: Heatmaps showing anticorrelated primary genes with logFC > 0.1
or logFC < -0.1 for both expression and methylation, relative to ovarian cancer
analyses. Cells are colored according to the logFC, that is also indicated inside.
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4 Discussion

The topological pathway analysis performed by SourceSet was able to identify
and confirm the main biological mechanisms that are responsible for a specific
pattern of chromosomal instability. The cause of the observed perturbation
is captured on the source set of analyzed pathways, with coherent results be-
tween KEGG and Reactome analyses.
Primary genes, responsible for the perturbation associated with a specific sig-
nature, are often more conserved across tumor types, reflecting the presence
of a specific aetiology for the signature. Primary genes tend to have smaller
values of logFC compared to secondary genes and often the top primary genes
for logFC do not correspond to the top genes for relevance. Indeed, even a
small perturbation on these genes is able to induce massive dysregulations on
downstream genes through network propagation. Moreover, secondary genes
present higher variability, being involved in a large number of di↵erent pro-
cesses, and they are not homogeneously distributed across analyses, reflecting
the tissue-specificity of expression profiles.

Comparing SourceSet results for expression and methylation data, methyla-
tion results are generally more variable across di↵erent tumor types. logFC
values are frequently close to zero, with few exceptions of very high values,
indicating that the changes in methylation levels across analyses tend to be
mild, with rare cases of strong modifications. Several genes and pathways were
found a↵ected in both omics, especially related to nuclear pore complex or-
ganization, telomere function, proteasome components, confirming the role of
the methylation status of a gene in the regulation of its expression in cancer.
However, while expression profiles are indeed a↵ected by genomic instability,
it is still unclear and worthy of further investigation whether the alteration of
methylation profiles develops as a consequence of genomic instability or it is
contributing to the onset of CIN.

Results obtained from both expression and methylation data confirm the close-
ness of BRCA, UCEC and OV molecular profiles, compared to CESC and
UCS. Although the ability of the software in identifying the source set when
the number of samples is limited can be compromised, these findings may also
have a biological meaning. Indeed, CESC and UCS have important features
that di↵erentiate them from other tumor types: cervical cancer predominantly
originates from viral infection by HPV and uterine carcinosarcoma is not a
proper carcinoma like other tumors, since it contains an important mesenchy-
mal component.

The two signatures of CIN are clearly generated by di↵erent dysregulated
mechanisms that SourceSet was able to capture.
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Signature 1 is characterized by defects during mitosis, especially at the spindle
assembly checkpoint, when, even in the presence of an incorrect attachment
between kinetochore and microtubules, the cell is able to divide without en-
tering apoptosis. This is a process that involves the APC/C complex in the
metaphase/anaphase transition. APC/C activated by Cdc20 is responsible
for securin ubiquitination leading to its degradation and subsequent chromo-
some separation. The activation of the spindle assembly checkpoint recruits
protein complexes that inhibit APC/C, while also decreasing the cytoplasmic
pool of APC/C-Cdc20[13]. In patients bearing high levels of CX1, APC/C is
not properly inhibited to avoid entering anaphase with incorrect chromosome
segregation, resulting in the observed pattern of CIN, i.e., aneuploidy. The
incorrect attachment of microtubules to the kinetochore may occur by altered
deposition of CENPA nucleosomes at centromeres, essential for kinetochore
attachment[28], and defects in the organization of centrosomes, that are re-
sponsible for spindle assembly through microtubule enucleation[29].

Patients with high signature 3 are instead characterized by long-sized single-
copy changes, suggesting impaired homologous recombination. Unexpectedly,
genes or pathways involved in this type of DNA repair mechanism are not
observed among the dysregulated ones with high relevance or primary im-
pact; moreover, they are often overexpressed in this signature. Indeed, the
aetiology of CX3 also involves replication stress, represented by stalled repli-
cation forks, that, being unstable, may generate single or double strand breaks
if not properly protected. Defects involving DNA replication are normally
detected in S phase through ATM/ATR that will activate DNA repair path-
ways, preferentially homologous recombination, and, thus, genes responsible
for this DNA repair pathway are upregulated in this signature. However, ho-
mologous recombination may be impaired due to loss-of-function mutations on
essential components for this pathway, e.g., BRCA1/2, RAD51C, PALB2[30].
DNA lesions, thus, must be repaired with alternative pathways, such as non-
homologous end joining and theta-mediated end joining, which are error-prone
and contribute to genomic instability. Replication stress in CX3 appears to
derive from unscheduled DNA replication, generated when the timing of ori-
gin activation is altered, e.g., due to expression of an oncogene; indeed, DNA
replication initiation mediated by CDC6 is upregulated in CX3. CDC6 over-
expression is frequently responsible for replication stress and is associated with
double strand breaks and genomic instability in cancer[31]. As a result, por-
tions of DNA may be replicated more than once and the presence of multiple
replication forks increases the risk of collisions and stalling, which may also
occur in case of DNA damage. The presence of high levels of DNA replication
suggests increased proliferation rates for tumoral cells bearing this signature,
with higher demand of energy and dNTPs[32].
Finally, the two signatures also di↵erentiate for immune response and energy
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metabolism: signature 3 shows increased energy production by oxidative phos-
phorylation and higher immune response, whose related genes are frequently
regulated by methylation levels.

In future studies, it would be interesting to extend the analysis by SourceSet

to other signatures of chromosomal instability that are active in gynecolog-
ical tumors. For example, signature 2 and 5, also associated with impaired
homologous recombination, can be studied to determine how they di↵er from
each other and from signature 3. Signature 4 and signature 10 are also slightly
active, caused by deregulation of PI3K-AKT pathway and impaired NHEJ re-
spectively. The same analysis can be extended to other tumors in a pan-cancer
study, in order to better understand the role of these signatures in cancer, but
also to further dissect the molecular characteristics of gynecological cancers
with respect to non-gynecological ones. Finally, other omics can be analyzed,
e.g., proteomics and CNV, to better characterize tumors and the e↵ects of
di↵erent signatures on them.
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A Appendix

A.1 KEGG results

A.1.1 Expression

Figure 1: Heatmap showing the top 10 KEGG pathways for primary impact
and absolute value of logFC detected across analyses at expression level. The
color of cells corresponds to the median logFC for the pathway, while the
number inside cells is the primary impact. Grey cells correspond to pathways
that were not detected as significant or having a primary impact equal to 0.

48



Figure 2: Heatmap showing the top 10 primary genes from KEGG pathways
for relevance and logFC detected across analyses at expression level. The color
of each cell corresponds to the logFC for the gene, while the number inside
cells is the relevance. Grey cells correspond to genes that were not detected
as primary in any pathway (relevance = 0).
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Figure 3: Heatmap showing a selection of significant GO terms enriched on pri-
mary genes detected across expression analyses. Each cell is colored according
to the value of adjusted p-value. Inside each cell the median logFC of primary
genes belonging to the gene set is depicted, colored in red or blue when it is
positive or negative respectively. Dark grey cells represent non-significant GO
terms.
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Figure 4: Heatmap showing the top 10 secondary genes for total impact and
absolute value of logFC detected across expression analyses. Cells are colored
according to the logFC of the gene, inside each cell the total impact is depicted.
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Figure 5: Heatmap showing the top 10 GO terms enriched on secondary genes.
Cells are colored according to the adjusted p-value.

52



(a) Intersection sizes of KEGG pathways detected as significant across each combi-
nation of tumors at expression level for analyses on CX1.

(b) Intersection sizes of KEGG pathways detected as significant across each combi-
nation of tumors at expression level for analyses on CX3.

Figure 6
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A.1.2 Methylation

Figure 7: Heatmap showing the top 10 KEGG pathways for primary impact
and absolute value of logFC detected across analyses at methylation level.
The color of cells corresponds to the median logFC for the pathway, while the
number inside cells is the primary impact. Grey cells correspond to pathways
that were not detected as significant or having a primary impact equal to 0.
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Figure 8: Heatmap showing the top 10 primary genes from KEGG pathways
for relevance and logFC detected across analyses at methylation level. The
color of each cell corresponds to the logFC for the gene, while the number
inside cells is the relevance. Grey cells correspond to genes that were not
detected as primary in any pathway (relevance = 0).
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Figure 9: Heatmap showing a selection of significant GO terms enriched on
primary genes detected across methylation analyses. Each cell is colored ac-
cording to the value of adjusted p-value. Inside each cell the median logFC of
primary genes belonging to the gene set is depicted, colored in red or blue when
it is positive or negative respectively. Dark grey cells represent non-significant
GO terms.

56



Figure 10: Heatmap showing the top 10 secondary genes for total impact and
absolute value of logFC detected across methylation analyses. Cells are colored
according to the logFC of the gene, inside each cell the total impact is depicted.
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Figure 11: Heatmap showing the top 10 GO terms enriched on secondary
genes. Cells are colored according to the adjusted p-value.
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(a) Intersection sizes of KEGG pathways detected as significant across each combi-
nation of tumors at methylation level for analyses on CX1.

(b) Intersection sizes of KEGG pathways detected as significant across each combi-
nation of tumors at methylation level for analyses on CX3.

Figure 12

59



A.1.3 Expression Vs Methylation: anticorrelated genes

Figure 13: Heatmaps showing anticorrelated primary genes with logFC > 1 or
logFC < -1 for both expression and methylation, relative to BRCA analyses on
CX1 and CX3. Cells are colored according to the logFC, that is also indicated
inside.

60



Figure 14: Heatmaps showing anticorrelated primary genes with logFC > 1 or
logFC < -1 for both expression and methylation, relative to UCEC analysis on
CX1. Cells are colored according to the logFC, that is also indicated inside.

Figure 15: Heatmaps showing anticorrelated primary genes with logFC > 0.1
or logFC < -0.1 for both expression and methylation, relative to UCS analysis
on CX1. Cells are colored according to the logFC, that is also indicated inside.
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Figure 16: Heatmaps showing anticorrelated primary genes with logFC > 0.1
or logFC < -0.1 for both expression and methylation, relative to OV analyses
on CX1 and CX3. Cells are colored according to the logFC, that is also
indicated inside.
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Table 1: Number of primary genes detected in expression and methylation
analyses on KEGG, the amount of genes that were found in both omics and
the number of anticorrelated genes which show opposite logFC signs between
expression and methylation.
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A.2 Additional Reactome results

Figure 17: Heatmaps showing anticorrelated primary genes with logFC >
1.5 or logFC < -1.5 for both expression and methylation, relative to BRCA
analyses on CX1 and CX3. Cells are colored according to the logFC, that is
also indicated inside.
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Figure 18: Heatmaps showing anticorrelated primary genes with logFC > 1 or
logFC < -1 for both expression and methylation, relative to UCEC analyses
on CX1. Cells are colored according to the logFC, that is also indicated inside.

Figure 19: Heatmaps showing anticorrelated primary genes with logFC > 0.1
or logFC < -0.1 for both expression and methylation, relative to UCEC anal-
yses on CX3. Cells are colored according to the logFC, that is also indicated
inside.
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Figure 20: Heatmaps showing anticorrelated primary genes with logFC >
0.1 or logFC < -0.1 for both expression and methylation, relative to CESC
analyses on CX1 and CX3. Cells are colored according to the logFC, that is
also indicated inside.
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