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Introduction: In recent years, graph theory seems to be the most appeal-
ing way to model and investigate brain connectivity, yet theoretical mea-
sures do not have a straightforward biological interpretation. Recently, L-
[1-11C]Leucine PET has been used to objectively measure in vivo protein
synthesis in the cortex (Veronese et al., 2012). However, the relationship
between regional protein synthesis and on-going neural dynamics is un-
clear. We use a graph theoretical approach (Bullmore and Sporns, 2009), to
examine the relationship between functional connectivity (measured using
fMRI) and the rate of cerebral protein synthesis (rCPS).
Methods: We used resting state functional MRI (R-fMRI) from 20 healthy
subjects (Age: 23-33) derived from the Human Connectome Project ‘FIX’
pipeline (Van Essen et al., 2013). R-fMRI was filtered in a broad frequency
band between 0.001 and 0.62 Hz. Functional connectivity (FC) matrices
were generated using three different brain anatomical atlases (AAL (Tzourio-
Mazoyer et al., 2002), Craddock 200 (Craddock et al., 2012), and Freesurfer
(Fischl, 2012)). Group level FC matrices were then thresholded in order to
maximize cost-efficiency (Bassett et al., 2009), before calculating six graph
theoretical measures of centrality, using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). Age matched L-[1-11C]Leucine and [18F]FDG
PET templates were derived from previously published studies (Bishu et
al., 2008) and were segmented using the same parcellation schemes as the
MRI data.
Results: Using a filter-bank approach, we firstly demonstrated a significant
relationship between protein turnover (measured using L-[1-11C]Leucine
PET) and graph theoretical measures of functional connectivity. Moreover,
this relationship was significantly modulated by temporal scale, where dy-
namics with a temporal frequency of 0.06-0.12 Hz were producing stronger
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correlations. To assess how these relationships may be driven simply by
enhanced metabolism within hub-regions in the brain, we performed sim-
ilar analysis using [18F]FDG binding patterns. Whilst some relationship
between FDG binding and graph theoretical measures was present, when
included as a covariate in the relationship between L-[1-11C]Leucine and
functional connectivity, there remained a significant relationship between
protein turnover and graph theoretical measures. Results were consistent
for the different atlases.
We also used a sliding window approach to split R-fMRI scans into shorter
consecutive time-series, and found that protein synthesis was inversely cor-
related with the variability of theoretical network measures, suggesting
greater stability in hub regions.
Conclusion: With this work we demonstrate using a combined fMRI and
PET approach that cerebral protein synthesis has a strong relationship to
neural dynamics at the macroscopic scale. The association between the two
appears to be dependent to the temporal scale of fMRI signal, and indepen-
dent from tissue metabolism.
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Chapter 1

Introduction

Neuroimaging is a relatively recent, and rapidly expanding discipline that
plays a relevant role in medicine, psychology and neuroscience in gen-
eral. Neuroimaging aims to unravel the complexities of the central nervous
system, by obtaining and studying images that represent brain structures
or functions (Filler, 2009). Scanning methods include magnetic resonance
imaging (MRI) and positron emission tomography (PET), in the attempt to
quantify structural, functional, and effective qualities of the brain in vivo.
The interest of many research groups all across the world, together with
technological advance, is permitting this discipline to grow and develop
day by day. In particular, in the last two decades, MRI has come to dom-
inate the brain mapping field, thanks to lack of radiation exposure, low
invasiveness and wide availability.
There is however an open debate over which imaging methods and mod-
els provide the most biologically meaningful measures in the human brain.
The most widely used model is based on graph theory, the mathematical
method of representing real world phenomena using nodes/vertices and
edges/links (Rubinov and Sporns, 2010). The basis of graph theory sug-
gests that different complex systems use the same organisational princi-
ples and can therefore be quantified by the same parameters (Bullmore and
Sporns, 2009). Adopting this model, we assume that the brain is one large
entity that is shaped by local and global connectional organisation, such as
the density of connections, clustering, and efficiency (Hagmann et al., 2010).
Graph theory utilises different measures to highlight important qualities
about that network such as the integration, segregation, and small-world
connectivity (Latora and Marchiori, 2001; Sporns and Zwi, 2004).
Neural network analysis has been used to investigate various aspects of
neural dynamics in the brain. It has been used to compare healthy con-
trols to patients with psychological illnesses, such as autism, depression,
and schizophrenia, as well as the effects of ageing in the brain. Studies
suggested that a network disruption, hypo-activity, or hyperactivity could
underpin many of the brain disorders typically seen in clinic and research
(Olde Dubbelink et al., 2013; Cherkassy et al., 2006; Kleberg, 2014). Other
applications of network analysis and graph theory include more theoretical

http://www.sciencedirect.com/science/article/pii/S2213158213000429
http://www.ncbi.nlm.nih.gov/pubmed/17047454
http://www.ncbi.nlm.nih.gov/pubmed/25080567
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and exploratory studies which try to disentangle the relationship between
structural, functional, and cellular level networks, and build potential com-
putational models of neural dynamics at different scales (He et al., 2010;
Deng and Zhang, 2007; Massobrio, Pasquale, and Martinoia, 2015; Monti
et al., 2014).
PET and functional MR (fMRI) studies seem to agree on some basic as-
pects of the brain as a network, such as the existence of central hubs and
small-world properties (Sporns and Zwi, 2004; Massobrio, Pasquale, and
Martinoia, 2015; Deng and Zhang, 2007). However, when considering real
world networks, complications emerge, as those are typically large, com-
plex, and are not uniformly ordered or random (Rubinov and Sporns, 2010).
To explain this, many researchers proposed that those networks must have
scale-free properties (He et al., 2010; Deng and Zhang, 2007; Monti et al.,
2014). The most notable characteristic in a scale-free network is the com-
mon presence of nodes with a degree (number of connections) that greatly
exceeds the average, referred to as “hubs”. Also the scale-free property re-
lates strongly with the network’s robustness to failure. In a scale-free model
the time scale being investigated should demonstrate the same principles
as the other time scales, but this is not always the case, and it is difficult to
distinguish key signal in fMRI due to artefacts and noise. This notion makes
determining functional connectivity particularly difficult as there are many
different time scales occurring simultaneously in a fMRI scan (Monti et al.,
2014). Connection observations could therefore be a sum of the different
time scales occurring. To overcome this, researchers have begun separat-
ing different frequencies during analyses, and have found that different
time scales have significant differences on the connectivity matrices pro-
duces from this analysis (He et al., 2010; Deng and Zhang, 2007; Massobrio,
Pasquale, and Martinoia, 2015; Monti et al., 2014). For example low fre-
quency fluctuations (LFF, <0.1 Hz), which are typically examined in resting
state MRI (R-fMRI), are characterized by synchronous spontaneous fluctu-
ations that occur between lower and higher order regions, forming what is
now termed the “default mode network” (DMN) (Raichle et al., 2001).
Many recent studies have shown that the supposed period of rest that oc-
curs when the brain is not directly stimulated, behaved as a network as well
(Ponce-Alvarez et al., 2015). This led to investigate the resting state of the
brain by imaging during no explicit stimulation. Many studies have found
that underlying psychiatric illnesses and pathologies have differing resting
state networks (RSN) when compared with healthy controls, indicating that
differences occur in this network, possibly affecting the brain’s overall ca-
pacity to function.
The dynamic changes in the RSN led to new theories such as the brain as a
critical system, functioning in a metastable state in order to be able to adapt
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to internal and external stimuli (Rubinov et al., 2011; Monti et al., 2014;
Massobrio, Pasquale, and Martinoia, 2015). Such ability to reorganize and
form new neural connections is referred to as neuroplasticity, a complex yet
fundamental process in brain development.
In order to effectively interact with the external world, the brain must build
rich representations of environmental inputs received from sensory systems
and update these representations ensuing action plans to effectively inter-
act with a dynamic environment. Over 50 years ago, Flexner and colleagues
showed that injections of puromycin, a protein synthesis inhibitor, into the
mouse brain from 1 to 3 days after learning blocked the animal’s ability to
remember the location of a shocked arm in a Y-maze (Flexner, Flexner, and
Stellar, 1963). Thus consolidation of memory requires not only modifica-
tions to existing proteins but also changes in “de novo” protein synthesis.
As introduced before, evidence has been reported that the brain is function-
ally organized as a complex system possessing a critical attractor (Masso-
brio, Pasquale, and Martinoia, 2015; Hesse and Gross, 2014). A system at a
“critical state” is finely balanced in a position between robust ordered and
chaotic dynamics (Rubinov et al., 2011). Such dynamics are attractive as
a model for neural function, as they provide a mechanistic framework for
storage and processing information in a fluid dynamic system. Moreover
the theoretically useful, “critical” dynamics which may underpin memory
and consolidation processes, may in part be supported not just by the inter-
action between regions, but also by localized plasticity. Homeostatic plas-
ticity, alongside a range of other adaptive or plastic approaches, have been
proposed as a potential tuning mechanism for maintaining “critical” neu-
ral dynamics. (Cowan et al., 2013; Magnasco, Piro, and Cecchi, 2009; Meisel
and Gross, 2009). In the brain, these plastic mechanisms may not only in-
duce critical dynamics, but also enhance the emergence of functional con-
nectivity networks. A full understanding of functional connectivity there-
fore must also include not only measures of structure and functional con-
nectivity, but a frank understanding on how protein synthesis in the brain
relates to functional integration.
In this work, we use a graph theoretical approach to examine the relation-
ship between functional connectivity (measured using fMRI) and objective
measures of protein synthesis. The L-[1-11C]Leucine PET method allows
the quantitative determination of local rates of protein synthesis in the cen-
tral nervous system in vivo. This assay uses L-[1-11C]Leucine as a tracer
to measure the rate of incorporation of leucine, one of the nine essential
amino acids, into protein. Leucine is very attractive for this kind of as-
say because its only pathway of degradation is transamination followed
by carboxylation; here the 11C label is quickly transferred to labelled CO2

which is quantitatively minimal and negligibly re-incorporated as heavily
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diluted by the large pool of unlabelled CO2 resulting from carbohydrate
metabolism. Hence brain radioactivity is mostly due to free [11C] leucine
and labelled protein defining a sympathetic measure of “de novo” cerebral
protein synthesis (rCPS) (Smith et al., 2005; Schmidt et al., 2005). Applied
to the human-brain this approach allows the quantification of regional plas-
ticity in the cortex. We start by relating functional connectivity to structure,
demonstrating similar results to those described previously that structural
connectivity is best predictive of function at a slow temporal scale (Park and
Friston, 2013). Next, we explore the hypothesis that large-scale dynamics of
the brain are in part constrained empirically by plasticity at a broad range
of temporal scales using both a temporal filtering and dynamic sliding win-
dow functional connectivity approach. Specifically, we relate graph theo-
retical measures of the brain with rCPS measured using L-[1-11C]Leucine
PET. Furthermore, we compare and contrast these results with a simpler
description of functional processing using Fluorodeoxyglucose ([18F]FDG)
PET as a proxy measure of node synaptic activity, as more than 85% of cere-
bral glucose is used by neurons and mainly by presynaptic axon terminals.
The brain uses myelination to set boundaries to network plasticity; these
boundaries appear to be looser for local networks, that are wired through
high frequency activity, and less so for long-distance hubs that are char-
acterized by transmission on low-frequency band. This phenomenon has
been described as “meta-plasticity”, studied in pre-clinical and computa-
tional models but never before demonstrated in human brain networks.
Hence we have also hypothesized that rCPS would show association to
graph theoretical measures that would vary with the frequency range of
fMRI oscillations with the association being stronger on low-frequency bands.
We also hypothesise that there will be a significant relationship between
functional connectivity network measures and protein synthesis, and that
this relationship will not fade if we take into account metabolism as a con-
founding factor. Plus, by finding any significant difference between tem-
poral filtering bands, our findings could imply that underlying power law
dynamics may potentially influence or govern complex neural dynamics.
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Chapter 2

Materials and Methods

2.1 Datasets

In the present work we considered four different datasets:

• L-[1-11C]Leucine PET as biomarker of cerebral protein synthesis

• [18F]FDG PET as biomarker of glucose metabolism

• Resting-state fMRI to measure functional connectivity

• Diffusion MR to measure structural connectivity

A summary of the datasets is reported in Figure 2.1. All studies obtained in-
formed consent and were approved by their respective medical ethics com-
mittees in line with the Declaration of Helsinki. All participants had no
history of neurological or psychiatric disorders.

2.1.1 Magnetic Resonance

Data were provided by Human Connectome Project (HCP)
(humanconnectome.org/), in particular they come from the 500 Subjects
+ MEG2 release (Mapping, 2014). Between all the available subjects, we
randomly chose 20 of them, 10 male and 10 female, with an average age of
30.05 years old, and standard deviation 3.30. No other constraints except
from age and sex were applied. Both resting-state (R-fMRI) and diffusion
(dMRI) data come from the same set of subjects.
All HCP subjects were scanned on a customized Siemens 3T “Connectome
Skyra” housed at Washington University in St. Louis, using a standard
32-channel Siemens receive head coil and a “body” transmission coil
designed by Siemens specifically for the smaller space available using the
special gradients of the WU-Minn and MGH-UCLA Connectome scanners.
For more information on the customizations made on the hardware, refer
to the HCP documentation (Mapping, 2014).

humanconnectome.org/
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FIGURE 2.1: Overview of the datasets used for this study

Resting-state fMRI (R-fMRI)

Data were acquired in four runs of approximately 15 minutes each, with
eyes open with relaxed fixation on a projected bright cross-hair on a dark
background (and presented in a darkened room). The four runs were di-
vided into two sessions, with oblique axial acquisitions alternating between
phase encoding in a right-to-left (RL) direction in one run and phase encod-
ing in a left-to-right (LR) direction in the other run. We used datasets be-
longing to first sessions, and runs labelled LR. Images were acquired with
the parameters listed in Table 2.1, a total of 1200 slices were obtained for
each run (duration 14:33 minutes).

Diffusion imaging (dMRI)

The hardware modifications mentioned above, that were made on the Siemens
3 T Skyra system, notably improve diffusion imaging (Sotiropoulos et al.,
2013). A full dMRI session included 6 runs (each approximately 9 min-
utes and 50 seconds), representing 3 different gradient tables, with each
table acquired once with right-to-left and left-to-right phase encoding po-
larities, respectively. Each gradient table included approximately 90 diffu-
sion weighting directions plus 6 b=0 acquisitions interspersed throughout
each run. Diffusion weighting consisted of 3 shells of b=1000, 2000, and
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Sequence Gradient-echo EPI
TR 720 ms
TE 33.1 ms
flip angle 52◦

FOV 208×180 mm (RO×PE)
Matrix 104×90 (RO×PE)
Slice Thickness 2.0 mm, 72 slices, 2.0 mm isotropic voxels
Multiband factor 8
Echo spacing 0.58 ms
BW 2290 Hz/Px

TABLE 2.1: R-fMRI acquisition details

3000 s/mm2 interspersed with an approximately equal number of acquisi-
tions on each shell within each run. Detailed specifications are reported in
Table 2.2.

Sequence Spin-echo EPI
TR 5520 ms
TE 89.5 ms
flip angle 78◦

refocusing flip angle 160◦

FOV 210×180 mm (RO×PE)
Matrix 168×144 (RO×PE)
Slice Thickness 1.25 mm, 111 slices, 1.25 mm isotropic voxels
Multiband factor 3
Echo spacing 0.78 ms
BW 1488 Hz/Px
Phase partial Fourier 6/8
b-values 1000, 2000, and 3000 s/mm2

TABLE 2.2: dMRI acquisition details

2.1.2 Positron Emitting Tomography

L-[1-11C]Leucine

Data from nine healthy awake male subjects (age 20 to 24) from a previous
study (Bishu et al., 2008) were used. The criteria for subject inclusion and
the procedure for L-[1-11C]Leucine PET studies are described in detail in
the original work. All studies were performed on the High-Resolution Re-
search Tomograph (HRRT) (CPS Innovations, Knoxville, TN, USA), which
has spatial resolution of 2.6 mm full width at half maximum (Wienhard et
al., 2002). L-[1-11C]Leucine was prepared from H11CN, and obtained a ra-
diochemical purity of >99% and an estimated specific activity of 3 mCi/nmol.
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The 90-min emission scan was initiated coincident with a 2-min intravenous
infusion of 20 to 30 mCi of L-[1-11C]Leucine. Estimated leucine-specific ac-
tivity was 3 mCi/nmol. Images were reconstructed using motion-compensated
three-dimensional ordinary Poisson ordered subset expectation maximiza-
tion as 42 frames (16×15, 4×30, 4×60, 4×150, 14×300 secs); voxel size was
1.21×1.21×1.23 mm. Arterial blood sampling was performed; concentra-
tions of unlabelled and labelled leucine in plasma and total 11C and 11CO2

activities in whole blood were measured according to methods detailed in
(Bishu et al., 2008). All subjects underwent a T1-weighted magnetic reso-
nance imaging of the brain for ROI placement.

[18F]FDG

Data came from 11 healthy volunteers, 6 male and 5 female, aged 30.5±7.1
years old. Resting-state [18F]FDG PET/CT brain images were acquired
in a GE Discovery 690 (GE Healthcare, Milwaukee, Wisconsin, USA), at
the Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina
da UFMG, Belo Horizonte, Brazil. Subjects had at least six hours of fast-
ing before the exam. After intravenous bolus injection of 5.18 MBq/kg of
[18F]FDG, subjects rested for 50 minutes in a quiet and dark room with
minimum stimuli. PET brain images were acquired subsequently, with an
acquisition time of 10 minutes, and reconstructed in a 192×192×47 matrix
using the OSEM (Ordered Subsets Expectation Maximization) algorithm,
with 2 iterations and 20 subsets. CT images were used to perform attenua-
tion correction.

2.2 Data pre-processing

2.2.1 Resting-state fMRI (R-fMRI)

Resting-state fMRI data has been cleaned through the use of independent
component analysis (ICA) based artefact removal, to remove non-neural
spatiotemporal components from each (highpass filtered) run of R-fMRI
data. ICA is a powerful approach for decomposition of fMRI data as a
summation of “good” and “bad” components, where each component com-
prises a weighted set of voxels (the component’s spatial map), along with a
single timeseries that is common to those voxels identified. Once ICA has
identified a number of artefactual components, the data can be “cleaned”
by subtracting these components from the data.
The approach HCP developed, combined ICA (run using FSL’s MELODIC)
with a more complex automated component classifier referred to as FIX
(FMRIB’s ICA-based X-noisifier) that has been specifically trained on HCP
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data. The FIX approach and initial results of classification accuracy are de-
scribed in detail in (Salimi-Khorshidi et al., 2014), and the effects of the ICA
+ FIX cleanup (and optimal methods to remove the bad components from
the data) are evaluated in detail in (Griffanti et al., 2014).

2.2.2 Diffusion MR (dMRI)

Reconstructed dMRI images were used from the standard dHCP pipeline
which were corrected for phase-encoding, susceptibility and eddy-
current artefacts using ‘topup’ and ‘eddy’ from the FSL diffusion toolkit
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). dMRI was
subsequently analysed using a constrained spherical deconvolution ap-
proach, followed by whole-brain probabilistic tractography using MRtrix3
(http://www.mrtrix.org). In brief, for each subject, a fibre orientation
density map was generated from the dMRI images which was used to
perform probabilistic tractography using the iFOD2 method (Tournier,
Calamante, and Connelly, 2010). During the tractography, 10-million
streamlines were randomly seeded from the grey-white matter boundary
using the MRtrix SIFT algorithm (Smith et al., 2013), resulting in a dense
connectogram for the entire brain. A b0→MNI standard space warp-field
provided by the HCP, was used to co-register each of the three atlases to
the dMRI image space where connectivity matrices were generated using
the MRtrix tck2connectome tool, resulting in symmetrical connectivity
graphs where each node is an ROI in the atlas and edge is represented by
the number of streamlines which passed successfully between each pair of
ROIs. These matrices were further manipulated, by dividing each edge by
the total number of streamlines emerging from each ‘seed’ ROI, resulting
in a normalised structural connectivity matrix for each subject.

2.2.3 PET quantification

L-[1-11C]Leucine

Leucine PET images were quantified using the Spectral Analysis Iterative
filter method (SAIF) (Veronese et al., 2010) as implemented in (Veronese et
al., 2012). The method allows parametric imaging for regional cerebral pro-
tein sysnthesis (rCPS), accounting for the tracer tissue kinetic heterogeneity
and the fraction of unlabelled leucine in the tissue precursor pool for pro-
tein synthesis derived from arterial plasma (Schmidt et al., 2005). Individ-
ual rCPS maps were normalised to stereotaxic MNI (Montreal Neurological
Institute) space via T1 weighted MRI images, and averaged across subjects
to generate a template rCPS image (Figure 2.2).

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
http://www.mrtrix.org
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FIGURE 2.2: L-[1-11C]Leucine template (rCPS)

[18F]FDG

For the FDG PET images, the Standardised Uptake Value (SUV) normalised
by body weight and injected dose was calculated. SUV is mainly consid-
ered as a semi-quantitative measure, yet is easy to compute and its inter-
pretation is straightforward. A SUV template (Figure 2.3) was then built,
by averaging individual images in MNI space.

FIGURE 2.3: [18F]FDG SUV template
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Chapter 3

Data Analysis

Every step of the analysis was carried out using Matlab, Release 2013a.
The biggest part of the analysis focused on functional and structural MR
data. PET data (SUV and rCPS templates) were only segmented following
the parcellation schemes discussed below (section 3.1), and used for corre-
lating against MR-derived network measures (section 3.4).
The second chapter, Temporal Filtering, regards only resting state MR data.
This technique is based on Blood-oxygen-level dependent contrast imag-
ing, and BOLD signal is still a matter of study, it is in fact affected by a vast
quantity of variables, most of them unpredictable, and related both to the
scanner and the subject. BOLD signal spectrum is not deeply known, and
by introducing temporal filtering, we aim to better understand what kind
of information different frequency bands bring.
In 3.1 there is an overview of the analysis pipeline we followed for resting
state data.

FIGURE 3.1: Resting state data analysis pipeline: 1-
segmentation with anatomical atlas 2-temporal filtering 3-
correlation matrices construction 4-thresholding and adja-
cency matrices construction 5-calculation of functional net-

work measures 6-correlations with PET data.
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3.1 Segmentation

Three different brain atlases were used to segment data, in order to assess
differences between parcellation schemes, and to investigate how they in-
fluence results, and also to possibly discard brain parcellations that are not
suitable for these kinds of studies.
The first atlas we used is Automated Anatomical Labeling (Tzourio-Mazoyer
et al., 2002), an atlas based on the MNI single-subject brain and Statistical
Parametric Mapping package (Friston et al., 1995). In particular, we used
a version consisting in 67 regions of interest (ROIs). Dividing the whole
brain volume into 67 regions, results in a loose anatomical parcellation, as
showed in Figure 3.2.
The second atlas we used is the Craddock (Craddock et al., 2012). It is
generated with a completely different approach from AAL, in fact the seg-
mentation is thought specifically for resting-state fMRI, and it is fully data-
driven. With this approach, brain is divided into spatially coherent regions
of functional connectivity. We used the 200 ROIs version, as showed in Fig-
ure 3.2.
The last atlas we used is based on FreeSurfer (Fischl, 2012) (http://surfer.
nmr.mgh.harvard.edu), with 82 ROIs. As we can see in Figure 3.2, this
atlas mostly segments cerebral cortex, not focusing on white matter. This
is a big difference with respect to the previous atlases. It is also the most
widely used in literature for fMRI studies.

3.2 Temporal Filtering

Calculating the average time-activity curve (TAC) between voxels belong-
ing to the same ROIs, we obtained a TAC for each ROI. This signal had
a sampling interval of 720 ms (see TR in R-fMRI acquisition specifica-
tions, 2.1.1). Such sampling correspond to a Nyquist frequency (the high-
est frequency we are able to distinguish in a sampled signal) of 0.694
Hz. Because of our large frequency span, with respect to previous stud-
ies, and knowing that different frequencies bring different information,
we filtered TACs using 20 overlapping bands. As showed in Figure 3.3
we used tighter bands at low frequencies, in order to better examine low
frequency fluctuations in the BOLD signal, as they represent the most
prominent part of it (He et al., 2010). This can also be seen in Figure
3.4. We implemented a digital raised-cosine bandpass filter (mathematical
description at http://commsys.isy.liu.se/TSKS04/lectures/3/
MichaelZoltowski_SquareRootRaisedCosine.pdf), with 0.005 Hz
transition bands centred at cut-off frequencies, whose values can be found
in Appendix A.

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://commsys.isy.liu.se/TSKS04/lectures/3/MichaelZoltowski_SquareRootRaisedCosine.pdf
http://commsys.isy.liu.se/TSKS04/lectures/3/MichaelZoltowski_SquareRootRaisedCosine.pdf
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FIGURE 3.2: the three brain anatomical atlases used in this
study.

However we report in the results only frequencies up to 0.3 Hz, regarding
the first twelve frequency bands, we do this for clarity, as our main find-
ings are mainly situated ad low frequencies. Complete results, covering the
whole frequency spectrum, can be found in Appendix A.

3.3 Network Construction

3.3.1 R-fMRI

In order to conduct our study through graph theory (or more precisely
a part of it, network theory), we have to define nodes (or vertices) and
edges. Ideally, nodes would be neurons or groups of them, but technol-
ogy does not currently allow it, and also analysis at voxel level would
include too much noise, and would also require huge computational ca-
pabilities. So nodes, our interactive units, are represented by groups
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FIGURE 3.3: Frequency bands used to filter BOLD signal.

of voxels, that can be chosen in different ways. In our study we de-
fine nodes as the ROIs given by the atlas segmentation discussed before.
Edges, the interconnections between nodes, can express structural, func-
tional or effective connectivity. In graphs of functional networks, edges
are weighted by the correlation coefficient R between the time series of
two ROIs. Note that functional connectivity does not provide direction-
ality or causality, so we worked with weighted undirected graphs. Hav-
ing stated the premises, we obtained Correlation Matrices (CM) by calcu-
lating correlation coefficients R between TACs, having therefore a CM for
each subject, each atlas, and each filtering band. However, to have this
data representing a network some important steps are necessary (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010). Generally speaking, a finite
graph with N vertices can be represented with an N ×N Adjacency Matrix
(AM) (http://opendatastructures.org/versions/edition-0.
1e/ods-java/12_1_AdjacencyMatrix_Repres.html), which has by
definition, null entries in the main diagonal. So the first step was to subtract
from Correlation Matrices their main diagonal. But the most crucial step is
represented by thresholding, as we aim to include strong connections in
our network. R values next to zero stand for poor connections, but the real
question is how to set a threshold value θ in the [0 1] interval to decide
whether a connection is significant or not. It is important to remark that
we took into account negative R values, that possibly represent strong re-
lations, by considering the absolute value of our CMs. Also for networks
to be the most comparable, we used a specific BCT function to normalize
Correlation Matrices, to have weights in each of them cover the entire [0 1]

interval. To set a threshold several approaches have previously been con-
sidered (Rubinov and Sporns, 2010; Zuo et al., 2012; Achard and Bullmore,
2007) and recently compared (Welton et al., 2015); we implemented an hy-
brid method, that automatically chooses an optimal threshold θopt for each
network to be constructed, it consists in maximizing Cost-Efficiency (C-E)
of the resulting network. The reason to this, is that brain functional net-
works have been proven to have small-world characteristics (Sporns and
Zwi, 2004; Latora and Marchiori, 2001), this topology is an attractive model

http://opendatastructures.org/versions/edition-0.1e/ods-java/12_1_AdjacencyMatrix_Repres.html
http://opendatastructures.org/versions/edition-0.1e/ods-java/12_1_AdjacencyMatrix_Repres.html
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FIGURE 3.4: Power distribution across regions of interest
for the three atlases. The dependence on frequency is dis-
played vertically, with low frequencies on the top and high

frequencies on the bottom.

for brain network organization because it could support both segregated
and distributed information processing, confer resilience against patholog-
ical attack, and minimise wiring costs (Achard and Bullmore, 2007). Also
small-world networks are seen as systems that are both globally and locally
efficient (Latora and Marchiori, 2001).
Since we are working with Weighted Undirected graphs, we defined net-
work cost K as in (Ginestet et al., 2011), as the sum of all the elements of
the Adjacency Matrix, divided by the possible number of edges:
K = 1

NV (NV −1)

∑
i,j ai,j

Then we evaluated Global Efficiency (EG) using BCT (Rubinov and Sporns,
2010), and obtained Cost-Efficiency as C-E = EG −K. This was computed
for a grid of θ values, whose tightness has been decided a posteriori basing
on the precision we wanted. To summarize, each AM was thresholded with
a set of possible θ, andC-E was calculated for each resulting network, mak-
ing it possible to trace a C-E(θ) curve (example in Figure 3.5) and pick θopt
as the value corresponding to the maximum of that curve. Eventually AMs
were thresholded with their correspondent θopt and functional networks
were ready for the subsequent measures on them.
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FIGURE 3.5: Example of C-E(θ) curve for a functional brain
network.

3.3.2 dMRI

Individual brain networks were constructed basing on the set of recon-
structed fiber tracts combined with the regions coming from the three dif-
ferent parcellation schemes. As van den Heuvel and Sporns suggest (Heuvel
and Sporns, 2011), there are different ways to consider structural networks:

• Unweighted: if a streamline between region i and region j is present,
the connection is included in the connectivity matrix, by setting the
value of cell (i, j) to 1, and zero otherwise.

• Weighted by streamline count: this approach includes information on
the quantity and/or efficacy of the existing connections. Information
on the quantity of white matter connectivity between region i and
region j is computed setting cell (i, j) of the AM to the sum of the
existing streamlines that resulted from the fiber selection procedure.

• Weighted by streamline count, corrected for ROI volume: as volumes
of the segmented regions are not uniform, the size of a ROI may in-
fluence the number of streamlines passing through it. Therefore, to
control for this effect, the number of streamlines between region i and
j can be normalized by the sum of the volumes of ROIs i and j. How-
ever this method is still controversial (Heuvel and Sporns, 2011) an
we did not take it into account.

• Weighted by FA values: information on the integrity of the inter-
regional white matter connections can be incorporated by estimat-
ing Fractional Anisotropy (FA) values for each of the interconnecting
tracts. FA values express the level of anisotropic diffusion of white
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matter in a brain voxel and are a commonly used metric to examine
the microstructural aspects of brain connectivity.

We adopted the second method, and consistently with what we did with
resting state data, we considered Weighted Undirected graphs for struc-
tural data too. The Adjacency Matrices we used for our analysis contain in
cell (i, j) the number of fibres projecting from seed ROI i and to target ROI
j (there is no direction, “seed” and “target” terms are used because typical
of fiber tracking). If a track goes from ROI i→ ROI k → ROI j, that counts
only as a connection between i and j. We took individual networks and
averaged them to obtain a single structural network, representative of our
population. To avoid outliers we proceeded, as suggested in (Heuvel and
Sporns, 2011), averaging an edge only if it was non-zero in at least 75% of
the subjects, otherwise it was set to zero in the average AM. We then thresh-
olded it to construct a network, we applied the same method discussed in
the previous section to find an optimal threshold. There is though a dif-
ference between structural Adjacency Matrices built in the way specified
above, and functional AMs. In fact values in the matrix to be thresholded
are not uniformly distributed in the [0 1] interval, as it is for functional data.
This inhomogeneous distribution directly reflects in cost-efficiency curves,
an example of this is visible in Figure 3.6, note the difference with 3.5. To
compensate for this, we used an unequally spaced grid of possible thresh-
olds, with values more concentrated near zero (see intervals between points
in Figure 3.6).

FIGURE 3.6: Example of C-E(θ) curve for a structural brain
network.
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3.4 Network Measures

With Adjacency Matrices representing networks, it was possible to ap-
ply BCT functions in order to obtain the desired network measures. Be-
tween all the metrics provided (https://sites.google.com/site/
bctnet/measures/list) we focused on local measures that could pro-
vide information on the “hubbines” of our graphs. Centrality measures
are the most straightforward way to highlight hubs, nodes that concentrate
most of the connectivity. Six indices have been taken into account, but three
were discarded as they gave poor results in terms of correlations and sta-
tistical significance. The three we present in the final results (Clustering
Coefficient, Local Efficiency and Strength), are between those presented as
the most reliable in a recent work (Welton et al., 2015), that aimed to assess
reproducibility of graph-theoretic brain network metrics. What follows is a
brief description of the indices we used, see Appendix A for their mathe-
matical definition.

• Betweenness Centrality: the fraction of all shortest paths in the net-
work that contain a given node. Nodes with high values of between-
ness centrality participate in a large number of shortest paths.

• Clustering Coefficient: as a measure of functional segregation, it is
based on the number of triangles in the network, with a high number
of triangles implying segregation. Locally, the fraction of triangles
around an individual node is known as the clustering coefficient and
is equivalent to the fraction of the node’s neighbours that are also
neighbours of each other.

• Local Efficiency: a weighted path length is equal to the total sum
of individual link lengths. Link lengths are inversely related to link
weights, as large weights typically represent strong associations and
close proximity. Local efficiency of a particular vertex is the inverse of
the average shortest path connecting all neighbours of that vertex.

• Strength: the degree of an individual node is equal to the number of
links connected to that node, Individual values of the degree therefore
reflect importance of nodes in the network. Strength is the weighted
variant of the degree, and is defined as the sum of all neighbouring
link weights.

• Participation Coefficient: assesses the diversity of intermodular in-
terconnections of individual nodes, comparing the number of links
(order, degree) of node i to nodes in all clusters with its number of
links within its own cluster.

https://sites.google.com/site/bctnet/measures/list
https://sites.google.com/site/bctnet/measures/list
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• Within-module Degree: it is the within-module version of degree
centrality. This measure requires determining a community structure.
The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number
of within-group edges, and minimizes the number of between-group
edges.

We want to show, using these indices, that nodes showing hub behaviour
are also those who are potentially more plastic. Hubs have already been
shown to correspond to brain regions that exhibit complex physiological
responses and maintain widespread and diverse connection profiles with
other parts of the brain (Sporns and Heuvel, 2013). For R-fMRI data, we
computed the measures above for each individual network, so each one of
the 20 subjects had its own set of graph-theoretical measures. For the sub-
sequent step - assessing the relationship with PET measures - population
indexes were needed, so we averaged across subjects. This is a substantial
difference from what we did with DTI data, where we averaged Adjacency
Matrices across subjects (Figure 3.7). However we also tried implementing
the “average matrix” method even for R-fMRI data, a comparison between
the two methods can be found in the Discussion chapter, section 5.2.2.

FIGURE 3.7: Different ways to obtain population network
measures: A) R-fMRI data processing pipeline, B) dMRI

data processing pipeline.
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3.5 Correlations

We evaluated Pearson correlation coefficient between PET measures across
ROIs and the various network measures across the same ROIs. We obtained
therefore a couple of values [R, p] for each atlas, PET measure, network in-
dex and filtering band. A significance threshold for p-values was set to
5%. Correlations were evaluated also between functional and structural
network measures, and between PET and structural network measures. As
introduced before, our main aim was to assess the correlation between mea-
sures of functional connectivity and cerebral protein synthesis, focusing on
the part that cannot be explained by metabolic rate, and therefore belongs
to other on-going processes. To do so we calculated partial correlations,
using FDG PET as a confounding factor. FDG though was not the only co-
variate we used to assess correlations between R-fMRI and rCPS, and we
considered other variables that could possibly affect results:

• ROIs dimension: the number of voxels making up a region.

• Power distribution across regions: when we bandpass filtered each
TAC, we took note of their power spectrum, and the fraction of it
determined by each filtering band. Doing this, for a fixed band, ROIs
would have different amount of power between them, with respect to
the total TAC. A representation of it can be found in Figure 3.4 in the
Temporal Filtering section.

Again, p-values were taken into account to set to zero the correlations that
did not match the 5% threshold requirement.

3.6 Sliding Windows

We tried to focus on hubs stability over the time, using a different approach
from the frequency analysis described up to now. We used sliding windows
of various lengths to take into account part of the original TAC, which was
made up by 1200 samples (see Datasets section, 2.1.1). Each window was
built to overlap the previous one by 80% of its width, and in this way sweep
through all the samples of the original TAC and construct a network for
each windowed TAC portion (see Figure 3.8). Doing so, we aimed to find
out if rhythmical processes were present through the 15 minutes R-fMRI
scans. Variability was evaluated calculating network measures’ standard
deviations across the sliding window. This standard deviation was divided
by its mean, obtaining a coefficient of variation (CV ), which was then aver-
aged between subjects. Eventually, population CV was correlated against
PET measures: FDG, rCPS and rCPS using FDG and ROIs dimension as
covariates.
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FIGURE 3.8: overview of the Sliding Windows analysis.
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Chapter 4

Results

4.1 R-fMRI vs. dMRI

The relationship between structural and functional connectivity is a topic of
great interest for the contemporary neurosciences; the evidence so fat sug-
gests that structural connectivity places constraints on which functional in-
teractions occur in the brain network (Sporns, Tononi, and Edelman, 2000).
By means of those constraints, structure can predict function by shaping
neural dynamics among cells and brain region (Honey, Thivierge, and Sporns,
2010). Specifically, the average statistical dependencies of the BOLD signal
between two nodes over low frequencies (5 to 10 minutes) reflects the un-
derlying structural connectivity determined with DTI (Park and Friston,
2013). Skudlarski et al. first assessed the relationship between Diffusion
Tensor Imaging and Resting State Temporal Correlations (Skudlarski et al.,
2008). They demonstrated strong association between the brain connectiv-
ity matrices obtained from the two different imaging techniques. The asso-
ciation was very high for strongly connected regions and weaker, but still
statistically significant for most other region pairs.
On the premises above, we expected significant correlations between net-

work measures obtained from structural and functional networks, possibly
higher at lower frequencies.
As showed in Figure 4.1 and reported in Table 4.1a, we found that corre-
lations were statistically significant and high, in particular for AAL and
FreeSurfer atlases R values are between 0.3 and 0.7, with p-values<0.002.
The lower values found with the Craddock atlas could be explained by its
segmentation into functional coherent regions without a solid description
of white matter (WM) where the fMRI signal is relatively scarce (Gawryluk,
Mazerolle, and D’Arcy, 2014). Both the results for the AAL and FreeSurfer
segmentations suggest weak linear trends across frequency bands that in-
crease in the lower frequency range.



24 Chapter 4. Results

C
lustering

C
oefficient

LocalEfficiency
Strength

a)
R

-fM
R

I
vs.D

T
I

A
A

L
0.29
÷

0.46
,p

<
0.019

0.52
÷
0.64

,p
<

0.001
0.49
÷

0.76
,p

<
0.001

C
raddock

0.19
÷

0.34
,p

<
0.008

0.34
÷
0.50

,p
<

0.001
0.31
÷

0.45
,p

<
0.001

FreeSurfer
0.35
÷

0.49
,p

<
0.002

0.62
÷
0.72

,p
<

0.001
0.53
÷

0.64
,p

<
0.001

b)
R

-fM
R

I
vs.FD

G
Standardized

U
ptake

V
alue

A
A

L
0.22
÷

0.36
,p

<
0.042

0.21
÷
0.36

,p
<

0.037
0.19
÷

0.38
,p

<
0.025

C
raddock

0.28
÷

0.62
,p

<
0.001

0.53
÷
0.67

,p
<

0.001
0.42
÷

0.64
,p

<
0.001

FreeSurfer
0.46
÷

0.59
,p

<
0.001

0.43
÷
0.60

,p
<

0.001
0.27
÷

0.49
,p

<
0.015

c)
R

-fM
R

I
vs.regionalC

erebralProtein
Synthesis

A
A

L
0.59
÷

0.69
,p

<
0.001

0.58
÷
0.68

,p
<

0.001
0.48
÷

0.65
,p

<
0.001

C
raddock

0.40
÷

0.68
,p

<
0.001

0.55
÷
0.69

,p
<

0.001
0.44
÷

0.60
,p

<
0.001

FreeSurfer
0.67
÷

0.81
,p

<
0.001

0.66
÷
0.81

,p
<

0.001
0.51
÷

0.68
,p

<
0.001

d)
R

-fM
R

I
vs.rC

PS,controlling
for

FD
G

,R
O

Is
dim

ension,pow
er

distribution
A

A
L

0.39
÷

0.63
,p

<
0.002

0.39
÷
0.63

,p
<

0.002
0.26
÷

0.57
,p

<
0.037

C
raddock

0.22
÷

0.45
,p

<
0.002

0.19
÷
0.44

,p
<

0.009
0.15
÷

0.33
,p

<
0.030

FreeSurfer
0.39
÷

0.69
,p

<
0.001

0.41
÷
0.71

,p
<

0.001
0.37
÷

0.61
,p

<
0.001

TABLE 4.1: ranges for R values of the various relationships
investigated
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FIGURE 4.1: Correlations (R values) between functional and
structural network measures (Clustering Coefficient, Local
Efficiency and Strength). The dependence on the R-fMRI
filtering band is shown. Results are reported for the three

different parcellation schemes.

4.2 PET measures

Here we studied how protein synthesis in the cortex and glucose consump-
tion are related phenomena. We used [18F]FDG as a proxy measure of node
synaptic activity as more than 85% of cerebral glucose is used by neurons
and mainly by presynaptic axon terminals. To evaluate the relationship be-
tween rCPS and metabolic rate, we calculated Pearson correlation between
[18F]FDG and L-[1-11C]Leucine data.
The scatter plots are presented in Figure 4.2, correlations are RAAL = 0.537,
RCR = 0.620, RFS = 0.628, p-values are < 10−5 . This implies the exis-
tence of a strong relationship between the two measures; we took this into
account when assessing correlations between PET Leucine and R-fMRI-
derived network measures.
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FIGURE 4.2: Scatter plot of L-[1-11C]Leucine and [18F]FDG
data, the three colours stand for the three atlases (blue for
Automated Anatomical Labeling, green for Craddock and
red for FreeSurfer), straight lines represent the linear regres-

sions.

4.3 R-fMRI vs. PET

4.3.1 [18F]FDG

The relationship between functional connectivity and glucose consumption
is far from being completely understood, but many recent studies investi-
gated this relationship, analysing data coming from PET FDG and resting
state fMRI scans. Glucose, brain’s main energy source, is consumed 30% for
basal metabolism (in the absence of connectivity), suggesting that the spon-
taneous brain activity takes 70% of the energy consumed by the brain. This
large portion reflects intrinsic activity of uncertain functional origin, and for
this reason it is sometimes referred to as “dark energy” (Tomasi, Wang, and
Volkow, 2013). It has been demonstrated though a significant interaction
between local neuronal activity (measured with [18F]FDG) and the genera-
tion of Functional Connectivity from BOLD fMRI data (Riedl et al., 2014).
This interaction has been recently studied (Aiello et al., 2015), showing that
the relative glucose uptake, assessed by FDG PET, and metrics of functional
connectivity derived from R-fMRI are significantly correlated.
With this background, we were expecting what results confirmed (Figure
4.3): a positive correlation between network indices of centrality and FDG
SUV. In fact we have for Craddock and FreeSurfer atlases Pearson corre-
lations between 0.27 and 0.67, with p-values always below 10−3 (except
for Strength in FreeSurfer where p < 0.015). In other words we can say
that nodes showing greater centrality, tend to have higher metabolic rate.
Metabolism in brain is most intense in the cortical areas, this could be a
reason AAL atlas, with its loose cortical parcellation, exhibits poor correla-
tions between FDG SUV and functional network measures. The remaining
atlases show a stronger correlation. Detailed values in Table 4.1b.
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FIGURE 4.3: Correlations between functional network mea-
sures and [18F]FDG PET. Results are reported for the three
atlases, and the dependence on the filtering band is shown.

4.3.2 L-[1-11C]Leucine

A positive correlation between functional network indices and rCPS mea-
sured with L-[1-11C]Leucine PET, stands for intense protein synthesis in
functional hubs, adding information on the metabolism in hubs discussed
above.
As we show in Figure 4.4, functional network measures appear to be strongly
related to the rate of Cerebral Protein Synthesis, especially for the third at-
las, where R values span between 0.51 and 0.81, with p < 10−3. For the
remaining atlases, correlations are statistically significant as well, as visible
in Table 4.1c. Even if trends seem to emerge (Clustering Coefficient in the
Craddock atlas, and all the measures in FreeSurfer atlas), we did not evalu-
ate them at this stage of the analysis.
As stated before, some corrections are needed, in order to consider the
portion of Functional Connectivity – rCPS relationship that cannot be ex-
plained by metabolism. Introducing the three covariates listed in section
(3.5) (FDG SUV, ROI dimension and power distribution), we calculated
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FIGURE 4.4: Correlations between functional network mea-
sures and Leucine PET. Results are reported for the three
atlases, and the dependence on the filtering band is shown.
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correlations, presented in Figure 4.5, standing for the relationship between
rCPS and network measures that cannot be explained by metabolic rate.
Ranges and p-values are in Table 4.1d. Correlations remain quite strong,

FIGURE 4.5: Partial correlations between functional net-
work measures and Leucine PET, using as covariates: FDG
PET, ROIs dimension and power distribution across ROIs.
Results are reported for the three atlases, and the depen-

dence on the filtering band is shown.

and also coherence across the atlases is present, this enforces results, sug-
gesting they are not critically dependent on the particular parcellation scheme
used. In Figure 4.5 some trends are appearing, suggesting the presence of a
“preferred” frequency band, where correlations are stronger. In Figure 4.6
are showed the same data of Figure 4.5, in a way that trends are more visi-
ble. We fitted these data with 3rd degree polynomial curves, implementing
the Tukey bisquare estimator for robust fitting. Weights were given by 1−p
relatively to each R value. Correlations across frequency bands appear to
be well fitted by 3rd degree polynomials. Coefficients of determination (R2)
for the fits are: AAL atlas: 0.73, 0.66, 0.96, Craddock atlas: 0.74, 0.92, 0.87,
FreeSurfer atlas: 0.82, 0.89, 0.86, for Clustering Coefficient, Local Efficiency
and Strength respectively. Other details on the goodness of the fit can be
found in Appendix A.
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FIGURE 4.6: Correlations between R-fMRI network mea-
sures and rate of cerebral protein synthesis, as function of
BOLD signal frequency, considering as covariates FDG PET,
ROIs dimension and power distribution. Solid lines repre-
sent the 3rd degree polynomial interpolation of data points.

4.4 dMRI vs. PET

Correlating structural network measures with PET data gives poor infor-
mation. Many R values are not statistically significant with a threshold level
set to 5%, and no consistence across atlases or measures is found. When it
comes to structural data, the atlases show substantial differences, as white
matter is barely taken into account in FreeSurfer atlas, and the rationale
Craddock atlas is based upon, is given by functional MRI. Taking into ac-
count this, together with what already said about PET data, can explain
why a comparison between PET measures, and structural network indices
gives no interesting information.

4.5 Sliding Windows

Results show a strong negative correlation between PET and CV of network
indices. We can assume that metabolism and protein synthesis tend to be
greater in regions that exhibit stable indices of centrality during the time.
Since network hubs are highlighted in resting state, they must be responsi-
ble for the background activity of the brain. These basic routines have to be
necessarily active most of the time, and on these premises our results en-
force the idea that regions showing stable indices of centrality are the most
active in terms of metabolism and protein synthesis. Missing data in the
AAL atlas stand for “Not a Number” values, that emerge when computing
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FIGURE 4.7: Correlations between DTI-derived network
measures and PET measures. Results are reported for the
three atlases, rows labelled as “rCPS w. covariates” report
partial correlations between the network measures and L-
[1-11C]Leucine, accounting for FDG metabolism and ROI

dimension.

a CV and the denominator is equal to zero. This happens for broad win-
dows (750 and 500 samples), because few of them are needed to cover the
whole TAC, so mean and standard deviation are computed between few
values.

4.6 [11C]PiB PET

We introduced in this study a third PET tracer, Pittsburgh compound B,
mainly used to highlight beta-amyloid plaques in neuronal tissue, and there-
fore important in Alzheimer’s Disease Research (Klunk et al., 2004). In the
present work, we used a distribution volume ratio (DVR) template, which
provides information on myelin density. The purpose of doing this, was
to check if the rCPS-fMRI relationship was influenced by myelin density,
expecting though a negative answer. That is because there is no basis to
suppose that myelin, covering axons and therefore well present in white
matter, has a strong correlation with fMRI and functional connectivity, in-
volving mostly grey matter.
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FIGURE 4.8: Correlations between functional network mea-
sures’ CV and PET measures. The bottom three images in
each of the frames report the same results as the top ones,
but shown in a different way to highlight possible trends.
The dependency on the sliding window size is shown. The
three frames report results for: A) FDG PET – B) Leucine
PET – C) Leucine PET, using as covariates FDG and ROIs

dimension.
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4.6.1 Acquisition

Data came from a study (Veronese et al., 2015) that involved 10 volunteer
healthy subjects: 3 male and 7 female, age: 29.5±6.2 years. Each of them
was scanned twice, with the retest scan performed within approximately 1
month from the baseline. Exams were performed on the high resolution re-
search tomograph (HRRT) (CPS Innovations, Knoxville, TN, USA), a brain
dedicated PET scanner (Wienhard et al., 2002).
Scans lasted 90 minutes, beginning with a 1-minute intravenous bolus injec-
tion of [11C]PiB (mean 358±34 MBq). Images were reconstructed using the
3D ordinary Poisson ordered subset expectation maximization algorithm
(POSEM). All the resulting dynamic PET images consisted of 25 frames of
data with a voxel size of 1.22mm×1.22mm×1.22mm. Interframe subject
motion correction was applied by realigning each PET frame to a com-
mon reference space. The first six frames of each scan corresponding to
the first 6 minutes of acquisition were moved together because of the lack
of spatial information necessary for the image coregistration. The proce-
dure was applied to each PET study and all the reconstructed images but
no frame or subject were discarded for exceed of motion. Data were also
corrected for carbon-11 decay. In addition to the PET scans, all subjects un-
derwent a 3D anatomic brain magnetic resonance imaging (MRI) using a 3T
Siemens system (Siemens, Erlangen, Germany; TRIO 32-channel TIM sys-
tem): T1-weighted MPRAGE (echo time/inversion time/repetition time =
2.9/900/2,300, flip angle = 8◦, pixel resolution = 1×1×1.1 mm). Grey mat-
ter, white matter, and basal ganglia were automatically extracted from MRI
image by combining outputs from VBM8 toolbox (http://dbm.neuro.
uni-jena.de/vbm/download/) and FIRST (http://fsl.fmrib.ox.
ac.uk/fsl/) using a probability threshold of 90%. Segmented MRI im-
ages were hence coregistered to PET using rigid transformation estimated
using Flirt (http://fsl.fmrib.ox.ac.uk/fsl/) maintaining PET data
in its original space and avoiding further loss of resolution due to interpo-
lation.

4.6.2 Quantification

Detailed information can be found in the original article (Veronese et al.,
2015). Quantification of PiB PET images followed reference region approaches.
In general, a reference region method consists of a two-step procedure that
requires: the selection of a brain tissue region containing no or negligible
amount of specific binding and the use of a quantification model in which
the plasma tracer information can be replaced with the tracer activity in
the reference region. For the extraction of the reference time-activity curve
(TAC), authors of (Veronese et al., 2015) used the supervised clustering

http://dbm.neuro.uni-jena.de/vbm/download/
http://dbm.neuro.uni-jena.de/vbm/download/
http://fsl.fmrib.ox.ac.uk/fsl/
http://fsl.fmrib.ox.ac.uk/fsl/
http://fsl.fmrib.ox.ac.uk/fsl/
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method developed by Turkheimer et al. (http://jnm.snmjournals.
org/content/48/1/158) and already validated for [11C]PiB PET tracer
by Ikoma et al. (doi: 10.1038/jcbfm.2013.133). This method consists of the
multiple regression of all PET image voxel TACs on a predefined set of
kinetic classes. After regression, all the voxels associated to the reference
class with probability >90% are combined together and the average of their
TACs defines the reference input function. Once the reference TAC was
extracted, [11C]PiB binding was calculated by application of a kinetic op-
erator to the measured dynamic PET activity. Distribution volume ratio
(DVR) is the parameter of interest because it is directly linked to tracer-
target affinity as well as the target density. In the instance here, in which
[11C]PiB is used as a myelin marker, the DVR becomes a proxy of myelin
density. For the Logan analysis, authors chose to apply both the standard
Logan with reference (Logan) and the Logan with reference corrected for k2
value (Logan_k2). The latter has showed to recover part of the bias that af-
fects Logan approaches when applied at the voxel level. The literature was
followed to define the settings (k2 = 0.149 min−1), while for both Logan
and Logan_k2 the last 60 minutes of the experiment were used for the DVR
calculation. The Logan approach with k2 correction produced comparable
estimates with the standard Logan approach with the reference region: the
means of voxel estimates within ROIs were almost identical. The WM-GM
contrast measured by the Logan modified approach was identical to the one
measured with the standard approach both in amplitude and in variability.
Given the reported strong similarity between the two measures, Logan with
k2 correction was omitted from subsequent analyses. Therefore standard
Logan was used to create from the 10 subjects a [11C]PiB DVR template in
stereotaxic MNI space, that we used in the present research.

FIGURE 4.9: [11C]PiB DVR template

4.6.3 [11C]PiB results

As we can see in Figure 4.10, there is no substantial relationship between
myelin density and regional cerebral protein synthesis, matching what our
expectations were, correlations are poor and not statistically significant.

http://jnm.snmjournals.org/content/48/1/158
http://jnm.snmjournals.org/content/48/1/158
http://dx.doi.org/10.1038%2Fjcbfm.2013.133
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This proves that myelin density is not a factor we must consider when as-
sessing the relation between functional connectivity and cerebral protein
synthesis. It should be interesting though to study those interactions in
case of neurodegenerative diseases.

FIGURE 4.10: Correlations between functional network
measures and PiB PET, results and their dependence on the
filtering band are presented for the three atlases. Values
identical to zero are not statistically significant, with a 5%

threshold for p-values.
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Chapter 5

Discussion

5.1 Main Findings

Using a graph theoretical approach, we demonstrated that a strong relation-
ship exists between functional connectivity and the rate of cerebral protein
synthesis. This relationship remains even when we consider metabolism
as a confounding factor, implying that network hubs are generally the ones
that exhibit greater protein synthesis not linked to energetic demands. This
relationship is driven by the time scale taken into exam, with correlations
higher for BOLD frequencies between 0.06 and 0.12 Hz, and decreasing at
higher frequencies.
With results coming from the sliding windows approach, we could also
demonstrate that protein synthesis, hubbiness and stability over the time
are linked concepts, since regions showing more stable hub properties tend
to have greater protein turnover.
Results are consistent across the different parcellation schemes used, dif-
ferences can be explained as they do not exhibit contradictions with the
rationale behind the different segmentations. However for this particular
kind of studies FreeSurfer atlas seems to be the most suitable, as it offers a
more precise description of the cortex.
Theoretical network measures, as stated before, do not provide a straight-
forward biological interpretation. Nonetheless when such measures are
compared to objective biological quantities, coherence emerges between the
two. This can in some way validate the graph theoretical approach as a
methodology to study the connectivity of human brain.

5.2 Limitations

5.2.1 Graph threshold

As discussed in the Network Construction chapter, different approaches
have been utilised in literature to set a threshold to graphs, the most com-
mon was to do it at a range of sparsities. Other approaches consisted in a
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fixed threshold, mean degree thresholding, and others presented in (Welton
et al., 2015). One study (Guo et al., 2012) compared the use of a fixed thresh-
old with soft and proportional thresholding techniques, but found neither
to be significantly more reliable.
Hence our maximum Cost-Efficiency method could be a valid alternative
to the ones stated above. We performed a comparison between results ob-
tained with our method, and the ones obtained fixing three different spar-
sity levels, chosen to span in the cost interval that typically characterises
small-world regime (Achard and Bullmore, 2007). Results, presented in
figure 5.1, suggest contemporarily that our main findings are strong, and
that the maximum Cost-Efficiency method to threshold networks is reli-
able. Results suggest that as long as a threshold guarantees the small-world

FIGURE 5.1: Correlations between functional network mea-
sures and rCPS, controlling for FDG, ROI dimension and
power distribution. Results refer to the different atlases
(horizontally) and the three sparsity levels used to construct

networks.

regime, its choice is not critical. We recommend though to consider sparsity
levels over absolute thresholds, as the first ones directly reflect information
about cost of resulting networks. These findings point in the same direc-
tion of a recent work (Borchardt et al., 2016), showing that when networks
are thresholded with a sparsity level between 16% and 22% (a subinterval
of the one we tested), the biggest differences emerge from the comparison
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between brain networks coming from healthy controls and patients with
major depression.

5.2.2 Average network measures vs. average correlation matrices

As showed in Figure 3.7 and explained in section 3.4, we followed two dif-
ferent approaches to obtain population network indices from resting state
and structural MR data. What we did for R-fMRI data is probably the most
straightforward way to obtain population metrics. In the meanwhile, av-
eraging correlation matrices – what we did for dMRI – was validated in
literature (Heuvel and Sporns, 2011).
We implemented the “average correlation matrix” method for resting state
data, in order to assess how much results would change adopting one method
rather than the other. First of all, as in Figure 5.2, we can say that network

FIGURE 5.2: Correlations between population indices ob-
tained with the two methods presented in section 3.4: aver-
aging network measures and averaging correlation matri-

ces

measures are strongly related between the two methods, and this is a first
hint telling that differences in results are not drastic. We can also see those
R values in figure to represent some sort of reproducibility of theoretical
network measures themselves, as they tend to be not critically dependent
on the preprocessing scheme adopted. These findings seem to point in the
same direction of the already cited work by Welton et al. (Welton et al.,
2015), and they confirm the choice we previously did, to focus on Clus-
tering Coefficient, Local Efficiency and Strength measures, discarding the
other measures.
Correlating PET data against functional network measures, obtained with
the “average correlation matrix” method, gives the results reported in Fig-
ure 5.3. Comparing this with our main findings in the Results chapter (Fig-
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FIGURE 5.3: Average correlation matrix method, partial
R values between R-fMRI-derived network measures and
rCPS, controlling for FDG, ROI dimension and power dis-
tribution. Asterisks stand for actual data points, lines are
their linear interpolation. Results are reported for the three

brain anatomical atlases used in our study.

ure 4.6) highlights strong agreements, proving that methods are compara-
ble. Also the overall trends between the different atlases are strongly sim-
ilar. However considering individual networks and performing the aver-
age across individual network measures, gives results that exhibit greater
smoothness and concordance within the three indices (Clustering Coeffi-
cient, Local Efficiency and Strength).

5.3 Future Developments

One of the main limitations regarding our study was that PET and MR data
came from a different pool of subjects, not allowing us to have intra-subject
comparison. To overcome the problem we run our analysis at population
level. In addition, although R-fMRI and dMRI data came from the same
subjects, we followed different analysis pathways, leading us to consider
the two datasets as independent.
Future studies should aim to replicate the results of this work at individual
level, where all the different imaging modalities are acquired from the same
group of subjects. However one should take into account that PET stud-
ies, especially the ones involving L-[1-11C]Leucine, are very complicated to
be performed. Moreover, guidelines on maximum radiation exposure con-
straint the inclusion of the same subject in more than one PET study. This
limits the availability of both L-[1-11C]Leucine and [18F]FDG imaging data
from the same participant.
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Appendix A

Appendix

A.1 Brain anatomical atlases

We report the lookup tables for the atlases we used in this study, in Table
A.1 are the AAL regions, and in Table A.2 are the FreeSurfer regions. As ex-
plained in section 3.1, Craddock atlas is generated by clustering, and there-
fore ROIs will not correspond to anatomical regions with a proper name.

1 Precentral_L 27 HP_pHP_L 53 Caudate_L
2 Precentral_R 28 HP_pHP_R 54 Caudate_R
3 Rolandic_Oper_L 29 Amygdala_L 55 Putamen_L
4 Rolandic_Oper_R 30 Amygdala_R 56 Putamen_R
5 Supp_Motor_Area_L 31 Calcarine_L 57 Pallidum_L
6 Supp_Motor_Area_R 32 Calcarine_R 58 Pallidum_R
7 Olfactory_L 33 Cuneus_L 59 Thalamus_L
8 Olfactory_R 34 Cuneus_R 60 Thalamus_R
11 Frontal_Sup_L 35 Lingual_L 61 Heschl_L
12 Frontal_Sup_R 36 Lingual_R 62 Heschl_R
13 Frontal_Mied_L 37 Occipital_L 63 Parietal_L
14 Frontal_Mied_R 38 Occipital_R 64 Parietal_R
15 Frontal_Inf_L 39 Fusiform_L 65 Temporal_L
16 Frontal_Inf_R 40 Fusiform_R 66 Temporal_R
17 Rectus_L 41 Postcentral_L 67 Vermis
18 Rectus_R 42 Postcentral_R 68 Cerebellum_Crus_L
19 Insula_L 45 SupraMarginal_L 69 Cerebellum_Crus_R
20 Insula_R 46 SupraMarginal_R 70 Cerebellum_L
21 Cingulum_Ant_L 47 Angular_L 71 Cerebellum_R
22 Cingulum_Ant_R 48 Angular_R
23 Cingulum_Mid_L 49 Precuneus_L
24 Cingulum_Mid_R 50 Precuneus_R
25 Cingulum_Post_L 51 Paracentral_Lobule_L
26 Cingulum_Post_R 52 Paracentral_Lobule_R

TABLE A.1: Automated Anatomical Labeling atlas lookup
table

A.2 Frequency bands

In Table A.3 are reported cut-off frequencies of the bandpass filters we ap-
plied to R-fMRI data.

A.3 Complex network measures

Network indices were computed with Brain Connectivity Toolbox, which
implements the following formulas, for more details see (Rubinov and Sporns,
2010).
Basic concepts and notation: N is the set of all nodes in the network, and n
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10 L-Thalamus-Proper 1016 L-parahippocampal 2010 R-isthmuscingulate
11 Left-Caudate 1017 L-paracentral 2011 R-lateraloccipital
12 L-Putamen 1018 L-parsopercularis 2012 R-lateralorbitofrontal
13 L-Pallidum 1019 L-parsorbitalis 2013 R-lingual
17 L-Hippocampus 1020 L-parstriangularis 2014 R-medialorbitofrontal
18 L-Amygdala 1021 L-pericalcarine 2015 R-middletemporal
26 L-Accumbens-area 1022 L-postcentral 2016 R-parahippocampal
49 R-Thalamus-Proper 1023 L-posteriorcingulate 2017 R-paracentral
50 R-Caudate 1024 L-precentral 2018 R-parsopercularis
51 R-Putamen 1025 L-precuneus 2019 R-parsorbitalis
52 R-Pallidum 1026 L-rostralanteriorcingulate 2020 R-parstriangularis
53 R-Hippocampus 1027 L-rostralmiddlefrontal 2021 R-pericalcarine
54 R-Amygdala 1028 L-superiorfrontal 2022 R-postcentral
58 R-Accumbens-area 1029 L-superiorparietal 2023 R-posteriorcingulate
1001 L-bankssts 1030 L-superiortemporal 2024 R-precentral
1002 L-caudalanteriorcingulate 1031 L-supramarginal 2025 R-precuneus
1003 L-caudalmiddlefrontal 1032 L-frontalpole 2026 R-rostralanteriorcingulate
1005 L-cuneus 1033 L-temporalpole 2027 R-rostralmiddlefrontal
1006 L-entorhinal 1034 L-transversetemporal 2028 R-superiorfrontal
1007 L-fusiform 1035 L-insula 2029 R-superiorparietal
1008 L-inferiorparietal 2001 R-bankssts 2030 R-superiortemporal
1009 L-inferiortemporal 2002 R-caudalanteriorcingulate 2031 R-supramarginal
1010 L-isthmuscingulate 2003 R-caudalmiddlefrontal 2032 R-frontalpole
1011 L-lateraloccipital 2005 R-cuneus 2033 R-temporalpole
1012 L-lateralorbitofrontal 2006 R-entorhinal 2034 R-transversetemporal
1013 L-lingual 2007 R-fusiform 2035 R-insula
1014 L-medialorbitofrontal 2008 R-inferiorparietal
1015 L-middletemporal 2009 R-inferiortemporal

TABLE A.2: FreeSurfer atlas lookup table

band n◦ low cut high cut

1 0.001 0.031
2 0.021 0.051
3 0.041 0.071
4 0.061 0.091
5 0.081 0.111
6 0.101 0.131
7 0.121 0.151
8 0.141 0.171
9 0.161 0.191
10 0.181 0.211
11 0.201 0.260
12 0.241 0.300
13 0.281 0.340
14 0.321 0.380
15 0.361 0.420
16 0.401 0.460
17 0.441 0.500
18 0.481 0.540
19 0.521 0.580
20 0.561 0.620

TABLE A.3: R-fMRI filtering bands, values in Hz
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is the number of nodes. L is the set of all links in the network, and l is num-
ber of links. (i, j) is a link between nodes i and j, (i, j ∈ N). Links (i, j) are
associated with connection weights wij . All the superscript w found below
are reported to remark we worked with the weighted version of network
indices, we reported the them to be consistent with the reference paper (Ru-
binov and Sporns, 2010) and literature in general.
Shortest path length: dwij =

∑
auv∈gwi↔j

f (wuv) where f is a map (e.g., an
inverse) from weight to length and gwi↔j is the shortest weighted path be-
tween i and j.

Modularity: Qw = 1
lw
∑
i,j∈N

[
wij −

kwi k
w
j

lw

]
δmi,mj , where mi is the module

containing node i, and δmi,mj = 1 if mi = mj , and 0 otherwise.

• Betweenness Centrality bi = 1
(n−1)(n−2)

∑
h,j∈N,h6=j,h6=i,j 6=i

ρhj(i)
ρhj

, where
ρhj is the number of shortest paths between h and j, and ρhj(i) is the
number of shortest paths between h and j that pass through i.

• Clustering Coefficient Cw = 1
n

∑
i∈N

2twi
ki(ki−1) .

• Local EfficiencyEwloc = 1
2

∑
i∈N

∑
j,h∈N,j 6=i

(
wijwih

[
dwjh(Ni)

]−1
)1/3

ki(ki−1) , where
dwjh(Ni) is the length of the shortest path between j and h, that con-
tains only neighbours of i.

• Strength kwi =
∑
j∈N wij .

• Participation coefficient ywi = 1−
∑
m∈M

(
kwi (m)
kwi

)2
whereM is the set

of modules (see Modularity above), and kwi (m) is the number of links
between i and all nodes in module m.

• Within-module Degree z-score zwi =
kwi (mi)−k̄w(mi)

σkw(mi)
where mi is the

module containing node i, kwi (mi) is the within-module degree of i
(the number of links between i and all other nodes in mi), and k̄w(mi)

and σk
w(mi) are the respective mean and standard deviation of the

within-module mi degree distribution.

A.4 Complete results

In Figures A.1, A.2, and A.3, we report correlations respectively between R-
fMRI network measures and: structural network measures, [18F]FDG SUV,
and rCPS plus covariates (glucose metabolism, ROIs dimension and power
distribution). Results are for all the 20 filtering bands and all the network
indices (bc: Betweenness Centrality, cc: Clustering Coefficient, le: Local
Efficiency, s: Strength, pc: Participation Coefficient, wd: Within-module
Degree z-score), and as usual for the three different atlases.
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FIGURE A.1: R values between functional and structural
network measures. The dependence on the R-fMRI filter-

ing band is shown.

FIGURE A.2: Correlations between functional network
measures and [18F]FDG PET.

FIGURE A.3: Partial correlations between functional net-
work measures and Leucine PET, using as covariates: FDG
PET, ROIs dimension and power distribution across ROIs.
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A.5 Goodness of fit

We report indices that describe the goodness of fit for the 3rd degree polyno-
mial interpolation reported in section 4.3.2 and showed in Figure 4.6. Table
A.4 reports abbreviations that stand for:

• sse: Sum of squares due to error

• rsquare: R2 (coefficient of determination)

• adjrsquare: Degree-of-freedom adjusted coefficient of determination

• rmse: Root mean squared error (standard error)

Clustering Coefficient Local Efficiency Strength

AAL sse 0,015 0,021 0,005
rsquare 0,728 0,657 0,965
adjrsquare 0,627 0,528 0,951
rmse 0,043 0,051 0,024

Craddock sse 0,013 0,008 0,008
rsquare 0,738 0,916 0,871
adjrsquare 0,640 0,885 0,823
rmse 0,040 0,031 0,032

FreeSurfer sse 0,028 0,019 0,012
rsquare 0,819 0,889 0,863
adjrsquare 0,751 0,848 0,811
rmse 0,059 0,049 0,038

TABLE A.4: Goodness of fit relatively to Figure 4.6 in Re-
sults chapter
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