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To my family

Fool not; for all may have,
If they dare try, a glorious life or grave.

— George Herbert



ii



Abstract

The problem of continuously monitoring a region using a team of agents (e.g.
Unmanned Aerial Vehicles equipped with cameras) is addressed and formulated
as a differential game. This allows the use of multiple heterogenous vehicles i.e.
agents with different sensor models. Two different approaches are presented to
solve the problem. The first one consists in a standard differential game, for
which the Hamilton Jacobi Bellman equations provide a sufficient condition.
The second formulation results in a non standard differential game that is tack-
led with two different techniques. The first technique approximates the game
as a sequence of infinite horizon optimal control problems. The second one is
based on the wavelet decomposition and truncation of the planned trajectory:
the differential game is transformed into a non-differentiable optimization prob-
lem over Rp. We present numerical simulations in the case of agents with single
integrator dynamics. The results can be exploited to generate a trajectory plan
for vehicles with more general dynamics.
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Chapter 1

Introduction

The study and control of multi-agent systems where different subjects mutually
interact have been a topic of research in applied mathematics since the begin-
ning of the last century. The development of faster means of communication
have recently increased the interest in the field and opened the doors to vari-
ous applications including automatically controlled vehicles such as Unmanned
Aerial Vehicles (UAVs), see an example in figure 1.1. The main advantage
of autonomous vehicles comes from the fact that no human being is directly
involved in their operation, and thus important but dangerous tasks can be un-
dertaken without jeopardizing human lives [1]. For instance drones equipped
with cameras can operate in the event of a natural disaster and retrieve impor-
tant information from compromised areas, rescuing endangered people.
Due to their versatility and the capability to carry on different payloads, the
core application of UAVs is that of aerial surveying and patrolling. Drones have
already been used to discover wildfires or for road surveillance [2], not to men-
tion any military activity, where they have been exploited since the Vietnam
war [1].
Toward this goal, it is necessary to investigate how UAVs should operate in an
arbitrary environment of given shape in order to collect meaningful data. Even
without taking into account any real world constraint such as limited amount
of fuel or missing data link, the problem is hard to tackle due to the fact that
multiple agents need to coordinate their efforts [3]. If furthermore the vehicles
are required to perform the task in some optimal way such as minimizing the
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Figure 1.1: A military Unmanned Aerial Vehicle (“drone”).

mission time, or maximizing the information collected, the problem becomes
very tough, and just a few recent literature exists on this [4], [5].

In the present work we analyze the problem of optimal monitoring a given region
under ideal conditions, i.e. neglecting some of the constraints just mentioned.
The main purpose is nevertheless to model and capture the most important fea-
tures of the problem, including the coordination of multiple agents and avoiding
their mutual collision.
The mathematical tools used come from the field of control as well as game
theory and the next two chapters help the reader to get acquainted with the
main ideas. The concept of coverage map is a main element on which the work
is based and provides the foundation to define the criterion we want to optimize.
It is first appeared in [5]. Such map describes how well each point of the region
has been monitored up to the current time. It depends on the past trajectory of
the agents and on how the information is acquired. Data collection is managed
introducing a sensor model.
These elements are key to specify what we mean by optimal monitoring. The
meaning is indeed not clear unless one specifies what ‘optimally’ means in this
context. The search space is monitored by continuously increasing the coverage
in the less visited points. This is the main idea on which the work is based and
it first appeared in [4]. A detailed discussion can be found in the third chapter
of this thesis.
Two different mathematical formulations are based on the above mentioned idea.
The first one consists of a standard differential game as introduced in [4], for
which the Hamilton Jacobi Bellman equations (HJB) provide a sufficient con-
dition as presented in chapter four. The problem has been solved numerically,
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yielding good results as far as surveying is concerned but not for the case of
patrolling. This continutes the first new contribution that this thesis provides.
The second formulation is the main novelty and results in a non standard dif-
ferential game that has not been studied previously. Two approximate solutions
techniques are presented since no standard methods exists to solve it. The first
technique consists in approximating the problem to a series of optimal controls
reducing the complexity of the problem, but producing a suboptimal solution.
The second one transforms the non standard game into an optimization prob-
lem over a finite dimensional coefficient space by selecting a suitable basis for
the function space one is interested in. The resulting problem carries on some
of the difficulties of the original game, such as the non-differentiability of the
objective function, but has the potential to provide solutions that are close to
the optimal.
The formulation in terms of non standard game is completely new and provides
interesting results when dealing with surveillance, as presented and discussed in
the last chapter.
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Chapter 2

Optimal Control

2.1 Introduction

The modern theory of control dates back to the Fifties when military applica-
tions pushed hard the mathematical research. During the Second World War
in particular scientists got interested in modifying the evolution of a dynamical
system by introducing a controller (a human being, an electronic device, etc.).
The laws of nature were not sufficient to take this into account, and a new vari-
able, the control u, has been included. Several questions raised at that stage
such as stabilizability, optimality and others. For a general introduction see [6].
Optimal control (OC) deals in particular with a dynamical system where the
variable u allows to change the dynamics in order to minimize a cost or to max-
imize a profit. This is the main topic of the chapter, where the most important
concepts will be introduced formally and discussed in detail together with the
necessary mathematical tools. Optimal control constitutes the foundation for
the theory of dynamic games and in particular for differential games. These
next pages are intended for the reader to get acquainted with the subject and
in particular the techniques that will be used in the following. In case one feels
sufficiently familiar with the theory of OC, and in particular with the Pontrya-
gin Maximum principle and the Hamilton Jacobi Bellman equation, he/she can
jump directly to the next chapter.
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We first present the single agent problem. Subsequently necessary and suffi-
cient conditions for optimality are provided. The section includes discussion of
the theoretical results and practical examples.

Let us consider a continuous time dynamical system. The evolution is typically
described by a Cauchy problem in the state variable x ∈ Rn

ẋ = f(x, t) , x(t0) = x0 ,

with f : Rn × R 7→ Rn and t representing the time. Under mild smoothness
conditions on the vector field f , the Picard-Lindelöf theorem [7] guarantees the
existence and uniqueness of the trajectory x(t) in a neighborhood of t = t0.
Control theory models and studies the presence of an external agent operating on
the system typically to reach a specific goal, e.g. stabilize a certain configuration,
steer the system to a specific location, maximize a profit or minimize a cost. The
agent modifies the dynamics of the system by means of the so called control
function u(t) : R 7→ Rm. Thereafter, the mathematical framework is given by a
Cauchy problem with the additional presence of the input u

ẋ = f(x, u, t) , x(t0) = x0 , u(t) ∈ U. (2.1)

Throughout the following we assume that

(H1) The function u(·) is measurable in time and takes values in a compact set
U .
The vector field f is differentiable w.r.t. all the variables and has sublinear
growth with respect to x, namely

∃C ∈ R : |f(x, u, t)| < C(1 + |x|) for all (x, u, t) ∈ Rn × U × [t0, T ] .

The hypothesis (H1) guarantees that for each input u, the Cauchy Problem (2.1)
has a unique bounded solution x(t)

.
= x(t;x0, u, t0) on the interval of definition

[t0, T ], see [8].
OC deals with problems of the form (2.1), where the agent wants to optimize a
certain criterion: maximize a profit or minimize a cost. In the continuos case
one wants to take into account running costs and terminal cost

J(u) =

∫ T

t0

L(x(t), u(t), t) dt+ ψ(x(T )) . (2.2)

A generic optimal control problem is thus formulated as




min
u(t)∈U

∫ T

t0

L(x(t), u(t), t) dt+ ψ(x(T )) ,

s.t. ẋ = f(x, u, t) , x(t0) = x0 .

(2.3)
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Note that (2.3) is written in terms of minimization of a certain functional. A
maximization problem can always be transformed into (2.3) by changing the
sign to the original functional. In the following we will always refer to (2.3)
with t0 = 0 as the standard formulation.

With no further assumptions (2.3) is difficult to solve, as the optimization is
performed on an infinite dimensional space, namely the space of measurable
functions u(t). Nevertheless two important tools, the Pontryagin Maximum
Principle and the Hamilton Jacobi Bellman PDE, provide necessary and suffi-
cient conditions for u(t) to be optimal.

2.2 The Pontryagin Maximum Principle

The Pontryagin Maximum Principle (PMP) can be thought of as the equivalent
of the Lagrange Multiplier Method (LMM) for optimization in an infinite dimen-
sional space. The problem 2.3 is indeed a problem of constraint optimization:
one wants to minimize the functional 2.2, subject to the differential constraint
2.1. In analogy to the LMM, we introduce the costate variable p(t), which takes
into account the cost for violating the constraint 2.1. Let u∗(t) be optimal for
(2.3) and x∗(t)

.
= x(t;x0, u

∗(t), t0) the corresponding optimal trajectory. The
PMP gives a set of necessary conditions for the functions u∗(·) and x∗(·) to
satisfy.

Theorem 2.1 (PMP) Let u∗(t) and x∗(t) be an optimal control function
for (2.3) and the corresponding trajectory. Define p(t) : R 7→ Rn as the solution
to the adjoint equation

ṗ = −p · ∂f
∂x

(x∗(t), u∗(t), t)− ∂L

∂x
(x∗(t), u∗(t), t) with p(T ) =

∂ψ

∂x
(x∗(T )) .

The following optimality condition holds at almost every time in [0, T ]

inf
u∈U
{p(t)·f(x∗(t), u, t)+L(x∗(t), u, t)} = p(t)·f(x∗(t), u∗(t), t)+L(x∗(t), u∗(t), t) .

�

Different proofs of the theorem are available, for a complete version see [6].
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Remarks

• Even if Theorem 2.1 provides just a necessary condition, it suggests a
procedure to compute the optimal control:

1. Find the candidate u# as a function of t, x, p

u#(t, x, p) = arg inf
u∈U
{p · f(x, u, t) + L(x, u, t)} .

Note that the function u# = u#(t, x, p) may be discontinuous or even
multivalued.

2. Solve the boundary value problem



ẋ = f(x, u#, t) , x(0) = x0 ,

ṗ = −p · ∂f
∂x

(x, u#, t)− ∂L

∂x
(x, u#, t) , p(T ) =

∂ψ

∂x
(x(T )) .

(2.4)

If a solution (x#(t), p#(t)) is found, then u#(t, x#(t), p#(t)) is an
optimal control candidate as it will naturally satisfy all the conditions
of the PMP. Note that existence and uniqueness of the solution for
generic BVP is not guaranteed a priori, even if all the functions are
smooth.

Following this procedure one obtains an open loop control policy u =
u#(t, x#(t), p#(t)). Thus if the initial condition changes it is necessary to
recompute the control.

• If we define the hamiltonian function H : R× Rn × Rn 7→ R to be

H(t, x, p)
.
= inf
u∈U
{p · f(x, u, t) + L(x, u, t)} ,

then the two point boundary value problem (2.4) can be rewritten as an
Hamiltonian system in (x, p)





ẋ =
∂H

∂p
(t, x, p) , x(0) = x0 ,

ṗ = −∂H
∂x

(t, x, p) , p(T ) =
∂ψ

∂x
(x(T )) .

(2.5)

Other versions of the PMP take into account various constraints on the state of
the system x(t). The most common are final constraints of the form x(T ) ∈ ST
or path constraints x(t) ∈ St, where St and ST are subsets of the state space.
Such formulations are more technical and thus not presented here. For a deeper
account see [9].
In general, Theorem 2.1 produces necessary but not sufficient conditions for
optimality. Under more specific hypotheses on the Hamiltonian H, the PMP
becomes a necessary and sufficient condition as it will be seen in the following.
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Theorem 2.2 (PMP & Convexity =⇒ optimality) Let u∗(t) ∈ U
be measurable, x∗(t) and p(t) be smooth functions satisfying





ẋ∗ =
∂H

∂p
(t, x∗, p) x∗(0) = x0 ,

ṗ = −∂H
∂x

(t, x∗, p) p(T ) =
∂ψ

∂x
(x∗(T )) .

with H(t, x, p)
.
= inf
u∈U
{p · f(x, u, t) + L(x, u, t)} = p · f(x, u∗, t) + L(x, u∗, t) .

Furthermore assume that the set U is convex and x 7→ H(t, x, p(t)), x 7→ ψ(x)
are convex functions.

Then u∗(·) is an optimal control and x∗(·) the corresponding optimal trajectory.
�

Examples

1. This example is tailored to show that the PMP constitutes only a necessary
condition. In particular we look at a control problem of the form (2.3),
and find a candidate u#(t) that satisfies the maximum principle, but is
not optimal.

Consider the following




min
u(t)∈[−1,1]

∫ 1

0

−x
2

2
dt ,

s.t. ẋ = u , x(0) = 0 .

The objective is to maximize the area under the curve x2/2 with inte-
grator dynamics and control in the compact set U = [−1, 1]. The prob-
lem satisfies the condition H1. Now the candidate u#(t) = 0 with the
corresponding trajectory x#(t) = 0 satisfy the PMP. Indeed the adjoint
equation is

ṗ = 0 p(T ) = 0 =⇒ p(t) = 0 ,

and the optimality condition

inf
u∈U
{p(t)·f(x∗(t), u, t)+L(x∗(t), u, t)} = p(t)·f(x∗(t), u∗(t), t)+L(x∗(t), u∗(t), t)

is satisfied as
inf

u∈[−1,1]
{0 · u+ 0} = 0 .
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Nevertheless the control u#(t) = 0 is far from being optimal. In fact
it gives a cost of J# =

∫ 1

0
−x2

2 dt = 0, while for instance the control
u##(t) = 1/2 gives J## =

∫ 1

0
− (t/2)2

2 dt = −1/24 < J#.
One easily notices that an optimal control policy is the one that takes x(t)
as far as possible from the origin at each fixed t, i.e. u∗(t) = ±1 with a
cost of J∗ = −1/6 < J## < J#.

2. This example shows how to use Theorem 2.2 (PMP with convexity hy-
pothesis) to find an optimal control policy.
Consider a system with linear dynamics and quadratics costs





min
|u(t)|≤10

∫ 1

0

(
x2

2
+
u2

2

)
dt+ x2(1) ,

s.t. ẋ = x+ u , x(0) = 1 ,

(2.6)

and look for an optimal control policy following the procedure described
in the observations to Theorem 2.1. The control candidate is found as

u#(t, x, p) = arg inf
u∈U
{p·f(x, u, t)+L(x, u, t)} = arg inf

|u|≤10

{
p·(x+u)+

x2

2
+
u2

2

}
.

The minimum is attained at u#(t, x, p) = −p(t) if |p(t)| < 10 for all
t ∈ [0, 1]. Otherwise it lies on the boundary of U .
Let us consider the first case and work out the computations starting from
the Hamiltonian

H(t, x, p) = {p · f(x, u#, t) + L(x, u#, t)} =
x2

2
+ px− p2

2
.

The equations (2.5) become
{
ẋ = x− p , x(0) = 1 ,

ṗ = −x− p , p(1) = x(1) ,
(2.7)

whose solution can be found using the matrix exponential as
(
x
p

)
=

1√
2

(√
2 cosh

√
2t+ sinh

√
2t − sinh

√
2t

− sinh
√

2t
√

2 cosh
√

2t− sinh
√

2t

)(
x0

p0

)
.

The final constraint on the costate p(1) = x(1) allows to determine the
initial condition p0, given x0 = 1, namely

p0 =
√

2 tanh
√

2 + 1 .

Thus we can determine p(t) and the candidate control u#(t) = −p(t)

u#(t) =
1√
2

sinh
√

2t− (cosh
√

2t− 1√
2

sinh
√

2t)(1 +
√

2 tanh
√

2) . (2.8)
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Figure 2.1: The figure presents the solution to the problem (2.6). The optimal
trajectory (blue curve) follows the vector field (2.7) (green arrows),
satisfies the initial condition x(0) = 1 and the terminal constraint
x = p (dashed line).

One can easily check that for t ∈ [0, 1] the constraint on u is satisfied,
namely |u#(t)| ≤ 10.

By construction u#(t) satisfies the hypothesis of the maximum principle,
furthermore the HamiltonianH(t, x, p(t)) and the terminal cost ψ(x) = x2/2
are convex in x. From Theorem 2.2 we conclude that u#(t) given in (2.8)
is optimal. The corresponding trajectory is given by

x#(t) = cosh
√

2t+
1√
2

sinh
√

2t− 1√
2

sinh
√

2t(1 +
√

2 tanh
√

2)

=
cosh(

√
2(t− 1))

cosh
√

2
.

In Figure 2.1 the evolution of the system is presented in the (x, p) plane,
note how the condition x(0) = 1 and the terminal condition x(1) = p(1)
are satisfied. �
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2.3 Dynamic Programming and the Hamilton Ja-
cobi Bellman PDE

As seen in the previous section, if the Hamiltonian and the final cost are convex
in the state x, then the Pontryagin Maximum Principle is a sufficient condition
for optimality. Such assumptions are far too restrictive as in several applications
they are not satisfied. In this section we introduce the Hamilton Jacobi Bellman
PDE (HJB), which constitutes a sufficient condition for optimality, regardless
of the structure of H and ψ.
So far we studied an optimal control problem with fixed initial condition x(t0) =
x0. One can consider a family of control problems, where the initial condition
is variable.
Let V (t0, x0) be the optimal cost corresponding to the initial conditions (t0, x0) ∈
[0, T ]× Rn, i.e.

V (t0, x0)
.
= inf
u:[t0,T ] 7→U

J(u; t0, x0), (2.9)

where J is the functional in (2.2) and x is governed by (2.1) with initial condi-
tions (t0, x0). The function V : [0, T ] × Rn 7→ R is called value function and it
represents the cost-to-go starting from x = x0 at t = t0.
When the initial condition is assigned at time t0 = T (i.e. at the end of the
interval) there is no running cost contribution from L, but just final cost ψ, i.e.

V (T, x) = ψ(x) ∀x ∈ Rn.

We now introduce the dynamic programming principle. It describes an im-
portant property of the Value function, based on which the Hamilton Jacobi
Bellman PDE will be derived in the following.

Theorem 2.3 (Principle of Dynamic Programming) For each
x0 ∈ Rn and 0 < t0 ≤ t1 < T , the value function satisfies

V (t0, x0) = inf
u:[t0,t1]7→U

{
V (t1, x(t1; t0, x0, u)) +

∫ t1

t0

L(x(t; t0, x0, u), u(t), t) dt

}
.

�

For a detailed proof see [10].

Remarks

• The Dynamic Programming Principle can be read as in the following:
Let us solve the problem (2.3) with initial conditions (t0, x0) on the whole
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t0 t1 T0

V=ψV=V(t ,x)1

x0
x(t)

Figure 2.2: Illustration of the dynamic programming principle: the optimal
control problem with initial conditions (t0, x0) can be split into
two subproblems: one on the interval [t1, T ] with final cost ψ(·)
and one on the interval [t0, t1] with terminal cost V (t1, ·).

interval [t0, T ] and let us call u∗(t) and x∗(t) a pair of optimal control and
optimal trajectory.
The minimum cost from (t0, x0) is equal to the running cost from t0 to
t1 ≥ t0, following an optimal trajectory x∗(t), plus the optimal cost to go
from (t1, x

∗(t1)), namely

V (t0, x0) =

∫ t1

t0

L(x∗(t), u∗(t), t) dt+ V (t1, x
∗(t1)).

• The Dynamic Programming Principle suggests a procedure to compute
backwards the value function by splitting the optimization into smaller
problems.

1. On the interval [t1, T ] let us solve the family of optimal control prob-
lems with variable initial condition x1 ∈ Rn, running cost L and
terminal cost ψ. In this way we obtain V (t1, ·).

2. On the interval [t0, t1] let us solve the family of optimal control prob-
lems with initial condition x0 ∈ Rn, running cost L and terminal cost
V (t1, ·) found in the previous step.

One could apply the same procedure, for instance to find V (t1, ·), splitting
again the interval [t1, T ] into [t1, t2] ∪ [t2, T ].
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By taking this process to the limit, i.e. splitting the optimization into
problems on an “infinitesimal” time horizon, one gets the Hamilton Jacobi
Bellman partial differential equation. In the following Vt and ∇V repre-
sents respectively the time derivative and the spatial gradient of the value
function V .

Theorem 2.4 (Hamilton Jacobi Bellman PDE) Consider the op-
timal control problem (2.3) and assume the hypothesis H1 is satisfied. Define
the Hamiltonian function as

H(t, x, p) = min
u∈U
{p · f(x, u, t) + L(x, u, t)}.

1. If V (t, x) is the value function of (2.3), then on the region Ω where V is
differentiable

Vt +H(t, x,∇V ) = 0 , V (T, x) = ψ(x) . (2.10)

2. Vice versa, if a differentiable function W(t,x) satisfies (2.10) on a region
Ω, then W (t, x) is the value function for (2.3) in Ω.

Proof. (We show only the point 1, for a complete proof see [6].)
By contradiction, let us suppose that there exists a point (t0, x0) ∈ Ω such that
(2.10) does not hold. For instance let us assume that

Vt(t0, x0) + min
u∈U
{∇V (t0, x0) · f(x0, u, t0) + L(x0, u, t0)} > 0 ,

and take u∗ ∈ arg minu∈U{∇V (t0, x0) ·f(x0, u, t0)+L(x0, u, t0)}. For continuity
there exists a whole neighborhood B(t0, x0) ∈ Ω such that

Vt(t, x) +∇V (t, x) · f(x, u∗, t) + L(x, u∗, t) > 0 ∀(t, x) ∈ B(t0, x0).

Note that

dV

dt
(t, x) = Vt(t, x) +∇V (t, x) · f(x, u∗, t) > −L(x, u∗, t) ∀(t, x) ∈ B(t0, x0).

By applying the constant control u∗(t) = u∗ on a sufficiently small time interval
[t0, t1] such that the trajectory x∗(t) = x(t; t0, x0, u

∗) stays in B(t0, x0), one has

V (t1, x
∗(t1)) = V (t0, x0) +

∫ t1

t0

Vt(t, x
∗(t)) +∇V (t, x∗(t)) · f(x∗(t), u∗(t), t) dt

> V (t0, x0)−
∫ t1

t0

L(x∗(t), u∗(t), t) dt .
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This implies that

V (t0, x0) < V (t1, x
∗(t1)) +

∫ t1

t0

L(x∗(t), u∗(t), t) dt ,

contradicting the Principle of Dynamic Programming for the value function
V (t, x).
In a similar fashion one shows that if

Vt(t0, x0) + min
u∈U
{∇V (t0, x0) · f(x0, u, t0) + L(x0, u, t0)} < 0 ,

the Dynamic Programming principle is not satisfied either.
This proves the point 1. �

Remarks

• As a by product of the proof of point 2 not presented here, one obtains a
formula to compute an optimal control policy.
A map u∗ : (t, x) 7→ u∗(t, x) is an optimal control if

u∗(t, x) ∈ arg min
u∈U
{∇V (t, x) · f(x, u, t) + L(x, u, t)} .

In particular if for each point (t, x) the argument of minimum is unique,
then the optimal control is unique and the map u∗ : (t, x) 7→ u∗(t, x) is
the function

u∗(t, x) = arg min
u∈U
{∇V (t, x) · f(x, u, t) + L(x, u, t)} .

Note that in order to compute the optimal policy one needs to compute
the gradient of the value function.

• Equation (2.10) is called the Hamilton Jacobi Bellman partial differen-
tial equation and has connections with several fields of mathematics and
physics where the optimization of a functional plays a role, for instance in
calculus of variations, optics, lagrangian mechanics and more.
The PDE can be thought as a backward equation in time with final bound-
ary condition

Vt = −H(t, x,∇V ) , V (T, x) = ψ(x) ,

carrying on the idea of dynamic programming, where the optimal control
problem can split into subproblems going backward in time.
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• If the function V is not differentiable, one can still prove that (2.10) has
to be satisfied, in the so called viscosity sense. For a detailed description
of the theory, see [11]. In this seminal paper Crandall, Ishii and Lions
prove two key elements: existence and uniqueness of the solution to (2.10)
in the viscosity sense.

• Following this procedure one obtains a feedback control policy u = u∗(t, x).
Thus even if the initial condition changes it is not necessary to recompute
the solution, but just to evaluate u∗(t, x) in a different point. On the
other hand the PMP has the advantage that the conditions arising are a
set of ordinary differential equations, that need to be satisfied only on the
specific trajectory. The PMP produces sufficient conditions only under
restrictive convexity conditions, while the scope of the HJB PDE is more
general.

Examples

1. We revise the example studied in (2.6) and try to find a solution using
the HJB equation. This will throw some light on the similarities and
differences of the two methods.
Given 




min
|u(t)|≤10

∫ 1

0

x2

2
+
u2

2
dt+ x2(T ) ,

s.t. ẋ = x+ u , x(0) = 1 ,

the Hamiltonian function is

H(t, x, p) = inf
|u|≤10

{
p · (x+ u) +

(
x2

2
+
u2

2

)}
.

The minimum is attained at u = −p as long as |p(t)| < 10, otherwise it
lies on the boundary of U .
Let us consider the first case and substitute u = −p to get the explicit
Hamiltonian

H(t, x, p) =
x2

2
+ px− p2

2
,

that produces the following HJB

Vt +
x2

2
+ Vx

(
1− Vx

2

)
= 0 , V (1, x) =

x2

2
.

We solve the previous equation defining a new time τ = 1− t so that

Vτ −
x2

2
− Vx

(
1− Vx

2

)
= 0 , V (0, x) =

x2

2
.
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It is well known (see for instance [12]) that for linear quadratic problems
the value function has quadratic structure in x, so assume that

V (τ, x) = a(τ)
x2

2
,

and insert this in the HJB equation. One can simplify the term x2 if x 6= 0
and get an ordinary differential equation

ȧ = −a2 + 2a+ 1 , a(0) = 1 .

After a little bit of calculus the solution is found to be

a(τ) =
√

2 tanh (
√

2τ) + 1 =⇒ a(t) =
√

2 tanh[
√

2(1− t)] + 1 .

The value function for x 6= 0 is thus

V (t, x) = (
√

2 tanh(
√

2(1− t)) + 1)
x2

2
,

and the optimal control

u(t) = −p = −∂V
∂x

= −(
√

2 tanh
√

2(1− t) + 1)x .

Note the feedback structure, i.e. the fact that u(t) depends on the current
state x(t) of the system.
When using the optimal control, the system dynamics becomes

ẋ = −
√

2 tanh(
√

2(1− t))x , x(0) = 1 ,

whose trajectories are exactly those found with the Pontryagin maximum
principle in the previous section

x(t) =
cosh(

√
2(t− 1))

cosh
√

2
.

To conclude we verify the condition |u| ≤ 10, noting that

|u| = |
√

2 tanh(
√

2(1− t)) + 1)||x| <
√

2|x| <
√

2|x0| =
√

2 ,

where the first inequality holds because | tanh s| < 1 and the second be-
cause x(t) is monotonically decreasing.
With this method we have found the optimal control not just for x0 = 1,
but for all possible initial conditions x0, given that x0 <

10√
2
, i.e. when

the constraint |u| ≤ 10 is satisfied.
This is known as linear quadratic control problem as the dynamics is linear
in the state x and the control u, and the cost is quadratic. Such problems
can be solved in higher dimension using the HJB equation; in that case
one would get the famous Riccati Matrix equations. �
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Chapter 3

Differential Games

3.1 Introduction

We present here some of the main elements in the theory of differential games.
From an historical and scientific point of view, dynamic game theory lies at the
intersection of optimal control and game theory. The latter initially developed
by the pioneering work of Von Neumann and Morgensten [13] and was mainly
concerned with the study of multi-agents decision making within the framework
of finite games. On the other hand control theory developed quickly during the
Second World War thanks to the contribution of several important scientists
such as Bellman [14] and Pontryagin [15]. At that time control theory was
mainly focused on the study of dynamical systems and their optimization.
The main feature of dynamic game theory is the modelization of conflicting
situations amongst multiple agents. While in optimal control a single actor
is trying to minimize a certain cost (see problem (2.3)), here multiple players
are involved. Each of them is trying to optimize his personal payoff, which in
turn depends also on the other players choice. The evolution of the system is
governed by an ordinary differential equation.
It is important to get acquainted with the language and the tools, as in the next
chapter they will be widely used. First the differential game setup is presented
together with the two main definitions of solution. The difference between
open loop and closed loop strategies is made clear, and necessary or sufficient
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conditions are presented. Examples are also discussed.

Let us start with a two players game and identify with u1(t) and u2(t) their
control functions. A two agent differential game can be written as

P1 :

P2 :





min
u1(t)∈U1

J1(u1, u2) ,

min
u2(t)∈U2

J2(u1, u2) ,

s.t. ẋ = f(x, u1, u2, t) , x(0) = x0 ,

(3.1)

where

Ji =

∫ T

0

Li(x(t), u1(t), u2(t), t) dt+ ψi(x(T )) , i = 1, 2 .

Player number one is trying to minimize his own functional that depends on his
decision u1(t) and also on the other player choice u2(t). The control of the second
player influences the payoff of the first player both directly via L1(·, ·, u2(t), ·)
and indirectly via the evolution of the system state x. The same holds with
complete symmetry for the other player.

Example (duopolistic competition)

Two companies compete for market share as they both sell the same product.
Let us call x1(t) = x(t) ∈ [0, 1] the market share of the first company and
x2(t) = 1− x(t) the market share of the second one. Each company advertises
its product with effort ui(t) so that the Lanchester model [16] describes the
dynamics as

ẋ = (1− x)u1 − xu2 , x(0) = x0 ∈ [0, 1] .

This means that the share of the first company increases due to the adver-
tisement effort u1, with a coefficient proportional to the share of the second
company. On the other hand x decreases due to u2 with a coefficient propor-
tional to its own share.
Each of the players wants to maximize the revenue and thus the market share,
but the more advertisement the effort, the higher the cost they incur. Conse-
quently each of the companies wants to maximize (minimize the opposite)

Ji(u1, u2) =

∫ T

0

(
aixi(t)− ci

u2
i (t)

2

)
dt+ Sixi(T ) ,

with constants ai, ci, Si > 0.

What is the best advertisement policy for each company to follow?
The problem will be revised and tackled in the following, after discussing some
of the solution concepts. �
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Note that the differential game presented so far included just two players, but
the formulation can be easily extended to M ≥ 2 players

P1 :

PM :





min
u1(t)∈U1

∫ T

0

L1(x(t), u1(t), . . . , uM (t), t) dt+ ψ1(x(T )) ,

...

min
uM (t)∈UM

∫ T

0

LM (x(t), u1(t), . . . , uM (t), t) dt+ ψM (x(T )) ,

s.t. ẋ = f(x, u1, . . . , uM , t) , x(0) = x0 .

For the sake of simplicity in the following we will present the main concepts for
two players game, but they can be easily extended to the multiplayer case.

3.2 Nash and Stackelberg solutions

The first difficulty arises when trying to define what is an ‘optimal solution’ for
the problem (3.1). In general it is impossible to find controls u1(t) and u2(t)
that minimize both cost functionals at the same time. Indeed an outcome that
is optimal for one player, can be worse off for the other. Furthermore, if we keep
in mind the main feature of differential games, i.e. the modelization of conflicts,
this will hardly be the case. Several notions of solution have been introduced
(see [17]), here we are going to deal with the most used ones: Nash Solution
and Stackelberg solution.
While for optimal control problems we did not dwell on the differences between
open loop and closed loop solutions, for differential games it is necessary to do
so as the concepts are subtly different, in particular for the Stackelberg case.
In the following we will introduce first open loop strategies and subsequently
closed loop solutions. Note that the terms solution and equilibrium will be used
with the same meaning.

3.2.1 Open loop strategies

Open loop solutions to differential games are strategies that depend on the
time and implicitly on the initial condition x(0) = x0, even if this is not made
clear when writing as it is commonly done ui(t). We first give the definition of
open loop Nash equilibrium and apply the PMP theorem to obtain necessary
conditions. Finally we introduce the concept of open loop Stackelberg solution.
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Definition 3.1 (Open-Loop Nash Solution) A pair of control func-
tions (u∗1(t), u∗2(t)) is a Nash equilibrium for (3.1) if the following holds:

i) The control u∗1(t) is a solution to the optimal control problem for the first
player with fixed u2(t) = u∗2(t), i.e.





min
u1(t)∈U1

∫ T

0

L1(x(t), u1(t), u∗2(t), t) dt+ ψ1(x(T )) ,

s.t. ẋ = f(x, u1, u
∗
2, t) , x(0) = x0 .

ii) The control u∗2(t) is a solution to the optimal control problem for the second
player with fixed u1(t) = u∗1(t), i.e.





min
u2(t)∈U2

∫ T

0

L2(x(t), u∗1(t), u2(t), t) dt+ ψ2(x(T )) ,

s.t. ẋ = f(x, u∗1, u2, t) , x(0) = x0 .

This means that neither of the players can improve his situation by changing
unilaterally his own strategy, as long as the other player sticks to the equilibrium
solution. The Nash equilibrium concept was first introduced by A. Cournot in
[18] while discussing the theory of oligopoly, but is named after J. Nash who
proved the existence of at least one such equilibrium in a more specific case [19].
The main feature of this solution concept is that it describes a competitive game
in a scenario where the players are not allowed to exchange information to get
a better payoff.
For the first time it should be clear why we have spent some effort in the pre-
vious section giving an introduction to optimal control problems: the definition
of Nash Solution itself poses a two player differential game as a coupled opti-
mal control problem. The techniques we have seen for ‘single’ player problems
(i.e. Pontryagin maximum principle and HJB) will be widely used to formulate
necessary and sufficient condition for Nash optimality.

Finding Nash Equilibrium candidates using the PMP

Based on the PMP we present a procedure to compute a candidate Nash Solution
to (3.1). To do so let us assume that there exist unique controls u#

1 and u#
2

that minimize the corresponding pre-Hamiltonian

u#
1 (t, x, p1, p2) = arg inf

u1∈U1

{p1 · f(x, u1, u
#
2 , t) + L1(x, u1, u

#
2 , t)} ,

u#
2 (t, x, p1, p2) = arg inf

u2∈U2

{p2 · f(x, u#
1 , u2, t) + L2(x, u#

1 , u2, t)} .
(3.2)
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Consequently the Pontryagin Maximum Principle (see Theorem 2.1) gives the
following set of necessary conditions




ẋ = f(x, u#
1 , u

#
2 , t) , x(0) = x0 ,

ṗ1 = −p1 ·
∂f

∂x
(x, u#

1 , u
#
2 , t)−

∂L1

∂x
(x, u#

1 , u
#
2 , t) , p1(T ) =

∂ψ1

∂x
(x(T )) ,

ṗ2 = −p2 ·
∂f

∂x
(x, u#

1 , u
#
2 , t)−

∂L2

∂x
(x, u#

1 , u
#
2 , t) , p2(T ) =

∂ψ2

∂x
(x(T )) ,

with initial condition on the state and final condition on the adjoint variables.
Note that the previous system does not constitute a Cauchy Problem, but is a
mixed boundary value problem. The initial condition is given on the state, but
final conditions are specified for p1 and p2. If the problem has a solution, then
the candidate controls are found as

u#
1 (t) = u#

1 (t, x(t), p1(t), p2(t)) , u#
2 (t) = u#

2 (t, x(t), p1(t), p2(t)) .

Recall that the PMP is a necessary condition for optimality, thus even if one
finds solutions to the previous BVP, we cannot conclude that they are optimal.
Sufficient conditions for optimality via HJB will be presented in the Closed-Loop
section.

Example (Open-Loop Nash Equilibrium)

We are now in the position to write a necessary condition in order to find
the best advertisement policy for the duopolistic competition model previously
presented.

1. Following the procedure introduced above, let us start by computing the
optimal control as

u#
1 (t, x, p1, p2) = arg inf

u1∈U1

{p1 · f(x, u1, u
#
2 , t) + L1(x, u1, u

#
2 , t)} = (1− x)

p1

c1
,

u#
2 (t, x, p1, p2) = arg inf

u2∈U2

{p2 · f(x, u#
1 , u2, t) + L2(x, u#

1 , u2, t)} =
p2

c2
.

2. The BVP given by the Pontryagin Maximum principle is




ẋ = (1− x)u#
1 + xu#

2 = (1− x)2 p1

c1
+ x2 q2

c2
, x(0) = x0 ,

ṗ1 = −p1(u#
1 + u#

2 )− a1 = −p1

(
(1− x)

p1

c1
+ x

p2

c2

)
− a1 , p1(T ) = S1 ,

ṗ2 = −p2(u#
1 + u#

2 )− a2 = −p2

(
(1− x)

p1

c1
+ x

p2

c2

)
− a2 , p2(T ) = S2 .

�
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Open Loop Stackelberg Equilibrium

The Stackelberg equilibrium describes a situation in which the symmetry is lost.
The first player, called leader, chooses his strategy u1(t) and communicates it
to the second player, called follower, before the beginning of the game. Player
number one enforces his decision, i.e. is in the position to stick to what he has
previously announced. Player number two receives such a piece of information,
but can only choose u2(t) in order to minimize his own cost, given the strategy
u1(t).
The leader though can predict what the follower will choose when he announces
the strategy u1(t). Thus he will choose the control u1(t) that together with the
best reply of the follower u2(t) will give him the smallest possible cost.
The game is asymmetric because the leader optimizes ‘twice’ his cost: once
because he can choose the strategy u1(t) and the second time because he knows
what the second agent will play in response to his strategy. The solution takes
the name from the german economist H. Von Stackelberg who first described the
scenario in [20]. The model is widely used in economics and firms competition
study.
Before giving the formal definition of open loop Stackelberg equilibrium, we
need to introduce the concept of best reply set.

Best reply set : Given an admissible control u#
1 : [0, T ] 7→ U1, the best

reply set R2(u#
1 ) is the set of all admissible functions u2 : [0, T ] 7→ U2

such that they minimize the cost for the second player corresponding to
u#

1 (t). This means that u2 ∈ R2(u#
1 ) if it solves the problem





min
u2(t)∈U2

∫ T

0

L2(x(t), u#
1 (t), u2(t), t) dt+ ψ2(x(T )) ,

s.t. ẋ = f(x, u#
1 , u2, t) , x(0) = x0 .

Definition 3.2 (Open-Loop Stackelberg Solution) A pair of con-
trol functions u∗1(t), u∗2(t) is a Stackelberg equilibrium for (3.1) if the following
holds:

i) u∗2 ∈ R2(u∗1) ,

ii) Among all the possible controls u1 and best replies u2 ∈ R2(u1), one has

J1(u∗1, u
∗
2) ≤ J1(u1, u2) .

In order to find a Stackelberg equilibrium, the leader has to calculate the best
reply of the follower for each of his admissible controls u1, i.e. to construct
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R2(u1). He will then choose the control function u∗1 that minimizes his own
cost.
Note that with the definition we have given, we are taking the optimistic view
that, if the second player has several best replies to a strategy u∗1, he will choose
the most favorable for player one. The problem of nonuniqueness of the best
reply is quite difficult and will not be discussed here. In the following we will
always assume uniqueness of the best reply if not differently mentioned.

3.2.2 Closed loop strategies

Closed loop solutions to differential games are strategies that depend on the
time t and on the state of the system x. They are typically expressed as ui(t, x)
and can be implemented only if all the players can observe the current state
of the system x(t). While open loop strategies strongly depend on the initial
condition x0, in the closed loop case, it is natural to ask for the strategy to be
optimal regardless of the initial condition x(τ) = y with (τ, y) ∈ [0, T ] × Rn.
This is the essential difference with respect to open loop controls. We first give
the definition of closed loop Nash equilibrium and apply the HJB theorem to
obtain sufficient conditions for optimality. Subsequently we do the same with
the more delicate concept of closed loop Stackelberg solution.

Definition 3.3 (Closed-Loop Nash Solution) A pair of control func-
tions u∗1(t, x), u∗2(t, x) is a Closed-Loop Nash equilibrium for (3.1) if the follow-
ing hold:

i) The control u∗1(t, x) is a closed loop solution to the optimal control prob-
lem for the first player with fixed u2(t, x) = u∗2(t, x) and generic initial
condition x(τ) = y, with (τ, y) ∈ [0, T ]× Rn :





min
u1(t)∈U1

∫ T

0

L1(x(t), u1(t, x), u∗2(t, x), t) dt+ ψ1(x(T )) ,

s.t. ẋ = f(x, u1, u
∗
2, t) , x(τ) = y .

ii) The control u∗2(t, x) is a closed loop solution to the optimal control prob-
lem for the second player with fixed u1(t, x) = u∗1(t, x) and generic initial
condition x(τ) = y, with (τ, y) ∈ [0, T ]× Rn :





min
u2(t)∈U2

∫ T

0

L2(x(t), u∗1(t, x), u2(t, x), t) dt+ ψ2(x(T )) ,

s.t. ẋ = f(x, u∗1, u2, t) , x(τ) = y .
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Sufficient condition for Nash Equilibrium using the HJB equations

As the definition of Closed-Loop Nash equilibrium is described in terms of a cou-
pled optimal control problems, the solution will naturally satisfy the Dynamic
Programming Principle. In particular let x∗ be the trajectory corresponding to
the Nash Equilibrium and u∗1, u

∗
2 be the optimal controls. We can define one

value function per each player as the minimum cost-to-go they incur

Vi(τ, y)
.
= Ji(u

∗
1, u
∗
2; τ, y) =

∫ T

τ

Li(x
∗(t), u∗1(t), u∗2(t), t) dt+ ψi(x(T )) ,

where the trajectory x∗(t) propagates from (τ, y) following the ODE

ẋ∗ = f(x∗, u∗1, u
∗
2, t) , x∗(τ) = y .

As consequence of Theorem 2.4, each value function would satisfy a system of
coupled HJB equations

{
V1t = −∇V1 · f(t, x, , u∗1, u

∗
2)− L1(x∗(t), u∗1(t), u∗2(t), t) ,

V2t = −∇V2 · f(t, x, , u∗1, u
∗
2)− L2(x∗(t), u∗1(t), u∗2(t), t) ,

(3.3)

where the controls are computed as in (3.2) and evaluated in pi = ∇Vi, i.e.

u∗i = u#
i (t, x,∇V1,∇V2) .

The system constitutes a PDE initial value problem as it is completed with the
terminal condition on the value functions

V1(T, x) = ψ1(x) , V2(T, x) = ψ2(x) .

As shown in [21], the system is in general not hyperbolic, and the linearized
Cauchy problem is ill posed both backward and forward in time1. This means
that small perturbations on the initial condition can propagate and become
‘large’ in finite time.

Closed Loop Stackelberg Equilibrium

Giving a well posed and solid definition of Closed-Loop Stackelberg Equilib-
rium is not a trivial task. If one indeed defines the Closed-Loop Stackelberg
Equilibrium in a similar fashion to what done for the Closed-Loop Nash case
(i.e. asking u∗1(t, x) and u∗2(t, x) to be Stackelberg optimal for all possible initial
conditions x(τ) = y), he will notice that such a solution would not verify the

1In the case of zero sum games one can prove that the system is at least hyperbolic.
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Principle of Dynamic Programming. This is due to the lack of symmetry that
does not allow to split the problem into smaller subproblems, as on the other
hand is done in the statement of the Dynamic Programming. Consequently one
would no longer be able to use standard tools of optimal control theory (HJB
in this specific case). Several workaround have been conceived but the simplest
way to define the Closed-Loop Stackelberg equilibrium is to ask for weaker re-
quirements.
In particular in [22] the continuous problem is discretized and the leader an-
nounce and enforce his strategy only stage-wise. Taking the limit as the discrete
problem becomes continuos, one obtains a (well posed) definition of Closed-Loop
Stackelberg solution. Loosely speaking the Closed-Loop Stackelberg solution is
the solution of a leader-follower game where the leader has only infinitesimal
advantage over the follower. For a more detailed discussion on the definition
see [23]. For such weaker solutions one can show that the Closed-Loop Stackel-
berg equilibrium satisfies the Dynamic Programming Principle, and thus can be
characterized using the HJB partial differential equation, as we shortly present
here.

Sufficient condition for Stackelberg Equilibrium via HJB equations

Let us assume that the best reply of the second player to what the leader
announces is unique. It can therefore be computed as

u#
2 (t, x, p1, p2, u1) = arg inf

u2∈U2

{p2 · f(x, u1, u2, t) + L2(x, u1, u2, t)} , (3.4)

and does depend on the choice of u1.
The leader will then optimize given the knowledge of the best reply, i.e.

u#
1 (t, x, p1, p2) = arg inf

u1∈U1

{p1 · f(x, u1, u
#
2 (t, x, p1, p2, u1), t)

+ L1(x, u1, u
#
2 (t, x, p1, p2, u1), t)},

(3.5)

with the corresponding one for the follower being

u#
2 (t, x, p1, p2) = u#

2 (t, x, p1, p2, u
#
1 (t, x, p1, p2)) .

As a consequence of Theorem 2.4 and as shown in [21], a sufficient condition to
find a closed loop Stackelberg equilibrium is given by

{
V1t = −∇V1 · f(t, x, , u∗1, u

∗
2)− L1(x∗(t), u∗1(t), u∗2(t), t) ,

V2t = −∇V2 · f(t, x, , u∗1, u
∗
2)− L2(x∗(t), u∗1(t), u∗2(t), t) ,

where the controls are computed as in (3.4), (3.5) and evaluated in pi = ∇Vi,
i.e.

u∗i = u#
i (t, x,∇V1,∇V2) .
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The system constitutes a PDE initial value problem as it is completed with the
terminal condition on the value functions

V1(T, x) = ψ1(x) , V2(T, x) = ψ2(x) .

Note that the only difference with the system of PDE obtained in the Nash
case is in the choice of the optimal policies u∗i (t). In the Nash case they where
obtained from equation (3.2), while here the first player chooses for u∗1 being
aware of the best reply of the second player, see equations (3.4) and (3.5).
A similar system of HJB will be obtained in the next chapter when dealing with
the differential game arising from the problem of optimal monitoring.



Chapter 4

Optimal Monitoring via
differential game

4.1 Introduction

The ancestor of the unmanned flight vehicles dates back at least to the 1800
when the Austrian artillerist Franz von Uchatius conceived the idea of flying
unmanned balloons carrying explosives to attack Venice. The balloons were
uncontrolled and their flight path was determined mainly by the weather con-
ditions. The first mission indeed failed because of unfavorable wind, but the
second attempt got “luckier” and caused minimal damages to the city.
If we restrict to vehicles capable of generating lift and on which there was a min-
imum control, the kite flown by Douglas Archibald in 1883 can be considered
the ancestor of the modern Unmanned Aerial Vehicles (UAVs). It was capable of
flying up to 350 m, measuring the wind speed with an anemometer and taking
one of the first aerial pictures. William Eddy exploited the ideas of Douglas
and used a similar kite to take various pictures during the Spanish-American
war in 1898. That was the first use of an UAV in combat, and since then, the
development of UAVs has been mainly driven by military applications.
During the First World War Charles Kettering developed the Kettering Aerial
Torpedo, an unmanned biplane commonly known as the ‘Bug’ that was capable
of flying for roughly 70 km carrying 80 kg of explosive material. The vehicle
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was guided by a preset controller. The main breakthrough though came a few
years later, when Prof. Montgomery Low solved the aerial data link problem
and made the first radio controlled flight in 1924. After that time UAVs got
perfected and had been used constantly in the Second World War as bomb car-
rier. Well known for this are the German’s V1 and V2.
From the Vietnam War, UAVs started being used also for reconnaissance as
deep penetrators. They are indeed capable of infiltrating in the hostile territory
without jeopardizing human lives, and can provide priceless pieces of informa-
tion. In the War in Afghanistan they have been widely used to locate and keep
track of important targets and have proved to be a decisive weapon [1].
On the civil side, NASA started in the early 1970s to investigate automatically
controlled drones. The first project was called PA-30 and featured a self guided
airplane even though a pilot was in the cockpit for safety reasons. NASA ac-
tively engaged in other programs such as the F-15 Spin Research Vehicle in
order to bring the potential of UAV to the civilian [24]. In the 1990s NASA
started a pilot program to attract industrial partners and opened the door to
the modern era of UAVs.
The market for unmanned vehicles is in rapid expansion as the data from [25]
show in figure 4.1. Here we give a quick overview on the civil areas of interest.

 
UAS ROADMAP 2005 

2.6 UAS PROGRAMMATIC DATA 
Between 1990 and 1999, DoD invested over $3 billion in UAS development, procurement, and operations 
(see Table 2.6-1).  In the wake of September 11, 2001, FY03 was the first billion-dollar year in UAS 
history and FY05 will be the first two billion-dollar year (see Figure 2.6-1 and Tables 2.6-2 and 2.6-3).  
The U.S. UAS inventory is expected to grow from 250 today to 675 by 2010 and 1400 by 2015 (not 
including micro and mini UA) and to support a wider range of missions—e.g. signals intelligence 
(SIGINT), cargo, communication relay, and Suppression of Enemy Air Defenses (SEAD)—compared to 
today’s imagery reconnaissance and strike roles.  

TABLE 2.6-1.  SUMMARY STATUS OF RECENT UAS PROGRAMS. 

System Manufacturer 
Lead 

Service 
First 

Flight IOC 
Aircraft 

Built 
Aircraft 
Fielded Status 

MQ-1/Predator General Atomics      Air Force 1994 2005 100+ 60 100+ ordered 

RQ-2/Pioneer Pioneer UAV, Inc.   Marine 
Corps 1985 1986 175 35 Sustainment 

through FY13 
RQ-3/DarkStar Lockheed Martin     Air Force 1996 n/a 3 0 Cancelled ‘99 
RQ-4/G’Hawk Northrop Grumman  Air Force 1998 2006 10 7 51 planned 
RQ-4/G’Hawk Northrop Grumman Navy 2004 n/a 2 2 2 planned 
RQ-5/Hunter Northrop Grumman Army 1991 n/a 72 35 18 on order 
RQ-6/Outrider Alliant Techsystems  Army 1997 n/a 19 0 Cancelled ‘99 
RQ-7/Shadow200 AAI Army 1991 2003 100+ 90 164 planned   
RQ-8/Fire Scout Northrop Grumman  Navy 1999 2007 5 0 168 planned 
MQ-9/Predator B   General Atomics Air Force 2001 TBD 5 0 63 planned 
CQ-10/Snow Goose MMIST Army 2002 2005 10 0 49 planned 
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FIGURE 2.6-1.  DOD ANNUAL FUNDING PROFILE FOR UAS. 
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Figure 4.1: Annual funding profile from the Department of Defense for UAVs.

• Aerial surveillance and patrolling: this is one of the main applications of
UAVs. Due to their versatility and the capability to carry on different
payloads (such as cameras), they constitute an essential tool in surveil-
lance. They have been used for instance to discover wildfires or for road
patrolling [2].

• Disaster relief - Search and rescue: UAVs can be extremely useful in dan-
gerous location thanks to the fact that no human being is directly involved
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in their operations. For instance drones can retrieve important informa-
tion from compromised areas and help rescuing endangered people.

• Filmmaking: though not the main application, drones are being used by
movie makers to shot special scenes due to their higher flexibility when
compared with standard shooting devices.

• Oil and gas exploration: when fitted with special payloads such as mag-
netometers, UAVs help to understand the nature of the underground rock
structure. Magnetic field data are indeed already used to locate the posi-
tion of mineral deposits.

• Postal delivery: this is a novel application that is under investigation.
The german company DHL has started a pilot project and in 2013 was
it capable of delivering a parcel of around 1kg with the small quadcopter
shown in picture 4.2.

Figure 4.2: The UAV used by DHL to deliver a small parcel across the Rhine.

• Scientific research: this is a wide area and contains several applications
that differ significantly one from the other. The National Oceanic and
Atmospheric Administration, for instance, used UAVs to study and track
the formation of hurricanes.

This chapter has begun with a brief historical background on UAVs and their
evolution both in the military and civil sector. In the next section the problem
of monitoring is introduced.
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4.2 Monitoring using UAVs and related works

As previously mentioned, one of the core applications for UAVs is surveillance.
Toward such goal, it is necessary to investigate how drones should coordinate in
an arbitrary environment of given shape in order to collect meaningful data. In
a real scenario several constraints must be taken into account, such as limited
amount of fuel, poor or missing data link, time restrictions and others.

In the remaining of this work we will analyze the problem of monitoring a given
region by means of UAVs under more ideal conditions, i.e. by neglecting some of
the constraints just mentioned. The main purpose is nevertheless to model and
capture the most important features of the problem, including the coordination
of multiple agents and avoiding their mutual collision.

In the case when the domain to be controlled has relatively small size compared
to the sensors capabilities, the problem of surveillance can be turned into a
static optimization problem where the position of the sensors is fixed. Given
a region of known shape, the optimization of static sensors location has been
deeply studied in the past, for instance in [26], [27]. The solution is well known
to be a Voronoi partition, where each sensor is responsible for a single Voronoi
cell and its location coincides with the centroid of the cell it belongs to [28].
Loosely speaking, given a region to cover and a number of points (the agents),
the region is subdivided into cells such that each point of the region is allocated
to the the closest cell. A good introduction to the main difficulties is provided in
[3], where the authors discuss the challenges that come along with multi agents
networks for sensing and estimation.
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Fig. 1.1 On the left, the Voronoi regions corresponding to 10 randomly selected points in a square;
the density function is a constant. The dots are the Voronoi generators and the circles
are the centroids of the corresponding Voronoi regions. Note that the generators and the
centroids do not coincide. On the right, a 10-point centroidal Voronoi tessellation. The
dots are simultaneously the generators for the Voronoi tessellation and the centroids of the
Voronoi regions.

Given a region V ⊆ RN and a density function ρ, defined in V , the mass centroid
z∗ of V is defined by

z∗ =

∫

V

yρ(y) dy
∫

V

ρ(y) dy

.(1.2)

Given k points zi, i = 1, . . . , k, we can define their associated Voronoi regions
V̂i, i = 1, . . . , k. On the other hand, given the regions V̂i, i = 1, . . . , k, we can define
their mass centroids z∗i , i = 1, . . . , k. Here, we are interested in the situation where

zi = z∗i , i = 1, . . . , k,(1.3)

i.e., the points zi that serve as generators for the Voronoi regions V̂i are themselves
the mass centroids of those regions. We call such a tessellation a centroidal Voronoi
tessellation. This situation is quite special since, in general, arbitrarily chosen points
in RN are not the centroids of their associated Voronoi regions. See Figure 1.1 for an
illustration in two dimensions.

One may ask, How does one find centroidal Voronoi tessellations, and are they of
any use? In this paper, we review some answers to these questions. Concerning the
first question, and to be more precise, consider the following problem:

Given
a region Ω ⊆ RN ,
a positive integer k, and
a density function ρ, defined for y in Ω,

find
k points zi ∈ Ω and
k regions Vi that tessellate Ω

such that simultaneously for each i,

Figure 4.3: Example of a 10 point centroidal Voronoi tessellation of a square.
Every region includes all the points that need to be controlled from
each camera located in the center (black points).
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When the area to be monitored increases, a static solution no longer provides a
sufficient coverage, but mobile sensors need to be considered. The literature in
this field is quite new and the survey [29] by Li and Cassandras presents a valid
starting point. They discuss both static and dynamic scenarios and analyze the
problem from different perspectives such as coverage, communication costs and
others.
The same authors consider the case of a random event occurring in a given
region and study the problem of capturing it [30]. They model the probability
distribution of the random event to be captured and successively try to max-
imize the rate of capture, minimizing at the same time the communications.
Given an initial position of the agents they develop a maximization algorithm
that converge to a local optimum. The long term solution coincides with a sta-
tionary configuration.
Similar issues have been studied in [31] and [32]. The first deals with redeploy-
ment of the agents in order to improve the coverage, while in the second one
the authors focus on surveillance tasks.
Modifications of the Voronoi solution for a dynamic case have been introduced in
[33] and [34], the main issue being the computational effort required when com-
puting the Voronoi tessellation continuously as in the above mentioned works.
In the previously mentioned papers the authors focused on redeploying the
agents, i.e. given a known initial condition, they determine a final configu-
ration to which the agents should converge and a way to reach this goal.
A completely new perspective on the problem has been introduced by Hussein
and Stipanović in [5]. Given an initial configuration they devise a way to con-
trol the agents in order to guarantee that a certain minimum coverage value
is achieved across all the region. One of the main contributions of the above
mentioned work ‘Effective Coverage Control for Mobile Sensor Networks With
Guaranteed Collision Avoidance’ is the formulation of the problem itself, re-
gardless of the solution they present. They indeed introduce the instantaneous
coverage and the coverage maps. Mylvaganam and Astolfi in [4] worked in the
same direction as Hussein and Stipanović but introduced concepts from game
theory and formulated the problem for the first time in terms of differential
game. The papers [4] and [5] constitute the foundation on which the work
presented here is based.

This thesis introduces some novelties in the field of monitoring. They are briefly
presented in this paragraph, where the structure of the chapter is presented.
In section 4.3 the main goal is formally discussed, the instantaneous coverage
and the coverage map are introduced in 4.4. The mathematical problem is
formulated in section 5.1 as a standard differential game, following what has
been done in [4], where Mylvaganam and Astolfi look for approximate solutions.
In contrast to this, we write down the HJB equations and try to solve them
numerically.
The problem is then reformulated as a novel non standard game in section 6.1.
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Two different approximate solution methods are discussed. In 6.2 we adopt an
optimal control approach, while in 6.3 a decomposition based on wavelets is
presented. The reformulation and the wavelet approach constitute the main
novelty presented in this thesis.

4.3 Problem formulation

Let us introduce in more detail the problem of optimal monitoring via UAVs.

Given a region Ω ⊂ Rn, n ∈ {1, 2, 3}, of known shape, consider a number m ≥ 1
of UAVs. The dynamics of each agent is governed by a differential equation

ẋi = fi(xi, ui) , i = 1, . . . ,m ,

where xi(t) ∈ Ω represents the agent position and the function ui(t) can be
used to control its movement. Every agent is equipped with a sensor capable of
collecting data on the region Ω. Note that both the agents and the sensors are
heterogeneous, i.e. the dynamics fi and the sensors model can be different for
different UAVs. The main question we want to address is the following.

How should the agents move in order to monitor the region Ω ‘optimally’, in the
given mission time T?

Introduction Problem Formulation Optimal control approach Wavelet expansion approach

Monitoring using UAVs
Region ⌦ is given

Multiple UAVs with own dynamics and heterogeneous sensors

Objective: Monitor the given region ⌦
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⌦

I

II

Figure 4.4: Sketch of a region Ω to be monitored and two UAVs flying around.

The problem is not well defined unless one specifies what ‘optimally’ means in
this context. As a matter of fact depending on the application, one may want
to optimize different criteria. It is not possible at this stage to formally specify
what we mean by ‘optimal’, as more tools are needed in order to do so.
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Nevertheless we want to present the main idea that will guide us:

The agents should move in order to continuously maximize the minimum cov-
erage of Ω.

The tools we need to introduce include the sensor model and the coverage map.
They are presented in the following subsection, after which a precise mathemat-
ical formulation of the problem is given.

4.4 Sensor model and coverage map

Similarly to what is done in [5], let us introduce the sensor model and the
coverage map.

• The sensor model Si represents what the i-th agent can perceive of the
surrounding domain Ω and how good is in capturing each single point
q ∈ Ω. The sensor model is completely identified by the positive real
valued map

Si(xi, q) : Ω× Ω 7→ R+ ,

that describes how effectively the i-th agent located in xi senses the point
q ∈ Ω.

Introduction Problem Formulation Optimal control approach Wavelet expansion approach

Optimal Monitoring (I)
Monitor the region “optimally”
Idea: Continuously maximize the minimum coverage

Introduce two main elements :
1 Sensor model Si : ⌦ ◊ ⌦ ‘æ R

Si(xi(t), q) , xi(t) position of agent i at time t, q œ ⌦

Figure : Sensor model Si(xi(t), q) = e≠–i ||xi (t)≠q||2
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q1

q2 ⌦

xi(t)

Figure 4.5: Example of sensor model Si(xi, q) = e−αi||xi−q||2 in R2. The
higher the value of Si(xi, q), the better the sensor located in xi
can perceive what is happening at the point q.

We consider sensors that satisfy the following properties:

1. The maximum sensing capacity is attained in the exact point xi where
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the agent is located, i.e.

Si(xi, xi) > Si(xi, q) , ∀ q 6= xi , q, xi ∈ Ω .

This is true for all the agents.

2. Each sensor capacity decays with the euclidean distance from the
position of the corresponding agent xi. This means that the sensor
model has a circular symmetry.

Si(xi, q̃) < Si(xi, q) ∀ q̃ , q , xi ∈ Ω s.t. ||q̃ − xi|| > ||q − xi|| ,

Si(xi, q̃) = c ∀ q̃ , xi ∈ Ω s.t. ||q̃ − xi|| = dc const.

This holds true for all the agents.

To understand why we assume such properties let us suppose the payload
of the considered drone is an ideal camera. The most focused point of
the image is clearly the center (prop. 1), while the quality of the image
decreases with the distance from it and has circular symmetry (prop. 2).
For a real camera the field of view represents the area that can be sensed
by the instrument and is finite. This implies that the sensor model should
have compact support and the value of Si should be zero when the distance
is large from the center xi. One could enforce this, but it would introduce
further complications in the following. Thus from now on we consider a
sensor of the form

Si(xi, q) = e−βi||xi−q||2 , βi > 0 , (4.1)

that respects the properties 1 and 2 and has quick decay, i.e. in some
weaker sense resemble the compact support property. The considered
sensor model is depicted in figure 4.5 for a fixed value of xi .

• The coverage map takes into account the past history and represents
at time t how well each point q ∈ Ω has been surveyed following the
trajectories of the agents xi(s), s ∈ [0, t]. The coverage map is given by
the integral of the sensor model following the trajectory of the agents. The
contribution of the i-th agent to the coverage map is given by

J it (xi(s), q) =

∫ t

0

Si(xi(s), q) ds ,

while when multiple UAVs are involved, the contributions sum up

Jt(x(s), q) =

∫ t

0

m∑

i=1

Si(xi(s), q) ds , (4.2)
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where x(s) = [x1(s), . . . , xm(s)] represents the positions of all the agents.
Note that the coverage map Jt depends on the sensor model and on how
the agents have moved from the initial time s = 0 up to s = t, i.e. Jt is
a functional that maps the trajectories xi(s), s ∈ [0, t] into the coverage
value for each point q ∈ Ω. An example of coverage map is shown in figure
4.6.

Introduction Problem Formulation Optimal control approach Wavelet expansion approach

Optimal Monitoring (II)
2 Coverage map J : X ◊ ⌦ ‘æ R at time T

J i
T (xi(t), q) =

⁄ T

0
Si(xi(t), q) dt, for single agent

JT (x(t), q) =

⁄ T

0

ÿ
Si(xi(t), q) dt, for multiple agents

Figure : Example of coverage map
D. Paccagnan Optimal Monitoring via Di�erential Games June 6, 2014 8 / 19

q1

q2 ⌦

x̃1(t)

Figure 4.6: Example of coverage map for a single agent moving with constant
speed on an arc of circle. The sensor model used is (4.1).
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Chapter 5

Monitoring as a standard
differential game

5.1 Standard game formulation

We are now in the position to formulate the optimal monitoring problem in
terms of differential games. The idea has been presented for the first time in
[4], where the authors introduced the concept of virtual players.
In section 4.3 we have stated the problem explicitly; let us recall it here and use
it as a starting point for the discussion:

How should the agents move in order to monitor the region Ω ‘optimally’, in the
given mission time T?

As already mentioned we need to give a clear meaning to the concept of ‘opti-
mal’ monitoring. Loosely speaking we have said that:

The agents should move in order to continuously maximize the minimum cov-
erage in Ω.

With this in mind, virtual players x̃i(t), i = 1, . . . ,m with fast dynamics are
introduced. The purpose is to use these agents to look for the less covered
points and then to ask the real agents xi(t) to track their trajectory i.e. to
maximize the coverage following the less covered points. Since the players x̃i(t)
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are fictitious, they can be equipped with arbitrary dynamics. In particular let
us introduce simple integrator dynamics for them, i.e.

˙̃xi = wi , i = 1, . . . ,m ,

where wi represents the control of the i-th virtual player.
It is assumed that the real players also follow single integrator dynamics

ẋi = ui , i = 1, . . . ,m .

Even if this may seem unrealistic, often the problem of path planning for aerial
vehicles is studied with a very simple dynamics or even neglected [1]. At a
preliminary stage one wants to look for the optimal trajectory for the problem
without taking too much into account the dynamics of the specific vehicle used.
At a further stage, when the trajectory is found, it is possible to pose the
problem of tracking such a motion by assuming a more realistic vehicle model.
Furthermore, as it will be clearer in the following, the problem is extremely
difficult to tackle and even in this simple scenario preserves the main features.
In real applications the control effort ui is limited by the hardware capabilities,
this needs to be taken into account asking for the control functions ui(t) to
satisfy at each time

||ui(t)|| ≤ uM , ∀t ∈ [0, T ] , (5.1)

and for all the agents i = 1, . . . ,m.
As already discussed the virtual players can be attributed arbitrary dynamics,
but also in this case it is necessary to specify a bound on the control value, that
could otherwise go to infinity. We ask the fictitious players to satisfy a similar
condition

||ũi(t)|| ≤ ũM , ∀t ∈ [0, T ] , (5.2)

but we want them to be faster than the real players in order to quickly reach
the less covered points. Thus we want the following condition to be satisfied

ũM � uM . (5.3)

The problem can consequently be formulated as a differential game, where the
fictitious agents (first players) look for the less covered points, while the real
players (second players) want to increase the coverage in those specific points
i.e. 




min
w(t)

∫ T

0

m∑

i=1

Si(xi(s), x̃i(s)) ds ,

max
u(t)

∫ T

0

m∑

i=1

Si(xi(s), x̃i(s)) ds ,

s.t. ẋi = ui , ˙̃xi = wi ,

with ||ũi(t)|| ≤ ũM , ||ui(t)|| ≤ uM , ũM � uM .

(5.4)
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Note that a further constraint on the trajectories xi(t) and x̃i(t) must be in-
cluded, namely

xi(t) ∈ Ω , x̃i(t) ∈ Ω ,

since this is not guaranteed by the fact that the controls are bounded. In
particular this constraint is necessary as the player looking for the less covered
points would otherwise leave the set Ω. As a matter of fact in Ω the coverage is
greater than outside.
A simple way to satisfy the previous constraints is to include a barrier function
that penalizes the players when they leave the set Ω, see [35]. We want to
penalize virtual and real players in the same way, thus let us introduce the
barrier b(x, x̃) in (5.4) as in the following





min
w(t)

∫ T

0

m∑

i=1

Si(xi(s), x̃i(s)) + b(x(s), x̃(s)) ds ,

min
u(t)

∫ T

0

−
m∑

i=1

Si(xi(s), x̃i(s)) + b(x(s), x̃(s)) ds ,

where b(x, x̃) > 0 and in particular is zero when inside Ω, but grows rapidly
when reaching the boundary ∂Ω. An example of barrier function is the one
depicted in figure 5.1.

0

1

x
x̃

b
(x

,
x̃
)

Figure 5.1: Example of barrier function on a squared domain Ω× Ω. Barrier
functions are used to penalize the agents when they leave the do-
main Ω. They are chosen so that b(x, x̃) > 0 and in particular
to be zero when inside Ω, but growing rapidly when reaching the
boundary ∂Ω.
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Finally the hard constraints (5.1) and (5.2) can be transformed into soft con-
ditions introducing another term that penalizes high control activity. The final
differential game assumes the form





min
w(t)

∫ T

0

m∑

i=1

Si(xi(s), x̃i(s)) + b(x(s), x̃(s)) + α1
||w||2

2
ds ,

min
u(t)

∫ T

0

−
m∑

i=1

Si(xi(s), x̃i(s)) + b(x(s), x̃(s)) + α2
||u||2

2
ds ,

s.t. ẋi = ui , ˙̃xi = wi ,

with α1 � α2 ,

(5.5)

where x(s) = [x1(s), . . . , xm(s)] and x̃(s) = [x̃1(s), . . . , x̃m(s)] represent the po-
sitions of real and fictitious players respectively, while w(s) = [w1(s), . . . , wm(s)]
and u(s) = [u1(s), . . . , um(s)] represent the control for real and fictitious vehicles
respectively.

5.2 Sufficient conditions

As the differential game (5.5) arising from optimal monitoring is in standard
form, conventional techniques presented in the previous chapter can be applied.
Closed loop solutions are in particular always preferred when dealing with real
world applications. They are more robust than open loop strategies that need
to be recomputed in the case a perturbation steers the system away from the
optimal trajectory.

Let us consider the case of a single agent monitoring the segment Ω = [a, b] ⊂ R
in the interval [0, T ], and devise the HJB sufficient condition for Nash optimality
as presented in the previous chapter in (3.3).
The game is given by





min
w(t)

∫ T

0

S(x(s), x̃(s)) + b(x(s), x̃(s)) + α1
w2

2
ds ,

min
u(t)

∫ T

0

−S(x(s), x̃(s)) + b(x(s), x̃(s)) + α2
u2

2
ds ,

s.t. ˙̃x = w , ẋ = u ,

with α1 � α2 .

(5.6)

• Optimal policy: The optimal policies w∗(x̃, x, p̃, p) and u∗(x̃, x, p̃, p) are
obtained as functions of the state (x̃, x) and of the momenta (p̃, p), as
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shown in equation (3.2)

w∗ = arg inf
w

{
p̃1w + p̃2u+ S(x, x̃) + b(x, x̃) + α1

w2

2

}
= − p̃1

α1
,

u∗ = arg inf
u

{
p1w + p2u− S(x, x̃) + b(x, x̃) + α2

u2

2

}
= − p2

α2
.

• Hamiltonian: Let us denote by H and H̃ the hamiltonian functions for
the real and fictitious player. One gets

H̃(x, x̃, p, p̃) =

{
p̃1w

∗ + p̃2u
∗ + S(x, x̃) + b(x, x̃) + α1

w∗2

2

}

= − p̃2
1

2α1
− p̃2p2

α2
+ S(x, x̃) + b(x, x̃) ,

H(x, x̃, p, p̃) =

{
p1w

∗ + p2u
∗ − S(x, x̃) + b(x, x̃) + α1

u∗2

2

}

= − p2
2

2α2
− p1p̃1

α1
− S(x, x̃) + b(x, x̃) .

• HJB: The partial differential equations that the value functions V (t, x, x̃)
and Ṽ (t, x, x̃) need to satisfy are given by (3.3) as

{
Ṽt + H̃(x, x̃,∇V,∇Ṽ ) =0 ,

Vt +H(x, x̃,∇V,∇Ṽ ) =0 ,
(5.7)

together with the final conditions
{
Ṽ (T, x, x̃) = b(x, x̃) ,

V (T, x, x̃) = b(x, x̃) ,
(5.8)

since we want to penalize the final position when it is outside of the domain
Ω. The equations (5.7) take the explicit form





Ṽt =
Ṽ 2
x̃

2α1
+
ṼxVx
α2
− S(x, x̃)− b(x, x̃) ,

Vt =
V 2
x

2α2
+
Ṽx̃Vx̃
α1

+ S(x, x̃)− b(x, x̃) ,

(5.9)

where Vx and Vt represent respectively the space and time partial deriva-
tives of the value functions.

Note that in this case it is not crucial to specify which equilibrium we are in-
terested in. As a matter of fact it is easy to see that with the given formulation
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the Nash solution coincides with the Stackelberg one.
The system (5.9) together with the terminal conditions (5.8) constitutes a initial
value problem for partial differential equations.

5.3 Numerical results

A commonly used numerical method to solve such problem is the finite difference
scheme with the use of upwind, see [36]. We have adapted the optimal control
toolbox provided by Mitchell in [37] and computed the numerical solutions to-
gether with the optimal policies u∗(t, x̃, x,∇Ṽ ,∇V ) , w∗(t, x̃, x,∇Ṽ ,∇V ) for the
monodimensional problem discussed here. The value functions are presented in
figure 5.2 and 5.3 only for t = 0.25 since the shape does not change consistently
when the time passes by.
The results are obtained with the following values of the parameters





α1 = 1 , α2 = 5 ,

a = 0 , b = 5 ,

β = 1 , T = 1.

(5.10)

It is of great interest to consider the closed loop system, i.e. the system when
the feedback control is applied, in this case simply

{
˙̃x = w∗(t, x̃, x,∇V,∇Ṽ ) ,

ẋ = u∗(t, x̃, x,∇V,∇Ṽ ) .
(5.11)

The study of this dynamical system will provide with qualitative information on
the behavior of the agents when they follow the optimal strategy. The system is
bidimensional, thus it is possible to represent the vector field for different values
of t ∈ [0, T ]. Since only the magnitude of the vector field changes significantly
with time, but not its direction, in figure 5.4 the phase portrait of the closed
loop system is shown for t = 0.25. The direction of the arrows is representative
of the behavior for all times 0 ≤ t ≤ T .

Remarks

• As discussed in the survey paper [38], in general the numerical solution for
a system of HJB equations is difficult to obtain, and the computational
burden grows exponentially with the dimension of the state. In dimension
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Figure 5.2: Value function at time t = 0.25 for the first player of the optimal
monitoring game (5.6). Parameters as from (5.10).
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Figure 5.3: Value function at time t = 0.25 for the second player of the optimal
monitoring game (5.6). Parameters as from (5.10).

n ≤ 3 the solution is quite viable, while higher dimension problems have
been solved numerically just in a few cases. Consequently such technique
does not allow the introduction of more players or the study of planar
problem i.e. with xi ∈ R2. Furthermore from the numerical side, the HJB
system is very sensitive to the errors and shows instability issues. Artificial
terms need to be introduced in the numerical solution, for example using
the Lax-Friedrichs scheme [39].
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Figure 5.4: Phase portrait of the closed loop dynamical systems (x̃, x). The
color represent the magnitude of the field. Red stands for high
velocity, while blue for low. Note that when the magnitude is
close to zero i.e. dark blue color, the direction of the arrows may
be affected by numerical errors. This is the case for instance along
the diagonal x = x̃. If the initial condition lies below the diagonal,
the system moves toward the equilibrium in the top right corner.
On the contrary when the initial condition is located above the
diagonal, the dynamics moves in the direction of the equilibrium
in the bottom left corner.
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Figure 5.5: Zoom of the bottom left corner for the closed loop phase portrait of
(5.11) at t = 0.25. Here the length of the arrows is representative
of the magnitude of the vectors. Note how trajectories coming
from the upper side cannot cross the diagonal as they will anyway
stop at an equilibrium point.

• Let us comment the result shown in figure 5.4.
In the considered case a single agent is monitoring a segment Ω = [a, b]
starting from one of its extremes. One would expect the solution (tra-
jectory that continuously maximize the minimum coverage) to show some
sort of oscillatory nature: the agent starts from x = a, goes toward x = b
and comes back at multiple times. On the contrary the numerical solution
does not incorporate this behavior. At a first glance there seems to be
some sort of periodic solution at least for t far from the end of the interval
[0, T ], but if one looks closer to the top right and bottom left corners of
the phase portrait (see the zoom in figure 5.5) this is not the case. The dy-
namical system indeed has two equilibrium points in such corners, where
the dynamics is attracted. As a matter of fact no oscillatory behavior
occurs and an agent starting from x = a will move towards x = b by the
end of the interval [0, T ], no matter where x̃ starts from.
This is due to the fact that the mission has finite horizon (and not infi-
nite) and is also a consequence of the specific formulation in terms of the
standard game presented in equation (5.5). Since this is a minimal feature
that we want to include in the model, in the next section we explain with
more details why (5.5) cannot produce such result, and how to modify the
model in order to reach the goal.
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Chapter 6

Monitoring as a non
standard differential game

6.1 Non standard game formulation

With the formulation of section 5.1, virtual players P1 have been introduced
with the aim to let them look for the less covered points. Subsequently the
real agents P2 where asked to track such trajectory by trying to maximize the
coverage along the paths of P1 i.e. x̃i(s). The differential game assumed the
form (5.4) that we recall here

P1

P2





min
w(t)

∫ T

0

m∑

i=1

Si(xi(s), x̃i(s)) ds ,

max
u(t)

∫ T

0

m∑

i=1

Si(xi(s), x̃i(s)) ds ,

s.t. ẋi = ui , ˙̃xi = wi ,

with ||ũi(t)|| ≤ ũM , ||ui(t)|| ≤ uM , ũM � uM .

With such structure the virtual players do not look for the less covered point(s)
at each fixed instant t ∈ [0, T ], but they look for the points xi(s) that produce the
minimum coverage at the end of the interval. This explains the non oscillatory
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behavior seen in figure 5.4 and produces interesting results when the goal is to
survey the region Ω. On the contrary as far as patrolling is concerned, we would
require the agents to travel more than once through the same location q ∈ Ω.
As discussed, this does not happen with the actual formulation (5.5), thus we
need to adjust the game in order for the fictitious player to look for the less
covered points at each instant of time and for the real player to track them.
This will be clarified in the next lines as we discuss the modifications that need
to be introduced and we reformulate the game. It is crucial to read carefully
and understand the coming paragraph in order to follow the rest of the chapter.

Game reformulation

1. To make things easier, let us neglect the dynamics of the agents and sup-
pose we can select directly the set of trajectories of the players x(s) ∈ X ,
where X is a suitable function space.1 As mentioned the objective is to
control the agents in order to continuously maximize the minimum cover-
age in Ω.

2. Suppose trajectories x(s) ∈ X are given, then at each instant of time
0 ≤ t ≤ T the coverage map introduced in (4.2) can be computed as

Jt(x(s), q) =

∫ t

0

m∑

i=1

Si(xi(s), q) ds .

One is interested in finding the minima i.e. in solving

arg min
q∈Ω

∫ t

0

m∑

i=1

Si(xi(s), q) ds , (6.1)

The set Ω is assumed to be compact and the functions Si as well as the
trajectories x(s) to be continuos. It follows that the minimum is reached
in Ω, but it could be attained in more than one point. If we assume that
the argument of minimum q∗ ∈ Ω is unique, then for each instant of time
one can construct the map q∗(t) that returns the less covered point at time
t, given the trajectories x(s).2

3. As the objective is to maximize the coverage of the less known areas, we
are interested in computing the coverage map at the end of the mission

1Recall that x(s) contains the trajectories of all the UAVs, i.e. x(s) = [x1(s), . . . , xm(s)]
where m is the total number of vehicles.

2In case the argument of minimum is not unique, it is sufficient to select one of those
points. In particular it makes sense to allocate to each agent the closest q∗.
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following the less covered points i.e.

Jmin =

∫ T

0

m∑

i=1

Si(xi(s), q
∗(s)) ds .

With this process we have associated to each set of trajectories x(s), a real
number Jm that describes how good is the coverage following the minima.
The task is to select the trajectories x(s) that maximize Jm

max
x(s)∈X

∫ T

0

m∑

i=1

Si(xi(s), q
∗(s)) ds , (6.2)

where q∗(s) depends on x(s) via the minimization in equation (6.1).
One can take a further step and introduce the dynamics

ẋi = fi(xi, ui) , i = 1, . . . ,m . (6.3)

The maximization of equation (6.2) has no longer to be performed with
respect to x(s) ∈ X , but on u ∈ U .

The novel differential games we have introduced assumes the self consistent form

P1

P2





min
q∈Ω

∫ t

0

m∑

i=1

Si(xi(s), q) ds ,

max
u(t)

∫ T

0

m∑

i=1

Si(xi(s), q) ds ,

s.t. ẋi = fi(xi, ui) i = 1, . . . ,m

u(t) ∈ U ,

(6.4)

where we are interested in the Stackelberg solution with P2 as a leader and P1

as a follower. This is due to the way we have constructed the differential game:
the real players P2 announce their policy u∗ and enforce it. The virtual player
selects the best reply q∗ = R1(u∗) as in definition 3.2. The leader knows what
the follower will play and thus optimizes taking that into consideration. This is
exactly what was presented in the steps 1 and 2 from the previous page.

Remarks

• The game (6.4) is a non standard differential game, due to the presence
of t as upper extremum on the first integral. This denies the opportunity
to use the classical tools introduced in the previous chapter for optimal
control and differential games. New techniques and numerical schemes
need to be developed.
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• The minimization (6.1) is highly non linear and the function q∗ may be
discontinuous, both in terms of the time and of the dependency on x(s).
This makes the problem more complicated.

• From the modellistic point of view the game (6.4) does not penalize the use
of control and does not guarantee collision avoidance amongst the agents.
This is not an issue as additional terms can be included later.

• No barrier function is required if the region Ω is convex. As a matter of
fact the virtual player selects q∗ directly belonging to Ω and consequently
the real agents would not leave the set Ω throughout the mission.

6.2 Optimal control approximation

In this section we approximate the differential game (6.4) and transform it into
a sequence of optimal control problems.

The mission horizon T is split into smaller intervals of length τ and a generic
timestep is labelled tk. In each interval [tk, tk+1] suppose that the minimizer of
the coverage map is fixed and call it q∗k. This is not true in general as in [tk, tk+1]
the agents x(s) will move and thus the coverage map will change. Clearly, the
smaller τ , the better the approximation.

Introduction Problem Formulation Optimal control approach Wavelet expansion approach

Optimal control approach

Divide the period T in subintervals of length ·

In each interval qú = qú
k fixed, solve control problem for u(·)[tk ,tk+1]

max
u(·)[tk ,tk+1]

⁄ tk+1

tk

ÿ

i
Si(xi(s), qú

k) ds

At the end of each interval compute the new value qú
k+1 solving

qú
k+1 = arg min

qœ⌦

⁄ tk+1

0

ÿ

i
Si(xi(s), q) ds

D. Paccagnan Optimal Monitoring via Di�erential Games June 6, 2014 11 / 19
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Figure 6.1: Discretization of the mission horizon T into intervals of length τ .

The algorithm is based on a discretization of the game where the players policy
is chosen in two different stages as follows.

Stage 1: Suppose the solution has been computed up to time tk so that the state
of the system and the previous history is known as x(s), s ∈ [0, tk]. The
coverage map at time tk is then given by

Jtk(xi(s), q) =

∫ tk

0

m∑

i=1

Si(xi(s), q) ds ,
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while the minimizer can be easily found solving the following optimization
over q ∈ Ω ⊂ Rn

q∗k = arg min
q∈Ω

∫ tk

0

m∑

i=1

Si(xi(s), q) ds .

In case of nonuniqueness the same observations made previously hold.

Stage 2: Since q∗ is fixed to be q∗k, it is sufficient to solve the optimal control
problem on the interval [tk, tk+1] for P2

max
u(·)[tk,tk+1]

∫ tk+1

tk

m∑

i=1

Si(xi(s), q
∗
k) ds ,

i.e. to maximize the coverage in q∗k. To this purpose the usual techniques
can be implemented, in particular the HJB equation or the PMP.
Given the solution u∗(·)[tk,tk+1] the dynamics is used to determine the
evolution of the system solving the Cauchy problem

ẋi = fi(xi, u
∗
i ) , x(tk) = xk , i = 1, . . . ,m .

This will produce the trajectory up to time t = tk+1. One can return to
Stage 1 and repeat the procedure with k 7→ k + 1 until the final time is
reached i.e. t = T .

Initial.: At the first step one has t = 0 and x(0) = x0 given. The coverage map is
simply

J0(xi(s), q) =

∫ 0

0

m∑

i=1

Si(xi(s), q) ds = 0 ∀q ∈ Ω ,

thus there is an infinite number of minimizers, namely all the points q ∈
Ω. In order not to consume additional fuel u, the agents x(s) are kept
stationary in the initial configuration while the coverage map builds up.
At the next step

Jt1(x0, q) =

∫ t1

0

m∑

i=1

Si(x0, q) ds ,

that is not constant along the points q ∈ Ω.

It is worth noting that this approximation allows to consider the control cost
and to avoid collision. Usually when dealing with applications one wants to
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penalize the use of control as this turns out to be connected with the amount of
fuel used. This can be done introducing in Stage 2 a penalizing term, namely

max
u(·)[tk,tk+1]

∫ tk+1

tk

m∑

i=1

Si(xi(s), q
∗
k)− utCuds ,

where C is a positive definite matrix. The players x(s) want to increase the
coverage but need to take into account the fuel u they will use.
With similar reasoning a collision avoidance term dc(x(s)) can be introduced.
The function dc depends on the distance amongst different agents

dij = ||xi(s)− xj(s)|| ∀i 6= j , i, j = 1, . . . ,m ,

and penalizes the performance index when at least two of them are too close.
A valid implementation [4] is for instance

dc =

m∑

i=1

(
max

{
0,

m∑

j=1, j 6=i
R2
i − d2

ij

})2

,

where Ri represents the minimum safe distance between xi(s) and xj(s) with
i 6= j.

Introduction Problem Formulation Optimal control approach Wavelet expansion approach

Control activity and Collision avoidance

1 The control activity cost can be included in the optimal control step

max
u(·)[tk ,tk+1]

⁄ tk+1

tk

ÿ

i
Si(xi(s), qú

k) ≠ ut(s)Cu(s) ds C º 0

2 Collision can be avoided by adding a cost function depending on
dij = ||xi(s) ≠ xj(s)|| i ”= j
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Figure 6.2: Collision avoidance can be implemented penalizing two agents
when they are too close. The term for the i-th agent switches
on only if the distance from the j-th agent is smaller than Ri, i.e.
if the j-th player enters the red circle centered in xi(s).

In case both control costs and collision avoidance are included, the solution is
found as

max
u(·)[tk,tk+1]

∫ tk+1

tk

m∑

i=1

Si(xi(s), q
∗
k)− utCu− dc(x(s)) ds .
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6.2.1 Numerical results

The optimal control approximating algorithm has been implemented and tested
in two scenarios: a monodimensional problem where a single agent is asked
to monitor a segment Ω = [a, b] and a two-dimensional case where two agents
monitor a squared region Ω = [a, b]× [a, b].
In the first case Ω = [−10, 10], the mission horizon is T = 600, while the sensor
is taken to follow the exponential model (4.1) with β = 0.1. It is assumed a
simple integrator dynamics, and the control cost has been included by selecting
C = 1. The optimal trajectory as a function of time is shown in figure 6.3, while
in 6.4 the evolution of the coverage map is depicted. Figure 6.3 in particular
describes what we expected: the agent starts from x = −5, and after the first
stationary step, looks for the less covered point i.e. q∗1 = 10 and moves in that
direction. After x reaches q∗1 = 10, the agent again seeks the less controlled
location that is q∗2 = −10 and goes in that direction. The procedure repeats
until the end of the mission.
In figure 6.4 one can follow the evolution of Jt. At the beginning of the mission
the area is completely unknown. As the time proceeds forward, the agent moves
and gathers meaningful data that increase the coverage. It is worth noting that
the horizontal stripes are due to the fact that the agent spends quite some time
close to each the minimum point q∗ and thus improves significantly Jt close by.

Introduction Problem Formulation Optimal control approach Wavelet expansion approach

Results
Integrator dynamics ẋ = u, x(0) = x0

Single agent monitoring the segment ⌦ = [≠10, 10],
control cost included, T = 600, · = 20, –i = 0.1, C = 1

D. Single Agent with 3D Motion

3D motions are of theoretical interest, but for certain
applications, such as underwater exploration, they may have
practical value too. Therefore, consider the 3D movement of
a single agent.

Proposition 4: Let C = 1, m = 3 and consider the
cost (6), i.e.

min
qi

� �

0

(
1

2
� 1

2
e�Ai�qi�q̃i� + �i

�ui�2

2
)dt (34)

and the agent dynamics (4). The optimal control for this
problem is

u�
i = �

�
1 � e�Ai�qi�q̃�2

�i�qi � q̃�2

�
�

qi,x � q̃x

qi,y � q̃y

qi,z � q̃z

�
� . (35)

Proof: The HJB PDE for this problem is

1 � e�Ai�(qi(t)�q̃)�2 �
V 2

qi,x
+ V 2

qi,y
+ V 2

qi,z

�i
= 0 (36)

and it can be shown that the function
�
�

Vqi,x

Vqi,y

Vqi,z

�
� =

�
�i(1 � e�Ai�qi�q̃�2)

�qi � q̃i�

�
�

qi,x � q̃i,x

qi,y � q̃i,y

qi,z � q̃i,z

�
� (37)

satisfied (36). Similar considerations to those made in the
proof of Proposition 2 imply that the solution is positive
definite. The optimal control follows from (10).

IV. SIMULATIONS

Simulation results for the different scenarios considered
are presented in this section. The simulations show that the
agents succeed in monitoring the search space continuously.

A. Single Agent on a Segment

Consider a 1D search space defined as � = {q : �10 �
q � 10}. Simulations have been run for 20 iterations with
Ai = 1, � = 30, �i = 1, qi(0) = �5 and the first choice of
q̃ = �5. Figure 1 shows the time history of the position of
the agent, qi. The coverage levels at each point, as given by
(2), are initially zero and their time-evolution, along with the
evolution of the static minimiser, q̃, is shown in Figure 2. It
can be observed that the minimiser moves towards regions
that have relatively low coverage levels. The minimum and
maximum coverage levels as a function of time across the
entire search space are shown in Figure 3, which shows
that both values are monotonically increasing with time,
thus indicating that the information gathered by the agent
is increasing with time, i.e. the agent is indeed continuously
monitoring the search space. Since the simulations have been
run by solving the optimal control problems over a fixed
time horizon, the time parametrization is not significant and
it should be noted that the overall behaviour is of a sweeping
motion as expected.
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Fig. 1. The time history of the position of the agent, qi, with qi(0) = �5
and q̃(0) = �5 for t � [0, 600].

Fig. 2. The time history of q̃ (white, solid dots). The colour map illustrates
the coverage levels of � at each time (dark: low coverage level, light: high
coverage level).

B. Single Agent on the Plane

Consider the single agent 2D problem, with � =��
x , y

��
: �10 � x � 10, � 10 � y � 10

�
, Ai = 0.1,

� = 20, �i = 1, q̃(0) = (0, 0)� and qi(0) = (10, 10)�.
Simulations have been run for 50 iterations. Figure 4 shows
the normalised4 coverage levels obtained at the end of the
simulations and Figure 5 shows the minimum and maximum
coverage levels across � as a function of time. Both values
are monotonically increasing.

4The function has been normalised by dividing it by the maximum
coverage level reached during the monitoring task.
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Figure 6.3: Numerical solution for the monodimensional monitoring problem
representing the trajectory of the agent on the segment [−10, 10]
as a function of time. The agent starts from x = −5 and after the
first stationary step, looks for the less covered point i.e. q∗1 = 10
and moves in that direction. The procedure repeats until the end
of the mission.
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Results
Integrator dynamics ẋ = u, x(0) = x0

Single agent monitoring the segment ⌦ = [≠10, 10],
control cost included, T = 600, · = 20, –i = 0.1, C = 1

D. Single Agent with 3D Motion

3D motions are of theoretical interest, but for certain
applications, such as underwater exploration, they may have
practical value too. Therefore, consider the 3D movement of
a single agent.

Proposition 4: Let C = 1, m = 3 and consider the
cost (6), i.e.

min
qi

� �

0

(
1

2
� 1

2
e�Ai�qi�q̃i� + �i

�ui�2

2
)dt (34)

and the agent dynamics (4). The optimal control for this
problem is

u�
i = �

�
1 � e�Ai�qi�q̃�2

�i�qi � q̃�2

�
�

qi,x � q̃x

qi,y � q̃y

qi,z � q̃z

�
� . (35)

Proof: The HJB PDE for this problem is

1 � e�Ai�(qi(t)�q̃)�2 �
V 2

qi,x
+ V 2

qi,y
+ V 2

qi,z

�i
= 0 (36)

and it can be shown that the function
�
�

Vqi,x

Vqi,y

Vqi,z

�
� =

�
�i(1 � e�Ai�qi�q̃�2)

�qi � q̃i�

�
�

qi,x � q̃i,x

qi,y � q̃i,y

qi,z � q̃i,z

�
� (37)

satisfied (36). Similar considerations to those made in the
proof of Proposition 2 imply that the solution is positive
definite. The optimal control follows from (10).

IV. SIMULATIONS

Simulation results for the different scenarios considered
are presented in this section. The simulations show that the
agents succeed in monitoring the search space continuously.

A. Single Agent on a Segment

Consider a 1D search space defined as � = {q : �10 �
q � 10}. Simulations have been run for 20 iterations with
Ai = 1, � = 30, �i = 1, qi(0) = �5 and the first choice of
q̃ = �5. Figure 1 shows the time history of the position of
the agent, qi. The coverage levels at each point, as given by
(2), are initially zero and their time-evolution, along with the
evolution of the static minimiser, q̃, is shown in Figure 2. It
can be observed that the minimiser moves towards regions
that have relatively low coverage levels. The minimum and
maximum coverage levels as a function of time across the
entire search space are shown in Figure 3, which shows
that both values are monotonically increasing with time,
thus indicating that the information gathered by the agent
is increasing with time, i.e. the agent is indeed continuously
monitoring the search space. Since the simulations have been
run by solving the optimal control problems over a fixed
time horizon, the time parametrization is not significant and
it should be noted that the overall behaviour is of a sweeping
motion as expected.
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Fig. 1. The time history of the position of the agent, qi, with qi(0) = �5
and q̃(0) = �5 for t � [0, 600].

Fig. 2. The time history of q̃ (white, solid dots). The colour map illustrates
the coverage levels of � at each time (dark: low coverage level, light: high
coverage level).

B. Single Agent on the Plane

Consider the single agent 2D problem, with � =��
x , y

��
: �10 � x � 10, � 10 � y � 10

�
, Ai = 0.1,

� = 20, �i = 1, q̃(0) = (0, 0)� and qi(0) = (10, 10)�.
Simulations have been run for 50 iterations. Figure 4 shows
the normalised4 coverage levels obtained at the end of the
simulations and Figure 5 shows the minimum and maximum
coverage levels across � as a function of time. Both values
are monotonically increasing.

4The function has been normalised by dividing it by the maximum
coverage level reached during the monitoring task.
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Figure 6.4: Evolution of the coverage map for the monodimensional problem.
The darker, the less covered. Each vertical slice represent the
coverage map at a fixed time, while the white points identify the
minimizers of the coverage map at different instants of time.

In the two-dimensional case Ω = [−10, 10] × [−10, 10], the mission horizon is
T = 600, while the sensors are assumed to follow an identical exponential model
(4.1) with β = 0.1. Simple integrator dynamics is considered. Both control cost
and collision avoidance have been included, by selecting C = 1 and Ri = 1 for
i = 1, 2. The trajectory is depicted in figure 6.5, while in 6.6 the final coverage
is shown.
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Two agents monitoring the square ⌦ = [≠10, 10] ◊ [≠10, 10],
control cost and collision avoidance included
T = 600, · = 20, –i = 0.1, C = 1
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Fig. 3. Time histories of the minimum (dotted line) and maximum (solid
line) coverage levels in � � R.
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Fig. 4. Normalised coverage level at the end of the simulation.

C. Two Agents on the Plane

Consider the same planar search space as in Section IV-
B. Using the controls including the collision avoidance terms
proposed in Section III-C, simulations have been run for two
identical agents with A = 0.1, � = 20, � = 1, q̃1(0) =
(0, 0)�, q̃2(0) = (0, 0)�, q1(0) = (5, 5)�, q2(0) = (�5, 5)�

and safety radius rs = 2. The trajectories of the two agents
resulting from simulations run for 8 iterations are shown in
Figure 6. It is clear that neither of the agents reaches the
initial position of the instantaneous players (q̃1(0) and q̃2(0))
after the first iteration as both converge to positions that
respect the safety distance. Note that at some times during
the simulation, the agents move outside � in order to avoid
collision.
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Fig. 5. Time histories of the minimum (dotted line) and maximum (solid
line) coverage levels obtained in � � R2.
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Fig. 6. The trajectories of the two agents q1 (solid line) and q2 (dotted
line). The large black dots denote the initial conditions of the agents.

D. Single Agent with 3D Motion

Consider the 3D search space, � =��
x , y , z

��
: �5 � x � 5, � 5 � y � 5, � 5 � z � 5

�
.

Simulations have been run for a single agent with Ai = 0.1,
� = 20, �i = 1, q̃i(0) = (0, 0, 0)� and qi(0) = (0, 0, 5)� for
50 iterations. The maximum and minimum coverage levels
as a function of time are shown in Figure 7. The simulations
indicate that both the maximum and the minimum coverage
levels across � are monotonically increasing.

V. CONCLUSION AND FUTURE WORK

It has been demonstrated that a sequence of optimal con-
trol problems can be solved to achieve approximate optimal
monitoring. The optimal control problems are solved using
the solution of Hamilton-Jacobi-Bellman partial differential
equations and simulations have been presented for a single
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Figure 6.5: Numerical solution for the two dimensional monitoring problem
representing the trajectory of the agents on the square [−10, 10]×
[−10, 10].
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As in this case two UAVs are operating, if two minimizers of Jt exist, they are
allocated one to each of the agents. Note that for a short interval of time both
of them have been allocated the same minimizer q∗ and are moving in that
direction. The collision avoidance term comes into play and repels the green
agent outside the region of interest.
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C. Two Agents on the Plane

Consider the same planar search space as in Section IV-
B. Using the controls including the collision avoidance terms
proposed in Section III-C, simulations have been run for two
identical agents with A = 0.1, � = 20, � = 1, q̃1(0) =
(0, 0)�, q̃2(0) = (0, 0)�, q1(0) = (5, 5)�, q2(0) = (�5, 5)�

and safety radius rs = 2. The trajectories of the two agents
resulting from simulations run for 8 iterations are shown in
Figure 6. It is clear that neither of the agents reaches the
initial position of the instantaneous players (q̃1(0) and q̃2(0))
after the first iteration as both converge to positions that
respect the safety distance. Note that at some times during
the simulation, the agents move outside � in order to avoid
collision.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

m
in

/
m

ax
co

ve
ra

ge
le

ve
l

time

Fig. 5. Time histories of the minimum (dotted line) and maximum (solid
line) coverage levels obtained in � � R2.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Fig. 6. The trajectories of the two agents q1 (solid line) and q2 (dotted
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D. Single Agent with 3D Motion

Consider the 3D search space, � =��
x , y , z

��
: �5 � x � 5, � 5 � y � 5, � 5 � z � 5

�
.

Simulations have been run for a single agent with Ai = 0.1,
� = 20, �i = 1, q̃i(0) = (0, 0, 0)� and qi(0) = (0, 0, 5)� for
50 iterations. The maximum and minimum coverage levels
as a function of time are shown in Figure 7. The simulations
indicate that both the maximum and the minimum coverage
levels across � are monotonically increasing.

V. CONCLUSION AND FUTURE WORK

It has been demonstrated that a sequence of optimal con-
trol problems can be solved to achieve approximate optimal
monitoring. The optimal control problems are solved using
the solution of Hamilton-Jacobi-Bellman partial differential
equations and simulations have been presented for a single
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Figure 6.6: The coverage map JT has been divided by its maximum value to
produce the normalized coverage at the end of the mission, here
plotted as a function of q ∈ Ω = [−10, 10]× [−10, 10].

6.3 Wavelet decomposition

Optimization problems over infinite dimensional spaces have been firstly for-
mulated and studied within the Calculus of Variations, of which the Brachis-
tochrone problem is certainly the most notorious one [40]. Various approximate
methods have appeared in literature; one of them consists in looking for the
solution in a finite dimensional space.
The idea of reducing the problem to finite dimension has been used since the
introduction of the series expansions and it consists of two steps. First, let
us call X the function space the solution belongs to, and select a suitable set
of functions xi ∈ X . We want {xi}i∈N to be a basis for X . Secondly, the fi-
nite dimensional space is taken as X̃ = span{xi}i∈A with A ⊂ N, i.e. A is a
proper subset of N. Therefore the approximate solution x̃ ∈ X̃ takes the form
x̃ =

∑
i∈A c̃ixi, for which only the coefficients ci have to be determined. Note

that the number of coefficients is finite since A is so.
In the same spirit, a fast method used for calculus of variation is presented in
[41]. The algorithm uses wavelets as basis functions, due to their interesting



58 Monitoring as a non standard differential game

properties. Loosely speaking, when suitable wavelets are selected, the solution
can be approximated using just a few coefficients, thus producing a fast code.

In the following we first introduce the notion of wavelets and their main prop-
erties. Successively we use them as basis functions in order to project the
differential game (6.4) into a finite dimensional space.

Wavelet Expansion

Let us consider the Hilbert space L2(R). The wavelet is formally defined as in
the following.

Definition 6.1 (Wavelet) Let ψ ∈ L2(R) and define the functions ψj,k
as

ψj,k(x)
.
= 2j/2ψ(2jx− k) , j, k ∈ Z , x ∈ R .

The function ψ is called a wavelet if {ψj,k}j,k∈Z represents an orthonormal basis
for L2(R).

The functions ψj,k form a special orthogonal basis for L2(R) as they all need to
be produced via dilation 2j/2 and translation 2jx− k from ψ.
Recall that by definition of basis and due to orthogonality, every f ∈ L2(R) can
be written as

f =
∑

j,k∈Z
cj,kψj,k =

∑

j,k∈Z
〈f, ψj,k〉ψj,k ,

where 〈f, ψj,k〉 indicates the inner product, i.e.

〈f, ψj,k〉 =

∫ ∞

−∞
f(s)ψj,k(s) ds .

As far as applications are involved, we are interested in constructing wavelets
such that the coefficients cj,k decay fastly. If this is the case, then just a few
terms cj,k can be used to approximate f ∈ L2(R). The notion of vanishing
moment is crucial in this sense, as the next theorem shows.

Definition 6.2 (Vanishing Moments) Let n ∈ N. A wavelet ψ is said
to have n vanishing moments if

∫ ∞

−∞
slψ(s) ds = 0 l = 0, 1, . . . , n− 1 .



6.3 Wavelet decomposition 59

Theorem 6.3 (Decay of Wavelet Coefficients) Consider a com-
pactly supported wavelet with n vanishing moments, ψ ∈ L2(R). Then for any
f ∈ L2(R) that is n times differentiable and with f (n) bounded, there exists a
constant C such that

|〈f, ψj,k〉| ≤ C · 2−jn2−j/2 ∀j ≥ 1, k ∈ Z .

The theorem gives an upper bound on the magnitude of the coefficients |〈f, ψj,k〉|.
In particular it shows that cj,k decay exponentially with j and n. Thus the higher
the number of vanishing moments, the faster the coefficients will decay and the
better the approximation to f will be when chopping the series.

8.3 Vanishing moments and the Daubechies’ wavelets 173

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

Wavelet, N=2

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5
Wavelet, N=4

x

Figure 8.1. Some of Daubechies’ wavelets.

In order to apply Theorem 8.3.5, we need to be able to find the trigono-
metric polynomial L satisfying (8.21). There exists a procedure, called
spectral factorization, to do this; see [8]. The special case N = 1 is easy:

Example 8.3.7 For N = 1, the condition (8.21) means that |L(γ)|2 = 1,
which is satisfied for L(γ) = −1 (we could also have taken L(γ) = 1). Via
(8.19) this leads to

H0(γ) =
1 + e−2πiγ

2
L(γ) =

−1 − e−2πiγ

2
.

Following Theorem 8.2.7, we now calculate

H1(γ) = H0(γ +
1

2
) e−2πiγ

=
−1 − e−2πi(γ+1/2)

2
e−2πiγ

=
1 − e−2πiγ

2
.

That is,

H1(γ) =

0∑

k=−1

dke2πikx,

Figure 6.7: Daucechies’ wavelets with n = 2 and n = 4. Image from [42].

This moves the attention on how to create a wavelet ψ that has compact support
and n vanishing moments. The systematic study of wavelet bases started around
1985 and the main result is due to the introduction of the so called multi-
resolution analysis. The key point is the capability of constructing wavelets
with a generic number n of vanishing moments. Daubechies’ wavelets are an
example and the case with n = 2 and n = 4 is shown in figure 6.7. For a
deeper account, see [42]. Similar results hold in the case when one considers the
functions space X = L2([a, b]) that will be used in the next section.
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Reduction over a finite dimensional space

Using the wavelets as basis functions, we look for solutions to (6.4) on a finite
dimensional space. In particular to make things easier, we consider the case of a
single agent monitoring the segment Ω = [a, b]. The procedure can be extended
to higher dimension.

1. Let us suppose we can control directly the trajectory x(s) and neglect
the dynamics. The latter can be included in a second stage. Assume the
trajectory x(s) ∈ L2([a, b]) = X . Given ψ a wavelet, {ψj,k}j,k∈Z forms a
basis for X .
It follows that each function can be written as x(s) =

∑
j,k∈Z cj,kψj,k(s) .

The finite subspace we are interested in is the one obtained by stopping
the series X̃ = span{ψj,k}j,k∈A with A ⊂ Z.
We look for approximate solutions x̃ ∈ X̃ , i.e. of the form

x̃(s, c̃j,k) =
∑

j,k∈A
c̃j,kψj,k(s) , c̃j,k ∈ R , (6.5)

where the dependence of x̃ on the coefficients c̃j,k has been made clear.

2. We follow the steps 2 and 3 as in section 6.1 exploiting the particular
structure (6.5) of x̃(s, c̃j,k).
The coverage map introduced in (4.2) depends now on the trajectory only
via c̃j,k. The less covered points q∗ can be found from

arg min
q∈Ω

∫ t

0

S(x̃(s, c̃j,k), q) ds , (6.6)

that allows to construct the minimizer’s map q∗(t). To be more specific
let us write explicitly the fact that q∗ depends not only on time, but also
on the coefficients c̃j,k via x̃, namely

q∗ = q∗(t, c̃j,k) , j, k ∈ A .

The performance index to maximize is finally obtained as in (6.2)

Jmin =

∫ T

0

S(x̃(s, c̃j,k), q∗(s, c̃j,k)) ds . (6.7)

Note that this time we can interpret Jmin as a function

Jmin : Rp 7→ R ,

where p represents the number of coefficients c̃j,k considered.
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3. The objective is to maximize Jmin, i.e. to maximize a real function over
a finite dimensional domain Rp, namely

max
c̃∈C

Jmin(c̃) , (6.8)

where c̃ ∈ C ⊂ Rp represents all the coefficients c̃j,k. The problem has
been transformed into a simpler one.
In case one wants to take into account the dynamics, it is sufficient to
select ũ(s, g̃j,k) ∈ span{ψj,k}j,k∈A, i.e.

ũ(s, g̃j,k) =
∑

j,k∈A
g̃j,kψj,k(s) , g̃j,k ∈ R .

The trajectory is consequently obtained solving the Cauchy problem (6.3)
with x(0) = x0. In the same way we would be able to construct a map
from the space of coefficients g̃j,k to the performance index Jmin, thus
reducing to an optimization problem.

Continuous but non differentiable optimization

One issue becomes evident when transforming the differential game into (6.8).
The map q∗(t, c̃j,k) obtained from (6.6) is in general a multivalued function since
more than one minimizer can exist for each fixed time t ∈ [0, T ]. As discussed
before one option is to select the closest point q∗ to the agent when multiple
ones are available. Even in this case though the function q∗(t, c̃j,k) may be
discontinuous with respect to the coefficients c̃j,k (and this would in general be
the case). If we want to apply standard optimization techniques to Jmin(c̃),
we need to guarantee a certain degree of smoothness of (6.8), and the fact that
q∗(t, c̃j,k) may be discontinuous puts us in a difficult situation. The performance
index Jmin is indeed obtained by composing S with q∗ as in (6.7).
In the following we show that due to the discontinuous nature of q∗(t, c̃j,k),
the objective function Jmin turns out to be continuous and Lipschitz, but not
differentiable.

Theorem 6.4 Given a function f(t, c) : [0, T ] × Rp 7→ R. Suppose f has a
jump discontinuity along the locus described by t∗(c) with c ∈ C ⊂ Rp and t∗(c)
continuos. Suppose f is continuous elsewhere. Then

J(c) =

∫ T

0

f(t, c) dt is continuous for all c ∈ Rp.

Proof. Let us consider the case where p = 1 and C = [a, b]. The points where
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Figure 6.8: The curve t∗(c) splits the domain into two subsets D1 and D2.
The first one includes all the points in between the image of t∗(c)
and the y axis. The second one consists of the points in between
the image of t∗(c) and the line t = T .

the function f(t, c) is not continuous are shown in figure 6.8.
We want to prove that J(c) is continuos ∀c ∈ [a, b]. When c < ca for each value
of the time t ∈ [0, T ] the function f(t, c) is continuos, and so is J(c). The same
holds in the case when c > cb.
We need to prove it also for ca ≤ c ≤ cb, in this case we can split the integral as

J(c) =

∫ T

0

f(t, c) dt =

∫ t∗(c)

0

f(t, c) dt+

∫ T

t∗(c)

f(t, c) dt .

In the region D1 and D2 (see figure 6.8) separately, the function f(t, c) is con-
tinuos. Thus one can write

∫ t∗(c)

0

f(t, c) dt+

∫ T

t∗(c)

f(t, c) dt = F1(t, c)|t
∗(c)

0 + F2(t, c)|Tt∗(c) ,

where F1(t, c) and F2(t, c) are the smooth primitives of f in the two regions D1

and D2 respectively. Thus J(c) can be computed as

J(c) =

∫ T

0

f(t, c) dt =F1(t, c)|t
∗(c)

0 + F2(t, c)|Tt∗(c)
=F1(t∗(c), c)− F1(0, c) + F2(T, c)− F2(t∗(c), c) ,

(6.9)

and due to the smoothness of both t∗(c) and Fi(t, c), we conclude that J(c) is
continuos also for ca ≤ c ≤ cb. Consequently J(c) is continuos in all the points
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of the domain. �

This setup extends also in higher dimension when it is possible to parametrize
the locus of discontinuity as a function t∗(c) and thus to construct the regions
D1 and D2. The sketch of figure 6.9 provides insight in the case p = 2.

It should be clear that the previous theorem applies also to more complex

C1

C2

tTt (C)*

Figure 6.9: The surface t∗(c) splits the domain into two subsets D1 and D2.
The first one includes the points in between the image of t∗(c) and
t = 0, while the second the points between t∗(c) and t = T .

scenarios as the case for which the locus of discontinuity can be parametrized by
multiple functions t∗i (c) (see figure 6.10). It is sufficient to split the integration
at each discontinuity point encountered as done in (6.9).
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Figure 6.10: The curves t∗i (c) split the domain into multiple subsets Di.
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If we apply the theorem to the problem of optimal monitoring and select f(t, c̃) =
S(x̃(s, c̃j,k), q∗(s, c̃j,k)) as in (6.7), we can conclude that J(c̃) is continuous as
long as it is possible to parametrize the locus of discontinuity Γ ⊂ R× Rp as

Γ = {(t, c) such that t = t∗i (c) for some continuos functions t∗i : Ci ⊂ Rp 7→ R} .
The only setting where the theorem does not apply is when the discontinuity
locus is parallel to the time axis for some nonzero interval, i.e. f(t, c) jumps at
least on one curve c = γ(t) of the form

γ(t) = c∗ fixed ∀t ∈ [ta, tb] , tb > ta .

c

t
ta tb

c*

q
+

*(t)

q_
*(t)

Tq*(t)

q*(t)

Figure 6.11: Discontinuity lying on a segment parallel to the time axis. For
ta ≤ t ≤ tb there are two minimizers, namely q∗−(t) and q∗+(t).

This case is however covered by the following observation.
Recall that q∗(s, c̃j,k) is found as solution to the minimization problem (6.6).
In particular let us consider a neighborhood of c = c∗. When t < ta or t > tb
the minimizer is unique and we call it q∗(t). For ta ≤ t ≤ tb we call q∗−(t) and
q∗+(t) the two minimizers corresponding to the right and left neighborhood of
c∗. Let us call Q∗+(t) and Q∗−(t) the full path obtained following q∗(t) for t < ta
or t > tb and respectively q∗+(t) or q∗−(t) for ta ≤ t ≤ tb.

The situation is portraited in figure 6.11.
Since q∗−(t) and q∗+(t) are found solving (6.6), the following must hold

min
q∈Ω

∫ t

0

S(x̃(s, c̃∗j,k), q) ds =

=

∫ t

0

S(x̃(s, c̃∗j,k), Q∗−(t)) ds =

∫ t

0

S(x̃(s, c̃∗j,k), Q∗+(t)) ds for all t ∈ [ta, tb] .

(6.10)
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Consequently S(x̃(s, c̃∗j,k), q∗−(t)) = S(x̃(s, c̃∗j,k), q∗+(t)), indeed equation (6.10)
can be rewritten as

∫ t

0

(
S(x̃(s, c̃∗j,k), Q∗−(t))− S(x̃(s, c̃∗j,k), Q∗+(t))

)
ds = 0 , ∀t ∈ [ta, tb] .

It follows from an important theorem of the calculus of variation [43] that the
integrand function has to be zero almost everywhere in [ta, tb], i.e.

S(x̃(s, c̃∗j,k), q∗−(t)) = S(x̃(s, c̃∗j,k), q∗+(t)) , a.e. s ∈ [ta, tb] , ∀t ∈ [ta, tb] .

Consequently when computing Jmin close to c∗, the integrand function S as-
sumes the same values in a left or right neighborhood of c∗, and thus continuity
is guaranteed also in this case.
Using theorem 6.4 and the observation just presented, we can conclude that
the function Jmin is continuous with respect to the coefficients. With a similar
procedure one can show that Jmin is also Lipschitz. Unfortunately Jmin(c̃j,k) is
not differentiable. This is due to the fact that the derivatives of q∗(s, c̃j,k) are
involved when computing J ′min, and in the case just discussed the right and left
differentials do not match at the point.
To conclude, we have transformed the differential game into a non-smooth opti-
mization problem over a finite dimensional space. Thus appropriate tools from
non-smooth analysis need to be introduced as it is done in the next section.

6.3.1 Non-smooth Optimization

Since standard optimization techniques cannot be applied to maximize Jmin,
we turn our attention to non-smooth optimization. The notion of generalized
derivative is introduced, as well as the equivalent of the stationary condition
∇f(x) = 0 for non smooth functions.
Traditional optimization techniques are based on the idea of descent direction,
i.e. a direction on the domain space where the function decreases. In the case of
smooth functions, the gradient provides such information and the hessian can
also be used to improve the model. Basic algorithms exploiting these concepts
are for instance the steepest descent or Newton’s method [35]. In the non
smooth case, the gradient does not exist at every point of the domain, making
it difficult to find descent directions. Furthermore the stationary condition
∇f(x) = 0, used to stop the above mentioned methods, does no longer apply
as the gradient may not be defined at the optimal point. Non-smooth analysis
extends the usual concept of derivative to these cases as in the following.

Definition 6.5 (Clarke generalized derivative) Let f : Rp 7→ R
be a locally Lipschitz continuous function of x ∈ Rp. The generalized directional
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derivative of f at x in the direction d ∈ Rp is given by

f◦(x; d)
.
= lim sup

y→x

h↓0

f(y + hd)− f(y)

h
. (6.11)

More explicitly the previous definition can be written as

f◦(x; d) = lim
ε→0

{
sup

{
r(y, h, d) : (y, h) ∈ Rp+1 ∩B((x, 0), ε), h > 0

}}
,

where r(y, h, d) = f(y+hd)−f(y)
h and B((x, 0), ε) is an ε neighborhood of the

point (x, 0) ∈ Rp+1. Loosely speaking, this means that f◦(x; d) is found as the
supremum amongst all the difference quotients r(y, h, d) for y close to x, with
h→ 0+.

h

y
0

ε

r(y,h,d )*

x

B((x,0),ε)

sup

Figure 6.12: The construction used to define the Clarke generalized derivative
(6.11), represented for a fixed value of the direction d = d∗.

In the case of a differentiable function this definition coincides with the usual
one of directional derivative.

Definition 6.6 (Clarke subdifferential) Given f : Rp 7→ R a lo-
cally Lipschitz continuous function of x ∈ Rp, the subdifferential of f at x is
defined as the set ∂f(x) of vectors ξ ∈ Rp such that

∂f(x) = { ξ ∈ Rp | f◦(x; d) ≥ ξT d for all d ∈ Rp }.

In particular the subdifferential represents the convex hull of all the possible
gradients close to the point x, as the next theorem claims.
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Theorem 6.7 (Subdifferential as a convex hull) Given f : Rp 7→
R a locally Lipschitz continuous function. Then the subdifferential ∂f(x) is given
by

∂f(x) = conv{ ξ ∈ Rp | ∇f(xi)→ ξ, xi → x and f is differentiable at xi },

where conv(S) indicates the convex hull of S. �

The subdifferential is an important tool in nonsmooth analysis due to the fol-
lowing theorem that provides a necessary condition for optimality.

Theorem 6.8 (First order conditions) Given f : Rp 7→ R a locally
Lipschitz continuous function in x ∈ Rp. If f attains a local maximum in x,
then

1. 0 ∈ ∂f(x) ,

2. f◦(x; d) ≤ 0 ∀d ∈ Rp . �

Theorem 6.8 and in particular point 1. can be regarded as the extension of the
stationary condition ∇f(x) = 0 to the case when f(x) is non smooth. Note
that this is a necessary but not sufficient condition, thus there could be points
satisfying 1. and 2. without being maximizers. See [44] for the Clarke’s seminal
paper on generalized derivatives, or [45] for a more comprehensive picture.

Example (Absolute value)

Consider the function f(x) = −|x|. It is well known that f has a maximum in
the point x = 0. The subdifferential is given by

∂f(x)





= 1 for x < 0 ,

∈ [−1, 1] for x = 0 ,

= −1 for x > 0 .

Clearly 0 ∈ ∂f(0) and the generalized derivative assumes the value f◦(0; d) = −1
for x = 0.
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6.3.2 Preliminary results

Several methods have been presented in literature to solve non-smooth optimiza-
tion problems (NSO). Methods for solving NSO can be divided into three cat-
egories: subgradient methods [46], bundle methods [45], and gradient sampling
methods [47]. Recall that only the objective function value and one arbitrary
generalized gradient can be computed at each point.
Subgradient methods are based on standard gradient methods (such as steepest
descent), where the idea is to replace the gradient with an arbitrary subgradient.
They are extremely simple and thus widely used even though they may suffer
from some serious drawbacks. An extensive overview of various subgradient
methods can be found in [46].
Bundle methods are considered more effective and reliable than subgradient’s
one. They are based on the subdifferential theory we presented here, where first
order necessary conditions can be described in terms of ∂f(x). The main idea of
bundle methods is to approximate the subdifferential set (the set of gradients)
of the objective function by storing subgradients from previous iterations into
a bundle. In this way, more information is obtained when compared to the use
of a single subgradient [45].
The newest approach is to use gradient sampling algorithms developed by Burke,
Lewis and Overton [47]. The gradient sampling method applies to nonsmooth
and/or nonconvex problems. Gradient sampling methods are based on the steep-
est descent algorithm, with the main point being the approximation of the sub-
differential through sampling of gradients near the point of interest.

Let us turn the attention to the non smooth optimization problem arising from
the combination of optimal monitoring and wavelet. In the following plot is
represented the function Jmin(c̃j,k), where the trajectory x(s) has been decom-
posed using only two Haar Wavelet’s functions with coefficients c̃1 and c̃2. This
is the maximum dimension that can be visualized. As previously proved, one
can verify here that the objective function is continuous, Lipschitz but non
differentiable.

Hamiltonian steepest descent

Due to time constraints, it has not been possible to implement any of the ad-
vanced methods just mentioned. On the contrary a modified version of the
Steepest descent algorithm has been tested in low dimension. The method
is presented in the following. Consider the problem of maximizing a func-
tion Jmin(c̃) : C̃ ⊂ Rp 7→ R. This is equivalent to minimizing the function
f(c̃) = −Jmin(c̃).
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Figure 6.13: Objective function Jmin obtained using the first two elements of
the Haar Wavelet’s basis. Note that the maximizer is exactly a
point where the gradient is not defined.

In analogy to mechanics we consider the following dynamical system




˙̃c = v ,

v̇ = −∂f
∂c̃
− εv ,

(6.12)

where a particle with position c̃ is moving under the effect of the potential f(c̃)
and friction −εv.
The total energy of the system is

H(c, v) =
v2

2
+ f(c̃) ,

which can easily be proven to decrease along the trajectories of (6.12).
Indeed one has

Ḣ(c̃, v) = vv̇ +
∂f

∂c̃
v = v

(
−∂f
∂c̃
− εv

)
+ v

∂f

∂c̃
= −εv2 ,

this means that the sum of f(c̃) and v2/2 decreases with time. Since H(c̃, v)
has a minimum in (c̃∗, 0), where c̃∗ is the minimizer of f(c̃), we conclude that
H is a Lyapunov function and the dynamics (6.12) evolves towards this point.
In such a way we have constructed a method that is guaranteed to converge to
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Figure 6.14: Objective function −Jmin and a trajectory obtained with the
method just presented. Note that the solution oscillates around
the solution before being attracted thanks to the term −εv.

the minimum of f(c̃), i.e. to the maximum of Jmin(c̃). Recall that the gradient
of f(c̃) is not defined for all the points of the domain, but it exists almost ev-
erywhere [45]. This is sufficient to give sense to the differential equation (6.12)
in the Caratheodory sense [48]. When such a method is applied to the case of
figure 6.13, the solution is easily found as picture 6.14 shows. An even simpler
version of the method presented here can be obtained from the continuous steep-
est descent, where equations (6.12) are substituted with ˙̃c = −∂f∂c̃ . This has the
drawback that when a nondifferentiable curve for f(c̃) is found, the method very
often gets stuck or becomes slow as it jumps from one side to the other of the
“valley”. On the contrary (6.12) has the advantage that some energy is stored as
velocity in the term v2/2, and it is possible to avoid following non differentiable
paths.



Chapter 7

Conclusions and future work

In this work the problem of optimal monitoring for UAVs has been introduced
using the notion of coverage map and elements of game theory. Two different
formulation have been presented.
In the first one, the monitoring problem has been rewritten in terms of a stan-
dard differential game, for which the Hamilton Jacobi Bellman equations pro-
vide a sufficient condition. The first new contribution is given by the numerical
results of the aforementioned system. They have proven this approach to be
useful when performing surveying but not when patrolling or surveillance are
involved.
For this reason a novel formulation based on non standard differential game
has been introduced. Agents are continuously asked to look for the less visited
points and to increase the coverage in there. The problem is more difficult to
attack since game theory provides neither a sufficient nor a necessary condition
for this case. Two different solutions techniques have been developed.
The first one is based on the reduction of the differential game to a series of
optimal control problems and has produced interesting results for one and two
dimensional surveillance applications.
The second method is rather new and leverages on the opportunity to approxi-
mate an optimization problem over an infinite dimensional function space with
a similar problem in a finite dimensional coefficient space. Wavelets have been
selected as basis functions, due to their approximating properties and the re-
sulting objective function has been proven to be Lipschitz but not differentiable.
Consequently non-smooth optimization has been considered and a basic method
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has been implemented in low dimension.
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Future work in this direction consists in implementing an advanced numerical
solver such as the gradient sampling method, and to use it to find the solution
of the finite dimensional differential game.
Another development consists in further exploiting the structure of the game.
The formulation is indeed similar to the one of max-min problems even though
it is not exactly the same. The study could provide valuable information and
restrict the search for maximizers to some specific points (conjecture: the points
of non differentiability of Jmin).
Finally it would be interesting to take into account and model the difficulties
in the communications amongst agents. In this work indeed we have assumed
perfect communication and designed a centralized control.
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