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Abstract

In the context of quantum simulation, one of the main research focuses is the capability
of arranging and coherently manipulating large quantum many-body states. Recent exper-
iments are showing an ever-growing improvement in their capabilities, allowing the direct
observation of unprecedented quantum phenomena. A prototypical example is given by the
realization of so-called ”Schrödinger’s cat” states, formed by the coherent superposition of
two macroscopically different quantum many-body states. This experiment has been recently
realized using Rydberg atoms (“Generation and manipulation of Schrödinger cat states in
Rydberg atom arrays”, Omran et al., Science 365, 570-574 (2019)) [1], which, due to their
great versatility, are considered a particularly promising candidate for quantum simulation
and computation experiments. In parallel with experimental improvements, several software
have been developed to design and optimize the experimental protocols by controlling the
experimental platform parameters. In this thesis, by taking inspiration from the aforemen-
tioned publication, we use the software Qruise, a commercial optimization platform, to design
experimental quantum protocols to generate Greenberger-Horne-Zeilinger (GHZ) states on a
one-dimensional Rydberg atoms array.

Nel contesto della simulazione quantistica, uno dei principali focus di ricerca è la ca-
pacità di ordinare e manipolare coerentemente grandi stati quantistici a molti corpi. Recenti
esperimenti mostrano un sempre crescente miglioramento nelle loro capacità, permettendo
l’osservazione diretta di fenomeni quantistici senza precedenti. Un prototipo è dato dalla
realizzazione dei cosiddetti “gatti di Schrödinger”, stati quantistici formati dalla sovrappo-
sizione coerente di due stati quantistici a molti corpi. Questo esperimento è stato di recente
realizzato utilizzando atomi di Rydberg (“Generation and manipulation of Schrödinger cat
states in Rydberg atom arrays”, Omran et al., Science 365, 570-574 (2019)) [1], i quali, grazie
alla loro grande versatilità, sono considerati candidati particolarmente promettenti per esper-
imenti di computazione e simulazione quantistica. In parallelo con gli sviluppi sperimentali,
sono stati sviluppati diversi software per progettare e ottimizzare i protocolli sperimentali con-
trollando i parametri dell’esperimento. In questa tesi, prendendo ispirazione dalla suddetta
pubblicazione, usiamo Qruise, un software commerciale di ottimizzazione, per progettare pro-
tocolli sperimentali quantistici per generare stati di Greenberger-Horne-Zeilinger (stati GHZ)
su una stringa monodimensionale di atomi di Rydberg.
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Introduction

The central concepts of quantum simulation have their inception in a foundational paper
published by Richard Feynman in the early ’80s, which defines a quantum simulator and
explores why it is necessary to advance in science research [2].

Feynman envisioned the potential of simulating quantum systems using a controllable
quantum system itself; however, quantum simulations primarily existed only as theoretical
frameworks.

With the advent of sophisticated experimental technologies, including trapped ions [3],
Josephson junction-based superconducting circuits [4], and trapped neutral atoms [5, 6], re-
searchers have made unprecedented strides in the realization of these theoretical constructs.

As a consequence, the possibility to perform experiments on quantum simulators allowed
the scientific community to consider them as a way to solve several problems that before were
deemed to be too challenging to tackle. The defining feature of these problems is that their
complexity is exponential, meaning that the number of operations needed to find a solution
exponentially increases with the size of the system in study.

These exponentially complex problems range between many disciplines, including math
and cryptography (prime numbers factorization) [7], computer science (search algorithms) [8],
biology and medicine (biomolecular dynamics) [9], and many more, surpassing, at a certain
size, the capabilities of classical computers [10].

Specifically, various quantum phenomena can be difficult to simulate: quantum systems
with several components called quantum many-body systems, are represented by a wave
function in the Hilbert space, whose size scales exponentially. If a state is not separable,
namely it is entangled, a complete description of the system requires the knowledge of the
whole wave function.

Quantum simulators are considered a powerful tool to respond to these requirements
because they harness the advantages offered by quantum mechanics, which can be used to
replicate and simulate complex dynamics.

In the current scenario, quantum simulators have demonstrated their prowess in tack-
ling complex problems such as quantum many-body systems. Superconducting qubits [11],
trapped ions [12] and Rydberg atoms already have displayed impressive capability at meeting
theoretical requirements to perform operations and state manipulation.

On the one hand, these well-established technologies are considered by many to be the
most favored candidates to be the basis of future hardware, on the other hand they struggle
to maintain both coherence and entanglement for a useful amount of time.

Notably, experimental platforms such as arrays of optically trapped Rydberg atoms have
showcased promising results, bridging the gap between theoretical conjecture and tangible
experimental observations. Quantum many-body systems’ complexity is largely caused by
the exponential rise of the state space dimension: Rydberg atoms have proven successful for
many-body quantum state engineering due to their strong state-dependent interactions [13].

To better study this experimental scenario, software to perform classical numerical simu-
lation of physical systems proves to be an important resource: they constitute a convenient
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benchmark to test theoretical models and design experimental setups.
In this thesis, we focused on studying and virtually replicating a smaller-scale version of an

experiment where Rydberg atom chains are implemented to explore many-body phenomena
on a quantum simulator [14].

For this task, we chose to use Qruise, a commercially available software.
Qruise offers both a Cloud Integrated Development Environment (CIDE) and a vast library

of methods and classes useful for setting up a virtual experimental setup. Furthermore, the
software can reliably and quickly allow us to explore dynamics by acting on parameters, and
extract useful information like state amplitudes, populations, and many more data to aid the
user in designing and performing experiments.

The thesis is organized as follows:

• In chapter 1, we present a theoretical introduction to the system, describe Rydberg
atoms both as a single system and in an array, and explain how qubits can be encoded in
this system. Then we describe the experimental implementation of the system, focusing
more on the essential components needed to construct the effective Hamiltonian of the
atom array.

• In chapter 2, we discuss how Qruise simulates Rydberg atom arrays. We describe its
main features, as well as the packages the software provides to facilitate the simulated
implementation of experimental components. We also explore Qruise’s limitations as a
simulation software.

• In chapter 3, we present the protocols we simulated. We begin by attempting a simple
simulation, to assert the behavior of the system as well as to familiarize ourselves with
how the software works. Then we implement a simulation to study specific properties of
Rydberg atoms, considering more complex scenarios. Finally, we reproduce a protocol
to obtain a Greenberg-Horne-Zeilinger state with up to eight atoms. We assert the
difficulty of the task and what solutions can be considered to successfully construct that
state on a Rydberg atoms array.
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Chapter 1

Rydberg atom platforms

In this chapter, we are going to provide the theoretical and experimental description of Ryd-
berg atoms.

First, we describe the single-atom platform, specifically the main features of Rydberg
atoms, the encoding of qubits on this platform, and its dynamics under a unitary evolution.

Then, we explore how a multi-atomic system behaves, and show how useful properties can
be explained and put to use to gain computation advantages from this physical approach. We
introduce the concept of Rydberg blockade, which is a fundamental property of this platform,
and briefly discuss the parameters that come into play in the preparation of a Greenberger-
Horne-Zeilinger state, that is an entangled quantum state involving three or more qubits.

Lastly, we describe the experimental setup that will be virtually simulated by our software,
placing greater emphasis on the components that are directly related to qubit manipulation.

1.1 Single Rydberg atom

A Rydberg atom is an excited atom with one or more electrons elevated to a very high
principal quantum number n [15]. The energy of an electronic atomic state is, in first ap-
proximation1, determined mainly by the Coulomb interaction between the electron and the
nucleus, expressed by the Rydberg formula

En = −hcR∞
Z2

n2
, (1.1)

where h is the Planck constant, c the speed of light, R∞ the Rydberg constant, Z the atomic
number and n the principal quantum number. For Rydberg atoms, the value of n can be larger
than typical excited atomic states, which means that the electron is far from the nucleus2. In
this condition, several peculiar properties arise; most notably the atom responds exaggeratedly
to external electromagnetic fields, its size is orders of magnitude larger than unexcited atoms
of the same species, and this excited state has a particularly long decay time (of the order of
150µs for the 70S state of Rb atoms) [1].

There are various ways to encode qubits on Rydberg atoms [16], depending on the prop-
erties we want for our system: one possible implementation is to use the atomic ground state
|g⟩ to represent the |0⟩ state from computational basis, and a highly excited Rydberg state
|r⟩ as the |1⟩ state. Typically the excited state’s principal quantum number is in the range of
n = 60− 80.

1This formula correctly predicts energy levels of hydrogen-like atoms, but it is approximate for more-than-
one-proton nuclei. In any case, it generally constitutes the most predominant term.

2Not every atom can be a good Rydberg atom: when too excited, some atomic species can undergo ioniza-
tion, due to the electron’s transition to a not anymore bounded state.
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Single qubit manipulation can be performed via monochromatic fields carried by lasers,
that realize the Hamiltonian

Ĥ =
(Ω(t)

2
|g⟩⟨r|+ h.c.

)
−∆(t) |r⟩⟨r| (1.2)

where the states |g⟩ and |r⟩ refer to the atom’s ground state and excited Rydberg state, the
Rabi frequency Ω(t) characterizes the strength of the coupling, and ∆(t) the detuning, acting
only on Rydberg states.

The unitary evolution is defined by the propagator

U(t) = exp
(
− i

H

ℏ
t
)
, (1.3)

We want to show the effect of the driving terms proportional to Ω. We set ∆ = 0, thus
the Hamiltonian simplifies to

H

ℏ
=

Ω(t)

2
σx, (1.4)

where σx =

(
0 1
1 0

)
is the X̂ Pauli matrix.

If we consider as the initial state a qubit in the state |0⟩, and a drive pulse with constant
frequency Ω(t) = Ω, the propagator takes the form:

U(t) = exp

(
−iΩt

2
σx

)
=

∞∑
j=0

(−iΩt
2 )j

j!
(σx)

j =

=

∞∑
k=0

(−iΩt
2 )2k

(2k)!
12 +

∞∑
m=0

(−iΩt
2 )2m+1

(2m+ 1)!
σx =

= cos

(
Ωt

2

)
12 − i sin

(
Ωt

2

)
σx.

(1.5)

If we want to flip the state |0⟩ into |1⟩ or viceversa, we have to set the gate time T so that
ΩT = (1/2 + k)π, with k ∈ Z. This is a simplification: in general, we can define Ω as a
function of time, therefore the relation is generalized as∫ T

0
Ω(t)dt = (1/2 + k)π. (1.6)

1.2 Multi atom arrays and Rydberg blockade

In general, two atoms occupying sites i and j of a lattice interact if excited to a Rydberg
state. The interaction Hamiltonian is in the form

Ĥi,j = Vi,j |ri, rj⟩⟨ri, rj | =
C6

R6
i,j

|ri, rj⟩⟨ri, rj | , (1.7)

where |ri, rj⟩ := |r⟩i⊗|r⟩j is a pair of Rydberg states of atom i and j respectively, at distance

Ri,j , and Vi,j =
C6

R6
i,j

is the interaction strength coefficient; C6 > 0 represents the van der Waals

coefficient. The van der Waals interactions between the same Rydberg states are repulsive
and, since the atoms are excited to S states, isotropic.

Taking these results into account, the dynamics of a Rydberg atom array is governed by
the quantum many-body Hamiltonian

H

ℏ
=

n∑
i=1

Ω

2
σix −

n∑
i=1

∆ni +
∑
i<j

Vijninj , (1.8)
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where n is the number of atoms, ni denotes the projector onto the Rydberg state of the atom
i: ni := |ri⟩⟨ri|, and σix(ni) is given by the product

σix(ni) = 12 ⊗ · · · ⊗ 12 ⊗ σx(ni)⊗ 12 ⊗ · · · ⊗ 12, (1.9)

where σx is at the position corresponding to the i-th atom. The detuning term ∆ acts on
single atoms, favoring their excitations.

We can fine-tune the interaction strength by varying the array atoms spacing Ri,i+1, since
intensity scales as Vi,i+1 =

C6

R6
i,i+1

. Setting ∆ = 0, the Hamiltonian is

H

ℏ
=

n∑
i=1

Ω

2
σix +

∑
i<j

Vijninj =

n∑
i=1

Ω

2
σix +

∑
i<j

C6

R6
i,j

|ri, rj⟩⟨ri, rj | , (1.10)

where, in our case, C6/2π = 1725GHz(µm)6 and Ω/2π = 2.5MHz
If the array spacing is a = 15µm, we measure an interaction strength coefficient of

Vi,i+1/2π = 0.95MHz; in this case, the action of Ω is the predominant effect. However, when
atoms are sufficiently close to each other (a = 5µm) the Rydberg-Rydberg van der Waals in-

teraction between nearest neighbors Vi,i+1 greatly exceed the Rabi frequency Ω (
Vi,i+1

Ω ∼ 44),
resulting in a suppression of simultaneous excitations of both atoms. This phenomenon is
called Rydberg blockade, and it plays a fundamental role in Rydberg atom arrays.

The distance between two neighboring atoms at which this phenomenon appears is called
Rydberg blockade radius Rb and is measured by setting Ω = V (Rb), so that

Rb =

∣∣∣∣C6

Ω

∣∣∣∣1/6. (1.11)

For instance, for Ω/2π = 2.5 MHz and C6/2π = 1725GHz(µm)6, we obtain a blockade radius
of Rb = 6.92µm.

We now focus on the collective behavior of the array; setting the value of Ω at a constant
value for all the atoms, and preparing an array in the initial state |g1g2 · · · gn⟩ with spacing
a > Rb, we will observe a simultaneous and collective excitation of all atomic states into the
Rydberg state |r1r2...rn⟩, oscillating back at the global ground state |g1g2...gn⟩ at the same
frequency as Ω.

However, the system’s dynamics change drastically as we decrease the distance between
the atoms, specifically when the length of the array is comparable with the blockade radius
(R1,n ∼ Rb): the van der Waals interactions between every atom are now are the dominant
terms and exceed the Rabi frequency. As a result, the state oscillates with a frequency Ωeff

between the state |g1g2...gn⟩ and a collective state, formed by the coherent superposition of all
states with exactly one atom in the Rydberg state: |ψsingle⟩ = 1√

n
(|r1g2g3...gn⟩+|g1r2g3...gn⟩+

...+ |g1g2g3...rn⟩).
This oscillation of the probability exhibits an important property: its frequency that we

call Ωeff is proportional to the square root of the number of atoms in the array. To see why
this happens we have to compute the effect that the first term of the Hamiltonian defined in
(1.8) has on the array: applying the ground state to its term results in a summation over all
atoms indexes

1

2

n∑
i=1

Ωσix |00 · · · 0⟩ =
1

2
Ωeff |ψsingle⟩ , (1.12)

where Ωeff =
√
nΩ; the term

√
n is thus multiplied to ensure the conservation of vector norm,

resulting in an oscillation frequency of the probability of |ψsingle⟩ greater than Ω.
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We now focus on the evolution of the state |ψg⟩ = |00 · · · 0⟩, when applying different
values of ∆ while keeping Ω fixed. At large negative values of ∆/Ω, all atoms of the array
are in the |g⟩ state. As ∆/Ω increases toward positive values, excitations are more and more
favored, resulting in a growing number of atoms in the |r⟩ state whose interactions are no
more negligible. This gives rise to spatially ordered phases, in which atoms follow a regular
arrangement of the excitations called Rydberg crystal.

If we set the array spacing such that Vi,i+1 ≫ ∆ ≫ Ω ≫ Vi,i+2 and a < Rb, with
respect to one atom the nearest neighbor i+ 1 is within the blockade radius, while the next-
nearest one has negligible interactions with the first atom i; after completing the sweep from
negative to positive values of ∆/Ω, the system corresponds to a Rydberg crystal that exhibits
Z2 translational symmetry, analogously to the transition from a disordered or paramagnetic
phase to an antiferromagnetic order in magnetic system. If the spacing is further set to
less than the blockade radius so that two or more atoms fit inside the blockade radius of
another atom, this procedure gives rise to other translational symmetries: for example, if
Vi,i+1, Vi,i+2 ≫ ∆ ≫ Ω ≫ Vi,i+3 we obtain an array with Z3 symmetry, and so on.

To obtain more regular crystalline structures, dynamical and site-specific control of the de-
tuning driving lasers is needed for our array to undergo an adiabatic transition into crystalline
states.

Ultimately the implementation of a trapezoidal signal for the Rabi pulse and a linear
ramp for the detuning pulse allows us to easily prepare GHZ states using up to eight qubits.
Numerically optimized envelopes allow for even more precise quantum gate protocols applied
to longer atom chains [17].

1.3 Qubit implementations

To encode qubits to Rydberg atoms’ energy level we can choose various settings [13]. While
we choose to use exclusively one type of qubit encoding, it’s right to briefly introduce the
other general ways to encode qubits using Rydberg atoms.

A possibility is the so-called rr′-qubit, encoded by setting the |0⟩ state to a Rydberg level
|r⟩, while the |1⟩ state is associated with another Rydberg state, |r′⟩3. This configuration is
the most convenient for obtaining different types of interactions, like short-ranged van der
Waals interactions and longer-range dipolar-exchange interactions in the form C3

R3
ij
(|10⟩ ⟨01|+

|01⟩ ⟨10|). This method proves itself to be optimal for implementing less-trivial geometric
atom configurations like staggered atom chains [18].

Another very promising possibility is the gg′-qubit. It has recently been proven to be a
good platform for implementing high-fidelity two-qubit controlled phase gates (99.5% fidelity
with up to 60 atoms). For this reason, this method allows us to reliably prepare long-lived
entangled states, as well as offer a new approach for the exploration of large-scale quantum
error correction [19].

1.4 Experimental apparatus

The whole experimental setup is comprehensive of many elements. Despite its detailed descrip-
tion would be beyond the scope of this thesis, an overview of the typical setup is paramount.

3An example of atomic states in this case are 53S1/2 and 53P3/2 for |r⟩ and |r′⟩ respectively [13].
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(a)

(b)

Figure 1.1: (a): Simple schematic of the system in exam; horizontal beams are the drive lasers, that
carry signals for Ω and ∆. Vertical beams represent optical tweezers laser beams. In the figure are
indicated interactions between the central atom and the neighboring ones, called Vij . Source: [20].
(b): Operating principle of the tweezer traps. From A to C are displayed various positions where the
atom experiences a non-zero net force, resulting in a displacement towards the equilibrium region (D).
Source: [21].

First of all, the atom array is held in position by an array of optical tweezers, a useful
instrument that uses a highly focused laser to hold and move atoms in the size range of µm.
In Rydberg atom chains, atoms are loaded and held into their designated positions in an
array constructed by an acousto-optic deflector (AOD), which splits a single laser beam in an
array of optical tweezers. The trap itself consists of a laser beam; each atom is trapped at
the narrowest part of the focused beam. This is because, at the beam waist, the focused laser
creates a very strong electric field gradient, with the region with the strongest field being at
the center of the waist, as shown in Fig. 1.1b. The particle is, more precisely, positioned
slightly off the center of the waist, due to the particle interacting with the photons, which are
scattered or absorbed by the particle.

However, interactions between the focused laser and the atoms are inevitable when the
tweezer system is at work; thus to apply quantum manipulation of the states, the traps
are turned off for not more than a few microseconds. In this timeframe, lasers are pulsed
throughout the atom chain, realizing the effective Hamiltonian and implementing the time
evolution.

To perform a measurement after a protocol has ended, the traps are turned on again.
Atoms in the ground |g⟩ state are recaptured, while the ones in the Rydberg state |r⟩ are
pushed away; the long lifetime of these excited states ensures that most of the Rydberg atoms
can escape the traps before decaying back to the ground state. This conveniently allows us to
measure the atomic state of every component of the array, by checking which trap sites are
empty. Usually, fluorescence imaging is exploited to measure the array before and after the
protocol, to compare the initial and the final state of the array [14].
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Chapter 2

Qruise simulation software

For the numerical simulations, we use software provided by the company Qruise. This toolkit
allows us to test experimental protocols, simulating the principal components of the system; it
also provides extensive information about the system, which can be easily accessed by specific
modules. The software consists of a collection of modules that are comprehensive of several
system-optimized libraries with dedicated objects for every component of the experimental
apparatus.

In this chapter, we describe the standard procedures we used to achieve our results, dis-
playing the principal packages Qruise is equipped with to implement a faithful simulation of
Rydberg atom arrays. Moreover, we test how far classical simulation software can be pushed
to reproduce complex quantum dynamics.

2.1 General description of Qruise

Qruise is a Python-based collection of packages that allows us to create a virtual twin of a
real experiment, with the aim of accelerating the development of quantum technology and
improving its application.

The company offers space on its servers to store the user’s file system and to remotely run
code. To implement these features, the default interactive development environment (IDE) is
Jupyter Notebook, which offers a dynamic way to write code and to make it human-accessible,
with the aid of cells that run code or serve as markdown text.

Once the appropriate libraries have been imported, we can set up every component nec-
essary to emulate our system. Then we can create objects that store parameters given by our
component settings, and that compute the Hamiltonian terms.

Qruise methods make use of a class named Quantity to define physical quantities, in
which we can specify their measurement unit, their numerical value, and if needed, the range
of values it can vary. Once the experiment is created, running the simulation makes the
computer integrate the related Schrödinger equation and the system’s time evolution.

This allows us to explore dynamics, providing an initial state, of our virtual setup. For in-
stance, when considering a chain of two-level systems, we can compute the time-evolution of
a given initial state, that is the probability after a time t of measuring each state of the
computational basis B = {(1, 0, 0, · · · , 0, 0), (0, 1, 0, · · · , 0, 0), · · · , (0, 0, 0, · · · , 0, 1)}, where
(x1, x2, · · · , x2n) is a 2n-long vector indexing a specific configuration of the atomic excita-
tions in the array.
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2.2 The rydberg library

A convenient feature of the software is the possibility of selecting the specific physical hardware
to simulate via a proper library: in this thesis, we use rydberg, which is a library containing
classes and methods specifically intended to characterize Rydberg atom arrays.

Figure 2.1: Definition of parameter values, needed to define signals and array properties.

Figure 2.2: Definition of the atom array, in which we can define various objects throughout the code.
For the FromCoordinates method, an array of atom positions has to be created. The RydbergSystem
method creates the mainframe for each object to interface with the simulation; the simulation resolution
is defined by the method .sim res.

We first initialize the parameters needed for the simulation (Fig. 2.1). In this example,
omega max is the height of a trapezoidal impulse, in MHz, while t rise and t fall the times
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in µs the signal goes from zero to omega max and vice versa. delta 0 and delta f are the
initial and final values of the detuning signal, in MHz, which is a linear ramp; t d rise and
t d fall are the times, before and after the linear ramp, where the signal remains constant.
t gate final and t final represent respectively the duration of the gate and the simulation,
both in µs. vdW coeff is the value of the van der Waals coefficient C6, with which we calculate
the blockade radius. Last, qb number is the number of atoms in our array, while hilbert dim

is the dimension of the single atom’s Hilbert space1.
Once these parameters are initialized, we can define the atom array, creating a list con-

taining all the positions of the atoms, with distances expressed in micrometers, and pass it
to a method called FromCoordinates; the result is stored as a Lattice object. We can store
this in an object created by the RydbergSystem instance, as shown in Fig. 2.2, and add com-
ponents along the way; these components include the drive pulses and the virtual generator
of these signals, which converts mathematical definitions of the signals to laser pulses.

Regarding the numerical simulation, we then can define the simulation’s resolution, which
is going to impact the length of the timestep, and the propagation method for the numerical
integration of the Schrödinger equation.

Figure 2.3: Example of a definition of one envelope, with its parameters. The general shape of the
envelope is picked from an extensive list present in Qruise documentation.

Next, we have to provide our system with drives through which the signals are applied,
using the method add drive. We can then define the envelopes of the signals, choosing from
an exhaustive list of pre-coded mathematical functions, and fine-tuning them to specify their
parameters (Fig. 2.3).

1In our case the atom is considered a two-level system, with state space spanned by |0⟩ and |1⟩ states.
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Figure 2.4: Definiton of a virtual generator, that converts instructions to signal definition, once an
envelope is provided by the .add instruction method.

To do so, we have to create a generator object, which will provide the signals to the system
through instructions. When defining these instructions with the gates.Instruction method,
we have to specify the time window in which they have to be performed, as well as which
drives the signals have to be provided to (Fig. 2.4).

Figure 2.5: On first cell, instructions to run the simulation and create the objects to store data; on sec-
ond cell, the main method to retrieve parameters of the simulated system (print all parameters());
on third cell, the main method used to retrieve data after the simulation: the output stored in
dynamics data is a matrix of complex numbers: every line of the matrix, correspondent to a timestep,
contains the probability amplitude of every state in the computational basis.

Finally, we can collect all the objects to define our experiment and run a simulation for
the specified time. This is going to numerically solve the equations and provide us with the
time evolution of the system, with which we can inspect the dynamics of an initial state (Fig.
2.5).

Before we can talk about simulations, we have to briefly see how the atoms are defined in
Qruise, to implement a given protocol.

First of all, the various atoms are defined as component objects in the RydbergSystem

library, where one can customize the relevant properties of our atoms, like the energy levels of
the various Rydberg states. We use the default parameters for the virtual atoms in use; this
poses no issue, since Qruise’s framework conveniently stores all parameters of the simulation,
giving us access to a variety of useful information, such as the van der Waals interaction
coefficient C6.
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Regarding the various signals applied through the drive channels, they are defined as
voltage functions, called envelopes. Then depending on the user-defined generator conversion
factor Γ, they will be translated into the needed frequency. For instance, if we want to set a
rectangular signal for Ω to 5× 2π MHz, we have to first define a voltage function Φ(t) shaped
as a rectangle, where its height is 5× 2π V, and then pass this envelope as an instruction for
the generator, which in the simplest setting reproduces our signal without noise, converted
by a factor Γ = 1.0 MHz/V.

2.3 Limitations of the software

While Qruise is a user-friendly simulation software, it shows limitations, due to the expo-
nential complexity of the simulations; this is because the simulations are based on exact
diagonalization techniques. We briefly want to examine our issues regarding the capabilities
of reproducing larger arrays, because they constitute the limit on what systems we are going
to take results, on while keeping in mind that we are using a classical approach to simulate
quantum systems.

Our issues can be divided into three categories:

• For the scope of our thesis, given the exact diagonalization method, we are limited
to the size of the array. In our runs, we encountered issues that can divided into
three categories: faithfulness of the simulations, crashes, and difficulties to implement
features. These points ultimately impact precision on iterative methods, forcing us to
do less defined or more narrow-ranged iterations over parameters.

• The faithfulness of our simulations depends on the choice of the proper propagator:
with unitary methods like Piecewise Constant, we ensure the norm preservation. Using
this method implies that, for each timestep, the simulation calculates the next unitary
evolution operator, which is a matrix exponential; this method thus is slower, but more
accurate, than others like Runge-Kutta. The latter one is much faster because the
simulation calculates for each timestep the state as a multiplication between the previous
state vector and a constant matrix. However this doesn’t preserve the norm of the state
vector over time, thus the Runge-Kutta method is avoided for our simulations.

The resolution of the simulation, which is related to the length of the timestep, can be
tuned to partially mitigate the duration of our simulation.

• Kernel crashes, which completely halt the simulation, are probably caused by the cloud
framework and could be solved by running the entire software locally. This problem
occurs frequently on nine or more atoms, making it impossible for us to do iterative
runs on more than eight atom arrays, or simulate the dynamics of a high number of
atoms.

• Last, the Qruise suite offers documentation and tutorial scripts about its software;
however, from a new user perspective, we find that some modules like RydbergAtoms

lack some key informative material to correctly implement the needed experimental
features.
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Chapter 3

Preparation of the GHZ state

In this chapter, we show and discuss our simulations and the results we obtained.
First, we focus on a global not-gate that flips all the atoms from |0⟩ to |1⟩. This was

performed as a control run, to better familiarize with the software as well as quantitatively
assert the dynamics of the system in a simple and predictable setting.

Then, to explore how the Rydberg blockade impacts on the array’s evolution, we simulate
how a system of n atoms behaves when the atoms are put close to each other. In this case,
we can observe that the probability of a single atom excitation oscillates between 0 and 1,
with frequency equal to the Rabi frequency multiplied by

√
n, while multiple excitations are

highly suppressed. In this instance, we also checked how introducing a detuning term affects
the dynamics.

Finally, taking inspiration from [14], we reproduce the protocol to prepare the GHZ state.
We explain how the detuning values and the array spacing, are crucial factors in the prepa-
ration of the GHZ state.

3.1 NOT gate implementation

As exposed above, we start our analysis by preparing a simple script that reproduces collective
oscillations between the states |0000⟩ and |1111⟩. We firstly make sure that our atoms are not
interacting with each other by setting the spacing a ≫ Rb; we found that setting a = 20µm
enforces this condition, given that Rb ≃ 6.17µm. Then, we define a Rabi pulse trapezoid
signal, as shown in Fig. 3.1, where the length of the bottom base of the trapezoid is the gate
time tg, and its height is the Rabi frequency Ω.
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Figure 3.1: Envelopes carried by the generator. Regarding the linear ramp, the final value of ∆ varies
over iterations from 7.5×2πMHz to 12.5×MHz, while the initial value is fixed at ∆i = −15.0×2πMHz;
maximum amplitude for Ω(t) is Ωmax = 5.0 × 2πMHz; Ω(t) rises or falls between 0 and Ωmax in
trisefall = 0.7µs.

As seen before, if the atoms are sufficiently far away from each other they are not inter-
acting, so the unitary evolution operator takes the form

U(tg) = cos
(
ϕ(tg, ton)

)
12 − i sin

(
ϕ(tg, ton)

)
σx, (3.1)

where tg and ton are respectively the bottom and upper base of the trapezoid signal, and
ϕ(tg, ton) = (tg + ton)Ω/2, obtained as the underlying area of the trapezoid; so if we want
to perform a global NOT gate we simply have to adjust the length of the two bases of the
trapezoid, and Ω, to suppress the cosine term.
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(a)

(b)

Figure 3.2: Constant amplitude Ω signal applied to an array of four atoms, where site spacing is
20µm in (a), and 6.0µm in (b). The fact that the |0000⟩ curve on (b) is not constant is due to single-
excitation states ψsingle, having the remaining probability. Simulations shown here are of a 4-atom
array, with trapezoidal pulse Ω(t) with a max value of Ω(t)/2π = 5.0MHz, and ton = 90ns, over a time
of 110ns.

The simulation performed implements a gate time tg = 110ns, while the upper basis of
the trapezoidal envelope is ton = 90ns; maximum amplitude is set as Ω/2π = 5MHz. The
spacing between atoms is set big enough to neglect van der Waals interactions; that implies
that the dominant term of the Hamiltonian is the one that applies σix to every qubit.

As shown in Fig. 3.2a, the initial state is the |0000⟩ state. Its probability decreases over
time as the Ω pulse is applied, and after the time tg the state is the one with all atoms excited,
|1111⟩: the probability fully transfers between these two states because they have the same
energy. Then, we test the behavior of the system by setting a = 6.0µm ≃ Rb, like 3.2b clearly
shows, resulting in the transition from |0000⟩ to |1111⟩ to be forbidden because the energy of
the initial state is zero, while the energy of |1111⟩ is ≫ 0. The interaction energy is increased,
since it is the dominant term, due to the atom spacing. In this case, the |1111⟩ state is highly
suppressed.

3.2 Single excitation oscillations

Our next goal is to verify how the initial state would evolve if the lattice spacing is diminished
such that (n−1)a < Rb, namely when the atoms are simultaneously subjected to the Rydberg
blockade. In this regime, we expect that, during the dynamics, no more than a single excitation
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will emerge since the Rydberg blockade effect is going to suppress every couple of double
excitations in the lattice.

However, we also expect that the total probability of having exactly one atom excited is
shared across all the states with a single excitation, that is states such as |xi⟩⊗n where xi = 1
for i = i∗ and xi = 0 for every other i. This is because there is translational invariance across
the array, and every state with a single excitation has energy E > 0; this means that these
states are all resonant with the initial state. We observe oscillations between the initial state
and the state

|ψs⟩ =
1√
n

(
|1000...⟩+ |0100...⟩+ ...+ |...0001⟩

)
, (3.2)

as already discussed in chapter 1.2.
We set our pulse to be carried by a uniform and constant envelope of amplitude Ω =

2.5 × 2π MHz and duration 1.2µs; to be sure that every atom is in every other’s blockade
radius, we set the array spacing as a = Rb

n+1 , with Rb ≃ 6.17µm.
We evolve the system for a time such that we observe several oscillations.

(a)

(b)

Figure 3.3: (a) Various oscillations of the single-atom excitation probability Psingle, depending on
the number of atoms n. Only 0.6µs of simulation are shown to avoid visual clutter.
(b) Measured oscillation frequencies of arrays of n atoms, compared with theoretical expected values
(Ωeff (theor.)) and the Rabi frequency (Ω). We have to note that, albeit useful to verify the frequency
relation, the 9-atom acquisition is not physically suitable on real systems that possess our value for
the blockade radius, due to how close the atoms are in our array.
For both (a) and (b) we set a pulse of amplitude Ω/2π = 2.5MHz.
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We take the single-atom probability Psingle as the sum of the populations of every state
in Eq. 3.2.

As shown in Fig. 3.3a, as we increase n, the frequency of these oscillations increases.
What we expect is that this frequency is proportional to

√
n, as predicted in chapter 1.2. To

verify this prediction, we performed simulations up to nine atoms and measured the oscillation
frequency by taking the inverse of the time where we have two peaks of the probability of
|ψs⟩, to confront them with their respective expected value from the theory, Ωeff = Ω

√
n.

Fig. 3.3b confirms our predictions, showing almost exactly matching values between
Ωeff (measured) and Ωeff (theoretical).

In any case, given our measure for Rb, estimations of the effective Rabi frequency on eight
or nine qubits have to be taken only as a verification of the Ωeff = Ω

√
n relation, since the

consequent atom spacing is unattainable in an experimental environment.
A final analysis of this virtual setup was performed, introducing a constant detuning ∆ on

every site. Since the Hamiltonian is time-independent, we expect that the system’s energy is
conserved, so we observe oscillations between states with resonant energies. As a result, when
detuning is not present, the system’s state probability fully transfers from |ψg⟩ to |ψs⟩, ranging
from 0 to 1. However, when introducing a detuning ∆ > 0, this probability shift is partially
suppressed, resulting in a reduction of the amplitude of the |ψs⟩ probability oscillations. This
results can be visualized in Fig. 3.4:

Figure 3.4: Probability shift from |ψs⟩ to |ψg⟩. The dashed line indicates maximum values of
probability oscillations of |ψs⟩, while the continuous line shows minimum values of |ψg⟩ while varying
the detuning value on all 4 sites. Simulation parameters are: tgate = 1.2µs, Ω/2π = 5.0 MHz, a = Rb

n+1

3.3 GHZ states preparation

Finally, we want to set up a protocol to obtain a GHZ state, defined as the coherent super-
position of the two antiferromagnetic states:

|ψGHZ⟩ =
1√
2

(
|1010 · · · 10⟩+ |0101 · · · 01⟩

)
. (3.3)

We focus only on even-numbered atom arrays because in this case, the two states that consti-
tute the GHZ state have the same energy. If not specified, we set n = 6, but we have obtained
analogous results for n = 8.

The simulations are performed with a total time of 5.0µs. The total duration is the same
adopted in the experiment reported in [1]. Also, the initial state is |00 · · · 0⟩.
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We set a trapezoid profile for the Rabi pulse and a linear ramp for the detuning one, as
shown in Fig. 3.1:

Depending on the spacing a and the final value of the detuning ∆f , we observe different
probabilities for the GHZ state:

• If a and ∆f are set to be too low (a < 0.65Rb, ∆f/2π < 5.0 MHz), the interaction term
is the dominant one, resulting in less than n

2 excitations due to the blockade mechanism;

• If a ≳ Rb, we will have the opposite phenomena, namely blockade violations, resulting
in more than half of the atoms excited. These states are furthermore populated with
the presence of higher values of ∆f ;

• In the cases where only half the atoms are excited without violating the blockade, the
possible states have all similar energy. For example, considering an array of four atoms
for brevity, the most probable final states are |1010⟩, |0101⟩, and |1001⟩. The only state
with both borders excited (BE state), namely |1001⟩, is the most probable one. This
is expected, since the first and the fourth atoms experience weaker interactions, having
only one neighboring atom. As a result, the BE state has less energy compared to the
other two.

Using this reasoning, for the third case we choose to search for the optimal combination
of parameters by spanning a range of values of a and ∆, to prepare final states with only
n/2 atoms excited without blockade violations. However, a local correction on the ∆ signal is
implemented on the border atoms, to mitigate the presence of BE states, and instead promote
the formation of the GHZ state. The final value, and thus the slope, for the detuning signal,
now depends on the site, starting from the same value for all atoms but ending, for the i-th
site, at

∆f (i) = ∆f +∆b(δ1,i + δi,n). (3.4)

If ∆b > 0, the final value of the detuning at border sites is higher in modules, resulting in
a higher probability of BE-states.

If instead, we choose −∆f < ∆b < 0, we increase the energy of the undesired states, thus
we reduce their probability in the final state. Therefore we increase the probability for a GHZ
state, since interatomic interactions are weaker at border sites, and applying a smaller value
of the detuning on these atoms results in less probable BE states.

If ∆b < −∆f , we suppress the effect of detuning, reducing the probability of finding the
n/2-excitations states.

We run a small number of iterated simulations, varying ∆f and a/Rb at every iteration,
and setting ∆b = 0. In this case, we observed the highest probability of having a GHZ as a final
state to be inferior (PGHZ ∼ 0.2) to the highest probability of having a BE state (PBE ∼ 0.8).
We then replicate the iteration runs; however, for every run, we now fix a constant value of
∆b < 0 and check the highest probability of having a final GHZ state at the specific values of
∆f and a/Rb. We observe PGHZ ∼ 0.9 at a = 0.85Rb and ∆f/2π = 7.5MHz.

Keeping fixed these optimal values of ∆f and a/Rb, we perform another iteration, sweeping
∆f/∆b from −1.0 to 0.0, as shown in Fig. 3.5.
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Figure 3.5: Populations of the various 6-atom states, when decreasing the final detuning value at the
borders by ∆B , with spacing a = 0.85Rb and final detuning ∆f/2π = 7.5 MHz. As we discussed, the
presence of ∆b is necessary to obtain GHZ states with good probability: if the detuning slope is equal
for all sites (∆b = 0), BE-states probability (∼ 0.8) is much greater than the GHZ-state one (∼ 0.2).

As we can see from Fig. 3.5, the population of the GHZ state decreases the more we
approach ∆b = 0, which is uniform detuning for all atoms. Instead, if ∆b = −∆f , we are
forcing both border atoms to not excite, resulting in less-than-n/2 excitations due to the
Rydberg blockade. We also find the optimal values of ∆b to be ∆b ∼ −0.4∆f .

Setting ∆b = −0.4∆f , we perform two final sets of iterations, one for the six-atom array
and one for the eight-atom one, sweeping the values of ∆f and a/Rb. For each set, at each
iteration, we extract the probability of having the GHZ state as the final state, spanning a
grid of values of that probability, shown in Fig. 3.6 and Fig. 3.7.
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Figure 3.6: Heatmap showing the probability of the final state to be measured as one of the two
components of |ψGHZ⟩, on an array of 6 atoms. This result is obtained iterating initial parameters
a and ∆f , while ∆b/∆f = −0.4 is kept fixed. The best probability is found at a/Rb = 0.825 and
∆f/2π = 16.75MHz, with value PGHZ = 0.99995.
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Figure 3.7: Heatmap showing the probability of the final state to be measured as one of the two
components of |ψGHZ⟩, on an array of 8 atoms. This result is obtained in the same way of Fig. 3.6,
with a/Rb ranging from 0.5 to 0.95m, and ∆f/2π from 7.5 to 12.0MHz, while keeping ∆b/∆f = −0.4.
Due to the limitations discussed in chapter 2.3, we have to decrease the range and the resolution of
the heatmap. Nonetheless, good results are obtained, with best probability PGHZ = 0.9996, found at
a/Rb = 0.95 and ∆f/2π = 9.0MHz.

We find satisfying results for both the arrays:
For n = 6, the probability of having a final GHZ state has its maximum value PGHZ =

0.99995 ≃ 1 with a/Rb = 0.825 and ∆f/2π = 16.75MHz. However, as already shown in
Fig. 3.6, we have a belt of high probabilities. This means that similar values of PGHZ are
obtainable with multiple values of a and ∆f .
We also notice that the belt trend is towards smaller values of ∆f when a is higher: this has
to be expected since the more a is increased, the more we have blockade violation, which is
further incentivized at high values of ∆f . For the opposite reason, at smaller values of a, we
need higher values of ∆f to lower the energy of 3-atoms-excited states, otherwise, due to the
blockade, 2 excitation states are favored.

For n = 8, we have analogous results: PGHZ = 0.9996 ≃ 1 with a/Rb = 0.95 and
∆f/2π = 9.0MHz (Fig. 3.7). Even if the range and resolution of the map are smaller than
the six atoms case, we still clearly see that high values of PGHZ can be obtained in a wide
range of parameter values. The map also suggests that the belt trend in this case would be
the same.

For both cases, we can assert that a relatively wide range of a and ∆f values can be set
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to obtain GHZ final states with ∼ 1 probability, if we apply a local detuning correction to the
border atoms.

Last, we provide an example of the dynamics of a GHZ state preparation protocol for 6
and 8 atoms in Fig. 3.8. The parameters in use here are the same for both cases.

Figure 3.8: Probabilities as functions of time of the ground state, GHZ state, and the BE states.
Parameters are: a = 0.85Rb, Ωmax/2π = 5.0 MHz, ∆/2π = −15.0 to 12.5 MHz, ∆b/∆f = −0.4. In
blue are shown the probabilities relative to an array of 6 atoms, while in red the ones of an array of 8
atoms.

22



Conclusions

In this thesis we have simulated the preparation of a GHZ state in a one-dimensional array
of Rydberg atoms.

First, we have started by simulating a simple NOT gate, to test Qruise’s core features and
familiarize with how it simulates the system under a predictable environment. Then, we have
explored how the various terms of the Hamiltonian affect the system’s dynamics; considering
the interatomic interactions between Rydberg atoms, we have reproduced the Rydberg block-
ade phenomena with multiple sites, confirming that the system we have simulated exhibits
genuine quantum properties, such as the raising of the effective Rabi oscillations’ frequency
when more atoms are added in the blockade regime. Our results show us that the effect of
the detuning is lowering the energy of multiple excitation states, resulting in an attenuation
of the blockade effect.

Then, we moved to the generation of many-atoms superposition of entangled states, re-
sulting in excellent results on recreating six and eight Rydberg atoms Schrödinger’s cat states.
To achieve this goal, we run the simulation iterating over multiple parameters choice, to find
the optimal combination of them to maximize these states’ populations.

We also have determined the importance of applying additional local detuning at the
array’s border sites, to diminish as much as possible the population of resonant states with
both borders excited.

We hence have proven that Rydberg atoms optical lattices are not only a powerful can-
didate for quantum simulation and computation, but also a versatile one, given the various
results we obtained by varying a few important parameters of our array.

In pursuing such objectives we also have shown that quantum simulators are a necessity for
experimental research since the simulation of even a few atoms proved to be a computationally
expensive task for our simulator; in our attempts not more than nine-atom simulations were
successful, either due to the long run times or to precision errors from the calculations.

In summary, our exploration of the properties of Rydberg atom chains and their simu-
lation using Qruise highlights the potential of neutral atom lattices for quantum simulation
and computation. However, our thesis also underscores the need for further experimental
endeavors to fully harness the capabilities of these systems to advance our understanding and
application of quantum many-body systems.
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