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Abstract

Glucose clamps are experimental techniques used to assets insulin action and
glucose utilization. By ”clamping” the blood glucose of the patient to a desired
level, insulin sensitivity and β-cell functioning can be investigated. In this work
we present an approach to modulate glucose infusion rate (GIR) through a semi-
automated clamp technique, serving as a decision support system to clinicians.

We make two key contributions. Firstly, we investigate the application
of control algorithms, specifically Proportional-Integral-Derivative (PID) con-
trollers and Model Predictive Control (MPC), in the context of glucose clamp ex-
periments. Using MATLAB and Simulink simulations, the two approaches were
evaluated in both ideal and realistic scenarios, considering measurement vari-
ations and uncertainties typical in clinical environments. The results obtained
were promising, demonstrating the efficacy of our semi-automated clamp tech-
nique in achieving targeted blood glucose (BG) levels. Both the Proportional-
Integral-Derivative (PID) control algorithm and the Model Predictive Control
(MPC) approach effectively modulated the glucose infusion rate (GIR), leading
to close adherence to predefined clamp BG targets.

The second contribution is the design of a mobile application, Glucas 2.0,
to support clinical researchers conducting glucose clamps experiments. This
app, which enables the possibility to carry out more than one experiment at the
time, provides suggestion of glucose infusion rates (GIR) generated by a PID
controller.
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Chapter 1

Introduction

Experimental techniques such as the glucose clamp methodology have been in-
strumental in advancing our comprehension of glucose metabolism and insulin
sensitivity. The glucose clamp, introduced by DeFronzo et al. [4] in 1979, has
since become a cornerstone in the modeling of metabolic systems, enabling pre-
cise assessment of insulin action and glucose utilization in vivo. These clamps
serve not only to elucidate fundamental physiological mechanisms but also to
model complex biological systems, including the intricate dynamics of diabetes.

While the glucose clamp technique provides valuable insights into insulin
action and glucose regulation, its application in clinical research and practice is
hampered by several limitations. First and foremost, traditional glucose clamp
studies are resource-intensive and laborious, requiring specialized equipment,
skilled personnel, and extensive participant monitoring. In addition to that, the
complexity of clamp procedures and the variability in individual responses can
introduce bias and limit the reproducibility of results.

In recent years, there has been a growing interest in leveraging computa-
tional approaches and advanced technologies to enhance the efficiency and ac-
curacy of glucose clamp experiments. Mathematical modeling techniques, such
as compartmental models and physiological-based models, have been employed
to simulate glucose-insulin dynamics and optimize clamp protocols. These mod-
eling approaches enable researchers to predict glucose clamp outcomes, design
personalized clamp protocols, and investigate the underlying mechanisms of in-
sulin resistance and β-cell function.

In glucose clamp experiments the glucose regulation mechanism is perturbed,
and blood glucose concentration is forced to remain at a desired level (achieved
by ”clamping” blood glucose concentration) through intravenous administration
of glucose. There are three main types of glucose clamps that serve different
research purposes:

Hyperglycemic Clamp In hyperglycemic clamps, blood glucose (BG) levels
are elevated above normale range (up to 230-240 mg/dl). This enables to
quantify β-cell sensitivity to glucose and examine the early and late phase
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Figure 1.1: Common protocol of glycemic clamp experiments including possible
outcomes.

of insulin secretion.

Euglycemic Clamp Euglycemic clamps involve maintaining blood glucose at
a constant, normal level (100mg/dl) despite the introduction of additional
insulin. By measuring the amount of glucose required to counterbalance
the insulin-induced increase in glucose consumption, researchers can quan-
tify insulin sensitivity.

Hypoglycemic Clamp In hypoglycemic clamps blood glucose is decreased
(typically by extra-insulin administration) and maintained in hypoglycemia
(50 mg/dl) to facilitate the study of hormonal counter-regulation, cogni-
tive functions during hypoglycemia, and the perception of hypoglycemic
awareness.

Another type of clamp we wanted to explore is the ISO-IV clamp. These
studies consist in a two day experiment. On the first day, the patient takes
a Oral Glucose Tolerance Test (OGTT) ingesting a fixed quantity of glucose
(in our study we analyzed both the 40g and 75g scenarios). The next day, the
patient is subjected to an isoglycemic infusion (ISO-IV) of glucose, together
with a bolus of subcutaneous insulin.

These types of clamp are useful to assest the incretin effect. The incretin
effect is the increase in insulin response to nutrient ingestion compared to the
response to glycemia alone. It is crucial in understanding how our bodies handle
ingested carbohydrates and regulate glucose levels. It refers to the increased
insulin response triggered by food intake compared to just the blood sugar
levels alone. This response, mediated by factors in the gastrointestinal tract, is
essential for keeping blood sugar levels stable after meals. Measuring the incretin
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effect provides valuable insights into diabetes and other metabolic disorders
related to mealtime glucose control. It also helps us understand how the gut
and pancreas interact to regulate glucose levels. Accurate measurement of the
incretin effect is important for research and clinical studies, as it can guide the
development of new treatments for conditions affecting glucose metabolism.

As depicted by Aulinger and D’Alessio [18], with (almost) identical glucose
doses administered (one via OGTT and one via ISO-IV) (Fig. 1.2), the insulin
response exhibits a stark contrast (Fig. 1.3). The incretin effect manifests as
a more than twofold increase in the insulin response to oral glucose ingestion
(OGTT) compared to intravenous administration (ISO-IV).

Figure 1.2: Glucose response for
OGTT vs ISO-IV, taken from [19].

Figure 1.3: Insulin response for
OGTT vs ISO-IV , taken from [19].

There are two main approaches to modulate the glucose infusion rate (GIR).
In non-computerized clamps, GIR adjustments are made based on frequent BG
measurements and clinical judgment. This task is far from trivial, and the
expertise of the staff significantly impacts the quality of control achieved. Con-
versely, in fully automated clamps, BG levels are continuously monitored using
a glucose sensor, which feeds data into a closed-loop algorithm. This algorithm
then dynamically adjusts GIR in response to BG levels and predefined targets.
In these clamp systems, glucose infusion occurs through an automatic actuator,
eliminating the necessity for user intervention. The aim of automated clamps is
to minimize variability in BG control stemming from human operators, thereby
reducing control deviation overall. Nonetheless, their implementation necessi-
tates additional specialized hardware to integrate automatic BG measurements
and actuation of the GIR, resources that are frequently lacking. Moreover,
complete automation presents regulatory hurdles in light of the Medical Device
Regulation.

In this work we propose a third approach to modulate glucose infusion rate.
We developed a semi automated clamp technique intended to serve as a deci-
sion support system rather than a fully automated clamp system. This hybrid
approach allows for enhanced control over BG levels while still leveraging the
expertise of clinical staff. Crucial to this decision support system is the design of
control algorithms to modulate blood glucose in glucose clamps. In this study,
we developed both a Proportional-Integral-Derivative (PID) control algorithm
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and a Model Predictive Control (MPC) approach for adjusting the GIR to attain
predefined clamp BG levels.

Additionally, we have designed a mobile application as part of the deci-
sion support system for clinical researchers conducting glucose clamp experi-
ments. This app aims to help investigators by suggesting the optimal GIR to
achieve pre-determined BG levels. Users retain the ability to intervene with the
suggested control action, thus integrating clinical reasoning into the decision-
making process.
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Chapter 2

Computational Methods

and Theory

In this section, we outline the design of the PID and MPC algorithm employed
to offer GIR suggestions. To achieve this, we conceptualize BG control in glucose
clamp experiments as a reference tracking problem in a closed loop strategy.

Closed-loop controllers, also known as feedback control systems, are essential
components across various engineering and scientific disciplines, offering precise
regulation and stabilization in dynamic environments. Unlike open-loop systems
that operate without feedback, closed-loop controllers continuously monitor sys-
tem output and adjust control actions based on measured feedback signals, aim-
ing to maintain desired set points or track reference trajectories. In Fig. 2.1,
we can observe a general closed-loop controller scheme. The controller uses the
outputs of the system y(t) (measured by the sensor), together with with the
reference value r(t), to generate the control inputs u(t). These inputs are then
applied to the system, which produces the outputs, and the process continues.
Additionally, there may be disturbances acting on the system.

Figure 2.1: General closed-loop controller architecture, taken from [32].

In this framework, we will work with discrete variables, and we will assume
uniform sampling, defining Ts = ∆k = tk − tk−1. Congruent with standard
glucose clamp experiments, in our control algorithms we considered a sampling
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time of 5 minutes.
Let y(k) ∈ R (mg/dl) be the patient BG levels at time tk, the measured

output of the process we want to control. Let y0(k) ∈ R (mg/dl) be the desired
glycemic reference trajectory (r(t) in Fig.2.1). We aim to track y0 as closely as
possible.

The variable we can manipulate, the control input, is the glucose infusion
rate u(k) ∈ R

+
0 (g/min). This quantity must be greater than or equal to zero,

leading to a strongly asymmetric effect on the admissible control actions.

2.1 PID

The first control technique we used is Proportional-Integral-Derivative control,
where the computed GIR is the sum of three components:

uPID(k) = uP (k) + uI(k) + uD(k). (2.1)

We define the tracking error as e(k) = y0(k)− y(k).
The first term is called ’proportional action’, and it is proportional to e(k),

so the control action is:
uP (k) = KP · e(k) (2.2)

higher Kp, higher the control aggressiveness.
The second term is called ’integral action’ and it is proportional to the satu-

rated version of the integral of the tracking error I(k). We have, in continuous
time:

uI(t) = KI ·

∫ t

0

e(t)dt (2.3)

which in discrete time it becomes:

uI(k) = KI · I(k) (2.4)

where I(k) is the discrete integral of the error and it is defined as:

I(k)unsat = I(k − 1) + e(k) · Ts (2.5)

The saturated version is:

I(k) = max(Imin, I(k)unsat) (2.6)

and
I(k) = min(Imax, I((k)unsat) (2.7)

This approach is referred to as an ’Anti-wind-up scheme’, implemented to
prevent the accumulation of large quantities in the integral memory. In our
scenario, we set Imin = 0 mg·min

dl
and Imax = 10000 mg·min

dl
We selected these

values because in our problem, an accumulation of negative integral error is
justifiable, particularly in euglycemic and hypoglycemic clamps, as the patient’s
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blood glucose (BG) y tends to be greater than the desired reference y0 for the
majority of the experiment. In PID control, the integral action plays a vital role
as it enables the system to achieve zero-error tracking in steady-state conditions.

The third term is called ’Derivative Action’ and it is proportional to the
derivative of the tracking error. We have, in continuous time:

uD(t) = KD ·
de(t)

dt
(2.8)

which in discrete time it becomes:

uD(k) = KD ·
e(k)− e(k − 1)

Ts

(2.9)

The derivative action takes into account the error trend, aiding in the prevention
of overshoot. To mitigate large control actions resulting from sudden changes
in the reference signal, we calculate the derivative of the output instead of the
derivative of the error. Thus, we have:

uD(k) = −KD ·
y(k)− y(k − 1)

Ts

(2.10)

The three parameters KP [ g·dl
mg·min

], KI [ g·dl
mg·min2 ], and KD [ g·dl

mg
] are em-

ployed to adjust the weighting of the various control actions.
Although it is a relatively simple technique, the PID approach is widely

employed across diverse control problems and consistently delivers strong per-
formance. The general PID architecture is displayed in Fig.2.2.

Figure 2.2: General PID controller architecture, taken from [32].

2.2 MPC

Another technique we employed is Model Predictive Control (MPC). Operating
primarily in the digital framework, MPC is utilized to ”re-formulate” the control
problem as an optimization problem. The MPC algorithm computes the optimal
control action for tracking the reference. An effective analogy for describing
MPC reasoning is likening it to a chess player. In a match, the chess player can
anticipate the impact of their moves on the game. Therefore, each time it is
their turn:
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1. They explore all possible sequences of N moves and choose the most ef-
fective one after evaluating their impact on the game.

2. They make the first move of the sequence and await the opponent’s reac-
tion.

3. Upon their next turn, if the opponent’s reaction is unexpected (not consid-
ered in their predictions), the chess player will recompute a new optimal
sequence of N moves.

4. They once again apply the first move and wait for the opponent’s reaction.

This strategy is repeated until the game concludes.
Similar to the chess player, MPC utilizes a model of the system to predict

the impact of a sequence of N control actions. Thus, at each step, the MPC:

1. Evaluates all possible sequences of N control actions and selects the opti-
mal one based on their anticipated effect on the system over the next N
steps.

2. Implements only the first control action and awaits the system’s response
(a new measurement).

3. Upon receiving the new measurement, the MPC updates or recomputes
the optimal sequence of control actions for the next N steps.

4. It then applies the first control action once again.

This iterative process continues throughout the control task.
In MPC, N is referred to as the ’Prediction Horizon’, indicating the span

into the ’future’ that the controller considers. Had the controller executed all
N control actions in the initial step without pausing for measurements, this
method would be termed ’open-loop’. What distinguishes the MPC strategy
as ’closed-loop’ is that, following the application of the first control action, the
controller awaits the new measurement and recalculates the entire sequence. In
Fig.2.3 we can see the general closed-loop scheme for reference tracking of a
MPC controller.
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Figure 2.3: MPC for reference tracking controller scheme, taken from [32].

The key factors needed to describe a MPC algorithm are:

1. A mathematical model of the system to be controlled,

2. A cost function to optimise,

3. A set of constraints.

The Model Predictive Control framework offers considerable flexibility re-
garding model requirements for the algorithm. For our purposes, we opted to
utilize a state-space model, which represents a highly versatile class of models.

Figure 2.4: Discrete-time system, taken from [32].

Let us consider a discrete-time system S (Fig. 2.4), with m inputs u(kT ) ∈
Rm and p outputs y(kT ) ∈ Rp. A general description for the system S is:

{

x((k + 1)T ) = f(x(kT ), u(kT ))

y(kT ) = g(x(kT ), u(kT ))
(2.11)
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where x ∈ Rn is called State of the system, f : Rn+m → R
n and g : Rn+m →

R
p.
For our objectives, we concentrated on linear systems, which results in the

following state model:

{

x((k + 1)T ) = Ax(kT ) +Bu(kT ) +Md(kT )

y(kT ) = Cx(kT ) +Du(kT )
(2.12)

with A ∈ Rn×n, B ∈ Rn×m,M ∈ Rn×mdist , C ∈ Rp×n, D ∈ Rp×m. Addi-
tionally, we will assume D = 0. d(kT ) is a possible disturbance acting on the
system. Even if extremely simplified, in this work we chose to use the following
monocompartimental model to for internal reasoning in our MPC. (Fig. 2.5).
The Fig.2.6 illustrates the model used for MPC reasoning in the euglycemic
and hypoglycemic clamp. As we can see there is an unknown disturbance d(t)
caused by the increased insulin level needed to lower BG. Since is unknown, we
will not consider it in our MPC model, so we will set d(kT )=0;

Figure 2.5: Monocompartimental model for MPC reasoning.

Figure 2.6: Monocompartimental model for MPC reasoning in euglycemic and
hypoglycemic clamps.

This simple model describes how an input infusion u(t) = g(t) [g/min]
affects the quantity of glucose in the plasma ∆Qplasma = Qplasma − Qeq[mg].
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Kempt 0.003 [1/min]
V 210 [dl]

BGeq patient specific, it represents BG at the beginning of the experiment (130-160 [mg/dl])

Table 2.1: Model parameters.

The model’s output is ∆BG = BG − BGeq =
∆Qplasma

V
[mg/dl]. From this

state-space model, we derived the following equations:
{

∆Q̇(t) = −Kempt∆Q(t) + 1000g(t)

∆BG(t) = ∆Q(t)
V

(2.13)

We observe that this system is linear. Thus, we find A = −Kempt, B = 1000,
C = 1

V
, andD = 0. Since this system is in continuous time, we will discretize the

model in MATLAB. The parameters Kempt and V (Table 2.1) were estimated
from experiments on patient #adult001 and used for all the population.

In addition to the model, MPC requires a cost function to minimize. We
opted for a quadratic cost function for reference tracking, signifying our desire
for the MPC to track the reference signal in the output y0, while also ensuring
that the input u0 remains reasonably close to a predetermined value. The cost
function is:

J =

N−1
∑

i=0

[

(ŷ(k + i)− y0(k + i))TQ(ŷ(k + i)− y0(k + i)) + (u(k + i)− u0(k + i))TR(u(k + i)− u0(k + i))
]

(2.14)
Where ŷ(k+ i) represents the predicted output at time k+ i in response to the
previous control action u(k + i − 1), and u(k + i) denotes the control action
planned for time k + i. Since we are dealing with a SISO system (Single Input
Single Output), we have Q,R ∈ R, so we can rewrite 2.14 as:

J =

N−1
∑

i=0

[

Q

R
(ŷ(k + i)− y0(k + i))2 + (u(k + i)− u0(k + i))2

]

(2.15)

The parameters Q and R regulate control aggressiveness. Specifically, if Q >>
R, the controller will exhibit more aggressiveness because deviating from y0 will
incur a higher cost. On the other hand, if Q << R, the controller will tend to
apply control actions closer to u0, thereby reducing aggressiveness.

The final key element is the set of constraints. MPC can as a matter of
fact incorporate constraints on both the input and state of the system. In our
problem, we have only one constraint on the control action: it must be greater
than or equal to 0 (since we cannot remove glucose once it has been injected).
Therefore, our set of constraints is simplified to u(k) ≥ 0 ∀k .

2.2.1 MPC with Integral Action

As we have seen in Section 2.2, the MPC controller at each step attempts to
minimize the cost function J , continuously trying to find a trade off between
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following output and input references y0 and u0. In contrast to PID control,
where zero tracking error in steady state is achieved through the integral action,
the MPC strategy reviewed so far does not garantee to eliminate the offset as
the controller continuously aims to find balance between the two components in
J . There are several techniques available to incorporate the integral action into
our MPC controller. We will explore two of these methods: the Full Increment
Velocity Form and the Unmeasured Disturbance Estimator approach.

2.2.1.1 Full Increment Velocity Form

The idea under this technique is to penalize δu(k) in J instead of u(k). By
penalizing δu(k) = u(k)− u(k− 1) the controller can deliver a constant control
action without penalty. The way this is done is considering the variation of all
variables. Starting from the system model

{

x(k + 1) = Ax(k) +Bu(k) +Md(k)

y(k) = Cx(k)
(2.16)

we consider the increment of the state δx(k) = x(k) − x(k − 1) and of the
other variables: δd(k) = d(k) − d(k − 1), δy(k + 1) = Cδx(k + 1), y(k + 1) =
Cδx(k+1)+ y(k) = CAδx(k)+CBδu(k)+CMδd(k)+ y(k). We introduce the
augmented state

xa(k) =

[

δx(k)
y(k)

]

(2.17)

that leads to the augmented model

[

δx(k + 1)
y(k + 1)

]

=

[

A 0
CA I

] [

δx(k)
y(k)

]

+

[

B
CB

]

δu(k) +

[

M
CM

]

δd(k)

y(k) =
[

0 I
]

[

δx(k)
y(k)

] (2.18)

This strategy, known as the full-increment velocity form (FIVF), enables
zero tracking error in steady state. In Figure 2.7, we can observe its control
scheme.
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Figure 2.7: Full increment velocity form control scheme, taken from [32].

In our case, the augmented system becomes

[

δ∆Qplasma(k + 1)
∆BG(k + 1)

]

=

[

A 0
CA 1

] [

δ∆Qplasma(k)
∆BG(k)

]

+

[

B
CB

]

δg(k)

∆BG(k) =
[

0 1
]

[

δ∆Qplasma(k)
∆BG(k)

] (2.19)

where the matrices A,B and C are the discrete version of the matrices of the
continuous-time system.

2.2.1.2 Unmeasured Disturbance Estimator

An alternative approach to the velocity form is the Unmeasured Disturbance
Estimator (UDE). The idea behind this strategy is that if the MPC computation
does not provide a zero-error tracking in steady-state, a constant unmeasured
disturbance du(k) might be acting on the system. The new model becomes:











x(k + 1) = Ax(k) +Bu(k) +Md(k) +Mudu(k)

du(k + 1) = du(k)

y(k) = Cx(k) + Cudu(k)

(2.20)

After introducing the augmemted state xa(k) =

[

x(k)
du(k)

]

, the augmented model

is

[

x(k + 1)
du(k + 1)

]

=

[

A Mu

0 I

] [

x(k)
du(k)

]

+

[

B
0

]

u(k) +

[

M
0

]

d(k)

y(k) =
[

C Cu

]

[

x(k)
du(k)

] (2.21)
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Figure 2.8: Unmeasured Disturbance Estimator control scheme, taken from [32].

The matricesMu and Cu are design parameters to be chosen by the algorithm
designer. It has been shown that estimating the unmeasured disturbance (by
estimating the augmented state) leads to zero-error tracking in steady-state. In
Figure 2.8, we can observe its control scheme. In our problem the augmented
model becomes

[

∆Qplasma(k + 1)
du(k + 1)

]

=

[

A Mu

0 I

] [

∆Qplasma(k)
du(k)

]

+

[

B
0

]

g(k)

∆BG(k) =
[

C Cu

]

[

∆Qplasma(k)
du(k)

] (2.22)

again, the matrices A,B and C are the discrete version of the matrices of the
continuous-time system.

2.2.1.3 State Estimation: the Kalman Filter

As we have seen in the previous section, to estimate the unmeasured disturbance

acting on our system we need to estimate the augmented state xa(k) =

[

x(k)
du(k)

]

.

we will do this using the Kalman filter.
The Kalman filter is a recursive algorithm that estimates the state of a

dynamic system from a series of noisy measurements. It operates on a series
of measurements over time, providing an optimal estimate of the state of the
system by taking into account both the system’s dynamics and the uncertainty
in the measurements.

State equation with noise:

x(k + 1) = Ax(k) +Bu(k) + w(k)

Where x(k) is the true state at time k and w(k) is the process noise, assumed
to be Gaussian with zero mean and covariance Qk.

Measurement equation with noise:

y(k) = Cx(k) + v(k)
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Where y(k) is the measurement at time k and v(k) is the measurement noise,
assumed to be Gaussian with zero mean and covariance Rk.

The filter consists of two main steps: prediction and update. In the predic-
tion step, the filter uses the system’s dynamic model to predict the state at the
next time step, incorporating the process noise. Mathematically, the prediction
step is represented by the following equations:

x̂(k + 1|k) = Ax̂(k|k) +Bu(k)

P (k + 1|k) = AP (k|k)AT +Q

Where x̂(k+1|k) is the predicted state estimate at time k+1 given measure-
ments up to time k, x̂(k|k) is the previous state estimate, P is the covariance

matrix of the estimation error ˜x(k) = x(k)− x̂(k).
In the update step, the filter incorporates a new measurement, adjusting the

predicted state estimate based on the difference between the predicted measure-
ment and the actual measurement. The update equations are as follows:

M(k + 1) = P (k + 1|k)CT (CP (k + 1|k)CT +R)−1

x̂(k + 1|k + 1) = x̂(k + 1|k) +M(k + 1)(y(k + 1)− Cx̂(k + 1|k))

P (k+1|k+1) = P (k+1|k)−P (k+1|k)CT (CP (k+1|k)CT +R)−1CP (k+1|k)

Where M is called Kalman gain.
These equations encapsulate the core operations of the Kalman filter, en-

abling it to provide an optimal estimate of the system’s state even in the pres-
ence of noise and uncertainty.

Regarding the Full Increment Velocity form, luckily the augmented state

is defined as xa(k) =

[

δx(k)
y(k)

]

, so the Kalman filter is not needed to estimate

it since both δx(k) and y(k) are variables we have access to. However, in
the Unmeasured Disturbance Estimator approach, we do not have this luxury
because we need to estimate the disturbance, which is inherently unknown.
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Chapter 3

MATLAB and Simulink

To tune and test the control algorithms, we implemented them using MAT-
LAB and Simulink. MATLAB (MATrix LABoratory) and Simulink are powerful
computational tools widely used in various fields, including engineering, science,
mathematics, and finance. Developed by MathWorks, MATLAB provides an in-
teractive environment for numerical computation, data analysis, visualization,
and algorithm development. Simulink, on the other hand, is a graphical sim-
ulation and model-based design platform that allows engineers and researchers
to simulate, model, and analyze dynamic systems using block diagrams.

MATLAB is renowned for its versatility and ease of use, offering a rich set of
built-in functions and toolboxes for solving a wide range of mathematical and
engineering problems. Its intuitive syntax and extensive library of functions
make it an ideal choice for prototyping algorithms, conducting numerical sim-
ulations, and performing data analysis tasks. MATLAB supports various data
types, including scalars, vectors, matrices, and multidimensional arrays, mak-
ing it suitable for handling complex mathematical operations and large datasets
efficiently.

In addition to its core functionality, MATLAB provides specialized toolboxes
for specific applications, such as signal processing, image processing, control sys-
tems, optimization, and machine learning. These toolboxes extend MATLAB’s
capabilities, enabling users to tackle domain-specific challenges and accelerate
their research and development efforts.

Simulink complements MATLAB by offering a graphical environment for
designing, simulating, and analyzing dynamic systems. Using a block dia-
gram approach, users can model complex systems by connecting predefined
blocks representing various components and subsystems. Simulink supports
both continuous-time and discrete-time simulations, allowing engineers to sim-
ulate the behavior of systems over time and analyze their dynamic responses.

One of the key advantages of Simulink is its seamless integration with MAT-
LAB, enabling users to incorporate MATLAB code directly into Simulink mod-
els and vice versa. This integration facilitates the development of hybrid mod-
els combining numerical computation, algorithmic logic, and system dynamics,
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making it easier to prototype and verify complex control algorithms and dy-
namic systems.

3.1 Type 1 Diabetic Simulator

To fine-tune the control algorithm and conduct comprehensive testing before
running a trial in humans, we utilized a realistic simulator to perform glucose
clamp experiments in silico. The simulator comprises an accurate model of
glucose-insulin physiology.

Figure 3.1: Scheme of T1D model proposed by Dalla Man et al. [3].

To model the pharmacodynamics and pharmacokinetics of glucose and in-
sulin in type 1 diabetic patients (see Fig. 3.1), we utilized a simplified version of
the simulator proposed by Dalla Man et al. [3], [14], [15]. This simplified version
of the simulator includes 100 virtual patients to mimic the metabolic variabil-
ity observed in real subjects. The UVA/Padova Type 1 Diabetes Simulator is
accepted by the Food and Drug Administration as a substitute to animal trials
for studies on Type 1 Diabetes.
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Figure 3.2: Simulink scheme of the simplified version of the T1D model proposed
by Dalla Man et al. [3].

In Fig.3.2 the Simulink scheme of the simplified version of the T1D simulator
is displayed. We have 4 main inputs:

• Meal intake

• Subcutaneous Insulin Infusion

• Intravenous Insulin Infusion

• Intravenous Glucose Infusion

and the main output is the blood glucose level (BG) of the patient. In our study,
the control variable that both the PID and MPC algorithms can manipulate is
the intravenous glucose infusion rate. The other inputs of the simulator remain
unchanged by the controllers.
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3.2 PID controller

To design and tune the PID algorithm we developed the Simulink scheme shown
in Fig.3.3 and Fig.3.4.

Figure 3.3: Simulink scheme of the closed loop PID controller.

Figure 3.4: Zoom inside the PID block
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Figure 3.5: MATLAB Function to calculate the GIR with PID controller.

The ”Interpreted MATLAB function” we used is the one displayed in Fig.3.5.
The function takes the following inputs:

1. The reference BG signal (ref ).

2. The BG y(k) resulting from the suggested GIR passed through feedback
(y).

3. The last system output value y(k−1), necessary for computing the discrete
approximation of the derivative when the current system output becomes
available (y old).

4. The past integration of the error, defined as the sum of all previous errors
to calculate the integral action (Ie old).

5. The chosen controller parameters (Kp, Ki, Kd, Ie max, Ie min).
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3.3 MPC controller

Similarly to what has been accomplished for the PID controller, we have devised
a Simulink scheme for the MPC controller. In the upcoming sections, we will
present the MATLAB and Simulink components for both the Full Increment
Velocity form and the Unmeasured Disturbance Estimator approaches, with
and without the look ahead feature.

3.3.1 Full Increment Velocity Form

In Fig.3.6 and Fig.3.7 the Simulink scheme for the MPC controller with Full
Increment Velocity form without look ahead is displayed.

Figure 3.6: Simulink scheme of the closed loop MPC with FIVF controller.

Figure 3.7: Zoom inside the
MPC with FIVF block.

Figure 3.8: Zoom inside the
block used to access to the state
of the system.
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Figure 3.9: MATLAB Function to calculate the GIR with MPC with FIVF
controller.

The ”Interpreted MATLAB function” we used is the one displayed in Fig.3.9.
The function takes the following inputs:

1. The reference BG signal to which is subtracted BGeq, to have a step
reference that starts from 0 (y0 current).

2. the discrete version of the derivative of the reference control variable
delta u0 current, we set it to 0.

3. The discrete version of the derivative of the state of the system (delta x).

4. The BG y(k) resulting from the suggested GIR passed through feedback
(y current).

5. The value of the disturbance acting on the system d current (since it is
unannounced we set it to 0).

6. The value of the previous control action u k meno 1

7. The condensed matrices needed for the MPC algorithm

8. the number of inputs m (in our case is 1)

9. the prediction horizon N

In Fig.3.10 the Simulink scheme for the Full Increment Velocity form with
look ahead is shown. It is quite similar to the one without this feature, but we
can see that now the scheme has the ”clock” block.
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Figure 3.10: Simulink scheme of the closed loop MPC with FIVF controller with
look ahead.

Figure 3.11: MATLAB Function to calculate the GIR with MPC with FIVF
controller with look ahead.

By analyzing the function that computes MPC FIVF control with look ahead
(Fig. 3.11), we can observe that the reference value is no longer constant over
the prediction horizon. Through the utilization of the clock, we determine
the current time instance in the simulation. Consequently, we can compute
the vector of reference values over the prediction horizon (y0 call), taking into
account the impact of the future N control actions when making decisions in
the present.

To understand the importance of the look ahead feature we propose an
example on a simple ”toy” problem: the tank level control (Fig.3.12). The
input of the system is the inflow of water φ and the output is the height of the
water column.
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Figure 3.12: Tank level prob-
lem.

Figure 3.13: Tank level control:
MPC FIVF with and without
look ahead.

In Fig. 3.13, we can observe the performance of two MPC controllers with
full increment velocity form: one with look ahead and one without. It is ap-
parent that the former possesses the capability to anticipate the change of the
reference and consider its transition over the prediction horizon (in this case,
N = 20). This feature is essential to all MPC controllers.

3.3.2 Unmeasured Disturbance Estimator

As we have seen for the Full Increment Velocity form, also for the Unmeasured
Disturbance Estimator technique we implemented the controllers with and with-
out look ahead. In this section we will introduce only the Simulink schemes and
MATLAB functions used to derive a MPC UDE controller with look ahead.
The considerations outlined in section 3.3.1 regarding the difference between
look ahead and non-look ahead controllers hold true for the Unmeasured Dis-
turbance Estimator approach as well.
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Figure 3.14: Simulink scheme of the closed loop MPC with UDE controller with
look ahead.

Figure 3.15: Zoom inside the
MPC with UDE block.

Figure 3.16: Zoom inside the
Kalman filter block used to es-
timate the state.
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Figure 3.17: MATLAB Function to calculate the GIR with MPC with UDE
controller.

In Fig.3.14 the Simulink scheme for this technique to achieve zero-error ref-
erence tracking in steady state is displayed, with a zoom inside the ”MPC” and
”Kalman Filter” block (Fig.3.15 and Fig.3.16 respectively). The ”Interpreted
MATLAB function” we used to compute MPC control is the one displayed in
Fig.3.17. The function takes the following inputs:

1. The reference control variable u0 current, we set it to 0.

2. The value of the disturbance acting on the system d current (since it is
unannounced we set it to 0).

3. The value of the estimate of the state of the system (x hat current).

4. The value of the estimate of the unmeasured disturbance acting on the
system (du hat current).

5. The current time of the simulation to activate the feature of look ahead
(current time)

6. the reference value to track

7. The condensed matrices needed for the MPC algorithm

8. the number of inputs m (in our case is 1)

9. the prediction horizon N

On the other hand, the function responsible for providing an estimate of the
augmented state using the Kalman Filter is depicted in Fig. 3.18. It takes
as inputs the current blood glucose measurement and the previous glucose in-
fusion rate, in addition to the system model matrices and a structure named
”tuning parameters” which encompasses all parameters necessary for tuning
the controller to achieve the desired performance. As we have already explained
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in Section 2.2.1.3, the Kalman filter provides an estimate of the augmented state
in this configuration, which is then used to compute MPC control and achieve
zero-error tracking. In all our configurations, we set the initial estimation of
the state to 0, while the initial variance of the estimation error to the identity
matrix.

Figure 3.18: MATLAB Function to calculate the estimate of the augmented
state by using the Kalman filter.
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3.4 Reference Profiles

As mentioned in section 1, we have three main types of clamps: hyperglycemic,
huglycemic and hypoglycemic.

At the onset of each simulated trial, the patient’s blood glucose level is at its
basal range (approximately 130-160 mg/dl). During the initial 90 minutes, blood
glucose measurements are collected, and no intravenous glucose is administered.
The experiment will last for approximately 250 minutes for an hyperglycemic
clamp, and around 400 minutes for euglycemic and hypoglycemic clamps.

For the hyperglycemic clamp, the target reference is 230 mg/dl, as we can
see in Fig.3.19 (the BG level before the step is the basal one of patient #001).
The two grey lines represent ±10% of the BG target. No intravenous insulin
will be administered in these glucose clamps , only basal subcutaneous infusion
simulating pancreas-generated basal insulin.

Figure 3.19: Reference profile for an hyperglycemic clamp (patient #001).

For the euglycemic clamp, the target is 100 mg/dl (Fig.3.20). Here, beyond
the basal subcutaneous insulin, intravenous insulin infusion is administered cor-
risponding to half the basal one, which is of course patient-dependent.
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Figure 3.20: Reference profile for an euglycemic clamp (patient #001).

Lastly, for hypoglycemic clamps the target BG level is 50 mg/dl (Fig.3.21.
Similarly to euglycemic clamps, here we administer both subcutaneous and in-
travenous insulin, the latter being 1.5 times the former. Here, the two grey
lines are the values of ±20% of the BG target. This is considered to be the
safety range of BG values. In all three types of glucose clamps we define Tref

=[Tstep, Tend] as the period of time that goes from the change in the reference
to the end of the experiment.
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Figure 3.21: Reference profile for an Hypoglycemic clamp (patient #001).

As previously introduced, we wanted to explore the ”ISO-IV” clamp. In this
type of clamp we gather information about the Oral Glucose Tolerance Test
(OGTT) response of the patient on the first day and on the second we try to
replicate it with intravenous glucose infusion instead of carbohydrate ingestion.
This helps to quantify the incretin effect and provide valuable insights into dia-
betes and other metabolic disorders related to mealtime glucose control. To do
this we need the OGTT profile of the patient, which is obviously patient-specific.
The UVa/Padova Type 1 Diabetes Simulator, as we have seen in Fig.3.2, has an
input corresponding to the meal. Here we can simulate the ingestion of glucose,
both 40g and 75g as previously explained. In Fig.3.22 and Fig.3.23 the response
to 40g and 75g respectively are shown (notice that for the latter the BG val-
ues are higher). Here we do nothave administered any bolus of subcutaneous
insulin, so the patient returns to basal range quite slowly (this simulation lasts
1200 minutes).
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Figure 3.22: OGTT response
of patient#001 at 40g of glu-
cose, no bolus of subcutaneous
insulin administered.

Figure 3.23: OGTT response
of patient#001 at 75g of glu-
cose, no bolus of subcutaneous
insulin administered.

In Fig.3.24 and Fig.3.25 the response of a 40g OGTT is shown where a
subcutaneous bolus of insulin is administered. The rate of the bolus is calculated
like this, measured in U/h: rbolus = bolus

Dbolus

= qtcarbo

CR∗Dbolus

= rcarbo∗Dcarbo

CR∗Dbolus

. Since
the duration of the bolus and of the assumption of carbohydrates are both set
to 1 minute, we have: rbolus = rcarbo∗60

CR
[U/h]. In Fig.3.26 and Fig.3.27 we see

the response to the 75g OGTT with the bolus of insulin.

Figure 3.24: OGTT response
of patient#001 at 40g of glu-
cose, bolus of subcutaneous in-
sulin administered.

Figure 3.25: OGTT response
of patient#001 at 40g of glu-
cose, bolus of subcutaneous in-
sulin administered, zoom.
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Figure 3.26: OGTT response
of patient#001 at 75g of glu-
cose, bolus of subcutaneous in-
sulin administered.

Figure 3.27: OGTT response
of patient#001 at 75g of glu-
cose, bolus of subcutaneous in-
sulin administered, zoom.

The UVa/Padova Type 1 Diabetes Simulator is equipped with 100 virtual
patients, each exhibiting a distinct response to an OGTT. These responses are
illustrated in Fig.3.28 and Fig.3.29, with the mean values highlighted in bold
and purple. For the ISO-IV clamp, each patient had its response from the
OGTT of the day before as reference. This type of experiment lasts around 250
minutes.

Figure 3.28: OGTT response of
the 100 patients at 40g of glu-
cose.

Figure 3.29: OGTT response of
the 100 patients at 75g of glu-
cose.
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3.5 Performance metrics

In our analysis of the results obtained from the application of control algorithms
to glucose clamp experiments, it is essential to employ appropriate performance
metrics to quantitatively assess the efficacy and accuracy of the control strate-
gies. These metrics serve as objective measures to evaluate how well the control
algorithms regulate blood glucose levels and estimate physiological parameters.

One commonly used performance metric in the field of control systems and
data analysis is the Mean Absolute Percentage Error (MAPE). MAPE is a
measure of the accuracy of a forecasting or estimation technique and is particu-
larly suitable for assessing the performance of control algorithms in maintaining
glycemic control within target ranges.

MAPE is defined as:

MAPE = 100 ·
1

N

∑

tk∈Tref

(∣

∣

∣

∣

y(tk)− y0(tk)

y0(tk)

∣

∣

∣

∣

)

(3.1)

where Tref = [Tstep, Tend], as defined in Section 3.4 (for the ISO-IV clamps the
MAPE will be calculated on the entire length of the experiment). The closer
the Mean Absolute Percentage Error (MAPE) is to 0%, the better the control
performance. This performance metric will be calculated only for the results
achieved across the entire population.

It is important to note that for certain types of clamps, the MAPE may
be relatively small, while for others, such as the euglycemic and hypoglycemic
clamps, it may be considerably larger. This is a consequence of the action of
insulin, which takes time to lower BG levels, as we will see in Section 4. The
controller’s performance will be evaluated relative to each other. Comparing
the MAPE between the hyperglycemic and hypoglycemic clamps would not be
meaningful; instead, we will compare the MAPE of the PID in hypoglycemia
with that of the MPC in hypoglycemia, for instance.
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Chapter 4

Results

In this section, we present the outcomes of our simulations and analyses con-
ducted using MATLAB and Simulink. The results are divided into two main
categories: the Noise-free Scenario, where BG measurements are assumed to
be without measurement error, and the Realistic Scenario, where measurement
errors are considered. The selected parameters for the PID and MPC con-
trollers are those that yielded the optimal performance for each type of glucose
clamp. These parameters were chosen following automated and manual tuning
processes.

4.1 Noise-free Scenario

In the Noise-free Scenario, we assume ideal conditions where BG measurements
are free from errors. This scenario serves as a baseline for evaluating the per-
formance of our control algorithms under optimal conditions.

4.1.1 PID controller

In this section we will provide results using PID controller on the different types
of glucose clamps analyzed.

4.1.1.1 Hyperglycemic Clamp

As previously indicated in Section 3.4, it was established that the target blood
glucose level during the hyperglycemic clamp procedure is set at 230 mg/dl.
Specifically, in Fig. 4.1, the trajectory of patient#001’s blood glucose levels
over time is depicted under the control of the PID controller (first half of the
image). The suggested GIR provided by the controller is shown in the second
half of the image.
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Figure 4.1: Evolution of BG level in a hyperglycemic clamp using the PID
controller, patient#001.

Figure 4.2: Spaghetti plot of
100 patients in a hyperglycemic
clamp using PID controller.

Figure 4.3: Mean ± std con-
fidence interval of 100 patients
in a hyperglycemic clamp using
PID controller.

In Fig. 4.2 we can see the ”spaghetti” plot of the entire population, while in
Fig.4.3 the mean output (in black) ± 1 standard deviation confidence interval
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(the blue shaded area) is displayed.
PID parameters are shown in Tab.4.1, for both patient#001 and the entire

population. In the case of the entire population subjected to hyperglycemic
clamp and controlled using the PID controller, we obtained a MAPE value of
2.87%.

It is apparent that five minutes after the reference changes from the basal
blood glucose level to the target level of 230 mg/dl, the PID controller initiates
the glucose infusion rate and promptly delivers a substantial control action.
This action rapidly brings the BG levels close to the target, resulting in a minor
overshoot, followed by a gradual settling to 230 mg/dl.

Patient#001 Population

Kp [ g·dl
mg·min

] 0.02 0.02

Ki [
g·dl

mg·min2 ] 0.001 0.001

Kd [ g·dl
mg

] 0.002 0.001

Table 4.1: PID controller parameters for hyperglycemic clamp on patient#001
and on population.

38



4.1.1.2 Euglycemic Clamp

For the euglycemic clamp, we set the target of BG to 100 mg/dl. In Fig.4.4
the trajectory of patient#001’s blood glucose levels over time is depicted under
the control of the PID controller, together with the suggested glucose infusion
rate. In Fig.4.5 and Fig.4.6 the spaghetti and mean ± std plot are shown. The
PID controller parameters are in Table 4.2. In the case of the entire popu-
lation subjected to euglycemic clamp and controlled using the PID controller,
we obtained a MAPE value of 14.62%. As previously mentioned, a MAPE of
14.62% may appear high, but it is crucial to consider that during euglycemic
and hypoglycemic clamps, the blood glucose levels remain above the target for
a considerable duration, accumulating a significant error. This is due to the
time required for insulin to lower BG levels, during which the controller does
not intervene with any control action.

Figure 4.4: Evolution of BG level in a euglycemic clamp using the PID con-
troller, patient#001.
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Figure 4.5: Spaghetti plot of 100
patients in a euglycemic clamp us-
ing PID controller.

Figure 4.6: Mean ± std confi-
dence interval of 100 patients in
a euglycemic clamp using PID
controller.

Patient#001 Population

Kp [ g·dl
mg·min

] 0.025 0.025

Ki [
g·dl

mg·min2 ] 0.003 0.003

Kd [ g·dl
mg

] 0.001 0.001

Table 4.2: PID controller parameters for euglycemic clamp on patient#001 and
on population.

We can see from Fig.4.4 that the PID controller remains inactive until around
minute 240/245, during which time the injected insulin causes a reduction in
the blood glucose level. After reaching values close to the target (100 mg/dl),
the controller starts to provide GIR and, after a small undershoot, reaches the
desired BG level. It is apparent from the plots of the entire population that in
this clamp, we observe higher variability both in the output of the controller
(blood glucose values) and in the control action (glucose infusion rate). This
variability is a consequence of the individual insulin sensitivity among different
patients.
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4.1.1.3 Hypoglycemic Clamp

In Fig. 4.7, we observe the evolution of the blood glucose (BG) level in pa-
tient#001 under the control of the PID controller, with the target set to 50
mg/dl. Additionally, Fig. 4.5 and Fig. 4.6 depict the spaghetti plot and the
mean ± standard deviation plot, respectively. The PID controller parameters
are listed in Table 4.2. For the entire population subjected to euglycemic clamp
and controlled using the PID controller, we obtained a MAPE value of 45.72%.

Similarly to the euglycemic clamp, in the hypoglycemic clamp, the PID
controller remains inactive until the insulin has sufficiently lowered the blood
glucose levels close to the target (50 mg/dl). Subsequently, following a minor
undershoot, the controller initiates glucose infusion rate to reach the desired
target value. Also in this scenario, the variability is higher due to individual
differences in insulin sensitivity among the patients.

Figure 4.7: Evolution of BG level in a hypoglycemic clamp using the PID con-
troller, patient#001.
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Figure 4.8: Spaghetti plot of
100 patients in a hypoglycemic
clamp using PID controller.

Figure 4.9: Mean ± std con-
fidence interval of 100 patients
in a hypoglycemic clamp using
PID controller.

Patient#001 Population

Kp [ g·dl
mg·min

] 0.02 0.02

Ki [
g·dl

mg·min2 ] 0.001 0.001

Kd [ g·dl
mg

] 0.05 0.001

Table 4.3: PID controller parameters for hypoglycemic clamp on patient#001
and on population.
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4.1.1.4 ISO-IV Clamp

In this paragraph we will analyze the performance of the PID controller on the
ISO-IV clamps, both on OGTTs with 40g and 75g of glucose. As already stated,
each patient will follow its OGTT response. In Fig.4.10, the evolution of blood
glucose (BG) levels for patient#001, patient#002, and patient#003 is depicted.
Since displaying the responses of all 100 patients and their variability would
not convey meaningful insights due to variations in the reference throughout
the entire population (as apparent in Fig.4.10), we have chosen to visualize
the mean relative tracking error, as shown in Fig.4.11. This vector of values is
defined as the mean of the relative tracking error between all subjects. The same
rationale applies to the 75g OGTT, where the responses of the first 3 patients
and the tracking error are presented in Fig.4.12 and Fig.4.13, respectively. PID
parameters (for the population) can be found in Table 4.4, while the Mean
Absolute Percentage Error (MAPE) in Table 4.5.

Figure 4.10: Evolution of BG level in a ISO-IV clamp (OGTT 40g) using the
PID controller, first three patients.
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Figure 4.11: Mean relative tracking error for ISO-IV clamp (OGTT 40g) using
the PID controller on population of 100 patients.

Figure 4.12: Evolution of BG level in a ISO-IV clamp (OGTT 75g) using the
PID controller, first three patients.
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Figure 4.13: Mean relative tracking error for ISO-IV clamp (OGTT 75g) using
the PID controller on population of 100 patients.

OGTT 40g OGTT 75g

Kp [ g·dl
mg·min

] 0.02 0.02

Ki [
g·dl

mg·min2 ] 0.0085 0.0085

Kd [ g·dl
mg

] 0.005 0.005

Table 4.4: PID controller parameters for ISO-IV clamp on population.

OGTT 40g OGTT 75g
MAPE (%) 0.29 0.51

Table 4.5: Mean Absolute Percentage Error (MAPE) of PID controller in a
ISO-IV clamp, response to OGTT 40g and OGTT 75g.

We can observe that the controller effectively tracks the reference very well in
both the 40g and 75g scenarios. Additionally, we notice that the higher relative
tracking error is typically observed in the initial phase of the experiment, where
the PID controller exhibits slight delay in tracking the reference due to its lack
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of ability to look ahead into the future. We can observe that in Fig.4.13 the
variability of the mean relative tracking error is a little bit high at the end
of the experiment, this is probably due to the fact that with the 75g OGTT
we reach higher values of BG. Nevertheless, despite the observed variability,
the tracking error remains consistently small, indicating excellent performance
achieved using this simple controller.
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4.1.2 MPC Controller with Full Increment Velocity Form

In this section we will provide results using the MPC controller with Full In-
crement Velocity Form on the different types of glucose clamps analyzed. Since
the procedures for our glucose clamps remain consistent with those described in
Sections 3.4 and 4.1.1, only images and results will be presented in the upcoming
sections concerning MPC controllers.

4.1.2.1 Hyperglycemic Clamp

In Fig.4.14, the performance of the MPC controller with Full Increment Velocity
Form is depicted, both with and without the look ahead feature. It is apparent
that the former, with look ahead activated, can anticipate future changes in
the reference, allowing for earlier control action and achieving the target value
before the latter. This is confirmed in Fig.4.15 to Fig.4.18 representing the MPC
controller results on the population in a hyperglycemic clamp. In Table 4.6 the
MPC controller parameters are shown, while in Table 4.7 the Mean Absolute
Percentage Error (MAPE) is displayed.

Figure 4.14: Evolution of BG level in a hyperglycemic clamp using the MPC
controller with Full Increment Velocity Form, patient#001.
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Figure 4.15: Spaghetti plot of
100 patients in a hyperglycemic
clamp using the MPC controller
with Full Increment Velocity
Form (no look ahead imple-
mented).

Figure 4.16: Mean ± std con-
fidence interval of 100 patients
in a hyperglycemic clamp us-
ing the MPC controller with
Full Increment Velocity Form
(no look ahead implemented).

Figure 4.17: Spaghetti plot of
100 patients in a hyperglycemic
clamp using the MPC controller
with Full Increment Velocity
Form (look ahead activated).

Figure 4.18: Mean ± std con-
fidence interval of 100 patients
in a hyperglycemic clamp using
the MPC controller with Full
Increment Velocity Form (look
ahead activated).
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Patient#001, FIVF Patient#001, FIVF LA Population, FIVF Population, FIVF LA
PH 15 15 10 15
Q 0.01 0.01 0.01 0.01
R 150 50 150 60

Table 4.6: MPC with Full Increment Velocity Form parameters in a hyper-
glycemic clamp. With and without look ahead feature, on patient#001 and on
population. PH is the Prediction Horizon of the MPC controller, Q and R the
parameters regulating control aggressiveness.

FIVF FIVF LA
MAPE (%) 4.71 2.21

Table 4.7: Mean Absolute Percentage Error (MAPE) of MPC controller with
Full Increment Velocity Form in a hyperglycemic clamp, with and without look
ahead feature.
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4.1.2.2 Euglycemic Clamp

From Fig.4.19, it is apparent that in the euglycemic clamp, the action of the
look ahead feature does not offer any improvements. In fact, the outputs of
the controller with and without look ahead are practically identical. This is a
consequence of the administration of insulin, which lowers blood glucose levels.
As previously mentioned, the controller does not administer any glucose infusion
rate until the BG levels almost reach the target. At this point, the look ahead
feature does not provide any improvements because both controllers already
know that the reference is 100 mg/dl, so their actions are essentially the same.
The same considerations can be made on the results on the population of 100
patients (Fig.4.20 to Fig.4.23). In Table 4.8 the MPC controller parameters
are shown, while in Table 4.9 the Mean Absolute Percentage Error (MAPE) is
displayed. As one could imagine, they are identical.

Figure 4.19: Evolution of BG level in a euglycemic clamp using the MPC con-
troller with Full Increment Velocity Form, patient#001.
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Figure 4.20: Spaghetti plot of
100 patients in a euglycemic
clamp using the MPC controller
with Full Increment Velocity
Form (no look ahead imple-
mented).

Figure 4.21: Mean ± std con-
fidence interval of 100 patients
in a euglycemic clamp using the
MPC controller with Full In-
crement Velocity Form (no look
ahead implemented).

Figure 4.22: Spaghetti plot of
100 patients in a euglycemic
clamp using the MPC controller
with Full Increment Velocity
Form (look ahead activated).

Figure 4.23: Mean ± std con-
fidence interval of 100 patients
in a euglycemic clamp using the
MPC controller with Full Incre-
ment Velocity Form (look ahead
activated).
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Patient#001, FIVF Patient#001, FIVF LA Population, FIVF Population, FIVF LA
PH 15 15 15 15
Q 0.01 0.01 0.01 0.01
R 10 10 10 10

Table 4.8: MPC with Full Increment Velocity Form parameters in a euglycemic
clamp. With and without look ahead feature, on patient#001 and on pop-
ulation. PH is the Prediction Horizon of the MPC controller, Q and R the
parameters regulating control aggressiveness.

FIVF FIVF LA
MAPE (%) 14.51 14.51

Table 4.9: Mean Absolute Percentage Error (MAPE) of MPC controller with
Full Increment Velocity Form in a euglycemic clamp, with and without look
ahead feature.
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4.1.2.3 Hypoglycemic Clamp

The considerations made for the euglycemic clamp can be made also for the
hypoglycemic clamp. As we can see in Fig.4.24 the results with and without
look ahead are very similar (if not almost identical). Because of this we will
show only the results on the population given by the MPC controller with look
ahead (Fig.4.25 and Fig.4.26). MPC parameters are shown in Table4.10. The
MAPE found is 44.33%.

Figure 4.24: Evolution of BG level in a hypoglycemic clamp using the MPC
controller with Full Increment Velocity Form, patient#001.
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Figure 4.25: Spaghetti plot of
100 patients in a hypoglycemic
clamp using the MPC controller
with Full Increment Velocity
Form (look ahead activated).

Figure 4.26: Mean ± std confi-
dence interval of 100 patients in
a hypolycemic clamp using the
MPC controller with Full Incre-
ment Velocity Form (look ahead
activated).

patient#001 Population
PH 15 15
Q 0.01 0.01
R 20 50

Table 4.10: MPC with Full Increment Velocity Form parameters in a hypo-
glycemic clamp. With look ahead feature, on patient#001 and on population.
PH is the Prediction Horizon of the MPC controller, Q and R the parameters
regulating control aggressiveness.
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4.1.2.4 ISO-IV Clamp

As done for the PID controller, we will also analyze the performance of the
MPC controller on the ISO-IV clamp. Given the effectiveness of the look ahead
feature of the MPC controller, we will exclusively present the results achieved
with it.

The evolution of blood glucose (BG) levels for the first three patients using
an MPC controller with Full Increment Velocity Form for 40g and 75g OGTTs
are depicted in Fig.4.27 and Fig.4.29 respectively. The mean relative tracking
error for the two experiments is displayed in Fig.4.28 and Fig.4.30 .

Figure 4.27: Evolution of BG levels in a ISO-IV clamp (OGTT 40g) using the
MPC controller with Full Increment Velocity Form, first three patients.

55



Figure 4.28: Mean relative tracking error for ISO-IV clamp (OGTT 40g) using
the MPC controller with Full Increment Velocity Form on population of 100
patients.
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Figure 4.29: Evolution of BG levels in a ISO-IV clamp (OGTT 75g) using the
MPC controller with Full Increment Velocity Form, first three patients.

Figure 4.30: Mean relative tracking error for ISO-IV clamp (OGTT 75g) using
the MPC controller with Full Increment Velocity Form on population of 100
patients.
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OGTT 40g OGTT 75g
PH 15 15
Q 0.01 0.01
R 5 5

Table 4.11: MPC with Full Increment Velocity Form parameters in a ISO-IV
clamp, on OGTT 40g and OGTT 75g. PH is the Prediction Horizon of the
MPC controller, Q and R the parameters regulating control aggressiveness.

OGTT 40g OGTT 75g
MAPE (%) 0.31 0.55

Table 4.12: Mean Absolute Percentage Error (MAPE) of MPC controller with
Full Increment Velocity in a ISO-IV clamp.

It is apparent from the spaghetti plot of the three patients (and confirmed
by the plot of the error) that, both in the 40g and 75g cases, the MPC tends to
anticipate the reference during the ascending phase and near the peak tends to
stay below it. Nevertheless, we have achieved very good performance.
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4.1.3 MPC Controller with the Unmeasured Disturbance

Estimator Approach

In this section we will provide results using the MPC controller with the Unmea-
sured Disturbance Estimator approach on the different types of glucose clamps
analyzed. Since the procedures for our glucose clamps remain consistent with
those described in Sections 3.4 and 4.1.1, only images and results will be pre-
sented in the upcoming sections concerning MPC controllers. Moreover, we will
show only MPC controllers with the look ahead feature.

4.1.3.1 Hyperglycemic Clamp

In Fig.4.31 we can see how the MPC controller with the Unmeasured Dis-
turbance Estimator technique performs on the hyperglycemic clamp, while in
Fig.4.32 and 4.33 it is behaviour on the entire population is shown. We clearly
see a greater promptness in the controller output compared with the Full In-
crement Velocity Form one. This is confirmed by the MAPE, which for this
controller is of 2.00%. The controller parameters can be found in Table 4.13.
As already stated, the initial estimation of the augmented state and of the co-
variance matrix of the estimation error were set to 0 and to the identity matrix,
respectively.
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Figure 4.31: Evolution of BG level in a hyperglycemic clamp using the MPC
controller with Unmeasured Disturbance Estimator method, patient#001.

Figure 4.32: Spaghetti plot of
100 patients in a hyperglycemic
clamp using the MPC controller
with Unmeasured Disturbance
Estimator method.

Figure 4.33: Mean ± std con-
fidence interval of 100 patients
in a hyperglycemic clamp using
the MPC controller with Un-
measured Disturbance Estima-
tor method.
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patient#001 Population
PH 15 15
Q 0.01 0.01
R 8 4
Mu 10 40
Cu 5 5

Qk

[

0.05 0
0 0.05

] [

0.05 0
0 0.05

]

Rk 1 1

Table 4.13: Parameters of the MPC controller with the Unmeasured Disturbance
Estimator method, hyperglycemic clamp. PH is the Prediction Horizon of the
MPC controller, Q and R regulate control aggressiveness, Mu and Cu are the
parameters used to augment the model, Qk and Rk are the covariances of the
process and of the measurement noise of the Kalman filter, respectively.
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4.1.3.2 Euglycemic Clamp

In Fig.4.34 the response of patient#001 in a euglycemic clamp is displayed,
while in Figures 4.35 and 4.36 the results on the population. The controller
parameters are in Table 4.14. The MAPE for this experiment is of 14.59%.

Figure 4.34: Evolution of BG level in a euglycemic clamp using the MPC con-
troller with Unmeasured Disturbance Estimator method, patient#001.
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Figure 4.35: Spaghetti plot of
100 patients in a euglycemic
clamp using the MPC controller
with Unmeasured Disturbance
Estimator method.

Figure 4.36: Mean ± std con-
fidence interval of 100 patients
in a euglycemic clamp using
the MPC controller with Un-
measured Disturbance Estima-
tor method.

patient#001 Population
PH 15 15
Q 0.01 0.01
R 10 10
Mu 10000 10000
Cu 100 100

Qk

[

0.05 0
0 0.05

] [

0.05 0
0 0.05

]

Rk 1 1

Table 4.14: Parameters of the MPC controller with the Unmeasured Disturbance
Estimator method, euglycemic clamp. PH is the Prediction Horizon of the
MPC controller, Q and R regulate control aggressiveness, Mu and Cu are the
parameters used to augment the model, Qk and Rk are the covariances of the
process and of the measurement noise of the Kalman filter, respectively.
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4.1.3.3 HypoGlycemic clamp

In Fig.4.37 the response of patient#001 in a hypoglycemic clamp is displayed,
while in Figures 4.38 and 4.39 the results on the population. The controller
parameters are in Table 4.15. The MAPE for this experiment is of 44.59%.

Figure 4.37: Evolution of BG level in a hypoglycemic clamp using the MPC
controller with Unmeasured Disturbance Estimator method, patient#001.
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Figure 4.38: Spaghetti plot of
100 patients in a hypoglycemic
clamp using the MPC controller
with Unmeasured Disturbance
Estimator method.

Figure 4.39: Mean ± std con-
fidence interval of 100 patients
in a hypoglycemic clamp using
the MPC controller with Un-
measured Disturbance Estima-
tor method.

patient#001 Population
PH 15 15
Q 0.01 0.01
R 10 10
Mu 10000 10000
Cu 100 100

Qk

[

0.05 0
0 0.05

] [

0.05 0
0 0.05

]

Rk 1 1

Table 4.15: Parameters of the MPC controller with the Unmeasured Disturbance
Estimator method, hypoglycemic clamp. PH is the Prediction Horizon of the
MPC controller, Q and R regulate control aggressiveness, Mu and Cu are the
parameters used to augment the model, Qk and Rk are the covariances of the
process and of the measurement noise of the Kalman filter, respectively.
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4.1.3.4 ISO-IV clamp

As done for the other controllers, we will analyze the performance of the Un-
measured Disturbance Estimator approach on the ISO-IV clamp. The evolution
of blood glucose (BG) levels for the first three patients using an MPC controller
with Full Increment Velocity Form for 40g and 75g OGTTs are depicted in
Fig.4.40 and Fig.4.42 respectively. The mean relative tracking error for the two
experiments is displayed in Fig.4.41 and Fig.4.43

Figure 4.40: Evolution of BG level in a ISO-IV clamp (OGTT 40g) using the
MPC controller with Unmeasured Disturbance Estimator approach, first three
patients.

66



Figure 4.41: Mean relative tracking error for ISO-IV clamp (OGTT 40g) using
the MPC controller with Unmeasured Disturbance Estimator approach on pop-
ulation of 100 patients.

Figure 4.42: Evolution of BG level in a ISO-IV clamp (OGTT 75g) using the
MPC controller with Unmeasured Disturbance Estimator approach, first three
patients.
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Figure 4.43: Mean relative tracking error for ISO-IV clamp (OGTT 75g) using
the MPC controller with Unmeasured Disturbance Estimator approach on pop-
ulation of 100 patients.

OGTT 40g OGTT 75g
PH 15 10
Q 1000 1000
R 1 1
Mu 3000 3000
Cu -5 -5

Qk

[

0.01 0
0 0.01

] [

0.05 0
0 0.05

]

Rk 0.5 1

Table 4.16: Parameters of the MPC controller with the Unmeasured Distur-
bance Estimator method, ISO-IV clamp. PH is the Prediction Horizon of the
MPC controller, Q and R regulate control aggressiveness, Mu and Cu are the
parameters used to augment the model, Qk and Rk are the covariances of the
process and of the measurement noise of the Kalman filter, respectively.
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OGTT 40g OGTT 75g
MAPE (%) 0.26 0.51

Table 4.17: Mean Absolute Percentage Error (MAPE) of MPC controller with
Unmeasured Disturbance Estimator method in a ISO-IV clamp.
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4.2 Realistic Scenario

In the Realistic Scenario, we introduce measurement errors to simulate con-
ditions more akin to real-world scenarios. These measurement errors, which
can arise from sensor inaccuracies, noise, and other sources of variability inher-
ent in clinical settings, have a significant impact on the performance of control
algorithms in regulating glucose levels.

By incorporating measurement errors into our simulations, we aim to eval-
uate the robustness and resilience of the control algorithms under conditions
that more closely resemble clinical practice. This allows us to assess how well
the control strategies perform in the presence of uncertainties and disturbances,
providing insights into their real-world applicability and effectiveness.

The measurement noise is modeled as zero-mean, Gaussian white noise with
a constant coefficient of variation (CV). The measured output of the system is
given by:

y(k) = BG(k) + w(k) (4.1)

where w(k) ∼ N (0, σ2(k)), and σ(k) = CV · BG(k). For our simulation, we
set the CV equal to 2%, representing the accuracy of a YSI Glucose/Lactate
Analyzer, a commonly used system for blood glucose measurements in glucose
clamp experiments.

4.2.1 PID controller

4.2.1.1 Hyperglycemic Clamp

The Mean Absolute Percentage Error (MAPE)for the hyperglycemic clamp us-
ing the PID controller in presence of measurement noise is of 3.46%.
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Figure 4.44: Evolution of BG level in a hyperglycemic clamp using the PID
controller on patient#001, measurement noise present.

Figure 4.45: Spaghetti plot of
100 patients in a hyperglycemic
clamp using PID controller,
measurement noise present.

Figure 4.46: Mean ± std con-
fidence interval of 100 patients
in a hyperglycemic clamp us-
ing the PID controller, measure-
ment noise present.
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Patient#001 Population

Kp [ g·dl
mg·min

] 0.02 0.02

Ki [
g·dl

mg·min2 ] 0.001 0.001

Kd [ g·dl
mg

] 0.002 0.001

Table 4.18: PID controller parameters for hyperglycemic clamp on patient#001
and on population, measurement noise present.
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4.2.1.2 Euglycemic Clamp

The Mean Absolute Percentage Error (MAPE) for the euglycemic clamp using
the PID controller in presence of measurement noise is of 16.85%.

Figure 4.47: Evolution of BG level in a euglycemic clamp using the PID con-
troller on patient#001, measurement noise present.
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Figure 4.48: Spaghetti plot of
100 patients in a euglycemic
clamp using PID controller,
measurement noise present.

Figure 4.49: Mean ± std confi-
dence interval of 100 patients in
a euglycemic clamp using PID
controller, measurement noise
present.

Patient#001 Population

Kp [ g·dl
mg·min

] 0.02 0.025

Ki [
g·dl

mg·min2 ] 0.001 0.003

Kd [ g·dl
mg

] 0.001 0.001

Table 4.19: PID controller parameters for euglycemic clamp on patient#001
and on population, measurement noise present.
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4.2.1.3 Hypoglycemic Clamp

The Mean Absolute Percentage Error (MAPE) for the hypoglycemic clamp using
the PID controller in presence of measurement noise is of 48.22%.

Figure 4.50: Evolution of BG level in a hypoglycemic clamp using the PID
controller on patient#001, measurement noise present.
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Figure 4.51: Spaghetti plot of
100 patients in a hypoglycemic
clamp using PID controller,
measurement noise present.

Figure 4.52: Mean ± std con-
fidence interval of 100 patients
in a hypoglycemic clamp us-
ing PID controller, measure-
ment noise present.

Patient#001 Population

Kp [ g·dl
mg·min

] 0.02 0.02

Ki [
g·dl

mg·min2 ] 0.001 0.001

Kd [ g·dl
mg

] 0.001 0.001

Table 4.20: PID controller parameters for hypoglycemic clamp on patient#001
and on population, measurement noise present.
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4.2.1.4 ISO-IV Clamp

The MAPE for the ISO-IV clamp can be found in Table 4.22.

Figure 4.53: Evolution of BG level in a ISO-IV clamp (OGTT 40g) using the
PID controller on first three patients, measurement noise present.
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Figure 4.54: Mean relative tracking error for ISO-IV clamp (OGTT 40g) using
the PID controller on population of 100 patients, measurement noise present.

Figure 4.55: Evolution of BG level in a ISO-IV clamp (OGTT 75g) using the
PID controller on first three patients, measurement noise present.
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Figure 4.56: Mean relative tracking error for ISO-IV clamp (OGTT 75g) using
the PID controller on population of 100 patients, measurement noise present.

OGTT 40g OGTT 75g

Kp [ g·dl
mg·min

] 0.02 0.02

Ki [
g·dl

mg·min2 ] 0.0085 0.0085

Kd [ g·dl
mg

] 0.005 0.005

Table 4.21: PID controller parameters for ISO-IV clamp on population, mea-
surement noise present.

OGTT 40g OGTT 75g
MAPE (%) 2.52 2.71

Table 4.22: Mean Absolute Percentage Error (MAPE) of PID controller in a
ISO-IV clamp, response to OGTT 40g and OGTT 75g, measurement noise
present.
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4.2.2 MPC controller with Full Increment Velocity Form

4.2.2.1 Hyperglycemic Clamp

The Mean Absolute Percentage Error (MAPE) for the hyperglycemic clamp
using the MPC controller with Full Increment Velocity Form in presence of
measurement noise is of 3.99%.

Figure 4.57: Evolution of BG level in a hyperglycemic clamp using the MPC
controller with Full Increment Velocity Form on patient#001, measurement
noise present.
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Figure 4.58: Spaghetti plot of
100 patients in a hyperglycemic
clamp using the MPC con-
troller with Full Increment Ve-
locity Form, measurement noise
present.

Figure 4.59: Mean ± std con-
fidence interval of 100 patients
in a hyperglycemic clamp using
the MPC controller with Full
Increment Velocity Form, mea-
surement noise present.

Patient#001, FIVF Population, FIVF
PH 15 15
Q 0.01 0.01
R 60 100

Table 4.23: MPC with Full Increment Velocity Form parameters in a hyper-
glycemic clamp on patient#001 and on population, measurement noise present.
PH is the Prediction Horizon of the MPC controller, Q and R the parameters
regulating control aggressiveness.
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4.2.2.2 Euglycemic Clamp

The Mean Absolute Percentage Error (MAPE) for the euglycemic clamp using
the MPC controller with Full Increment Velocity Form in presence of measure-
ment noise is of 17.94%.

Figure 4.60: Evolution of BG level in a euglycemic clamp using the MPC con-
troller with Full Increment Velocity Form on patient#001, measurement noise
present.
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Figure 4.61: Spaghetti plot of
100 patients in a euglycemic
clamp using the MPC con-
troller with Full Increment Ve-
locity Form, measurement noise
present.

Figure 4.62: Mean ± std con-
fidence interval of 100 patients
in a euglycemic clamp using the
MPC controller with Full Incre-
ment Velocity Form, measure-
ment noise present.

Patient#001, FIVF Population, FIVF
PH 15 15
Q 0.01 0.01
R 50 50

Table 4.24: MPC with Full Increment Velocity Form parameters in a euglycemic
clamp on patient#001 and on population, measurement noise present. PH is the
Prediction Horizon of the MPC controller, Q and R the parameters regulating
control aggressiveness.
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4.2.2.3 Hypoglycemic Clamp

The Mean Absolute Percentage Error (MAPE) for the hypoglycemic clamp using
the MPC controller with Full Increment Velocity Form in presence of measure-
ment noise is of 48.28%.

Figure 4.63: Evolution of BG level in a hypoglycemic clamp using the MPC
controller with Full Increment Velocity Form on patient#001, measurement
noise present.
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Figure 4.64: Spaghetti plot of
100 patients in a hypoglycemic
clamp using the MPC con-
troller with Full Increment Ve-
locity Form, measurement noise
present.

Figure 4.65: Mean ± std confi-
dence interval of 100 patients in
a hypoglycemic clamp using the
MPC controller with Full Incre-
ment Velocity Form, measure-
ment noise present.

Patient#001, FIVF Population, FIVF
PH 15 15
Q 0.01 0.01
R 20 50

Table 4.25: MPC with Full Increment Velocity Form parameters in a hypo-
glycemic clamp on patient#001 and on population, measurement noise present.
PH is the Prediction Horizon of the MPC controller, Q and R the parameters
regulating control aggressiveness.
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4.2.2.4 ISO-IV clamp

The MAPE for the ISO-IV clamp can be found in Table 4.27.

Figure 4.66: Evolution of BG level in a ISO-IV clamp (OGTT 40g) using the
MPC controller with Full Increment Velocity Form on first three patients, mea-
surement noise present.
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Figure 4.67: Mean relative tracking error for ISO-IV clamp (OGTT 40g) using
the MPC controller with Full Increment Velocity Form on population of 100
patients, measurement noise present.

Figure 4.68: Evolution of BG level in a ISO-IV clamp (OGTT 75g) using the
MPC controller with Full Increment Velocity Form on first three patients, mea-
surement noise present.
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Figure 4.69: Mean relative tracking error for ISO-IV clamp (OGTT 75g) using
the MPC controller with Full Increment Velocity Form on population of 100
patients, measurement noise present.

OGTT 40g OGTT 75g
PH 15 15
Q 0.01 0.01
R 50 50

Table 4.26: MPC with Full Increment Velocity Form parameters in a ISO-IV
clamp, on OGTT 40g and OGTT 75g, measurement noise present. PH is the
Prediction Horizon of the MPC controller, Q and R the parameters regulating
control aggressiveness.

OGTT 40g OGTT 75g
MAPE (%) 2.99 3.38

Table 4.27: Mean Absolute Percentage Error (MAPE) of MPC controller with
Full Increment Velocity Form in a ISO-IV clamp, response to OGTT 40g and
OGTT 75g, measurement noise present.
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4.2.3 MPC controller with the Unmeasured Disturbance

Estimator approach

4.2.3.1 Hyperglycemic Clamp

The Mean Absolute Percentage Error (MAPE) for the hyperglycemic clamp
using the MPC controller with Unmeasured Disturbance Estimator method, in
presence of measurement noise is of 2.55%.

Figure 4.70: Evolution of BG level in a hyperglycemic clamp using the MPC
controller with Unmeasured Disturbance Estimator method on patient#001,
measurement noise present.
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Figure 4.71: Spaghetti plot of
100 patients in a hyperglycemic
clamp using the MPC controller
with Unmeasured Disturbance
Estimator method, measure-
ment noise present.

Figure 4.72: Mean ± std con-
fidence interval of 100 patients
in a hyperglycemic clamp using
the MPC controller with Un-
measured Disturbance Estima-
tor method, measurement noise
present.

patient#001 Population
PH 15 15
Q 0.01 0.01
R 8 5
Mu 10 15
Cu 5 15

Qk

[

0.05 0
0 0.05

] [

0.05 0
0 0.05

]

Rk 1 1

Table 4.28: Parameters of the MPC controller with the Unmeasured Disturbance
Estimator method in a hyperglycemic clamp, measurement noise present. PH
is the Prediction Horizon of the MPC controller, Q and R regulate control
aggressiveness, Mu and Cu are the parameters used to augment the model, Qk

and Rk are the covariances of the process and of the measurement noise of the
Kalman filter , respectively.

[H]
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4.2.3.2 Euglycemic Clamp

The Mean Absolute Percentage Error (MAPE) for the euglycemic clamp us-
ing the MPC controller with Unmeasured Disturbance Estimator method, in
presence of measurement noise is of 16.76%.

Figure 4.73: Evolution of BG level in a euglycemic clamp using the MPC con-
troller with Unmeasured Disturbance Estimator method on patient#001, mea-
surement noise present.
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Figure 4.74: Spaghetti plot of
100 patients in a euglycemic
clamp using the MPC controller
with Unmeasured Disturbance
Estimator method, measure-
ment noise present.

Figure 4.75: Mean ± std con-
fidence interval of 100 patients
in a euglycemic clamp using
the MPC controller with Un-
measured Disturbance Estima-
tor method, measurement noise
present.

patient#001 Population
PH 15 15
Q 0.01 0.01
R 10 10
Mu 10000 10000
Cu 100 100

Qk

[

0.05 0
0 0.05

] [

0.05 0
0 0.05

]

Rk 1 1

Table 4.29: Parameters of the MPC controller with the Unmeasured Distur-
bance Estimator method in a euglycemic clamp, measurement noise present.
PH is the Prediction Horizon of the MPC controller, Q and R regulate control
aggressiveness, Mu and Cu are the parameters used to augment the model, Qk

and Rk are the covariances of the process and of the measurement noise of the
Kalman filter, respectively.
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4.2.3.3 Hypoglycemic Clamp

The Mean Absolute Percentage Error (MAPE) for the hypoglycemic clamp us-
ing the MPC controller with Unmeasured Disturbance Estimator method, in
presence of measurement noise is of 47.58%.

Figure 4.76: Evolution of BG level in a hypoglycemic clamp using the MPC
controller with Unmeasured Disturbance Estimator method on patient#001,
measurement noise present.
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Figure 4.77: Spaghetti plot of
100 patients in a hypoglycemic
clamp using the MPC controller
with Unmeasured Disturbance
Estimator method, measure-
ment noise present.

Figure 4.78: Mean ± std con-
fidence interval of 100 patients
in a hypoglycemic clamp using
the MPC controller with Un-
measured Disturbance Estima-
tor method, measurement noise
present.

patient#001 Population
PH 15 15
Q 0.01 0.01
R 0.5 0.5
Mu 1000 1000
Cu 100 100

Qk

[

0.05 0
0 0.05

] [

0.05 0
0 0.05

]

Rk 1 1

Table 4.30: Parameters of the MPC controller with the Unmeasured Disturbance
Estimator method in a hypoglycemic clamp, measurement noise present. PH
is the Prediction Horizon of the MPC controller, Q and R regulate control
aggressiveness, Mu and Cu are the parameters used to augment the model, Qk

and Rk are the covariances of the process and of the measurement noise of the
Kalman filter, respectively.

Hyperglycemic Euglycemic Hypoglycemic
MAPE (%) 2.55 16.76 47.58

Table 4.31: MAPE for hyper, eu and hypoglycemic clamps using the MPC con-
troller with Unmeasured Disturbance Estimator approach in presence of mea-
surement noise
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4.2.3.4 ISO-IV clamp

The MAPE for the ISO-IV clamp can be found in Table 4.33.

Figure 4.79: Evolution of BG level in a ISO-IV clamp (OGTT 40g) using the
MPC controller with Unmeasured Disturbance Estimator approach on first three
patients, measurement noise present.
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Figure 4.80: Mean relative tracking error for ISO-IV clamp (OGTT 40g) using
the MPC controller with Unmeasured Disturbance Estimator approach on pop-
ulation of 100 patients, measurement noise present.

Figure 4.81: Evolution of BG level in a ISO-IV clamp (OGTT 75g) using the
MPC controller with Unmeasured Disturbance Estimator approach on first three
patients, measurement noise present.
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Figure 4.82: Mean relative tracking error for ISO-IV clamp (OGTT 75g) using
the MPC controller with Unmeasured Disturbance Estimator approach on pop-
ulation of 100 patients, measurement noise present.

OGTT 40g OGTT 75g
PH 15 10
Q 1000 2000
R 1 1
Mu 2500 2000
Cu -4 -4

Qk

[

0.01 0
0 0.01

] [

0.05 0
0 0.05

]

Rk 0.5 1

Table 4.32: Parameters of the MPC controller with the Unmeasured Distur-
bance Estimator method in a ISO-IV clamp, measurement noise present. PH
is the Prediction Horizon of the MPC controller, Q and R regulate control ag-
gressiveness, Mu and Cu are the parameters used to augment the model, Qk

and Rk are the covariances of the process and of the measurement noise of the
Kalman filter, respectively.
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OGTT 40g OGTT 75g
MAPE (%) 2.75 2.93

Table 4.33: Mean Absolute Percentage Error (MAPE) of MPC controller with
Unmeasured Disturbance Estimator method in a ISO-IV clamp, measurement
noise present.

4.2.4 Comments on the results

In this more realistic scenario, we introduced measurement errors. This real-
world configuration aims to assess the performance of control algorithms under
conditions that more closely resemble clinical practice, taking into account the
inherent variability and challenges present in realistic settings.

As apparent from the displayed results, the performance of the controllers
has not significantly changed. Introducing fluctuations to the measured blood
glucose naturally leads to less efficient tracking, as observed from the plots
of the controller outputs and the Mean Absolute Percentage Error (MAPE)
calculated for each experiment. Nevertheless, both PID and MPC controllers
demonstrated high-level performance in tracking the references across all types
of glucose clamps explored.
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Chapter 5

Comparing PID and MPC

Performance

After presenting the results obtained by each controller—PID, MPC with Full
Increment Velocity Form, and MPC with the Unmeasured Disturbance Estima-
tor method—it is time to compare their performance across the four types of
glucose clamp examined. As done for the Section 4, where we presented the
results accomplished first in a noise-free scenario and then in a more realistic
scenario, also in this Section we will see how the controllers performed first in
an ideal configuration and then with the presence of measurement noise.

5.1 Noise-free Scenario

5.1.1 Hyperglycemic clamp

In Fig.5.1, we observe the performance of the three different controllers im-
plemented compared in a hyperglycemic clamp on the entire population. The
effectiveness of the MPC controllers is apparent: with the lookahead feature,
the controller can reach the target reference faster by acting earlier and admin-
istering a glucose infusion rate before the reference changes. As depicted in
the figure and further corroborated by Table 5.1, the MPC with the Unmea-
sured Disturbance Estimator approach performed the best, achieving a MAPE
of 2.00%. The MPC with Full Increment Velocity Form is slightly slower but
still performs admirably with a MAPE of 2.21%. This discrepancy is apparent
when observing the glucose infusion rate administered by the controllers: the
former provides a higher value of GIR just before the change in the reference,
while the latter initiates with smaller values beforehand and remains under 1
g/min. The PID controller, lacking the ability to anticipate changes in the ref-
erence, starts later. However, by administering a relatively high glucose infusion
rate, it eventually reaches the target blood glucose level, after a small overshoot
that the two MPC controller managed to avoid, achieving a MAPE of 2.87%.
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PID MPC FIVF MPC UDE
MAPE (%) 2.87 2.21 2.00

Table 5.1: Mean Absolute Percentage Error (MAPE) comparison between PID,
MPC FIVF and MPC UDE controllers, hyperglycemic clamp.

Figure 5.1: Comparison between PID, MPC FIVF and MPC UDE controllers
on population, hyperglycemic clamp. Zoom between minute 60 and 150.

5.1.2 Euglycemic clamp

For the euglycemic clamp, the comparison between the results of the three con-
trollers on the population is depicted in Fig.5.2. As previously mentioned, in
this type of clamp, insulin plays a crucial role as it lowers blood glucose con-
centration. However, since our controllers can only manipulate the input of the
system, which is glucose infusion, they cannot expedite the process of lowering
BG levels. Therefore, until the blood glucose remains above a certain level, they
remain inactive. From the image, we can observe that around minute 180, all
three controllers switch on and provide a glucose infusion rate to avoid under-
shoots and reach the target level. Due to this limitation, all three controllers
perform almost identically, as they cannot significantly influence the process un-
til the blood glucose concentration is sufficiently lowered. Their performance,
measured with the MAPE, is summarized in Table 5.2.

PID MPC FIVF MPC UDE
MAPE (%) 14.62 14.51 14.59

Table 5.2: Mean Absolute Percentage Error (MAPE) comparison between PID,
MPC FIVF and MPC UDE controllers, euglycemic clamp.
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Figure 5.2: Comparison between PID, MPC FIVF and MPC UDE controllers
on population, euglycemic clamp.

5.1.3 Hypoglycemic clamp

For the hypoglycemic clamp experiment, the comparison between the results of
the three controllers on the population is shown in Fig.5.3. Similar considera-
tions made for the results obtained in the euglycemic clamp also apply to this
type of glucose clamp. In Table 5.3, the MAPE for this type of experiment is
displayed, demonstrating that the performance of the controllers is very similar.
However, the PID controller appears to perform slightly poorer by activating
a few minutes later than the two MPCs and by causing a small undershoot.
A MAPE of 45% may seem high, but as previously mentioned, we must con-
sider that the BG levels before the reference changes are around 130-150 mg/dl.
Therefore, in the first 50-75 minutes after the step, the error accumulates for
quite some time. Some potential future developments could involve varying the
intravenous insulin administered to observe its effects on control performance..

PID MPC FIVF MPC UDE
MAPE (%) 45.72 44.33 44.59

Table 5.3: Mean Absolute Percentage Error (MAPE) comparison between PID,
MPC FIVF and MPC UDE controllers, hypoglycemic clamp.
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Figure 5.3: Comparison between PID, MPC FIVF and MPC UDE controllers
on population, hypoglycemic clamp.

5.1.4 ISO-IV clamp

The comparison of the results obtained in our last type of glucose clamp, the
ISO-IV clamp, is illustrated in Fig.5.4. Specifically, the mean relative tracking
error achieved by the three different controllers is displayed. As mentioned
previously, a plot of mean ± std for these types of clamps would not be too
meaningful since each patient uses its OGTT response from the previous day
as a reference. Much more informative is the plot of the tracking error, which
provides insights into the performance of the three controllers. (Reminder: The
relative tracking error is defined as y0−y

y0

, where y0 is the reference and y is the

output.)
As observed from the image, the PID controller generates a positive error in

the ascending phase of the OGTT, attributable to the absence of the look ahead
feature, resulting in the reference being greater than the output. Subsequently,
it produces a small negative error, indicating that the output remains slightly
above the reference. On the other hand, the two MPC controllers initially
anticipate the ascending phase of the OGTT, as evidenced by the negative
tracking error. They then transition to staying slightly under the reference
curve (characterized by the positive error around minute 70 where the OGTT
reaches its peak), and finally follow the PID controller by remaining slightly
above the OGTT curve. The MAPE for the three controllers is shown in Table
5.4 (first row). All three controllers provided excellent tracking, we have in fact
MAPE very close to 0%.

102



PID MPC FIVF MPC UDE
MAPE (%), OGTT 40g 0.29 0.31 0.26
MAPE (%), OGTT 75g 0.51 0.55 0.51

Table 5.4: Mean Absolute Percentage Error (MAPE) comparison between PID,
MPC FIVF and MPC UDE controllers, ISO-IV clamp.

Figure 5.4: Comparison between PID, MPC FIVF and MPC UDE controllers
on population, relative tracking error, ISO-IV clamp (OGTT 40g).
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Figure 5.5: Comparison between PID, MPC FIVF and MPC UDE controllers
on population, relative tracking error, ISO-IV clamp (OGTT 75g).

For the ISO-IV clamp on the 75g OGTT the same considerations done for
the 40g OGTT apply. The relative tracking error (Fig.5.5) is a bit higher due
to higher values of blood glucose, but the behaviour of the 3 controllers stay
the same. The performance of the controller can be found in Table 5.4 (second
row). We can see that, even if slightly greater, the MAPE stays very close to
0% for all three controllers, signifying excellent tracking.
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5.2 Realistic Scenario

5.2.1 Hyperglycemic Clamp

In Fig.5.6, we observe the comparison between the three controllers after incor-
porating measurement noise to simulate a more realistic scenario. It is apparent
that the noise does not significantly affect the controllers’ performance; there
is only a slight impact observed at the beginning of the experiment and during
steady state after the step. We can also see this in the Mean Absolute Percent-
age Error (Table 5.5). The MPC controller with the Unmeasured Disturbance
Estimator method confirms to be the more efficient in tracking the reference in
a hyperglycemic clamp experiment.

PID MPC FIVF MPC UDE
MAPE (%) 3.46 3.99 2.55

Table 5.5: Mean Absolute Percentage Error (MAPE) comparison between PID,
MPC FIVF and MPC UDE controllers in a hyperglycemic clamp, measurement
noise present.

Figure 5.6: Comparison between PID, MPC FIVF and MPC UDE controllers
on population in a hyperglycemic clamp, measurement noise present.

5.2.2 Euglycemic Clamp

With regard to the euglycemic clamp, the comparison between the three con-
trollers with the presence of measurement noise is shown in Fig.5.7. As an-
ticipated, the existence of noise does not alter the behavior of the controllers
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significantly. The MAPE, displayed in Table 5.6, has increased slightly, but we
still achieve very reasonable performance. The MPC controller with Full Incre-
ment Velocity Form appears to be slightly slower than the other two controllers,
as evidenced by the higher MAPE, but the difference is minimal.

PID MPC FIVF MPC UDE
MAPE (%) 16.85 17.94 16.76

Table 5.6: Mean Absolute Percentage Error (MAPE) comparison between PID,
MPC FIVF and MPC UDE controllers in a euglycemic clamp, measurement
noise present.

Figure 5.7: Comparison between PID, MPC FIVF and MPC UDE controllers
on population in a euglycemic clamp, measurement noise present.

5.2.3 Hypoglycemic Clamp

As usual, the same considerations made for the euglycemic clamp can be made
for the hypoglycemic clamp (Fig.5.8). Here as well, obviously, the performance
worsen a little bit with the presence of measurement noise (Table 5.7). As seen
before the MPC with Full Increment Velocity Form stays marginally above
the others, while the PID controller execute a slightly undershoot, but the
differences are really minimal.
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PID MPC FIVF MPC UDE
MAPE (%) 48.22 48.28 47.58

Table 5.7: Mean Absolute Percentage Error (MAPE) comparison between PID,
MPC FIVF and MPC UDE controllers in a hypoglycemic clamp, measurement
noise present.

Figure 5.8: Comparison between PID, MPC FIVF and MPC UDE controllers
on population in a hypoglycemic clamp, measurement noise present.

5.2.4 ISO-IV Clamp

Finally, the mean relative tracking error achieved by the three controllers with
the presence of measurement noise is displayed in Fig.5.9 and Fig.5.10 for the 40g
and 75g OGTTs, respectively. In both the 40g and 75g experiments, although
the relative error has clearly increased, the behavior of the controllers has not
changed significantly, as apparent from Table 5.8. If anything, it appears that
the addition of noise has led the PID controller to produce the smallest Mean
Absolute Percentage Error, both in the 40g and 75g ISO-IV clamps.

PID MPC FIVF MPC UDE
MAPE (%), OGTT 40g 2.52 2.99 2.75
MAPE (%), OGTT 75g 2.71 3.38 2.93

Table 5.8: Mean Absolute Percentage Error (MAPE) comparison between PID,
MPC FIVF and MPC UDE controllers in a ISO-IV clamp, measurement noise
present.
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Figure 5.9: Comparison between PID, MPC FIVF and MPC UDE controllers on
population, relative tracking error, ISO-IV clamp (OGTT 40g), measurement
noise present.

Figure 5.10: Comparison between PID, MPC FIVF and MPC UDE controllers
on population, relative tracking error, ISO-IV clamp (OGTT 75g), measurement
noise present.
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5.3 Final Comparison

By analyzing the results presented in the previous sections, determining a clear
winner among the three controllers is not straightforward. In the hyperglycemic
clamp, the Model Predictive Control (MPC) with the Unmeasured Disturbance
Estimator approach appears to be the most effective in tracking the reference,
attributed to its swift response in administering a significant glucose infusion
rate prior to the change in the target curve. This superiority is confirmed by
the Mean Absolute Percentage Error, observed in both ideal and real-world
scenarios.

In contrast, for the euglycemic and hypoglycemic clamp experiments, no
obvious winner emerges. All three controllers perform similarly, largely due
to the influence of insulin. In such cases, developing a more complex MPC
controller may not be necessary, as the simpler Proportional-Integral-Derivative
controller achieves practically identical performance.

Regarding the ISO-IV clamps, excellent tracking is achieved with all three
controllers, with the Mean Absolute Percentage Error (MAPE) nearly approach-
ing 0%. Similar to the previous two clamp types, identifying a clear winner
is challenging. Under ideal conditions, where measurement noise is absent,
the MPC with the Unmeasured Disturbance Estimator Approach appears to
be slightly more accurate. However, in realistic scenarios, the PID controller
demonstrates marginally better performance. Once again, it appears that the
PID controller may be the preferable choice due to its simplicity compared to
the more complex MPC controller, especially considering the comparable per-
formance observed across all clamp types.
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Chapter 6

Mobile Application

6.1 Introduction

In the previous sections we developed both PID and MPC algorithms to suggest
Glucose Infusion in glucose clamp experiments (Hyperglycemic, Euglycemic,
Hypoglycemic and ISO-IV). Given the good performance achieved, we chose to
design a mobile application as a decision support system for clinical researchers
conducting glucose clamp experiments (the glucose clamp supported are Hyper-
glycemic, Euglyucemic and Hypoglycemic). The concept behind the app is quite
simple: after inserting a blood glucose (BG) measurement, a glucose infusion
rate (GIR) is suggested.

Due to its simplicity compared to an MPC, we integrated a PID controller
into the application. The parameters chosen are the ones that permitted the
best performance on the three type of clamps in the realistic scenario (Tab.6.1).

Glucas (GLUcose CLamp ASsistant) has already been successfully deployed
as computer software [1]. Recognizing the increasing prevalence of mobile plat-
forms and the benefits they offer in terms of accessibility and convenience, we
have made the strategic decision to extend its functionality by developing a ded-
icated mobile application. This expansion to mobile platforms aims to further
enhance the usability and accessibility of Glucas, ensuring that researchers can
easily access its features and capabilities directly from their smartphone. We
implemented Glucas 2.0 in the Flutter environment, in the next section a brief
overview of the Flutter framework is provided.

Hyperglycemic Euglycemic Hypoglycemic

Kp [ g·dl
mg·min

] 0.02 0.025 0.02

Ki [
g·dl

mg·min2 ] 0.001 0.003 0.001

Kd [ g·dl
mg

] 0.002 0.001 0.001

Table 6.1: PID controller parameters used for Glucas 2.0.
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6.2 Dart and Flutter

Mobile applications have become essential in our daily lives, with a significant
increase in network traffic on mobile devices since November 2016, surpassing
desktops or laptops. To meet the diverse user base’s needs, developers face the
challenge of adapting apps to both Android and iOS platforms, requiring ex-
pertise in different programming languages such as Java/Kotlin and Objective-
C/Swift.

Cross-platform development presents hurdles due to the lack of a unified
codebase across mobile platforms. Frameworks like Apache Cordova and Ionic
aim to streamline development by combining native and web app approaches.
However, they may not fully utilize platform-specific features, leading to poten-
tial limitations in performance and resource access.

Google introduced Flutter in 2018 to address these challenges, offering a
seamless cross-platform development experience for iOS and Android. Flutter’s
features, including hot reload for quick code changes and modular widgets for
flexible UIs, have gained popularity among major companies like Alibaba and
Google.

Developers leverage Flutter with development environments like Android
Studio and Visual Studio Code. Dart, the programming language behind Flut-
ter, provides essential features like clear syntax and support for reactive pro-
gramming, contributing to Flutter’s efficiency in app development.

The synergy between Dart and Flutter enables the creation of high-performance
apps, with Dart’s flexibility in compilation playing a crucial role. Developers
can utilize tools like Visual Studio or Android Studio to build Flutter apps
effectively.

6.3 Project Structure

The project was crafted within the Visual Studio Code environment, comple-
mented by the utilization of Android Studio to simulate an Android smartphone.
In the following sections, we will provide a brief overview of the key components
comprising a mobile application developed using Flutter.

6.3.1 UI

In Flutter-based applications, the main building blocks are called Widgets,
which can represent different elements such as containers, columns, rows, bot-
tons and many others. Conceptually, everything in a flutter app is a widget.
They have a hierarchical structure, so the ”child” widget nests within the ”par-
ent” one and so on. There are two main types of widgets, the Stateless ones and
the Stateful ones. Stateless widget remain unchanged once created and do not
alter their behavior based on user event, while Stateful widgets are dynamic,
allowing for changes in content over time based on user-generated actions. They
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Figure 6.1: Glucas 2.0 navigation flow chart.

are particularly useful for developing interfaces with dynamic components, of-
fering options for managing dynamism and immutability.

During the app development process, numerous widgets are used to create
various elements and functionalities. In our application, we employed a wide
range of widgets including containers, rows, columns, texts, buttons, pop-up
dialogs, timers, and charts, among others. These widgets collectively contribute
to crafting a rich and interactive user experience within the application.

6.3.2 Navigation

Gluclas is designed as a user-friendly mobile application with a streamlined
structure organized into several screens:

1. Home

2. Onboarding

3. Landing

4. Experiment

5. Experiment Stopped

Each screen is carefully crafted to provide intuitive navigation and seamless
user experience, ensuring that users can efficiently access and utilize Glucas
2.0’s features and functionalities. In Figure6.1, we present the simple navigation
flowchart outlining the structure of the app’s screens.

6.3.3 State Management and Data Persistence

To efficiently manage state within our application, we made use of a Provider,
a powerful tool provided by Flutter. The Provider allows seamless passing of
information among all widgets within the application, ensuring effective state
management throughout the user interface.
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For data persistence within the application, we adopted two distinct ap-
proaches, each chosen based on the nature of the data to be saved. We utilized
the SharedPreferences approach, a tool that enables the storage of key-value
(KV) pairs comprising primitive values such as strings, integers, floating-point
numbers, or boolean values. SharedPreferences are commonly employed for
saving information that does not require the complexity of a database. In our
application, we utilized SharedPreferences for storing simple data such as the
current experiment number (IdExp) and a boolean value (thereIsExperiment)
indicating whether there is an ongoing experiment. This approach ensures that
when the app is reopened, the user is directed straight to the experiment page
if an experiment is in progress.

To save more complex information, almost every app implements a local
database. In mobile app development with Flutter, the sqflite plugin is essential
for SQLite database management. It supports iOS and Android, offering trans-
action control and batch operations for efficient database modifications. The
initial phase of developing the database involves creating an Entity-Relationship
(E-R) diagram. A database follows a designated data model, particularly a
model designed for organizing data. Typically, a relational database is utilized,
consisting of interconnected relations depicted as tables. Each table has its
schema and stores data instances. Designing a relational database involves two
main stages: conceptual design and logical design.

Conceptual design results in a formal depiction of database requirements
known as the Entity-Relationship (E-R) model. This model includes three key
elements: Entities, representing classes of objects with common characteristics
and independent existence; Relationships, indicating conceptual connections be-
tween two or more entities; and Attributes, describing basic properties of entities
or relationships. The schema should also specify cardinalities for each entity in-
volved in a relationship and identifiers for each entity. Identifiers are defined as
the set of attributes in the schema uniquely identifying instances of the entity.
The conceptual schema used for Glucas 2.0 is represented if Fig.6.2.

We have two entities: ”Experiment” and ”Data”. An experiment can gen-
erate from 0 to N data points, and each data point belongs to one and only one
experiment. The ”Experiment” entity is defined with ”ID” as its primary key,
serving as the attribute uniquely identifying each row in the database. Addi-
tional attributes include ”tStart,” ”TicoGlobal,” and ”stopped,” which hold in-
formation regarding the experiment’s status. Conversely, attributes like ”pzId,”
”pzGroup,” ”pzAge,” ”pzWeight,” ”pzHeight,” and ”typeOfClamp” are desig-
nated to store patient and clamp-related information. On the other hand, the
”Data” entity has ”ID” as its primary key and ”IdExp” as a foreign key. This
signifies that two data points with the same ID may exist, but they cannot be-
long to the same experiment. The ”Data” entity includes attributes related to
data such as ”BG”, ”BG time”, ”suggestedDose”, ”actualDose”, ”doseTime” ,
”sumError” , and ”time tic”. Additionally, there are boolean values like ”se-
lectedIsSuggested” and ”isDoseAlreadyInserted” which aid in the insertion of
dose values into the database. The logical schema precisely and effectively en-
capsulates all the information outlined by an E-R schema generated during the

113



Figure 6.2: E-R model on which the App database is based.

conceptual design phase. The elements of the E-R schema are translated into
tables following specific rules determined by the cardinalities of the entities. In
summary, our app relies on two tables:

• EXPERIMENT(ID, stopped, ticGlobal, tStart, pzId, pzGroup, pzGen-
der, pzAge, pzHeight, pzWeight, typeOfClamp)

• DATA(ID, IdExp, BG, BG time, suggestedDose, manualDose, timeTic,
doseTime, sumError, selectedIsSuggested, isDoseAlreadyInserted)

6.4 App Workflow

In the following pages, we will outline the main features of Glucas 2.0 dur-
ing a typical run of the mobile application. Upon opening the app, the user
is directed to the ”home” page, depicted in Fig.6.3, where they can initiate a
new glucose clamp experiment. Upon pressing the ”Create New Experiment”
button, the user is navigated to the ”onboarding” page (Fig.6.4). Here, pa-
tient data is collected, and the user can select from three types of clamps. It
is worth noting that providing these details is optional, allowing users to nav-
igate without mandatory input. The only required information is the type of
glucose clamp and the ID of the patient. Although not strictly required for the
control algorithm itself, additional information such as age, height, and weight
can be helpful for physicians in assessing the most appropriate control actions
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to take. The GDPR (General Data Protection Regulation) is a comprehensive
data protection regulation implemented by the EU in 2016, representing one of
the most extensive and progressive data protection regulations globally. Each
EU member state has adopted a national regulation on data protection compli-
ant with the GDPR. For example, in Italy, it is the DECRETO LEGISLATIVO
10 agosto 2018, n.101. The GDPR includes seven main principles, with the
”Data Minimisation” principle emphasizing that personal data should be ade-
quate, relevant, and limited to what is necessary for processing purposes. To
adhere to GDPR standards, the app avoids requesting unnecessary data and
does not mandate their entry. Additionally, it refrains from soliciting sensitive
patient information, such as names or surnames, to prevent recognition and
identification of individuals.

Subsequently, the user is directed to the ”landing” page (Fig.6.5), which
serves as a transition screen before commencing the experiment. Once ready,
the user can initiate the actual experiment by pressing the noticeable button.

Figure 6.3: Home.
Figure 6.4: Onboard-
ing. Figure 6.5: Landing.

When the experiment initiates, a pop-up alert dialog prompts the user to
input the blood glucose (BG) of the patient (Fig.6.6a). Although the default
insertion time is set to the current time, we have integrated the option to adjust
the insertion time, providing users with enhanced flexibility. Upon entering the
BG measurement (Fig.6.6b) and pressing the ”confirm” button, the dialog will
close. As depicted in Figure6.6c, the experiment page displays two charts: one
for BG measurements and another for glucose infusion. Notably, a value of
150 mg/dl has been incorporated into the first chart. Furthermore, Fig.6.6d
illustrates three additional measurements that have been included.

For these glucose clamp experiments, we have configured the sampling time
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(a) (b) (c) (d)

Figure 6.6: a) Measurement request. b) Measurement insertion. c) Plot of the
first measurement. d) Plot of three measurements.

(a) (b)

Figure 6.7: a) Add measurement and doses button. b) Activate suggestion of
PID controller.
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Ts to be 5 minutes, consistent with the control algorithms discussed in Section 2.
Positioned above the charts is a timer set to 5 minutes. Once the timer expires,
it will reset, the pop-up dialog will reappear and the procedure repeats. If the
user does not close the dialog or does not insert the measurement within one
minute the dialog will close automatically. It can be reopened using the ”add”
button. (Fig.6.7a). Below the two charts we find two areas where the last BG
and glucose infusion value are displayed, togheter with the time of insertion.

Glucas 2.0 has two operating modalities for glucose infusion: suggestion
OFF and suggestion ON. The user can switch between modes clicking the ”sug-
gestion” button at the bottom-left corner of the screen. In the first modality,
called ”reading mode”, the PID controller will not be active (Fig.6.8a). This
mode simulates a scenario where a physician has taken some blood glucose (BG)
measurements but has not yet initiated the experiment. In this case, which is
the one we have seen until now, after inserting a BG value the user has the
possibility to manually administer intravenous glucose. Conversely, when sug-
gestions are activated, the dosage dialog will effectively propose the output of
the PID controller (Fig.6.8b), which aims to bring the patient’s blood glucose
as close as possible to the reference value (depicted by the black line in the first
chart). Upon selecting ”confirm,” the user accepts the suggested dosage and
administers it accordingly.

In Fig.6.9 we can see other 3 data points added to the charts. If the clinical
researcher wishes to administer a different quantity of glucose for any reason,
they can do so by manually entering the dose in the text field (Fig.6.10a). The
glucose infusion rate is then added in the second chart, in red the suggested
GIR and in blue the actual dose (Fig.6.10b).

The experiment continues for its designated duration, typically lasting be-
tween 180 to 240 minutes. In Fig. 6.11, we can observe a simulation of a hy-
perglycemic clamp conducted using Glucas 2.0 (for convienence, the simulation
is abbreviated).

In Figures 6.12 and 6.13, we can observe brief simulations of a euglycemic
and hypoglycemic clamp, respectively.

By selecting the hamburger icon located in the top-left corner of the screen,
the drawer will slide out, revealing the patient’s data collected during the on-
boarding page (fig.6.14).

A strong feature of Glucas 2.0 is its ability to allow clinical researchers to
conduct more than one experiment simultaneously. By utilizing the ”back” ar-
row located in the top-right corner of the screen (Fig.6.15a), the user can return
to the home screen (Fig.6.15b). From there, the user can select any ongoing
experiment from the list (6.15c), effectively allowing experiments to run concur-
rently in the background. This ensures that timers, data points, and all other
features remain accessible and operational. The mobile application is designed
to be robust against crashes or closures. In the event of such occurrences, when
the application is reopened, the experiment will seamlessly continue from where
it left off. This ensures uninterrupted progress and data integrity throughout
the experiment.

Once the experiment ends, the user can stop it with the ”stop” red button
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(a) (b)

Figure 6.8: a) Alert dialog for entering the infusion in case of suggestions turned
off. b) Alert dialog for entering the infusion in case of suggestions turned on.

Figure 6.9: Experiment (hyperglycemic clamp).
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(a) (b)

Figure 6.10: a) Dose dialog with administered infusion different from the sug-
gested one. b) Plot of administered and suggested glucose infusion.

Figure 6.11: Experiment (hyperglycemic clamp).
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Figure 6.12: Experiment (euglycemic clamp).

Figure 6.13: Experiment (hypoglycemic clamp).
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Figure 6.14: Drawer.

(a) (b) (c)

Figure 6.15: a) Back to home confirmation dialog. b) Homepage with ”ongoing
experiments” button. c) List of ongoing experiments.
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in the bottom-right of the page (Fig.6.16a). Once an experiment is terminated,
it will not be possible to add new data. Researchers can still access to the
stopped trial by choosing from the list of ”stopped experiments” in the home
page (Fig.6.16c).

(a) (b) (c)

Figure 6.16: a) Stop experiment confirmation dialog. b) Homepage with
”stopped experiments” button. c) List of stopped experiments.

Finally, users can also delete stopped trials with the ”Delete Stopped Ex-
periment” button (Fig.6.17). This will erase the entire experiment from the
database.

122



(a) (b) (c)

Figure 6.17: a) List of stopped experiments that can be deleted. b) Confirmation
dialog for deletion. c) Confirmation message of deletion.
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Chapter 7

Conclusions and Future

Developments

The aim of this work was to design closed-loop strategies to assist physicians
in modulating glucose infusion rates during glucose clamp experiments. These
experiments are crucial for quantifying insulin resistance and β-cell function-
ing, providing essential insights into metabolic health and potential treatment
strategies for conditions such as diabetes.

The first contribution of this thesis involved implementing PID and MPC
controllers in the four types of glucose clamps analyzed. We explored both the
noise-free scenario, under ideal conditions, and the realistic scenario, with the
presence of measurement noise. From the results obtained, we did not find a
controller that outperformed the others, except for the MPC with Unmeasured
Disturbance Estimator in the hyperglycemic clamp, as discussed in Section 5.3,
even if the other two controllers still achieved effective control. For the other
types of clamps - euglycemic, hypoglycemic and ISO-IV - all three controller
performed excellent and accomplished very similar results. For this reason the
choice of a PID controller may be more suitable due to its simplicity compared
to a MPC controller.

The second contribution involved the design of a Glucas 2.0, a mobile appli-
cation developed in the Flutter environment. Glucas 2.0 aims to support clinical
researchers in hyperglycemic, euglycemic and hypoglycemic clamp experiments.
By providing a blood glucose measurement, the PID controller implemented in
the application gives a suggested glucose infusion rate.

As possible future developments, with regard to the control algorithms de-
sign, several considerations can be made. First of all, the full UVA/Padova Type
1 Diabetes Simulator could be used to implement the three controllers. In this
project the time was limited so we utilized a simplified version of it. Moreover,
testing the algorithms on healthy patients instead of diabetic ones could give
meaningful insights in the analysis of insulin resistance and β-cell functioning.
Another possible improvement could be to modify insulinization in euglycemic
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and hypoglycemic clamps, to speed up the process of lowering BG levels, leading
to a more in-depth evaluation of the performance of PID and MPC controllers
in these glucose clamps. Furthermore, conducting randomized control trials to
validate the proposed control strategies on real patients is essential. This step
would help validate the findings obtained through in-silico simulations and pro-
vide a clearer understanding of the effectiveness of the controllers in clinical
settings.

The primary future development for Glucas 2.0 would involve integrating
the MPC controller into the application. Despite achieving similar performance
overall, the MPC controller in the hyperglycemic clamp demonstrated superior
performance. In terms of app functionality, several additions could enhance
user experience. For instance, enabling physicians to modify data points in-
serted into the application would provide greater flexibility and customization.
Additionally, incorporating a feature for adding notes could be valuable for an-
notating and contextualizing data, enhancing the utility of the application for
healthcare professionals. Finally, improving the user interface design to enhance
aesthetics and usability could be considered.
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