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Chapter 1

Introduction

Over the past decade, particular attention has been devoted to the study of
collective problems where interacting agents must reach a common objective
under information and communication constraints. These problems arise
in a variety of disciplines including physics, biology, computer science and
systems and control theory. Analysis and design efforts have been devoted
to understand how a group of moving agents (e.g. flocks of birds, schools
of fish or autonomous robots) can reach a consensus without an external
reference and in a decentralized way.

Recent results have contributed to a good understanding of synchroniza-
tion of interacting agents in Euclidean space, based on the linear consensus
algorithm

d

dt
xk(t) =

N∑
j=1

ajk(t)(xj(t)− xk(t)), k = 1, 2, ..., N (1.1)

where ajk is the weight of link j  k in the graph representing the commu-
nication links between the N agents, and xk ∈ Rn, k = 1, 2, ..., N the state
of agent k. Global exponential synchronization is ensured even with varying
ajk, as long as the agents are uniformly connected.
However, many interesting applications involve manifolds that are not home-
omorphic to an Euclidean space, like the circle S1 for (e.g. oscillator) phase
variables or the group of rotations SO(n) for rigid body orientations.
The celebrated Kuramoto model, which deals with the study of synchroniza-
tion phenomena in populations of coupled oscillators, has been adopted to
investigate consensus problem on the circle.

An essential difference between linear consensus algorithms and their
nonlinear extensions is the non-convex nature of symmetric spaces like the
circle. This property is what makes the convergence analysis graph depen-
dent when the state space is nonlinear.
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8 CHAPTER 1. INTRODUCTION

Stability analysis of these algorithms deals with the Lyapunov theory:
stability (also called stability in the sense of Lyapunov or Lyapunov stabil-
ity) means that the system trajectory can be kept arbitrarily close to the
origin (assuming the origin be an equilibrium point) by starting sufficiently
close to it. It is therefore a form of continuity of solutions with respect to
their initial conditions.
In many engineering applications, Lyapunov stability is not enough. Some
types of engineering requirement is captured by the concept of asymptotic
stability. Frequently, it is still not sufficient to know that a system will con-
verge to the equilibrium point after infinite time. There is a need to estimate
how fast the system trajectory approaches the origin. The concept of expo-
nential stability can be used for this purpose.

Practical applications include autonomous swarm/formation operation,
distributed decision making, neural and communication networks, cluster-
ing and other reduction methods, optimal covering or coding, and other
fields where averaging/synchronizing or distributing a set of points appears
as a subproblem. For instance, formation control of autonomous vehicles
(e.g. flocking or rendezvous problems), or even sensor networks; consider for
examples a room where there are several temperature sensors: a possible
solution to ensure that the sensors reach a common goal without adopting
a central unit, is to use distributed control and consensus algorithms.

The thesis is outlined as follows. Chapter 2 is devoted to recalling some
mathematical preliminaries, such as concepts of stability, Lyapunov theory,
graph theory; in this chapter, we also give some (intuitive) notions of critical
concepts concerning nonlinear spaces (e.g. the concept of manifold, geodesic
and geodesic distance, Lie group). Chapter 3 deals with the goal of the thesis:
the consensus problem; we firstly introduce the problem in linear space and
then we present consensus in nonlinear spaces, focusing our attention on the
circle. In Chapter 4 we give some critical example of application of consensus
in engineering problems (e.g. autonomous ocean sampling network, phase
synchronization of oscillator networks, vehicle formations).



Chapter 2

Mathematical Preliminaries

2.1 Stability and Lyapunov Theory

Given a control system, the first and most important question about its
various properties is whether it is stable. Qualitatively, a system is described
as stable if starting the system somewhere near its desired operating point
implies that it will stay around the point ever after.
Basic concepts and results of this section may be found in references [1, 2,
3, 4, 11].

2.1.1 Stability of Linear Systems

We consider a system described by a linear homogeneous time-invariant
differential equations

ẋ(t) = Fx(t) (2.1)

where F : X → X is a linear map and X an n-dimensional space. The
equation is called linear because the right-hand side is a linear function of
x(t). It is called homogeneous because the right-hand side is zero for x(t) = 0
(an equation of the form ẋ = Fx+G with G 6= 0 is called inhomogeneous).
The equation is called time invariant because F is independent of t.

In order to specify a solution of (2.1), one has to provide an initial value.
The solution of the initial value problem: find a function x satisfying

ẋ = Fx, x(0) = x0, (2.2)

is denoted by x(t, x0). In the scalar case (n = 1, F = f), it is well known
that x(t, x0) = eftx0. In order to have a similar result for the multivariable
case, we introduce the matrix exponential function

eFt :=

∞∑
k=0

tkF k

k!
. (2.3)
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10 CHAPTER 2. MATHEMATICAL PRELIMINARIES

It follows that x(t, x0) = eFtx0.

In mathematics, stability theory addresses the stability of solutions of
differential equations and of trajectories of dynamical systems under small
perturbations of initial conditions. The simplest kind of an orbit is a fixed
point, or an equilibrium. The stability of fixed points of a system of constant
coefficient linear differential equations of first order can be analyzed using
the eigenvalues of the corresponding matrix so that the concept of stability
is strictly related to the asymptotic behavior of each elementary mode. The
general expression of each mode is

theλt = the(σ+iω)t = theσt[cos(ωt) + i sin(ωt)]. (2.4)

where λ = σ + iω is a complex eigenvalue of multiplicity h.

We can summarize all cases as follows

• convergence (to zero) of a mode if and only if σ < 0, i.e. the corre-
sponding eigenvalue λ satisfies Re[λ] < 0;

• boundness if and only if a) we are in the previous case (convergence
to zero) or b) σ = h = 0, i.e. the corresponding eigenvalue λ satisfies
Re[λ] = 0 and moreover we are considering only the first of the possibly
multiple modes associated to the same eigenvalue;

• divergence in all the other cases.

Thus the following property holds:

Property 2.1 eFt converges to zero if and only if all the eigenvalues λi of
F have Re[λi] < 0, while it is limited if and only if all the eigenvalues λi
of F have Re[λi] ≤ 0, and eigenvalues with Re[λi] = 0 have equal geometric
and algebraic multiplicity.

What is important in control theory is the concept of asymptotic stability
from the theory of ordinary differential equations. For linear time-invariant
systems, this concept can be defined as follows

Definition 2.1 The system (2.1) is called stable if every solution tends to
zero for t→∞.

Equilibrium point and Stability

We define equilibrium point of a dynamical system a point in which the
state remains “anchored”, in the sense that the corresponding trajectory is
a point. In other words, it must be verified that

x(t) = x(0), ∀t ≥ 0 (2.5)
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which is equivalent to the fact that x(t) is constant and therefore its deriva-
tive is zero.
The equilibrium points of a system are obtained by solving the equation
Fx = 0. We note that this homogeneous system always admits the solution
x = 0 and that this is the only solution to the system only if detF 6= 0,
whereas if F is not invertible, infinite solutions appear.

The stability around the equilibrium points is defined by the following

Definition 2.2 An equilibrium points xeq is called simply stable if
∀ε > 0 ∃δ > 0 such that if ||x(0)− xeq|| ≤ δ then we have ||x(t)− xeq|| ≤ ε,
∀t ≥ 0, while it is called asymptotically stable if:
1. it is simply stable;
2. limt→+∞ x(t) = xeq as long as x(0) is chosen sufficiently close to xeq.

Finally we can conclude with this result:

Property 2.2 :

• eFt is limited ⇔ xeq = 0 is simply stable ;

• lim
t→+∞

eFt = 0 ⇔ xeq = 0 is asymptotically stable.

2.1.2 Stability of Nonlinear Systems

The most useful and general approach for studying the stability of non-
linear control systems is the theory introduced in the late 19th century by
the Russian mathematician Alexandr Mikhailovich Lyapunov. Lyapunov’s
work includes two methods for stability analysis: the so-called linearization
method and the direct method. The linearization method draws conclusions
about a nonlinear system’s local stability around an equilibrium point from
the stability properties of its linear approximation. The direct method is not
restricted to local motion, and determines the stability properties of a non-
linear system by constructing a scalar “energy-like” function for the system
and examining the function’s time variation.

A nonlinear dynamic system can usually be represented by a set of non-
linear differential equations in the form

ẋ = f(x, t) (2.6)

where f is a n× 1 nonlinear vector function, and x is the n× 1 state vector.
A solution x(t) of the equation (2.6) usually corresponds to a curve in state
space as t varies from zero to infinity. This curve is generally referred to as
a state trajectory or a system trajectory. Linear systems are a special class
of nonlinear systems. In the more general context of nonlinear systems, the
adjectives “time-varying” or “time-invariant” referred to linear systems are
traditionally replaced by “non-autonomous” and “autonomous”.
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Autonomous Systems

Definition 2.3 The nonlinear system (2.6) is said to be autonomous if f
does not depend explicitly on time, i.e. if the system’s state equation can be
written

ẋ = f(x) (2.7)

Otherwise, the system is called non-autonomous.

The fundamental difference between autonomous and non-autonomous sys-
tems lies in the fact that the state trajectory of an autonomous system
is independent of the initial time, while that of a non-autonomous system
generally is not.

Equilibrium points

As for linear systems, it is possible for a system trajectory to correspond to
only a single point. Such a point is called an equilibrium point.

Definition 2.4 A state x* is an equilibrium state (or equilibrium point)
of the system if once x(t) is equal to x*, it remains equal to x* for all future
time. Mathematically, this means that the constant vector x* satisfies

0 = f(x∗) (2.8)

A nonlinear system can have several (or infinitely many) isolated equi-
librium point, e.g. the well-known Logistic (Riccati) Equation ẋ = x(1−x).

Stability

We introduced the intuitive notion of stability as a kind of well-behavedness
around a desired operating point. However, since nonlinear systems may
have much more complex behavior than linear systems, the mere notion of
stability is not enough to describe the essential features of their motion.

We now give some notations.
Let BR denote the spherical region (or ball) defined by ||x|| < R in state-
space, and SR the sphere itself, defined by ||x|| = R.

Definition 2.5 Suppose state x = 0 is an equilibrium state. It is said to be
stable if, for any R > 0, there exists r > 0, such that if ||x(0)|| < r, then
||x(t)|| < R for all t ≥ 0. Otherwise, the equilibrium point is unstable.

Essentially, stability (also called stability in the sense of Lyapunov
or Lyapunov stability) means that the system trajectory con be kept
arbitrarily close to the origin by starting sufficiently close to it. It is therefore
a form of continuity of solutions with respect to their initial conditions.
More formally, the definition states that the origin is stable, if, given that
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we do not want the state trajectory x(t) to get out of a ball of arbitrarily
specified radius BR, a value r(R) can be found such that starting the state
from within the ball Br at time 0 guarantees that the state will stay within
the ball BR thereafter.
The definition 2.5 can be written

∀R > 0, ∃r > 0, ||x(0)|| < r ⇒ ∀t ≥ 0, ||x(t)|| < R

or, equivalently

∀R > 0, ∃r > 0, x(0) ∈ Br ⇒ ∀t ≥ 0, x(t) ∈ BR

In many engineering applications, Lyapunov stability is not enough.
Some types of engineering requirement is captured by the concept of asymp-
totic stability.

Definition 2.6 An equilibrium point 0 is asymptotically stable if it is
stable, and if in addition there exists some r > 0 such that ||x(0)|| < r
implies that x(t)→ 0 as t→∞.

Asymptotic stability means that the equilibrium is stable, and that in addi-
tion, states started close to 0 actually converge to 0 as time t goes to infinity.
Thus, system trajectories starting from within the ball Br converge to the
origin. The ball Br is called a domain of attraction of the equilibrium point
(while the domain of attraction of the equilibrium point refers to the largest
such region, i.e. to the set of all points such that trajectories initiated at
these points eventually converge to the origin). An equilibrium point which
is Lyapunov stable but not asymptotically stable is called marginally stable.

In many engineering applications, it is still not sufficient to know that a
system will converge to the equilibrium point after infinite time. There is a
need to estimate how fast the system trajectory approaches 0. The concept
of exponential stability can be used for this purpose.

Definition 2.7 The equilibrium point 0 is exponentially stable if there
exist two strictly positive numbers α and λ such that

||x(t)|| ≤ α||x(0)||e−λt ∀t > 0 (2.9)

in some ball Br around the origin.

In words, (2.9) means that the state vector of an exponentially stable
system converges to the origin like a decreasing exponential function. The
positive number λ is often called the rate of exponential convergence.

All the results examined above can be generalized for a non-specific
equilibrium point x∗, simply translating from the origin to the equilibrium
point x∗.
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Moreover, the above definitions are formulated to characterize the local
behavior of systems, i.e. how the state evolves after starting near the equi-
librium point. Local properties tell little about how the system will behave
when the initial state is at some distance away from the equilibrium. Global
concepts are required for this purpose.

Definition 2.8 If asymptotic (or exponential) stability holds for any initial
states, the equilibrium point is said to be asymptotically (or exponentially)
stable in the large. It is also called globally asymptotically (or exponentially)
stable.

Non-Autonomous Systems

For non-autonomous systems, of the form ẋ = f(x, t), equilibrium points x∗

are defined by

f(x∗, t) ≡ 0 ∀t ≥ t0 (2.10)

Definition 2.9 The equilibrium point 0 is stable at t0 if for any R > 0,
there exists a positive scalar r(R, t0) such that

||x(t0)|| < r ⇒ ||x(t)|| < R ∀t ≥ t0 (2.11)

Otherwise, the equilibrium point 0 is unstable.

Definition 2.10 The equilibrium point 0 is asymptotically stable at
time t0 if

• it is stable

• ∃r(t0) > 0 such that ||x(t0)|| < r(t0) ⇒ ||x(t)|| → 0 as t→∞

Here, the asymptotic stability requires that there exists an attractive region
for every initial time t0. The size of the attractive region and the speed of
trajectory convergence may depend on the initial time t0.

Definition 2.11 The equilibrium point 0 is exponentially stable at time
t0 if there exist two positive numbers α and λ such that for sufficiently small
x(t0),

∀t ≥ t0, ||x(t)|| ≤ α||x0||e−λ(t−t0) (2.12)

Definition 2.12 The equilibrium point 0 is globally asymptotically sta-
ble if ∀x(t0)

x(t)→ 0 as t→∞ (2.13)

As for autonomous systems, the results presented for non-autonomous
systems can be generalized to a non-specific equilibrium point x∗.
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2.1.3 Lyapunov Analysis

Linearization and Local Stability

Lyapunov’s linearization method is concerned with the local stability of a
nonlinear system. It is a formalization of the intuition that a nonlinear sys-
tem should behave similarly to its linearized approximation for small range
motions.

Consider the autonomous system in (2.7), and assume that f(x) is con-
tinuously differentiable. Then the system dynamics can be written as

ẋ =

(
∂f

∂x

)
x=0

x + fh.o.t.(x) (2.14)

where fh.o.t.(x) stands for higher-order terms in x. Note that the above
Taylor expansion starts directly with the first-order term, due to the fact
that f(0)=0, since 0 is an equilibrium point. Let us use the constant matrix
A to denote the Jacobian matrix of f with respect to x at x=0 (an n × n
matrix of elements ∂fi

∂xj
)

A =

(
∂f

∂x

)
x=0

Then, the system

ẋ = A x (2.15)

is called the linearization (or linear approximation) of the original nonlinear
system at the equilibrium point x=0.

Theorem 2.1 Lyapunov’s linearization method

• If the linearized system is strictly stable (i.e. if all eigenvalues of A
are strictly in the left-half complex plane), then the equilibrium point
is asymptotically stable (for the actual nonlinear system).

• If the linearized system is unstable (i.e. if at least one eigenvalue of A
is strictly in the right-half complex plane), then the equilibrium point
is unstable (for the nonlinear system).

• If the linearized system is marginally stable (i.e. all eigenvalues of A in
the left-half complex plane, but at least one of them is on the jω axis),
then one cannot conclude anything from the linear approximation (the
equilibrium point may be stable, asymptotically stable, or unstable for
the nonlinear system).
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Lyapunov’s Direct Method

The basic philosophy of Lyapunov’s direct method is the mathematical ex-
tension of a fundamental physical observation: if the total energy of a me-
chanical (or electrical) system is continuously dissipated, then the system,
whether linear or nonlinear, must eventually settle down to an equilibrium
point. Thus, we may conclude the stability of a system by examining the
variation of a scalar function.

The basic procedure of Lyapunov’s direct method is to generate a scalar
“energy-like” function for the dynamic system, and examine the time varia-
tion of the scalar function. This function has two properties: the first one is
that the function is strictly positive unless all the state variables (x, ẋ, ẍ, ...)
are zero; the second one is a property associated with the dynamics, i.e. the
function is monotonically decreasing when the variables vary according to
the dynamic equation.

In Lyapunov’s direct method, the first property is formalized by the
notion of positive definite functions, the second is formalized by the so-called
Lyapunov functions.

Lyapunov Direct Method for Autonomous Systems

Definition 2.13 A scalar continuous function V (x) is said to be locally
positive definite if V (0) = 0 and, in a ball BR0 x 6= 0 ⇒ V (x) > 0.
If V (0) = 0 and the above property holds over the whole state space, then
V (x) is said to be globally positive definite.

This definition implies that the function V has a unique minimum at the
origin 0.

With x denoting the state of the system (2.7), a scalar function V(x)
actually represent an implicit function of time t. Assuming that V (x) is
differentiable, its derivative with respect to time is

V̇ =
dV (x)

dt
=

∂V

∂x
ẋ =

∂V

∂x
f(x)

We see that, since x is required to satisfy the autonomous state equation
(2.7), V̇ only depends on x. It is often referred to as “the derivative of V
along the system trajectory” - in particular, V̇ = 0 at an equilibrium point.

Definition 2.14 If, in a ball BR0, the function V (x) is positive definite
and has continuous partial derivatives, and if its time derivative along any
state trajectory of system (2.7) is negative semi-definite, i.e. V̇ (x) ≤ 0 then
V (x) is said to be a Lyapunov function for the system (2.7).

Theorem 2.2 Lyapunov Theorem for Local Stability
If, in a ball BR0, there exists a scalar function V (x) with continuous first
partial derivatives such that
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1. V (x) is positive definite (locally in BR0)
2. V̇ (x) is negative semi-definite (locally in BR0)

then the equilibrium point 0 is stable. If, actually, the derivative V̇ (x) is
locally negative definite in BR0, then the stability is asymptotic.

Theorem 2.3 Lyapunov Theorem for Global Stability
Assume that there exists a scalar function V of the state (x), with continuous
first order derivatives such that

1. V (x) is positive definite
2. V̇ (x) is negative definite
3. V (x) →∞ as ||x|| → ∞

then the equilibrium at the origin is globally asymptotically stable.

Lyapunov Direct Method for Non-Autonomous Systems

We give some preliminary definitions.

Definition 2.15 A scalar time-varying function V (x, t) is locally positive
definite if V (x, t) = 0 and there exists a time-invariant positive definite
function V0(x) such that

∀t ≥ t0, V (x, t) ≥ V0(x). (2.16)

In Lyapunov analysis of non-autonomous systems, the concept of de-
creasing functions is also necessary.

Definition 2.16 A scalar function V (x, t) is said to be decreasing if V (x, t) =
0, and if there exists a time-invariant positive definite function V1(x) such
that

∀t ≥ 0, V (x, t) ≤ V1(x). (2.17)

The main Lyapunov stability results for non-autonomous systems can
be summarized by the following theorem.

Theorem 2.4 (Lyapunov theorem for non-autonomous systems)

Stability : If, in a ball BR0 around the equilibrium point 0, there exists a
scalar function V (x, t) with continuous partial derivatives such that

1. V is positive definite
2. V̇ is negative semi-definite

then the equilibrium point 0 is stable in the sense of Lyapunov.
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Uniform stability and uniform asymptotic stability : If, furthermore,

3. V is decreasing

then the origin is uniformly stable. If condition 2 is strengthened by
requiring that V̇ be negative definite, then the equilibrium point is uni-
formly asymptotically stable.

Global uniform asymptotic stability : If the ball BR0 is replaced by the
whole state space, and condition 1, the strengthened condition 2, con-
dition 3, and the condition

4. V (x, t) is radially unbounded1

are all satisfied, then the equilibrium point at 0 is globally uniformly
asymptotically stable.

Lyapunov Functions for Linear Time-Invariant (LTI) Systems

Given a linear system of the form ẋ = Ax, let us consider a quadratic Lya-
punov function candidate

V = xTPx

where P is a given symmetric positive definite matrix2. Differentiating the
positive definite function V along the system trajectory yields another quadratic
form

V̇ = ẋTPx + xTPẋ = −xTQx (2.18)

where

ATP + PA = −Q (2.19)

The question, thus, is to determine whether the symmetric matrix Q defined
by the so-called Lyapunov equation (2.19) above, is itself positive definite.
If this is the case, then V satisfies the conditions of the basic theorem of the
previous section, and the origin is globally asymptotically stable.
A more useful way of studying a given linear system using scalar quadratic
functions is, instead, to derive a positive definite matrix P from a given
positive definite matrix Q, i.e.

• choose a positive definite matrix Q

• solve for P from the Lyapunov equation (2.19)

• check whether P is p.d.

1We say that a function V (x) is radially unbounded if V (x)→∞ as ||x|| → ∞
2 A square symmetric n×n matrix M is positive definite (p.d.) if x 6= 0 ⇒ xTMx > 0
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If P is p.d., then xTPx is a Lyapunov function for the linear system and
global asymptotical stability is guaranteed.
Unlike the previous approach of going from a given P to a matrix Q, this
technique of going from a given Q to a matrix P always leads to conclusive
results for stable linear systems.

Theorem 2.5 A necessary and sufficient condition for a LTI system ẋ = Ax
to be strictly stable is that, for any symmetric p.d. matrix Q, the unique
matrix P solution of the Lyapunov equation (2.19) be symmetric positive
definite.

This theorem shows that any positive definite matrix Q can be used to
determine the stability of a linear system. A simple choice of Q is the identity
matrix. Physical concepts like energy may lead us to some uniquely effective
choices of Lyapunov functions.

Existence of Lyapunov Function

There exists also converse theorem for Lyapunov stability theorem.

Theorem 2.6 (Stability)
If the origin of (2.6) is stable, there exists a positive definite function V (x, t)
with a non-positive derivative.

This theorem indicates the existence of a Lyapunov function for every stable
system.

Theorem 2.7 (Uniform Asymptotic Stability)
If the equilibrium point at the origin is uniformly asymptotically stable, there
exists a positive definite and decreasing function V (x, t) with a negative def-
inite derivative.

This theorem is theoretically important because it is useful in establishing
robustness of uniform asymptotic stability to persistent disturbance.

2.1.4 Stability Definitions for Multiagent Dynamics

The dynamical equations used to model a network of n interacting agents
that share a common state space X (which is now assumed to be finite-
dimensional Euclidean) is

x(t+ 1) = f(t, x(t)) (2.20)

or, expressed in terms of the individual agents’ states

x1(t+ 1) = f1(t, x1(t), ..., xn(t))

...

xn(t+ 1) = fn(t, x1(t), ..., xn(t)).
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In order to enable a clear and precise formulation of the stability and con-
vergence properties of the discrete-time system (2.20) we extend the familiar
stability concepts of Lyapunov theory to the present framework. Notice that
we are interested in the agents’ states converging to a common, constant
value and that we expect this common value to depend continuously on the
initial states. In other words, we are dealing with a continuum of equilib-
rium points. This means that the classical stability concepts developed for
the study of individual, typically isolated, equilibria are not well-adapted
to the present situation. Alternatively, one may shift attention away from
the individual equilibria and consider the stability properties of the set of
equilibria instead.

The stability notions that we introduce below incorporate, by definition,
the requirement that all trajectories converge to one of the equilibria. In
the following definition, we make a conceptual distinction between equilib-
rium solutions and equilibrium points: an equilibrium point is an element
of the state space which is the constant value of an equilibrium solution.
By referring explicitly to equilibrium solutions in the following definition we
distinguish the present stability concepts from the more familiar set stability
concepts.

Definition 2.17 (Stability):
Let X be a finite-dimensional Euclidean space and consider a continuous
map f : N×X → X giving rise to the discrete-time system

x(t+ 1) = f(t, x(t)) (2.21)

Consider a collection of equilibrium solutions of (2.21) and denote the
corresponding set of equilibrium points by Φ. With respect to the considered
collection of equilibrium solutions, the dynamical system (2.21) is called

1. stable if for each φ1 ∈ Φ , for all c2 > 0 and for all t0 ∈ N there is
c1 > 0 such that every solution ξ of (2.21) satisfies: if |ξ(t0)−φ1| < c1
then there is φ2 ∈ Φ such that |ξ(t)− φ2| < c2 for all t ≥ t0;

2. bounded if for each φ1 ∈ Φ, for all c1 > 0 and for all t0 ∈ N there is
c2 > 0 such that every solution ξ of (2.21) satisfies: if |ξ(t0)−φ1| < c1
then there is φ2 ∈ Φ such that |ξ(t)− φ2| < c2 for all t ≥ t0;

3. globally attractive if for each φ1 ∈ Φ, for all c1, c2 > 0 and for all
t0 ∈ N there is T ≥ 0 such that every solution ξ of (2.21) satisfies: if
|ξ(t0)− φ1| < c1 then there is φ2 ∈ Φ such that |ξ(t)− φ2| < c2 for all
t ≥ t0 + T ;

4. globally asymptotically stable if it is stable, bounded and globally at-
tractive.
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Definition (2.17) may be interpreted as follows. Stability and bounded-
ness require that any solution of (2.21) which is initially close to Φ remains
close to one of the equilibria in Φ, thus excluding, for example, the possibil-
ity of drift along the set Φ. Global attractivity implies that every solution
of (2.21) converges to one of the equilibria in Φ.
If the collection of equilibrium solutions is a singleton consisting of one
equilibrium solution, then the notions of stability, boundedness, global at-
tractivity and global asymptotic stability of Definition (2.17) coincide with
the classical notions that have been introduced for the study of individ-
ual equilibria. In general, however, the notions introduced here are strictly
stronger than their respective counterparts from set stability theory.

The following theorem provides a sufficient condition for uniform stabil-
ity, uniform boundedness and uniform global asymptotic stability in terms
of the existence of a set-valued3 Lyapunov function.

Theorem 2.8 (Lyapunov Characterization):
Let X be a finite-dimensional Euclidean space and consider a continuous
map f : N×X → X giving rise to the discrete-time system (2.21). Let Ξ be
a collection of equilibrium solutions of (2.21) and denote the corresponding
set of equilibrium points by Φ. Consider an upper semicontinuous4 set-valued
function V : X ⇒ X satisfying

1. x ∈ V (x), ∀x ∈ X ;

2. V (f(t, x)) ⊆ V (x), ∀t ∈ N, ∀x ∈ X .

If V (φ) = {φ} for all φ ∈ Φ, then the dynamical system (2.21) is uniformly
stable with respect to Ξ. If V (x) is bounded for all x ∈ X , then the dynamical
system (2.21) is uniformly bounded with respect to Ξ. Consider in addition
a function µ : Image(V ) → R≥0 and a lower semicontinuous function β :
X → R≥0 satisfying

3. µ ◦ V : X → R≥0 : x 7→ µ(V (x)) is bounded on bounded subsets of X ;

4. β is positive definite with respect to Φ; that is, β(φ) = 0 for all φ ∈ Φ
and β(x) > 0 for all x ∈ X \ Φ;

3 In mathematics, a multivalued function (shortly multifunction), also named set-valued
function, is a left-total relation, i.e. every input is associated with one or more outputs.
E.g., let ẋ = f(x, u), with u ∈ U be a function in the two variables x and u; then ẋ ∈ f(x,U)
is a multifunction, where the variable u has been replaced by the set U .

4 In mathematical analysis, a set-valued map F : X → Y is called upper semicontinuous
at x ∈ Dom(F ) if and only if for any neighborhood U of F (x), ∃η > 0 such that ∀x′ ∈
Bx(x, η), F (x′) ⊂ U . It is said to be upper semicontinuous if and only if it is upper
semicontinuous at any point of Dom(F ).
A set-valued map F : X → Y is called lower semicontinuous at x ∈ Dom(F ) if and
only if for any y ∈ F (x) and for any sequence of elemnts xn ∈ Dom(F ) converging to
x, there exists a sequence of elements yn ∈ F (xn) converging to y. It is said to be lower
semicontinuous if it is lower semicontinuous at every point x ∈ Dom(F ).
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5. µ(V (f(t, x)))− µ(V (x)) ≤ −β(x), ∀t ∈ N, ∀x ∈ X .

If V (φ) = {φ} for all φ ∈ Φ and V (x) is bounded for all x ∈ X then
the dynamical system (2.21) is uniformly globally asymptotically stable with
respect to Ξ.

The set-valued function V plays the role of a Lyapunov function which
is nonincreasing along the solutions of (2.21). The set-valued nature of V is
important: unlike a real-valued function, a set-valued function allows for a
continuum of minima which are not comparable with each other. For this
reason, a set-valued Lyapunov function, unlike a real Lyapunov function,
may be used to conclude that each trajectory converges to one equilibrium
out of a continuum of equilibria. The function µ serves as a measure for the
size of the values of V .

The strict decrease condition (Condition 5) of Theorem 2.8 may be con-
siderably relaxed. Consider, for example, the following condition which re-
quires that µ ◦ V decreases over time-intervals of length τ .

6. There is a time τ ∈ N such that ∀t ∈ N, ∀x ∈ X

µ(V (f(t+ τ − 1, ...f(t+ 1, f(t, x))...)))− µ(V (x)) ≤ −β(x).

Theorem 2.8 is still true if Condition 5) is replaced by Condition 6).

2.2 Some Notions for Nonlinear Spaces

For a more detailed discussion we refer the reader to [5, 6, 9, 17, 18].

2.2.1 Manifold

In mathematics (specifically in differential geometry and topology), a man-
ifold is a topological space that on a small enough scale resembles the Eu-
clidean space of a specific dimension, called the dimension of the manifold.
Thus, a line and a circle are one-dimensional manifolds, a plane and a sphere
are two-dimensional manifolds, and so on into high-dimensional space. In-
formally, a manifold is a space that is ”modeled on” Euclidean space. There
are many different kinds of manifolds and generalizations. In geometry and
topology, all manifolds are topological manifolds, possibly with additional
structure, most often a differentiable structure. More formally, every point
of an n-dimensional manifold has a neighborhood homeomorphic to an open
subset of the n-dimensional space Rn.
Roughly speaking, a homeomorphism is a continuous stretching and bending
of an object (a topological space can be regarded as a geometric object) into
a new shape. More formally, a function f : X → Y between two topological
spaces is said to be a homeomorphism if it is a bijection, continuous and
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has continuous inverse function f−1. If such a function exists between two
spaces, we say they are homeomorphic.

Although manifolds resemble Euclidean spaces near each point (locally),
the global structure of a manifold may be more complicated. For example,
any point on the usual two-dimensional surface of a sphere is surrounded by
a circular region that can be flattened to a circular region of the plane, as in
a geographical map. However, the sphere differs from the plane in the large:
in the language of topology, they are not homeomorphic. The structure of a
manifold is encoded by a collection of charts that form an atlas, in analogy
with an atlas consisting of charts of the surface of the Earth.

The broadest common definition of manifold is a topological space locally
homeomorphic to a topological vector space over the reals. This omits finite
dimension, allowing structures such as Hilbert manifolds to be modeled on
Hilbert spaces, Banach manifolds to be modeled on Banach spaces.
The study of manifolds combines many important areas of mathematics: it
generalizes concepts such as curves and surfaces as well as ideas from linear
algebra and topology.

Homogeneous Manifold

Informally, a homogeneous manifoldM can be seen as a manifold on which
“all points are equivalent”. The present work considers connected compact
homogeneous (CCH) manifolds satisfying the following embedding property.

Assumption 2.1 M is a CCH manifold smoothly embedded in E ⊆ Rn
with the Euclidean norm ||y|| = rM constant over y ∈M.

It is sometimes preferred to represent y ∈M by a matrix instead of a vec-
tor. The corresponding norm is the Frobenius norm ||B|| =

√
trace(BTB).

Riemannian Manifold

To measure distances and angles on manifolds, the manifold must be Rie-
mannian.

In Riemannian geometry and differential geometry of surfaces, a Rieman-
nian manifold or Riemannian space (M, g) is a real differentiable manifold
M in which each tangent space is equipped with an inner product g, a Rie-
mannian metric, which varies smoothly from point to point. A Riemannian
metric makes it possible to define various geometric notions on a Riemannian
manifold, such as angles, lengths of curves, areas (or volumes), curvature,
gradients of functions and divergence of vector fields.



24 CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.2.2 Geodesic Distance

In metric geometry, a geodesic is a curve which is everywhere locally a
distance minimizer. More precisely, a curve γ : I → M from an interval I
of the reals to the metric space M is a geodesic if there is a constant ν ≥ 0
such that for any t ∈ I there is a neighborhood J of t in I such that for any
t1, t2 ∈ J we have

d(γ(t1), γ(t2)) = ν|t1 − t2|.

This generalizes the notion of geodesic for Riemannian manifolds. How-
ever, in metric geometry the geodesic is often considered with natural parametriza-
tion, i.e. in the above identity ν = 1 and

d(γ(t1), γ(t2)) = |t1 − t2|.

If the last equality is satisfied for all t1, t2 ∈ I the geodesic is called a
minimizing geodesic or shortest path.

The distance d(p, q) between two points p and q of a Riemannian man-
ifold M is defined as the infimum of the length taken over all continu-
ous, piecewise continuously differentiable curves γ : [a, b] → M such that
γ(a) = p and γ(b) = q. With this definition of distance, geodesics in a
Riemannian manifold are then the locally distance-minimizing paths.

2.2.3 Lie Groups

Lie groups, named after Sophus Lie, are differentiable manifolds that carry
also the structure of a group which is such that the group operations are
defined by smooth maps.
A simple example of a compact Lie group is the circle: the group operation
is simply rotation. This group, known as U(1), can be also characterized
as the group of complex numbers of modulus 1 with multiplication as the
group operation.
Another example is the special orthogonal Lie group SO(n). This can be
viewed as the set of positively oriented orthonormal bases of Rn, or equiva-
lently, as the set of rotation matrices in Rn; it is the natural state space for
the orientation of a rigid body in Rn.
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2.3 Notions of Graph Theory

In the framework of coordination with limited interconnections between
agents, it is customary to represent communication links by means of a
graph.

Definition 2.18 A direct graph G(V, E) (short digraph G) is composed of a
finite set V of vertices, and a set E of edges which represent interconnections
among the vertices as ordered pairs (j,k) with j, k ∈ V.

A weighted digraph G(V, E ,A) is a digraph associated with a set A that
assigns a positive weight ajk ∈ R>0 to each edge (j, k) ∈ E .

A digraph is said to be undirected if ajk = akj ∀j, k ∈ V. If (j, k) ∈ E
whenever (k, j) ∈ E ∀j, k ∈ V but ajk 6= akj for some j, k ∈ V, then the
graph is called bidirectional.

For the consensus problem, each agent is identified with a vertex of a
graph; the N agents=vertices are indicated by positive integers 1, 2, ..., N ,
so V = {1, 2, ..., N}. The presence of edge (j, k) has the meaning that agent
j sends information to agent k, or equivalently agent k measures quantities
concerning agent j. It is assumed that no communication link is needed
for an agent to get information about itself, so G contains no self-loops:
(k, k) /∈ E ∀k ∈ V.

A frequent alternative notion for (j, k) ∈ E is j  k. We say that j is an
in-neighbor of k and k is an out-neighbor of j.

For an undirected graph, all arrows are bidirectional; therefore we simply
say that j and k are neighbors and write j ∼ k.

The in-degree of vertex k is d
(i)
k =

∑N
j=1 ajk. The out-degree of vertex k

is d
(o)
k =

∑N
j=1 akj . A digraph is said to be balanced if d

(i)
k = d

(o)
k ∀k ∈ V; in

particular, undirected graphs are balanced.

The adjacency matrix A ∈ RN×N of a graph G contains ajk in row j,
column k; it is symmetric if and only if G is undirected. The in- and out-
degrees of vertices 1, 2, ...N can be assembled in diagonal matrices D(i) and
D(o).

The Laplacian matrix L ∈ Rm×m is defined as Lii =
∑

j 6=i aij , Lij = −aij
for i 6= j. Matrix L is symmetric if the graph is undirected, and also satisfies
the following property:

- All the eigenvalues of L have nonnegative real parts. Zero is an
eigenvalue of L, with 1 as the corresponding right eigenvector;

- Zero is a simple eigenvalue of L if and only if graph G has a
directed spanning tree5;

5A spanning tree T of a connected, undirected graph G is a tree composed of all the
vertices and some (or perhaps all) of the edges of G. Informally, a spanning tree of G is a
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- If graph G contains a directed spanning tree, then, with proper
permutation, L can be reduced to the Frobenius normal form

L =


L11 L12 . . . L1k

0 L22 . . . L2k
...

...
. . .

...
0 0 . . . Lkk


where Lii, i = 1, ..., k − 1, are irreducible, each Lii has at
least one row with positive row sum, and Lkk is irreducible
or is a zero matrix of dimension one.

The in-Laplacian of G is L(i) = D(i) − A. Similarly, the associated
out-Laplacian is L(o) = D(o) − A. For a balanced graph G, the Laplacian
L = L(i) = L(o). The standard definition of Laplacian L is for undirected
graph. For the latter, L is symmetric. For general digraphs, by construction,
(1N )TL(i) = 0 and L(o)1N = 0 where 1N is the column vector of N ones.
The spectrum of the Laplacian reflects several interesting properties of the
associated graph. In particular, it reflects its connectivity properties.

A directed path of length l from vertex j to vertex k is a sequence of
vertices v0, v1, ..., vl with v0 = j and vl = k and such that (vm, vm+1) ∈ E for
m = 0, 1, ..., l−1. An undirected path between vertices j and k is a sequence
of vertices v0, v1, ..., vl with v0 = j and vl = k and such that (vm, vm+1) ∈ E
or (vm+1, vm) ∈ E for m = 0, 1, ..., l − 1.

A digraph G is strongly connected if it contains a directed path from
every vertex to every other vertex (and thus also back to itself). A digraph
G is root-connected if it contains a node k, called root, from which there is
a path to every other vertex (but not necessarily back to itself). A digraph
G is weakly-connected if it contains an undirected path between any two of
its vertices. For an undirected graph G, all these notions become equivalent
and are simply summarized by the term connected.

For G representing interconnections in a network of agents, coordination
can only take place if G is connected. If this is not the case, coordination
will only be achievable separately in each connected component of G.

When the graph G can vary with time, the communication links are
represented by a time-varying graph G(t) in which the vertex set V is fixed
(by convention), but edges E and weights A can depend on time. To prevent
edges from vanishing or growing indefinitely, the present work considers δ -
digraphs, for which the element of A(t) are bounded and satisfy the threshold
ajk(t) ≥ δ > 0 ∀(j, k) ∈ E(t), for all t.

selection of edges of G that form a tree spanning every vertex. That is, every vertex lies in
the tree, but no cycles (or loops) are formed. On the other hand, every bridge of G must
belong to T.
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In addition, in continuous-time G is assumed to be piecewise continuous.
For δ-digraphs G(t), it is intuitively clear that coordination may be achieved
if information exchange is “sufficiently frequent”, without requiring it to take
place all the time.

Definition 2.19 In discrete-time, for a δ-digraph G(V, E(t),A(t)) and some
constant T ∈ Z≥0, define the graph G(V, E(t),A(t)) where E(t) contains all
edges that appear in G(τ) for τ ∈ [t, t+ T ] and ajk(t) =

∑t+T
τ=t ajk(τ).

Similarly, in continuous-time, for a δ-digraph G(V, E(t),A(t)) and some
constant T ∈ R>0, define the graph G(V, E(t),A(t)) by

ajk(t) =

{ ∫ t+T
t ajk(τ)dτ if

∫ t+T
t ajk(τ)dτ ≥ δ

0 if
∫ t+T
t ajk(τ)dτ < δ

(j, k) ∈ E(t) if and only if ajk(t) 6= 0.
Then G(t) is said to be uniformly connected over T if there exists a time
horizon T and a vertex k ∈ V such that G(t) is root-connected with root k
for all t.
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Chapter 3

The Consensus Problem

The distributed computation of means/averages of datasets (in an algorith-
mic setting) and the synchronization of a set of agents (in a control setting) -
i.e., driving all the agents to a common point in state space - are ubiquitous
tasks in current engineering problems.

Practical applications include autonomous swarm/formation operation,
distributed decision making, neural and communication networks, clustering
and other reduction methods, optimal coding, and other fields where aver-
aging/synchronizing or distributing a set of points appears as a subproblem.

Synchronization algorithms are well understood in Euclidean spaces.
They are based on the natural definition and distributed computation of
the centroid in Rm. However, many of the applications above involve mani-
folds that are not homeomorphic to an Euclidean space. Even for formations
moving in R2 or R3, the agents’ orientations evolve in a manifold SO(2) ∼= S1

or SO(3)1.
Most of the work related to synchronization and balancing on manifolds

concerns the circle S1. The most extensive literature on the subject derives
from the Kuramoto model.

In accordance with the consensus approach, the agents are reduced to
kinematic models and the focus is on (almost) global convergence for various
agent interconnections, without any leader or external reference. Consensus
among a group of agents depends on the available communication links.
When considering limited agent interconnections, it is customary to repre-
sent communication links by means of a graph.

1We denote with SO(n) the group of rotations, with SE(2) the group of rigid motions
in the plane, and with SE(3) the group of rigid motions in the space

29
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3.1 Consensus in Linear Spaces

Linear consensus algorithm describes the behavior of N agents locally ex-
changing information about their state xk ∈ Rn, k ∈ V = {1, 2, ..., N}, in
order to asymptotically reach a global consensus, i.e. a common value of
agreement.

In continuous-time, the update is

d

dt
xk(t) =

N∑
j=1

ajk(t)(xj(t)− xk(t)), k = 1, 2, ..., N (3.1)

where ajk is the weight of link j  k: it is the entry, at time t, of adjacency
matrix A ∈ Rn×n associated with graph G representing the communication
topology. The state of agent k evolves towards to the (positively weighted)

arithmetic mean of its neighbors, 1
dik

∑
j k ajkxj where d

(i)
k is the in-degree

d
(i)
k =

∑
j k ajk.

The corresponding update in discrete-time is

xk(t+ 1) =
1

βk(t) + d
(i)
k (t)

(∑
j k

ajk(t)xj(t) + βk(t)xk(t)

)
, (3.2)

with non-vanishing weight βk(t) ≥ β0 > 0, which represent inertia values.
In a more compact form, the update in discrete-time can be written as

xk(t+ 1) =

N∑
j=1

ajk(t)xj(t) = xk(t) +
∑
j 6=k

ajk(t)(xj(t)− xk(t)). (3.3)

The weights ajk induce a communication graph between the agents. They
can be asymmetric (leading to a directed communication graph) and/or
depend on time (leading to a time-varying communication graph).

In matrix form, the continuous-time algorithm is the linear time-varying
system

ẋ(t) = −L(t)x(t) (3.4)

where L(t) = D(i)(t)−A(t) is the Laplacian matrix associated with G, while
the discrete-time algorithm is the linear time-varying system

x(t+ 1) =M(t)x(t) (3.5)

whereM(t) = (D(i)(t)+B(t))−1(A(t)+B(t)) and B(t) is a diagonal matrix
with elements Bkk = βk. The matricesM(t) are stochastic, i.e. the elements
of each row sum to one.
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Example 3.1 Let the set of states of a discrete-time system be represented
by the (balanced) digraph in the figure below, with x1 = 1, x2 = 2, x3 = 3
be the corresponding values.

1 2

3

2

1

3

21

2

Figure 3.1: Consensus in geodetically
and non-geodetically convex set.

The matrix of the inertia values β is

B =

 2 0 0
0 4 0
0 0 3


The adjacency matrix A is

A =

 0 1 2
2 0 2
1 3 0



The Laplacian (as the graph is balanced)

L = L(i) = L(i) =

 3 −1 −2
−2 4 −2
−1 −3 4


Thus,

D = L+A =

 3 0 0
0 4 0
0 0 4


Finally, we we have that

M = (D +B)−1(A+B) =

 5 0 0
0 8 0
0 0 7

−1  2 1 2
2 4 2
1 3 3

 =

=

 1/5 0 0
0 1/8 0
0 0 1/7

 2 1 2
2 4 2
1 3 3

 =

 2/5 1/5 2/5
2/8 4/8 2/8
1/7 3/7 3/7


which is a stochastic matrix.

———————————————————
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The update guarantees asymptotic consensus under minimal connectiv-
ity assumptions of the underlying communication graph.

Property 3.1 Consider a set of N agents evolving on Rn according to
(continuous-time) (3.1) or according to (discrete-time) (3.2). Then the agents
globally and exponentially converge to a consensus value x ∈ Rn if the com-
munication among agents is characterized by a (piecewise) continuous δ-
digraph which is uniformly connected.

If in addition, G is balanced for all times, then the consensus value is

the arithmetic mean of the initial values: x =
1

N

N∑
k=1

xk(0).

When interconnections are not only balanced, but also undirected and
fixed, then the linear consensus algorithm is a gradient descent2 algorithm
for the disagreement cost function

Vvect(x) =
1

2

N∑
k=1

N∑
j=1

ajk||xj − xk||2 = xT (L ⊗ In)x (3.6)

where ||z|| denotes the Euclidean norm
√
zT z of z ∈ Rm, and L is the

Laplacian matrix of G, x ∈ RNn denotes the vector whose elements (k −
1)n+ 1 to kn contain xk, and ⊗In is the Kronecker product3 by the n× n
identity matrix.

The disagreement cost function can also be written as

V (x) =
1

2(N − 1)

N∑
k=1

∑
j 6=k
||xk − xj ||2 (3.7)

where xk ∈ Rn, k = 1, 2, ..., N are the states of the N agents. Then the
gradient descent is

ẋk = −xk +
1

N − 1

∑
j 6=k

xj (3.8)

2 Gradient descent is a first-order optimization algorithm. To find a local minimum of a
function using gradient descent, one takes steps proportional to the negative of the gradient
(or of the approximate gradient) of the function at the current point. If instead one takes
steps proportional to the positive of the gradient, one approaches a local maximum of that
function; the procedure is then known as gradient ascent.

3 If A is an m× n matrix and B is a p× q matrix, then the Kronecker product A⊗B
is the mp× nq block matrix

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB


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We see that the term 1
N−1

∑
k 6=j xj in the above equation is the arithmetic

average of other agents values, that is argmin
∑

j 6=k ||xk − xj ||2.

The generalized update for linear consensus over a communication graph
G is then

ẋk = −xk +
1

dk

∑
j k

xj (3.9)

where 1
dk

∑
j k xj is the arithmetic average of neighbors, i.e.

argminx
∑

j k ||x− xj ||2.
The gradient can no longer be considered, as in the previous equation,

if the graph G is directed and/or time-varying.
Consensus is now “move towards the average of your neighbors”:

ẋk = −xk +mean(xj : j  k)

x+k = αxk + (1− α)mean(xj : j  k), 0 < α < 1.

Consensus algorithms provide a basic model of distributed computation:
a given agent at a given time only performs local average computations but
the spread of information over time eventually enables the computation of
a centralized quantity (the arithmetic average of initial states under a bal-
ancing assumption).

An essential feature of consensus algorithms is their symmetry, i.e. their
invariance properties to certain transformations: the dynamics are invariant
under reordering of the agents (discrete permutation symmetry) and under
uniform translation of the state (continuous symmetry): for any a ∈ Rn, a
shifted initial condition yk(0) = xk(0) + a ∀k ∈ V yields the shifted solution
yk(t) = xk(t) + a ∀k ∈ V and ∀t ≥ 0. This is because the exchange of in-
formation only involves relative quantities (xj − xk). As a consequence, the
distributed computation of a centralized quantity does not require that all
agents share a (centralized) common reference frame.

Convergence Analysis

The convergence analysis of linear consensus algorithms is the convergence
analysis of a time-varying linear system. For consensus algorithms defined
in R, the early analysis of Tsitsiklis (1984) [7] rests on the basic but funda-
mental observation that the (time-invariant) Lyapunov function

V (x) = max
1≤k≤N

xk − min
1≤k≤N

xk (3.10)

is non-increasing along the solutions.
In discrete-time, the flow of the algorithm involves products of stochastic
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matrices and its convergence properties is related to ergodicity theorems in
the theory of Markov chains.

In 2004-2005, Moreau emphasizes that the convergence result relies in
an essential way on the convexity rather than the linearity of the update
law: the position of each agent k for t > τ always lies in the convex hull of
the xj(τ), j = 1, 2, ..., N . The permanent contraction of this convex hull,
at some nonzero minimal rate because weights are non-vanishing, allows to
conclude that the agents end up at a consensus value. This approach extends
the Lyapunov function (3.10) to vector-valued algorithms and allows for the
convergence analysis of nonlinear consensus algorithms provided that the
convexity property is retained.

This convergence analysis rests on the fact that the convex hull
[minxk, maxxk] cannot expand along the solutions. Convergence is ensured
if G is root-connected. If G is time-varying, root-connectedness over a uni-
form horizon is still sufficient to ensure exponential convergence.

3.2 Consensus in Nonlinear Spaces

3.2.1 Riemannian Consensus

A geometric interpretation of the linear consensus algorithms (3.1) and (3.2)
is to view the state xk(t) as the estimate at time t by agent k of the con-
sensus value. At each time step, each agent updates its current estimate of
the consensus value towards a (weighted) average of its neighbors estimates.
Moreover, the weighted arithmetic average can be given the geometric in-
terpretation of the point that minimizes the sum of the (weighted) squared
distances:

N∑
k=1

ajkxk = min
z∈Rn

N∑
k=1

ajk||z − xk||2. (3.11)

With this geometric interpretation, consensus algorithms can be defined on
arbitrary Riemannian manifolds. The Riemmanian (or Karcher 3.15) mean
on a manifold M is defined by substituting the Riemannian (geodesic) dis-
tance for the Euclidean distance in (3.11):

mean(x1, ..., xN ) = min
z∈Rn

N∑
k=1

ajkd
2
M(z, xk). (3.12)

Furthermore, on a Riemannian manifold, “updating a point towards a new
point” simply translates as “moving along the geodesic path connecting
the two points”. This approach yields an intrinsic definition of consensus
algorithms on Riemannian manifolds: agents reach consensus if each point
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is the mean of its neighbors:

xk ∈ argmin
z

∑
j k

d2(z, xj). (3.13)

Therefore, consensus minimizes the cost
1

N

N∑
k=1

∑
k j

d2(xj , xk) and the con-

sensus algorithm is “direct each point towards the mean of its neigh-
bors”.

However, this approach suffers both a fundamental limitation and a
practical limitation. The fundamental limitation is that the uniqueness of a
geodesic is only ensured locally. If several geodesics connect two points, both
the concepts of mean and the concepts of “moving along shortest paths con-
necting two points” become non-unique. A practical limitation is that the
computation of geodesics at each time step in a distributed algorithm might
represent a formidable computational task.
Those limitations can be overcome to a large extent if the manifold is em-
bedded in an Euclidean space and if mean and distance calculations are
carried out in the Euclidean geometry of the ambient space.

An additional desired property of our generalized consensus algorithms is
to retain the symmetry properties. In essence, distributed algorithms should
be defined on spaces where all points “look alike”. This is the case for Lie
groups, and, more generally, homogeneous spaces.

Those considerations led us to consider state spaces that satisfy assump-
tion 2.1.

The embedding space E denotes the linear vector space Rn or the linear
matrix space Rn×n. The additional condition ||y|| = rM is in agreement with
the fact that all points on M should be equivalent.
On a manifold that satisfies Assumption 2.1, a convenient alternative to the
intrinsic generalization of consensus algorithms is to base the calculations
on the distance of the ambient Euclidean space. Replacing the distance on
M by the Euclidean distance in E in 3.12 leads to the induced arithmetic
mean IAM ⊆M of N agents of weights aij > 0 and positions xk ∈M, k =
1, ..., N :

IAM(x1, ..., xN ) = argmin
z∈M

N∑
k=1

ajk||x̂k − ẑ||2. (3.14)

The notation ẑ denotes the (vector) embedding of z in the linear space E .

The IAM on SO(3)4 is called the projected arithmetic mean. The point
in its definition is that distances are measured in the embedding space Rm. It

4SO(3) denotes the rotation group of 3× 3 orthogonal matrices.
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thereby differs from the canonical definition of mean of N agents onM, the
Karcher mean, which uses the geodesic distance dM along the Riemannian
manifold M (with, in the present setting, the Riemannian metric induced
by the embedding of M in Rm) as follows:

CKarcher = argmin
c∈M

N∑
k=1

ajkd
2
M(xk, c). (3.15)

The IAM has the following properties:

1. The IAM of a single point y1 is the point itself.
2. The IAM is invariant under permutations of agents of equal

weights.
3. The IAM commutes with the symmetry group of the homo-

geneous manifold.
4. The IAM does not always reduce to a single point.

The main advantage over the Karcher mean is computational. The IAM is
closely related to the weighted centroid in the ambient space, defined as

Ce(x̂1, ..., x̂N ) =

∑N
k=1 ajkx̂k∑N
k=1 ajk

. (3.16)

Since ||c|| = rM by Assumption 2.1, an equivalent definition for the IAM is

IAM = argmaxz∈M(ẑTCe). (3.17)

Hence, computing the IAM just involves a search for the global maxi-
mizers of a linear function on E . Moreover,

Assumption 3.1 The local maxima of a linear function f(ẑ) = ẑT b over
z ∈M, with b fixed in E, are all global maxima.

Assumptions 2.1 and 3.1 are satisfied for a number of nonlinear spaces
encountered in applications. Meaningful examples include the circle S1, the
unit sphere of E and the orthogonal group SO(n).

The generalization of linear consensus algorithms to state spaces that
satisfy Assumptions 2.1 and 3.1 is straightforward: the update is simply
taken as a linear update towards the centroid in the ambient space, and
then projected to the closest point of the manifold M.
In continuous-time, this amounts to the differential equation

ẋk(t) = ProjTMxk

(∑
j

ajk(x̂j − x̂k)
)
, k = 1...N. (3.18)
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Similarly, the discrete-time update is

xk(t+ 1) = ProjM

(
1

βk + d
(i)
k

(∑
j k

ajkx̂j + βkx̂k

))
. (3.19)

which can also be written as

xk(t+ 1) ∈ IAM({xj(t)| j  k in G(t)} ∪ {xk(t)}). (3.20)

3.2.2 Consensus on the Circle

The circle is a fundamental and representative example of nonlinear space.
If consensus problem is well-defined on a geodetically convex set, it is fun-
damentally different on a non-geodetically one.

Figure 3.2: Consensus
in geodetically and non-
geodetically convex set.

Consider a set of N agents evolving on the circle S1; the position of agent
k on the circle is denoted by the angular variable θk ∈ S1. The interconnec-
tion (or communication) among agents is represented with a directed graph
G. A nonvanishing weight ajk ≥ am can be associated to the link from node
j to node k, for some fixed am > 0, and ajk = 0 for j 6 k.

A classical (continuous-time) consensus algorithm in the vector space R
reads

d

dt
xk =

∑
j k

ajk(xj − xk), xk ∈ R, k = 1...N. (3.21)

A natural adaptation of (3.21) on the circle is

d

dt
θk =

∑
j k

ajk sin(θj − θk), k = 1...N. (3.22)

This is in fact the celebrated Kuramoto model with equal natural frequen-
cies.
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Defining zk = eiθk , (3.22) is equivalent to

d

dt
zk = Projzk

(∑
j k

ajk(zj − zk)
)

(3.23)

where Projzk(rk) denotes the orthogonal projection of rk ∈ C onto the direc-
tion tangent to the unit circle at zk = eiθk , that is Projzk(rk) = izk〈izk, rk〉.

The geometric interpretation is that (3.23) defines a consensus update
similar to (3.21) but constrained to the manifold where ||zk|| = 1.
On the circle and other nonlinear manifolds, there are graph-dependent con-
sensus configurations: it has been shown that model (3.22) (almost) globally
converges towards synchronization for tree graphs and the equally weighted
complete graph. For other graphs, (3.22) may fail to converge to fixed po-
sitions (e.g. “cyclic pursuit” problem for a directed cycle graph) or may
locally converge to a stable configuration that is different from synchroniza-
tion (e.g. agents uniformly distributed around the circle for an undirected
cycle graph).
However, stable consensus configurations different from synchronization are
not exceptional: in fact, any configuration sufficiently “spread” on the circle
is a stable consensus for a well-chosen directed graph.

Property 3.2 Consider N agents distributed on the circle in a configu-
ration {θk} such that for every k, there is at least one agent located in
(θk, θk + π/2) and one agent located in (θk − π/2, θk); such a configura-
tion requires N ≥ 5. Then there exists a positively weighted, directed and
root-connected interconnection graph making this configuration locally expo-
nentially stable under (3.22).

It is thus possible to identify how specific configurations can be made
locally exponentially stable by choosing appropriate weights for the directed
graph edges. For any of these choices, synchronization is also exponentially
stable but thus only locally; in particular, agents initially located within a
semicircle always converge towards synchronization.

As the circle embedded in the (complex) plane with its center at the
origin satisfies Assumptions 2.1 and 3.1, the IAM is simply the central
projection of Ce onto the circle. It corresponds to the entire circle if Ce = 0
and reduces to a single point in other situations.
The IAM uses the chordal length between points, while the Karcher mean
would use arclength distance.
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For the circle, the embedding of a point θk ∈ S1 in C is the vector eiθk .
The continuous-time update is

θ̇k = Im

(∑
j

ajk(e
i(θj−θk) − 1)

)
=
∑
j

ajk sin(θj − θk) (3.24)

while the discrete-time update is

θk(t+ 1) = arg

(
1

βk + d
(i)
k

(∑
j k

ajke
iθj + βke

iθk

))
(3.25)

which can also be written in a more compact form as

θk(t+ 1) = arg

(
eıθk +

1

dk

∑
j k

eıθj
)

(3.26)

Those expressions establish a clear connection between consensus algo-
rithms on the circle and phase synchronization models. For the equally-
weighted complete graph, the continuous-time update 3.24 is the model of
Kuramoto with identical (zero) natural frequencies.
The discrete-time update 3.25 is Vicsek’s phase update law [13] governing
the headings of a set of particles in the plane.

Kuramoto Model

The collective behaviors of limit-cycle oscillators appear in many biologi-
cal phenomena such as flashing of fireflies. A mathematical study on the
collective behavior of limit-cycle oscillators was pioneered by Winfree and
Kuramoto using simple dynamical systems for phase evolution.

The Kuramoto model consists of a population of N coupled phase oscilla-
tors, θk(t), having natural frequencies ωk distributed with a given probability
density g(ω), and whose dynamics is governed by

θ̇k = ωk +
N∑
j=1

Kjk sin(θj − θk), k = 1, ..., N. (3.27)

When the coupling is sufficiently weak, the oscillators run incoherently
whereas beyond a certain threshold collective synchronization emerges spon-
taneously.

Many different models for the coupling matrix Kjk have been considered
such as nearest-neighbor coupling, hierarchical coupling, random long-range
coupling, or even state dependent interactions. Among other phase models
for synchronization phenomena, our main interest in this work lies on a
simple mean-field5 model.

5 With the term “mean-field” we refer to a method to analyze physical systems with
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Taking Kjk = K/N > 0 in Eq. (3.27), the model is then written as

θ̇k = ωk +
K

N

N∑
j=1

sin(θj − θk), t > 0, k = 1, ..., N. (3.28)

where K measures the coupling strength (relative to heterogeneity).

The transformation that allows this model to be solved exactly (at least
in the N →∞ limit) is as follows. We define the “order” parameters r and
ψ as

reiψ =
1

N

N∑
j=1

eiθj ,

where r represents the phase-coherence of the population of oscillators, and
ψ indicates the average phase. Applying this transformation, the governing
equation becomes

θ̇k = ωk +Kr sin(ψ − θk). (3.29)

A further transformation is usual for a rotating frame in which the statistical
average of phases over all oscillators is zero (i.e. ψ = 0): the governing
equation becomes

θ̇k = ωk −Kr sin(θk). (3.30)

A formal way to define the complete phase/frequency synchronization is
given by the following definition:

Definition 3.1 Let P = {θk}Nk=1 be the system of oscillators whose dynam-
ics is governed by the Kuramoto system (3.27).
1. The system P has asymptotic complete phase synchronization if and only
if the following condition holds.

lim
t→∞
|θk(t)− θj(t)| = 0, ∀k 6= j,

2. The system P has asymptotic complete frequency synchronization if and
only if the following condition holds.

lim
t→∞
|ωk(t)− ωj(t)| = 0, ∀k 6= j,

where ωk := θ̇k is the instantaneous frequency of k-th oscillator.

For further details we refer the reader to [32, 14, 15, 33].

multiple bodies. The main idea is to replace all interactions to any one body with an
average or effective interaction. This reduces any multi-body problem into an effective
one-body problem.
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3.2.3 Coordination in Vector Spaces

Coordination is closely related to consensus and synchronization: while syn-
chronization refers to consensus among positions or configuration variables
and invariance with respect to the reference frame (i.e. only relative positions
matter), coordination refers to consensus among velocities (e.g. a consensus
problem for the velocity model is v̇j = uj) and implies N points moving like
a single one (i.e. relative positions are constant).
For instance, on the circle, phase synchronization refers to consensus on S1,
while coordination would refer to a situation where all phase variables evolve
at the same speed, a situation commonly referred to as phase locking.

Both synchronization and coordination can be considered as consensus
problems, but in different spaces: the configuration space for the former, and
the tangent bundle6 for the latter.
When the configuration space is linear, there is a natural identification be-
tween the configuration space and the tangent space. Velocity vectors are
treated as vectors of the configuration space by translating them to the ori-
gin. Coordination and synchronization are then equivalent in the sense that
they both reduce to a linear consensus problem.
The situation is different when the configuration space is nonlinear. Velocity
vectors of different agents then belong to different tangent spaces that can
non-longer be identified to the configuration space. This raises the issue of
comparing velocities and to ensure the analog invariance properties of a co-
ordination control law. Lie groups offer a convenient setting for coordination
on nonlinear spaces. For more details, readers can see [8, 17].

6 In mathematics, the tangent bundle of a differentiable manifold M is the disjoint
union of the tangent spaces of M.
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3.2.4 Convergence Analysis of Consensus Algorithms

In this section we investigate conditions and methods to analyze the con-
vergence of consensus algorithms. We only give some concepts and invite
readers to see [4] for more details.

Convergence Analysis for Time-invariant Communication Topolo-
gies

We now investigate conditions under which the information states of con-
sensus algorithm (3.1) converge when the communication topology is time
invariant and the gains ajk are constant, that is the nonsymmetric Laplacian
matrix L is constant. Because L has zero row sums, 0 is an eigenvalue of
L with the associated eigenvector 1, the n × 1 column vector of ones. If 0
is a simple eigenvalue of L, then x(t) → x1, where x is a scalar constant,
which implies that |xj(t)−xk(t)| → 0, as t→∞, for all j, k = 1, ..., N . Con-
vergence analysis therefor focuses on conditions that ensure that zero is a
simple eigenvalue of L. Otherwise the kernel of L includes elements that are
not in span{1}, in which case consensus is not guaranteed. Zero is a simple
eigenvalue of L if and only if the associated directed graph has a directed
spanning tree. This result implies that (3.1) achieves consensus if and only
if the directed communication topology has a directed spanning tree or the
undirected communication topology is connected.

Analogous conditions hold for discrete-time consensus algorithm (3.2).
Gershgorin’s theorem implies that all eigenvalues ofM are either in the open
unit disk or at 1. If 1 is a simple eigenvalue ofM, then |xj(t)−xk(t)| → 0, as
t → ∞. Perron-Frobenius’ theorem implies that 1 is a simple eigenvalue of
stochastic matrix A if directed graph Γ(A) is strongly connected, or equiva-
lently, if A is irreducible. Thus, (3.2) achieves consensus if and only if either
the directed communication topology has a directed spanning tree or the
undirected communication topology is connected.

Requiring a directed spanning tree is less stringent than requiring a
strongly connected and balanced graph. However, the consensus equilibrium
is a function only of the initial information states of those agents that have
a directed path to all other agents.

Convergence Analysis for Dynamic Communication Topologies

Communication topologies are often dynamic. Therefore, in this section,
we investigate conditions under which consensus algorithms converge under
random switching of the communication topologies.

One approach to analyzing switching topologies is to use algebraic graph
theory, which associates each graph topology with an algebraic structure of
corresponding matrices. Because (3.1) is linear, its solution can be written
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as x(t) = Φ(t, 0)x(0), where Φ(t, 0) is the transition matrix corresponding
to −L(t). Φ(t, 0) is a stochastic matrix with positive diagonal entries for all
t ≥ 0. Consensus is achieved if limt→∞Φ(t, 0) → 1µT , where µ is a column
vector. It is typical to assume that the communication topology is piecewise
constant over finite lengths of time, called dwell times, and that dwell times
are bounded below by a positive constant. Thus, convergence analysis in-
volves the study of infinite products of stochastic matrices and the results
for SIA matrices (i.e. indecomposable and aperiodic stochastic matrices).

Nonlinear analysis con also be used to study consensus algorithms.

For continuous-time consensus algorithm (3.1), we consider the Lya-
punov function V (x) = max{x1, ..., xN} −min{x1, ..., xN}. It can be shown
that the equilibrium set span{1} is uniformly exponentially stable if there
is an interval length T > 0 such that, for all t, the directed graph of
−
∫ t+T
t L(s)ds has a directed spanning tree.

For discrete-time consensus algorithm (3.2), a set-valued Lyapunov func-
tion V is defined as V (x1, ..., xN ) = (conv{x1, ..., xN})N , where conv{x1, ..., xN}
denotes the convex hull of {x1, ..., xN}, and XN := X × · · · ×X. It can be
shown that for all t2 ≥ t1 V (t2) ⊆ V (t1), and that x(t) approached an ele-
ment of the set span{1}, which implies that consensus is reached.

Finally, information consensus is also studied from a stochastic point of
view, which considers a random network, where the existence of an infor-
mation channel between a pair of agents at each time is probabilistic and
independent of other channels, resulting in a time-varying undirected com-
munication topology. For example, adjacency matrix A = [ajk] ∈ RN×N
for an undirected random graph is defined as ajj(p) = 0, ajk(p) = 1 with
probability p, ajk(p) = 0 with probability 1 − p for all j 6= k. In this case,
consensus over undirected random network is addressed by notions from
stochastic stability.

Convergence based on the Contraction of the Convex Hull

Moreau’s convergence analysis of consensus algorithms is based on the con-
traction of the convex hull of agents’ states. This analysis is not restricted
to linear updates and it applies to the nonlinear consensus algorithms over
arbitrary convex sets of the manifold M.
In the case of the circle, for instance, the largest convex subset is a semicir-
cle. As a consequence, uniform convergence to consensus under a uniform
connectedness assumption holds provided that the states are initially con-
tained in a semicircle.
Because none of the considered manifolds is globally convex, the linear con-
vergence result never provides a global convergence analysis.

For continuous-time algorithm (3.18), whenever the communication graph
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is fixed and undirected, all solutions converge to the set of critical points and
all strict minima of the disagreement cost function V (x) are stable equilib-
ria. Synchronization corresponds to the global minimum of the disagreement
cost function.
The descent property extends to discrete-time algorithms for sufficiently
small step sizes (i.e. for βk close to one) or for an asynchronous version of
(3.19): in the latter case, the value of the different agents is updated one at
the time; then the Lyapunov function can only decrease, in contrast to the
synchronous situation where the entire vector of agents’ states is updated
at once.
The global properties of consensus algorithms defined on nonlinear spaces
are graph dependent.

Solutions to recover (almost) Global Convergence on the Circle

The negative fact that a global analysis of the proposed consensus algorithms
seems elusive on nonlinear spaces, even on the circle, is compensated for by
the fact that the algorithms can be modified in such a way that conver-
gence is guaranteed under a mere uniform connectedness assumption, such
as in linear spaces. Three solutions have been investigated (on the circle) to
recover global convergence.

Gossip Algorithm A possible solution is to introduce randomness in the
link selection of the consensus algorithm, following the idea of a Gos-
sip consensus algorithm. At each time instant, a given agent selects
randomly one (or none) of its neighbors. The update is then taken as
if this neighbor was the only one, disregarding the information from
others.
An extreme version of this Gossip algorithm is when the update is cho-
sen with no inertia (β = 0): each agent selects one neighbor randomly
and replaces its current value by the neighbor’s value with a certain
probability. In this case, the consensus value is the initial condition of
one of the agents.
The convergence property of this Gossip algorithm is very general and
does not require any geometric structure on the underlying configura-
tion space. The convergence property of the algorithm only relies on
the probabilistic time evolution of N states switching among at most
N different symbols.
If G(t) is uniformly connected, gossiping achieves global asymptotic
synchronization with probability one.
Favoring the probability of convergence to synchronization through
randomness comes with a price: convergence can be arbitrarily slow.
Moreover, the probabilistic setting breaks the symmetry.
See [8, 10, 25] for more details.
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Dynamic Consensus Another solution is to increase the amount of in-
formation exchanged by the agents. The non-convexity of S1 can be
circumvented if the agents are able to communicate auxiliary vari-
ables in addition to their positions on the circle. An interpretation is
that the limited number of communication links for information flow is
compensated by sending larger communication packets along existing
links. Such strategies allow to recover the synchronization properties
of vector spaces for almost all initial conditions. Their potential inter-
est lies more in engineering applications.
The proposed dynamic consensus algorithm exploits the embedding of
the algorithm in a linear space. Consensus among the embedding vari-
ables relies on convergence of linear consensus algorithms, leading to
asymptotic consensus on the manifold as well. When the manifold is a
Lie group such as the circle, the communication of auxiliary variables
can be implemented in such a way that it respects the symmetry con-
straints of the algorithm, i.e. without the need of a common reference
frame. [8]

Potential Shaping The last solution exposed in this work only concerns
the case of a fixed undirected graph. Convergence is guaranteed to
a local minimum of the disagreement cost function. It is possible to
shape the potential in such a way that the only stable equilibrium
corresponds to synchronization. The only graph information needed
to construct this potential is an upper bound on the number of nodes.
A descent algorithm for this shaped potential guarantees almost global
convergence to synchronization if the (fixed undirected) graph is con-
nected. [8]

3.3 Conclusion: Main Difference

An essential difference between linear consensus algorithms and their nonlin-
ear extensions is the non-convex nature of symmetric spaces like the circle.
This property is what makes the convergence analysis graph dependent when
the state space is nonlinear.
From a design viewpoint, it is of interest to reformulate consensus algorithms
on nonlinear spaces in such a way that they converge (almost) globally under
the same assumptions as linear consensus algorithms.
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Chapter 4

Applications

In this section, we briefly describe a few applications of consensus algorithm.
Many of these applications concern either biological issues, e.g. animal be-
havior, or engineering problems, e.g. ocean sampling, phase synchronization,
distributed control for large telescopes and multivehicle coordination (the
reader is referred to [21, 22, 19, ?, 20, 4, 16, 30]).
Other applications of consensus deal with optimal coding and neural net-
works. In this thesis, we only refer the reader’s attention to [23, 24].

Autonomous Ocean Sampling Network

The Autonomous Ocean Sampling Network (AOSN) and Adaptive
Sampling And Prediction (ASAP) projects aim to develop a sustain-
able, portable, adaptive ocean observing and prediction system for use in
coastal environments. These projects employ, among other observation plat-
forms, autonomous underwater vehicles (AUVs) that carry sensors to mea-
sure physical and biological signals in the ocean. Critical to this effort are
reliable, efficient and adaptive control strategies to enable the mobile sen-
sor platforms to collect data autonomously. Other details can be found in
[21, 22].

Phase Synchronization of Oscillator Networks

Agreement on the circle appears for phase synchronization of oscillator net-
works.
For example, certain species of fireflies show a group behavior of syn-
chronous flashing. Their synchronized and rhythmic flashing has received
much attention among many researchers, and there has been a study of
biological models for their entrainment of flashing.

47
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Buck (1988):

“In the region from India east to the Philippines and New Guinea,
enormous aggregations of fireflies gather in trees and flash in near-
perfect synchrony. While different species have slightly different
methods for flashing in rhythm, the behavior that is modeled here
is governed by the following rules:

- Each firefly has an intrinsic flashing frequency, and when left
alone it will flash at periodic intervals.

- The flashes are timed by the progressive excitation of a chem-
ical within each firefly; the excitation increases until it reaches
a certain threshold, at which point a flash is emitted and the
excitation is reset to zero.

- If a firefly senses a certain amount of luminescence from its
neighbors, it will reset its excitation to zero in order to flash
simultaneously with those neighbors in the future; however,
if the excitation is close enough to the flashing threshold, the
flash has already been started and will proceed as planned
even though the excitation is reset to zero.”

Figure 4.1: Screen shots and time series from simulation of firefly flashing
behavior. In the top panels, gray squares indicate flashing fireflies, white
squares dormant fireflies. Time series shows the number of fireflies “on” at
each time step. (http://skyeome.net/wordpress/?p=56)

The reader can find more information for example in [19].
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The European Extremely Large Telescope

The E-ELT primary mirror is composed of 984 hexagonal segments of
0.7m edge length. Each segment is supported by 3 unidimensional position
actuators which move, in first approximation, neglecting small local cur-
vature of the mirror perpendicularly to the mirror surface. This allows to
separately control piston, tip and tilt (PTT) of each segment. Discontinuities
in the mirrors reflecting surface are accurately monitored by 5604 so-called
Edge Sensor pairs, which measure the relative vertical displacement at two
positions on adjacent segment edges. The induced coupling of adjacent seg-
ments in the measurement values is a fundamental property giving rise to
a distributed system. Consensus is regarded as distributed regulation over
the relative state of agents (the mirrors).
Relative sensing is a key feature of distributed system theory and it is also
the fundamental source of performance limitation. For further details see
[20]

Multivehicle Coordination Problems

A first example is the so-called Rendezvous Problem. This problem re-
quires that a group of vehicles in a network meet at a time or a location
determined through team negotiation. Consensus algorithms can be used to
perform the negotiation in a way that is robust to environment disturbances.
A second example is the Formation Stabilization, that requires that vehi-
cles collectively maintain a prescribed geometric shape. In the decentralized
version, each vehicle knows the desired formation shape, but the location
of the formation needs to be negotiated among team members. The infor-
mation state for this problem includes the center of the formation, which is
negotiated by the team of vehicles employing consensus algorithms.
Another interesting problem is Flocking. Using biologically observed mo-
tions of flocks of birds, it is possible to define three rules of flocking (that are
collision avoidance, velocity matching, and flock centering) and apply them
for coordination strategies in multivehicle robotic systems. More details can
be found in [4, 16, 30].
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Chapter 5

Conclusion

This thesis studied the problem of consensus, considering a set of N agents
locally exchanging information about their state in order to asymptotically
reach a common value of agreement: a global consensus.
This type of collective problem arises in a variety of disciplines, including
physics, biology, and system and control theory: consider, for example, flocks
of birds, schools of fish, sensor networks, etc.
Both coordination and synchronization have been considered as consensus
issues, the former in the configuration space (consensus among positions)
and the latter in the tangent bundle (consensus among velocities).

The consensus problem has been analyzed both in linear and in non-
linear spaces. Its analysis required some mathematical preliminaries. First
of all the stability conditions and the Lyapunov theory for non-linear sys-
tems. Then some (intuitive) notions for non-linear spaces, such as concepts
of manifold, geodesic distance and Lie group. Finally some notions of graph
theory, required in the framework of coordination between agents.

The update algorithms in the linear space (in the continuous-time case)
is:

d

dt
xk(t) =

N∑
j=1

ajk(t)(xj(t)− xk(t))

Under weak assumptions on the agents communication links (represented
by mean of a graph), the consensus value is the arithmetic mean of the ini-
tial values. Under stronger constraints, the linear consensus algorithm is a
gradient descent algorithm for the disagreement cost function.

A geometric interpretation of consensus allows us to consider an exten-
sion of the linear algorithm in the non-linear space, where “updating a point
towards a new point” simply translates into “moving along the geodesic
path connecting the two points”. Thus, substituting Euclidean distance with
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Riemannian (geodesic) distance, the (weighted) arithmetic average can be
rewritten as

mean(x1, ..., xN ) = min
z∈Rn

N∑
j=1

aijd
2
M(z, xj).

A more useful and convenient approach is on manifolds that are smoothly
embedded in an ambient Euclidean space. For these manifolds, Riemannian
distances can be substituted by Euclidean distance, leading to the induced
arithmetic mean:

IAM(x1, ..., xN ) = argmin
z∈M

N∑
j=1

aij ||x̂j − ẑ||2.

Finally, the attention has been focused on the simplest case of non-linear
space: the circle. A natural adaptation of linear consensus on the circle is

d

dt
θk =

∑
j k

ajk sin(θj − θk), k = 1...N.

that is, in fact, the celebrated Kuramoto model (briefly recalled in a specific
section). Considering the circle embedded in the (complex) plane with its
center at the origin, the IAM turns out to be the central projection of the
centroid onto the circle. In addition, IAM uses the chordal length between
points.

An essential difference between linear consensus algorithms and their nonlin-
ear extensions is the non-convex nature of symmetric spaces like the circle.
This property is what makes the convergence analysis graph dependent when
the state space is nonlinear.

The last section of the thesis highlighted some examples of application
of the consensus problem, both in biological (i.e. flashing fireflies) and engi-
neering (AOSN, E-ELT, etc.) issues.

This thesis is based on the existing scientific literature, in particular
Sepulchre’s papers. Many other works, (e.g. Moreau, Jadbabaie, Sarlette,
Ren, Bonilla, Georgiou’s papers or books) has been used to deeply inves-
tigate fundamental topics related to consensus and exposed in the thesis,
such as stability, Kuramoto model, coordination, synchronization, etc. Oth-
ers have been cited as references for the readers.

Finally, to reach a more complete knowledge of consensus problem, one
should consider also, for example, optimization strategies, more complex al-
gorithms, analysis on Lie groups and on more complex manifolds, different
techniques for convergence analysis.
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