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Abstract

The electromagnetic design is a rather long and complex process,
that involves several tools each one dealing with its own language
and standards. The consequent need of translating and adjusting
the data between the tools is not only a time consuming task,
but it also sets a limit to the progress in the antenna model-
ing. To solve this problem the Electromagnetic Data Exchange
(EDX) Work Group was founded a decade ago and a common
electromagnetic language has been developed. The EDX lan-
guage is formed by a XML-based Electromagnetic Markup Lan-
guage (EML), with a simple grammar that is used for the data
�les, a set of Electromagnetic Data Dictionaries (EDDs), estab-
lishing the lexicon, and a software library, the Electromagnetic
Data Interface (EDI) for actual data handling.
The implementation of the Structure Data Dictionary (S EDD)
is the main theoretical and practical goal of this work. This
structured data model includes all the geometrical information
and the related physical details, e.g. materials and ports, needed
by antenna design tools to perform their job.
To help an organized and complete development of the data set,
a Python-based prototype tool, with a minimalistic CAD, was
created. This prototype is able to manage the physical struc-
ture data model with particular attention to the geometrical and
topological information.
The software has been exploited to generate, in an easy and e�ec-
tive way, some complex and complete examples of the Structure
Data Dictionary up to a rather detailed model of the Emerald
Satellite Geometry Reference.
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Chapter 1

Introduction

This work concern the development of a structured data model for the elec-

tromagnetic design process and the implementations of a software prototype

tool to test it.

Considering the antenna design, it is quite easy to see how elaborated proce-

dure is: it usually involves many di�erent tools for modelling and simulations

and several specialists with a various background. The continuous need of

exchanging information and data is overburdened by the need of translating

the data model, the conventions and the language used several times taking

unnecessary time and resources.

For this reason, over the last decade, the international antenna community

began to demand for a common language for electromagnetic purposes, able

to smooth and speed up the entire design process.

As a consequence, following the previous attempts promoted by the Eu-

ropean Space Agency (ESA), the Electromagnetic Data Exchange (EDX)

Working Group had been established to jointly develop the Electromagnetic

Data Exchange Language.

The literature on every aspect of the project is copious as a quick search

will show. Just to mention some of the most relevant works, the EDX back-

ground and requirements are covered in a number of reports and conference

papers as [1, 2, 3, 4, 14], the Electromagnetic Data Interface (EDI), which is
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a software library allowing standardised access to EDX data �le, is detailed

in [5, 6, 7, 8, 9]. The Electromagnetic Data Dictionaries (EDDs) already

developed are the Fields Data Dictionary, the Current and Meshes Data

Dictionary and the Structure one. The �rst one is detailed in [13] and in

[10]. The second one is still under development but some information can be

found in [11]. Concerning the last one, only the requirements [15] and some

draft documents were available at the beginning of this work, especially [16]

and [17].

The rest of the work is organized as follow: Chapter 2 will give a deeper

look into the motivations that support this work while Chapter 3 will give a

more detailed overview of the background. In Chapter 4 the speci�c problem

of this work is de�ned. The later chapter, Chapter 5, describes the gen-

eral theory that lies beneath while Chapter 6 deepen the EDX. The core of

the work is presented in Chapters 7 and 8 respectively detailing the struc-

ture data model and the software prototype developed. Eventually Chapter

9 demonstrates the results obtained and in Chapter 10 the conclusions are

drawn.
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Chapter 2

Motivation

As many others engineering products, antenna design is a complex process.

Considering antenna for space applications, this is even more true and it

is enough to consider the very adverse environment where they work, to

frame the problem [12]. The extreme mechanical loads to which antennas

are subject during launch, together with the extreme thermal conditions they

undergo, make it necessary to take into account both these aspects, including

a careful selection of materials and manufacturing process, since the very

early stages of the design cycle. Furthermore, the electrical performances of

spaceborn antenna need to be optimised to satisfy the usually rather tight

requirements dictated by the inherent limitations of available power, envelope

and mass in spacecrafts.

The main consequence is a design process featuring frequent adjustments

to the baseline required by the di�erent discipline involved until convergence

to a proven, i.e. ready to �y, solution is reached. The result is a con-

tinuous exchange of computer data carrying con�guration and performance

information among specialty areas. To make the picture even more compli-

cated comes the complexity of the electromagnetic problems underpinning

space antenna design. For example, a Ka-band telecommunication antenna,

working at 20-30 GHz, often includes a feeding system with sub-millimetric

details, a re�ector of a few meters and is accommodated on a platform 7-8

metres tall with a 25-30 metres solar-array span. The resulting 105 phys-
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ical scale range cannot be handled with su�cient accuracy and acceptable

computational requirements by any existing electromagnetic modelling tool.

Clearly if direct analysis of the whole is impossible the same goes for design

optimisation, thus the only possible way is to address the design problem by

decomposing it into local sub-problems, each to be addressed with proper

means.

As a consequence, electromagnetic design involves many software tools (both

for modelling and simulations) which usually use their own di�erent �le for-

mat and data structures, each one with their own peculiarities, and that

usually do not communicate between them.

This situation has clearly a lot of disadvantages such as the time spent con-

verting the data between di�erent format, the unavoidable di�erence on the

models simulated with di�erent softwares, the di�culties in cooperating with

people and institutions that come from di�erent backgrounds and, above all,

the dissimilarity in viewing the reality.

This last inconvenient originate from the use of di�erent data models, each

specialised to a particular physical scale and type of problems, e.g. design

of feeder, design of the antenna optics, analysis of antenna interactions. The

models include variant treatment of the geometry and of the other physical

properties the prototype. For this reason, even when talking only about the

geometrical aspect, the data that has to be exchanged between the tools in-

cludes not only all the geometrical details but also much other information

apparently untied to it, in order to partially overcome the problem.

To solve these problems and to reduce the complexity of the entire process,

the main possibility are two: to develop a tool able to perform all the neces-

sary analyses and simulations or to create a uniform data model to allow a

seamless exchange of information among tools.

Despite the continuous development of electromagnetic simulations tools, the

�rst alternative seems to be unlikely in short and medium term, whereas the

latter one seems promising.

The solution of converging into a common way of de�ning and describing
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the electromagnetic problems may not completely solve, but at least consid-

erably attenuate the di�culties and transform the entire modelling process

in a smoother and faster procedure.

At the same time, past experience with the de�nition of a common model

for the description of the electromagnetic �elds radiated by antennas has

shown that formalising and trying to unify the data models in use o�ers

signi�cant side bene�ts by establishing more solid basis for the exchange of

information also among engineers and to make information produced in the

past easier to reuse in new projects.
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Chapter 3

Background

Information transfer has been studied in detail for many years and it is not

a straightforward issue: even if the quantities to describe are relatively easy

to agree on, it is very di�cult to �nd the notational conventions (alphabet,

grammar, syntax, etc.) to adopt and to decide how to formally describe the

entities in a way that everyone feels comfortable with [14].

The acceptance of a new standard is not obvious at all and it is not a mi-

nor issue as the history of the ISO standard for measurements units shows.

Moreover in the case of antenna design, notational conventions have to be

uniform and able to describe the �eld distribution or the currents one as well

as the geometrical description, i.e. they need to support a rather varied type

of data structures originating form the discretization of quite di�erent phys-

ical quantities. Fields are typically sampled and quantised on some regular

grid of points in space, currents need to be sampled and quantised on meshes

laid on conductor surfaces, geometry instead has an inherently hierarchical

structural induced by the dimensional scale (point, line, surface, volume)

and typically needs to be associated with the hierarchical segmentation of

reality used by engineers (and not only) to tame the complexity of reality,

in particular the segmentation of systems in sub-systems, equipments, units

and so on. Finally, network-like structures are used for RF power distri-

bution in arrays, but also underlay the segmentation of the overall design

problem and the re-composition of solutions into a global one. Thus they are
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a model for both the partitioning of the electromagnetic problem and for the

computational �ow to solve it.

To de�ne all the requirements for this purpose, the antenna design uni-

verse had been analysed. The most general objects that could be described is

an antenna and its environment that can be variegated. The goal usually is

to obtain information on the response of the system after having stimulated

the physical structure by introducing a signal, a current or a �eld Figure 3.1.

Figure 3.1: Logical Representation of a modelling problem. [14]

It is not by chance that also the response obtained from the system belongs

to the same categories of the excitations and this allows the recursive seg-

mentation of the problem, which is also the main cause of the data exchange

issue.

It is then clear that the goal of the standardization e�ort is to describe

precisely the stimulus, the physical structure and the response for each de-

sired level of detail. Nevertheless these could be quite complex due to the

intrinsic complexity and variety of the electromagnetic phenomena. Luck-

ily, applying the segmentation process common in all system theory, it is

possible, at least formally, to consider each part as a black box constituting

an electromagnetic cell that interacts with the rest of the universe though

its excitation and response. In practice this segmentation faces the limita-

tions of available modelling algorithms, which for instance have di�culties

in handling cells connected by both electromagnetic �elds and current �ows.

Yet having an e�ective way to describe the segmentation is a step toward a

proper solution of the overall problem.
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Thus an Electromagnetic Data Exchange standard can be intended as a lan-

guage able to robustly delineate the electromagnetic cells and the relative

stimuli and responses.

At this point a linguistic problem follows closely behind about how to

formally de�ne all the physical and mathematical quantities involved in a

robust way. The general requirements identi�ed for the language to reach

the goal just outlined can be summed up as follow [14]:

� Readability: human being must easily interpret the descriptions;

� Usability: it must be easy for engineers, software developers and uni-

versity professors and students to use the descriptions;

� Openness: it is necessary that the language be easily and safely ex-

tended to handle future evolutions of the antenna �eld;

� Completeness: each entry must be fully and univocally described;

� Portability: it must be easy to transfer the information among di�erent

computing platform;

� Consistency: it must be possible to check if the description of an entity

is complete and free from semantic and syntactic errors (which does

not yet means it correctly corresponds to the actual entity).

A deeper analysis starting from the above requirements led to a more de-

tailed set listed in Table 1.

As any other (formal) language, the language in question would need to have

an alphabet, a grammar, a syntax and a lexicon. In the Electromagnetic

Data Exchange language the Data Dictionary de�nes the meaning of data

and the conventions for their exchange, that is to say that outline exactly

and in detail all the elements that shall appear in the data set [19]. Six data

sets have been initially identi�ed:

� Fields;
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� Induced currents on various geometries;

� Green's functions for layered structures;

� Circuit parameters;

� Modal expansion;

� Geometry.

Only the �rst two where addressed in the �rst step and only the �rst has

been actively supported thereafter.

The alphabet and grammar have been chosen among the many widespread

one, in particular it was decided to adopt a tagged language so as to ensure

future extensions with minimal rework of existing implementations and to

base the development on XML [21]. The syntax is instead determined by

the underlying information-theoretic structure of the data to be exchanged:

ND-arrays, trees and graphs, respectively for sampled �elds, hierarchical in-

formation and network representations. Also in this case there is quite a

large background to draw upon, the syntax adopted is derived from NetCDF

[22] and also similar to that adopted later on by HDF5 [23].

Focusing on the geometry there is an important point to underline: the

amount of time spent on the geometrical descriptions of antenna has a signi�-

cant role in the whole electromagnetic modelling process using computational

tools. The inevitable fact that geometries have to be changed frequently

during design cycles does not make this problem any better. A reasonable

improvement would be achieved by using parametric modelling [24]. Unfor-

tunately, the lack of availability of widespread parametric descriptions for

CAD applications is not a minor issue. The reasons are quite a few and vary

from the di�culties to �t this kind of model in the commonly used algorithms

to the lack of a standard approach, from the excessive degree of freedom that

a naive approach would induce to the scarcity of rigorous mathematical basis.

Finally for the antenna engineering needs the typical high-end professional

CAD systems o�ers far to many features and far too complex parametrisation

schemes to present a suitable basis. The most fundamental issue in geometry
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parametrisation is the fact that in most cases changing a single parameter

in a geometric shape will cause it to change wildly and, eventually to loose

integrity. As an example, starting from a square and changing the length of

one side it is possible to obtain a trapeze, a triangle, a bow-tie, a polygon

collapsed into a segment and, unless a mechanism is in place to avoid it, to

break the closed polygon into a three segment straight line plus a single seg-

ment one exceeding the total length of the �rst. Yet in antenna engineering

the basic shapes can be parametrised, with just few exceptions, in way that

inherently preserves their integrity.

An additional issue, often ignored by CAD systems, as well as by many

electromagnetic solvers, is that for a proper solution of Maxwell's equations

is usually mandatory to have a topologically sound geometrical description

of the structure. Again requirements change from one solution method to

another, those based on (quasi-)optical propagation of �elds require a coher-

ent orientation of surface normals, while those based on explicit solutions

for the induced currents require continuity of segmented surfaces. Finally

adjacency relations among geometric shapes are usually needed to build ro-

bust algorithms. Unfortunately none of those are explicitly handled by CAD

systems, which on the contrary owing to their numerical limitation often

produce topologically inconsistent results.

Other methods studied by the branch of mathematics called Computa-

tional Geometry can fortunately be adopted to address parametrised geo-

metric descriptions. They are included mainly in two classes of descriptions:

� Constructive Solid Geometry (CSG): based on combining simple (para-

metric) shapes though boolean operators in order to create more com-

plex geometries.

� Boundary Representation (BRep): based on topological relations be-

tween the parts that constitute the shapes.

The question is then which language can be adopted to describe them in a

convenient way. During the last forty years, many geometrical data format

have been developed and used. Two of the most used standard for the ex-
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change of product manufacturing information are IGES and ISO 10303 better

knows as STEP (Standard for the Exchange of Product model data).

IGES is a US standard that has been used over twenty years and that had

been developed for the exchange of pure geometrical data between computer

aided design (CAD) systems. Unfortunately it combines extreme richness

with a very basic semantic structure, making it quite inadequate for the

handling of complex hierarchical information.

On the other hand STEP has been developed by ISO in over sixteen years

with a much broader purpose. In fact, it is intended to cover a wider range

of product-related data and cover the entire life-cycle of a product [25]. It

use the �neutral �le approach� that is to say the data produced by the �rst

tool are translated into the standard language, transmitted as ASCII �le and

then reconverted by the receiving tool. The entities and their relationship

are de�ned in a information modelling language called EXPRESS [26] that

also allow to verify the syntax and to check the possible rules. In principle,

it would o�er su�cient richness combined with structured semantics for the

purpose. However it does not appear to be well suited to handle the large

uniform data blocks resulting from �elds and currents discretisations, so the

question is moved to whether or not it is practically feasible to use (and

maintain) two di�erent data exchange language systems within the electro-

magnetic modelling tools, or it would rather be more e�ective to use a data

model, which is one the one side fully compatible with existing STEP-based

standards and on the other one amenable to the Electromagnetic Data Ex-

change language already used for the exchange of �elds and currents data.

The second solution implies the capability or reading and writing purely

geometric information in STEP format, which is already available in most

high-level electromagnetic modelling tools, and the re-use of the existing I/O

functions for �elds and currents with a di�erent data dictionary and possibly

some minor extensions.

As far as we are concerned, in most practical cases the CAD �le to be

used to solve antenna modelling problems and describing the geometry of a

complex structure, e.g. a satellite, is not generated speci�cally for electro-

magnetic analysis and includes other, for example mechanical, details that
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must be �ltered out to make the description suitable for meshing purposes.

A further complication is that often these �les do not contain material prop-

erties and other information, such as topology, needed for the design [28].

As a consequence, a preliminary processing step is virtually always required

to adapt CAD data to electromagnetic modelling purpose, thus using STEP,

or even IGES, as input and an Electromagnetic Data Exchange language

solution in output would not added much complexity to the �nal product.

The pre-processing, called CAD preconditioning, within the EDX group and

in their publications, is today rather well understood, de�ned in some detail

and tests have been made to achieve a �rst validation of the algorithms and

procedures. It is to underline that CAD cleaning operations are related to

the physics of the problem and they are solver dependent, so baseline re-

quirements can be identi�ed by the knowledge of the speci�c needs for the

di�erent solvers (methods/tools). These baseline requirements are [27]:

� geometry import;

� geometry complexity reduction (Identi�cation of the details to be pro-

cessed);

� �ltering and elimination of parts;

� simpli�cation and transformations;

� management of (multiple) high-level representations of parts;

� generation of local reference systems depending on the EM analysis;

� continuity and consistent orientation of geometrical elements;

� geometry export;

� movable parts;

� antenna excitation ports.

The objective of the data exchange is to handle the information generated

by these functions making it available to electromagnetic modelling tools in

20



Figure 3.2: CAD preconditioning schema [27].

the form that best suits their needs. In other words, the information content

is de�ned by the pre-processing outcome, while the form (syntax and lexicon)

is mostly the object of the formal data modelling e�ort to be addressed in

this work. Clearly such e�ort �nds its main root on the fact that, in most

practical cases, the CAD �le to be used to solve electromagnetic modelling

problems and describing the geometry is not generated speci�cally for this

type of analysis and includes others, e.g. mechanical, details that must be

�ltered out to make the description suitable for meshing purposes. A further

complication is that often these �les do not contain material properties and

other information, e.g. topology, needed for the same purposes [27].

The challenge has been to achieve a cohesive data model incorporating

all these aspects.
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General Requirements:

-The data format shall re�ect as closely as possible the physical structure of
reality
-The data format shall be based as much as possible on existing and widely
accepted data formats, to be selected in agreement with the Agency
-The data format shall support incremental de�nition (re�nement and exten-
sion)
-The data format shall ensure independence, coherence and consistency of
di�erent components of the data domain
-The data format shall be modular
Implementation Constraints:

-The data format shall transitionally accommodate existing data formats to
support migration and testing.
-The data format shall be as independent as possible from application domain
speci�cs (tool logic and implementation details:)
-The data format shall be based on existing mark-up languages (e.g. XML)
-All data shall be stored in human-readable form, via text editors or simi-
larly open-domain facilities. Very large data sets may stored in binary form,
provided a translator to human-readable form is made available.
Detailed Requirements:

-The data format shall allow the de�nition of meaning of data sets (data and
application domain speci�cation)
-The data format shall enforce the de�nition of data sets which are self-
contained from the physical meaning point of view
-The data format shall accommodate hierarchical structures (nested and re-
cursive)
-The data format shall accommodate multidimensional multi-valued data sets
-The data format shall accommodate data sets de�ned on structured and un-
structured domains
-The data format shall support successive re�nements
-The data format shall support successive extensions
-The data format shall support data sets polymorphism
-The data format shall support multiple/mixed formats for individual data set
components
-The data format shall allow the explicit de�nition of data blocks structure
and format

Table 3.1: List of requirement for an Electromagnetic Data Exchange Stan-
dard.
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Chapter 4

Problem de�nition

The increasing use of electromagnetic modelling in antenna design has led to

the need for a common way to exchange data between the various software

tools available in this �eld [29].

Following previous attempts promoted by the European Space Agency

(ESA), the Electromagnetic Data Exchange (EDX)Working Group was formed

for the purpose, composed by a number of institution: the Electromagnetic

and Space Division at ESA, the Antenna Centre of Excellence, formed under

the 6th EU Framework Programme and the European Antenna Modelling

Library team, working under ESA contract.

The outcome is the Electromagnetic Data Exchange (EDX) language. It has

been developed following the main lines described in the previous Chapter

and it is formed by three main elements: a neutral XML-based Electromag-

netic Markup Language (EML), with a simple grammar that is used for the

data �les, a set of Electromagnetic Data Dictionaries (EDDs) establish the

lexicon of the exchange language and a software library, the Electromagnetic

Data Interface (EDI), that simpli�es the access to data from C++, Fortran

and Matlab® programs [29].

Within this project, the main goal of the work is to de�ne the Structure

Data Dictionary (S EDD) and to bring it to a su�cient level of maturity to

allow its practical demonstration on a set of case studies.
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The goal of this Data Dictionary for Structure data exchange is to present

a single coherent complete description of a discretised geometry de�nition,

often referred to as �mesh�, suited to as many modelling techniques as possible

[17]. In order to achieve this goal the data are organized based on:

� Physical (geometrical) as well as topological considerations;

� Ensuring the compatibility with other EDX data dictionaries;

� Covering wide needs in the mesh description;

� Conforming to IEEE standard IEEE Std 145-1993 Antenna Terms[30].

As any other project, three main steps can be individuated:

1. Planning, designing and de�ning the requirements;

2. Developing the target;

3. Testing and validating the model.

The �rst step had already been performed and is described in [17] and a

complete analysis can be found in [15].

The remaining two stages are described in this work. There were many

di�erent possible alternative approaches to proceed, the one selected started

from developing a tool using a consolidated EDD (the Field Data Dictionary),

followed a trial de�nition of the new data structure and the iterative check

and improvement of the model taking advantage of the tool implemented and

using a set of geometries of increasing complexity, up to a full satellite.

Following the validation of the data model, the Structure Data Dictionary

had been applied to create some examples.

The second step, development of the data dictionary, is the most compli-

cated. It entails to deeply understand which information are exactly needed

to describe any possible scenario without loss of generality that is actually

a very di�cult goal. To reach it, a continuous debate and comparison with

other specialist of the EDX group has been necessary. Moreover, this second

step, require to decide how the di�erent information have to be related to
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each other to guarantee that no repetition are present while all the necessary

references and connections are.

On the other side the development required is based on robust mathemati-

cal bases and a well established practical knowledge of the structures to be

described. Both need however to be studied. The �rst, twist around the

Computational Geometry and especially the Constructive Solid Geometry

and the Boundary Representations. The second needs to consider the tools

for antennas designs.

The third and last step, is conceptually simpler and of a much more

practical nature: implementing a small tool to handle the EML data �les

for the new data dictionary and including features to generate or import,

process and visualise geometries mimicking the behaviour of real tools for

the same purpose. The actual work entails the development of di�erent

sets of functions for each purpose and the adjustment and interconnection

between them to obtain an organic structured tool.

On the other hand the two steps could not be made in a purely sequen-

tial form, the actual work has actually been following an iterative process.

It started with the implementation of basic the functionality to handle EDX

in the target language selected for the implementation (Python), as a mean

to familiarise with the language itself and with its XML libraries as well as

to acquire the necessary knowledge about EDX and its workings. Then the

data model for the Structure Data Dictionary was addressed, together with

the underlying physical and mathematical bases. In this phase also a deeper

look into the antenna design process was necessary to gain a more complete

understanding of the needs. Next a minimalistic CAD based on the se-

lected BRep representation was implemented, applying previously explored

concepts. Finally the two were combined, debugged and veri�ed handling

increasingly complex examples. The simpler ones being generated with the

minimalistic CAD while larger ones where generated with a commercial CAD

(Rhinoceros) and imported using the Polygon File Format or Stanford Tri-

angle Format (.ply) data format, which provides a basic but rather e�ective

way to transfer the faceted geometries used for the testing.
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Chapter 5

Theory

5.1 Geometrical Representations

Geometrical modeling is today a rather mature branch of mathematics and

computer science and it is often considered part of a discipline called Com-

putational Geometry.

Four major classes of methods are used with success in this �eld: Paramet-

ric Geometry, Constructive Solid Geometry, Boundary Representations and

Functional Geometry. The �rst tackles the complex issue of manipulating

parametrically de�ned objects, as necessary for most engineering applica-

tions. The second one deal with the combination of shapes to form more

complex ones, while the third one, deal with the problem of providing self-

consistent and computationally e�cient representations of the geometry of an

object. Finally the last one uses continuous real functions of several variables

to represent the objects.

5.1.1 Parametric Geometry

The creation and modi�cation of the geometrical descriptions of antenna and

platform components, is one of the more time consuming tasks in antenna

modeling using computational tools [24]. It is easy too see that geometries

have to be changed frequently before reaching the �nal product design.

The use of parametric descriptions of the geometry, while feasible in prin-
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ciple, is limited by the di�culty of translating such description into a numer-

ical model usable by di�erent electromagnetic algorithms. In practice, even

if some tools have a way to parametrically de�ne the geometry of objects,

there is no standardized approach to deal with this problem. Existing tools

use �xed shapes quanti�ed by their �natural� parameters, like a cube and the

length of its side, i.e. they rely on implicitly de�ned relations encoded by the

type of shape. This approach is very e�ective for simple canonical shapes,

but becomes increasingly awkward for more complex ones, which in the end

can only be de�ned numerically removing the ability to act parametrically

on them.

On the other hand it is particularly hard to �nd open material on para-

metric geometry descriptions. There are several reasons for this. Firstly there

seems to be no clear way to build a rigorous mathematical formulation of the

problem. Second it is quite likely that being this subject strategic for com-

mercial high-end CAD systems many results are kept well protected. Finally

the formulations used for CAD system have a level of generality much higher

than what would be needed for the antenna-engineering problem. Most of the

documentation available deals with the so-called free-form geometry param-

eterization, i.e. with the a-posteriori parameterization of geometrical shapes

built, using CSG, by means of free-form primitives, e.g. NURBS. This is far

beyond the needs of an antenna modeling application and would require a

complete CAD system to be dealt-with [24].

5.1.2 Boundary Representation

The idea behind the Boundary Representation (BRep) is to describe objects

though their shells. Usually the shell is a 2-manifold entity with or without

boundaries, sometimes constituted by several linked components.

In general these components are described separately and each part is ori-

ented. The only constraint on the orientation is that the possible internal

and the external shells of the same component have to have opposite orienta-

tion. If boundaries are present they must be oriented accordingly, to preserve

consistency of matematical operators, e.g. external vector products.
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The oldest data structure for BRep is the Baumfart's winged-edge data

structure [40]. It is mostly based on the interconnections and adjacency

relations between edges (line segments) and faces (polygons surrounded by

edges). To e�ciently describe it let us consider the polyhedron in Figure 5.1

.

Figure 5.1: Example of polyhedron for BRep description.

The above �gure shows the vertices (upper cases), edges (lower cases)

and faces (digits) of the structure. Let us consider the edge a = XY . This

edge has two incident vertices X and Y , and two incident faces 1 and 2.

For example, face 1 has its edges a, c and b, and face 2 has its edges a, e

and d. Is is to note that the order is clockwise viewed from outside of the

solid. If the direction of the edge is from X to Y , faces 1 and 2 are on the

right and left side of edge a, respectively. To capture the ordering of edges

correctly, additional information are needed. Since edge a is traversed once

when traversing face 1 and traversed a second time when traversing face 2, it

is used twice in di�erent directions. For example, when traversing the edges

of face 1, the predecessor and successor of edge a are edge b and edge c, and

when traversing the edges of face 2, the predecessor and successor of edge a

are edge d and edge e. Note that although there are four edges incident to

vertex X, only three of them are used when �nding faces incident to edge a.

Therefore, for each edge, the following information are important:

� its vertices;

� its left and right faces;
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� the predecessor and successor when traversing its left face;

� the predecessor and successor when traversing its right face.

In the case of objects with holes, inner loops are solved imposing the outer

boundary with a clockwise order, while its inner loops, will be ordered counter

clockwise.

All these data, and the one regarding the vertices and the faces, have to be

collected in tables, usually implemented as matrices or linked lists.

If we consider only the data about edges and vertices, we obtain the 2D

BRep that can describe only bidimensional object. To move to tridimensional

entities it is enough to add the information about the faces, obtaining the

3D Brep shown in Figure 5.2 (a). By analogy, it is possible to extend the

data structure to segmented volumes, which can be considered as the shell

(boundary) of a 4D iper-volume, using the 4D Brep structure (Figure 5.2 (b))

that is obtained from the previous one simply adding the brick node and the

corresponding relations. This last representation allows full navigation of

the iper-surface bounding the shape. Segmented volumetric descriptions are

typically necessary in practice to handle antennas and other objects including

dielectric parts, which are penetrated by the electromagnetic �eld and need

to be modelled accordingly.

In Figure 5.2 each table is represented as a circle and the complete structure

is a dense graph. Although these relations are highly redundant, only a

subset of them are actually required to fully describe the topology and the

geometry of an object.

A slightly modi�ed version of the direct 4DBrep extension of the Winged-

Edge structure appears to be more e�cient and is the one actually used for

this work (Figure 5.3). In this structure each edge is split in two logical

components (called siblings), each one associated to one of the two incident

faces (called sheets). First, the two halves can be oriented in such a way

to form counter clockwise cycles around each face, something very useful in

practical applications. Second and more relevant in our case, when moving

to a higher number of dimensions, i.e. introducing adjacent volumes (3-cells),

it is possible to increase the multiplicity of the siblings without altering the
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(a) (b)

Figure 5.2: BRep schemas: (a) 3D BRep, (b) 4D BRep.

basic structure of the 3-cell. In this way multiplicity of the basic relations are

not changed and the same well-known and mathematically sound algorithms

can be used within each 3-cell. Possibly, a number of nodes are associated to

each vertex, each node being placed at the end of a set of incident siblings

within a same 3-cell.

The main advantage of BReps is that it is possible, although not necessar-

ily straightforward, to de�ne algorithms performing all types of geometrical

manipulations on them. For example, the basic Boolean operators, union,

intersection and di�erent, involve the identi�cation of intersections and the

generation of the associated additional faces, edges and vertices resulting in

a new BRep for the combined shape. Other transformations may or may not

require a modi�cation of the topologic description. For instance, a change

in the shape size or a linear deformation (shear transform) do not alter the

topology and therefore do not require changes of the BRep, except for the

vertex coordinates. Typical CAD manipulations do not involve non-linear

geometrical transformations and result in relatively simple manipulation al-

gorithms, making Breps very useful in this domain.

Finally in is important to note that BRep o�er a nutural way to handle

the surface and volume discretisation used in most electromagnetic mod-
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elling algorithms, usually referred to as meshes. These are typically based on

faceted approximations, mostly with triangular or quadrangular facets, for

2D and on pyramidal or brick-shaped elements for 3D.

Figure 5.3: Extended 4D Brep.

To conclude, it of interest to highlight as the constraint on the boundaries

can be relax to describe non-manifold objects. This entities have the property

of not being able to distinguish, at every point on the boundary, a small

enough sphere divided into two pieces, one inside and one outside the object.

An important sub-class of non-manifold models are sheet objects which are

used to represent thin-plate objects quite common in antenna modeling.

5.1.3 Function Representation

Function Representation (FRep) was introduced in [32] as a uniform repre-

sentation of multidimensional geometric objects. An object, meaning a point

set in multidimensional space, is de�ned by a single continuous real-valued
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function of point coordinates F which is evaluated at the given point by a

procedure traversing a tree structure with primitives in the leaves and oper-

ations in the nodes of the tree. The points where the function have positive

values belong to the object, otherwise they are outside of the shape.

The geometric domain of FRep in tridimensional space includes solids

with non-manifold models and lower-dimensional entities (surfaces, curves,

points) de�ned by zero value of the function. A primitive can be de�ned by an

equation or by a "black box" procedure [33] converting point coordinates into

the function value. Solids bounded by algebraic surfaces, skeleton-based im-

plicit surfaces, and convolution surfaces, as well as procedural objects (such

as solid noise), and voxel objects can be used as primitives (leaves of the

construction tree). In the case of a voxel object (discrete �eld), it should be

converted to a continuous real function, for example, by applying the trilinear

or higher-order interpolation. Many operations such as set-theoretic, blend-

ing, o�setting, projection, non-linear deformations, metamorphosis, sweep-

ing, hypertexturing, and others, have been formulated for this representation

in such a manner that they yield continuous real-valued functions as output,

thus guaranteeing the closure property of the representation. R-functions

provide Ck continuity for the functions exactly de�ning the set-theoretic op-

erations. Because of this property, the result of any supported operation

can be treated as the input for a subsequent operation; thus very complex

models can be created in this way from a single functional expression. FRep

modeling is supported by the special-purpose language HyperFun [34].

Although quite powerful FReps are not very suited for CAD purposes

and a combination of BReps and CSG are typically preferred.

5.1.4 Constructive Solid Geometry

The Constructive Solid Geometry (CSG) is probably the most intuitive way

of geometrically describing objects and it is therefore the preferred approach

for modern CAD tools, at least in the user interface. It is a solid modeling

method that combines simple solid shapes to build more complex ones using

Booleans operations like union, intersection and di�erence. The most com-
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mon data structure used to store these data, is a binary tree where leaves

are the solid shapes, correctly sized and positioned and each internal node is

an operator that combine its two leaves.

Algorithm to transform this representation into low-level geometric primi-

tives, typically of the BRep type, complete the data structure.

Figure 5.4: Example of CSG
Image from en.wikipedia.org.
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5.2 Mark-Up Languages

Many robust data exchange solutions satisfy the general language require-

ments listed above (Table 3.1), but past experiences has shown that not

even the starting point is trivial. On one side a simple format based on

a line-by-line description would have been limiting, on the other side high-

performances solutions (like NetCDF), which had indeed been experimented

in previous projects and proven to be quite e�ective, would have been dif-

�cult to use for non-expert users, in particular for University students and

researchers, who are key in the continuing development of the leading-edge

electromagnetic modelling algorithms needed in the antenna �eld. After all

the considerations the solution chosen is an XML-based format that satisfy

almost all the previous basic requirement and enjoys a well-established and

very general framework. Actually the only severe, but not impossible to

overcome, limitation of XML is in the handling of large data sets, for which

its text-based format is largely unsuitable. Yet various options exist for the

parallel use of a binary �le format and the use of HDF5 appears to be one of

the most likely candidates.

The Extensible Markup Language (XML) is a simple, very �exible text

format derived from SGML (ISO 8879). It was originally designed to meet the

challenges of large-scale electronic publishing, XML is also playing an increas-

ingly important role in the exchange of a wide variety of data. XML de�nes a

set of rules for encoding documents in a format that is both human-readable

and machine-readable. Its strong points are the simplicity, generality, and

usability of the language.

For this reason since 2009, hundreds of document formats using XML

syntax have been developed, including RSS, Atom, SOAP, and XHTML.

XML-based formats have become the default for many o�ce-productivity

tools, including Microsoft O�ce (O�ce Open XML), OpenO�ce.org and

LibreO�ce (OpenDocument), and Apple's iWork. XML has also been em-

ployed as the base language for communication protocols, such as XMPP.
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5.3 Python Programming Language

Python is a powerful dynamic programming language that is used in a wide

variety of application domains. This language was adopted mainly because it

o�ered in a single package all the main features required for the development

such as: a very clear and readable syntax, an intuitive object orientation, full

modularity, supporting hierarchical packages, very high-level dynamic data

types and extensions and modules easily written in C, C++ [35].

Although not strictly required here, one of the most important properties

of this language, is that Python is available for all major operating systems

(Windows, Linux/Unix, OS/2, Mac, Amiga and Java virtual machine) and

the same source code run unchanged across all implementations.

Furthermore owing to its �exibility it is also commonly adopted as script-

ing language in CAD systems, including those embedded in some leading-

edge electromagnetic modelling tools.

Finally, it o�ers a rather smooth learning curve, making it easy to build

relatively complex applications without a large programming experience.

5.3.1 Python tool-kits

An additional and valued feature of the Python language is to have several

thousands of additional modules and companion tool-kits that cover almost

every desirable aspect.

For what concern this work, especially four modules have been used since

their very attractive properties for realizing a fast prototyping tool.

� PLY: it is an implementation of a lexical analysers and YACC (Yet

Another Compiler Compiler)) for Python. It is entirely implemented

in Python and uses LR-parsing which is reasonably e�cient and well

suited for larger grammars [36].

� LXML: it is a library to process XML and HTML in Python. It binds

for the C libraries libxml2 and libxslt and it combines the speed and

XML feature completeness of these libraries with the simplicity of a

native Python API [37].

35



� Matplotlib: it is a Python 2D plotting library which produces quality

�gures in a variety of hardcopy formats and interactive environments

across platforms. This tool-kit can generate many di�erent kind of

plots (histograms, power spectra, bar charts, errorcharts, scatterplots,

etc) in a very compact way [38].

� NumPy: it allow scienti�c computing with Python. Its major features

are a powerful N-dimensional array object, tools for integrating C/C++

and Fortran code, useful linear algebra, Fourier transform and random

number capabilities. NumPy can also be used as an e�cient multi-

dimensional container of generic data and allows also to de�ne arbitrary

data-types [39].

5.4 Antenna design process

Designing an antenna is a long and complex process that requires several

steps backwards and forwards using di�erent tools until the desired result is

reached. The information transferred between the tools is usually embedded

in a single logical unit: the model.

The model should combine the property and behavior data as well as their

implicit links; it is to say that it should describe the physical structure, i.e.

the antenna, from all relevant point of view. Unfrotunately this appears to

be seldom the case today, e.g. most commercial electromagnetic modelling

tools are far from such completeness and usability level, as they only cater

for basic descriptions of the antenna structure, either on a purely numeric

basis (discretised geometry) or using high-level implicit de�nitons, and of the

resulting �elds and currents, typically in purely numeric form.

From the deep and complete analysis reported in [42] the basic structure of

a design environment can be penciled as in Figure 5.5. Using a bottom to top

approach, it can be found a Data Base, that has to be considered distributed,

introducing the data standard representation which is necessary for their

transfer. The second layer is the Network Layer supporting the information

transfer as main task. This last is followed by the Application Management
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layer organizing, among the rest, the simulating modeling and the utilities.

After the User Interface, which is simply a GUI with its own standard, the

Application Software is set. This level is constituted by the application level

packages and their integrability is guaranteed by the implementation of a

standard strictly linked to the previous layers. The top level, eventually, is

the User's Tool that collect all the instrument and preferences that each user

develop as support to his work.

Figure 5.5: Basic structure of an integrated design environment.

In this scenario data transfer is clearly crucial for the e�ciency of the the

process. Moreover a quick access to all information, both data and control,

is fundamental as in any other engineering application.

When designing an antenna at least three di�erent engineering �elds are

involved: the electromagnetic, the mechanical and the measurement and test

area. Each of those needs speci�c input (format and content) and provide

speci�c output that will constitute the input data for the following step of

the process. Therefore the type and the quantity of information used in

the di�erent project areas change a lot and the most appealing solution is

possibly to create a �container" with all the data and the instruments to

easily extract all and only the data corresponding at each speci�c step.
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Today each antenna engineer has to build the container and often needs

to manipulate the data to pass information form one tool to another. Thus

a �rst step is to actully de�ne a way to make sure all tools can directly use

the data. The long-term objective is to reach a high-level of interoperability

among the di�erent tools in such a way to allow the user to build custom

design procedures by assembling the di�erent tools in a circuit-like fashion,

as illustrated in Figure 5.6. In such perspective the container becomes the

patway among tools, i.e. much more than a uni�ed static storage.

Figure 5.6: Interoperability among the di�erent tool: circuit example.
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Chapter 6

Electromagnetic Data Exchange

As already discussed, the Electromagnetic Data Exchange (EDX) is the main

outcome of the EAML team work and aims to become a reference for data

exchange among electromagnetic modeling software tools, at least in Europe.

In the following sections the components of the language (the Mark-up

Language, the Data Dictionaries and the Data Interface) will be described

and then a deeper look into the Fields Data Dictionary, developed in the

last years, will be taken and eventually, the Structure Data Dictionary will

be brie�y introduced as will be further discussed in the following chapter as

main goal of this work.

6.1 EDX components

Most of the time the raw data to be exchanged are just series of number

having no real meaning unless they go together with some more information.

The latter often constitutes the most important parts of a data �le for the

human reader and it is, unfortunately, separated from the data and often

implicit, i.e. only available through the User Manual or else. For this reason

EDX not only provides the raw data, it most prominently provides their

meaning as well as their structure. In other words, a data �le includes a

complete description of the numerical data it contains.

A set of Electromagnetic Data Dictionaries (EDDs) have been established to
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specify the latter information, which conveys the meaning of data, thereby

leaving only the values open to host the variable part of the content, i.e. the

actual object of the data exchange. The purpose of these dictionaries is to

list the information needed to completely described the physical structure,

the stimulus and the response, i.e. the input and output data for each com-

putation, at each level of the design procedure. Such approach may appear

as unnecessarily complicated as it adds a signi�cant amount of overhead to

raw data that may initially be rather simple, e.g. a matrix of complex num-

bers. However it is often the case that to actually use the data at later step

of the design process the overhead becomes precious as without its infor-

mation content the matrix of numbers is just useless. How to know which

was the frequency of the spectral-domain representation of the electric �eld

which samples are recorded in the raw data together with their position in

space, if it is not reported together with them? Which was the total radiated

power the �eld carried, i.e. to which power level are the �eld strength values

normalised to? In most cases the engineer needs to keep track of all the

information seprately, maybe with very careful naming of the data �les, and

the main objective of EDX is to overcome this rather primitive behavior.

A software library, the Electromagnetic Data Interface (EDI), allows stan-

dardized access to data in the EDX language. A software library relives

developers from the burden of writing their own access functions, avoid mis-

takes and provides a common baseline to which any other implementation

can be compared for compliance with the EDX reference. In fact, it can be

regarded as the actual embodiment of the language itself.

The last component of the EDX language is the Electromagnetic Mark-

up Language (EML). It speci�es how the information is conveyed, e.g. how

di�erent quantities are to be named and structured while it does not specify

the content, i.e. names, structures and values (symbolic or numerical). It

is based on the XML language and its basic blocks are tags, attributes and

elements. The EML segments a data set into four main sections (e.g. in a

�le):

� Header: contains all the information about its origin and the standard

to which it complies.
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� Declaration: it speci�es the meaning and structure of data, with a

collections of Variables contained in one or more Folders. Each variable

belong to a class speci�ed in the corresponding Data Dictionary and

host all the components and, if the values are a few, also the raw data

to which the variable is referred to.

� Data: hosts all the raw data of the variables de�ned in the Declaration

Section having more than a few numeric values.

� Application Data: this section is intended for tool private data i.e.

data that are not part of the data set in question and a tool needs in

combination with them.

Finally a set of utilities, the so-called EDX Companion Tools, has been devel-

oped and include three tools: a visualizer, a validator and a browser. They

provide the additional basic functionality required for the daily use of EDX

as well as for its further development.

Nowadays the Electromagnetic Data Exchange language system is fairly

well consolidated. Its structure can be summarized with the following for-

mula:

EDX = EDDs + EML + EDI

The e�ort has been made in developing the data exchange model to ensure it

would be robust up to the well known limit posed by Godel's theorem on the

completeness of formal systems, which states that is impossible to guarantee

the syntactic completeness of any formal language, unless you accept con-

tradiction or semantic incompleteness. Actually, this is the main theoretical

reason for the segmentation adopted: the trade-o� between incompleteness

and contraditction is much easier to manage independently for each segment

than for the whole. The practical one being, much more prosaically, the

need for a segmented approach to tame the extreme complexity of the over-

all problem. Splitting the language in layers, each having a further internal

segmentation, forces the de�nition of clear interfaces and the early identi�-

cation of loopholes and omissions, thus making it possible to obtain a more

�exible and complete data model (within Godel's constraints).
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The �rst direct consequence of these considerations is that, besides the

above mentioned general requirements for a language, more speci�c technical

requirements have to be considered and followed. The new data model shall:

� handle the most common data sets in the �eld of Antenna and Elec-

tromagnetic Engineering;

� have a software library with complete interface for accessing data;

� have easy to understand and human-readable, data �les options;

� be �exible, especially with respect to accessing data;

� be able to use multiple representations of the same physical or mathe-

matical quantity;

� have the possibility to store meta-data as well as special data required

by some tools;

� be open to future revisions and extensions;

� allow to implement an open and freely available library to access data;

� be able to handle large amounts of data with high performances;

� be independent from the platform used (both software and hardware).
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6.2 Fields Data Dictionary

6.2.1 Dictionary Overview

The data dictionary is a collection of de�nitions specifying a way to convey

complete and self-standing information about electromagnetic �elds [13]. In

this speci�c case the information covered are in the �rst place true electro-

magnetic �elds in free-space, i.e. the physical quantities that describe the

energy distribution generated by electric charges across a region of free space.

They are usually described in engineering text books using their two compo-

nents E and H, which have the dimensions of [V/m] and [A/m] respectively.

Moreover, other quantities related to �elds and used in antenna engineer-

ing for the description of antenna radiation are handled (radiation pattern,

radiation intensity, directivity, gain, etc).

As can be clearly seen in Figure 6.1, the Field Data Dictionary de�nes

three root quantities (classes):

� Near �eld;

� Far �eld;

� Spherical Wave Expansion (SWE).

The root quantities are used to simplify data management and act as con-

tainer for all data relevant to the description of �elds and related quantities,

like gain and directivity.

Each root class contains three attributes (SpaceTypeAxis, SpaceTypeAxis,

Time Dependency) that de�ne the convention used in that data set and some

other classes also called subclasses. Each of these subclasses are fully de�ned

by other attributes or components as de�ne in [13]. Also the mesaurment

units, the type and the range for each component of each class and subclass

are speci�ed in the Data Dictionary (DD) de�nition. These values are the

default ones and can be overwritten simply specifying these quantities and

the corresponding new values which are valid only on that data set where

they are de�ned.

43



The de�nition of quantities used for spherical wave expansions is not very

di�erent from the one valid for near and far �eld. The major changes are

in the substitution of the spatial coordinates with a set of indices, identify-

ing each spherical harmonic, and the replacement of �eld samples by modal

coe�cients de�ned for a very speci�c decomposition of the �eld (evanescent

and travelling waves of TE and TM type) [13]. Strictly speaking, the lat-

ter di�erence would not a�ect the structure of the �eld quantity that would

remain a multi-dimensional quantity de�ned over a certain domain, i.e. the

SWE representation could be handled in parallel with the spatial sampling.

However, to underline the di�erences and avoid possible confusions the Field

data dictionary de�nes a separate class. This can be seen as an example of

the attempt to overcome Godel's limit by segmentation. This part of the

dictionary is based on the de�nition of Spherical Wave Expansion of Hansen

[41].

6.2.2 Example of Fields DD

To better clarify how the Data Dictionary is actually used and how the

corresponding EML data �le look like, let us consider the example detailed

in Appendix A.

The �rst line specify the XML version and the encoding used:

1 <?xml version="1.0" encoding="UTF -8"?>

Then, after few lines not particularly interesting to the human reader,

the Header Section is de�ned:

6 <Header >

7 <Stamps >

8 <Version >EDI Version 1.00.00 </ Version >

9 <Format >XML </Format >

10 <DateTime >2006 -12 -01 T12 :40:28Z</DateTime >

11 </Stamps >

12 <Origin >

13 <Tool ><Name ></Name ><Version ></Version ></Tool >

14 <Project ></Project >
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15 <User >

16 <Name ></Name >

17 <Affiliation ></Affiliation >

18 </User >

19 </Origin >

20 <UserText ></UserText >

21 </Header >

This part of the �le includes general information about the version, the

author of the �le, the a�liation and there is also space for some UserText

that is intended for any number of text lines that the output tool or the user

might �nd adequate. Then, the EML data �le continue with the Declaration

Section. For this DD, only one Folder is compulsory and allowed and contain

a collection of Variables which are instances of the classed de�ned in the

Data Dictionary de�nition. The Variable can appear in two forms:

� with its own values: the variable will be made to hold data of some

shape and type e.g. a vector of string-values or a matrix of integers.

� with references to other variables: the variable will not have any real

data. Rather, it will contain references that points at other EML vari-

ables in the same �le.

Let us see in detail one variable for each type:

33 <Variable Name="Horn_Field" Class="Field:Far" ID="1">

34 <Attribute Name="SpaceTypeAxis">Space </Attribute >

35 <Attribute Name="TimeDependency">+j\omegat </Attribute >

36 <Attribute Name="TimeTypeAxis">Frequency </Attribute >

37 <Sizes ></Sizes >

38 <Component Reference="Horn_Frequency"/>

39 <Component Reference="Horn_ScanRange_2D"/>

40 <Component Reference="Horn_ProjectionComponents"/>

41 <Component Reference="Horn_PowerNormalisation"/>

42 <Component Reference="Horn_RelativeGainOffset"/>

43 <Component Reference="Horn_PhaseReference"/>

44 <Component Reference="Horn_Directivity"/>
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45 </Variable >

This variable is an instance of the Far Field class as speci�ed in the corre-

spondent attribute (at line 33) and is identi�ed by name, which has to be

unique in the �le, and the ID integer number. Then there are the three

compulsory Attributes (lines 34-36) as can be seen in Figure 6.1 with the

correspondent values. The next line specify the size that may be empty or

containing a sequence of integers. If it is empty, the Variable either holds

a simple scalar or the variable is a container as in this case. Otherwise the

integers tell the size of an n-dimensional array also denoted a Rank n ar-

ray where each element is a Component. Next, there is a list of Component

which, in this case, are just a reference to other variables of the folder.

Another type of Variable is the one containing its own values as:

46 <Variable Name="Horn_Frequency" Class="Frequency" ID="2">

47 <Sizes > 2</Sizes >

48 <Component Type="double">

49 <Value > 5 7</Value >

50 </Component >

51 </Variable >

where it is easy to recognize the same structure of the opening line as before

followed by a non-empty Sizes element. In this case the instance of the

Frequency class has only one Component with its Type and values indicated

after the corresponding tag.

The third part of the EML data �le is constituted by the Data Section.

Usually, the number of data values in a Variable is larger than a few so

the values will not appear together with the declaration in a Value element.

Instead, the data will appear in a corresponding element in this section with

exactly the same name, equal data types and the attribute RefID has to

match with the ID attribute in the Declaration Section.

111 <Data >

112 <Variable Name="Horn_Directivity" RefID="10">

113 <Component Type="double">

114 <Value > 1.1 1.2 2.1 2.2 21.1 21.2 22.1
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22.2 31.1 31.2 32.1 32.2 -1.1 -1.2 -2.1

-2.2 -21.1 -21.2 -22.1 -22.2 -31.1 -31.2

-32.1 -32.2

127 </Value >

128 </Component >

129 </Variable >

130 </Data >

The last part of each EML data �le is the Application Data Section. This

section is intended for a programs private data that could be anything. This

explains why the syntax it is so easy to appear not existing: the maximum

freedom is left to the developer. For example the �eld data dictionary does

not include any speci�cation of bearing but some software tools actually used

this information. Hence the developers of a speci�c tool can add all data

which are not intended for other tools in this element i.e. a tools private

data. In the Example of Appendix A, for simplicity, this section is empty.

132 <ApplicationData >

133 </ApplicationData >
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6.3 Structure Data Dictionary

The EDX dictionaries de�ne exactly and in detail all the elements that will

appear in a speci�c data set that complies with their standard, including

all physical and mathematical items and quantities. The Structures Data

Dictionary de�ne all is needed to describe a physical structure for electro-

magnetic modeling. Usually, discretised geometry (mesh) data are stored in

long tables where it is not easy to reconstruct quickly and e�ectively high-

level information about the geometry, e.g. the shape of an object, and most

of the time, they are not accompanied by various other type of data (e.g. ma-

terial properties) that are necessary to the design tool. Moreover in practice

it is very useful to have multiple description of the same object, for exam-

ple with di�erent mesh accuracy and a CSG representation, and this is not

handled by common geometric formats.

Meeting all these requirements in a robust and consistent way in a data

model, calls for a highly structured organization of the information. This

explain why a layered structure had been adopted for the Structure DD.

Each layer, that will correspond to a Folder in the EML �le, holds infor-

mation about a certain type of data elements organized in classes or class

hierarchies. The layer that have been created are the following: Objects,

Geometry, Topology, Materials and Parameters. More could be added in the

future if need arises.

It is of interest to note that the layered approach is common to several other

�rich geometry formats�, like many CAD and the Geographical Information

System (GIS), in order to associate to purely geometric information addi-

tional and extraneous elements.

A much in-depth analysis of this Data Dictionary can be found in next Chap-

ter as, the development and re�nement of this DD, is the main goal of this

work.
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Figure 6.1: Fields Data Dictionary overview [13]
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Chapter 7

Structure Data Dictionary

The core of the work was the development of the Structure Data Dictio-

nary intended as an organized collection of all the information necessary to

describe a physical structure for electromagnetic modelling.

It is to point out that this collection does not include details about modelling

algorithms and their settings nor about the modelling process that generated

the data. Such choice is dictated by the need of making the description as

general as possible and as independent as possible from modelling method-

ologies. It is also not a limiting one as EDX o�ers the possibility to combine

multiple data sets, corresponding to di�erent dictionaries, within a single �le.

Thus allowing for the future exchange or even more complete information in

a single container.

The overall structure has been subjected to continuous revision over the

study period to reach the �nal structure shown in Figure 7.1. It is worth

noting that this was made possible by another advantage o�ered by the EDX

layered structured and by the modular architecture chosen for this study:

changes in the dictionary can be accommodated with very minor changes in

the Pyhton modules, most of which are limited to the GEO Modeller. Thus

adjustments were possible until the very end of the work.

From the overview, it is already clear that the structure can be divided

logically, and therefore practically, in �ve main Layers, namely: Parame-

ters, Materials, Objects, Geometry and Topology. Even if in the Fields Data
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Figure 7.1: Structure Data Dictionary: overview.

Dictionary, they have not been used, the EML syntax makes it possible to

use Subfolders besides Folders and so it seemed reasonable to use just one

top-level Folder (Root) that contains the class Conventions and other �ve

Subfolders.

A number of notational conventions are used in Figure 7.1:

� Folders are represented by coloured boxes;

� Classes are mostly shown as blank boxes hosting the names of their

attributes ;

� Abstract classes, not supposed to be associated to any variable, are

marked by an italicised name;
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� Dashed lines with a block arrow represent links among class instances,

i.e. the variable of the origin class must host a reference or other

pointer to the destination class indicated by the arrow. They do not

carry any information about the possible multiplicity of the relation to

avoid overloading the picture;

� Solid lines with closed white arrows indicate child-parent relations in

the class trees. Note that this implies not only the inheritance of at-

tributes and components, but also the fact that a link to a parent

abstract class (dached line) will actually become a reference or pointer

to an instance of one of its non-abstract children;

The Objects layer is the starting point for the entire system and outlines the

logical hierarchical structure of the whole data set. The RootElements class

has a list of links to Elements, which are supposed to be the entry points of

a hierarchy of other elements composing in more and more detail the struc-

ture. It re�ects the spontaneous high-level way to describe a complex object

starting from the general structure down to the smallest parts constituting

the selected element.

The Geometry layer contains the reference systems (ReferenceSystems class)

and two other sets of classes grouped by the abstract classes CSGElements

and BRep. It is important to note that the geometric information is not

only required to specify the overall structure and its components, but also to

carry information on the shape of individual mesh elements for non-planar

discretisations (e.g. NURBS-based ones).

The Topology layer is composed by the abstract class Cell that groups the

other four main topologic classes belonging to this layer, while the remain-

ing two (sheets and Siblings). The whole layer is needed for the 4D-BRep

description where Brick, Faces, Edges and Vertices (the white boxes), corre-

spond to the usual geometrical elements and o�er an entry point from the

Geometry layer as well as a way to link back to it, while the yellow classes

are added to create the complete 4D-BRep structure.

52



The Materials layer contains three separate classes each derived from the

root abstract class Materials: HomogeneousMaterials, Boundaries and Me-

dia. Each class is in fact a list and contains the information required for

the description of the electromagnetic properties of three di�erent types of

physical materials.

The Parameters layer contains a single class ParameterSpace, which instances

are lists of parameters with their de�nition. The symbols de�ned in these list

appear in the Geometry layer in place of numerical quantities allowing for

parameterized CSG descriptions. BReps descriptions are instead referred to

a single value of all parameters to avoid any geometric and topologic integrity

issues. Multiple BReps can be placed in a single data set and associated to

individual sets of parameter values.

Finally the Conventions class is in the Root layer and hosts those general

items which de�nition is applicable to the whole.

7.1 Objects Layer

As mentioned before the Object layer is the entry point to the entire system,

and consequently, the entire �le.

The RootElement, that as suggested by its name, is the gateway to the whole

description, has a list of links to an abstract class called Elements which

can be specialized in instances of di�erent classes such as Structure, Compo-

nent or EquivalentSouces. However each element derives from the abstract

class, three basic information: the name, the reference to an Aragement

class including a PlacementRule, to specify in a more convenient way com-

plex arrangements i.e. arrays and a ReferencePlacement pointing to the local

reference system, and a link to possible parameters lists.

It is to note that Structure class actually group subclasses,in fact there is

the need to have quite a few derivative classes to allow an easy and compact

de�nition of more complicated objects.
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The Component instances have a link to the correspondent material (in

the same name Layer) and a connection to Model and Port.

The link to Model can be multiple to allow the description of several �models�

of the same real object without generating fake and confusing new objects

for each representation. As natural, every model is composed by parts, each

part is an instance of the same name class and has a link to the correspondent

geometrical representation whether BRep or CSG. In fact, both possibilities

are implemented as forms of the Part class.

The Port class is intended to allow the description of any antenna ports

like physical ports or forced excitation, as the two Ports derivative classes

show. The link between ports and components is bidirectional in order to

make it possible to read both information in any desired order. This is made

necessary by the fact that a Port may need to be attached to two di�erent

Components or distinct parts of it.

Both PhysicalPort and ForcedExcitation acquire the attribute name from

the higher class and both kind of ports appear to be linked to some part

of the boundaries of the object they refer to. The main di�erence is that

the �rst type (e.g. end-point of a pin or contour of a waveguide) appear to

be referred to two parts of the boundaries and so provide the possibility of

being de�ned though a model with two parts or two distinct models, while

the second kind (e.g. impressed current) of port is usually link to one piece

of the boundary.

Last, the EquivalentSources class is the last descendent of the Element

class and it is needed to de�ne those electromagnetic �elds sources that are

not referred to any physical object such as equivalent currents and point

sources. They may or may not have a reference to the material depending

on the speci�c case. Moreover, since this class is not link to any Component

it has to have a link to a Model to be fully described. It is worth noticing

that parts of the model may be common to physical objects since, at the end

of the day, it is the same system that is being fully described.
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7.2 Topology Layer

The Topology Layer is a simple collection of the six classes required for the

description of the 4D-BRep representation discussed in Chapter 5.

The six classes are grouped by the abstract class called Cell, which is the

entry point to the Layer. The four classes constituting the classical BRep

(Bricks, Faces, Edges and Vertices) contain also a link to the elements in

the Geometry Layer (respectively to Volume, Surface, Curve and Points).

To clarify why this link is needed let us consider, for example, an Edge. If it

is straight, no other details are needed, otherwise if it is curve its geometry

needs to be specify in the correct layer and a link to that description has to

be provided.

The other two classes, namely Sheets and Siblings hosts the other required

information to complete the description and their structure is such to support

non-manifold topologies as well as volumetric meshes.

Note that the yellow coloured classes (Figure 7.2) is used in the to high-

light the fact that several Sheets and Siblings may respectively correspond

to a single Face, or Edge.

7.3 Geometry Layer

The Geometry Layer includes all the necessary classes to provide a full ge-

ometric description both using CSG or BRep de�nition. In fact the layer is

visibly divided into two main portion: the CSGElements and its derivatives

and the BRep and its descendants.

The �rst block includes three main realisations which are the Operator,

that hosts the CSG operators with the correspondent list of primitives it

operates on, the ReferenceSystem and the Shapes which include the four

categories of the 3D objects of di�erent dimensionality and referring to the

Topology Layer.

A future improvement for the Operator class could be to add other operators

beside the boolean ones to be able to de�ne easily, for instance, body of

revolution or to avoid multiple components and parts to de�ne shapes into
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composite, like for juxtaposition.

The ReferenceSystem class include the origin, the orientation of the axis

and a link to the associated elements which is more natural than having the

opposite direction links from the single shapes to the parent reference system

that will also force a naming system of the ReferenceSystem instances.

The BRep abstract class has three descendents, one for each mesh dimen-

sionality that is VolumeMesh, SurfaceMesh and CurveMesh. Each of those

has a reference to the appropriate topological class and a link to a speci-

�cation of the mesh parameters. The latter are host in the classes named

VolumeMeshType, SurfaceMeshType and CurveMeshType where the last one

is derived by the second one which in turn is derived from the �rst one.

All of those contain only and all the necessary information for the relative

dimension mesh.

Note that the indirect link to the topology had been introduced to avoid

confusion in the management of multiple copies of the same component. To

achieve this the indexing used is at a �layer level� that is to say that the

index in the Arrangement in the Object Layer and the index of the link to

the Topology in this Layer are equal as so a fully identi�ed portion of the

mesh correspond to each copy.

Finally the BRepApplicability class host all the relevant details that allow

a proper use of the corresponding mesh and to ensure, with a simple check,

the validity of the related mesh. This class contains information about the

frequency range where the model is valid, the details about the reference

values and range for any parameters that may appear in the geometrical de-

scription of the corresponding object. Another important information hosts

in this class is the reference value (ParameterReference)that speci�es the ac-

tual value used to compute the mesh and the range (ParameterRange) where

the mesh can be considered applicable.

7.4 Parameters Layer

The Parameters layer is the simplest one that contain just one class called

Parameters Space. This class is structured as a collection of lists where each
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one is independent to avoid possible con�icts in the naming of the parameters.

Each entry of the lists speci�es the name, the symbolic value and the

so called range of validity that means the assumed range of variation of the

parameter values, e.g. the one compatible with integrity or other constraints.

While at �rst it seemed to be reasonable, at the end it was decided that

no default values are de�ned here as they are more appropriately indicated

directly in the general properties of the BReps elements in the Geometry

layer, i.e to the meshes associated to the relevant object (in the Objects

layer).

In fact, in the Object Layer there can be any parameters related to any list

of the Parameters Layer with an explicit reference to the list; then only the

parameter name (i.e. the symbol associated to it) appears in the Geometry

Layer to complete the reference, and are implicitly referred to the same list.

This apparently awkward solution is made necessary to make sure that the

overall integrity can be easily maintained and a single parameter can appear

at several places, while still allowing the combination of multiple data sets,

a common operation in practical design �ows, without requiring complex

veri�cations of the uniqueness of names. Parameter lists are in fact name

spaces, with can be seen as declared at a certain level within the Objects

hierarchy and are thus visible only within the sub-tree below that point. As

the CSG elements in the Geometry layer are directly accessible from the

Object elements tree and only from there, the whole structure is actually

quite linear to a closer examination.

As said above, the use of multiple parameter lists is required to sim-

plify the combination of information coming from multiple sources and via

separate �les. As the combination occur at the level of the object tree it is

simply required to merge the Parameters layer making sure the < variable >

names associated to each list are unique, a task can be easily accomplished

also automatically, using a sequential number or the source �le name or

any other relevant information available at that time, o�ering a chance to

the user to select better names, if so desires. Furthermore, if a Parame-

terSpace used at a lower level of within the object tree includes a param-

eter duplicating one de�ned at an higher level the con�ict can be resolved
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by simple scoping, as in most programming languages, by making the local

de�nition prevail over the more global one. In the extreme case of a need

to use the latter it is always possible to use its fully quali�ed name, e.g.

< ParameterSpaceName > . < ParmanereName >.

7.5 Materials Layer

The Material Layer is the most straightforward layer containing three classes

namely, HomogeneousMaterials, Boundaries and Media all derived from the

abstract class Materials. Each of previous is in fact a, possible long, list of

all the necessary information to describe the three type of materials.

The HomogeneousMaterials contain the homogeneous isotropic medium

and the conducting surface with a skin depth.

The Boundaries are speci�ed with re�ection coe�cients, surface impedance

and surface admittance.

Finally the Media can be characterized by re�ection and transmission

matrix or the scattering matrix or impedance matrix or the admittance one.

Note that only one description for each material is allowed.
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Figure 7.2: Structure Data Dictionary: ParameterSpace, Matierials and
Ojcebts layers.

Figure 7.3: Structure Data Dictionary: Geometry and Topology layers.
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Chapter 8

Software prototype tool

Starting from the analysis of the antenna design process, paying speci�c

attention to related data model for electromagnetic simulation, a Python-

based prototype tool was developed.

The structure has undergone many changes, following the overall iterative

approach of the study, until the �nal version of the program which schematic

is shown in Figure 8.1.

Figure 8.1: Program logical schema.
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It is composed by three main logical segments (identi�ed in Figure 8.2

respectively by number 1, 3 and 5):

� EDX S I/O BackEnd: it includes a library of I/O functions to access,

both in reading and writing, the XML data �les;

� DMF Loader: starting from the formal de�nition of the language (coded

in the Dictionary Declaration Language [31]) it checks the lexicon and

the syntax and build the Data Model Dictionary (DMD).

� GEOModeler: it includes a library of functions to assemble the geomet-

rical and topological information and create the Data Values Dictionary

(DVD).

Each portion of the program can also be used independently as stand alone

tool. They have indeed been developed at di�erent times and integrated only

in the last stages of the study.

The coordination and interactions between the di�erent modules are man-

aged by a single main script that inherently has many degree of freedom to

give the user the possibility to employ it fully.

Figure 8.2: Program logical schema: step by step.

61



8.1 EDX I/O BackEnd

Due to the natural hierarchical structure of the XML data �le (an example

can be found in Appendix A) it had stand to reason to map the �le into a

tree data type. The lxml.etree toolkit [37] was used to do so, where the root

of the tree data type has been mapped to be the beginning of the �le itself

and each section is mapped as follow:

etree.root = <Element {http://www.edi-forum.org}EDIFile>

etree.root[1] = <Element {http://www.edi-forum.org}Header>

etree.root[3] = <Element {http://www.edi-forum.org}Declarations>

etree.root[5] = <Element {http://www.edi-forum.org}Data>

etree.root[7] = <Element{http://www.edi-forum.org}ApplicationData>

The other elements attached to the root (etree.root[0], etree.root[2], etree.root[4],

etree.root[6]) are just place-holder, necessary for the proper handling of the

typical EML �le, that contains the comment line including the name of the

section and are irrelevant for the purpose of the study.

Initially this library was divided in four classes, one for each section,

including all the functions operating on that part of the �le. After some

practise, it has been seen that this initial structure was somewhat redundant

and all functions could be rewritten to be independent from the section of

belonging and so have been grouped in one single class.

The latest version of the program includes 43 functions: 4 to assign the

elements of each section to the correspondent node of the tree data structure,

17 for reading the �les, 21 for writing it, one to write the etree to a �le.

The presence of the other allows for a greater �exibility and the user can

perform all the desirable operation on the data �les, possibly calling the

functions from a Python interpreter command line, e.g. for debugging pur-

poses. In fact the main reason for their development has been the testing of

the module accompanied by the which to o�er a complete set of functions to

future developers.

The Application Programming Interface (API) to the tool supposed to receive

or generated the actual data, the GEO Modeler in our case, is provided by
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a subset of functions indicated with �Y� (Yes) in the second column of the

Table 6.1.

In the same table a complete list of functions, used at the moment in the

�nal integrated tool, can be found.

Table 8.1: Complete list of I/O functions.

Function Name API Description

Header N Assign the Header elements to the etree

AssignHeaderElement N Assign or change one Header element

Declaration Y Assign the Declaration elements to the etree

Data Y Assign the Data elements to the etree

ReadHeader N Return the information of the header

Folders N Return all the folders info of the DS

FirstLevelFolder s N Return a list of the folders of the DS

SecondLevelFolders N Return a list of the subfolders of the DS

SearchVariable N Look for a variable in the DS

SearchFolder N Look for a folder in the DS

Variables N Return a list of the variables of the DS

Attributes Y Return a list of the attributes of the folder

passed in input

Domains Y Return a list of the domains of the folder passed

in input

Names Y Return a list of the names of the folder passed

in input

Sizes Y Return a list of the sizes of the variables

of the folder passed in input

Values Y Return a list of the values of the variables

of the folder passed in input

getDD N Return the Data Dictionary used in the �le

CreateVariableList N Return a list of the variables contained

in the Folder passed as input

Continued on next page
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Table 8.1 � continued from previous page

Function Name API Description

DataVariables N Return a list of the variables that have data

in the Data Section

ReadData Y Return a list of the data in the Data Section

ReadApplicationData N Return the Application Data

WriteVersion N Write the version in the Header section

WriteFormat N Write the format in the Header section

WriteDateTime N Write the date and time in the Header section

WriteToolName N Write the tool name in the Header section

WriteToolVersion N Write the tool version in the Header section

WriteProject N Write the project name in the Header section

WriteUserName N Write the user name in the Header section

WriteA�liation N Write the user a�liation in the Header section

WriteUserText N Write the user text in the Header section

SetFolder Y Set a folder in the DS

SetVariable Y Set a variable in the DS

SetAttribute Y Set an attribute in the DS

SetValue Y Set the value of a variable in the DS

SetSize Y Set the size of a variable in the DS

SetType Y Set the type of a variable in the DS

SetUnits Y Set the units of a variable in the DS

SetDomain Y Set the domain of a variable in the DS

WriteComponent Y Set a component of a variable in the DS

SetStructure Y Set the structure of a variable in the DS

WriteData Y Write the data in the Data section

WriteApplicationData N Write the application data in the Application

Data section

WriteToFile Y Write to etree to the �le passed in input

64



8.2 DMF Loader

This portion of the program includes the Data Model File (DMF) module

(identi�ed in Figure 8.2 with the number 2) which is a lexical and syntactical

analyser based on PLY which is a Python implementation of LEX/YACC,

respectively a lexical analyser and a compilers compiler evolved over many

years in open-source UNIX and LINUX world.

This module takes as input the formal de�nition of an EDD and �rst check

the lexicon of the �le and then the syntax. If no error are found it produces

the Data Model Dictionary (DMD) which is a Python ordered dictionary

(called Dict) containing all useful information extracted from the EDD that

had been read and encoded in such a way to make its use as simple and

straightforward as possible in the core of the EDX I/O module.

For the lexical analyzer a list of allowed tokens are de�ned using the BNF

(Backus-Naur Form ). They are grouped in:

� ID: [+a− zA− Z_][a− zA− Z_ : //0− 9]∗[0− 9a− zA− Z]

� VALUE: ([−]∗[0− 9][0− 9]∗[ .0− 9]∗)+

� reserved: a dictionary of key words that has to be identi�ed as is,

without being confused with the previous categories

� newline: \n+

After the de�nition of the tokens, the lexer core is built. Then, YACC is

set with all the necessary productions to be �exible enough to recognize

all the plausible dictionaries derived from the Data Dictionary Declaration

Language paying particular attention to disallow all the other constructions.

To give an example of the logical operation of the YACC let us consider

the following excerpt from a DDL �le:

([ new ] | override)

*{ attribute <attribute name > : <value >*{,<value >}}

*{ domain <domain name > reference <class name >}

[structure (CartesianProduct | ListOfTuples )]

[
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units <unit symbol >

type <type name >

size <number > *{,<number >}

|

+{ component <component name >

(

units <unit symbol >

type <type name >

[size <number >*{,<number >}]

[association <class name >]

|

reference <class name >

)

}

]

This portion is translated into successive productions, where the words in

capital letters are the reserved words or other previously de�ned tokens (ter-

minal symbols), while the remaining ones represent a link to other produc-

tions.

In correspondence of each de�nition it is compulsory to de�ne an action

that the YACC has to perform at the end of a rule. Two main kind of rules

had been used: if no real action is needed a �pass� operation is set, otherwise

the Dict dictionary entry is created and written on a �le (called dd).

<<NewClassDeclaration : StatusDeclaration

ZeroOrMoreAttributes ZeroOrMoreDomains

StructureDeclaration ComponentsDeclaration >>

pass

def p_StatusDeclaration(t):

<<StatusDeclaration : NEW

| OVERRIDE

| empty >>

pass
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def p_ZeroOrMoreAttributes(t):

<<ZeroOrMoreAttributes : ZeroOrMoreAttributes

AttributeDeclaration

| AttributeDeclaration

| empty >>

pass

def p_AttributeDeclaration(t):

<<AttributeDeclaration : ATTRIBUTE ID ':' ID>>

a = FolderName+'|'+Level+'|'+'_AT_'+'|'+VarClass+'|'+t[2]

dd.write("Dict['%s ']='%s' \n" %(a, t[4]))

def p_ZeroOrMoreDomains(t):

<<ZeroOrMoreDomains : ZeroOrMoreDomains

DomainDeclaration

| empty >>

pass

def p_DomainDeclaration(t):

<<DomainDeclaration : DOMAIN ID REFERENCE ID

| DOMAIN REFERENCE ID>>

if len(t) > 4:

a = FolderName+'|'+Level+'|'+'_DO_'+'|'+VarClass+

+'|'+t[2]

b = t[4]

dd.write("Dict['%s ']='%s' \n" %(a, t[4]))

else:

a = FolderName+'|'+Level+'|'+'_DO_'+'|'+VarClass+

+'|'+'Integer '

b= t[3]

dd.write("Dict['%s ']='%s' \n" %(a, t[3]))

def p_StructureDeclaration(t):

<<StructureDeclaration : STRUCTURE StructureQualifiers

| empty >>
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pass

def p_StructureQualifiers(t):

<<StructureQualifiers : CARTESIANPRODUCT

| LISTOFTUPLES >>

TypeOfStructure = t[1]

a = FolderName+'|'+Level+'|'+'_ST_'+'|'+VarClass

b = TypeOfStructure

dd.write("Dict['%s ']='%s' \n" %(a, t[1]))

def p_ComponentsDeclaration(t):

<<ComponentsDeclaration : Units Type Size

| OneOrMoreComponents

| empty >>

pass

The keys of the pairs to be entered into the Dict dictionary are then com-

posed, which can be described as:

key := FolderName | FolderType |_Identi�er_| ClassName | (opts)

� FolderName: the name of the folder (or subfolder) as de�ned in the

corresponding EDD;

� FolderType: can be _FO_ or _SF_ that respectively mean �Folder�

and �Subfolder�;

� Identi�er: two character, preceded and followed by an underscore, iden-

tifying the corresponding XML tag (see Table 6.2);

� ClassName: the name of the corresponding class as de�ned in the EDD;

� (opts): if the considered element is a Component then here there will

be a counter to univocally distinguish and group the di�erent ones for

the same class.

Is it to be noted that the entry corresponding to a de�nition of a new Folder

has a di�erent structure, that is to say:
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key := DataDictionaryName | FolderName | FolderType
value := FolderName

with similar meaning as above.

Finally, the values of the entries are default values that will be substi-

tuted by the actual data via the calls to the API functions in the EDX I/O

BackEnd, i.e. through the GEOModeller in our case. For testing purposes

they were mostly inserted by hand modifying the Python script where the

dictionary is actually written.
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8.3 GEO Modeller

This module has been developed as last and is identi�ed by number 5 in

Figure 8.2. The 4DBRep (Figure 8.2 n. 4) is the core of the module and

consist of a library of topological and geometrical functions that interact with

the rest of the Geo Modeller with two methods, one for reading and one for

writing.

The �rst step, to the development of this library, had been the Python

implementation of the BRep representation, that is to say that all the topo-

logical relations among bricks (B), faces (F), edges (E) and vertices (V), were

created. At a later stage, the 4DBRep representation was completed adding

the relationship concerning the sheets (H) and the siblings (I).

At the beginning also the nodes (N) were introduced but then, after some

trial examples, it resulted that the nodes were somewhat redundant and all

functions could be rewritten to be independent from them and all the needed

relations could be reconstruct from the other elements. The structures of the

4DBRep library is shown in Figure 8.3 where the following relations were

implemented:

Table 8.2: Complete list of Identi�er for DMD.

Relation Name used Description

HB HB to each sheet is associated the corresponding

brick

BF* BF for each brick a face in linked

FH FH each face is linked to the two corresponding

sheets

HF HF each sheet has a reference to the face

EF* EF edges are connected to one face

HI* HI each sheet has a link to one of its sibling

IH IH siblings has a reference to the belonging sheet

IE IE each sibling refer to the corresponding edge

EI* EI edges have link to just one of their sibling

Continued on next page
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Table 8.2 � continued from previous page

Relation Name used Description

II full-line II for each sibling is specify the

previous and following sibling according to the

corresponding sheet

II dot-line IC siblings have a reference to the corresponding

one that belong to another brick

EV EV for each each are individuated the two end vertices

VI* VI each vertex has a reference to one of the sibling

Note that the star near some associations in the previous table means that

it is a partial relation.

Figure 8.3: Structure of 4DBrep.
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It is to highlight that these relations are required and su�cient to rebuilt all

the others starting for any point to any other, as proved in Figure 8.5.

Beside that, also other relations were implemented such as: FE (face to edge),

faceTwin, for each sibling it is identify the correspondent sibling belonging to

another brick and adjacentSheets that link the two sheets of the same face.

Finally, the points, which are nothing more than the coordinates of the

vertices, are read and written by the same library even if they logically belong

to the Geometrical Layer instead of the Topological Layer as all the others,

beforehand mentioned.

To check the completeness and the correctness of the library several examples

and tests were done, starting with simple shapes such as boxes and plates up

to the more complex examples whose description can be found in Chapter

8. The general procedure is summarised in Figure 8.4: an empty model is

created, then a shape is generated and added to the model. Eventually the

model is plotted and the corresponding EDX data �le is written. Afterwards

the data �le is read, the model is rebuilt and is it plotted: if the initial shape

and this last one displayed are the same we are reasonably sure that the data

structure is complete and correct.

Figure 8.4: Basic �ow chart.
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To prove that, it is enough to reconstruct the information (vertices and

sheets) needed for plotting, both in writing and in reading, from the data

structure built. Two dedicated functions were implemented for that purpose:

� getVertices: that through the vertices extracts the points;

� getHV: that rebuilt a matrix containing the coordinates of the points

for each sheet. It can be sum up with the following reconstruction

algorithm:

HV = HI∗ * [II] * IE * EV

where once again the star stands for partial and the square parenthesis

stand for the iteration over the usual BRep structure.

It is worth to stress that in this module writing and reading actually mean

respectively to write and read the Data Value Dictionary (DVD) that is a

collection of dictionaries, one for each Layer, containing the real values that

will be passed to the EDX I/O back end to write or read the �le.

While the Topology dictionary is fully �ll up with the actual values auto-

matically from the 4DBRep library, the other dictionary are at the moment

�lled up by handwriting the dictionaries using another script of the module

called �otherFolders�. This part is surely open to future improvements.
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Figure 8.5: Reconstruction of topological relations in a reduced 4D-BRep
with partial encoding.
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Chapter 9

Results

A preliminary, but necessary, result is the deep analysis and understanding

of the whole design process of the antennas the related problems and needs.

This involved a not negligible critical study on the copious literature on the

arguments and a direct comparison with international antenna specialists.

Moreover, since this work is inserted in the much bigger frame of the

EDX, a substantial work on the project background had to be performed.

This entails a deep, both theoretical and practical, understanding of the

Fields Data Dictionary and on Electromagnetic Mark-Up Language (EML).

However the most relevant theoretical results have been achieved with the

development of the structured data model constituting the Structure Data

Dictionary detailed in Chapter 6.

About the practical result, the most tangible one is the development of

a Python-based prototype tool to manage the physical structure data model

with particular attention to the geometrical and topological information. The

�nal structure of the program is brought back in Figure 9.1 (see also Chapter

7).

As described in detail in Chapter 6, the tool is logically divided into three

main parts:

� EDX I/O back-end: it contains a complete sets of functions to fully

access the EML data �le.

� DMF Loader: it is constituted by an implementation of a lexical (LEX)
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Figure 9.1: Program logical schema.

and syntactical (YACC) analyser. It is able to read the formal de�ni-

tion of the EDX Language, check the lexicon, then the syntax and if

no errors are found it create the DMD which is a ordered dictionary

containing all the information on the data model needed to �ll up the

XML �le.

� Geo Modeller: it includes a library of functions to assemble the geomet-

rical and topological information and encode them into the DVD which

is a dictionary containing the actual values that have to be written to

the EML �le or that had been read from it.

The coordination and interaction between di�erent scripts are managed by

a single main script that inherently has many degree of freedom to give the

user the possibility to employ it fully.

It is to note that each portion can also be used as stand alone program. Just

to give an idea the tool is made by eight scripts for a total just below 3000

lines of code half of which constituting the 4D-BRep script.

At �rst the prototype had been applied to create simple example to it-
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eratively validate and consolidate the Structure Data Dictionary that have

been produced and re�ned at the same time (a complete description of it

can be found in Chapter 6). Then the program, corrected, completed and

consolidated in turn, had been applied to produce a number of more complex

and complete examples.

Next section describes in detail a simple example and later on some more

complex examples will be outlined.

9.1 Example 1

Let us consider three simple shapes: two boxes(depth=1, length=3, height=3)

and one square plate (side=2) disposed as shown in Figure 9.2.

Figure 9.2: Con�guration example 1.

The �rst operation is to describe the objects we want to write in the EML

�le in the function called GeoModeller in the Main script. In this speci�c

case:

1 def GeoModeller(self):

2 model = Model ()

3 box_1 = box(3,1,3, [0,0,0], np.eye (3))

4 model.addEntity(box_1)

5 box_2 = box(3,1,3, [0,0,3], np.eye (3))

6 model.addEntity(box_2)
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7 model.unifyWE ()

8 Plate = plate(np.array ([[2,1,0], [4,1,0], [4,3,0],

[2,3 ,0]]), [1,0,0], np.eye(3))

9 model.addEntity(Plate)

10 fakeShape = model.unifyWE ()

11

12 fakeModel = Model ([])

13 fakeModel.addEntity(fakeShape)

14 fakeModel.drawCollection ()

15 fakeModel.writeDVD ()

The general procedure, regardless the speci�c objects to describe, it to create

an empty model (line 2), create the desired objects using the di�erent types

of shapes available in the Shape class of the 4DBRep script, two by two.

It means that after having de�ned two shapes, if they have something in

common with other �gures we want to represent it is necessary to merge the

�rsts into a new shape before adding others (line 7, 10).

When merging shapes there are three possible behaviour:

� the shapes have di�erent dimensionalities: only the points, if there are

any shared ones, are actually merged;

� the shapes have the same dimensionality but do not share anything: the

corresponding 4D winged edges are just concatenated and the indices

updated;

� the shapes have the same dimensionality and share something: the

corresponding 4D winged edges are actually merged and a new shape

is returned.

So what happen at line 7 is the third possibility, while at line 10 is the �rst

type of operation that is performed. The reason why the product of line 10 is

called �fakeShape� is because is not actually a new shape (it is not memorized

anywhere) and the same would have happened in the case of another shape

of the same dimensionality of the �rst two but isolated from them.

Afterwards a new empty model is created (line 12) with the only purpose

of adding the �fakeShape� to be able to draw it and write the corresponding

DVD.
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The function drawCollection() (line 14) of the class Model simply call the

function �Shape.draw� on each shape contained in the model.

The drawing function reconstruct the information needed for the plot (ver-

tices and sheets) by extracting them from a chain of relations as described in

Chapter 6. The plot obtained is in Figure 9.3 and represent a �rst con�rm

that what will be written in the EML �le is, actually, what we wanted.

Figure 9.3: Example 1 plot.

Finally, the Data Value Dictionary (DVD) is written (line 15). This

function, is actually a list of calls to the function write in the WEdge class

that receive a number of parameters, including a reference to the Dictionary

where to write and the composed key that has to be added.

At this point the Topology dictionary and part of the Geometry one are

�lled up. To complete the DVD, that includes also the Root, the Objects,

the Materials and the ParateterSpace dictionaries, another script, called oth-

erFolders is used.

This last needs to manually introduce the correct values on the correspon-

dent keys which information are required to appear in the EDX �le.
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To check the correctness of the data �le created, the most e�cient and simple

way is to read the �le, extract all the information contained and plot them:

if the image displayed when writing and the one rebuilt when reading are the

same we can reasonably be sure that the data �le is correct.

To be more speci�c, the readGeoModeller() function, in the main script,

create a new model containing an empty winged edge only. Then the read

function of the WEdge class is called a number of times looking for all the

relations and associating them to the correspondent winged edge informa-

tion. Then the new shape individuated by the winged edge generated in

this manner is added to the model and this last is plotted using the same

drawColletion() function used before.

The EDX data �le for this example is shown below. It can be clearly seen the

division of the �le in the four main sections: Header (lines 2-21), Declaration

(lines 22-315), Data (lines 316-364) and Application Data (lines 365-367).

The Data section usually is the most substantial part of the �le potentially

containing huge amount of data.

In the Declaration section the outline of the Structure Data Dictionary

can be point out:

� Root Folder (lines 1-314): contains all the other layers and the Con-

ventions class (lines 25-32) with the correspondent attributes as set in

the Data Dictionary De�nition.

� Object Folder (lines 33-122): comprehends the Structure class (line 41)

which has Size=3 and in the values host the name of the three objects,

Box_1, Box_2 and Plate. These components are described respec-

tively in line 50, 56 and 62 in same names variables instances of the

Components class. Each of those refer to aModel instance (MyModel_1

(line 76), MyModel_2 (line 82) and MyModel_3 (line 88)). Every of

the last variables, in this case, has just one Part reference which are

realize in the variables at lines 95, 104 and 113. Each Parts instance

variables hosts also two references about their geometrical representa-
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tion that is to say one reference to the CSGDe�nition which value is

SolidBox for Box_1 and Box_2 and RectangularPlate for the third

shape, and the other reference to the BRep representation respectively

Box_1Mesh, Box_2Mesh and Plate_Mesh.

� Geometry Folder (lines 123-199): contains in particular the Points class

(lines 127.133) which size is 20 and has just one component Coordiantes

each one of size of 3, so in total there will be 60 values in the corre-

spondent variable in the Data Section (line 320).

� Topology Folder (lines 200-256): hosts the seven classes that compose

the 4DBrep representation with the respective sizes and values. If the

numbers of values is greater than twenty, than they are written in

the Data Section in a variable that has the same name and the same

reference ID.

� Parameters Folder (lines 257-264): no parameters have been used in

this example, so the layer appear to have no values in its variables.

� Materials Folder (lines 265-313): the only material used is Aluminium

(lines 266-276) as the variable at line 266 point out. This material,

belonging to the ConductingSurface class, is described by its electrical

conductivity and magnetic permeability and the frequency of charac-

terization is reported.

1 <EDIFile xmlns="http: //www.edi -forum.org" xmlns:xsi="http:

//www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http://www.edi -forum.org edi.xsd">

2 <!-- === Header section === -->

3 <Header >

4 <Stamps >

5 <Version >EDI Version 1.00.00 </Version >

6 <Format >XML</Format >

7 <DateTime/>

8 </Stamps >

9 <Origin >

10 <Tool>
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11 <Name/>

12 <Version/>

13 </Tool>

14 <Project/>

15 <User>

16 <Name>Francesca Rossi </Name>

17 <Affiliation/>

18 </User>

19 </Origin >

20 <UserText/>

21 </Header >

22 <!-- === Declarations section === -->

23 <Declarations >

24 <Folder Name="Root" ID="0" DataDictionary="

StructureAndMeshDataDictionary">

25 <Variable Name="Conventions" Class="Conventions" ID="

1">

26 <Attribute Name="SystemReferenceType">Cartesian </

Attribute >

27 <Attribute Name="PositiveVectorProduct">LeftHand </

Attribute >

28 <Attribute Name="SurfaceBoundaryOrientation">

CounterClockWise </Attribute >

29 <Attribute Name="volumeBoundaryOrientation">Outward

</Attribute >

30 <Attribute Name="Units">mm</Attribute >

31 <Attribute Name="Resolution">Double </Attribute >

32 </Variable >

33 <Folder Name="Objects" ID="1">

34 <Variable Name="RootElements" Class="RootElements"

ID="2">

35 <Component Name="Element" Reference="Element"/>

36 </Variable >

37 <Variable Name="Arrangements" Class="Arrangements"

ID="3">

38 <Component Name="PlacementRule"/>

39 <Component Name="ReferencePlacement" Reference="

ReferenceSystem"/>

40 </Variable >
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41 <Variable Name="MyStructure" Class="Structure" ID="

4">

42 <Component Name="ElementList" Type="String"

Reference="ParametersSpace">

43 <Size> 3</Size>

44 <Value> Box_1 , Box_2 , Plate</Value >

45 </Component >

46 <Attribute Name="Name">MyStructure </Attribute >

47 <Component Name="Placement"/>

48 <Component Name="Parameters"/>

49 </Variable >

50 <Variable Name="Box_1" Class="Component" ID="5">

51 <Component Name="Models" Type="String" Reference=

"Model">

52 <Size> 1</Size>

53 <Value> MyModel_1 </Value >

54 </Component >

55 </Variable >

56 <Variable Name="Box_2" Class="Component" ID="6">

57 <Component Name="Models" Type="String" Reference=

"Model">

58 <Size> 1</Size>

59 <Value> MyModel_2 </Value >

60 </Component >

61 </Variable >

62 <Variable Name="Plate" Class="Component" ID="7">

63 <Component Name="Models" Type="String" Reference=

"Port">

64 <Size> 1</Size>

65 <Value> MyModel_3 </Value >

66 </Component >

67 <Component Name="Placement"/>

68 <Component Name="Parameters"/>

69 <Component Name="Material"/>

70 <Component Name="Ports"/>

71 </Variable >

72 <Variable Name="EquivalentSources" Class="

EquivalentSources" ID="8">

73 <Component Name="Materials" Reference="Materials"
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/>

74 <Component Name="Models" Reference="Model"/>

75 </Variable >

76 <Variable Name="MyModel_1" Class="Model" ID="9">

77 <Component Name="Parts" Type="String">

78 <Size> 1</Size>

79 <Value> BoxPart_1 </Value >

80 </Component >

81 </Variable >

82 <Variable Name="MyModel_2" Class="Model" ID="10">

83 <Component Name="Parts" Type="String">

84 <Size> 1</Size>

85 <Value> BoxPart_2 </Value >

86 </Component >

87 </Variable >

88 <Variable Name="MyModel_3" Class="Model" ID="11">

89 <Component Name="Parts" Type="String" Reference="

Part">

90 <Size> 1</Size>

91 <Value> PlatePart </Value >

92 </Component >

93 <Component Name="Parameters"/>

94 </Variable >

95 <Variable Name="BoxPart_1" Class="Part" ID="12">

96 <Component Name="CSGDefinition" Type="String">

97 <Value> SolidBox_1 </Value >

98 </Component >

99 <Component Name="BReps" Type="String">

100 <Size> 1</Size>

101 <Value> Box_1Mesh </Value >

102 </Component >

103 </Variable >

104 <Variable Name="BoxPart_2" Class="Part" ID="13">

105 <Component Name="CSGDefinition" Type="String">

106 <Value> SolidBox_2 </Value >

107 </Component >

108 <Component Name="BReps" Type="String">

109 <Size> 1</Size>

110 <Value> Box_2Mesh </Value >
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111 </Component >

112 </Variable >

113 <Variable Name="PlatePart" Class="Part" ID="14">

114 <Component Name="CSGDefinition" Type="String">

115 <Value> RectangularPlate </Value >

116 </Component >

117 <Component Name="BReps" Type="String" Reference="

BRep">

118 <Size> 1</Size>

119 <Value> PlateMesh </Value >

120 </Component >

121 </Variable >

122 </Folder >

123 <Folder Name="Geometry" ID="2">

124 <Variable Name="Operator" Class="Operator" ID="15">

125 <Component Name="CSGElements" Reference="

CSGElement"/>

126 </Variable >

127 <Variable Name="Points" Class="Points" ID="16">

128 <Structure >ListOfTuples </Structure >

129 <Component Name="Coordinates" Units="m" Type="

double">

130 <Size> 3</Size>

131 </Component >

132 <Sizes>20</Sizes >

133 </Variable >

134 <Variable Name="BRepApplicability" Class="

BRepApplicability" ID="17">

135 <Component Name="FrequencyRange" Units="Hz" Type=

"double">

136 <Size> 2 </Size>

137 </Component >

138 <Component Name="Name" Type="string"/>

139 <Component Name="ReferenceValue" Type="double"/>

140 <Component Name="Range" Type="double">

141 <Size> 2 </Size>

142 </Component >

143 <Component Name="ModellingMethods" Type="strings"

/>
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144 </Variable >

145 <Variable Name="VolumeMesh" Class="VolumeMesh" ID="

18">

146 <Component Name="Roots" Type="integer"

Association="RootBricks"/>

147 <Component Name="MeshProperties" Type="integer"

Association="VolumeMeshTypes"/>

148 <Component Name="BRepApplicability" Association="

BRepApplicability"/>

149 </Variable >

150 <Variable Name="SurfaceMesh" Class="SurfaceMesh" ID

="19">

151 <Component Name="Roots" Type="integer"

Association="RootFaces"/>

152 <Component Name="MeshProperties" Type="integer"

Association="SurfaceMeshTypes"/>

153 <Component Name="BRepApplicability" Association="

BRepApplicability"/>

154 </Variable >

155 <Variable Name="CurveMesh" Class="CurveMesh" ID="20

">

156 <Component Name="Roots" Type="integer"

Association="RootEdge"/>

157 <Component Name="MeshProperties" Type="integer"

Association="CurveMeshTypes"/>

158 <Component Name="BRepApplicability" Association="

BRepApplicability"/>

159 </Variable >

160 <Variable Name="RootBricks" Class="RootBricks" ID="

21">

161 <Component Name="BrickIndices" Type="integer"

Association="Bricks"/>

162 <Component Name="Arrangements" Type="integer"

Association="Arrangements"/>

163 </Variable >

164 <Variable Name="RootFaces" Class="RootFaces" ID="22

">

165 <Component Name="FaceIndices" Type="integer"

Association="Faces"/>
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166 <Component Name="Arrangements" Type="integer"

Association="Arrangements"/>

167 </Variable >

168 <Variable Name="RootEdges" Class="RootEdges" ID="23

">

169 <Component Name="EdgeIndices" Type="integer"

Association="Faces"/>

170 <Component Name="Arrangements" Type="integer"

Association="Arrangements"/>

171 </Variable >

172 <Variable Name="CurveMeshTypes" Class="

CurveMeshTypes" ID="24">

173 <Structure >ListOfTuples </Structure >

174 <Component Name="MeshOrder" Type="string"/>

175 <Component Name="MeshType" Type="string"/>

176 </Variable >

177 <Variable Name="SurfaceMeshTypes" Class="

SurfaceMeshTypes" ID="25">

178 <Component Name="MeshOrder" Type="string"/>

179 <Component Name="MeshType" Type="string"/>

180 <Component Name="MinNoVertices" Type="integer"/>

181 <Component Name="MaxNoVertice" Type="integer"/>

182 </Variable >

183 <Variable Name="VolumeMeshTypes" Class="

VolumeMeshTypes" ID="26">

184 <Component Name="MeshOrder" Type="string"/>

185 <Component Name="MeshType" Type="string"/>

186 <Component Name="MinNoVertices" Type="integer"/>

187 <Component Name="MaxNoVertice" Type="integer"/>

188 </Variable >

189 <Variable Name="ReferenceSystem" Class="

ReferenceSystem" ID="27">

190 <Structure >ListOfTuples </Structure >

191 <Component Name="Origin" Type="float">

192 <Size> 3 </Size>

193 </Component >

194 <Component Name="Orientation" Type="float">

195 <Size> 3 </Size>

196 </Component >
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197 <Component Name="AssociatedElement" Reference="

Element"/>

198 </Variable >

199 </Folder >

200 <Folder Name="Topology" ID="3">

201 <Variable Name="Bricks" Class="Bricks" ID="28">

202 <Structure >ListOfTuples </Structure >

203 <Component Name="Face" Type="integer" Association

="Faces">

204 <Value> 0 6</Value>

205 </Component >

206 <Sizes>0</Sizes>

207 <Component Name="Volume" Type="integer"

Association="Volumes"/>

208 </Variable >

209 <Variable Name="Faces" Class="Faces" ID="29">

210 <Structure >ListOfTuples </Structure >

211 <Component Name="AdjacentSheets" Type="integer"

Association="Sheets">

212 <Value> 1 3 5 7 9 11 13 15 17 19 21 23 25 27</

Value >

213 <Size> 1 </Size>

214 </Component >

215 <Sizes>14</Sizes >

216 <Component Name="Surface" Type="integer"

Association="Surface"/>

217 </Variable >

218 <Variable Name="Edges" Class="Edges" ID="30">

219 <Structure >ListOfTuples </Structure >

220 <Component Name="Face" Type="integer" Association

="Faces"/>

221 <Sizes>28</Sizes >

222 <Component Name="Sibling" Type="integer"

Association="Siblings"/>

223 <Component Name="EndVertices" Type="integer"

Association="Vertices">

224 <Size> 2 </Size>

225 </Component >

226 <Component Name="Curve" Type="integer"

89



Association="Curve"/>

227 </Variable >

228 <Variable Name="Vertices" Class="Vertices" ID="31">

229 <Structure >ListOfTuples </Structure >

230 <Component Name="Point" Type="integer"

Association="Points"/>

231 <Sizes>20</Sizes >

232 <Component Name="Sibling" Type="integer"

Association="Sibling"/>

233 </Variable >

234 <Variable Name="Sheets" Class="Sheets" ID="32">

235 <Structure >ListOfTuples </Structure >

236 <Component Name="Brick" Type="integer"

Association="Bricks"/>

237 <Sizes>28</Sizes >

238 <Component Name="Face" Type="integer" Association

="Faces"/>

239 <Component Name="Sibling" Type="integer"

Association="Siblings">

240 <Value> 0 0 1 2 3 4 12 12 13 14 15 16 24 24</

Value >

241 </Component >

242 </Variable >

243 <Variable Name="Siblings" Class="Siblings" ID="33">

244 <Structure >ListOfTuples </Structure >

245 <Component Name="Edge" Type="integer" Association

="Edges"/>

246 <Sizes>28</Sizes >

247 <Component Name="Sheet" Type="integer"

Association="Sheets"/>

248 <Component Name="IncidentSiblings" Type="integer"

Association="Siblings">

249 <Size> 2 </Size>

250 </Component >

251 <Component Name="FaceTwin" Type="integer"

Association="Siblings"/>

252 <Component Name="Vertex" Type="integer"

Association="Vertices"/>

253 <Component Name="Sibling" Type="integer"
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Association="Sibling"/>

254 <Component Name="Cousin" Type="integer"

Association="Cousin"/>

255 </Variable >

256 </Folder >

257 <Folder Name="ParameterSpace" ID="4">

258 <Variable Name="Parameter" Class="Parameter" ID="34

">

259 <Component Name="Name" Units="none" Type="string"

/>

260 <Component Name="Expression" Units="none" Type="

string"/>

261 <Component Name="MinValue" Units="none" Type="

double"/>

262 <Component Name="MaxValue" Units="none" Type="

double"/>

263 </Variable >

264 </Folder >

265 <Folder Name="Materials" ID="5">

266 <Variable Name="Aluminium" Class="ConductingSurface

" ID="35">

267 <Component Name="ElectricalConductivity" Type="

double" Units="S/m">

268 <Value> 3.816e7</Value >

269 </Component >

270 <Component Name="MagneticPermeability" Type="

double" Units="H/m">

271 <Value> 1</Value>

272 </Component >

273 <Component Name="Frequency" Type="double" Units="

Hz">

274 <Value> 12e9</Value>

275 </Component >

276 </Variable >

277 <Variable Name="HomogeneousIsotropicMedium" Class="

HomogeneousIsotropicMedium" ID="36">

278 <Component Name="DieliectricPermittivity" Units="

F/m" Type="double"/>

279 <Component Name="MagneticConductivity" Units="Ohm
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/m" Type="Double"/>

280 </Variable >

281 <Variable Name="Boundaries" Class="Boundaries" ID="

37">

282 <Component Name="IncidenceAngleTheta" Units="rad"

Type="Double"/>

283 <Component Name="IncidenceAnglePhi" Units="rad"

Type="Double"/>

284 <Component Name="Frequency" Units="Hz" Type="

Double"/>

285 </Variable >

286 <Variable Name="ReflectionCoefficient" Class="

ReflectionCoefficient" ID="38">

287 <Component Name="ReflectionCoefficient" Units="

none" Type="Complex"/>

288 </Variable >

289 <Variable Name="SurfaceImpedance" Class="

SurfaceImpedance" ID="39">

290 <Component Name="SurfaceImpedance" Units="Ohm"

Type="Complex"/>

291 </Variable >

292 <Variable Name="SurfaceAdmittance" Class="

SurfaceAdmittance" ID="40">

293 <Component Name="SurfaceAdmittance" Units="S"

Type="Complex"/>

294 </Variable >

295 <Variable Name="Media" Class="Media" ID="41">

296 <Component Name="IncidenceAngleTheta" Units="rad"

Type="Double"/>

297 <Component Name="IncidenceAnglePhi" Units="rad"

Type="Double"/>

298 <Component Name="Frequency" Units="Hz" Type="

Double"/>

299 </Variable >

300 <Variable Name="ReflectionAndTransmissionMatrix"

Class="ReflectionAndTransmissionMatrix" ID="42"

>

301 <Component Name="ReflectionCoefficient" Units="

none" Type="Complex"/>
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302 <Component Name="TransmissionCoefficient" Units="

none" Type="Complex"/>

303 </Variable >

304 <Variable Name="ScatteringMatrix" Class="

ScatteringMatrix" ID="43">

305 <Component Name="ScatteringElements" Units="none"

Type="Complex"/>

306 </Variable >

307 <Variable Name="ImpedanceMatrix" Class="

ImpedanceMatrix" ID="44">

308 <Component Name="ImpedanceElements" Units="Ohm"

Type="Complex"/>

309 </Variable >

310 <Variable Name="AdmittanceMatrix" Class="

AdmittanceMatrix" ID="45">

311 <Component Name="AdmittanceElements" Units="S"

Type="Complex"/>

312 </Variable >

313 </Folder >

314 </Folder >

315 </Declarations >

316 <!-- === Data section === -->

317 <Data>

318 <Variable Name="Points" RefID="15">

319 <Component Name="Coordinates" Type="double">

320 <Value>3.0 1.0 3.0 0.0 1.0 3.0 0.0 0.0 3.0 3.0 0.0

3.0 3.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 3.0 0.0

0.0 3.0 1.0 6.0 0.0 1.0 6.0 0.0 0.0 6.0 3.0

0.0 6.0 3.0 1.0 3.0 0.0 1.0 3.0 0.0 0.0 3.0 3.0

0.0 3.0 3.0 1.0 0.0 5.0 1.0 0.0 5.0 3.0 0.0

3.0 3.0 0.0</Value>

321 </Component >

322 </Variable >

323 <Variable Name="Edges" RefID="29">

324 <Component Name="Face" Type="integer">

325 <Value>0 0 0 0 1 1 1 2 2 3 3 4 6 6 6 6 7 7 7 8 8 9

9 10 12 12 12 12</Value>

326 </Component >

327 <Component Name="Sibling" Type="integer">
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328 <Value>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27</Value>

329 </Component >

330 <Component Name="EndVertices" Type="integer">

331 <Value>0 1 1 2 2 3 3 0 4 5 5 1 0 4 5 6 6 2 6 7 7 3

7 4 8 9 9 10 10 11 11 8 0 1 1 9 8 0 1 2 2 10 2

3 3 11 3 0 4 17 17 18 18 19 19 4</Value >

332 </Component >

333 </Variable >

334 <Variable Name="Vertices" RefID="30">

335 <Component Name="Point" Type="integer">

336 <Value>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19</Value>

337 </Component >

338 <Component Name="Sibling" Type="integer">

339 <Value>0 0 1 2 4 4 7 9 8 8 9 10 12 12 15 17 16 16

17 18</Value>

340 </Component >

341 </Variable >

342 <Variable Name="Sheets" RefID="31">

343 <Component Name="Brick" Type="integer">

344 <Value>0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 nan nan nan nan</Value>

345 </Component >

346 <Component Name="Face" Type="integer">

347 <Value>0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

10 11 11 12 12 13 13</Value >

348 </Component >

349 </Variable >

350 <Variable Name="Siblings" RefID="32">

351 <Component Name="Edge" Type="integer">

352 <Value>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27</Value>

353 </Component >

354 <Component Name="Sheet" Type="integer">

355 <Value>0.0 2.0 0.0 4.0 0.0 6.0 0.0 8.0 2.0 10.0 2.0

4.0 2.0 8.0 4.0 10.0 4.0 6.0 6.0 10.0 6.0 8.0

8.0 10.0 12.0 14.0 12.0 16.0 12.0 18.0 12.0

20.0 14.0 22.0 14.0 16.0 14.0 20.0 16.0 22.0
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16.0 18.0 18.0 22.0 18.0 20.0 20.0 22.0 24.0

26.0 24.0 26.0 24.0 26.0 24.0 26.0</Value>

356 </Component >

357 <Component Name="IncidentSiblings" Type="integer">

358 <Value>3 5 0 8 1 10 2 6 6 7 4 1 0 11 5 9 7 2 8 11 9

3 10 4 11 1 8 16 9 18 10 2 2 3 0 9 8 19 1 17 3

10 16 19 17 11 18 0 19 17 4 18 17 19 18 4 1 6

2 5 3 8 0 10 5 11 0 7 4 3 8 4 1 9 10 7 2 11 6 9

9 2 10 1 11 16 8 18 1 19 8 3 0 11 16 0 9 17 18

3 10 19 2 17 17 19 18 4 19 17 4 18</Value >

359 </Component >

360 <Component Name="FaceTwin" Type="integer">

361 <Value>16 19 21 23 nan nan nan nan nan nan nan nan

nan nan nan nan 0 nan nan 1 nan 2 nan 3 nan nan

nan nan</Value>

362 </Component >

363 </Variable >

364 </Data>

365 <!-- === Application Data section === -->

366 <ApplicationData >

367 </ApplicationData >

368 </EDIFile >

9.2 Other examples

A number of other examples of increasing complexity and interest were cre-

ated. The general method followed is the one outlined in the previous section

and shown in the �ow chart in Figure 9.4.

It is to note that while the previous and other simple examples were

generated with the program itself, the larger ones presented in this section

were generated with a commercial CAD (Rhinoceros) and imported using the

Polygon File Format or Stanford Triangle Format (.ply) data format, which

provides a basic but rather e�ective way to transfer the faceted geometries

used for the testing.

The structures considered for a further discussion in this work are:

� a re�ector antenna;
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� a simpli�ed satellite;

� the Emerald Satellite.

Figure 9.4: General method, �ow chart.
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9.2.1 Re�ector Antenna

The re�ector antenna considered is constituted by 45 di�erent shapes merged

together: 8 pyramids, all obtained by one single shape rotated and translated

as needed, 4 parallelepiped, obtained as the previous shapes, one rhomboid

as feeder and 32 triangles forming the paraboloid. Once again the shapes

have di�erent dimensionalities with the following topological consequences.

The CAD version can be seen in Figure 9.5, while the plot corresponding

to the EML �le is shown in Figure 9.6.

It is to note that the vertices of the pyramids are in common with the rhom-

boid in the upper ones and with some vertices of the re�ector for the others

and these points are correctly individuated and merged by the program.

Figure 9.5: Re�ector antenna, CAD model.
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Figure 9.6: Re�ector antenna plotted model.

9.2.2 Simpli�ed Satellite

The simpli�ed satellite considered had been obtained with the CAD software

and it is shown in Figure 9.7.

This is actually the more complex example as the number of the involved

shapes are almost one thousands.

In fact, the structure of this satellite is made of ten main parts: the solar

panels, the body, three re�ectors of the sides of the body, two other antennas

on the top and two little horns on the superior edge of the body and an array

on the back.

It is to highlight that the re�ectors on the side are a completely di�erent

shape compared to the antennas on the top that actually are scaled version

on the antenna described in section 8.2.1.
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Figure 9.7: Simpli�ed Satellite, CAD model.

The time required to compute all the matrices of the topological structure

is about one hour and this is due to the fact that the tool has not been

optimised but the only time that matter is the one required to actually write

or read the data �le. This time is about 25s in this case which is more than

acceptable.

The obtained plots are shown in Figure 9.8 and some details are presented

in Figure 9.10.
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(a) Lateral view.

(b) Top view.

Figure 9.8: Simpli�ed Satellite.
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(a) Horn A.

(b) Horn B.

Figure 9.9: Simpli�ed Satellite details.
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(a) Array.

(b) Re�ector.

Figure 9.10: Other details of the Simpli�ed Satellite.
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9.2.3 Emerald Satellite

A model of the Emerald Satellite has been considered (Figure 9.11).

Using this, an entire work of CAD preconditioning had been applied and the

complete analysis and description can be found in [28].

Figure 9.11: Emerald Satellite, CAD model.

The satellite then, had been meshed and divided into two parts corre-

sponding to the solar panels and the body with the antennas and the equip-

ment.

For the purpose of this work, each solar panel has been considered as single

shape and so the other portion which includes the body.

About the �rst part, one panel had been generated and added to the

model, then the other one had been added and the two corresponding topo-

logical structure had been concatenated since, obviously, they do not share

any points. The resulting structure have 2752 points and 5616 faces.

The body and the equipment, constituting one single shape, have a mesh

made of 5887 points and 11778 triangles.

It is clear that the computational time required to generate all the ma-

trices, operate and concatenate on them is much longer than the previous

examples but, again, the time that really matter is the actual writing/reading

time that is of about 60 s at most, for the body of this satellite.
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(a) Solar Panels.

(b) Body.

Figure 9.12: Emerald Satellite.
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Chapter 10

Conclusions

The design of antennas, especially space antennas, is a rather complex process

that involves continuous adjustments and re�nements until the desired result

is reached. This implies an ongoing exchange of information between di�erent

tools and specialists from various discipline and most of the time the data

have to be translated or adjusted to the di�erent languages, standards or

habits. This process not only consume a lot of time but also impede to reach

better results that could be achieved more easily if there were a common

language shared from all the design tools and used by all the specialists.

To reach this objective, that had been felt more and more from the com-

munity during the last decade, the Electromagnetic Data Exchange (EDX)

Working Group was founded and it is composed by the Electromagnetic and

Space Division of the European Space Agency, the Antenna Centre of Excel-

lence and the European Antenna Modelling Library team.

The outcome is the Electromagnetic Data Exchange (EDX) language. It

is formed by three main elements: a neutral XML-based Electromagnetic

Markup Language (EML), with a simple grammar that is used for the data

�les, a set of Electromagnetic Data Dictionaries (EDDs) establish the lexicon

of the exchange language and a software library, the Electromagnetic Data

Interface (EDI), that simpli�es the access to data from C++, Fortran and

Matlab programs.

The Electromagnetic Data Dictionary initially identi�ed concern the �elds,
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the induced currents on various geometries, the Green's function for layered

structures, circuit parameters, modal expansion and the geometry.

A number of results have been achieved (Chapter 8) both theoretically and

practically.

Concerning the �rst kind, the most important is the implementation of the

geometry data model called Structure Data Dictionary. The elements that

had to appear on this EDD were already established, but the actual data

structure, how all the information have to be related and organised and a

number of other details have been developed and discussed in this work (see

Chapter 7). It is relevant to note that, when considering a complex structure

interesting for electromagnetic purposes, e.g. a satellite, the information

needed for the design and analysis purposes, includes a number of information

that are not strictly related to the geometry of the object at �rst sight, such

as material properties. This is one of the main reason why the Structure

Data Dictionary (SDD) has a much higher level of complexity if comparing

it to the Field Data Dictionary previously developed by the same Working

Group. The SDD consist in four main folders contained in a common frame

(Root Folder) that include some speci�cation shared by all the folders. These

last are the Objects Folder, the Geometry, the Topology, the Materials and

the Parameter Space one. Each of those includes a number of classed related

and connected to each other in a way to furnish all the information required

and a reasonable access to them.

The most remarkable practical result of this work is the implementation

of a Python-based prototype tool, a minimalistic CAD, to manage the phys-

ical structure data model with particular attention to the geometrical and

topological information. This tool in composed by three main logical seg-

ments: the �rst one is the EDX I/O back end, that contains a complete sets

of functions to fully access the data �les. The second part is the Data Do-

main Model File (DMF) loader, which is constituted by an implementation

of a lexical (LEX) and syntactical (YACC) analyser able to read and check

the formal de�nition of the EDX language and create a dictionary containing

all the information on the data model needed to �ll up the EML �le.
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The third segment is the Geo Modeller that includes a library of functions

to assemble the geometrical and topological information and encode them

in another dictionary containing the actual values that has to be written or

that had been read on the EML data �le.

The coordination and interactions between the di�erent modules are man-

aged by a single main script that inherently has many degree of freedom

to give the user the possibility to employ it fully. Each portion of the pro-

gram can also be used independently as stand alone tool since they have

been developed at di�erent times and integrated only in the last stages of

the study.

This prototype has been exploited to generate in an easy and e�ective

way, some complex and complete examples of the Structure Data Dictionary

(see Chapter 8). In particular, starting from some basic examples, two type

of re�ector antennas, an array, a simpli�ed satellite and the Emerald Satellite

have been considered.

The general method can be summarised as follow: an empty model is cre-

ated, then one or more shapes are generated and their topological structure

is merged, concatenated or uni�ed depending on the case and then added

to the model. Eventually the model is plotted and the corresponding EDX

data �le is written. Afterwards the data �le is read, the model is rebuilt and

is it plotted, if the initial shape and this last one displayed are the same we

are reasonably sure that the data structure is complete and correct and the

corresponding EML data �le is valid.

While the Structure Data Dictionary has reach its ultimate version and has

been formalised, some future improvement are foreseen for the prototype

tools. Particular e�ort will be put on the optimisation of the code and on

the improvements of the routine for generate the other non-topological infor-

mation.
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Appendix A

XML example �le

The following example had been created using the Field Data Dictionary and

in particular the Far Field class there de�ned.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <EDIFile xmlns="http://www.edi -forum.org"

3 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -

instance"

4 xsi:schemaLocation="http://www.edi -forum.org edi.

xsd">

5 <!-- === Header section === -->

6 <Header >

7 <Stamps >

8 <Version >EDI Version 1.00.00 </Version >

9 <Format >XML</Format >

10 <DateTime >2006 -12 -01 T12:40:28Z </DateTime >

11 </Stamps >

12 <Origin >

13 <Tool><Name></Name><Version ></Version ></Tool>

14 <Project ></Project >

15 <User>

16 <Name></Name>

17 <Affiliation ></Affiliation >

18 </User>

19 </Origin >
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20 <UserText ></UserText >

21 </Header >

22 <!-- === Declarations section === -->

23 <Declarations >

24 <Folder Name="EDI_FF_TestFile_2.xml" ID="0">

25 <Variable Name="Horn_Directivity" Class="

Field:Directivity" ID="10">

26 <Sizes> 2 3 2 2</Sizes >

27 <Domain Reference="Horn_ProjectionComponents"/>

28 <Domain Reference="Horn_Phi"/>

29 <Domain Reference="Horn_Theta"/>

30 <Domain Reference="Horn_Frequency"/>

31 <Component Type="double"/>

32 </Variable >

33 <Variable Name="Horn_Field" Class="Field:Far" ID="1">

34 <Attribute Name="SpaceTypeAxis">Space </Attribute >

35 <Attribute Name="TimeDependency">+j\omegat </Attribute

>

36 <Attribute Name="TimeTypeAxis">Frequency </Attribute >

37 <Sizes></Sizes>

38 <Component Reference="Horn_Frequency"/>

39 <Component Reference="Horn_ScanRange_2D"/>

40 <Component Reference="Horn_ProjectionComponents"/>

41 <Component Reference="Horn_PowerNormalisation"/>

42 <Component Reference="Horn_RelativeGainOffset"/>

43 <Component Reference="Horn_PhaseReference"/>

44 <Component Reference="Horn_Directivity"/>

45 </Variable >

46 <Variable Name="Horn_Frequency" Class="Frequency" ID="2

">

47 <Sizes> 2</Sizes>

48 <Component Type="double">

49 <Value> 5 7</Value>

50 </Component >

51 </Variable >

52 <Variable Name="Horn_PhaseReference" Class="

PhaseReferencePoint" ID="9">

53 <Sizes></Sizes>

54 <Component Name="x" Type="double">
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55 <Value> 5</Value>

56 </Component >

57 <Component Name="y" Type="double">

58 <Value> 5</Value>

59 </Component >

60 <Component Name="z" Type="double">

61 <Value> 5</Value>

62 </Component >

63 </Variable >

64 <Variable Name="Horn_Phi" Class="Phi" ID="5">

65 <Sizes> 3</Sizes>

66 <Component Type="double">

67 <Value> 2 4 8</Value>

68 </Component >

69 </Variable >

70 <Variable Name="Horn_PowerNormalisation" Class="

PowerReference" ID="7">

71 <Sizes></Sizes>

72 <Component Name="Radiated" Type="double">

73 <Value> -1</Value>

74 </Component >

75 <Component Name="Accepted" Type="double">

76 <Value> -1</Value>

77 </Component >

78 <Component Name="MatchedLine" Type="double">

79 <Value> -1</Value>

80 </Component >

81 <Component Name="Available" Type="double">

82 <Value> -1</Value>

83 </Component >

84 </Variable >

85 <Variable Name="Horn_ProjectionComponents" Class="

ProjectionComponents:Spherical" ID="6">

86 <Sizes> 2</Sizes>

87 <Component Type="string">

88 <Value> "Theta" "Phi"</Value >

89 </Component >

90 </Variable >
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91 <Variable Name="Horn_RelativeGainOffset" Class="

RelativeGainNormalisationOffset" ID="8">

92 <Sizes></Sizes>

93 <Component Type="double">

94 <Value> 0</Value>

95 </Component >

96 </Variable >

97 <Variable Name="Horn_ScanRange_2D" Class="

ScanRange:ThetaPhi" ID="3">

98 <Sizes></Sizes>

99 <Component Reference="Horn_Theta"/>

100 <Component Reference="Horn_Phi"/>

101 </Variable >

102 <Variable Name="Horn_Theta" Class="Theta" ID="4">

103 <Sizes> 2</Sizes>

104 <Component Type="double">

105 <Value> 3 5</Value>

106 </Component >

107 </Variable >

108 </Folder >

109 </Declarations >

110 <!-- === Data section === -->

111 <Data>

112 <Variable Name="Horn_Directivity" RefID="10">

113 <Component Type="double">

114 <Value>

115 1.1 1.2

116 2.1 2.2

117 21.1 21.2

118 22.1 22.2

119 31.1 31.2

120 32.1 32.2

121 -1.1 -1.2

122 -2.1 -2.2

123 -21.1 -21.2

124 -22.1 -22.2

125 -31.1 -31.2

126 -32.1 -32.2

127 </Value>
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128 </Component >

129 </Variable >

130 </Data>

131 <!-- === Application Data section === -->

132 <ApplicationData >

133 </ApplicationData >

134 </EDIFile >

112



Appendix B

Synopsis of the EDX Data

Dictionary Declaration Language

The full description and documentation can be found in [31].

Data dictionary <dictionary name >

[includes <dictionary name >*{,< dictionary name >}]

+{ ClassDeclaration}

end

ClassDeclaration =

class <class name >

[ NewClassDeclaration |

SubclassDeclaration |

ClassImportDeclaration]

[ ClassRulesDeclaration ]

[ ClassMembersDeclaration ]

end

NewClassDeclaration =

([ new ] | override)

*{ attribute <attribute name > : <value >*{,<value >}}

*{ domain <domain name > reference <class name >}

[structure ( CartesianProduct | ListOfTuples )]

[
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units <unit symbol >

type <type name >

size <number > *{ , <number > }

|

+{ component <component name >

(

units <unit symbol >

type <type name >

[ size <number >*{,<number >}]

[ association <class name >]

|

reference <class name >

)

}

]

SubclassDeclaration =

extends <class name >

*{attribute <attribute name >values <value >*{,<value >}}

*{domain <domain name > reference <class name >}

*{component <component name >

(

units <unit symbol >

type <type name >

[ size <number > *{,<number >}]

[association <class name >]

|

reference <class name >

)

}

ClassImportDeclaration =

alias[<data dictionary name >::]< class name >*{:< class name

>}

ClassRulesDeclaration =

rules

[structure
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+{ mandatory <component name > *{ , <component name > } |

optional <component name > *{ , <component name > } |

present <component name > with <component name > |

present <component name >

when <component name > = <component value > |

optional <component name >

when <component name > = <component value > |

presentAtLeastOne <component name > *{ , <component name >

} |

presentOnlyOne <component name > *{ , <component name > }

}

end]

[integrity

+{ component <component name > (

allowed values: ( <value > *{ , <value > } |

components names in <class name > )

bounds ( [ <symbolicValue > , <symbolicValue > ] |

( <symbolicValue > , <symbolicValue > ) )

*{,<symbolicExpression > } |

relation <symbolicExpression >)

}

end]

[transformations

[permutation <integervalue > <integervalue >*{,<

integervalue >}]

[ordering <ordering declaration >]

[sampling <sampling pattern >]

[slicing <slicing pattern >]

end]

[ defaults

[ variableName <name > ]

[ structure ( CartesianProduct | ListOfTuples ) ]

end ]

[ style

[ numberFormat <formatstring > ; ]

[ complex ( Cartesian | Polar ) ]

end ]

end
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ClassMembersDeclaration =

members

+{ variable <variable name >

*{ attribute <attribute name > : <value > *{ , <value > } }

*{ domain <domain name > reference <class name > }

[ structure ( CartesianProduct | ListOfTuples ) ]

[

units <unit symbol >

type <type name >

[ size <number > *{ , <number > } ]

value <<list of values >>

|

+{ component <component name >

(

units <unit symbol >

type <type name >

[ size <number > *{ , <number > } ]

(

value <<list of values >>| association <variable name >

)

| reference <variable name > )

}]

end

}

end
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