
 Cryptographic Storage Service
 on a Cloud System

Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
Corso di Laurea Magistrale in Ingegneria Informatica

Relatore:
Ing. Carlo Ferrari

Candidato:
Giacomo Veronelli

Anno Accademico 2010-2011

Ai miei genitori
che mi hanno sempre sostenuto.

Contents

1 Summary 1

2 Cloud Computing 2
2.1 Understanding Cloud Computing, 2
2.2 Cloud Service Models . 2
2.3 Cloud Deployment Models . 5
2.4 Control over security . 6
2.5 Public Cloud . 7
2.6 Representative Commercial Cloud Architectures 8

3 Securing the Cloud 11
3.1 Security Concerns . 11
3.2 Data Privacy and Security . 14
3.3 Organizational Responsibility: Ownership and Custodianship . . 15
3.4 Data at Rest . 17
3.5 Data in Motion . 18
3.6 Cryptography on Cloud . 19

3.6.1 Data Encryption: Applications and Limits 19
3.6.2 Impediments to Encryption in the Cloud 19
3.6.3 State of the Art . 19

4 Project 21
4.1 Problem definition . 21
4.2 Proposal . 22
4.3 Actors . 23

4.3.1 Service Company . 23
4.3.2 Public Cloud System Provider 23
4.3.3 KeyServer . 23
4.3.4 Users/Owner . 24

4.4 Global Functionality . 24
4.4.1 Data Creation . 24
4.4.2 Data reading . 26
4.4.3 Data Updating . 27
4.4.4 Data Deletion . 27

ii

CONTENTS iii

4.5 Different scenario . 27
4.5.1 User unique owner of data 27
4.5.2 Company owner of data 27
4.5.3 User and Partners . 27
4.5.4 Company and Users groups 29

4.6 Advanced Features . 30
4.6.1 Encrypted OwnerKey with MasterKey 30
4.6.2 Checksum Store into KeyServer 30

5 Developing 31
5.1 Web-application side . 31

5.1.1 Interface Overview . 31
5.1.2 Add new Data . 33
5.1.3 Read my data . 38
5.1.4 Add new File . 39
5.1.5 Share my Data . 41
5.1.6 LAMP platform . 43
5.1.7 Google Appengine . 44
5.1.8 Client browser side . 46
5.1.9 Server side on VPS solution 46
5.1.10 CMS with MVC . 47

5.2 Datakey service . 48
5.2.1 Overview . 48

5.3 Encryption . 50
5.3.1 Browser-Based Cryptography Tools 50

5.4 Conclusion . 51

List of Figures

2.1 The SPI model: software, platform, and infrastructure as a service. 3
2.2 The SPI model: relating services to infrastructure. 4
2.3 NIST Cloud Computing Model 6
2.4 Extent of control over security in SaaS, PaaS, and IaaS. 7
2.5 commercial cloud architectures timeline 9
2.6 Cloud Marketing Penetration . 9
2.7 Amazon web services, Force.com. Google app engine comparison 10

3.1 Biggest cloud concerns . 13
3.2 Meeting security needs: public, community, and private clouds. . 16
3.3 Owning organization has increasing control and responsibility

over data . 17

4.1 Representation of encryption . 22
4.2 Data Creation . 25
4.3 Data Reading . 26
4.4 User send the data to the Partners 28
4.5 User create a copy of Data . 28
4.6 User add Partner into Data Owner 29
4.7 User add Partner into Data Owner 29

5.1 Application Login Screenshot . 32
5.2 Application Registration Screenshot 32
5.3 Functionality Menu . 33
5.4 Session countdown . 33
5.5 KeyServer Access Admin Panel 34
5.6 Insert of OwnerKey . 34
5.7 GetDataKey Javascript Code . 35
5.8 Get DataKey Procedure . 35
5.9 Get DataKey Request Status . 36
5.10 Data insertion . 36
5.11 Encrypt button . 37
5.12 Cipher Text . 37
5.13 My data panel . 37

iv

LIST OF FIGURES v

5.14 Read data panel . 38
5.15 Read data panel . 39
5.16 Drop File . 40
5.17 Base64 String . 40
5.18 Encrypted file . 41
5.19 Data sharing panel . 42
5.20 Registered User list . 42
5.21 User create a copy of Data . 43
5.22 Lamp Solution . 44
5.23 Google App Engine and GWT 45
5.24 Sql Creation code . 47
5.25 KeyServer Admin Panel . 49
5.26 Sql Creation code . 50

Chapter 1

Summary

In this work, we propose a secure protocol to storage data into a cloud system
application. The approach we followed allows the potential of cloud computing
for applications and systems, all this while maintaining full control over the
properties and content of data. We developed an application to prove the ef-
ficiency of the protocol in many different scenarios on various cloud platforms
like Google Appengine and on a hosting virtual server. The application that we
made can store simple text message or complex data such as file into a cloud
system and share it with other users or groups of users. Moreover, its appli-
cability to store data in safety has been tested and discussed and every single
function has been discussed.

1

Chapter 2

Cloud Computing

2.1 Understanding Cloud Computing,
Cloud computing is an innovation of prior computing approaches, which builds
upon existing and new technologies. Even as cloud presents new opportuni-
ties around shared resources, the relative news of the model makes it difficult
to separate reasonable claims from hype. In part, excessive marketing claims
have led to completely unrealistic perspectives of cloud security. Claims that
cloud computing is inherently insecure are as absurd as are claims that cloud
computing brings no new security concerns. Prospective cloud users can sense
that there is value here, but their understanding of the problem is often in-
complete. Cloud computing represents a paradigm shift for delivering resources
and services; this results in important benefits for both cloud providers and
cloud consumers. From how we build Information Technology (IT) systems
and how we use them to how we organize and structure IT resources, cloud is
refactoring the IT landscape. Instead of uncrating computers and racking them
in your server closet, the cloud allows for virtually downloading hardware and
associated infrastructure. By abstracting IT infrastructure and services to be
relatively transparent, the act of building a virtual data center is now possible
in minutes, with minimal technical background and at a fraction of the cost of
buying a single server.

2.2 Cloud Service Models
The three service models for cloud computing are SaaS, PaaS, and IaaS.

As Mell and Grance define them[?]:

• Cloud Software-as-a-Service (SaaS). The capability provided to the con-
sumer is to use the provider’s applications running on a cloud infrastruc-
ture. The applications are accessible from various client devices through
a client interface such as a Web browser (e.g., Web-based e-mail). The

2

CHAPTER 2. CLOUD COMPUTING 3

consumer doesn’t manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user-specific
application configuration settings.

• Cloud Platform-as-a-Service (PaaS). The capability provided to the con-
sumer is to deploy onto the cloud infrastructure consumer-created or ac-
quired applications created using programming languages and tools sup-
ported by the provider. The consumer doesn’t manage or control the
underlying cloud infrastructure including network, servers, operating sys-
tems, or storage, but has control over the deployed applications and pos-
sibly application hosting environment configurations.

• Cloud Infrastructure-as-a-Service (IaaS). The capability provided to the
consumer is to provision processing, storage, networks, and other funda-
mental computing resources where the consumer is able to deploy and
run arbitrary software, which can include operating systems and appli-
cations. The consumer doesn’t manage or control the underlying cloud
infrastructure but has control over operating systems, storage, deployed
applications, and possibly limited control of select networking components
(e.g., host firewalls).

We refer to these three as the SPI model. What we are really describing are three
broad classes of capabilities that reside on top of physical cloud infrastructure,
as depicted in These can be layered IaaS as

Figure 2.1: The SPI model: software, platform, and infrastructure as a service.

CHAPTER 2. CLOUD COMPUTING 4

Figure 2.2: The SPI model: relating services to infrastructure.

a foundation for PaaS, and PaaS as a foundation for SaaS or they can stand
alone. How services are implemented will depend on the provider. The case
can be made that “IaaS and PaaS are special purpose versions of SaaS that
enable new cloud services.” The Cloud Security Alliance has taken the following
view: IaaS is the foundation of all cloud services, with PaaS building upon IaaS,
and SaaS in turn building upon PaaS. . . . In this way, just as capabilities are
inherited, so are information security issues and risk. It is important to note that
commercial cloud providers may not tadily fit into the layered service models.
However, the reference model is important for relating real-world services to an
architectural framework and understanding the resources and services requiring
security analysis. Their position is well taken as it certainly would be more
agile for a cloud provider to express SaaS as a service of PaaS, and PaaS as a
service of IaaS. However, most cloud providers don’t implement services delivery
in that way. The point is that infrastructure, platform, and software are three
forms of cloud service delivery and that they can be delivered independently
or as layered services. But these services classes are also quite similar; each
offers a container with specific interfaces, capabilities, and limitations. Some
of the containers provide interfaces that act like a whole operating system, and
some are so application specific that they can’t be generically programmed.
These definitions are really just examples of interesting points on a continuum
of offered services. Beyond SaaS, PaaS, and IaaS, several other service delivery
models have been proposed, these include Data center-as-a-Service, Security-as-
a-Service, Monitoring as- a-Service, and Identity-as-a-Service, but these should
be seen as specialized cases of the SPI model. While many new and innovative
products and services have been enabled because of the cloud model, many
marketing organizations have had a field day in representing anything as a
service. But the increase in fine-grained as-a-service definitions is evidence that
the SPI model is not necessarily universal and that we are rapidly evolving
toward more useful definitions of overall cloud services models.

CHAPTER 2. CLOUD COMPUTING 5

2.3 Cloud Deployment Models
Mell and Grance next define the four Cloud Deployment models:

• Private cloud. The cloud infrastructure is operated solely for an organi-
zation. It may be managed by the organization or a third party and may
exist on premise or off premise.

• Community cloud. The cloud infrastructure is shared by several organi-
zations and supports a specific community that has shared concerns (e.g.,
mission, security requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party and may exist on
premise or off premise.

• Public cloud. The cloud infrastructure is made available to the general
public or a large industry group and is owned by an organization selling
cloud services.

• Hybrid cloud. The cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities but are
bound together by standardized or proprietary technology that enables
data and application portability (e.g., cloud bursting for load-balancing
between clouds).

These four deployment models can see significant variation depending on other
factors that we will discuss in the next section, but they serve to address the
broad questions as to how one can deploy pooled cloud resources. Before we
move on, it is important to make two points about the NIST Cloud Model:

• A customer or tenant can have greater security control over more resources
as one moves from SaaS to PaaS and again from PaaS to the IaaS service
model.

• A customer or tenant can achieve greater security control over more re-
sources when moving from a Public cloud to a community cloud and again
from a community cloud to a Private cloud.

Figure 2,3 is an adaption of the NIST Cloud Computing Model, which has
been annotated to reflect the discussion in this section on customer and tenant
control. We will examine the issue of control in greater detail in the next section.

CHAPTER 2. CLOUD COMPUTING 6

Figure 2.3: NIST Cloud Computing Model

2.4 Control over security
In part, the SPI service model represents increasing abstraction from complex
underlying IT infrastructure. As represented in Figure 2,4, cloud-based IaaS
doesn’t typically expose actual hardware or networking layers to the tenant of
the service, rather these underlying resources are abstracted for the consumer.
PaaS abstracts infrastructure to a greater extent and generally presents middle-
ware containers that are made for categories of usage such as development.

These containers provide tools to simplify application development and limit
application interactions with the underlying systems. SaaS abstracts even fur-
ther and generally exposes narrow-functionality software-based services such as
Customer Relationship Management (CRM) or e-mail. At every step up the SPI
continuum, there are increasing limitations on lower-level computing functions.
In other words, from IaaS to SaaS underlying computing functions are more and
more abstracted. With SaaS, the burden of security lies with the cloud provider.
In part, this is because of the degree of abstraction, but the SaaS model is based
on a high degree of integrated functionality with minimal customer control or
extensibility. The PaaS model, instead, offers greater extensibility and greater
customer control but fewer higher-level features. Largely because of the rela-
tively lower degree of abstraction, IaaS offers greater tenant or customer control
over security than do PaaS or SaaS. Another way to consider this is that with
SaaS the provider is responsible for most aspects of security, compliance, and
liability, but with these responsibilities, the provider is righter to change impor-
tant aspects of the service or associated service contracts (that is SLAs). Given
this discussion of service models and security, we should consider how cloud
deployment impacts the degree of owner data/application control over security.
Clearly, the degree of control that a tenant or customer has in a public cloud is

CHAPTER 2. CLOUD COMPUTING 7

minimal, whereas the tenant organization has maximum control with a private
cloud. The degree of control will vary for community and hybrid clouds and
may not be relevant depending on what such external computing resources are
used for. But the public and private deployment vector is not the only aspect
of this discussion. For a private cloud especially, we should also consider where
the cloud infrastructure resides and who operates it.

Figure 2.4: Extent of control over security in SaaS, PaaS, and IaaS.

But this is not necessarily true as a private cloud can benefit greatly from
the physical security that a hosting facility can offer. Likewise, outsourcing op-
erations can be just as secure and potentially less expensive than having ample
24 × 7 IT personnel on staff. This last point is especially true for security mon-
itoring services as there is true benefit to using a security monitoring staff that
sees more incidents and issues than a single cloud may present. Knowledge does
scale, and it can be expensive to develop. When considering how to secure public
versus private cloud architectures, the security concerns are more different than
common. If a cloud is private, internal on a customer premises, and owned/-
managed/maintained exclusively by the organization utilizing it, the principles
in securing it vary greatly from those of a public cloud hosted externally by a
third party. A private cloud doesn’t have the data confidentiality and legality
concerns that a public cloud might.

2.5 Public Cloud
To define it in the simplest way, a public cloud exists externally to its end
user and is generally available with little restriction as to who may pay to use
it. As a result, the most common forms of public clouds are ones that are
accessed by Internet. There has been terrible development in the public cloud
space, resulting in very sophisticated Infrastructure-as-a-Service offerings from
companies like Amazon, with their Elastic Compute Cloud (EC2), Rackspace’s
Cloud Offerings, and IBM’s BlueCloud. Other forms of public cloud offerings

CHAPTER 2. CLOUD COMPUTING 8

can take the form at more of the application layer, or Platform-as-a-Service,
like Google’s AppEngine and Windows’ Azure Services platform, as well as
Amazon’s service-specific cloud hosting SimpleDB, Cloud Front, and S3 Simple
Storage. At a basic level, public clouds have unique security components and
evaluation criteria when compared with private clouds. Public clouds can be
formed by service providers wishing to build out a high-capacity infrastructure
and lease pieces of it to a variety of clients. As a result, data might become
comingled on common storage devices, making identity, access control, and
encryption very important. There is a certain amount of inherent trust (even if
it should be a measured, tested, and verified) by subscribers with their public
cloud providers.

2.6 Representative Commercial Cloud Architec-
tures

Although the concept of a cloud has been around for decades, in reality, cloud
computing in the forms, we know today, are relatively new. For example, below
are the dates at which the various types of public and private clouds, SaaS, PaaS,
IaaS providers, and technologies associated with them have been in existence.

• Amazon Web Services (Public Cloud, IaaS) Arguably one of the most
mature clouds, launched in July 2002 not really with an IaaS offering, more
just pieces of it. It’s EC2, or Elastic Compute Cloud, which is classified
as an IaaS offering launched officially (non-beta) in October 2008. Many
new components of this cloud are still being launched today see Amazon
VPC.

• Amazon Virtual Private Cloud or VPC (Hybrid Cloud Technology) Mar-
ries, an Amazon public cloud with an enterprise’s private cloud, is still in
beta at the time of publishing in 2010. • Rackspace Cloud Hosting (Public
Cloud, IaaS) Launched publicly in February 2008.

• GoGrid (Public Cloud, IaaS) Launched in April 2008. • Salesforce.com
(Public Cloud, SaaS, and PaaS) Although the company was launched
March 1999, Salesforce’s PaaS, Force. com was launched in January 2008.

• Google Apps Engine (Public Cloud, PaaS) Its first public beta was launched
in April 2008. GovCloud, Google’s form of Google Apps that addresses
and meets government security mandates was only launched in September
2009.

• VMware (Private Cloud Technology Provider) Although the company was
officially founded in 1998, VMware Server didn’t exist publicly until 2001.

• Microsoft Hyper-V (Private Cloud Technology Provider) Virtualization
technology created by Microsoft and deployed in Windows Server 2008,
officially launched in June, 2008.

CHAPTER 2. CLOUD COMPUTING 9

• Force.com is a cloud computing platform as a service system from Sales-
force.com,[1] that developers use to build multi tenant applications hosted
on their servers as a service.

• Heroku is a cloud Platform as a Service (PaaS) run by the San Francisco,
California-based company with the same name. Heroku led the way for a
multi-language PaaS, introducing the ’polyglot platform’. Heroku initially
supported the Ruby programming language, with Rack and Ruby on Rails.

It would be fair to summarize that most modern cloud computing architectures,
in their form as they exist today, are generally around 3 years old. This is a far
cry from the maturation of modern architectures or common security standards.

In the figure 2,5 we can see the evolution on commercial cloud architectures.

Figure 2.5: commercial cloud architectures timeline

Figure 2.6: Cloud Marketing Penetration

In the follow Figure 2.7 we can compare some modern best solutions on the
public cloud architectures like Google Appengine, Amazon and Force.

CHAPTER 2. CLOUD COMPUTING 10

Figure 2.7: Amazon web services, Force.com. Google app engine comparison

Chapter 3

Securing the Cloud

In Chapters 1 and 2, we covered many of the qualities and promises of cloud
computing. In addition, we examined the three models for cloud services (SPI)
and the four models for cloud deployment (public, private, community and hy-
brid). While developing a background in cloud computing, we also discussed
many security aspects of clouds. In this chapter, we are going to investigate
some of those security issues more closely. While some might find the cloud
inappropriate from a security standpoint, we will attempt to show that this
amounts to a wrong conclusion. As we stated frequently, by its inherent qual-
ities, cloud computing has tremendous potential for organizations to improve
their overall information security posture. There are many reasons for this, but
the best way to sum up the argument is to state that the cloud model enables
the return of effective control and professional operation over Information Tech-
nology (IT) resources, processing, and information. By virtue of public cloud
scale, tenants and users can get better security since the provider’s investment
in achieving better security costs less per consumer. For the same reasons, a
private cloud can obtain significant advantages for security. But there are wrin-
kles: You won’t get the benefit without investment, and not every model is
appropriate for all consumers. But, regardless of which services delivery model
or deployment model you select, you will transfer some degree of control to the
cloud provider which would be completely reasonable if control is managed in a
manner and at a cost that meets your needs.

3.1 Security Concerns
To begin with, we will list some common security concerns:

• Network Availability The value of cloud computing can only be real-
ized when your network connectivity and bandwidth meet your minimum
needs: The cloud must be available whenever you need it. If it is not,
then the consequences are no different than a denial-of-service situation.

11

CHAPTER 3. SECURING THE CLOUD 12

• Cloud Provider Viability Since cloud providers are relatively new to
the business, there are questions about provider viability and commitment.
This concern deepens when a provider requires tenants to use proprietary
interfaces, thus leading to tenant lock-in.

• Disaster Recovery and Business Continuity Tenants and users re-
quire confidence that their operations and services will continue if the
cloud provider’s production environment is subject to a disaster.

• Security Incidents Tenants and users need to be appropriately informed
by the provider when an incident occurs. Tenants or users may require
provider support to respond to audit or assessment findings. Also, a
provider may not offer sufficient support to tenants or users for resolv-
ing investigations.

• Transparency When a cloud provider does not expose details of their
internal policy or technology implementation, tenants or users must trust
the cloud provider’s security claims. Even so, tenants and users require
some transparency by providers as to provider cloud security, privacy, and
how incidents are managed.

• Loss of Physical Control Since tenants and users lose physical control
over their data and applications, this results in a range of concerns:

– Privacy and Data With public or community clouds, data may not
remain in the same system, raising multiple legal concerns.

– Control over Data User or organization data may be commingled
in various ways with data belonging to others.

– A tenant administrator has limited control scope and accountabil-
ity within a Public infrastructure-as-a-service (IaaS) implementation,
and even less with a platform-as-a-service (PaaS) one. Tenants need
confidence that the provider will offer appropriate control, while rec-
ognizing that tenants will simply need to adapt their expectations
for how much control is reasonable within these models.

• New Risks, New Vulnerabilities There is some concern that cloud
computing brings new classes of risks and vulnerabilities. Although we can
postulate various hypothetical new risks, actual exploits will largely be a
function of a provider’s implementation. Although all software, hardware,
and networking equipment are subject to unearthing of new vulnerabili-
ties, by applying layered security and well-conceived operational processes,
a cloud may be protected from common types of attack even if some of its
components are inherently vulnerable.

• Legal and Regulatory Compliance It may be difficult or unrealistic
to utilize public clouds if the data you need to process is subject to legal
restrictions or regulatory compliance. While we should expect providers to

CHAPTER 3. SECURING THE CLOUD 13

build and certify cloud to address the needs of regulated markets, achieving
certifications may be challenging due to the many nontechnical factors
including the current stage of general cloud knowledge. As best practices
for cloud computing encompass greater scope, this concern should largely
become a historical one. The second half of this chapter is devoted to legal
and regulatory issues.

Although the public cloud model is appropriate for many nonsensitive needs,
the fact is that moving sensitive information into any cloud that is not certified
for such processing introduces inappropriate risk. Let’s be completely clear:

• It is at best unwise to use a public cloud for processing sensitive, mission
critical, or proprietary data.

• It is expensive and excessive to burden nonsensitive and low-impact sys-
tems with high assurance security.

• It is irresponsible to either dismiss cloud computing as being inherently
insecure or claim it to be more secure than alternatives.

• Selection of a cloud deployment model along with ensuring that you have
appropriate security controls should follow a reasonable assessment of
risks.

In the follow figure we can see how is the percent of security into the actual
cloud scenario.

Figure 3.1: Biggest cloud concerns

CHAPTER 3. SECURING THE CLOUD 14

3.2 Data Privacy and Security
The issue of data privacy is very much to the forefront of everybody’s mind, with
many television commercials advertising products and news programs describing
another data breach. Any organization has a legal obligation to ensure that the
privacy of their employees and clients is protected. Laws prohibit some of this
data to be used for secondary purposes other than for what it was collected. You
cannot surreptitiously collect data on say, the health of your employees, and then
use this to charge smokers with higher insurance premiums. In addition, you
cannot share this data with third parties. In the world of cloud computing, this
becomes much harder as you now have a third party operating and managing
your infrastructure, and hence by inference will have access to your data. If
your organization is collecting and storing data in the cloud and this is subject
to the legal requirements of one or more regulations (for instance, HIPAA or
GLBA), then you must ensure that the cloud provider protects the privacy of
the data in the appropriate manner. In the same way as data collected within
your organization, data collected in the cloud must only be used for the purpose
that it was collected for. If the individual specified that the data collected be
used for one purpose, then that must be upheld. Often, privacy notices specify
that individuals can have access to their data and to have this data deleted or
modified. If this data is in a cloud provider’s environment, privacy requirements
still apply and the enterprise must ensure that this is allowed within a similar
timeframe as if the data were held within a traditional IT implementation. If
this can only be accomplished by personnel in the cloud provider’s enterprise,
you must be satisfied that they can undertake the task as you need. If you have
entered into a click-wrap contract, you will be constrained to what the cloud
provider has set out in these terms. Even with a tailored contract, the cloud
provider may try to limit the control over your data to ensure that all its clients
have a unified approach, hence reducing their overhead and the need to have
specialist staff on hand. If complete control over your data is a necessity, then
you need to ensure upfront that this can be accomplished and not try to bend to
the cloud provider’s terms. There are a number of cloud provider companies that
specialize in distinct markets and tailor their services to those markets. This
is likely to become more prevalent in the upcoming years and there will also
likely be niche cloud providers. For instance, cloud providers that offer services
in the health care marketplace would be bound by the relevant regulations for
that market (HIPAA in this case) and we would expect them to charge for the
special handling and controls that are needed.

Depending on the type of cloud provider you contract to, you will have to
consider if your data is going to be mined by the supplier or others. The use of
your data may occur unbeknownst to you or by virtue of a configuration error
on the provider’s part. Based on the sensitivity of your data, you may wish
to ensure that your contract prohibits or at least limits the access the cloud
provider has to use this data. This may be especially hard when you enter into
a click-wrap agreement and as we all know, very few of us will read the fine print
at all and just click the I agree box when it appears. In 2009, when Facebook

CHAPTER 3. SECURING THE CLOUD 15

(www.facebook.com) changed its terms around security of data, many people
complained, but the majority of users carried on using the service because they
found it useful. It is likely that your users will react in the same way, which
may well give you security issues. The data you are storing in the cloud may
be confidential or hold personal data which you want to ensure is secure. The
cloud provider is likely to have full access to this data to maintain and manage
the servers for you. You will need to ensure that this access is not abused in
any way. Although a contract may protect.

3.3 Organizational Responsibility: Ownership and
Custodianship

In addition to privacy and confidentiality concerns, further concern arises with
ownership of information assets. The problem is that there is potential for ero-
sion of information asset ownership when moving such resources to any external
system. There is a fundamental difference between data ownership and having
responsibility as a data custodian. Although the legal ownership of data will
remain with the originating data owner, one potential area for concern with a
public cloud is that the cloud provider may become responsible for both roles.
There is no better example of this as when a law enforcement entity serves a
warrant to a cloud provider for access to a tenant’s information assets. Related
to ownership concerns are concerns with where data resides and what jurisdic-
tions it may traverse. The Internet presents a grand opportunity for the nosey
and the wicked when it comes to the opportunity for surreptitiously examining
someone else’s secrets.I In response to this, the European Union (EU) direc-
tive on Data Protection4 stipulated in which countries EU private and personal
data may or may not traverse or reside. This has profound implications for
all computing by EU member states. From the standpoint of cloud comput-
ing, the impact of this directive is likely shaping how public cloud providers,
along with SPI service providers implement their services. This is a perfectly
reasonable model for limiting the jurisdictional footprint of data to minimize
the mischief that data is subject to in extraterritorial traversal, processing or
storage. All tenants or end users of cloud services should be concerned by the
potential that a public cloud or SPI service may push data or applications out
of the jurisdiction in which the tenant resides or has legal obligations.

CHAPTER 3. SECURING THE CLOUD 16

Figure 3.2: Meeting security needs: public, community, and private clouds.

While an organization has responsibility for ensuring that their data is prop-
erly protected as discussed above, it is often the case that when data resides
within premises, appropriate data assurance is not practiced or even under-
stood as a set of actionable requirements. When data is stored with a CSP,
the CSP assumes at least partial responsibility (PaaS) if not full responsibility
(SaaS) in the role of data custodian. But even with divided responsibilities for
data ownership and data custodianship, the data owner does not give up the
need for diligence for ensuring that data is properly protected by the custodian.
By the nature of the service offerings, and as depicted in Figure 3,3, a data
owning organization can benefit from their CSP having control and responsi-
bility for customer data in the SaaS model. The data owning organization is
progressively responsible beginning with PaaS and expanding with IaaS. But
appropriate data assurance can entail significant security competence for the
owning organization. Ultimately, risks to data security in clouds are presented
to two states of data: data that is at rest (or stored in the cloud) and data that
is in motion (or moving into or out of the cloud). Once again, the security triad
(confidentiality, integrity, and availability) along with risk tolerance drives the
nature of data protection mechanisms, procedures, and processes. The key issue
is the exposure that data is subject to in these states.

CHAPTER 3. SECURING THE CLOUD 17

Figure 3.3: Owning organization has increasing control and responsibility over
data

3.4 Data at Rest
Data at rest refers to any data in computer storage, including files on an em-
ployee’s computer, corporate files on a server, or copies of these files on off-site
tape backup. Protecting data at rest in a cloud is not radically different than
protecting it outside a cloud. Generally speaking, the same principles apply.
As discussed in the previous section, there is the potential for added risk as
the data owning enterprise does not physically control the data. But as also
noted in that discussion, the trick to achieving actual security advantage with
on-premises data is following through with effective security. Referring back to
Figure 3.2, the less control the data owning organization has decreasing from
private cloud to public cloud the more concern and the greater the need for
assurance that the CSPs security mechanisms and practices are effective for the
level of data sensitivity and data value. (But in Figure 3.3, we saw that the own-
ing organization’s responsibility for security runs deeper into the stack for the
owning organization as they move from SaaS to PaaS and again to IaaS.) If you
are going to use an external cloud provider to store data, a prime requirement
is that risk exposure is acceptable. Risk exposure varies in part as a function of
service delivery as it does for deployment. A secondary requirement is to verify
that the provider will act as a true custodian of your data. A data owning or-
ganization has several opportunities in proactively ensuring data assurance by
a CSP. To begin with, selecting a CSP should be based on verifiable attestation
that the CSP follows industry best practices and implements security that is
appropriate for the kinds of data they are entrusted with. Such certifications

CHAPTER 3. SECURING THE CLOUD 18

will vary according to the nature of the information and whether regulatory
compliance is necessary. Understandably, one should expect to pay more for
services that involve such certifications. One likely trend here is that higher as-
surance cloud services may come with indemnification as a means of insurance
or monetary backing of assurance for a declared level of security. Whatever the
future may hold, we can expect that practices in this space will evolve.

3.5 Data in Motion
Data in motion refers to data as it is moved from a stored state as a file or
database entry to another form in the same or to a different location. Any
time you upload data to be stored in the cloud, the time at which the data is
being uploaded data is considered to be data in transit. Data in motion can
also apply to data that is in transition and not necessarily permanently stored.
Your username and password for accessing a Web site or authenticating yourself
to the cloud would be considered sensitive pieces of data in motion that are not
actually stored in unencrypted form. Because data in motion only exists as it is
in transition between points such as in memory (RAM) or between end points
securing this data focuses on preventing the data from being tampered with
as well as making sure that it remains confidential. One risk has to do with a
third party observing the data while it was in motion. But funny things happen
when data is transmitted between distant end points, to begin with packets
may be cached on intermediate systems, or temporary files may be created at
either end point. There is no better protection strategy for data in motion than
encryption.

CHAPTER 3. SECURING THE CLOUD 19

3.6 Cryptography on Cloud

3.6.1 Data Encryption: Applications and Limits
In a recent article,1 Bruce Schneier discussed how the information age practice
of encrypting data at rest deviates from the historical use of cryptography for
protecting data while it is communicated or in transit. One of Schneier’s key
points is that for data in motion, encryption keys can be ephemeral, whereas
for data at rest, keys must be retained for as long as the stored data is kept
encrypted. As Schneier points out, this does not reduce the number of things
that must be stored secretly; it just makes those things smaller (the size of a
key is far smaller than a typical data file). As Schneier states: “This whole
model falls apart on the Internet. Much of the data stored on the Internet is
only peripherally intended for use by people; it’s primarily intended for use by
other computers. And therein lies the problem. Keys can no longer be stored
in people’s brains. They need to be stored on the same computer, or at least
the network, that the data resides on. And that is much riskier.”2 In meeting
this challenge, there has been a recent rise in the number of security appliances
that are intended to address this and related security implementation issues for
data security in clouds.

3.6.2 Impediments to Encryption in the Cloud
In one example, a Software-as-a-Service public cloud, because of its very na-
ture, might not allow subscribers to encrypt their data. This may be due to
functional limitations with the actual service itself. In the example of currently
available social networks including Facebook, MySpace, and Linkedin, it is sim-
ply not possible to use encryption to ensure the confidentiality of your personal
information. Nor would the cloud provider have any motivation to agree to
allow this kind of data to be encrypted since many SaaS operators might not
be able to provide revenue generating services if they have an obscured view
to the data they are interacting with. For instance, if Facebook was unable to
intelligently interpret what kind of activities were occurring in their cloud, then
how could they target you with advertisements that are most effective if they
relate to your posted activities? If your data was encrypted, then that aspect
of the provider’s business model would be broken. This same fact holds true to
other kinds of clouds as well. IaaS providers might not be capable of encrypting
at the operating system level because it would hinder their ability to monitor
and therefore manage these instances.

3.6.3 State of the Art
Now the cryptography on cloud is a matter of interest between lots of Universi-
ties and Companies. For example Microsoft is doing some research on Homomor-
phic encryptionpage. They are designing cryptosystems that support a variety
of computations on encrypted data, ranging from general-purpose computations

http://research.microsoft.com/en-us/projects/cryptocloud/

CHAPTER 3. SECURING THE CLOUD 20

(i.e., fully-homomorphic encryption) to special-purpose computations (e.g., vot-
ing and search). Their work on homomorphic encryption includes searchable &
structured encryption. A searchable encryption scheme encrypts data in such
a way that a token can be generated to allow a third party to search over the
encrypted data. Using a searchable encryption scheme, a client can safely store
its data with an untrusted cloud provider without losing the ability to search
over it. They are also working on the related problem of structured encryption
which allows a client to encrypt various types of data (e.g., social networks or
web graphs) in such a way that complex queries can be performed over the
encrypted data.

The most important interest of the research is on how to do some data
mining on the crypted data. In our project we have not taken inspiration from
other researches project.

Chapter 4

Project

4.1 Problem definition
The problem that we want to define belongs to the security of cloud computing
especially in data storage. As we discussed in previous chapters, the cloud
offers a perfect solution economically speaking and looking at performances.
The only downside is the degree of control over the data that the provider gives
you, whereas he has complete control over them.

We can make an real example to understand the problem:

Description of possible application scenario: B2B Company

The company “A” has a b2b("Business to Business") relationship, inter-
trade, with N Companies. A company with a web-based solution manages all
the relationships between the companies, such as: display of goods available,
procurement, planning and monitoring of production, payments.

The e-commerce platform is at the heart of the company’s business model,
the main features of the platform shall be: scalability, security, availability 24
/ 7 in real time, accessible at any time regardless of user location. The main
problem the company needs to solve is to maintain the functionalities of the
system; to do this end there are two possible solutions:

• Private Cloud: This solution allows to have a platform in their company,
with the advantage of having the highest safety integrity of the data to the
detriment of a high cost of maintaining of hardware and specialist staff to
monitor the proper functioning of the platform.

• Public Cloud: with this solution one of the differences is the advantage of
drastically reducing the costs of continued operation of the platform, as it
will be performed by an outside company for maximum system availabil-
ity, with greater performance than the solution in-house. Outside com-
pany can offer the latest hardware that the company could not afford.
This Cloud-based solution, however, demands the complete transfer of the

21

CHAPTER 4. PROJECT 22

company’s platform and data: in doing so the company will lose complete
control over data.

The company is aware that the second solution would lead to a better platform
and to the arrival of new potential customers, but at the same time it must
consider the other side of the coin, that is give in custody to an "untrusted
provider" its future. One of the problems is linked to the company’s business
model. In fact, the company sells the same products to several companies
simultaneously, but the price is different for each company: the disclosure of the
various discounts could compromise the future of the company, and especially
the loss of customers.

4.2 Proposal
Our proposal wants to resolve the security issue of the Public cloud by ensuring
the control over the data with the encryption of it. The protocol that we develop
is a set of policies that give to the owner of data the complete assurance that
the provider of the Public Cloud Infrastructure can’t see the data in any way.

This is possible because the data and the decryption keys are in different
place. The company, that offers the service, manages part of it with the key-
server and the owner of the data has to manage the rest of it.

Figure 4.1: Representation of encryption

In the Figure 5.1 we can see that the OwnerKey belongs to the User or
the Owner of data, such as a group of Users. The second part of the RealKey
belongs to the company of service, that manages the keys with the KeyServer.

The company with the keyServer has control of the data access, in fact it can
block the data in every moment. In the following part of this chapter we want
to describe, in detail, all the actors and the main functions of our proposal.

CHAPTER 4. PROJECT 23

4.3 Actors

4.3.1 Service Company

The server company is the owner of the application that is delivered into
the public cloud. The company provides different services with the complete
control over data.

4.3.2 Public Cloud System Provider

Providers of public cloud services where it is installed and runs the applica-
tion of the Company. The provider is able to guarantee platform performance
that the Company could not afford. The provider has to ensure data integrity
and availability.

4.3.3 KeyServer

KeyServer is Company service witch is installed on a different public cloud
platform.

The role of the KeyServer is to control the access to the datakey and store
it. The Keyserver is one of the most important features of the system because
it has to be always be available to send the DataKey to the owner of the data,
otherwise the owner can’t decrypt the data.

CHAPTER 4. PROJECT 24

4.3.4 Users/Owner

The User is the owner of the data that the service company gives to him
or allows him to store. The User has the OwnerKey and he is the only one
that has it. He has control over the data content with the Company thanks to
KeyServer. He can use the Company service with a common web-browser, and
when he has to share the owner key with others, we assume that he must do
that through a secure channel.

4.4 Global Functionality
In this section we want to describe the main functions of the protocol with a
step by step description. Therefore we start with the creation of the data by an
Owner, then we will examine the reading, the update and sharing of data.

4.4.1 Data Creation
We want to describe the procedure to create a data from the client side(web-
browser). In the following figure we can see the protocol step by step.

CHAPTER 4. PROJECT 25

Figure 4.2: Data Creation

Data creation procedure:

1. User registration or login into Public Cloud Company Application.

2. Application creates a new valid session for the User; with that he can
access all the services. The session has an expiration time.

3. Application sends the session to the User.

4. Application sends the session, the UserId and the expiration time for the
session to the KeyServer.

5. User has the Data in the client-side.

6. User with the web-brower request from the Keyserver a new DataKey and
a new DataID, The User sends also his current session that allows to access
the new DataKey.

7. The KeyServer, after the request from the User checks if he has the right
requirements and a valid session. If so, the KeyServer creates a new
DataKey and a new DataID.

8. The KeyServer, after the creation sends Datakey and DataID to the User.

9. User in the web-browser inserts the Owner key, a new key that only he
knows and he in the only person in charge of it. The system can’t save
the OwnerKey in any way.

10. User crypts the data using the Datakey+OwnerKey.

11. User uploads the crypted data into Public Cloud Company Application.

CHAPTER 4. PROJECT 26

4.4.2 Data reading
The data reading allow the User to access to his Data content.

Figure 4.3: Data Reading

Data reading procedure:

1. User login into Public Cloud Company Application.

2. Application creates a new valid session for the User; with that he can
access all the services. The session has an expiration time.

3. Application sends the session to the User.

4. Application sends the session, the UserId and the expiration time for the
session to the KeyServer.

5. User requests the crypted Data to Public Cloud Company Application.

6. User with the web-brower request from the Keyserver the DataKey with
the DataID, The User sends also his current session that allows access to
the DataKey.

7. The Public Cloud Company Application sends the crypted data to the
User.

8. The KeyServer after the request from the User checks if he has the right
requirements and a valid session. If so, the KeyServer send the DataKey.

9. User in the web-browser inserts the Owner key.

CHAPTER 4. PROJECT 27

10. User decrypts the data using the Datakey+OwnerKey.

11. User can read the data content.

4.4.3 Data Updating
This procedure is a combination of reading and creation. The User reads the
data with the DataId after the decryption; he can update the data content
afterwards, crypt with the old keys or change it with a new one. It’s up to him.

4.4.4 Data Deletion
In this procedure the User sends the deletion request to Public Cloud Company
Application. They then deletes the crypted data and also sends the request of
deletion to the KeyServer. The KeyServer deletes the Datakey for the DataId.

4.5 Different scenario

4.5.1 User unique owner of data
In this scenario, the user benefits from a service that the company has developed
and that run is done by a public cloud provider. In this specific case the data is
property of the user which is the one and only, able to view it. The Company is
solely responsible for the management of the data. All the main features that
we described in the previous section are perfect for this scenario.

4.5.2 Company owner of data
In this scenario, the user benefits from a service that the company has developed
and that run is done by a provider. In this specific case the data is owned by the
Company and the content is related to the User. The Company is the only one
that can create and update the data. User can only read the data. Company
has the OwnerKey, that is sent to the User through a secure channel.

4.5.3 User and Partners
In this scenario we describe the sharing of data with partners. There are two
different way to share it:

• User sends the data to the Partners: The user after a reading will
copy the data and send it into a secure channel. This is a simple way that
allows the User to share data outside the Application. The company hasn’t
got any control of that, only the User has the control of this operation.

CHAPTER 4. PROJECT 28

Figure 4.4: User send the data to the Partners

• User creates a copy of Data: The user duplicates the data into the
Public Cloud Application, uppermost he reads the data and creates a copy
of it with a new DataKey and a new PartnerKey. The Application gives
access to the Partner(a registered User). Therefore Partner has control on
the data copy so he becomes the owner of that data copy.

Figure 4.5: User create a copy of Data

• User adds Partner into Data Owner: In this case the User wants to
share the data with the Partner, in addition to this he wants to extend
the ownership of the data. In this way the User allows the Partner to read
and update the data, preventing him to share with other Partners. To do
this the User must send in a secure channel the OwnerKey to the Partner,
and add into the Application the ownership extension. The only function
that changes is uploading because the Partners and the Users can’t change
the OwnerKey. If the Users wants to delete the ownership extension he
will block access of the Partner into the KeyServer and into the Public

CHAPTER 4. PROJECT 29

Cloud Application. The User will remain the real data Owner, he has the
control of sharing the data.

Figure 4.6: User add Partner into Data Owner

4.5.4 Company and Users groups
This scenario is really close to the previous case in fact the Company represents
the Real Data Owner and can share it with a group of Users(Partners). The
only difference is that the company has the complete control over data and User.
The Users have no control of the data. The Company in fact, is a SuperUser
that can control all the data content. In this situation in fact the owner of the
data is property of the Company. The Company must send to the Users in a
secure channel all the OwnerKeys.

Figure 4.7: User add Partner into Data Owner

CHAPTER 4. PROJECT 30

4.6 Advanced Features
The following functionalities are the main features with some changes. These
advanced features can make the protocol more secure at the expense of perfor-
mance because they increment the network communication between the actors.

4.6.1 Encrypted OwnerKey with MasterKey
This particular functionality is an update in the management of the OwnerKey.
In this procedure we want to help the User save the OwnerKeys. It is one of the
most important variable of the protocol, and the User is the only one that must
remember it. In the case of the User having lots of data, it could be difficult
to store it in local. With this new feature the system allows Users to store the
OwnerKeys into the public Cloud Application. The User has to encrypt the
OwnerKey with the MasterKey, a new Key that he has to use to encrypt all the
OwnerKeys. In this way the User, in order to read and create, has to insert the
MasterKey to decrypt/encrypt the OwnerKey and send it with the encrypted
data into Public Cloud Application.

4.6.2 Checksum Store into KeyServer
In this functionality we want to make more secure the reading of the data be-
cause an important feature of the decryption is represented by the checksum.
Like wikipedia[12]says “checksum or hash sum is a fixed-size datum computed
from an arbitrary block of digital data for the purpose of detecting accidental
errors that may have been introduced during its transmission or storage. The
integrity of the data can be checked at any later time by recomputing the check-
sum and comparing it with the stored one. If the checksums match, the data
were almost certainly not altered (either intentionally or unintentionally).”

The checksum in the reading procedure can prove if the data is not altered,
this allows the Company to know that also with a brute force over the encrypted
data they can’t be certain of the data content.

In this case the changes in the creation procedure are: User after encrypting
the data sends the checksum to the Keyserver and encrypted data in the public
Cloud Application.

The changes in the reading procedure the changes are:

• KeyServer sends to the User the DataKey and the Checksum value.

• Only the User with the OwnerKey, DataKey and the checksum can see
the data content.

Chapter 5

Developing

In this chapter we want to show and describe a demo application that respects
our proposal. We have created this simple demo to prove all the main features
and prove that the protocol works. Our scope was to show how to have total con-
trol over the data into a Public Cloud System. We took two different platforms,
a PaaS and IaaS to develop and install the web-based demo application. The
Paas solution is Google Appengine, a public cloud platform for developing and
hosting web applications in Google-managed data centers. Google Appengine
virtualizes applications across multiple servers. App Engine offers automatic
scaling for web applications: as the number of requests increases for an applica-
tion, it automatically allocates more resources for the web application to handle
the additional demand. The Iaas solution is a VPS(Virtual private server) from
a common hosting company.

5.1 Web-application side

5.1.1 Interface Overview
The web application side wants to show how an application could be on the
public cloud. The demo that we made in the first implementation is on a LAMP
platform installed in a Virtual Private Server. The second implementation is
under Google Appengine. The demos display all the features that we described
in the previous chapter.

We allow the User to register or login into the Application, after that he can
add data, read data, update data and share data with other Users.

31

CHAPTER 5. DEVELOPING 32

Figure 5.1: Application Login Screenshot

Figure 5.2: Application Registration Screenshot

In the previous figure we showed the web-based access to the Demo Appli-
cation. The User after the login can access the menu of the functionalities that
we can see in the next figure. The menu is allocated on the right side and it’s
always present in all the pages, for User is very simple to switch the application
functionalities.

CHAPTER 5. DEVELOPING 33

Figure 5.3: Functionality Menu

In the Demo Application, User can add data to store on the Public Cloud
Application, the kind of data could be plain text or file. Now we will analyze
step by step every functionality.

5.1.2 Add new Data
In this section we will describe all the procedure of data creation in the demo
application. First the User has to be logged into the system with a valid ac-
count, in fact we can see the session code that allows the user to access all the
functionalities of the system.

Figure 5.4: Session countdown

CHAPTER 5. DEVELOPING 34

The current session is the session that the Application created after the login.
At the same time the Application sends the same session to the KeyServer with
the expiration time. This allow the Keyserver to control the DataKey request.
In the admin panel of the KeyServer we can see the actual session, the system
shows only just the last one of User besides we can see if the session is valid or
expired. In this demo application the session expiration time is set at 20 min.

Figure 5.5: KeyServer Access Admin Panel

The logged in and authorized User can insert a new OwnerKey, in the Demo
it is all up to the User the type of OwnerKey however he could be leave it blank.

Figure 5.6: Insert of OwnerKey

The User now can request a new DataKey that allows him to encrypt the
data. With the button “Get DataKey” User sends an ajax asynchronous call to
the KeyServer, the User in the request sent CurrentSession, UserID, TypeOfRe-
quest(new dataKey). The KeyServer, if the CurrentSession is still valid and the
User has the correct requisites, creates a new DataKey and a new DataID after
that the KeyServer sends the data to the web-browser with a Json answer. Json
is derived from the JavaScript scripting language for representing simple data
structures and associative arrays, called objects; the JSON format is often used

CHAPTER 5. DEVELOPING 35

for serializing and transmitting structured data over a network connection. It is
used primarily to transmit data between a server and web application, serving
as an alternative to XML.[?]

In the following figure we can note the requested procedure. In the Demo
we wanted to show the current status of the asynchronous request.

f unc t i on Get_DataKey () {

$. getJSON(’ http :// upload . waaa . i t / t h e s i s / r eceve .
php ’ ,{ s e s s i o n : ’ bbj169152m51k3gcph4mh8eqi6 ’ ,
user_id : ’ 1 ’ , o : ’ get ’ , key_id : ’ 68 ’ } ,

f unc t i on (data) {
var items = new Array () ; i i =0;
$. each (data , f unc t i on (key , va l) { items [i i]= va l ; i i

= i i +1;}) ;
i f (i tems [0]=="ERROR") {

$ ("#datakeystatus ") . html (’<span␣ c l a s s="
input−n o t i f i c a t i o n ␣ e r r o r ␣png_bg"> ’+
items [1]+ ’’) ;

a l e r t (i tems [1]) ;
} else {

$ ("#datakey r ea l i d ") . va l (i tems [1]) ;
$ ("#datakey") . va l (i tems [0]) ;
$ ("#datakeystatus ") . html (’<span␣ c l a s s="

input−n o t i f i c a t i o n ␣ suc c e s s ␣png_bg">
Success ’) ; } ;

}) ;
}

Figure 5.7: GetDataKey Javascript Code

Figure 5.8: Get DataKey Procedure

CHAPTER 5. DEVELOPING 36

Figure 5.9: Get DataKey Request Status

The response time of the KeyServer in the tests that we have done is really
quick, the average is around 1sec; nevertheless it will always depend on the
network and the User connection.

After the insertion of DataKey and OwnerKey, the User can insert the Data
that he wants to store into the public Cloud Application.

Figure 5.10: Data insertion

Now the User can encrypt his data into the Application, with the Encrypt
button (a Javascript function is called). The Encrypt function with the RealKey
and the PlainText creates a Cipher Text. The User also can insert a DataName
or Description, that will help him to recognize his data.

CHAPTER 5. DEVELOPING 37

Figure 5.11: Encrypt button

Figure 5.12: Cipher Text

The User can now store the data with the “Save” button. After the proce-
dure, user will be redirected into myData pages, that allows him to see all the
data and the recently inserted one.

Figure 5.13: My data panel

CHAPTER 5. DEVELOPING 38

5.1.3 Read my data
The user in the read my data page can see all his data. When the User select a
data, the application redirects him to the view page of the specific data.

Figure 5.14: Read data panel

In this procedure the User has to do the same step that we saw in the creation
procedure. The only difference is the GetDataKey function, because this time in
the request we insert the DataId, and the typeOfRequest is different (reading).

The User, when having all the keys, can press the “Decrypt” button that
allows him to see the data content.

CHAPTER 5. DEVELOPING 39

Figure 5.15: Read data panel

After the decrypt procedure the Application allows the User to update the
plain text and he can encrypt again with a new DataKey and OwnerKey if he
wants and then he can save the updated data into the public Cloud.

5.1.4 Add new File
In this section we show how to store files, not simple plain text. For this
feature User must use an updated Web-Brower, in the tests we always use
Google Chrome that supports the new features of HTML5. The most important
feature that we used is the local filesystem. HTML5 provides very powerful
APIs to interact with binary data and a user’s local file system. The File
APIs give web applications the ability to do things like read files synchronously,
create arbitrary Blobs, write files to a temporary location, recursively read a
file directory, perform file drag and drop from the desktop to the browser, and
upload binary data using XMLHttpRequest.[10]

In the add file page, all the Users can drag and drop into the panel the file
that they want to encrypt.

CHAPTER 5. DEVELOPING 40

Figure 5.16: Drop File

After he has dropped the file, the web-browser will translate from binary to
base64. Base64 is a group of similar encoding schemes that represent binary
data in an ASCII string format by translating it into a radix-64 representation.
After the translation in the demo application, the User can see the base64 string
that represents the file content.

Figure 5.17: Base64 String

The User after the insertion of the Keys, like in the plain text creation, can
encrypt the file and store it into the system. In the following figure we can see
that after cipher text the name of the data is already filled with the original file
name attached at the DataId.

CHAPTER 5. DEVELOPING 41

Figure 5.18: Encrypted file

This functionality could be not supported in the same way in older web-
browsers. We hope that html5 and the web-browsers in general will improve
and that also all the functionalities will be more portable to build applications.

5.1.5 Share my Data
One of the most important features is the file sharing with Partners. In the
demo we develop the Users sharing, with the two scenarios that we describe in
the proposal chapter, which are: User creates a copy of Data and User adds
Partner into Data Owner. In the next picture we can see the share page for a
data. Before the sharing page User has to choose the data that they want to
share.

CHAPTER 5. DEVELOPING 42

Figure 5.19: Data sharing panel

The next step is to select the kind of sharing and the Registered User that
he wants to share data with.

Figure 5.20: Registered User list

If the User wants to add the partner to the Owner the procedure is over, the
application will add the Partners in the Owner of that Data. Now Partner can
read the shared data, the application and the Keyserver will allow him all the
operations that belong to the shared data.

If the User choses the copy creation for the partner, the system will redirect
the user in a page similar to the reading page, and after the decryption of data,

CHAPTER 5. DEVELOPING 43

User has to insert the PartnerKey and encrypt again the data to store it in order
to share with the partner. The last step for the User is to send the PartnerKey
to the Partner through a secure channel.

Figure 5.21: User create a copy of Data

5.1.6 LAMP platform
LAMP is an acronym for a solution stack of free, open source software, referring
to the first letters of Linux (operating system), Apache HTTP Server, MySQL
(database software) and PHP (or sometimes Perl or Python), principal com-
ponents to build a viable general purpose web server.[13] The GNU project is
advocating people to use the term "GLAMP" since what is known as "Linux"
is known to GNU as the GNU/Linux system.

CHAPTER 5. DEVELOPING 44

Figure 5.22: Lamp Solution

The exact combination of software included in a LAMP package may vary,
especially with respect to the web scripting software, as PHP may be replaced
or supplemented by Perl and/or Python. Similar terms exist for essentially the
same software suite (AMP) running on other operating systems, such as Mi-
crosoft Windows (WAMP), Mac OS (MAMP), Solaris (SAMP), iSeries (iAMP),
or OpenBSD (OAMP). Though the original authors of these programs did not
design them all to work specifically with each other, the development philosophy
and tool sets are shared and were developed in close conjunction. The software
combination has become popular because it is free of cost, open-source, and
therefore easily adaptable, and because of the ubiquity of its components which
are bundled with most current Linux distributions. When used together, they
form a solution stack of technologies that support application servers.

5.1.7 Google Appengine
We decided to develop on one of the best PaaS, Google App Engine. Google
App Engine is a platform that lets you run web applications on Google’s infras-
tructure. App Engine applications are easy to build, easy to maintain, and easy
to scale as your traffic and data storage needs grow. With App Engine, there
are no servers to maintain: You just upload your application, and it’s ready to
serve your users. You can serve your app from your own domain name using
Google Apps. Or, you can serve your app using a free name on the appspot.com
domain.

CHAPTER 5. DEVELOPING 45

Figure 5.23: Google App Engine and GWT

You can share your application with the world, or limit access to mem-
bers of your organization. Google App Engine supports apps written in several
programming languages. With App Engine’s Java runtime environment, you
can build your app using standard Java technologies, including the JVM, Java
servlets, and the Java programming language or any other language using a
JVM-based interpreter or compiler, such as JavaScript or Ruby. App Engine
also features two dedicated Python runtime environments, each of which in-
cludes a fast Python interpreter and the Python standard library. Finally, App
Engine provides a Go runtime environment that runs natively compiled Go
code. These runtime environments are built to ensure that your application
runs quickly, securely, and without interference from other apps on the system.
With App Engine, you only pay for what you use. There are no set-up costs
and no recurring fees. The resources your application uses, such as storage and
bandwidth, are measured by the gigabyte, and billed at competitive rates. You
control the maximum amounts of resources your app can consume, so it always
stays within your budget. App Engine costs nothing to get started. All applica-
tions can use up to 1 GB of storage and enough CPU and bandwidth to support
an efficient app serving around 5 million page views a month, absolutely free.
When you enable billing for your application, your free limits are raised, and
you only pay for resources you use above the free levels.[11]

We chose the Java developing. Java runtime environment using common
Java web development tools and API standards. Your app interacts with the
environment using the Java Servlet standard, and can use common web applica-
tion technologies such as JavaServer Pages (JSPs). The Java runtime environ-
ment uses Java 6. The App Engine Java SDK supports developing apps using
either Java 5 or 6. The environment includes the Java SE Runtime Environment
(JRE) 6 platform and libraries. The restrictions of the sandbox environment are
implemented in the JVM. An app can use any JVM bytecode or library feature,
as long as it does not exceed the sandbox restrictions. For instance, bytecode
that attempts to open a socket or write to a file will throw a runtime excep-
tion. Your app accesses most App Engine services using Java standard APIs.
For the App Engine datastore, the Java SDK includes implementations of the
Java Data Objects (JDO) and Java Persistence API (JPA) interfaces. Your app

CHAPTER 5. DEVELOPING 46

can use the JavaMail API to send email messages with the App Engine Mail
service. The java.net HTTP APIs access the App Engine URL fetch service.
App Engine also includes low-level APIs for its services to implement additional
adapters, or to use directly from the application.

5.1.8 Client browser side
In the client browser we developed the most important feature of the protocol.
We used Javascript for the runtime procedure on the web-browser, Html for the
interface and Ajax for the asynchronous request to the KeyServer that allow us
to use encrypt data without the Public Cloud Provider.

In particular Ajax is a group of interrelated web development methods used
on the client-side to create asynchronous web applications. With Ajax, web ap-
plications can send data to, and retrieve data from, a server asynchronously (in
the background) without interfering with the display and behavior of the exist-
ing page. Data is usually retrieved using the XMLHttpRequest object. Despite
the name, the use of XML is not needed (JSON is often used instead), and the
requests do not need to be asynchronous.[2] Ajax is not one technology, but a
group of technologies. HTML and CSS can be used in combination to mark
up and style information. The DOM is accessed with JavaScript to dynami-
cally display, and to allow the user to interact with the information presented.
JavaScript and the XMLHttpRequest object provide a method for exchanging
data asynchronously between browser and server to avoid full page reloads.

We also used JQuery for the developing of the javascript. JQuery is a
cross-browser JavaScript library designed to simplify the client-side scripting
of HTML. Used by over 49% of the 10,000 most visited websites, jQuery is the
most popular JavaScript library in use today. JQuery is free, open source soft-
ware, dual-licensed under the MIT License or the GNU General Public License,
Version 2. JQuery’s syntax is designed to make it easier to navigate a document,
select DOM elements, create animations, handle events, and develop Ajax ap-
plications. JQuery also provides capabilities for developers to create plug-ins on
top of the JavaScript library. This enables developers to create abstractions for
low-level interaction and animation, advanced effects and high-level, theme-able
widgets. The modular approach to the jQuery framework allows the creation of
powerful and dynamic web pages and web applications.

For the user interface we used Html and for the file creation most of the new
feature of Html5.

5.1.9 Server side on VPS solution
In the server side of Lamp solution we developed all the web-dynamic code in
Php. With a self-made Cms we built the Demo Application. We will see the
structure of the Cms in the next section. In the server we used MySql to store
the data in the database. In the public cloud database we created tree tables:
data, user, ownership.

In the next Figure we can see the structure of the tables.

CHAPTER 5. DEVELOPING 47

CREATE TABLE IF NOT EXISTS ‘ data ‘ (
‘ data_id ‘ int (11) NOTNULL AUTO_INCREMENT,
‘data_name ‘ t ex t NOT NULL,
‘ data_cipher ‘ l ong t ex t NOT NULL,
‘ data_user_id ‘ int (11) NOT NULL,
‘ data_date_creation ‘ b i g i n t (20) NOT NULL,
‘ data_date_last_update ‘ b i g i n t (20) NOT NULL,
‘ data_real_id ‘ int (11) NOT NULL,
‘ data_type ‘ varchar (5) NOT NULL,
PRIMARYKEY (‘ data_id ‘)

) ENGINE=MyISAM DEFAULT CHARSET=ut f8 ;

CREATE TABLE IF NOT EXISTS ‘ user ‘ (
‘ user_id ‘ int (11) NOTNULL AUTO_INCREMENT,
‘ user_name ‘ varchar (20) NOT NULL,
‘ user_email ‘ varchar (30) NOT NULL,
‘ user_pass ‘ varchar (100) NOT NULL,
PRIMARYKEY (‘ user_id ‘) ,
UNIQUE KEY ‘ user_name ‘ (‘ user_name ‘ , ‘ user_email ‘)

) ENGINE=MyISAM DEFAULT CHARSET=ut f8 ;

CREATE TABLE IF NOT EXISTS ‘ share ‘ (
‘ user_id ‘ int (11) NOT NULL,
‘ data_id ‘ int (11) NOT NULL,
PRIMARYKEY (‘ user_id ‘ , ‘ data_id ‘)

) ENGINE=MyISAM DEFAULT CHARSET=ut f8 ;

Figure 5.24: Sql Creation code

5.1.10 CMS with MVC
In the demo application we used a self-made cms in php. This simple cms
respected the MVC (Model–view–controller) that is a software architecture,
currently considered an architectural pattern used in software engineering. The
pattern isolates "domain logic" (the application logic for the user) from the
user interface (input and presentation), allowing independent development, test-
ing and maintenance of each (separation of concerns). Model View Controller
(MVC) pattern creates applications that separate the different aspects of the
application , while providing a loose coupling between these elements.

In the demo application we create a tree controller: data, admin, user. The
admin is a controller that allows only the admin users to see all the data and
ownership. The data controller has these functionalities:

• Insert new data

CHAPTER 5. DEVELOPING 48

• Read all

• Read a specific data

• Update a specific data

• Delete a specific data

• Share a copy of a specific data

• Add partner into data owner for a specific data

Not all of these functions have the view. In fact only read and read all have a
specific view, while the other redirect the user in different views.

The Cms was really useful for the demo implementation, nevertheless on
Google app engine we built a copy of the php version in java. We converted all
the controller and most of the views.

5.2 Datakey service

5.2.1 Overview
KeyServer is a server with some services that allow the user to get DataKey.
The services are two: send and receive.

The send service has the feature to receive into the KeyServer only from
Public Cloud platform the new session key for the User that enters into the
Application or updates the expired session. In input the send service wants
UserId, SessionCode, ExpiredTime. The send service returns to the Public
Cloud platform only the confirmation of success or otherwise the type of error.

The receive service has these functionalities:

• Receive a new DataKey and DataId

• Receive the DataKey for a specific Data

These two functionalities respect the protocol; to allow the User to receive the
DataKey, he has to send the Session and after a check, if he has the right
requisites, the KeyServer sends the DataKey.

Besides, the KeyServer has an admin panel built on the same cms of the
demo. The panel allows only the Admin to monitor the access and the keys.

CHAPTER 5. DEVELOPING 49

Figure 5.25: KeyServer Admin Panel

In the next Figure we can see the structure of the tables.

CHAPTER 5. DEVELOPING 50

CREATE TABLE IF NOT EXISTS ‘ acces s ‘ (
‘ access_id ‘ b i g i n t (20) NOTNULL AUTO_INCREMENT,
‘ access_user_id ‘ int (11) NOT NULL,
‘ a cce s s_ses s i on ‘ t ex t NOT NULL,
‘ access_time_exp ‘ b i g i n t (20) NOT NULL,
PRIMARYKEY (‘ access_id ‘)

) ENGINE=MyISAM DEFAULT CHARSET=ut f8 ;

CREATE TABLE IF NOT EXISTS ‘key ‘ (
‘ key_id ‘ b i g i n t (20) NOTNULL AUTO_INCREMENT,
‘ key_user_id ‘ b i g i n t (20) NOT NULL,
‘ key_value ‘ t ex t NOT NULL,
‘ key_date ‘ b i g i n t (20) NOT NULL,
PRIMARYKEY (‘ key_id ‘)

) ENGINE=MyISAM DEFAULT CHARSET=ut f8 ;

CREATE TABLE IF NOT EXISTS ‘ share ‘ (
‘ user_id ‘ int (11) NOT NULL,
‘ data_id ‘ int (11) NOT NULL,
PRIMARYKEY (‘ user_id ‘ , ‘ data_id ‘)

) ENGINE=MyISAM DEFAULT CHARSET=ut f8 ;

Figure 5.26: Sql Creation code

5.3 Encryption

5.3.1 Browser-Based Cryptography Tools
In the web browser side, we used a javascript algorithm to encrypt and de-
crypt the data. This algorithm was written by John Walker[11]. In the demo
version we used that algorithm but the protocol can work with any symmetric
cryptographic algorithm.

In the demo application we used the AES 256 symmetric cryptographic
algorithm, that is a secure and solid choose. With the algorithm we have also
the checksum value inside the cipher text (first 25 bytes); this is really useful
because with that we can always know if the decryption is correct or not. One
of the protocol scenario has the checksum into the KeyServer, this feature is
really useful but needs more callback between User side and KeyServer.

CHAPTER 5. DEVELOPING 51

5.4 Conclusion
In this project we wanted to design a protocol able to, with a series of policies
and rules, resolve the security concern problem of control over data. With the
demo application we prove that it works. The demo application respects every
single part of the protocol. In the development we made a lot of choices that
respected the protocol such as the encryption algorithm, the merge algorithm
for OwnerKey and DataKey, the type platform and the programming languages.
All these choices were free constraints that is up to the developers.

The protocol can be integrated in all the Applications. The limit of the pro-
tocol is data mining over the encrypted data. However it could be implemented
if we use homomorphic encryption, but we also have to change the policy about
the Keys because the data has to encrypt with the same key, but that’s in
contrast with the protocol.

Bibliography

[1] Mell P, Grance T. The NIST Definition of Cloud Computing Ver-
sion 15; 2009,National Institute of Standards and Technology, In-
formation Technology Laboratory.

[2] Securing the Cloud: Cloud Computer Security Techniques and
Tactics, Graham Speake, Patrick Foxhoven, Elsevier Science &
Technology, May 1, 2011

[3] Cloud Security: A Comprehensive Guide to Secure Cloud Com-
puting By Ronald L. Krutz, Russell Dean Vines

[4] Code in the Cloud, Pragmatic Programmers, LLC, The, Jan 25,
2011

[5] A Quick Start Guide to Cloud Computing: Moving Your Business
Into the Cloud, Kogan Page, 28/nov/2010

[6] http://en.wikipedia.org/wiki/Checksum

[7] http://en.wikipedia.org/wiki/LAMP_(software_bundle)

[8] http://en.wikipedia.org/wiki/JSON

[9] http://www.bitsandbuzz.com/article/cloud-portability-force-com-
vs-google-app-engine-vs-amazon/

[10] http://www.html5rocks.com/en/features/file

[11] http://code.google.com/appengine/docs/whatisgoogleappengine.html

[12] http://www.fourmilab.ch/javascrypt/

[13] http://research.microsoft.com/en-us/projects/cryptocloud/

52

	fronteblank
	VeronelliGiacomo
	Summary
	Cloud Computing
	Understanding Cloud Computing,
	Cloud Service Models
	Cloud Deployment Models
	Control over security
	Public Cloud
	Representative Commercial Cloud Architectures

	Securing the Cloud
	Security Concerns
	Data Privacy and Security
	Organizational Responsibility: Ownership and Custodianship
	Data at Rest
	Data in Motion
	Cryptography on Cloud
	Data Encryption: Applications and Limits
	Impediments to Encryption in the Cloud
	State of the Art

	Project
	Problem definition
	Proposal
	Actors
	Service Company
	Public Cloud System Provider
	KeyServer
	Users/Owner

	Global Functionality
	Data Creation
	Data reading
	Data Updating
	Data Deletion

	Different scenario
	User unique owner of data
	Company owner of data
	User and Partners
	Company and Users groups

	Advanced Features
	Encrypted OwnerKey with MasterKey
	Checksum Store into KeyServer

	Developing
	Web-application side
	Interface Overview
	Add new Data
	Read my data
	Add new File
	Share my Data
	LAMP platform
	Google Appengine
	Client browser side
	Server side on VPS solution
	CMS with MVC

	Datakey service
	Overview

	Encryption
	Browser-Based Cryptography Tools

	Conclusion

