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Introduction

The first direct detection of gravitational waves (GWs) was made in 2015 by the
LIGO/Virgo collaboration [1]. It has also proven the existence of binary stellar-mass
black hole systems. In 2017 the Advanced LIGO/Virgo collaboration made the first ob-
servation of a binary neutron star system [2]. In the future, many astrophysical sources
are expected to be detected by aLIGO/Virgo and other planned detectors. However,
the GWs are expected to discover not only new astrophysical objects but also to probe
fundamental physics and cosmology. The GWs decouple from the rest of the compo-
nents of the universe upon the production, therefore they can probe the energy scales
inaccessible in any other way. However, to probe the physics of the early universe, the
GW amplitude must be sufficiently large to be detected by current and future GW de-
tectors. Several mechanisms in the early universe can generate a GW signal within the
reach of GW detectors. The currently operating GW detectors include ground-based
detectors, aLIGO, aVirgo, and KAGRA. The number of future GW detectors involves
the ground-based interferometer Einstein Telescope (ET) [3], which is expected to be
completed soon. The European Space Agency (ESA) has accepted the Laser Interfer-
ometer Space Antenna (LISA) [4], which will be the first space-based interferometer.
The sensitivity of the Pulsar Timing Arrays to detect GWs is expected to improve in
the future with the Square Kilometre Array [5]. There are also two other space-based
projects, like DECIGO (DECi-hertz Interferometer Gravitational Wave Observatory) [6]
and BBO (Big Bang Observer) [7].

The current ground-based interferometers are close to reaching the sensitivity neces-
sary to detect the astrophysical GWB produced by a superposition of the signals from
unresolved sources [8]. Future space-based and earth-based interferometers might be
able to detect the cosmological GWB generated by inflation [9], preheating, phase tran-
sitions [10] or topological defects [11]. So we will require a method to differentiate the
cosmological GW signal from the astrophysical one. The frequency dependence is one
of the possible ways to distinguish among the various GW backgrounds since certain
cosmological sources of GWs peak at some characteristic scales [12]. Although, due to
the fact that future interferometers will have a much better angular resolution, angular
anisotropies in the GW energy density could be an effective tool to distinguish among
various sources of GWs in the early universe [13, 14, 15, 16]. The aim of this master
thesis is to analyze the effect of different cosmological sources on the initial angular
anisotropy of the SGWB.
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In this thesis, we considered several mechanisms for the GW production in the early
universe. The SGWB is expected from the amplification of initial quantum fluctuations
of the tensor perturbations of the metric during inflation. However, inflation is not the
only source of GWs expected in the early universe. In models beyond the standard
single-field, additional fields may be present or new symmetries can be considered dur-
ing inflation, which could also be the source of GWs. In the axion inflation model,
the inflaton field is coupled to a gauge field, therefore besides the GWs from the vac-
uum fluctuations, we have the sourced GWs from the excited gauge field [17]. Another
possibility is the presence of a second scalar field during inflation, the spectator field,
which can induce GWs. Alternative to the standard inflationary model is the curvaton
scenario, where the curvature perturbations are produced from an initial isocurvature
perturbation associated with the quantum fluctuations of a curvaton field [18]. The
SGWB is also expected to arise from strong first-order phase transitions. During a first-
order phase transition, true vacuum bubbles nucleate and collide with each other in the
background space-time, which is still in a false vacuum. Collisions of bubble walls break
the spherical symmetry creating non-zero anisotropic stress and leading to the genera-
tion of GWs. Moreover, the expansion and collision of bubbles will induce sound waves
and magneto-hydrodynamic turbulence, which also leads to the GW production. The
relative contribution of these processes to the total GW spectrum depends on a specific
particle physics model [10]. Furthermore, topological defects may arise as a result of
symmetry-breaking phase transitions. Cosmic strings are one-dimensional topological
defects produced as a result of a symmetry-breaking phase transition in the early uni-
verse. Cosmic strings may arise at the end of inflation in supersymmetric GUT models of
Hybrid inflation [19]. Cosmic strings can also be the fundamental superstrings produced
at the end of brane inflation [20]. Cosmic strings cross each other and reconnect forming
smaller cosmic string loops. These loops begin to oscillate and decay emitting GWs [21].

To study the anisotropies of the SGWB, similarly to CMB anisotropies, we solve the
Boltzmann equation for the graviton distribution function at first order around a FLRW
metric [22, 23, 24]. The graviton distribution function can be expanded as a leading
isotropic term plus a first-order anisotropic contribution. The isotropic and homogeneous
part of the distribution function depends only on time and the GW frequency p/2π,
where p⃗ is the physical momentum of the gravitons. In contrast to photons, the initial
distribution of gravitons is not thermal leaving in the distribution the memory of the
initial state. Due to the fact that the spectrum is not thermal, the angular anisotropies
of the SGWB have an order one dependence on the GW frequency [25], while for the
CMB anisotropies the dependence appears only at the second order. Furthermore, the
CMB temperature anisotropies are generated only at the last scattering surface and
thereafter, while GWs propagate freely at all energies below the Planck scale providing
unique information about the physics of the early universe. Anisotropies in GW energy
density are produced both at production and during their propagation through the large-
scale scalar and tensor perturbations of the universe.

To fully describe the SGWB anisotropy we need to know the initial conditions for the
GW energy density perturbation δGW and the evolution of gravitational potentials Φ and



Ψ. To this end, we solve the Einstein equations combined with the Boltzmann equation
for various particle species present in the universe at the time of the GW production
[26].

The primordial density perturbations can be split into adiabatic and isocurvature
perturbations. Adiabatic perturbations are characterized by a vanishing entropy per-
turbation. Isocurvature perturbations have a non-vanishing entropy perturbation. The
single-field models of inflation typically generate purely adiabatic perturbations. Isocur-
vature perturbations can be generated if more than one scalar field is present during
inflation, for example, in inflationary models with the curvaton or spectator fields. Cos-
mic strings produce mainly isocurvature perturbations [27]. On the other hand, phase
transitions can produce both adiabatic and isocurvature modes, depending on the given
particle physics model [28]. In the case of adiabatic perturbations, GW energy density
perturbations behave similarly to CMB anisotropies, even if there are some differences
due to their non-thermal initial distribution. This is not necessarily the case for isocur-
vature perturbations. This can have an impact on the angular spectrum of the SGWB
and can be a way to distinguish different sources of GW in the early Universe, being at
the same time probes of the large-scale gravitational potentials.

We compute analytically the angular power spectrum of the SGWB. Then we imple-
ment numerically adiabatic and isocurvature initial conditions in the Boltzmann code
CLASS, adapted for the SGWB [29].

The thesis is organized as follows. In Chapter 1 we give an overview of cosmolog-
ical sources of GWs, which include inflation, phase transitions, and cosmic strings. In
Chapter 2 we present the solution of the Boltzmann equation for GWs. Further, we
decompose the solution of the Boltzmann equation in spherical harmonics and compute
the angular power spectrum of the SGWB perturbations. In Chapter 3 we introduce
the initial conditions for the GW energy density perturbation in the case of adiabatic
and isocurvature perturbations. In Chapter 4 we provide the results of numerical com-
putations in the Boltzmann code CLASS for the angular power spectrum of the initial
condition term implementing different SGWB sources.





Chapter 1

Cosmological Sources of
Gravitational Waves

1.1 Inflation

1.1.1 Quantum Fluctuations of the Inflaton Field

Inflation is a period of accelerated expansion in the early universe, which presents
the solution to the shortcomings of the Hot Big Bang model such as the horizon and
flatness problems [30]. Quantum fluctuations of the inflaton field stretch to the cosmo-
logical scales resulting in amplified classical density perturbations [31, 32, 33]. When
the perturbations reenter the horizon they set the initial conditions for the Large Scale
Structure formation. The simplest models of inflation predict adiabatic, Gaussian, and
nearly scale-invariant density perturbations in a homogeneous and isotropic spatially flat
universe. The intrinsic quantum fluctuations of the metric during inflation can generate
GWs. The detection of GWs from inflation will allow us to probe the dynamics of in-
flation and allow us to differentiate among the specific models of inflation. The simplest
models of inflation include an inflaton scalar field ϕ with a canonical kinetic term and
potential V (ϕ), minimally coupled to gravity. The action for the inflaton scalar field
reads [34]

S =

∫
d4x

√−g

[
m2

Pl

2
R− 1

2
∂µϕ∂

µϕ+ V (ϕ)

]
, (1.1)

where R is the Ricci scalar and mPl = 1/
√
8πG is a reduced Plank mass. To describe

the evolution of a scalar field we can associate the stress-energy momentum to ϕ

Tµν =
−2√−g

δS

δgµν
= ∂µϕ∂νϕ+ gµν

[
1

2
gαβ∂αϕ∂βϕ− V (ϕ)

]
. (1.2)

The inflaton field can be expressed as the sum of the classical background value,
which is homogeneous and isotropic, and the quantum fluctuations
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ϕ (x⃗, t) = ⟨0|ϕ (x⃗, t) |0⟩+ δϕ (x⃗, t) =

= ϕ0 (t) + δϕ (x⃗, t) .
(1.3)

The stress-energy momentum tensor for the classical background value is given by

T 0
0 = −

[
1

2
ϕ̇2 − V (ϕ)

]
= −ρϕ, (1.4)

T i
j =

[
1

2
ϕ̇2 − V (ϕ)

]
δij = δijPϕ. (1.5)

The equation of state for the classical background value thus can be written as

wϕ =
Pϕ (t)

ρϕ (t)
=

1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (1.6)

For inflation to occur it is required to have a negative isotropic pressure Pϕ < 0. It
is possible if 1

2 ϕ̇
2 ≪ V (ϕ), which brings to Pϕ ≈ −V (ϕ) ≈ −ρϕ. The equation of state

is wϕ ≃ −1, giving rise to a quasi-de-Sitter phase with a quasi-exponential expansion
a(t) ≈ eHt, where a Hubble rate H approximately constant. This condition is realized if
we consider a sufficiently flat potential V (ϕ) ≈ const, which is called a slow-roll regime.
The equation of motion for the scalar field from the variational principle is

δS

δϕ
= 0. (1.7)

In the spatially flat FRW metric it takes the form

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
= −∂V

∂ϕ
. (1.8)

For the classical background value of the scalar field, the equation reads

ϕ̈+ 3Hϕ̇ = −∂V

∂ϕ
. (1.9)

Two conditions must be fulfilled to realize inflation for a sufficiently long amount of
time to solve the shortcomings of the Hot Big Bang model. The first slow roll condition
is

1

2
ϕ̇2 ≪ V (ϕ) . (1.10)

We introduce the second slow roll condition

ϕ̈ ≪ 3Hϕ̇. (1.11)

It ensures that we have an asymptotic attractor solution to the equation of motion



ϕ̇ ≃ − V ′

3H
. (1.12)

In order to quantify the slow-roll regime dynamics, it is also useful to define the two
slow-roll parameters

ϵ = −Ḣ

H
≃ 3

2

ϕ̇2

V (ϕ)
,

η = − ϕ̈

Hϕ̇
,

(1.13)

exploiting the slow roll conditions the parameters must satisfy ϵ ≪ 1 and η ≪ 1.
Although ϵ ≪ 1 is sufficient to have inflation, the condition η ≪ 1 will ensure that
inflation lasts for long enough.

As aforementioned the perturbations of the inflaton field will induce the tensor per-
turbations of the metric producing the SGWB. The perturbed spatially flat FLRW
metric, neglecting scalar and vector perturbations, is [34]

ds2 = a2(η)
[
−dη2 + (δij + hij) dx

idxj
]
, (1.14)

with hij such that hij = hji ,h
i
i = 0 ,hij|i = 0 . The equation of motion for hij is

obtained from the Einstein equation

δS

δgµν
= 0, (1.15)

around the metric in eq. (1.14), then we get

h′′ij + 2Hh′ij −
∇2hij
a2

= 16πGa2ΠTT
ij , (1.16)

where H is the conformal Hubble rate and ΠTT
ij is a traceless and transverse com-

ponent of an anisotropic stress tensor. The anisotropic stress is given by a2Πij =
Tij−pa2 (δij + hij), where Tij is the spatial components of the energy-momentum tensor
of the source and p is the background pressure. It vanishes at first order for single field
inflation, therefore

h′′ij + 2Hh′ij −
∇2hij
a2

= 0. (1.17)

Since hij is symmetric, transverse, and trace-free, tensor perturbations have two
physical degrees of freedom, so it can be decomposed in a Fourier space as

hij =
∑

λ=+×

∫
d3k

(2π)3
eik⃗·x⃗hλ

(
k⃗, τ⃗
)
ϵλij

(
k⃗
)
, (1.18)

where ϵλij

(
k⃗
)
is the polarization tensor, which satisfies ϵij = ϵji, ϵ

i
i = 0 , kiϵij = 0,

and the normalization condition ϵλijϵ
ij
λ′ = δλλ′ . The equation of motion becomes



h′′λ + 2Hh′λ − k2hλ
a2

= 0, (1.19)

which is analogous to the equation of motion for a minimally coupled scalar field.
We can parametrize it as

hλ =

√
2

mPl

vλ

(
η, k⃗
)

a
. (1.20)

Since we are considering the quantum fluctuations, we have to quantize the inflaton

field. We apply the canonical quantization for vλ

(
η, k⃗
)

vλ

(
η, k⃗
)
=

∫
d3k

(2π)3

[
vk (η) e

−ik⃗x⃗â
k⃗,λ

+ vk (η) e
−ik⃗x⃗â+

k⃗,λ

]
, (1.21)

where a
k⃗,λ

, a+
k⃗,λ

are the annihilation and creation operators respectively. The nor-

malization condition for vλ

(
η, k⃗
)
is

vkv
∗′
k − v∗kv

′
k = i. (1.22)

which ensures the canonical commutation relation for â
k⃗,λ

and â+
k⃗,λ

[
â
k⃗,λ

, â+
k⃗′,λ′

]
= (2π)3 δλλ′δ(3)

(
k⃗ − k⃗′

)

[
â+
k⃗,λ

, â+
k⃗′,λ′

]
=
[
â
k⃗,λ

, â
k⃗′,λ′

]
= 0.

(1.23)

Hence, the equation of motion can be rewritten as

v′′k (η) +
(
k2 − a′′

a

)
vk (η) = 0. (1.24)

We can relate a conformal time and a Hubble rate at first order as

η ≃ 1

H (1− ϵ)
, (1.25)

then the term involving the scale factor in eq. (1.24) is

a′′

a
= H′ +H2 ≃ (2− ϵ)H2 ≃ 1

η2
(2 + 3ϵ) , (1.26)

and the equation of motion can be written as

v′′k (η) +

(
k2 − v2 − 1

4

η2

)
vk (η) = 0, (1.27)

where ν2 = 9
4 + 3ϵ. This is a Bessel equation, whose solution is of the form



vλ

(
η, k⃗
)
=

√−η
[
c1 (k)H

(1)
ν (−kν) + c2 (k)H

(2)
ν (−kν)

]
, (1.28)

where H
(1)
ν (−kν) and H

(2)
ν (−kν) = H

(1)∗
ν (−kν) are the Hankel functions of the first

and second kind. On sub-horizon scales, −kη ≫ 1, we want to be able to reproduce a
flat spacetime metric, thus we require a plane wave solution on sub-horizon scales

vk (η) = ck,+e
−ikη + ck,−e

ikη. (1.29)

We set ck,− = 0 as initial condition and the value of ck,+ is determined by the
normalization condition in eq. (1.22). The solution then is

vk (η) =
1√
2k

e−ikη, (1.30)

and given that for −kη ≫ 1

H(1)
ν (−kν) ≃

√
2

π

e−ikν

√
−kν

1√
2k

e−ikη, (1.31)

we must impose c2 = 0 and c1 =
√
π
2 ei(v+

1
2
)π
2 . The exact solution then becomes

vk (η) =

√
π

2
ei(v+

1
2)

π
2
√−ηH(1)

v (−kη) , (1.32)

and on superhorizon scales, −kη ≪ 1, we have

H(1)
ν (−kν) ≃

√
2

π
e−iπ

2 2v−
3
2
Γ (ν)

Γ
(
3
2

) (−kη)−ν , (1.33)

then the solution reduces to

vk (η) =
1√
2k

ei(v−
1
2)

π
2 2v−

3
2
Γ (ν)

Γ
(
3
2

) (−kη)
1
2
−ν . (1.34)

Writing the original field as

hij =
∑

λ=+×

∫
d3k

(2π)3

[
hk (η) e

−ik⃗x⃗a
k⃗,λ

+ hk (η) e
−ik⃗x⃗a+

k⃗,λ

]
ϵλij

(
k⃗
)
, (1.35)

and using eq. (1.20) and eq. (1.34) we obtain the amplitude of the physical tensor
modes hij at superhorizon scales

|hλ| ≃
H

mPl

√
k3

(
k

aH

)−ϵ

, (1.36)

which at horizon crossing k = akHk, reduces to

|hλ| ≃
Hk

mPl

√
k3

, (1.37)



We define a dimensionless tensor power spectrum Ph (k) as

⟨hij,λ(k⃗, η)h∗ij,λ(k⃗′, η)⟩ =
2π2

k3
δλλ′Ph(k)δ

(3)(k⃗ − k⃗′), (1.38)

using eq. (1.35) and eq. (1.23) we find

〈
hij

(
k⃗, η
)
h∗ij
(
k⃗, η
)〉

= 2δ(3)
(
k⃗ − k⃗′

)
|hk(η)|2. (1.39)

Finally, we obtain the inflationary tensor power spectrum

Ph (k) =
2

π2

H2

m2
Pl

(
k

aH

)−2ϵ

, (1.40)

which at horizon crossing k = akHk, reduces to

Ph(k) =
2

π2

H2
k

m2
Pl

, (1.41)

We can define the spectral index for the tensor modes that describe the shape of the
power spectrum as

nT =
d lnPh (k)

d ln k
, (1.42)

applying eq. (1.40) we get

nT ≃ −2ϵ. (1.43)

In the simplest models of inflation ϵ > 0 and so nT is expected to be red tilted,
namely it decreases on smaller scales. The red tilt of the tensor power spectrum is a
consequence of the fact that the amplitude at horizon crossing is directly proportional
to the energy scale of inflation, H2

k ≈ V (ϕ) /m2
Pl, since the Hubble rate decreases slowly

during inflation.

After the tensor modes cross the horizon during inflation, they remain constant,
therefore eq. (1.37) will provide the initial condition for the modes that reenter the
horizon in a post-inflationary epoch. When the tensor modes reenter the horizon, they
obtain a time dependence, starting to oscillate and decay as 1/a. A general solution
today can be written as [35]

h (k, η0) = T (k, η0)hinf (k) , (1.44)

where T (k, η0) is the transfer function that describes the evolution of perturbations.
It can be written as

T (k, η0) =

{
3j1(kη0)

kη0
k < keq,

A(k)
hinf (k)

j1(kη0)
kη0

+ B(k)
hinf (k)

j1(kη0)
kη0

k > keq,
(1.45)



where k∗ is wave number and A (k), B (k) are the matching coefficients at radiation-
matter equality. The GW energy density from inflation today is

ρGW (η0) =
⟨h′ij (x⃗, η0)hij

′
(x⃗, η0)⟩

32πGa20
=

=
1

64π3Ga20

∫
dkk2

[
T ′ (k, η0)

]2 |hinf (k)|2 .
(1.46)

The spectral GW energy density from inflation today reads

ΩGW (k) =
1

ρc

dρGW

d ln k
=

1

12H2
0a

2
0

[
T ′ (k, η0)

]2
Ph (k) , (1.47)

where we used ρc = 3H2/8πG. Typically, we are interested in the solution at sub-
horizon scales, where the transfer function is given by

T ′ (k, η0) =





η2eq
2η40

k < keq,

9
2η40k

2 k > keq.
(1.48)

An upper bound from the CMB on the amplitude of SGWB generated during inflation
is [34]

ΩCMB
GW = 5× 10−16

(
Hinf

Hmax

)2

, (1.49)

where Hinf is the inflationary Hubble rate, evaluated at the CMB scales, fCMB ≈
10−18− 10−17Hz, and Hmax is the current upper bound on the energy scale of inflation,
Hmax ≈ 8.8 × 1013GeV [36]. We can parametrize the GW spectrum by a power law
relative to a pivot scale at the CMB frequencies [9],

ΩGW = ΩCMB
GW

(
f

fCMB

)nT

. (1.50)

For the standard single-field models of inflation, the consistency relation must be
satisfied [37]

r = −8nT , (1.51)

where r = Ph/Pϕ is the tensor-to-scalar ratio, Ph and Pϕ are the tensor and scalar
power spectra respectively. In standard inflationary models nT < 0 with |nT | ≪ 1 and
from the current CMB bounds r ≤ 0.014 [38].

Even in the case of an almost scale-invariant spectrum, the GW amplitude is below
the sensitivity of current ground-based interferometers such as LIGO and Virgo. The
sensitivity of aLIGO is h2 ≈ 10−9 [39]. in the frequency range 10Hz ≤ f ≤ 10kHz.
The third generation ground-based future interferometer Einstein Telescope will allow
to probe the stochastic background down to ΩGWh2 ≈ 10−12 for the frequency range
1Hz ≤ f ≤ 10kHz [3]. Another planned experiment is LISA, which is a space-based



interferometer, therefore it can reach much lower frequencies in the range 10−5Hz ≤
f ≤ 1Hz. LISA is expected to probe a SGWB down to a level of ΩGWh2 ≈ 10−13 [40].
If the energy scale of inflation is high enough, future GW detectors such as Big Bang
Observatory (BBO) [41] and Deci-hertz Interferometer Gravitational wave Observatory
(DECIGO) [42] might be able to detect the irreducible GW background from inflation.
The approximate lower bound on the GW signal for BBO and DECIGO is ΩGWh2 ≈
10−16.

1.1.2 Axion Inflation

However, the quantum fluctuations of the metric maybe not be the only source of
GWs during inflation. In models beyond the standard single field models, additional
fields may be present or new symmetries are considered during inflation, which would
change the GW spectrum significantly. The corresponding GW signal can overtake
the irreducible GW background from vacuum fluctuations. Contrary to the GW from
vacuum fluctuations, these models can generate a comparably large and blue-tilted GW
spectrum providing an attractive target for future GW interferometers.

Let us consider the scenario, where the inflaton ϕ is a pseudo-scalar field and it is
coupled with a gauge field Aµ, which is excited as the inflaton rolls down its potential
[17]. The Lagrangian interaction term is of the form

∆L = − 1

4f
ϕFµνF̃

µν , (1.52)

where f is the decay constant of the inflaton field. The equation of motion for
±1-helicity odes A±(k⃗, η) of the gauge field is [43]

A′′
±
(
k⃗, η
)
+

[
k2 ± 2ξ

k

η

]
A±
(
k⃗, η
)
= 0, (1.53)

where ξ is the parameter that characterizes the strength of the inflaton-gauge cou-
pling

ξ =
ϕ̇

2fH
. (1.54)

For wavelengths −kη > 2ξ , one of the two helicity modes A±
(
k⃗, η
)
is exponentially

amplified during inflation. Hence, the excited gauge field is able to generate a strong
GW signal. The fact that only one of the polarization modes is amplified is a reflection
of the parity violation of the operator in eq. (1.52). The energy-momentum tensor of
the gauge field is quadratic in the fields, therefore the tensor modes produced by the
gauge field obey non-Gaussian statistics.

From the constraints on the non-Gaussianity at the CMB scales by the Planck ex-
periment, ξ < 2.5 [44]. The GW signal for such values of ξ is below the sensitivity of the
current and future experiments. However, the parameter ξ is a time-dependent quantity,
which will increase on smaller scales, since ϕ̇ increases and H decreases near the end of



inflation. Thus it is possible to have the Planck constraints on the power spectra and
non-Gaussianity at the CMB scales satisfied and simultaneously have a large GW signal
at smaller scales.

The total tensor power spectrum consists of the sum of the power spectra of vacuum
fluctuations and sourced GWs from the excited gauge field [45]

P total
h (k) =

k3

2π2

∑

λ=±
|hλ (k)|2 = P vac

h (k) + P sourced
h (k)

=
2H2

π2M2
Pl

+ 8.7× 10−8 H4

M4
Pl

e4πξ

ξ6
.

(1.55)

From the power spectrum Ph we can readily get the spectral GW energy density
h2ΩGW. Figure 1.1 depicts the spectral GW energy density as a function of the fre-
quency for f = mPl/35 with a quadratic inflaton potential V (ϕ) = 1

2m
2ϕ2. At large

scales
(
f ≤ 10−5Hz

)
a leading contribution comes from the vacuum fluctuations. At

intermediate scales,
(
10−5Hz ≤ f ≤ 1Hz

)
the sourced GWs dominate over the vacuum

fluctuations, although the back reaction of the gauge field on the inflaton field is negligi-
ble. At small scales, (f ≥ 1Hz) the back reaction of the gauge field cannot be neglected
anymore. The conservation of energy implies that the production of photons reduces
the kinetic energy of the inflaton, therefore the growth of ϕ̇ is slowed down, resulting
in a flattening of h2ΩGW at the smallest scales. Since ϕ̇ and H increase and decrease
respectively over time, the power spectrum of the sourced GWs is typically blue tilted.

The spectral energy density of the sourced GWs reads

ΩGWh2 = 1.5× 10−13 H4

M4
Pl

e4πξ

ξ6
, (1.56)

where H and ξ are evaluated at the horizon crossing for a given mode. It can be
locally parameterized as ΩGWh2 ≈ fnT at a given frequency f . At any frequency, we
can define the spectral tilt as

nT =
d lnΩGWh2

d ln f
, (1.57)

and at first order in slow-roll parameters, it reads [9]

nT ≃ −4ϵ+ (4πξ − 6) (ϵ− η) . (1.58)

For the range of ξ that future interferometers can probe (ζ ≥ 3.5 for LISA [9] ), the
term −4ϵ is negligible in comparison with the other term, so the spectral tilt can be
approximated as

nT ≃ (4πξ − 6) (ϵ− η) . (1.59)

This simplification allows us to obtain a model-independent parameter estimation
related to the sensitivity of a given GW detector.



Figure 4. Spectrum of GWs today h2ΩGW obtained from a numerical integration of the dynamical
equations of motion (for a model of quadratic inflaton potential, with inflaton - gauge field coupling
f = MPl/35), versus the local parametrization h2ΩGW ∝ (f/f∗)nT , evaluated at various pivot fre-
quencies f∗ and with the spectral tilt nT obtained from successive approximations to the analytic
expression (3.13).

In figure 4, we compare the analytic expression (3.13) for the spectral tilt nT against the
result of a numerical evolution of ΩGWh

2. For definiteness, we choose a quadratic inflaton
potential, and we fix the coupling between the gauge field and the inflaton to f = MPl/35.
This gives ξN=60 ' 2.46 at the CMB scales. We observe from the figure that the final
expression for the tilt in (3.13) provides a very good approximation (red segments in the
figure) to the slope of the numerical result (blue solid line in the figure). The term (1− ε) in
the denominator of (3.13), due to the fractional change of the Hubble rate Ḣ/H2, contributes
to nT only to second order in slow-roll parameters, and hence we disregard it. The expression
nT ' −4ε+ (4πξ − 6)(ε− η) predicts correctly the slope of the numerical signal, within the
LISA frequency range, to better than ∼ 4%. In the figure, the difference between the red
segments and the true numerical signal cannot be distinguished by eye.

Let us note that for the range of ξ that LISA can probe [ξ & 3.5, see figure (5)], the
term −4ε in the final expression of (3.13) is actually negligible compared to the other terms.
We can thus further approximate the expression for the tilt as nT ' (4πξ − 6) (ε− η), which
still predicts correctly the slope of the numerical signal within the LISA frequency range,
for instance in the fiducial chaotic quadratic model to better than ∼ 10%. The advantage
of using this simplified expression for the tilt is that it allows us to reduce the number of
independent variables that the GW signal depends on, from {HN , ξ, ε, η} to {HN , ξ, (ε− η)}.
This simplifies our next goal, which is to obtain a model-independent parameter estimation
based on the LISA sensitivity curves.

In figure 5 we plot the region in the parameter space (ξ, ε − η) that LISA is capa-
ble of probing, with the left and right panels depicting, LISA’s best (A5M5) and worst
(A1M2) configurations, respectively. In both panels we take as a pivot scale f∗ the frequency

of the minimum of each LISA sensitivity curve h2Ω
(AiMj)
GW (f), with f∗|A5M5 ' 0.00346 Hz

– 14 –

Figure 1.1: GW spectrum today h2ΩGW from a numerical integration versus the local
parameterization ΩGWh2 ≈ (f/f∗)

nT evaluated at different pivot frequencies f∗ with the
spectral tilt nT obtained from successive approximations [9].

To summarize, the amplification mechanism from the gauge field gives rise to the
significant blue tilted GW signal that can be probed by the upcoming experiments. The
parity violation and highly non-Gaussian statistics are also distinctive features of this
mechanism [9].

1.1.3 Inflation with spectator field

Isocurvature perturbations can be generated if more than one scalar field is present
during inflation. However, the presence of isocurvature perturbations does not necessar-
ily lead to the GW production. The other scalar fields, besides the inflaton, which are
present during inflation, are referred to as spectator fields. The presence of a spectator
field gives rise to a second-order source term in the equation of motion of GWs leading
to a classical production of GWs. Let us consider a Lagrangian of the form [46]

L =
1

2
m2

PlR+
1

2
∂µϕ∂

µϕ− V (ϕ) + P (X,σ) , (1.60)

where ϕ is the inflaton field and σ is the spectator field, X = 1
2∂µσ∂

µσ and P is
a generic function of X and σ. The inflaton field drives the cosmological expansion
and also generates the scalar perturbations. The spectator field does not play a role in



the dynamics of inflation, but it still can produce scalar and tensor perturbations. The
propagation speed of the spectator field perturbations is

cs =
PX

PX + PXX σ̇2
0

, (1.61)

where σ0 is the background value. We consider the models with cs ≪ 1, since it
leads to a more efficient GW production compared to cs = 1. The value of cs can change
during inflation and this variation is characterized by a parameter

s =
ċs
Hcs

̸= 0, (1.62)

which is assumed to be a small quantity. The total power spectrum of the GWs
from inflation consists of the irreducible GW background from vacuum fluctuations of
the metric and the classical GW production by the spectator field. Both of these con-
tributions can be characterized by a power law. Likewise, the scalar perturbations are
generated by the vacuum perturbations and the spectator field, also following a power
law. We can then write the total tensor and scalar power spectra, respectively, as

PGW (k) = A
(v)
T (k∗)

(
k

k∗

)n
(v)
T

+A
(σ)
T (k∗)

(
k

k∗

)n
(σ)
T

, (1.63)

and

PS (k) = A
(v)
S (k∗)

(
k

k∗

)n
(v)
S −1

+A
(σ)
S (k∗)

(
k

k∗

)n
(σ)
S −1

, (1.64)

where k∗ is the pivot scale. The scalar and tensor power spectra can be obtained by
perturbing the action at third order. This leads to a term hijδσδσ, which gives rise to
the sourced GWs. The equation of motion for tensor perturbations is given by

h′′ij + 2Hhij − ∂2
khij =

2PX

m2
Pl

[∂iδσ∂jδσ]
TT . (1.65)

The amplitude of tensor perturbations then at a given pivot scale can be approxi-
mated as

A
(σ)
T ≃ 8

15πc3S

H4

m4
Pl

, (1.66)

where H and cs are evaluated at the pivot scale. Furthermore, the amplitude of the
sourced scalar contribution at the pivot scale is

A
(σ)
S ≃ 1

32πc7S

H4

m4
Pl

, (1.67)

where H and cs are evaluated at the pivot scale. We can obtain the corresponding
spectral indexes at the lowest order in the parameters ϵ and s



n
(σ)
T = −4ϵ− 3s,

n
(σ)
S − 1 = −4ϵ− 7s.

(1.68)

We focus on the cases, where s ̸= 0 and |s| < 0, thereby the GW amplitude is
enhanced on small scales. Finally, the total tensor and scalar power spectra, respectively,
are

PGW (k) =
2H2

m2
Pl

(
k

k∗

)n
(v)
T

+
8

15πc3S

H4

m4
Pl

(
k

k∗

)n
(σ)
T

, (1.69)

and

PS (k) =
H2

4ϵm2
Pl

(
k

k∗

)n
(v)
S −1

+
1

32πc7S

H4

m4
Pl

(
k

k∗

)n
(σ)
S −1

. (1.70)

Both the scalar and tensor power spectra are determined by the energy scale of
inflation through the Hubble rate H, the slow-roll parameters, and specific parameters
cs and s. If cs is small enough and s is negative, but |s| ≫ 1, the sourced GW spectrum is
blue tilted. Thus, the sourced GWs could have a sufficiently large amplitude, detectable
by LISA, while the amplitude is small at the CMB scales.

If the spectator field σ is stable and decays late enough after the end of inflation it
is possible to have isocurvature perturbations.

1.1.4 Curvaton scenario

In the standard slow-roll single-field models of inflation, the observed density per-
turbations are generated by the fluctuations of the inflaton field. These models lead to
adiabatic perturbations. Another possibility is the curvaton scenario, where the curva-
ture perturbations are generated by an initial isocurvature perturbation related to the
quantum fluctuations of another light scalar field. The curvaton energy density is negli-
gible during inflation. When the curvaton decays into radiation after the end of inflation
the isocurvature perturbations are converted into adiabatic ones.

In the curvaton scenario, the total curvature perturbation can evolve on large scales
due to a non-adiabatic pressure perturbation [47, 48]. During inflation, isocurvature
perturbations of the curvaton field σ are generated [18]

δσk =
H∗
2π

. (1.71)

In the radiation-dominated epoch, after the inflation, the curvaton field oscillates,
which leads to the change in the energy density and therefore transformation of the initial
isocurvature perturbations into the curvature ones. The energy density perturbation of
the curvaton field is given by

δρσ
σσ

≃ δσk
σ∗

, (1.72)



where σ∗ is the value of the classical curvaton field during inflation. The curva-
ture perturbation ζ is negligible when the curvaton begins to oscillate and is constant
when the curvaton decays. If the curvaton decays instantaneously then the curvature
perturbation is given by

ζk ≃ r
δσk
σ∗

, (1.73)

where r = (ρσ/ρ)D is the fraction of the curvaton energy density to the total and D
denotes the decay time. The corresponding power spectrum is

P
1/2
ζ ≃ r

H∗
2πσ∗

. (1.74)

We have a nearly scale-invariant power spectrum if we assume that the curvaton field
is effectively massless during inflation. The power spectrum of GWs from inflation is
[34]

Ph ≃ 2

2m2
Pl

H2
∗

π2
. (1.75)

In the curvaton scenario, the initial curvature perturbation of the inflaton field is
negligible. In the standard slow-roll models of inflation, the curvature perturbations are
induced by the inflaton field and the power spectrum of the curvature perturbation is
given by [18]

Pζ ≃
1

2m2
Plϵ

(
H∗
2π

)2( k

aH∗

)nζ−1

, (1.76)

where nζ ≃ 1 denotes the spectral index and ϵ is the standard slow-roll parameter
given by

ϵ =
ϕ̇2

2m2
PlH

2∗
. (1.77)

Furthermore, the GWs are produced at second order by the curvature perturba-
tions. In the curvaton scenario, the GW production through the curvature perturbations
takes place only when the curvaton decays, namely when the isocurvature perturbations
transform into curvature fluctuations. The GWs produced by the curvaton perturba-
tions between the end of inflation and the time of curvaton decay are isocurvature. The
contribution from these perturbations is directly proportional to the amount of non-
Gaussianity in the curvaton scenario [49]. The current constrain on the non-Gaussianity
from Plank data is |fNL| ≤ −0.9 [50].

The equation of motion for the GWs in Fourier space can be written as

h′′k + 2Hh′k + k2hk = S
(
k⃗, τ
)
, (1.78)

where the source function S
(
k⃗, τ
)
is given by



S
(
k⃗, τ
)
= 4k2

∫
d3p⃗

(2π)3/2
δσ

k⃗
(τ) δσ

k⃗−p⃗
(τ) elm

(
k⃗
)
plpm (1.79)

where elm is a polarization tensor in a circular basis [18]. The solution to this equation
is

hk (τ) =
1

a (τ)

∫
dτ ′gk

(
τ ′, τ

)
a
(
τ ′
)
S
(
k⃗, τ
)
, (1.80)

where gk (τ
′, τ) is the Green function. We can write the perturbation of the curvaton

field in terms of the transfer function and the primordial perturbation [18]

δσk (τ) = Tσ (k, τ) δσk, (1.81)

with the primordial power spectrum

⟨δσkδσq⟩ =
2π2

k3
δ(3)

(
k⃗ + q⃗

)
Pδσ (k) . (1.82)

The second-order tensor perturbations are produced when a given mode k enters
the horizon and ends when the curvaton decays. Assuming that a mode k reenters the
horizon during radiation dominated epoch, the Hubble rate is H = 1/τ and so a given
mode k enters the horizon at a time τk = 1/k. Denoting the mode which enters the
horizon at the time of the curvaton decay as kD, we can write

kD = a (τD) Γ, (1.83)

where Γ is the decay rate of the curvaton and the scale factor is

a (τ) =
k2D
Γ

τ. (1.84)

The zero mode of the curvaton field σ begins to oscillate at

τm =
1

kD

(
Γ

m

)1/2

, (1.85)

where m is the curvaton mass. We consider the modes which enter the horizon when
the zero mode σ is already oscillating

k ≤
(m
Γ

)1/2
kD. (1.86)

For this range of wavenumbers, δσk (τ) ≈ σ ≈ a−3/2. Therefore we can write

δσk (τ) =

(
δσk
σ∗

)(
1

kDτ

)3/2

σD ≃ ζk
r

(
1

kDτ

)3/2

σD, (1.87)

where σD is the value of the zero mode of the curvaton field at the decay time. The
GW energy density today then is given by [18]



ΩGW ≃ 10−15

(
fNL

102

)2( k

kD

)5( Γ

m

)7/2

, (1.88)

for the range of wavenumbers

kD ≤ k ≤
(m
Γ

)1/2
kD. (1.89)

The maximum GW amplitude in the perturbative regime Γ ≤ m, which also satisfies
the constraints on NG from the CMB anisotropies, is of the order ΩGW ≈ 10−15, which
is above the sensitivity of interferometers like BBO and DECIGO.

1.2 Phase transitions

First-order phase transition in the early universe can give rise to a significant SGWB.
The electroweak phase transition in the Standard Model is a cross-over, so it does not
result in any considerable GW emission [51]. On the other hand, various extensions
of the Standard Model predict strong first-order phase transitions that can produce a
detectable GW signal [10].

During the first order phase transition, a potential barrier of the order parameter
appears separating the symmetric false vacuum and symmetry-breaking true one that is
more energetically favorable with decreasing temperature. The scalar field can pass from
the false to the true vacuum either through quantum tunneling or thermal fluctuations.
These processes occur through the nucleation of true vacuum bubbles in the background
spacetime, which is still in a false vacuum. Due to the pressure acting on the bubble
walls, the bubbles expand and, as a result, the free energy contained in the false vacuum
is released. If the phase transition takes place in a vacuum, the released energy is
converted only into gradient energy of the bubble walls, which can accelerate up to the
speed of light. If the phase transition takes place in the primordial plasma and the field
driving the phase transition is coupled to other fields in the surrounding plasma, most
of the released energy is converted into the kinetic energy of the fluid [34].

At the end of the phase transition, the true vacuum bubbles collide breaking a
spherical symmetry of bubble walls and creating non-zero anisotropic stress, which leads
to the generation of GWs. [52].

A relevant parameter for the GW spectrum is T∗, the temperature of the thermal
bath at the time t∗ when GWs are produced. If there is no significant reheating, then it is
approximately equal to the nucleation temperature T∗ ≈ Tn. The nucleation temperature
is the temperature at which the probability that one bubble is nucleated per Hubble
volume is of order 1. The bubble nucleation rate is [53]

Γ (t) = A (t) e−S(t), (1.90)

where S (t) is the Euclidean action of a critical bubble. It is given by either O (4)-
symmetric solution for phase transitions in a vacuum or by O (3)-symmetric solution for



phase transitions at finite temperature. The inverse time duration of the phase transition
β can be defined as the rate of variation of the bubble nucleation rate [10]

β = −dS

dT
≃ Γ̇

Γ
. (1.91)

Another important parameter for the phase transitions is the ratio β/H∗. The smaller
β/H∗ is, the stronger the phase transition and therefore the GW signal. The ratio can
be expressed as

β

H∗
= T∗

dS

dT
. (1.92)

The strength of the phase transition is characterized by the ratio of the vacuum
energy density released in the phase transition to the energy density of the radiation
bath at the moment of phase transition

α =
ρvac
ρ∗rad

, (1.93)

where ρ∗rad = g∗π2T 4
∗ /30, and g∗ is the number of relativistic degrees of freedom

at T∗. We also denote the bubble wall velocity in the rest frame far away from the
bubble as vw. Other relevant parameters are the fraction of vacuum energy that gets
converted into gradient energy of the Higgs-like field, and into the bulk motion of the
fluid respectively [54]

kv =
ρv
ρrad

kϕ =
ρϕ
ρrad

. (1.94)

The anisotropic stress sourcing the tensor perturbations are not correlated for wave
numbers smaller than the Hubble radius at the time of production k < a∗H∗, because the
causal processes that generate GWs cannot operate on scales larger than the horizon. At
sub-horizon scales, the GW spectrum is determined by the details of the phase transition.

1.2.1 Contribution to the SGWB from the scalar field

The GW contribution due to the collision of the bubble walls is estimated using the
envelope approximation [55, 56]. In this approximation, the energy is largely stored
in the envelope of uncollided shells of the bubbles. Therefore the overlap regions of
bubbles are neglected and the GWs are sourced only by the uncollided envelopes of
bubbles. Numerical simulations result in the following GW spectrum [57]

Ωϕh
2 ≈ 1.610−5

(
H∗
β

)2( kϕα

1 + α

)2( 100

g∗ (T∗)

)1/3( 0.11v3w
0.42 + v2w

) 3.8
(

f
fϕ

)2.8

1 + 2.8
(

f
fϕ

)3.8 , (1.95)

where the peak frequency fϕ is determined by the duration of the phase transition



f∗
β

=
0.62

1.8− 0.1vw + v2w
, (1.96)

which is then redshifted and its value today is

fϕ = 16.5× 10−3mHz

(
f∗
β

)(
β

H∗

)(
T∗

100GeV

)( g∗
100

)1/6
. (1.97)

1.2.2 Contribution to the SGWB from the sound waves

The expansion of bubbles can induce the compressional modes, namely the sound
waves in the surrounding plasma due to the coupling of the scalar field with the sur-
rounding plasma. When bubbles collide, the sound waves give rise to non-zero anisotropic
stress generating GWs. Numerical simulations show that the sound waves can act as
a source of GW long after the collision of the bubble walls. The GW signal from the
sound waves is enhanced by a factor β/H∗ due to the long-lasting nature of the sound
waves[10]. The GW spectrum from sound waves from the numerical simulations is given
by [58]

ΩSWh2 ≈ 2.610−6

(
H∗
β

)(
kvα

1 + α

)2( 100

g∗ (T∗)

)1/3

vw

(
f

fSW

)3


 7

4 + 3
(

f
fSW

)2




7
2

,

(1.98)

where the peak frequency is given by the characteristic size of the bubbles at the end
of the phase transition

fSW ≃ 2√
3

β

vw
, (1.99)

that is redshifted and becomes

fSW ≃ 1.9× 10−2mHz
1

vw

(
β

H∗

)(
T∗

100GeV

)( g∗
100

)1/6
. (1.100)

1.2.3 Contribution to the SGWB from MHD turbulence

The collisions of the bubble walls are also expected to give rise to the magneto-
hydrodynamic (MHD) turbulence, which can generate GWs due to the anisotropic
stresses of the chaotic fluid motions and the magnetic field since the primordial plasma is
fully ionized. For Kolmogorov type turbulence [59] the contribution to the GW spectrum
from MHD turbulence is [60]



Ωturbh
2 ≈ 3.35× 10−4

(
H∗
β

)(
kturbα

1 + α

) 3
2
(

100

g∗ (T∗)

)1/3

vw

(
f

fturb

)3

(1 +
(

f
fturb

) 11
3
)(1 + 8πfH∗)

,

(1.101)
where kturb = ϵkv is the fraction of bulk kinetic energy related to the vortical motion.

The GWs from the MHD turbulence will also be amplified by a factor β/H∗ since the
MHD turbulence is a long-lasting source of GWs, which takes several Hubble times to
dissipate [60]. Similarly to the sound waves, the peak frequency is related to the inverse
characteristic length scale of the source, namely the bubble size at the end of the phase
transition

fturb ≃
3.5

2

β

vw
, (1.102)

which after redshifting becomes

fturb ≃ 2.7× 10−2mHz
1

vw

(
β

H∗

)(
T∗

100GeV

)( g∗
100

)1/6
. (1.103)

1.2.4 Dynamics of the Phase Transition

The relative contribution of each process that generates the GWs strongly depends
on the details of the phase transition. It is crucial whether the bubble wall reaches a
terminal velocity or not. The bubble wall velocity vw comes from the balance of the
pressure forcing the bubble to expand and the friction force due to the interaction of
the bubble wall with the plasma, which slows down the expansion [10]. If the phase
transition occurs in a thermal plasma and the friction is high, the bubble wall reaches
a terminal velocity. In this case, the energy of the scalar field is negligible and the
dominant contributions to the GW signal are the sound waves and MHD turbulence.
The total contribution to the GW signal can be approximated as

ΩGWh2 ≈ ΩSWh2 +Ωturbh
2. (1.104)

The efficiency factor kv in the limits of small and large vw is given by [10]

kv ≃
{
α (0.73 + 0.083

√
α+ α)

−1
vw ∼ 1

v6.5w 6.9α (1.36− 0.037
√
α+ α)

−1
vw ≤ 1

(1.105)

The GW spectrum for this scenario is shown in Figure 1.2, for fixed T∗,α and vw,
and varying β/H∗. We set ϵ = 0.05, therefore the sound waves provide the dominant
contribution. Turbulence is important at high frequencies since the sound waves decay
faster. When β/H∗ increases, the peak of the signal shifts towards larger frequencies,
and the overall amplitude decreases. Due to the factor, 8πf/H∗ the contribution from
turbulence is suppressed.
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Figure 2: Example of GW spectra in Case 1, for fixed T∗ = 100 GeV, α = 0.5, vw = 0.95, and

varying β/H∗: from left to right, β/H∗ = 1 and β/H∗ = 10 (top), β/H∗ = 100 and β/H∗ = 1000

(bottom). The black line denotes the total GW spectrum, the green line the contribution from

sound waves, the red line the contribution from MHD turbulence. The shaded areas represent the

regions detectable by the C1 (red), C2 (magenta), C3 (blue) and C4 (green) configurations.

dominate the GW spectrum, since the β/H∗ enhancement of the amplitude that operates

for long-lasting sources is less relevant (c.f. Eqs. (13) and (7)). As β/H∗ increases, the sound

wave contribution gains importance (provided that α∞ is large enough). At sufficiently high

frequencies however the scalar field contribution always dominates because of its shallow

decay: p = 1 as opposed to p = 4 and p = 5/3, see Eqs. (8), (14) and (17).

It is apparent that the total GW spectrum arising from a first-order PT depends on the

interplay among the contributions of the different sources, which in turn are determined by

the specific dynamics of the PT. On the one hand this is encouraging, since it opens up

the possibility of investigating the dynamics of the PT. On the other hand, this is probably

feasible only in the most optimistic PT scenarios and for the best eLISA configurations. Note

that the highest GW signals are expected for runaway bubbles in vacuum (Case 3 above) for

which the GW spectrum has the simplest shape, being determined only by the scalar field

contribution.
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Figure 1.2: GW spectra for T∗ = 100GeV, α = 0.5, vw = 0.95 and varying β/H∗ from top
left to bottom right, β/H∗ = 1, β/H∗ = 10, β/H∗ = 100, β/H∗ = 100. The black line
denotes the total GW spectrum, the green line is the contribution from sound waves,
and the red line is the contribution from MHD turbulence. The shaded areas represent
the different LISA configurations [10].

Alternatively, if the bubble wall velocity can accelerate without bound and reach the
speed of light [61], a further difference is whether plasma effects are negligible or not. If
the bubble walls are expanding in a thermal plasma, then the scalar field contribution
cannot be neglected, since it dominates for α ≫ 1. The total GW spectrum can be
approximated as

ΩGWh2 ≈ Ωϕh
2 +ΩSWh2 +Ωturbh

2. (1.106)

When α increases, the wall velocity rapidly becomes relativistic. We denote a∞ as
the minimum value of a such that the bubble wall velocity can reach the speed of light
[62]. Above this value, the surplus energy goes into accelerating the bubble wall. This
surplus energy can be written in terms of the fraction

kϕ =
α− α∞

α
≥ 0. (1.107)

Only the fraction α∞/α is transformed into bulk motion and thermal energy. From



eq. (1.105) we can write

kv =
α∞
α

k∞, (1.108)

where

k∞ =
α∞

0.73 + 0.083
√
α∞ + α∞

. (1.109)

The parameter α∞ is model-dependent. For electroweak phase transitions in models
with Standard Model particle content, it can be written as

a∞ ≃ 4.9× 10−3

(
ϕ∗
T∗

)2

. (1.110)

The GW spectrum for this scenario is shown in Figure 1.3, for fixed T∗,α and vw,
and varying β/H∗. If the ratio β/H∗ is small, then the scalar field contribution can
dominate the GW spectrum, since the enhancement of the signal by a factor β/H∗ is
less important.

If there is a significant amount of supercooling, the phase transition essentially occurs
in a vacuum. The friction is low, therefore the effects of the plasma are negligible and
the bubble wall speed can readily accelerate reaching the speed of light. Most of the
energy goes into the gradient energy of the Higgs-like field. The total GW, in this case,
can be approximated as

ΩGWh2 ≈ Ωϕh
2. (1.111)

We can approximate kϕ ≃ 1 and vw ≃ 1. The temperature of the thermal bath at the
time of GW production is approximately equal to the reheating temperature T∗ ≃ Treh.
So far we have assumed that the phase transition occurs without a significant reheating,
therefore T∗ ≃ Tn ≃ Treh. In the vacuum case, it is instead expected, Tn ≪ Treh ≃ T∗,
and the definitions of β/H∗ and α are altered

β

H∗
=

H (Tn)

H∗
Tn

dS

dT
, (1.112)

α =
ρvac

ρrad (Tn)
. (1.113)

In case, if reheating is fast H (Tn) ≃ H∗ despite that Tn ≪ T∗. Since α ≫ 1 the
dependence of GW spectrum on α drops.

1.3 Cosmic strings

Cosmic strings are one-dimensional topological defects produced as a result of a
symmetry-breaking phase transition in the early universe. Cosmic strings may arise at
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Figure 3: Example of GW spectra in Case 2, for fixed T∗ = 100 GeV, α = 1, vw = 1, α∞ = 0.3, and

varying β/H∗: from left to right, β/H∗ = 1 and β/H∗ = 10 (top), β/H∗ = 100 and β/H∗ = 1000

(bottom). The black line denotes the total GW spectrum, the blue line the contribution from the

scalar field, the green line the contribution from sound waves, the red line the contribution from

MHD turbulence. The shaded areas represent the regions detectable by the C1 (red), C2 (magenta),

C3 (blue) and C4 (green) configurations.
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Figure 1.3: GW spectra for T∗ = 100GeV, α = 1, vw = 1, α∞ = 0.3 and varying β/H∗
from top left to bottom right, β/H∗ = 1, β/H∗ = 10, β/H∗ = 100, β/H∗ = 100. The
black line denotes the total GW spectrum, the blue line the contribution from the scalar
field, the green line the contribution from sound waves, and the red line the contribution
from MHD turbulence. The shaded areas represent the different LISA configurations[10].

the end of inflation in supersymmetric GUT models of Hybrid inflation [19] or they may
be the fundamental superstrings produced at the end of brane inflation [20].

The linear energy of a string is µ, which in the Nambu-Goto theory corresponds to
the string tension. It can be expressed as the dimensionless quantity Gµ, where G is
Newton’s constant. In the case of standard field theory strings, the string tension is
related to the vacuum expectation value ν of the ordering field in the phase transition
through [34]

Gµ = π

(
ν

mPl

)2

(1.114)

A network of cosmic strings is stretched by the cosmological expansion, which leads
to intersections between them. When strings cross each other, they reconnect forming
the string loops. Loops with a diameter smaller than the horizon begin to oscillate
under their tension and decay emitting GWs. Besides the sub-horizon loops, there are
long strings that stretch on superhorizon scales and can generate GWs. However, the



sub-horizon cosmic string loops provide the dominant contribution to the GW signal.
Besides the stationary GW background, also strong infrequent GW bursts are possible.
They are emitted by cusps, associated with points where the string briefly reaches the
speed of light, and kinks, related to discontinuities on the tangent vector of the string.
However, we will focus on the stationary GW background from the decaying loops. The
network of cosmic strings evolves toward an attractor scaling solution in which its energy
density is a fraction of the background energy density.

To compute the GW spectrum generated by a network of cosmic strings we must
introduce the number density of cosmic string loops n (l, t) and the power emitted by a
cosmic string loop PGW (f, l).

The number density of cosmic string loops n (l, t) of length l at time t can be estimated
through numerical simulations. Simulations run only over a finite time interval, therefore
to extrapolate the results to any moment in the evolution of the network, the scaling of
loops is vital. It implies that [11]

n (l, t) = t−4n (x) , (1.115)

where x = l/t is the ratio of the size of the loop to roughly the horizon scale. We
also introduce the loop production function f (l, t), which is the number density of non-
self-intersecting loops of lengths between l and l + dl produced per unit time, per unit
volume, which scales as

f (l, t) = t−5f (x) . (1.116)

The number density of loops then is obtained by integrating the loop production
function

n (l, t) =

∫
dt′f

(
l′, t′

)(a (t′)
a (t)

)3

. (1.117)

The length of the loop is given by

l = l′ + ΓGµ
(
t′ − t

)
, (1.118)

where Γ is the dimensionless constant characterizing the efficiency of the energy loss
mechanism [34]. If the scale factor can be written as a (t) ≈ tν , the loop number density
is given by

n (x) =
1

(x+ ΓGµ)3(1−ν)+1

∫ ∞

x

(
x′ + ΓGµ

)3(1−ν)
f
(
x′
)
dx′, (1.119)

In the radiation-dominated era, the scaling number density of loops from simulations
is given by [63]

n (x) =
0.18

(x+ ΓGµ)5/2
, (1.120)



with a cutoff at the maximum size of a loop, x = l/t = 0.1. It then follows from eq.
(1.115) that

n (l, t) =
0.18

t3/2 (x+ ΓGµ)5/2
, (1.121)

with l ≤ 0.1t, the form of the loop production function was found numerically.

A cosmic string loop oscillates under its tension and emits GWs in a series of har-
monics modes. The energy radiated in GWs into each harmonic mode is given by [34]

Ė
(n)
GW = PnΓGµ2, (1.122)

where Pn is the fraction of energy emitted per harmonic mode n with
∑∞

n=1 Pn = 1,

so that ĖGW =
∑∞

n=1 Ė
(n)
GW = ΓGµ2 It can be parameterized in terms of a spectral index

q as

Pn =
Dq

nq+1
. (1.123)

Given the condition
∑∞

n=1 Pn = 1, we find

Dq =
1

ζ (q + 1)
, (1.124)

where ζ (q) is a Riemann zeta function. We can approximate the sum of discrete
modes in a continuous one

∞∑

n=1

Pn ≃ l

∫
dfP (f) , (1.125)

where

P (f) =
Cq

(fl)q+1 , (1.126)

with the normalization constant Cq fixed to satisfy the continuum normalization
condition l

∫
dfP (f) = 1. We introduce PGW , namely the total energy emitted by a

cosmic string loop of length l in GWs within the frequency range [f, f + df)

dPGW (f) = ΓGµ2lP (f) df. (1.127)

It follows that the GW energy density emitted by loop of the length in the interval
[l, l + dl) and within the frequency range [f, f + df) during the time interval [t, t+ dt) is

dρGW = dPGW (f) dtn (l, t) dl. (1.128)

Taking into account that the energy density redshifts as 1/a4 and the frequency
today is related to those at emission by f = feae/a0, the GW energy density reads





One of the most important consequences of this is that in a high-frequency regime
the GW amplitude depends only on Gµ and Γ. It does not depend on the particular
form of the loop power spectrum.

The constraints on the cosmic string tension Gµ depend on several parameters de-
scribing the loop production size and the number density. Currently, the constraint on
the string tension Gµ from the CMB data obtained by the Planck Satellite is Gµ ≤
1.6 × 10−7 [64]. It is possible to find the lowest value of string tension Gµ for which
the amplitude is above the LISA sensitivity. The exact bound depends on the choice of
model and Pn, but in the range of frequencies that LISA will be able to probe its value
is of the order O

(
10−17

)
[11].





Chapter 2

Stochastic Gravitational Wave
Background anisotropies

2.1 Boltzmann equation for GW

To study the angular anisotropies in the GW energy density we use a Boltzmann
approach in analogy with the CMB anisotropies [22, 23, 24]. We can define a graviton
distribution function f = f

(
η, xi, q, ni

)
, which is function of position xµ and momentum

pµ = dxµ/dλ, where λ is an affine parameter along the GW trajectory. The Boltzmann
equation for the graviton distribution function is

L [f ] = C [f ] + I [f ] , (2.1)

where L [f ] = df/dλ is the Liouville operator, C [f ] and J [f ] accounts for the collision
of GWs, and for their emissivity from cosmological and astrophysical sources respectively
[14].

We consider a perturbed spatially flat FRW metric in the Poisson gauge [25]

ds2 = a2(η)
[
−e2Φdη2 +

(
e−2Ψδij + χij

)
dxidxj

]
, (2.2)

where a(η) is the scale-factor, Φ and Ψ are the scalar perturbations and χij are the
transverse-traceless tensor perturbations. We neglect vector perturbations at first order.

The collision of GWs has an impact on the graviton distribution only at higher order,
therefore at the first order in perturbations, then C [f ] = 0. The source of emissivity can
be of astrophysical origins, such as black hole merging, or cosmological origins, such as
inflation. Since we are interested only in the SGWB from cosmological sources, therefore
we consider the emissivity term as the initial condition and so I [f ] = 0. This leads to
the free Boltzmann equation

df

dη
=

∂f

∂η
+

dxi

dη

∂f

∂xi
+

dq

dη

∂f

∂q
+

dni

dη

∂f

∂ni
= 0. (2.3)
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where ni = p̂ is the direction along the GW trajectory. We have used a comoving mo-
mentum q = |p⃗|a instead of the physical one, which simplifies the equations by factoring
out the expansion of the universe. The first two terms represent a free streaming term,
namely the propagation of GWs at all scales. The third term encodes the redshifting of
gravitons, while the fourth term represents the effect of gravitational lensing and is of
the second order, so we can disregard this term at the first order.

Gravitons, similarly to photons, propagate along null geodesics defined by the back-
ground metric. Considering that gravitons are massless particles, then

p2 = gµνp
µpν = 0, (2.4)

then

− a2e2Φ
(
p0
)2

+ p2 = 0. (2.5)

We can write the three-momentum as

p2 = gijp
ipj , (2.6)

where pi = Ani, then we can write

p0 =
q

a2
e−Φ, (2.7)

and

pi =
q

a2
nieΨ

(
1− 1

2
χjkn

jnk

)
. (2.8)

Thus we can write

dxi

dη
=

pi

p0
= nieΦ+Ψ

(
1− 1

2
χjkn

jnk

)
. (2.9)

To express the third term in eq. (2.3) we use the geodesic equations

dpµ

dλ
= −Γµ

ντp
νpτ . (2.10)

The derivative with respect to λ can be rewritten as a derivative with respect to
conformal time η

dp0

dη
= −Γ0

ντp
νpτ

p0
, (2.11)

using eq. (2.8) we can write

q

a2

(
−2H− dΦ

dη
+ 2HΦ

)
+

1− Φ

a2
dq

dη
= Γ0

ντp
νpτ

a2

q
(1 + Φ) , (2.12)

then



dq

dη
= q

(
dΦ

dη
+ 2H

)
− Γ0

ντp
νpτ

a4

q
(1 + 2Φ) , (2.13)

reexpressing dΦ
dη in terms of partial derivatives

dq

dη
= q

(
∂Φ

∂η
+ ni ∂Φ

∂xi
+ 2H

)
− Γ0

ντp
νpτ

a4

q
(1 + 2Φ) , (2.14)

making the second term explicit

Γ0
ντp

νpτ = (1 + 2Φ)
q2

a4

(
−∂Φ

∂η
− 2ni ∂Φ

∂xi
+

∂Ψ

∂η
− 2H − 1

2

∂χjk

∂η
njnk

)
. (2.15)

Finally, we have

dq

dη
= q

(
∂Ψ

∂η
− ni ∂Φ

∂xi
− 1

2

∂χjk

∂η
njnk

)
. (2.16)

Inserting these terms into eq. (2.3) leads to

∂f

∂η
+ ni ∂f

∂xi
+

(
∂Ψ

∂η
− ni ∂Φ

∂xi
− 1

2

∂χjk

∂η
njnk

)
q
∂f

∂q
= 0. (2.17)

The graviton distribution function f can be expanded as

f
(
η, xi, q, ni

)
= f (q) + δf

(
η, xi, q, ni

)
= f (q)− q

df (q)

dq
Γ
(
η, xi, q, ni

)
, (2.18)

where f is the leading, homogeneous and isotropic term and δf is a subdominant
anisotropic contribution, parameterized in terms of the dimensionless function Γ. The
two functions are the solutions of the Boltzmann equation at zeroth and first order
respectively. The Boltzmann equation at zero order reads

df

dη
= 0, (2.19)

which is solved by the distribution, which is function only of the comoving momentum
f = f (q). The physical graviton number density can be written as

n ∝
∫

d3pf (q) =

∫
d3q

a3
f (q) ∝ 1

a3
. (2.20)

In the case of CMB photons, the distribution function is

fCMB ∝ 1

ep/T − 1
, (2.21)

where T is the temperature of the CMB bath and it follows that Γ = δT/T . Therefore
the temperature anisotropies are frequency-independent up to the second order in the



perturbations, while for gravitons the collisional term is zero and so the function Γ can
have an order one dependence on frequency.

The graviton distribution function is related to the GW energy density. The GW
energy density can be expressed in terms of spectral energy density ΩGW as

ρGW

(
η, xi

)
=

1

a40

∫
d3qq f

(
η, xi, q, ni

)
= ρcrit,0

∫
dlnqΩGW

(
xi, q

)
. (2.22)

The homogeneous and isotropic component of ΩGW is

ΩGW

(
xi, q

)
=

4π

ρcrit,0

q4

a40
f (q) . (2.23)

We define the full spectral GW energy density ΩGW as

ΩGW =
1

4π

∫
d2niwGW

(
xi, q, ni

)
, (2.24)

where d2ni is the surface area element on the unit sphere. We define the SGWB
density contrast as

δGW =
wGW

(
xi, q, ni

)
− ΩGW (q)

ΩGW (q)
= − q

f

∂f

∂q
Γ, (2.25)

using eq. (2.23) we have

q

f

∂f

∂q
= −4 +

∂ lnΩGW (q)

∂ ln q
, (2.26)

then the SGWB density contrast is

δGW =

[
4− ∂ lnΩGW (q)

∂ ln q

]
Γ. (2.27)

It should be remarked that in contrast to photons, the initial graviton distribution
is not thermal, therefore Γ, in general, can depend on q. To simplify the equation we
introduce the spectral tilt defined as

nT =
∂ lnΩGW (q)

∂ ln q
. (2.28)

Then we can write the GW density contrast as

δGW = [4− nT ] Γ. (2.29)

The Boltzmann equation in terms of the function Γ reads

∂Γ

∂η
+ ni ∂Γ

∂xi
= S

(
η, xi, ni

)
, (2.30)



where

S
(
η, xi, ni

)
=

∂Ψ

∂η
− ni ∂Φ

∂xi
− 1

2

∂χjk

∂η
njnk, (2.31)

is the source function that encodes the effects due to scalar and tensor perturbations.
It should be noted that the source function is frequency-independent, so the anisotropies
due to the propagation through the scalar and tensor perturbations of the universe are
frequency-independent at first order.

To solve this equation we use the Fourier transform in spatial coordinates

Γ (η, x⃗, q, n⃗) =

∫
d3k

(2π)3
eik⃗·x⃗Γ (η, k, q, n⃗) , (2.32)

then the Boltzmann equation can be written as

Γ′ + ikµΓ = S
(
η, k⃗, n⃗

)
, (2.33)

where we define µ = k⃗ · n⃗ as the cosine of the angle between the Fourier variable k⃗
and the direction along the GW trajectory. The source function in Fourier space reads

S
(
η, k⃗, n⃗

)
= Ψ′ − ikµΦ− 1

2
χ′
jkn

jnk. (2.34)

The solution of the equation is [25]

Γ
(
η, k⃗, q, n⃗

)
= eikµ(ηin−η)Γ

(
ηin, k⃗, q, n⃗

)
+

+

∫ η

ηin

dη′eikµ(η
′−η)



∂Ψ
(
η′, k⃗

)

∂η′
− ikµΦ

(
η′, k⃗

)
− 1

2

∂χjk

(
η′, k⃗

)

∂η′
njnk


 ,

(2.35)

integrating the second term in the second line by parts, we get

Γ
(
η, k⃗, q, n⃗

)
= eikµ(ηin−η)

[
Γ
(
ηin, k⃗, q, n⃗

)
+Φ

(
ηin, k⃗

)]
− Φ

(
η, k⃗
)

+

∫ η

ηin

dη′eikµ(η
′−η)



∂
[
Ψ
(
η′, k⃗

)
+Φ

(
η′, k⃗

)]

∂η′
− 1

2

∂χjk

(
η′, k⃗

)

∂η′
njnk


 .

(2.36)

We can disregard −Φ(η′, k⃗), since the monopole term does not contribute to the
anisotropy of SGWB, then



Γ
(
η, k⃗, q, n⃗

)
=

∫ η

ηin

dη′eikµ(η
′−η)

[[
Γ
(
η′, k⃗, q, n⃗

)
+Φ

(
η′, k⃗

)]
δ
(
ηin − η′

)

+
∂
[
Ψ
(
η′, k⃗

)
+Φ

(
η′, k⃗

)]

∂η′
− 1

2

∂χjk

(
η′, k⃗

)

∂η′
njnk


 (2.37)

The first term represents the initial condition. This term depends on the frequency
q and, in general, it can also depend on n⃗, which is more general than the dependence
on µ = k⃗ · n⃗, but we focus on the statistically isotropic case, so we assume an initial

condition of the form Γin = Γ
(
ηin, k⃗, q

)
.

2.2 Spherical harmonics decomposition

We divide the solution into three terms

Γ
(
η, k⃗, q, n⃗

)
= ΓI

(
η, k⃗, q, n⃗

)
+ ΓS

(
η, k⃗, n⃗

)
+ ΓT

(
η, k⃗, n⃗

)
, (2.38)

where I, S, and T denote initial, scalar, and tensor terms respectively and correspond
to

ΓI

(
η, k⃗, q, n⃗

)
= eikµ(ηin−η)Γ

(
ηin, k⃗, q

)
,

ΓS

(
η, k⃗, n⃗

)
=

∫ η

ηin

dη′eikµ(η
′−η)


Φ
(
η′, k⃗

)
δ
(
ηin − η′

)
+

∂
[
Ψ
(
η′, k⃗

)
+Φ

(
η′, k⃗

)]

∂η′


 ,

ΓT

(
η, k⃗, n⃗

)
= −

∫ η

ηin

dη′eikµ(η
′−η) 1

2

∂χjk

(
η′, k⃗

)

∂η′
njnk.

(2.39)
Similar to CMB, to compute the angular power the spectrum we decompose the

solution in spherical harmonics

Γ (n⃗) =
∑

ℓ

ℓ∑

m=−ℓ

ΓℓmYℓm (n⃗) , where Γℓm =

∫
d2nΓ (n⃗) Y ∗

ℓm (n⃗) , (2.40)

and then we have

Γℓm =

∫
d2nY ∗

ℓm (n⃗)

∫
d3k

(2π)3
eik⃗x⃗

[
ΓI

(
η, k⃗, q, n⃗

)
+ ΓS

(
η, k⃗, n⃗

)
+ ΓT

(
η, k⃗, n⃗

)]

= Γℓm,I + Γℓm,S + Γℓm,T .

(2.41)



2.2.1 Initial condition term

First, we evaluate the initial condition term

Γℓm,I =

∫
d3k

(2π)3
eik⃗x⃗0Γ

(
ηin, k⃗, q

)∫
d2nY ∗

ℓm (n⃗) e−ikµ(η0−ηin) (2.42)

as for CMB anisotrpies [26], we exploit the identity

eix⃗y⃗ = 4π
∑

ℓ

ℓ∑

m=−ℓ

(−i)ℓ jl (xy)Yℓm (x̂)Y ∗
ℓm (ŷ) , (2.43)

and obtain

Γℓm,I = 4π (−i)ℓ
∫

d3k

(2π)3
eik⃗x⃗0Γ

(
ηin, k⃗, q

)
Y ∗
ℓm

(
k⃗
)
jℓ (k (η0 − ηin)) . (2.44)

where x⃗0 denotes the location of the observer, which could be taken as the origin,
η0 is the present time, and ηin is the initial time. The initial condition term arises
when the GWs are generated, therefore it depends on the specific mechanism of the GW
production.

2.2.2 Scalar sourced term

The scalar term arises during the propagation of GWs through the large-scale per-
turbations of the universe and therefore is model-independent. The scalar perturbations
can be expressed in terms of a transfer function, which describes the time dependence
of the perturbations from the time of production till today, and a stochastic variable ζ
[26]. The statistical properties of ζ are set at the time when the GWs are produced.

Φ
(
η, k⃗
)
= TΦ (η, k) ζ

(
k⃗
)
,

Ψ
(
η, k⃗
)
= TΨ (η, k) ζ

(
k⃗
)
.

(2.45)

Consequently, the scalar term can be written as

ΓS

(
η0, k⃗, n⃗

)
=

∫ η

ηin

dη′eikµ(η
′−η0)

[
TΦ

(
η′, k

)
δ
(
ηin − η′

)
+

∂ [TΦ (η′, k) + TΨ (η′, k)]
∂η′

]
ζ
(
k⃗
)

(2.46)
using eq. (2.43) we find

Γℓm,S = 4π (−i)ℓ
∫

d3k

(2π)3
eik⃗x⃗0 [TΦ (ηin, k) jℓ (k (η0 − ηin))+

+

∫ η0

ηin

dη′
∂ [TΦ (η′, k) + TΨ (η′, k)]

∂η′
jℓ
(
k
(
η0 − η′

))]
ζ
(
k⃗
)
Y ∗
ℓm

(
k⃗
)
. (2.47)



As for CMB anisotropies, the first and the second term in eq. (2.47) represent a
Sachs-Wolfe (SW) and integrated Sachs-Wolfe (ISW) effect respectively.

2.2.3 Tensor sourced term

Finally, the tensor term is

Γℓm,T =

∫
d2nY ∗

ℓm (n⃗)

∫
d3k

(2π)3
eik⃗x⃗0

∫ η0

ηin

dη′eikµ(η
′−η0) 1

2

∂χjk

(
η′, k⃗

)

∂η′
njnk. (2.48)

We decompose the tensor modes in right and left-handed circular polarizations [65]

χij =
∑

λ=±2

eij,λ

(
k⃗
)
χ (η, k) ξλ

(
k⃗
)
. (2.49)

In a circular basis the tensor polarization is defined as

eij,λ =
eij,+ + iλeij,×√

2
. (2.50)

When k⃗ is oriented along the z-axis,

eij,+

(
k⃗z

)
=



1 0 0
0 −1 0
0 0 0


 eij,×(k⃗z) =



0 1 0
1 0 0
0 0 0


 , (2.51)

so that the only nonvanishing matrix elements are

χ11

(
k⃗z

)
= −χ22 = χ (η, k)

ξ−2

(
k⃗
)
+ ξ2

(
k⃗
)

2
,

χ12

(
k⃗z

)
= χ21 = χ (η, k)

ξ−2

(
k⃗
)
− ξ2

(
k⃗
)

2i
.

(2.52)

We decompose n⃗ the direction along the GW trajectory in a basis, in which k⃗ is
oriented along the z-axis

n⃗ =
(√

1− µ2
k,n cosϕk,n,

√
1− µ2

k,n sinϕk,n, µk,n

)
, where µk,n = cos θk,n, (2.53)

and so



− 1

2
χ′
jkn

jnk = −
1− µ2

k,n

2
χ′ (η, k)


cos2 ϕk,n

ξ−2

(
k⃗
)
+ ξ2

(
k⃗
)

2
− sin2 ϕk,n

ξ−2

(
k⃗
)
+ ξ2

(
k⃗
)

2
+

+ 2 cosϕk,n sinϕk,n

ξ−2

(
k⃗
)
− ξ2

(
k⃗
)

2




= −
1− µ2

k,n

2
χ′ (η, k)


cos 2ϕk,n

ζ−2

(
k⃗
)
+ ξ2

(
k⃗
)

2
+ sin 2ϕk,n

ξ−2

(
k⃗
)
− ξ2

(
k⃗
)

2i




= −
1− µ2

k,n

4
χ′ (η, k)

[
e2ϕk,nξ2

(
k⃗
)
+ e−2ϕk,nξ−2

(
k⃗
)]

. (2.54)

The tensor term can be then rewritten as

Γℓm,T =

∫
d3k

(2π)3
eik⃗x⃗0

∫
dΩnY

∗
ℓm (Ωn) ΓT

(
η0, k⃗,Ωn

)
, (2.55)

with

ΓT

(
η0, k⃗,Ωn

)
= −

1− µ2
k,n

4

[
e2ϕk,nξ2

(
k⃗
)
+ e−2ϕk,nξ−2

(
k⃗
)] ∫ η0

ηin

dηeikµk(η−η0)χ′ (η, k) .

(2.56)
This equation holds only if k⃗ is oriented along the z-axis. For a generic direction of

k⃗ we introduce a rotation matrix

S (Ωk) =



cos θk cosϕk − sinϕk sin θk cosϕk

cos θk sinϕk cosϕk sin θk sinϕk

− sin θk 0 cos θk


 (2.57)

in terms of which

k⃗ = S (Ωk)



0
0
1






cos θk cosϕk

sin θk sinϕk

cos θk


 = S (Ωk)



cos θk,n cosϕk,n

sin θk,n sinϕk,n

cos θk,n


 (2.58)

Under this rotation

Y ∗
ℓm (Ωn) =

ℓ∑

m′=−ℓ

Dℓ
mm′(S (Ωk))Y

∗
ℓm′ (Ωk,n) , (2.59)

where the Wigner rotation matrix is given by

Dℓ
ms (S( Ωk )) =

√
4π

2ℓ+ 1
(−1)s Y ∗

ℓm,−s (Ωk) , (2.60)



in terms of the spin-weighted spherical harmonics

Y ∗
ℓm (θ, ϕ) = (−1)m

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) e−imϕ. (2.61)

The associated Legendre polynomials are defined in terms of the Legendre polyno-
mials as

Pm
ℓ (µ) = (−1)m

(
1− µ2

)m
2
dmPℓ (µ)

dµm
,

P
−|m|
ℓ (µ) = (−1)|m| (ℓ− |m|)!

(ℓ+ |m|)!P
|m|
ℓ (µ) .

(2.62)

We will also use the identity

∫
dµ

2
Pℓ (µ) e

ikµ(η−η0) =
1

(−i)ℓ
jℓ (k( η − η0 )) . (2.63)

With this relation

Γℓm,T =

∫
d3k

(2π)3
eik⃗x⃗0

ℓ∑

m=−ℓ

Dℓ
mm′ (S (Ωk))

∫
d2Ωk,nY

∗
ℓm′ (Ωk,n) ΓT

(
η0, k⃗,Ωk,n

)
. (2.64)

The inner integral evaluates to

∫
d2Ωk,nY

∗
ℓm′ (Ωk,n) ΓT

(
η0, k⃗,Ωk,n

)
=

∫
d2Ωk,n

√
2ℓ+ 1

4π

(ℓ−m′)!
(ℓ+m′)!

Pm′
ℓ (µk,n) e

−im′ϕk,n

(−1)
1− µ2

k,n

4

[
e2iϕk,nξ2

(
k⃗
)
+ e−2iϕk,nξ−2

(
k⃗
)] ∫

dηeikµk(η−η0)χ′ (η, k)

= −2π

∫
dηχ′ (η, k)

∫
dµk,n

1− µ2
k,n

4
eikµk(η−η0)

√
2ℓ+ 1

4π

(ℓ− 2)!

(ℓ+ 2)!
P 2
ℓ (µk,n)

[
δm′,2ξ2

(
k⃗
)
+ δm′,−2ξ−2

(
k⃗
)]

,

(2.65)

and the integral over µk,n evaluates to



∫
dµk,n

4

(
1− µ2

k,n

)2
eikµk(η−η0)

d2Pℓ (µk,n)

dµ2
k,n

=

∫
dµk,n

4
eikµk(η−η0)

(
1− µ2

k,n

) [
2µk,n

dPℓ (µk,n)

dµ
− ℓ(ℓ+ 1)Pℓ (µk,n)

]

=

∫
dµk,n

4
eikµk(η−η0)

[
2µk,nℓ (ℓ+ 1)

ik (η − η0)
Pℓ (µk,n) +

2ℓ(ℓ+ 1)

k2 (η − η0)
2Pℓ (µk,n)−

− 2µk,nℓ (ℓ+ 1)

ik (η − η0)
ℓ (ℓ+ 1)Pℓ (µk,n) +

2ℓ (ℓ+ 1)

ik (η − η0)

(
1− µ2

k,n

) dPℓ (µk,n)

dµ

]

=

∫
dµk,n

4
eikµk(η−η0)

[
2ℓ (ℓ+ 1)

k2 (η − η0)
2Pℓ (µk,n)−

2ℓ2 (ℓ+ 1)2

k2 (η − η0)
2Pℓ (µk,n)

]

= −1

2
(−1)ℓ

jℓ (k (η − η0))

k2 (η − η0)
2

(ℓ+ 2)!

(ℓ− 2)!
, (2.66)

then

2π

∫ η0

ηin

dηχ′ (η, k)

√
2ℓ+ 1

4π

(ℓ− 2)!

(ℓ+ 2)!

[
δm′,2ξ2

(
k⃗
)
+ δm′,−2ξ−2

(
k⃗
)] 1

2
(−1)ℓ

jℓ (k (η − η0))

k2 (η − η0)
2

(ℓ+ 2)!

(ℓ− 2)!
=

= π (−1)ℓ
∫ η0

ηin

dηχ′(η, k)
jℓ (k (η − η0))

k2 (η − η0)
2

√
2l + 1

4π

(ℓ+ 2)!

(ℓ− 2)!

[
δm′,2ξ2

(
k⃗
)
+ δm′,−2ξ−2

(
k⃗
)]

.

(2.67)
Inserting this into eq. (2.55), we find

Γℓm,T = π (−1)ℓ
∫

d3k

(2π)3
eik⃗x⃗0

∫ η0

ηin

dηχ′ (η, k)
jℓ (k (η − η0))

k2 (η − η0)
2

√
2ℓ+ 1

4π

(ℓ+ 2)!

(ℓ− 2)!
√

4π

2ℓ+ 1

[
Y ∗
ℓm,2 (Ωk) ξ2

(
k⃗
)
+ Y ∗

lm,−2ξ−2

(
k⃗
)]

= π (−1)ℓ
∫

d3k

(2π)3
eik⃗x⃗0

∫
dηχ′ (η, k)

jl (k (η − η0))

k2 (η − η0)
2

√
(ℓ+ 2)!

(ℓ− 2)!

[Y ∗
ℓm,2 (Ωk) ξ2

(
k⃗
)
+ Y ∗

ℓm,−2ξ−2

(
k⃗
)
].

(2.68)

Finally, we obtain the tensor term

Γℓm,T = π (−i)ℓ

√
(ℓ+ 2)!

(ℓ− 2)!

∫
d3k

(2π)3
eik⃗x⃗0

∑

λ±2

Y ∗
ℓm,−λ (Ωk) ξλ

(
k⃗
)

∫ η0

ηin

dηχ′ (η, k)
jℓ (k (η0 − η))

k2 (η0 − η)2
.

(2.69)



2.3 Two-point angular correlators of the SGWB

We can now obtain a 2-point angular correlation function for the initial condition

term Γ
(
ηin, k⃗, q

)
and the stochastic variables determining the initial conditions of scalar

and tensor perturbations ζ
(
k⃗
)
and ξλ

(
k⃗
)
,

⟨Γ
(
ηin, k⃗, q

)
Γ∗
(
ηin, k⃗′, q

)
⟩ = 2π2

k3
PI (q, k) (2π)

3 δ(3)
(
k⃗ − k⃗′

)
,

⟨ζ
(
k⃗
)
ζ∗
(
k⃗′
)
⟩ = 2π2

k3
Pζ (k) (2π)

3δ(3)
(
k⃗ − k⃗′

)
,

⟨ξλ
(
k⃗
)
ξ∗λ
(
k⃗′
)
⟩ = 2π2

k3
Pλδλλ′ (k) (2π)3 δ(3)

(
k⃗ − k⃗′

)
.

(2.70)

From the CMB data, the stochastic variables ζ(k⃗) and ξλ(k⃗) are nearly Gaussian
[50]. We assume that this is the case also for the initial condition term.

Assuming statistical isotropy, we define the multipole coefficients as

⟨ΓℓmΓ∗
ℓ′m′⟩ = δℓℓ′δmm′C̃ℓ, where C̃ℓ = C̃ℓ,I (q) + C̃ℓ,S + C̃ℓ,T . (2.71)

From eq. (2.44) we can write

⟨Γℓm,I (q) Γ
∗
ℓ′m′,I (q)⟩ = (4π)2 (−i)ℓ−ℓ′

∫
d3k

(2π)3
eik⃗x⃗0

d3k′

(2π)3
eik⃗

′x⃗0Y ∗
ℓm

(
k⃗
)
Yℓ′m′

(
k⃗′
)

⟨ΓI

(
ηin, k⃗, q

)
ΓI

(
ηin, k⃗′, q

)
⟩jℓ (k (η0 − ηin)) jℓ′

(
k′ (η0 − ηin)

)
,

(2.72)

and using the orthonormality condition for the spherical harmonics

⟨Γℓm,I (q) Γ
∗
ℓ′m′,I (q)⟩ = δℓℓ′δmm′ (4π)2

∫
k2dk

(2π)3
2π2

k3
PI (q, k) (jℓ (k (η0 − ηin)))

2

= δℓℓ′δmm′4π

∫
dk

k
PI (q, k) (jℓ (k (η0 − ηin)))

2 .

(2.73)

In the end, we have

C̃ℓ,I(q) = 4π

∫
dk

k
PI (q, k) (jℓ (k (η0 − ηin)))

2 . (2.74)

Likewise, we can obtain the correlation functions for the scalar and tensor terms



C̃ℓ,S = 4π

∫
dk

k
[TΦ (ηin, k) jℓ (k (η0 − ηin))+

+

∫ η0

ηin

dη
∂ [TΦ (η, k) + TΨ (η, k)]

∂η
jℓ (k (η0 − η))

]2
Pζ (k) ,

C̃ℓ,T = π

∫
dk

k

[√
(ℓ+ 2)!

(ℓ− 2)!

∫ η0

ηin

dηχ′ (η, k)
jℓ (k (η0 − η))

k2 (η0 − η)2

]2 ∑

λ=±2

Pλ (k) . (2.75)

This can be written in a more compact form as

C̃ℓ,I (q) = 4π

∫
dk

k
T 2
ℓ,I (k, ηin, η0)PI (q, k) ,

C̃ℓ,S = 4π

∫
dk

k
T 2
ℓ,S (k, ηin, η0)Pζ (k) ,

C̃ℓ,T = 4π

∫
dk

k
T 2
ℓ,T (k, ηin, η0)

∑

λ=±2

Pλ (k) .

(2.76)

where Tℓ,I , Tℓ,S and Tℓ,T are the transfer functions defined as

Tℓ,I (k, ηin, η0) = TI (ηin, k) jℓ (k (η0 − ηin)) ,

Tℓ,S (k, ηin, η0) = TΦ (ηin, k) jℓ (k (η0 − ηin)) +

∫ η0

ηin

dη
∂ [TΦ (η, k) + TΨ (η, k)]

∂η
jl (k (η0 − η)) ,

Tℓ,T (k, ηin, η0) =
1

4

√
(ℓ+ 2)!

(ℓ− 2)!

∫ η0

ηin

dηχ′ (η, k)
jℓ (k (η0 − η))

k2 (η0 − η)2
.

(2.77)





Chapter 3

Initial conditions

3.1 Einstein equations

To compute the angular power spectrum of the SGWB we need to know the initial
conditions for the GW energy density perturbation δGW and the evolution of gravita-
tional potentials Φ and Ψ. For this, we need the Einstein equations

Gµν = 8πGTµν . (3.1)

Since scalar, vector, and tensor perturbations are independent at first order, we can
consider the Einstein equations for each mode independently.

The line element in the Poisson gauge at first order for scalar perturbations is [26]

ds2 = a2 (η)
[
− (1 + 2Φ) dη2 + (1− 2Ψ) δijdx

idxj
]
. (3.2)

The Einstein tensor is defined as

Gµν ≡ Rµν −
1

2
gµνR. (3.3)

The Christoffel symbols up to first order are given by

Γ0
00 = H+Φ′

Γ0
0i = ∂iΦ

Γ0
ij =

[
H (1− 2Ψ− 2Φ)−Ψ′] δij

Γi
00 = ∂iΦ

Γi
j0 =

[
H−Ψ′] δij

Γi
jk = ∂iΨδjk − ∂jΨδik −−∂kΨδij .

(3.4)
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From this, we can derive the Ricci tensor,

δR00 = ∇2Φ+ 3Ψ′′ + 3
a′

a
Ψ+ 3

a′

a
Φ

δR0i = 2∂iΨ+ 2
a′

a
∂iΦ

δRij =

[
−a′

a
Φ′ − 5

a′

a
Ψ′ + 2

a′′

a
Φ− 2

(
a′

a

)2

Φ− 2
a′′

a
Ψ

− 2

(
a′

a

)2

Ψ−Ψ′′ +∇2Ψδij + ∂i∂jΨ− ∂i∂jΦ

]
(3.5)

Finally, we can evaluate the Einstein tensor

G00 =
1

a2
[
H2 (6Φ− 3) + 6Ψ′ − 2∇2Ψ

]

G0
i = − 2

a2
[
H∂iΦ+ ∂iΨ

′]

Gi
j =

1

a2

[[
−2

a′′

a
(1− 2Φ) +H2 (1− 2Φ) + 2HΦ′ + 4HΦ′ + 2Φ′′

− ∇2Ψ+∇2Φ
]
δij + ∂i∂j (Ψ− Φ)

]
. (3.6)

To complete our derivation of the Einstein equation we need to compute the stress-
energy tensor at first order. The (0,0) component of stress-energy tensor is defined as
the energy density of all particle species in the universe T 0

0 = ρ. We can write

T 0
0 = −

∑

i

gi

∫
d3p

(2π)3
Eifi = −

∑

i

gi
a3

∫
d3q

(2π)3
Eifi. (3.7)

where gi is the number of effective degrees of freedom, Ei is the energy of a particle
and fi is the distribution function of a particle species. In order to obtain the stress-
energy tensor at first order, we must consider the distribution function at first order,
so

T 0
0 = −

∑

i

gi
a3

∫
d3q

(2π)3
Ei

[
f
(0)
i + δfi

]
= −

∑

i

[
ρ0i +

gi
a3

∫
d3q

(2π)3
Eiδfi

]
(3.8)

The various particle species that contribute to the energy density of the universe in-
clude photons, neutrinos, and dark matter. The GWs in general should also be included,
but their relative contribution to the total energy density of the universe is negligible.
We can write [26]

fγ = f (0)
γ − q

df
(0)
γ

dq
Θ,

fν = f (0)
ν − q(0)

dfν
dq

N,

ρm = ρ(0)m (1 + δm) ,

(3.9)



where Θ, N denote the perturbation in the distribution function for photons fγ and
neutrinos fγ respectively and δm is the matter energy density perturbation. Inserting
these definitions in eq. (3.8) we get

T00 = −
[
ρ(0)γ +

gi
a3

∫
d3q

(2π)3
q
dfγ
dq

θ

]
−
[
ρ(0)ν +

gi
a3

∫
d3q

(2π)3
q
dfν
dq

N

]
+ ρ(0)m (1 + δm)

= −ρ(0)γ [1 + 4θ0]− ρ(0)ν [1 + 4N0] + ρ(0)m (1 + δm) ,
(3.10)

where θ0 ans N0 are the monopole contributions of the distribution function

θ0 ≡
1

4π

∫
dΩ θ. (3.11)

Equating G0
0 and 8πGT 0

0 , we obtain the (0,0) Einstein equation

∇2Ψ− 3H
(
Ψ′ +HΦ

)
= −4πGa2

[
ρ(0)m δm + ρ(0)γ Θγ,0 + ρ(0)ν Θν,0

]
. (3.12)

Since we have only two unknown variables Φ and Ψ, we consider only the traceless
longitudinal part of the (i,j) Einstein equation. To separate the traceless longitudinal
part, we apply the projection operator k̂j k̂i − 1

3δij to the Einstein tensor Gi
j in Fourier

space

(
k̂j k̂i −

1

3
δij

)
Gi

j =
2k2

3a2
(Ψ− Φ) . (3.13)

Analogously, for the stress-energy tensor T i
j we have

(
k̂j k̂i −

1

3
δij

)
T i
j =

∑

i

gi
a4

∫
d3q

(2π)3
q

(
k̂j k̂i −

1

3
δij

)
ninjfi

=
∑

i

gi
a4

∫
d3q

(2π)3
q
(
µ2 − 1/3

)
fi = −8

3

(
ρ(0)γ θ2 + ρ(0)ν N2

)
.

(3.14)

The integral over µ for f
(0)
i is null, because f

(0)
i is the isotropic part of the distribution

function. The quadrupole is defined as

f2 ≡ −
∫

dµ

2
P2 (µ) f. (3.15)

Therefore the second Einstein equation is

k2 (Φ−Ψ) = −32πGa2
(
ρ(0)γ θ2 + ρ(0)ν N2

)
. (3.16)

Non-relativistic particles are completely characterized by energy density and velocity,
therefore they do not contribute to a quadrupole term. The two gravitational potentials
are equal if the photons and neutrinos quadrupole moment is negligible. The photon



quadrupole moment adds little to the sum because it is very small when the energy
density of the photons is appreciable, that is during the radiation era. Therefore only
neutrinos contribute to a significant quadrupole moment in the early universe. The (0,
i) component of the Einstein tensor in Fourier space is

G0
i = −2iki

a2
[
HΦ+Ψ′] . (3.17)

The (0, i) component of stress-energy tensor is

T 0
i =

∑

i

1

a4

∫
d3q

(2π)3
qδijn

jfj

= ρ(0)m viδij + 4ρr

∫
dµ

2
P1 (µ) θr.

(3.18)

We obtain then the (0, i) Einstein equation projected along ki

HΦ+Ψ′ = ρ(0)m vm + 4ρ(0)γ θγ,1 + 4ρ(0)ν θν,1. (3.19)

We can also write the first Einstein equation in Fourier space as

− k2Ψ− 3H
(
Ψ′ +HΦ

)
= −4πGa2

[
ρ(0)m δm + ρ(0)γ Θγ,0 + ρ(0)ν Θν,0

]
. (3.20)

Combining of (0,0) and (0, i) Einstein equations leads to

Φ = −4πGa2

k2

[
ρ(0)m δm + ρ(0)γ Θγ,0 + ρ(0)ν Θν,0 +

3H
k

[
ρ(0)m vm + 4ρ(0)γ θγ,1 + 4ρ(0)ν θν,1

]]
.

(3.21)

3.2 Einstein and Boltzmann equation at early times

The Boltzmann equations for the photons and neutrinos are [26]

Θ′ + ikµΘ = Ψ′ − ikµΦ− τ ′
(
θ0 − θ + µvb −

1

2
P2 (µ) θ2

)

N ′ + ikµN = Ψ′ − ikµΦ.

(3.22)

where τ is the optical depth defined as

τ (η) ≡
∫

dη′neσTa, (3.23)

where ne is the electron number density and σT is the cross section for Compton
scattering. At early times the optical depth is large due to the scattering of photons
and electrons, while it is very small at late times since the free electron number density



is very small. The equation for neutrinos is identical to the photons except that for
neutrinos there is no scattering term since neutrinos interact very weakly.

At early times kη ≪ 1, we can neglect the terms multiplied by k. The higher
multipoles will be much smaller than the monopole term θ0. The Boltzmann equations
for the photons and neutrinos then read

Θ′
0 = Ψ′ ,

N ′
0 = Ψ′ .

(3.24)

In the Einstein equation at early times the term, which contains a factor of k2 can be
neglected. Also, the matter contribution is negligible at early times, when the radiation
dominates. Thus, we get

3H
(
Ψ′ +HΦ

)
= −4πGa2 [ργΘγ,0 + ρνΘν,0] . (3.25)

We can simplify the equation by introducing the ratio of neutrino energy density to
the total radiation energy density

fν =
ρν

ργ + ρν
, (3.26)

then the equation reads

3H
(
Ψ′ +HΦ

)
= −4πGa2ρr [(1− fν)Θ0 + fνN0] . (3.27)

In the radiation dominated universe a ∝ η, so a′/a ∝ 1/η, thus

Φ′

η
− Ψ

η2
=

−4πGρra
2

3
[(1− fν)Θ0 + fνN0]

=
2

η
[(1− fν)Θ0 + fνN0]

(3.28)

then

Φ′η −Ψ = 2 [(1− fν)Θ0 + fνN0] . (3.29)

By differentiating both sides of the equation and using eq. (3.24), we have

Φ′′η +Φ′ −Ψ′ = −2Φ′ (3.30)

If we neglect the quadrupole moments in eq. (3.16), then Φ = Ψ. Under this
approximation we have

Φ′η + 4Φ′ = 0 (3.31)

Setting Φ = ηp, we get the algebraic equation

p (p− 1) + 4p = 0, (3.32)



which has two solutions p = 0, the growing mode, which is constant in time, and
p = −3, the decaying mode, which quickly dies out. We are interested in the growing
mode, so eq. (3.29) becomes

Φ = −2 [(1− fν)Θ0 + fνN0] (3.33)

Since in the early universe the perturbations tend to not distinguish between photons
and neutrinos [26]

Θ0 = N0, (3.34)

which leads to

Φ = −2Θ0 = −2N0. (3.35)

Since for the photons ργ ∝ T 4

δγ =
δργ
ργ

=
4δT

T
= 4Θ0. (3.36)

The primordial density perturbations can be divided into adiabatic perturbations
and isocurvature ones. Adiabatic perturbations are characterized by vanishing entropy
perturbation. The gauge-invariant entropy perturbation for the two-particle species i
and j is defined as

Sij =
δρi

1 + wi
− δρj

1 + wj
. (3.37)

For adiabatic perturbations, Sij = 0 and consequently the perturbations in all com-
ponents are proportional and related by

δm =
3

4
δγ =

3

4
δν =

3

4
δGW. (3.38)

We have found the relation for the photon energy density perturbation from the
Einstein equation, therefore using the fact that for adiabatic perturbations δGW follows
δγ , we can write

δGW = δγ = −2Φ. (3.39)

The initial condition term can be expressed in terms of the initial energy density
perturbation as [23]

ΓI (ηin, k) =
δGW (ηin, k)

4− nT
. (3.40)

So using eq. (3.39), we obtain

ΓI (ηin, k) =
−2Φ (ηin, k)

4− nT
. (3.41)



In the case of isocurvature perturbations Sij ̸= 0. The GW energy density pertur-
bation on large scales during the radiation-dominated epoch can be written as [28]

δGW = δprimGW + 4ΦRD, (3.42)

where ΦRD is the gravitational potential, which is related to the curvature pertur-
bation during the radiation-dominated epoch through

ζRD = −3

2
ΦRD. (3.43)

We can decompose the curvature perturbation during the radiation-dominated epoch
as

ζRD = (1− fν − fGW)ζγ + fνζν + fGWζGW = ζγ +
1

3
fGWSGW, (3.44)

where SGW is the entropy perturbation defined as

SGW = 3 (ζGW − ζγ) . (3.45)

Consequently, the GW energy density perturbation is

δGW = −4

3
ζRD +

4

3
(1− fGW)SGW . (3.46)





Chapter 4

Results

To compute the angular power spectrum of the SGWB we will use using the Cosmic
Linear Anisotropy Solving System (CLASS) [29]. CLASS is the Boltzmann code that is
written in C, but organized in a few modules that reproduce the C++ classes. It simu-
lates the dynamics of linear perturbations and computes CMB and large-scale structure
observables, such as the CMB angular power spectrum.

We want to evaluate the angular power spectrum of the SGWB

C̃ℓ (q) = 4π

∫
dk

k

[
T 2
ℓ,I (k, ηin, η0)PI (k, q) + T 2

ℓ,S (k, ηin, η0)Pζ (k)

+ T 2
ℓ,T (k, ηin, η0)

∑

λ=±2

Pλ (k)

]
, (4.1)

therefore we have to modify CLASS for the SGWB. For the CMB the angular power
spectrum can be written as [26]

Cℓ = 4π

∫
dk

k
θ2ℓ (η0, k)P (k) , (4.2)

where P (k) is the primordial power spectrum and θℓ (k) is the transfer function, as
for SGWB, for scalar (α = 0) and tensor (α = ±2) modes

θ
(0)
ℓ (k) =

∫
dηS

(0)
T (η, k) jℓ (k( η0 − η )) ,

θ
(α)
ℓ (k) =

∫
dηS

(α)
T (η, k)

1

4

√
(l + 2)!

(l − 2)!

jℓ (k (η0 − η))

k2 (η0 − η′)2
,

(4.3)

where S
(0)
T and S

(α)
T are the source functions given by

S
(0)
T (η, k) = g

(
δg
4

+ Φ

)
+
(
gK−2θb

)′
+ e−K

(
Φ′ +Ψ′) ,

S
(α)
T (η, k) = −e−Kχ′

(4.4)
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where g = −K ′e−K is the visibility function and K is the optical depth. Since
gravitons decouple at very early time, the collision term in the Boltzmann equation is
zero, therefore we have to modify the source function by setting g = 1, e−K = 1. Then
the source function for gravitons reads

S
(0)
T (η, k) = Γ (ηin, k) + Φ (ηin, k) + Φ′ (η, k) + Ψ′ (η, k) ,

S
(α)
T (η, k) = χ′.

(4.5)

The initial integration time ηin of the source function for the CMB corresponds to
the recombination T ≃ 0.3 eV . The GWs decouple at the Plank energy scale, thus we
also have to change the initial time of integration. We set ηin at the time of neutrino
decoupling T ≃ 1MeV, which is early enough to mimic the effect associated with the
propagation of GWs.

It is possible to specify the initial conditions for the energy density perturbation in
CLASS. In general, the angular power spectrum can be written as the sum of contribu-
tions from adiabatic and isocurvature modes

C̃ℓ (q) = 4π

∫
dk

k

[
Pad (q, k) T 2

ad (η0, k) + Piso (q, k) T 2
iso (η0, k)

]
. (4.6)

Whether the perturbations are adiabatic or isocurvature would modify the initial con-
ditions term Γ (ηin, k) and the evolution of gravitational potentials Φ (η, k) and Ψ (η, k).

4.1 Angular power spectrum of SGWB for adiabatic initial
conditions

The initial condition term in case of adiabatic perturbations from eq. (3.41) is

ΓI (ηin, k) =
−2Φ (ηin, k)

4− nT
. (4.7)

We consider the scale-invariant power spectrum, nT = 0, so

Γ (ηin, k) = −1

2
Φ (ηin, k) . (4.8)

If we can disregard the tensor term contribution to the anisotropy of SGWB, which
does not change the spectrum significantly, then we can write the adiabatic primordial
power spectrum as

Pad (k) = Pζ (k) , (4.9)

and the tranfer function Tad (q, k) is given by

Tad (η0, k) =
1

2
TΦ (ηin, k) jℓ (k( η0 − ηin )) +

∫ η

ηin

dη
∂ [TΦ (η, k) + TΨ (η, k)]

∂η
jℓ (k (η0 − η)) .

(4.10)



101 102 103
0.0

0.5

1.0

1.5

2.0

(
+

1)
2

C

1e 8
SW+ISW
SW
ISW

Figure 4.1: SW, ISW and total contribution to the angular power spectrum of the GW
energy density perturbation for adiabatic initial conditions with the tensor spectral tilt
nT = 0, the scalar spectral tilt nS = 0.96 and the primordial amplitude AS = 2.101·10−9.

In Fig. 4.1 we report the SW, ISW and total contribution to the angular power
spectrum of the GW energy density perturbation with the tensor spectral tilt nT = 0
and the scalar spectral tilt nS = 0.96 [66] and the primordial amplitude AS = 2.101·10−9

[67]. The SW and the ISW contributions are depicted separately to demonstrate that on
large scales, that is at lower ℓ, the SW effect provides the dominant contribution to the
anisotropy of the SGWB and the spectrum is almost scale-invariant l (l + 1)Cl ∝ const,
analogously to CMB anisotropies. The ISW effect starts to be larger on smaller scales,
that is at higher ℓ.



4.2 Angular power spectrum of SGWB for isocurvature
initial conditions

The initial condition term in the case of scale-invariant tensor power spectrum can
be written as (3.40)

ΓI (ηin, k) = 4δGW (ηin, k) . (4.11)

We consider that the source of isocurvature perturbation is cold dark matter. From
[68, 69] the primordial GW energy density perturbation in the case of CDM isocurvature
perturbations can be approximately expressed in terms of gravitational potential Φ as

δGW (ηin, k) ≃ −8

3

2 (15 + 2Rν)

4Rν − 15
Φ (ηin, k) , (4.12)

where Rν is the fractional contribution of neutrinos to the total density at early times
defined as

Rν =
R

1 +R
, (4.13)

where

R =
7

8
Nν

(
4

11

) 4
3

. (4.14)

Assuming that the number of neutrino species Nν = 3, then Rν = 0.4. The initial
condition term then is

ΓI (ηin, k) ≃ −4

3

15 + 2Rν

4Rν − 15
Φ (ηin, k) . (4.15)

As well as for adiabatic modes we disregard the tensor term contribution to the
anisotropy of the SGWB. We introduce the isocurvature fraction defined as [66]

βiso (k) =
Piso (k)

Pad (k) + Piso (k)
. (4.16)

The constrains on this parameter for the CDM isocurvature perturbations are given
by the CMB data. It takes different values depending on the scalar spectral tilt and the
correlation of the CDM isocurvature and adiabatic modes. We assume that isocurature
and adiabtic modes are arbitrarily correlated and the scalar spectral tilt nS = 0.96 is
equal for both CDM isocurvature and adiabatic modes. This is a scenario predicted by
some curvaton models. The isocurvature fraction is then [66]

βiso = 0.039. (4.17)

The primordial power spectrum for CDM isocurvature initial conditions can be writ-
ten in terms of isocurvature fraction and the primordial adiabatic power spectrum as

Piso (k) =
βiso

1− βiso
Pζ (k) . (4.18)
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Figure 4.2: SW, ISW and total contribution to the angular power spectrum of the GW
energy density perturbation for CDM isocurvature initial conditions with the tensor
spectral tilt nT = 0 , the scalar spectral tilt nS = 0.96, the primordial amplitude
AS = 2.101 · 10−9 and the isocurvature fraction βiso = 0.039.

In general, the isocurvature modes are sourced by the second scalar field present
during inflation or phase transition. If it decays shortly after the end of inflation or
phase transition, then the isocurvature perturbations would not significantly affect the
transfer function, then it can be written similarly to the adiabatic case taking into
account the modified initial condition term

Tiso (η0, k) =
1

3

4Rν − 105

Rν − 15
TΦ (ηin, k) jl (k( η0 − ηin ))

+

∫ η

ηin

dη
∂ [TΦ (η, k) + TΨ (η, k)]

∂η
jl (k (η0 − η)) .

(4.19)

In Fig. 4.2 we report the SW, ISW and total contribution to the angular power
spectrum of the GW energy density perturbation for CDM isocurvature initial conditions
with the tensor spectral tilt nT = 0, the scalar spectral tilt nS = 0.96 [66] , the primordial
amplitude AS = 2.101 · 10−9 [67] and the isocurvature fraction βiso = 0.039.
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Figure 4.3: Total angular power spectrum of the GW energy density perturbation for
CDM isocurvature and adiabatic initial conditions.

The initial condition term in the case of CDM isocurvature perturbations is larger
compared to the adiabatic case due to the modified initial condition term in eq. (4.19).
However, the SW effect for both isocurvature and adiabatic perturbations is almost
identical, since the isocurvature primordial power spectrum is smaller than the adiabatic
one (4.18), which compensates the prefactor in the initial condition term. We can write
the ratio of the SW effect in both cases

CSW,iso
ℓ

CSW,ad
ℓ

≃ βiso
1− βiso

(
Γiso
I +Φ(ηin)

)2
(
Γad
I +Φ(ηin)

)2 ≃ βiso
1− βiso

(
1

6

4Rν − 105

Rν − 15

)2

≈ 1.05. (4.20)

Furthermore, in the isocurvature case, we do not observe the growth of the ISW
effect on smaller scales as for adiabatic initial conditions due to the fact that the ratio
between the SW and ISW effect is far greater compared to the adiabatic case.

In Fig. 4.3 we show the comparison between the total angular power spectrum of the
GW energy density perturbation for adiabatic and CDM isocurvature initial conditions.



On large scales, the total power spectrum for CDM isocurvature perturbations is
larger than the adiabatic one by the fraction

Ciso
ℓ

Cad
ℓ

≃ 1.67. (4.21)

This is due to the late ISW effect, which is important on large scales and has a
negative relative sign with respect to the SW effect. The late ISW effect for the adiabatic
perturbations is much larger than for isocurvature ones since the isocurvature primordial
power spectrum is far smaller than the adiabatic one (4.18).

These particular traits of the angular power spectrum for the CDM isocurvature
initial condition compared with the adiabatic case may allow to distinguish among the
GW sources, that induce either isocurvature or adiabatic perturbations.





Chapter 5

Conclusions

In this thesis, we have studied the effect of different cosmological sources on the
SGWB anisotropies. We considered how the presence of isocurvature perturbations in
the early universe would impact the angular anisotropy of the SGWB and we compared
it with the adiabatic sources of GWs.

In Chapter 1 we have reviewed several mechanisms in the early universe that could
be source GWs, are inflation, phase transitions, and cosmic strings. We studied the
SGWB from the quantum fluctuations of the metric during inflation, but also from the
multi-field models of inflation. This includes the axion inflation model, where the infla-
ton field is coupled to a gauge field, which similarly to the vacuum fluctuations produces
adiabatic perturbations. We have also considered models which lead to the isocurva-
ture perturbations, like the inclusion of an extra scalar spectator field and the curvaton
scenario. In this latter mechanism, the final curvature perturbations are generated by
an initial isocurvature perturbation of the curvaton. Then we described the production
of GWs during a first-order phase transition due to the collision of bubble walls, sound
waves, and magneto-hydrodynamic turbulence. We have also considered the GWs pro-
duced by a network of cosmic string loops. We presented the average GW energy density
for these mechanisms of GW production in the early universe.

In Chapter 2 in order to study the anisotropy of the SGWB we solved the Boltzmann
equation for the graviton distribution function at first order around a FLRW metric. We
obtained the angular power spectrum of the SGWB, which includes the contributions
from the initial anisotropy imprinted at the production of the GW and the one due to
the propagation through the large-scale scalar and tensor perturbations of the universe.

In Chapter 3 in order to obtain the initial conditions for the GW energy density
perturbation δGW and the evolution of gravitational potentials Φ and Ψ, we solved the
Einstein equations combined with the Boltzmann equation for various particle species
present in the universe at the time of the GW production. We considered adiabatic and
isocurvature initial conditions and estimated the initial GW energy density perturbation
δGW in each case.

In Chapter 4 the original results of the thesis are given. We studied whether the
perturbations are adiabatic or isocurvature and affect the angular power spectrum of
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SGWB. We presented the plots of the scale-invariant angular power spectrum of SGWB
separately for adiabatic and isocurvature initial conditions, which we implemented nu-
merically in the Boltzmann code CLASS, adapted for the SGWB. We found that on
large scales the total power spectrum for CDM isocurvature perturbations is larger than
the adiabatic one by the fraction Ciso

ℓ /Cad
ℓ ≃ 1.67 due to the late ISW effect, which is

important on large scales. The late ISW effect for the adiabatic perturbations is much
larger than for the isocurvature one since the isocurvature primordial power spectrum
is far smaller than the adiabatic one.

In the future, we plan to extend the analytic and numerical results obtained in this
thesis to describe different primordial sources of GWs, in order to use the anisotropies
as a tool to discriminate these mechanisms.
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