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Introduction

Quantum �eld theories sit at the heart of the modern physics and symmetries play a central role
in their de�nition. In the last few years, there has been remarkable progress in understanding
the concept of global symmetry which has been generalized in many directions [1] [2] [3] [4] [5].
Ordinary global symmetries, which essentially consist in the action of a group on the space of
local point-like operators, have been extended to higher form symmetries that can act on higher
dimensional objects like lines, surfaces or higher dimensional submanifolds of the spacetime.
Furthermore, the action of a single group has been generalized to non-trivial combinations of
various q-form symmetries of di�erent degree q called n-group global symmetries, where n is the
degree of the background �eld of the symmetry of higher order [6] [7] [8]. These developments
have had consequences in various �elds of physics and their applications range from condensed
matter physics to high energy physics up to quantum gravity and string theory.

In the study of global symmetries, a fundamental question is to ask when such symmetries
can be gauged. We know there can be impediments in the gauging of an ordinary global
symmetry and these obstacles are called 't Hooft anomalies. For instance, if we consider a
theory with a 0-form global symmetry coupled to its background �elds, it can happen that
the partition function is no longer invariant under a gauge tranformation of the backgrounds.
In this case, we cannot make the gauge �elds dynamical. The same can happen in presence
of higher form global symmetries and the discussion of their 't Hooft anomalies is a fruitful
research topic [9] [10] [11] [12] [13].

In quantum gravity there is a deep conjecture, based principally on black holes physics, that
forbids the presence of global symmetries in a consistent UV complete theory [14]. This means
that any global symmetries arising in low energy e�ective models of gravity must be either
gauged or broken at some higher energy scale. This conjecture has been also extended to all
higher form global symmetries [15] [16]. Therefore, the possible presence of 't Hooft anomalies
represents a relevant problem in a quantum gravity theory. Focusing essentially on string
theory, we know that the dynamics of the string can be described by a conformal �eld theory
de�ned on a 2-dimensional world-sheet and such a world-sheet theory does admit the presence
of global symmetries. However, when we consider the string theory from the spacetime point
of view, such global symmetries must be local symmetries of the spacetime action; thus, there
cannot be obstructions to their gauging.

Moreover, 't Hooft anomalies can be dangerous also when we consider the orbifold of a theory.
Roughly speaking, an orbifold is a way to obtain a new QFT from a 'parent' one by gauging
a discrete global symmetry. The idea of orbifold has been generalized to include higher form
symmetries. In string theory, starting from a world-sheet CFT with a global discrete symmetry,
we can obtain a new CFT by taking this orbifold. From the spacetime point of view, this is a
way to obtain a new string theory background from an old one; therefore, it is also a procedure
to obtain a new string model from an old one. Obviously, the orbifold procedure fails if the
symmetry subgroup that we want to 'quotient' by has a 't Hooft anomaly [17] [18].
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The goal of this thesis is to study the presence of such anomalies in some simple quantum
�eld theory models inspired by string theory. In particular, we focus on models obtained from
toroidal compacti�cation of string theory. Indeed, a consistent string theory requires a number
of spacetime dimensions that is greater than the four that we usually experiment; therefore,
we have to suppose that some directions must be compact and invisible at our length scale. In
toroidal compacti�cation, the compacti�ed directions can be described by (free) scalars with
symmetry group the product of di�erent U(1) subgroups. For instance, if we consider a single
scalar compacti�ed on a circle, the 0-form symmetry group is the direct product of two U(1),
the �rst due to the invariance under translations on the circle and the other whose charge is
the winding number of the string around the circle. These U(1) symmetries are global from the
world-sheet viewpoint, but must be gauged in spacetime. As we will see, apparently these two
subgroups on the world-sheet have a mixed t'Hooft anomaly that prohibits the gauging of both.
However, the 0-form group is not all the symmetry content of such a model. We will verify
that the theory is endowed of a non-trivial 2-group global symmetry and the transformation
of the background �eld for the 1-form symmetry exactly cancels the mixed anomaly coming
from the ordinary 0-form. These gauge transformations have been known for a long time
and are called Nicolai-Townsend transformation but they were not initially interpreted as the
presence of a 2-group structure which combines a 1-form symmetry with the ordinary one. A
similar mechanism is well known also in superstring theory under the name of Green-Schwarz
mechanism [19] [7].

In the case of continuos symmetries the non-trivial higher group structures of the string com-
pacti�cation models, that make the theory consistent, have been known for a long time. More
subtle issues arise if we consider discrete symmetries. This case is also relevant because gauging
discrete symmetries corresponds to making an orbifold. The description of such symmetries is
not obvious, since there are no associated Noether currents and the usual spacetime e�ective
action description is not useful because all the associated gauge �elds have no propagating
degrees of freedom. Furthermore, the 2-group structure for these discrete gauge �elds is still
unexplored and, in principle, it is not obvious that a discrete global symmetry on the world-
sheet corresponds to a discrete gauge symmetry of the spacetime action. For instance, since
the world-sheet description is valid only at the perturbative level, one can think that the global
world-sheet symmetry may be broken in a non-perturbative theory. The idea that, also for dis-
crete symmetries, the 't Hooft anomalies of the world-sheet theory are canceled by the presence
of a non-trivial global 2-group has been introduced in [18]. If for the continuous symmetries the
2-group transformations have been derived by imposing the invariance of the e�ective action, in
the case of discrete symmetries we cannot proceed in the same way. The opportune formalism
to study discrete symmetries is their description in terms of a network of topological defects that
act on charged operators and describe the �ber bundle associated with the background gauge
�elds for such symmetries. These operators can be de�ned even without currents. Besides,
with the tools of algebraic topology, we can characterizes the anomalies for discrete symmetries
with classes of opportune cohomology groups and we can describe the 2-group symmetries in a
precise way.

In our work, after the development of the necessary background of discrete symmetries, we
focus on two simple examples of string compacti�cation endowed with such symmetries. First,
following [18] we consider the invariance under coordinate inversion of a periodic single scalar
(Z2 symmetry). If we consider only the 0-form symmetries in the world-sheet theory, we discover
the presence of a mixed 't Hooft anomaly between Z2 and the two U(1) subgroups. On the other
hand, the presence of a non-trivial 2-group structure allows us to cancel this anomaly. Second,
we consider the CFT of two scalars corresponding to the compacti�cation of two directions
on a torus with a particular Z3 rotational symmetry. In this case there is a non-trivial mixed
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anomaly in the world-sheet theory between the 0-form U(1) groups and Z3. However, in a
similar way we can verify that the presence of an higher form symmetry cancels the anomalous
phase.

The thesis is divided into two main parts. The �rst one is an introduction on higher form
symmetries and 2-groups for both continuous and discrete groups in a generic quantum �eld
theory framework. In the second part, after presenting some elements of string theory, we
discuss extensively the 't Hooft anomalies cancellation in the two string compacti�cation models
presented above.

In Chapter 1 we introduce the concept of higher form global symmetries using from the be-
ginning the language of topological operators. Starting from the description of ordinary global
symmetries, we present the main features of higher form symmetries and discuss the electric
and magnetic 1-form symmetries in 4 dimensions Maxwell theory as paradigmatic example.
These global 1-form symmetries present a mixed 't Hooft anomaly that prevents their gauging.
Such 1-form symmetries can be broken by the insertion of electric or magnetic charged matter.
Of particular interest is the discussion of the ZN gauge symmetry that arise when we consider
the Higgsing by a charge N Higgs �eld.

Chapter 2 is devoted to the introduction of 2-group global symmetries with continuos groups,
which can be presented via the lagrangian formulation by describing the coupling of the theory
with background gauge �elds. We mainly focus on the so called 'Abelian' 2-group, where a
0-form U(1)(0) symmetry is combined with a 1-form U(1)(1) group. We discuss its origin from
a parent theory with 2 U(1)(0) symmetry group and a mixed 't Hooft anomaly. We present
also the gauging of the global 2-group and its obstructions since 2-groups may in turn have
't Hooft anomalies. Finally, a preparatory example is considered since we discuss the 2-group
U(1)

(0)

A(1) � U(1)
(0)

A(2) �k̂12
U(1)

(1)
B .

Chapter 3 is a sort of mathematical chapter that introduces rudimental concepts in algebraic
topology. In order to discuss discrete symmetries, it is useful to use singular cohomology to
describe the at gauge backgrounds over manifold triangulations. Furthermore, anomalies and
2-group symmetries are labeled by classes in group cohomology; we principally focus on the
study of the third cohomology group H3(ZkN ; U(1)) which labels the Postnikov classes of the
2-group discrete symmetries.

In Chapter 4 we exploit the results of the Chapter 3 to present in the more general way
discrete global symmetries via topological defects and 2-group discrete symmetries with the
related gauge transformations. The �nite groups ZN and ZN � ZN are the 0-form part of the
two basic examples that we study at the end of the chapter.

Chapter 5 is a basic introduction to string theory that we need in order to introduce the physical
content of the models that we will study. We present the world-sheet action for a relativistic
bosonic string on a at background and its massless spectrum, that is the �eld content of the
theory. We consider also the world-sheet action and the spacetime e�ective action for strings
on a curved background. Then, we focus on string compacti�cation: toroidal compacti�cation
of one dimension is the simplest case that we discuss in detail, but we present also a brief sketch
on orbifolds.

In Chapter 6 we discuss the 't Hooft anomalies in the string model for a single direction
compacti�ed on a circle. Initially, we present the standard result about the anomaly between
the two U(1) groups for a single periodic scalar and then we focus on the mixed anomaly
under coordinate inversion. Both these gauging obstructions are canceled by the presence of a
non-trivial 2-group.
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Finally, in Chapter 7 we discuss the anomalies cancellation in a theory with two direction
compacti�ed in a torus with Z3 rotational symmetry. This example constitutes the completely
original part of our work.

In Appendix A we provide the basic de�nitions in group theory that are been used in our thesis.
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Chapter 1

Higher form global symmetries

Global symmetries in quantum �eld theory usually act on operators that are supported on
points in space-time. It has been recently understood that there exist symmetries that only
act on operators supported on higher dimensional submanifolds of space-time, such as lines,
surfaces. . . These are called higher form symmetries. We want to introduce the concept of higher
form global symmetries using from the beginning the language of topological operators. We
start by describing ordinary global symmetries; then, we present the main features of higher
form symmetries and we discuss the electric and magnetic 1-form symmetries in 4 dimensions
Maxwell theory as paradigmatic example. We essentially follow [2] as main reference.

1.1 Generalities

1.1.1 Ordinary symmetries

In this section we present ordinary global symmetries in the language of di�erential forms in
order to introduce the most appropriate formalism to describe generalized symmetries.

We start by considering a generic QFT supported in a D-dimensional manifold. In general,
symmetry transformations form a group G that can be Abelian or non Abelian. If the group is
continuous, for every continuos generator there is a conserved Nother current, which we express
as a (D-1)-form jD−1. The conservation of the current is equivalent to the closure of the form
associated: djD−1 = 0. For those who are more familiar with the tensor notation, we observe
that the Nother current j� is usually associated with a 1-form j1 connected by Hodge duality
with the one we have considered so far (j1 = �jD−1).

The charged operators are local operators, supported on manifolds of dimension 0, i.e., points
in space-time and we denote them as V (P). The conserved charge is the integral

Q(M (D−1)) =

I
M(D−1)

jD−1 (1.1)

where M (D−1) is a (D-1)-dimensional manifold, typically space (at �xed time t). In general we
consider it as a closed (D-1)-dimensional space.

In order to describe symmetry transformations, it is useful to consider a topological operator
associated with the manifold M (D−1) and labeled by g 2 G, a group element of the global
symmetry. We denote this charge operator as Ug(M

(D−1)) and if G is continuos, we can de�ne
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it by exponentiating Q(M (D−1)). In general, both for discrete and for continuos symmetries,
we can de�ne Ug(M

(D−1)) by cutting spacetime along M (D−1) and assigning a symmetry trans-
formation to charged objects that cross M (D−1). These transformations must satisfy the group
multiplication law

Ug(M
(D−1))� Ug0(M (D−1)) = Ug00(M

(D−1)) (1.2)

where g; g0; g00 2 G, with g00 = gg0 in the group.

Ug(M
(D−1)) is said to be topological because a slight modi�cation of M (D−1) without cross-

ing charged operators V (P) does not a�ect the correlator in which the symmetry operator is
inserted. Speci�cally, considering a sphere SD−1 surrounding P we have

Ug(SD−1)Vi(P) = Rj
i (g)Vj(P) (1.3)

where Rj
i (g) is an appropriate representation of g 2 G determined by the charge of V . This is

the Ward identity associated with this symmetry. For example, if the group is U(1) the group
element is a phase and Rj

i (g) = gq(V ) where q(V ) is the charge of V .

1.1.2 Higher form global symmetries

A generalized global symmetry, also called q-form global symmetry, is a global symmetry that
acts on charged operator V (Cq) supported on q-dimensional manifolds Cq. If the group is
continuos, the symmetry parameter is a closed q-form �q. The pairing

R
Cq
�q determines the

operator tranformations and the theory can be coupled to a background (q+1)-form connection.

Like for the ordinary symmetries, if the symmetry group G is continuos, the q-form global
symmetry is associated to a closed (D − q − 1)-form current jD−q−1 (or a conserved current of
rank (q + 1) in tensorial notation). We can de�ne the standard charge operators integrating
the (D − 1)-form � ^ j on space. However, it is more useful to consider charge operators
Ug(M

(D−q−1)) de�ned in a co-dimension (q+ 1) manifold M (D−q−1), obtained by integrating on
it the current jD−q−1.

In general, both for continuos and both for discrete symmetry groups, a higher form global
symmetry is de�ned by the existence of topological operators Ug(M

(D−q−1)) associated with
co-dimension (q+1) manifolds M (D−q−1) subject to the group law

Ug(M
(D−q−1))� Ug0(M (D−q−1)) = Ug00(M

(D−q−1)) (1.4)

where g; g0; g00 2 G, with g00 = gg0 in the group, as before.

This relation can be interpreted as the multiplication rule of two operators acting at a given
time t along the manifold M (D−q−1). In particular, if we insert the two operators at arbitrarily
small di�erent times t and t+�, we can study the ordering of operators using the standard time-
ordering. For q = 0 (ordinary symmetries) M (D−q−1) is of co-dimension 1 and the operators
Ug(M

(D−q−1)) at the di�erent times do not necessarily commute. Therefore, the symmetry
group G can be non Abelian. In contrast, for q > 0 the manifold M (D−q−1) at time t + � can
be continuosly deformed to the one at time t. Hence, the two operators in the multiplication
law must commute and G must be Abelian.

Since the charged objects are q-branes rather than particles, the ordinary charges obtained by
integrating the current on the entire space is in�nite; only the charge per unit q-volume (along
the brane) is �nite.
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The Ward identity for the generalized symmetries is given by the following expression

Ug(SD−q−1)V (Cq) = g(V )V (Cq) (1.5)

where Ug(SD−q−1) is supported on a small (D − q − 1)-dimensional sphere which links once
with V (Cq), supported on a q-dimensional manifold, and g(V ) is the representation of g that
is simply a phase determined by the charge of V .

We can also consider the special case of the equal-time commutation relation given by

Ug(M
(D−q−1))V (Cq) = g(V )I(C

q ;M(D−q−1))V (Cq)Ug(M
(D−q−1)) (1.6)

where I(Cq;M (D−q−1)) is the intersection number. We can easily see that the symmetry trans-
formation is implemented whenever a charged object crosses M (D−q−1).

In order to remove such generalized global symmetries we can gauge these symmetries or break
them explicitly (for more details one can see [16]). The gauging of a q-form global symmetry
with current jD−q−1 can be achieved by coupling the current to a dynamical (q+ 1)-form gauge
�eld Bq+1:

S �
Z �
− 1

2g2
Hq+2 ^ �Hq+2 +Bq+1 ^ jD−q−1

�
(1.7)

with Hq+2 = dBq+1 locally.
The gauge transformation for Bq+1 is a q-form gauge symmetry (see below) given by:

Bq+1 ! Bq+1 + d�q; (1.8)

with �q a q-form. Since jD−q−1 is closed, the action is invariant under these gauge transformation
up to boundary terms. The equation of motion for Bq+1 tells us that the current jD−q−1 is also
exact:

jD−q−1 = (−1)q+1 1

g2
d �Hq+2: (1.9)

This equation generalizes the Gauss law and implies that every integral of jD−q−1 on a closed
manifold vanish.

In terms of charged operators, gauging a q-form symmetry implies that these operators are no
longer genuine operators once the symmetry has been gauged. Instead the charged operators
will represent boundaries of higher-dimensional gauge-invariant operators. For instance, con-
sidering the gauging of a local operator with charge N under a U(1) 0-form global symmetry,
we get that the local operator is no longer gauge invariant, but it becomes the endpoint of a
Wilson line of charge N .

A global symmetry can also be broken by adding terms to the Lagrangian that violate the
Noether current conservation. Starting from the action de�ned above, we can have an example
observing that, in the absence of the coupling Bq+1 ^ jD−q−1 the current jD−q−2 := �Hq+2 is a
conserved current for a (q + 1)-form symmetry. The coupling Bq+1 ^ jD−q−1 explicitly breaks
this (q + 1)-form global symmetry. We will �nd another example studying the U(1) gauge
theory.

In terms of charged operators, the explicit breaking of a q-form symmetry is a modi�cation of
the theory that allows the charged operators to live on q-dimensional manifold with non trivial
boundary. For instance, in the pure U(1) gauge theory the Wilson lines are supported on closed
manifolds without boundary; in contrast, in the presence of charged matter Wilson lines can
end on a local excitation of the charged particles.
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1.1.3 Higher form gauge symmetries

Without going into detail, we want to briey introduce some terminology and some idea about
higher form gauge symmetries. Ordinary gauge �eld are represented by a 1-form A1 that is
precisely the 1-form of connection on the principal bundle of the symmetry group. For a U(1)
group, the gauge transformation are parametrized by a scalar function � 2 U(1):

A1 ! A1 + d�: (1.10)

In general, a principal bundle can be described by choosing a covering fUig of the manifold in
which the theory lives and by specifying the transition functions fij for the local trivialization of
the principal bundle in the overlapping of Ui and Uj, being careful about the cocycle condition

fijfjk = fik (1.11)

on triple overlapping Ui \ Uj \ Uk.

Higher form gauge symmetries are generalization of the above formalism. For the simple case
of U(1), a q-form gauge symmetry is naturally associated to a (q + 1)-form Aq+1 subjected to
the gauge transformation

Aq+1 ! Aq+1 + d�q (1.12)

where �q is a q-form. More precisely, �q is a q-form gauge �eld with the opportune transition
functions associated with its own gauge symmetry. For instance, a U(1) q-form gauge symmetry
has the q-form transition functions �q in turn subject to transformation �q ! �q + d�q−1. The
process stops when reaches the 0-form �, interpreted as S1-valued function.

1.2 A paradigmatic example: U(1) gauge theory in 4 D

1.2.1 A clari�cation on U(1) group

Before starting the discussion about the 1-form symmetry of a U(1) gauge theory, we will focus
on the speci�city of the group U(1). U(1) is the group of 1-dimensional unitary transformations
and it is a compact group since it is isomorphic to the circle S1. Its irreducible representations
are all 1-dimensional and act by multiplication by a phase ei�.

The fact that U(1) is compact means that the gauge parameter � takes values in S1; therefore,
it is subjected to the identi�cation � � � + 2�. Thus, if we consider the integral over 1-cycle
of d� it is non trivially 0, but it is an integer:

1

2�

I


d� 2 Z: (1.13)

Roughly speaking, this can be understood thinking that each time � travels through a closed
path, it wraps around the circle S1 an integer number of times. A more elegant explanation is
given by considering a non trivial U(1) bundle which is the topological setting of the monopoles.
Let us consider a principal bundle with �bre U(1) and base space S2. We consider the open
charts on the sphere

UN = f(�; �)j0 � � � �=2 + �; 0 � � < 2�g
US = f(�; �)j�=2− � � � � �; 0 � � < 2�g

(1.14)

where �; � are the usual polar angles and the intersection UN \ US is essentially the equator.
The transition function tNS is a U(1) valued function of the form ein� where n must be integer
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since we want that tNS is uniquely de�ned on the equator. Therefore, tNS is a map from S1

to U(1) ' S1 and the integer n labels the di�erent maps that are classi�ed by the homotopy
group �1(U(1)) ' Z. If n = 0, the transition function is the identity in the structure group
and the bundle are trivial, i.e. S2 � S1. If n 6= 0, the U(1) bundle is twisted and the integer
characterizes how two local section are pasted togheter at the equator.

The compactness of U(1) is at the basis of the quantization of the U(1) charges. Taking,
for example, the magnetic charge in the Wu-Yang potential, we want that in the intersection
UN \US the potential di�ers by pure gauge since the physics does not depend on the choice of
the gauge. Thus,

AN − AS = −e−i�(�)dei�(�) = d�(�) (1.15)

with � the map from S1 to R with the identi�cation � � �+2�n; n 2 Z. IfAN = Qm(1−cos �)d�
and AS = −Qm(1 + cos �)d�, we obtain AN − AS = 2Qmd� andZ 2�

0

2Qmd� = 4�Qm =

Z
d�(�) 2 2�Z (1.16)

so we have the quantization of the magnetic charge 2Qm 2 Z. As usual, the quantization of the
electric charge can be shown considering the holonomy of a electrically charged particle moving
around a monopole.

Finally, we have to notice that also the background �eld strength F2 = dA1 must have integer
uxes through closed 2-cycle �

1

2�

I
Σ

F2 2 Z: (1.17)

This can be easily checked in the particular topology of the monopole considered above. In
fact, Z

S2

F2 =

Z
UN

dAN +

Z
US

dAS =

Z
S1

AN −
Z
S1

AS =

Z
S1

d� 2 2�Z: (1.18)

1.2.2 Electric and magnetic 1-form global symmetries

Let us consider the Maxwell U(1) theory without matter in D = 4. The action reads:

S = − 1

2g2

Z
F2 ^ �F2 (1.19)

where F2 is the curvature associated of the U(1) bundle with 1-form connection A1

F2 = dA1 (1.20)

and g the gauge coupling constant. The gauge transformation is A1 ! A1 + d� with � 2 U(1),
i.e. a S1-valued function. The equation of motion and the Bianchi identity are respectively

d � F2 = 0 and dF2 = 0: (1.21)

In this theory we have two U(1) 1-form symmetries. The �rst one is the electric U(1) 1-form
global symmetry associated with the 2-form current je2 = 1

g2 � F2 closed by the equation of
motion. The symmetry operator is

UE
g=eiα(M (2)) = e

i α
g2

R
M(2) �F2 (1.22)
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where the integral is the eletric ux through M (2) and, clearly, � 2 [0; 2�) is a phase. The
charged objects are Wilson loops supported on closed 1-dim manifold  and labeled by an
electric charge p 2 Z:

Wp() = eip
H
γ A1 : (1.23)

The action of the 1-form symmetry operator UE on the Wilson loops is in accordance with the
Ward identity. If the Wilson loop is supported on a curve  surrounded by an S2 in which
UE(S2) is de�ned, we have UE

eiα(S2)Wp() = ei�pWp().

The second 1-form global symmetry is called the U(1) 1-form magnetic symmetry. The closed
current by the Bianchi identity is jm2 = 1

2�
F2 and the symmetry is generated by

UM
g=eiη(M

(2)) = ei
η
2π

R
M(2) F2 : (1.24)

The integral
R
M(2) F2 is the magnetic ux through M (2) and the charged operator are 't Hooft

loops Vm supported on closed 1-dim manifold and labeled by a magnetic charge m 2 Z. The
Ward identity holds in the same way.

We note that in D dimensions the global electric symmetry is still a 1-form symmetry with
current jeD−2, while the magnetic U(1) symmetry is a (D − 3)-form symmetry with the usual
2-form current jm2 .

If we include in our theory also symmetry operators de�ned on open 2-dimensional manifolds,
then we need to consider the boundary of such manifolds. In the case of the magnetic operator
UM supported on a open manifold �2, the boundaries of such manifold are improperly quantized
Wilson loops. We can easily see this by applying the Stoke's theorem without taking into
account topological subtleties:

UM
g=eiη(�2) = e

i η
2π

R
Σ2

F2 = e
i η
2π

R
Σ2

dA1 = e
i η
2π

H
γ=∂Σ2

A1 : (1.25)

The loop is said to be improperly quantized since it does not satisfy the Dirac quantization
condition. Similarly, an open manifold supporting an electric 1-form charge operator UE is
bounded by an improperly quantized 't Hooft loop. Notice that these improperly quantized
operators depend also on �2 and not only on ; therefore, they are not 'genuine' line operators.

1.2.3 Gauging electric and magnetic 1-form symmetries

In order to remove the two 1-form U(1) global symmetries we try to gauge them with some
background gauge �eld. Following the standard procedure exposed above we couple the je2 and
jm2 respectively to the gauge �eld B2 and C2 subjected to the gauge tranformation B2 ! B2+db1

and C2 ! C2 + dc1. The resulting action, neglecting the kinetic term for the 2-form gauge
�elds, reads:

S = − 1

2g2

Z
(dA1 +B2) ^ �(dA1 +B2) +

i

2�

Z
C2 ^ dA1: (1.26)

To see the explicit gauging of the current, we note that from the �rst part of 1.26 we obtain
the kinetic term for A1 and the gauging for the electric global 1-form:

− 1

2g2

Z
(dA1 ^ �dA1 + dA1 ^ �B2 +B2 ^ �dA1 +B2 ^ �B2) =

=− 1

2g2

Z
(dA1 ^ �dA1 + 2B2 ^ �dA1 +B2 ^ �B2)

(1.27)

where we used the property of the Hodge duality into the exterior product.
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In order to make gauge invariant the �rst term of 1.26 we require that under the gauge trans-
formation for B2 also A1 transforms as A1 ! A1 − b1. This is precisely the transformation of
A1 induced by the 1-form global symmetry. In contrast, the second term is not invariant under
this transformation of A1. We can modify the second term in such a way to making invariant
under the gauge transformation of B2 and the related transformation of A1. If we considerR
C2 ^ (dA1 + B2), we reach our goal, but then it is no longer invariant under the gauge sym-

metry of C2. Therefore, one of the transformation of B2 or C2 is always violated. This fact is a
signal of the presence of a mixed 't Hooft anomaly for the two 1-form U(1) global symmetries
(see [13]). A 't Hooft anomaly, as we will see, is an obstruction in the transformation of a global
symmetry into a local one.

To conclude, either one of the two 1-form U(1) symmetries can be separately gauged through
coupling the current to a background gauge �eld, but an anomaly prevent us from gauging
both of them.

1.2.4 Electric and magnetic 1-form symmetries with charged matter

The only way to remove both the two U(1) 1-form symmetries is to break explicitly both the
symmetries adding charged particles. We will study only the breaking of the electric one.

Consider the U(1) action with the addition of electrically charged massive particles represented
by a complex 0-form �.

S =

Z �
− 1

2g2
F2 ^ �F2 − (d�y + iA1) ^ �(d�− iA1)−m2�y ^ ��

�
: (1.28)

The equation of motion for the gauge �eld is

1

g2
d � F2 = �(i�y(d�− iA1)− i�(d�y − iA1)) 6= 0: (1.29)

It is evident that the 2-form current je2 of the electric global symmetry is no longer conserved
and then the correspondent 1-form global symmetry is broken.

Of greater interest may be the case of adding a �eld � of electric charge N . We will study
this case �rst from a topological point of view (see for example [15]) and then from the explicit
Higgsing of the U(1) action.

From a topological point of view, the addition of matter charge N �elds allows the Wilson line
of charge N to be supported on a manifold with boundary. The boundaries of the Wilson line 
are the pointlike support of the matter �elds that create and destroy the charge "transported"
on . Now, we have to familiarize with a general properties of topological operators.

Following [20] [15], we de�ne as endable an operator V (C(q)) supported on a manifold C(q)

with boundary. If a topological operator Ug(SD−q−1) surrounds an endable operator V (C(q)),
it may be either shrunk to a point getting a factor g(V ) according to Ward identity, or unlink
from V (C(q)) and then shrunk to a point, yelding a factor g(1). Therefore, this implies that
g(V ) = g(1), i.e. any endable operator must link trivially with any topological operator.

This is the case of endable Wilson line of charge N . The electric 1-form symmetry operators
Ug=eiα(MD−q−1) that survive are the ones which have � = i�k

N
with k 2 Z, since they remain

topological. The others, instead, are no longer topological. We see that the U(1) electric 1-form
global symmetry is broken to ZN in the presence of charge N matter �elds.
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If we consider the Higgsing of the U(1) action with charge N Higgs �eld the consequence are
more dramatic since we also break the U(1) gauge symmtery to a ZN gauge symmetry. We will
study this case in detail in the next section.

1.2.5 ZN gauge symmetry

The standard description of a ZN gauge theory is in terms of charts and ZN transition functions
between them for the local trivialization. In this formulation there is no continuos degrees of
freedom and the action vanishes. As we will see, one can describe the gauge bundle in term
of the insertion of topological defects that represent the transition functions of the bundle (see
4.1).

However, we can also describe such a theory in terms of a continuos U(1) gauge theory higgsed
by a Higgs �eld � of charge N using the Lagrangian formalism (we essentially follow [14], [1]).
We can consider the complex scalar �eld in its polar form � = �ei' with ' 2 S1. We can
consider only the angular variable taking into account of the vacuum expectation value in the
costant t 2 R in the following lagrangian:

L = t2(d'−NA1) ^ �(d'−NA1)− 1

2g2
F2 ^ �F2 (1.30)

where the phase is subjected to the identi�cation ' � '+ 2�. Since � carries charge N under
the U(1) gauge symmetry the gauge transformation for ' is ' ! ' + N� with � 2 S1, while
for A1 it is the usual A1 ! A1 + d�. From this lagrangian we can easily see the e�ect of the
higgsing in the breaking down of the U(1) gauge symmetry into ZN .

In the low energy limit t2 ! 1 we have A1 = 1
N

d' and then the connection is at and there
are no local degrees of freedom. However, the holonomy around any non contractible loop is
1

2�

H
A1 2 1

N
Z.

In order to understand more deeply, we can dualize '. We introduce a 3-form H3 with quantized
period, i.e. whose integral over a 3-cycle is integer, and we obtain the lagrangian

L =
1

(4�)2t2
H3 ^ �H3 +

i

2�
H3 ^ (d'−NA1)− 1

2g2
F2 ^ �F2 (1.31)

that is equivalent to the starting one integrating out H3 by its equation of motion: �H3 =
4�it2(d' − NA1). In the low energy limit we can see H3 as a Lagrange multiplier imposing
A1 = 1

N
d'.

The equation of motion dH3 = 0 guarantees that we can write locally H3 = dB2. Therefore,
integrating by parts up to boundary terms 1 , we get

L =
1

(4�)2t2
H3 ^ �H3 +

iN

2�
B2 ^ dA1 −

1

2g2
F2 ^ �F2: (1.32)

This lagrangian is known as BF theory (given by the coupling iN
2�
B2^F2), a topological quantum

�eld theory representing a ZN gauge theory. The gauge transformation are the 0-form gauge
A1 ! A1 + d� and the 1-form gauge B2 ! B2 + d�1.

To making explicit the ZN 1-form gauge symmetry of B2 we can dualize A1

L =
1

(4�)2t2
H3 ^ �H3 −

1

2g2
F2 ^ �F2 +

i

2�
F2 ^ (dÂ1 −NB2) (1.33)

1We use the fact that dB2 ^ dϕ = d(B2 ^ dϕ) and dB2 ^A1 = d(B2 ^A1) +B2 ^ dA1.
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with gauge transformation Â1 ! Â1 + d�−N�1 and B2 ! B2 + d�1. Integrating out F2 using
the equation of motion �F2 = − ig2

2�
(dÂ1 −NB2) we get

L =
1

(4�)2t2
H3 ^ �H3 +

g2

8�2
(dÂ1 −NB2) ^ �(dÂ1 −NB2) (1.34)

where the gauge transformation are Â1 ! Â1 + d� − N�1 and B2 ! B2 + d�1. We can now
easily interpret the vector �eld Â1 as a matter �eld charged under the 1-form gauge symmetry
given by B2. This 1 form gauge symmetry is broken from U(1) to ZN by the higgsing with
Â1 and it is a sort of "emergent" symmetry always associated with the ZN ordinary gauge
symmetry.

We have to note that both the �elds of the BF-theory are U(1) gauge �elds, but the distinct
observables are labeled by ZN . The local gauge invariant operator are trivial by the equation
of motion, indeed we can consider d' − NA1 � �H3 and dÂ1 − NB2 � �F2. However, there
are two electric (Wilson) operator: a Wilson line and a "Wilson surface":

WA1(; nA1) = einA1

H
γ A1 WB2(M (2); nB2) = einB2

H
M(2) B2 (1.35)

The Wilson line describe a particle of charge nA1 and worldline , while the "Wilson surface"
the insertion of a vortex string with worldsheet M (2). Considering the equation of motion
B2 = g2 2�i

N
� F2 we have

hWA1(; nA1)WB2(M (2); nB2)i � exp
2�inA1nB2I(;M

(2))

N
(1.36)

with I(;M (2)) is the linking number of  and M (2). Therefore only nA1 mod N and nB2

mod N label distinct operators. A ZN gauge transformation shifts the charges nA1;B2 !
nA1;B2 +N . This is the non trivial content of the ZN gauge theory.

1.2.6 Gauging a ZN subgroup of the U(1) 1-form global symmetries

Finally, we can show how to gauge a ZN subgroup of the two U(1) 1-form global symme-
tries. Putting together what has been studied in the gauging of a global symmetry and in the
topological BF theory, we can gauge the electric ZN 1-form global symmetry by gauging the
global symmetry in the standard way and adding the BF-coupling in order to make the 2-form
background �eld B2 a ZN gauge 2-form. The action becomes:

S = − 1

2g2

Z (
(dA1 +B2) ^ �(dA1 +B2) +

iN

2�
B2 ^ F e

2

�
(1.37)

where F e
2 = dAe1 is an ordinary U(1) gauge �eld. As we have shown in the previous section, the

equation of motion of F e
2 makes B2 a ZN 2-form gauge �eld associated to the emergent 1-form

gauge symmetry in the BF-theory.

For the magnetic 1-form symmetry we have

S = − 1

2g2

Z (
F2 ^ �F2 +

i

2�
C2 ^ F2 +

iN

2�
C2 ^ Fm

2

�
(1.38)

where Fm
2 = dAm1 is an ordinary U(1) gauge �eld whose equation of motion makes C2 a ZN

2-form gauge �eld.
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Chapter 2

2-group global symmetries with
continuous groups

Higher form symmetries have many applications in various �elds of physics, from condensed
matter to high energy physics and they often arise togheter with ordinary 0-form symmetries
and other higher form symmetries of di�erent order, combined in a non-trivial way. When
this happens we are in the presence of a n-group symmetry. The integer n is the order of the
form which constitutes the background of the higher form symmetry with the highest order.
We will mainly focus in the case of 2-groups, where 1-form symmetry and 0-form symmetry
transformations are linked togheter.

As an introduction, we will focus on the most simple case of 2 group global symmetry, the
abelian U(1)(0)�U(1)(1), presenting the main properties and features. Subsequently, we analyze
a more complex case preparatory to our study. In this chapter we will also introduce the concept
of 't Hooft anomaly. In our discussion we essentially follow [7].

2.1 The abelian U(1)(0)�U(1)(1) 2-group global symmetry

Roughly speaking, a 2-group global symmetry consists in the invariance of the theory under a
global transformation that involves both 0-form and 1-form global symmetries. In order to make
the 2-group transformation manifest, we consider the theory with the coupling of the conserved
current with the correspondent background gauge �eld (not dynamical). Conventionally, the
gauge trasformations for the background gauge �elds do not mix the �elds with each other. A
2-group global symmetry is a tranformation that allows such mixing.

The simplest example is the abelian 2-group global symmetry that involves the mixing of a
background 1-form gauge �eld A1 for a U(1)

(0)
A ordinary global symmetry with a background

2-form gauge �eld B2 for a U(1)
(1)
B 1-form global symmetry. We denote this 2-group with the

following notation

U(1)
(0)
A �k̂A U(1)

(1)
B (2.1)

where k̂A 2 Z for reasons that we explain in the following and the superscript (-) on the group
name represents the type of higher form symmetry (0 for ordinary symmetries, 1 for 1-form. . . ).

The gauge transformations for the background �elds are

A1 ! A1 + d�0 with �0 2 U(1) (2.2)
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B2 ! B2 + d�1 +
k̂A
2�
�0F

A
2 with FA

2 = dA1 (2.3)

and �1 the usual 1-form for 1-form gauge transformation. In such a way, the gauge shift for
B2 involves a transformation under U(1)

(0)
A proportional to the �eld strength FA

2 in addition to
the usual 1-form gauge transformation.

The conventional 3-form �eld strength dB2 is not invariant under the 2-group transformation.
However, we can de�ne a di�erent �eld strengthH3 fully gauge invariant that satis�es a modi�ed
Bianchi identity:

H3 = dB2 −
k̂A
2�
A1 ^ FA

2 ; dH3 = − k̂A
2�
FA

2 ^ FA
2 : (2.4)

When k̂A = 0 the 2-group transformation is trivial and decomposes into a conventional product
symmetries U(1)

(0)
A � U(1)

(1)
B . A more general introduction to the 2-group symmetries will be

presented using the language of defects and group cohomology in Section 4.24.3.

The fact that k̂A 2 Z is essentially due to the compactness of U(1). As opposed to its universal
covering group R, U(1)(0) is compact. This implies that all charges are quantized since the
gauge parameter is subject to the identi�cation �0 � �0 + 2�, so that 1

2�

R
Σ1

d�0 2 Z, where �1

is a 1-cycle. Similarly for U(1)(1), 1
2�

R
Σ2

d�1 2 Z, where �2 is a 2-cycle. The gauge parameters
are ambiguous, e. g. �0 � �0 + 2�, but since they parametrize elements of a compact group,
these ambiguities must disapper, even at the level of the gauge shifts. For the transformation
of A1 there is no problem because it depends only on d�0; in contrast, the shift for B2 implies
that the ambiguity for �0 induces an ambiguity in B2 � B2 + k̂AF

A
2 . Fortunately, this is not

a problem since the period of FA
2 is quantized (because the group is U(1)

(0)
A ) with the same

quantization condition as the B2 gauge parameter �1, i.e. 1
2�

R
Σ2
FA

2 2 Z. It is possible to

adsorb the ambiguity B2 � B2 + k̂AF
A
2 if and only if the 2-group structure constant k̂A is an

integer, simply performing an appropriate choice of the gauge parameter �1. For this reason,
the structure constant is forced to be an integer.

2.2 A brief introduction to 't Hooft anomalies in con-

ventional symmetries

In a generic QFT with global symmetries the 't Hooft anomalies are essentially impediments to
gauging this theory. These anomalies can be shown coupling the theory with a background �eld
B for the global symmetry and performing a gauge transformation for this �eld, i.e. B! B+�B:
if the e�ective action W [B] = − logZ[B] is not gauge invariant and the variation cannot be
canceled by adjusting local counterterms, the global symmetry has a 't Hooft anomaly.

W [B + �B] = W [B] + A[B] (2.5)

where the anomaly A[B] is a c-number and vanishes when the background �elds B are turned o�.
This is the opposite of the ABJ anomalies, which does not vanish in the absence of background
�elds.

In D-spacetime dimensions the 't Hooft anomalies for continuous global symmetries are encoded
in the D+2-form anomaly polynomial ID+2[B] constructed out of various characteristic classes.
The anomalous shift is determined from the anomaly polynomial via the descent equation:

A[B] = 2�i

Z
MD

ID[B; �B] ; dID[B; �B] = �ID+1[B] ; dID+1[B] = ID+2[B] (2.6)
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where M (D) is the spacetime manifold and ID[B; �B] and ID+1[B] are local expression in the
background �eld. In many cases, 't Hooft anomalies in local QFT admit a description in terms
of anomaly inow: we can consider the D-dim spacetime manifold of our theory as the boundary
of a (D+1)-dim manifold (bulk) with euclidean action SD+1[B] =

R
M(D+1) ID+1[B]. This action is

gauge invariant modulo 2�iZ when M (D+1) is a compact manifold without boundary; however,
if @M (D+1) = M (D), the action SD+1 induces the anomaly A[B] on the boundary by anomaly
inow.

An anomaly polynomial IredD+2[B] is called reducible if it factorizes into a product of closed gauge
invariant polynomials Jp[B] and KD+2−p[B] of lower degree:

IredD+2[B] = Jp[B] ^KD+2−p[B]: (2.7)

If the anomaly polynomial is reducible there is an ambiguity in the �rst step of the descent
procedure dID+1[B] = ID+2[B] because we can remove the di�erential from either factors. One
can show that IredD+1[B] depends on a free real parameter s:

IredD+1[B] = Jp−1[B] ^KD+2−p[B] + sd(Jp−1[B] ^KD+1−p[B]) (2.8)

where Jp[B] = dJp−1[B] and KD+2−p[B] = dKD+1−p[B]. The s parameter multiplies an exact
term in the (D+1)-dim anomaly inow action SD+1[B] and so it corresponds to a local coun-
terterm in D-dimension. We can modify this counterterm changing the form of the anomaly,
but if the anomaly is genuine, we cannot remove it.

As an example, the anomaly polynomials in 4 dimensions is a 6-form and we can sketch their
basic ingredients. Since they must be gauge invariant, they naturally involved �eld strengths
assembling into characteristic classes. If the gauge group is an ordinary U(1)

(0)
A , it contributes

to I6 via the �rst Chern classes c1(F2)A = 1
2�
FA

2 , where FA
2 = dA1 is the associated �eld

strength. If there are more than one 0-form U(1) gauge group, each of them contributes via
its �rst Chern class and we consider their possible combinations. For instance, if the group is
U(1)

(0)
I � U(1)

(0)
J � U(1)

(0)
K , the contributions to the anomaly polynomial areX

IJK

kIJKc1(F I
2 ) ^ c2(F J

2 ) ^ c1(FK
2 ) (2.9)

where the indices I; J;K may coincide and all the terms are always reducible.

A SU(N)(0) 0-form symmetry contributes to I6 via the Chern classes ck(F
A
2 ) = 1

(2�)k
tr
�

(FA
2 )k
�

with k � 2, that are 2k-forms constructed from the SU(N)(0) �eld strength. Finally, a q-form

symmetry U(1)
(q)
B contributes to the anomaly polynomial through the �eld strength dBq+1

which is invariant under q-form background gauge transformation Bq+1 ! Bq+1 + d�q.

2.3 2-group symmetries from mixed 't Hooft anomalies

In this section we exploit the link between 't Hooft anomalies and 2-group global symmetries.
In particular we present the arising of the abelian 2-group U(1)

(0)
A �k̂A U(1)

(1)
B by gauging the

global U(1)
(0)
C in a theory with ordinary global symmetry under U(1)

(0)
A � U(1)

(0)
C with mixed

't Hooft anomaly.
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Considering the theory in 4-dimensions, the most general 6-form anomaly polynomial I6 can
be constructed using the �eld strength of the background �elds:

I6 =
1

(2�)3

�
kA3

3!
FA

2 ^FA
2 ^FA

2 +
kA2C

2!
FA

2 ^FA
2 ^FC

2 +
kAC2

2!
FA

2 ^FC
2 ^FC

2 +
kC3

3!
FC

2 ^FC
2 ^FC

2

�
(2.10)

where the anomaly coe�cients are real parameters that can be extracted from the three point
functions of the correspondent conserved currents (e.g. hjA3 jA3 jC3 i). These coe�cients are quan-
tized since they correspond to sum of integer charges, but their quantization is also a general
property of 't Hooft anomalies.

All the terms contained in I6 are reducible and the terms containing both FA
2 and FC

2 lead to
the ambiguity 2.8 in the descent procedure. For instance, considering the term proportional to
FA

2 ^ FA
2 ^ FC

2 in I6 and applying the descent procedure, we obtain

I5 �
kA2C

(2�)32!
A1 ^ FA

2 ^ FC
2 + sd(A1 ^ FA

2 ^ C1) (2.11)

with s 2 R. The ambiguity is an exact 5-form and it corresponds to a local counterterms in
four dimensions:

SC:T: = 2�is

Z
M(4)

A1 ^ FA
2 ^ C1 (2.12)

where A1^FA
2 is the Chern-Simons 3-form. Using the formalism of the previous section, we �nd

that Jp−1 = J3 � A1 ^ FA
2 ^ C1 and KD+2−p = K1 � C1. Similarly, for the term proportional

to FA
2 ^ FC

2 ^ FC
2 we have an ambiguity parametrized by t 2 R. Therefore, the descent 5-form

I5 that we obtain from the anomaly polinomial I6 is

I5 =
1

(2�)3

�
kA3

3!
A1^FA

2 ^FA
2 +

kA2C

2!
A1^FA

2 ^FC
2 +

kAC2

2!
A1^FC

2 ^FC
2 +

kC3

3!
C1^FC

2 ^FC
2

�
:

(2.13)
Now, the corresponding anomalies can be easily computed following 2.6. We denote with �A0
and �C0 the gauge parameter for the background �eld A1 and C1 and the anomalies are:

AA =
i

4�2

Z
M(4)

�A0

�
kA3

3!
FA

2 ^ FA
2 +

�kA2C

2!
− s
�
FA

2 ^ FC
2 +

�kAC2

2!
− t
�
FC

2 ^ FC
2

�
(2.14)

AC =
i

4�2

Z
M(4)

�C0

�
kC3

3!
FC

2 ^ FC
2 + sFA

2 ^ FA
2 + tFA

2 ^ FC
2

�
: (2.15)

From the computation of the anomalies we can obtain the non conservation equation for the
currents:

djA3 = − i

4�2

�
kA3

3!
FA

2 ^ FA
2 +

�kA2C

2!
− s
�
FA

2 ^ FC
2 +

�kAC2

2!
− t
�
FC

2 ^ FC
2

�
(2.16)

djC3 = − i

4�2

�
kC3

3!
FC

2 ^ FC
2 + sFA

2 ^ FA
2 + tFA

2 ^ FC
2

�
: (2.17)

Since we want to gauge U(1)
(0)
C we have to require that AC is trivial. In order to obtain this

result we impose kC3 = 0 and we adjust the counterterms such that s = t = 0. Therefore, the
remaining anomaly for A is:

AA =
i

4�2

Z
M(4)

�A0

�
kA3

3!
FA

2 ^ FA
2 +

kA2C

2!
FA

2 ^ FC
2 +

kAC2

2!
FC

2 ^ FC
2

�
: (2.18)
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Gauging U(1)
(0)
C means to promote the background �eld to a dynamical �eld: C1 ! c1 and

FC
2 ! f c2 . In this way the anomalous shifts proportional to kA2C and kAC2 become 'operator

valued' shifts and no longer c-numbers. We have to reintrepret this terms, since they are no
longer conventional 't Hooft anomalies. The term proportional to kA3 remains a c-number, but
its meaning is related to 't Hooft anomaly for 2-group symmetry (see below).

After gauging, the mixed term proportional to kAC2 gives rise to an ABJ anomlay for the U(1)
(0)
A

current:

djA3 � −
ikAC2

8�2
fC2 ^ fC2 : (2.19)

The violation of current conservation remains even if the background �eld vanishes and also at
separated points inside correlators, since fC2 ^ fC2 is a non trivial operator. We will focus in
theory without symmetries explicitly broken by an ABJ anomaly, so we require kAC2 = 0.

The anomaly due to kA2C leads to a di�erent violation of current conservation:

djA3 � −
ikA2C

8�2
FA

2 ^ fC2 : (2.20)

If the background �eld A1 is turned o�, the violation disappears. Therefore, this anomaly is
deeply di�erent from an ABJ anomaly. However, it is also distinct from 't Hooft anomalies, since
it is an 'operator valued' shift and we can use an appropriate background �eld to remove this
shift from the e�ective action. As we have presented in the previous section (main reference [2]),

gauging U(1)
(0)
C leads to a 1-form global symmetry called the magnetic U(1)

(1)
B symmetry with

2-form current jB2 = i
2�
fC2 . It is conserved because the Bianchi identity dfC2 = 0 and the

magnetic 1-form charges are integer since the symmetry group is U(1).

The appropriate background gauge �eld that can be coupled to the magnetic 2-form current
is the 2-form B2 subject to the usual 1-form gauge transformation. The standard coupling isR
B2 ^ jB2 =

R
B2 ^ fC2 and the gauge transformation is B2 ! B2 + d�1 with 1

2�

R
Σ2

d�1 2 Z.
The invariance under large gauge transformations (with non trivial ux for �1) is ensured by
the fact that the magnetic 1-form charges are quantized.

Eventually, it is possible to cancel the 'operator valued' shift
ikA2C

8�2

R
�0F

A
2 ^ fC2 exploiting the

gauge trasformation for the source of the magnetic 1-form symmetry, by imposing:

B2 ! B2 +
k̂A
2�
�0F

A
2 ; k̂A = −1

2
kA2C (2.21)

This is precisely the 2-group transformation for U(1)
(0)
A �k̂A U(1)

(1)
B and the 2 group structure

constant is proportional to the mixed anomaly coe�cient kA2C .

2.4 2-group 't Hooft anomalies

Like ordinary global symmetries, 2-group symmetries can have 't Hooft anomalies. Following [7]

we note that there is no candidate terms in the anomaly polynomials I6 that mixes a U(1)
(1)
B

global symmetry with ordinary 0-form symmetries. Therefore, the 6-form anomaly polynomial
does not involve B2 and takes the form:

I6 =
1

(2�)3

kA3

3!
FA

2 ^ FA
2 ^ FA

2 : (2.22)
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It gives rise to an anomaly shift

AA =
ikA3

24�2

Z
�0F

A
2 ^ FA

2 : (2.23)

So far there is no di�erence with the case of U(1)(0) symmetry, but now we have to consider the
counterterms that can adsorbe the anomaly in the new framework of 2-group transformation.
We will analyze the behavior of the so called Green-Schwarz (GS) counterterm under the abelian
2-group shift.

SGS =
in

2�

Z
B2 ^ FA

2 ; SGS ! SGS +
ink̂A
4�2

Z
�0F

A
2 ^ FA

2 (2.24)

where n is a parameter that we will discuss below. Since the gauge transformation of the GS
counterterm takes the same form of the anomaly term proportional to kA3 , we observe that
adding this term produces a shift in the anomaly coe�cient that becomes no longer scheme
independent: kA3 ! kA3 +6nk̂A. In order to understand if this counterterm is enough to cancel
the anomaly we have to specify the value of n.

If we require the invariance under large U(1)
(1)
B gauge transformation, i. e. with non trivialR

d�1, we have to impose n 2 Z. If n is quantized, the 't Hooft anomaly coe�cient kA3 is

scheme independent only mod 6k̂A. In other words, only the fractional part
kA3

6k̂A
(mod 1) is

the genuine anomaly that cannot be cancelled, while the integer part can be set to any value
(either zero) by an appropriate GS counterterm.

If we give up on invariance under large U(1)
(1)
B gauge transformation, we no longer have any

constraints on n. Since n 2 R, we can �x n = −kA3

6k̂A
to set kA3 = 0 and to cancel apparently

the anomaly. However, under a large gauge U(1)
(0)
B gauge transformation the partition function

picks up an anomalous phase
kA3

6k̂A
(mod 1) in the same way.

To summarize, the abelian 2-group 't Hooft anomaly is characterized by the fractional part
kA3

6k̂A
and not by an integer as the usual 't Hooft anomalies. Furthermore, the 2-group 't Hooft

anomaly arises from the matching between U(1)
(0)
A and large U(1)

(0)
B because we can preserve

one of them, but not both.

2.5 On gauging 2-group global symmetries

Gauging a global symmetry consists in promoting the background gauge �eld to dynamical �eld
and doing the path intergration over their orbits. If we consider a 2-group global symmetry,
one may wonder if we can gauge the entire 2-group and either the groups that compose it.
Considering the abelian 2-group as usual, we can easily observe that we cannot gauge U(1)

(0)
A

without gauging U(1)
(1)
B . This arises from the simple fact that the 2-group shift mixes B2

with A1 and because U(1)
(0)
A is not a good subgroup of the entire 2-group, while U(1)

(1)
B is.

Another proof comes from considering the 2-group theory arising by the gauging of the U(1)
(0)
C

symmetry in a U(1)
(0)
A � U(1)

(0)
C theory with mixed 't Hooft anomaly. Gauging U(1)

(0)
A in the

2-group symmetry means to gauge both U(1)
(0)
A and U(1)

(0)
C in the parent theory; however, this

is impossible because a non-trivial 2-group is related to a mixed 't Hooft anomaly kA2C 6= 0.
Therefore, the allowed possibilities are:

U(1)
(0)
A �k̂A U(1)

(1)
B ! U(1)(0)

a �k̂A U(1)
(1)
b ; A1 ! a1 ; B2 ! b2 (2.25)
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or
U(1)

(0)
A �k̂A U(1)

(1)
B ! U(1)

(0)
A �k̂A U(1)

(1)
b ; B2 ! b2 (2.26)

where we indicate with the upper case the background gauge �elds and with the lower case the
dynamical gauge �elds.

Before focusing into gauging of global 2-group, we study the simple case of gauging a single
U(1)

(0)
A . Gauging U(1)

(0)
A leads to a new theory with a 1-form symmetry U(1)

(1)
B with current

jB2 = i
2�
fA2 where fA2 is the Maxwell �eld strength. Subsequently, we can also gauge the

U(1)
(1)
B 1-form symmetry of the U(1)

(0)
a gauge theory and we go back to the original theory

with U(1)
(0)
A global symmetry with current jA3 = i

2�
db2. In order to appreciate that gauging

U(1)
(0)
A and U(1)

(1)
B are inverse operations, we consider the partition functions in the presence

of the background �elds. Starting from the partition function Z[A1] for the U(1)
(0)
A theory, we

can construct ~Z[B2] by coupling B2 with the current and performing the path integration over
a1:

~Z[B2] =

Z
Da1Z[a1] exp

�
i

2�

Z
B2 ^ da1

�
: (2.27)

This expression can be thought as functional Fourier transform and can be easily inverted:

Z[A1] =

Z
Db2

~Z[b2] exp

�
− i

2�

Z
b2 ^ dA1

�
: (2.28)

where in principle we do not include any extra term for b2 (e.g. kinetic term) to ensure the
invertibility. We can check that by inserting one expression into the other; exploiting the
properties of the delta-function, we obtain the identity as we expect for inverse operation.

As a �rst case we consider the gauging of the subgroup U(1)
(1)
B , but we begin by remembering its

inverse operation: the gauging of U(1)
(0)
C in a theory with U(1)

(0)
A �U(1)

(0)
C symmetry and mixed

't Hooft anomaly kA2C . As we have already seen in the previous section, gauging U(1)
(0)
C in

this theory leads to a theory with 2-group symmetry U(1)
(0)
A �k̂A U(1)

(1)
B with the identi�cation

k̂A = −1
2
kA2C . The partition function for the theory with 2-group symmetry can be obtained

from the partition function Z[A1; C1] of the U(1)
(0)
A � U(1)

(0)
C theory:

Z[A1; B2] =

Z
Dc1Z[A1; c1] exp

�
i

2�

Z
B2 ^ dc1

�
: (2.29)

Therefore, if we gauge U(1)
(1)
B in the abelian 2-group theory, we return to the previous theory

U(1)
(0)
A � U(1)

(0)
C . Since we have supposed that we have only mixed 't Hooft anomaly kA2C in

the U(1)
(0)
A �U(1)

(0)
C theory, the 2-group is 't Hooft anomaly free and we can write the partition

function for the gauging of U(1)
(1)
B as in the simple case considered before.

Z[A1; C1] =

Z
Db2Z[A1; b2] exp

�
− i

2�

Z
b2 ^ dC1

�
: (2.30)

The invariance under U(1)
(0)
C background gauge transformation is trivial. However, if we con-

sider the transformation under U(1)
(0)
A accompanied by a change of variable in the path integral

b2 ! b2 + k̂A
2�
�0F

A
2 and we use the invariance of Z[A1; b2] under this shift, we �nd the mixed

kA2C 't Hooft anomaly arising from the non invariance of the exponential factor:

Z[A1; C1]! Z[A1; C1]− ik̂A
4�2

Z
�0F

A
2 ^ FC

2 = Z[A1; C1] +
ikA2C

8�2

Z
�0F

A
2 ^ FC

2 : (2.31)
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In this way we correctly reproduce the mixed 't Hooft anomaly of the U(1)
(0)
A �U(1)

(0)
C theory and

we show that any 2-group U(1)
(0)
A �k̂A U(1)

(1)
B theory arises from a theory with U(1)

(0)
A �U(1)

(0)
C

symmetry and mixed 't Hooft anomaly. This theory can be simply found by gauging U(1)
(1)
B .

As a second choice, we can try to gauge the entire 2-group if it is anomaly free. In order
to avoid the obstruction of gauging we have to impose that the 2-group theory comes from a
U(1)

(0)
A � U(1)

(0)
C with 't Hooft anomaly coe�cient kA3 = 0 ( mod 6k̂A). Gauging U(1)

(0)
A we

obtain a theory with U(1)
(0)
a gauge symmetry and a new global U(1)

(1)
X 1-form symmetry with

conserved current jX2 = i
2�

da1 and background 2-form �eld X2. Gauging U(1)
(1)
B ! U(1)

(1)
b we

obtain a 0-form symmetry U(1)
(0)
C with background �eld C1 as in the previous case. However,

the global U(1)
(0)
C symmetry su�ers from an ABJ anomaly because we cannot couple the U(1)

(0)
C

background �eld with the current jC3 � db2, since it is not gauge invariant under U(1)
(0)
a which

now is a dynamical symmetry.

We must use the gauge invariant current

~jC3 =
i

2�
h3 where h3 = db2 −

k̂A
2�
a1 ^ fa2 ; (2.32)

but the modi�ed Bianchi identity leads to a violation of the current conservation:

d~jC3 = − ik̂A
4�2

fa2 ^ fa2 : (2.33)

This non conservation equation constitutes an ABJ anomaly for the U(1)
(0)
C symmetry and can

be possibly treated by introducing the � term in the Yang-Mills theory for a1 and by promoting
it into a background �eld with an appropriate shift. Omitting these details, the partition
function for the 2-group gauged theory is:

Z[X2; C1] =

Z
Da1Db2Z[a1; b2] exp

�
i

2�

Z
X2 ^ da1

�
exp

�
i

2�

Z �
db2 −

k̂A
2�
a1 ^ fa2

�
^ C1

�
:

(2.34)

Performing the integration over b2 we obtain the U(1)
(0)
A �U(1)

(0)
C theory with the mixed 't Hooft

anomaly encoded in the gauge invariant current ~jC3 . In fact, before gauging U(1)
(0)
A , we can

observe that ~jC3 is invariant under U(1)
(0)
A background gauge transformations, but not conserved

in a U(1)
(0)
A background gauge �eld. This is an alternative presentation of the kA2C 't Hooft

anomaly. Finally, gauging also U(1)
(0)
A we obtain a theory with U(1)

(1)
X �U(1)

(0)
C symmetry and

with an ABJ anomaly for U(1)
(0)
C . Obviously, we can consider the inverse: if we gauge U(1)

(1)
X

we return to the parent theory U(1)
(0)
A �U(1)

(0)
C with mixed 't Hooft anomaly and gauging also

U(1)
(0)
C we return to the original 2-group theory.

2.6 A useful example: U(1)
(0)

A(1) � U(1)
(0)

A(2) �k̂12
U(1)

(1)
B

The abelian U(1)
(0)
A �k̂A U(1)

(1)
B 2-group symmetry studied so far is the most simple example of

2-group. Now we consider a theory with a slightly more complicated symmetry group and we
analyze it generalyzing the above results.

The 2-group symmetry is
U(1)

(0)

A(1) � U(1)
(0)

A(2) �k̂12
U(1)

(1)
B (2.35)
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and the background gauge tranformations are

A
(i)
(1) ! A

(i)
1 + d�

(i)
0 with �

(i)
0 2 U(1) ; i = 1; 2 (2.36)

B2 ! B2 + d�1 +
k̂12

2�

(
�

(1)
0 FA(2)

2 + �
(2)
0 FA(1)

2

�
with FA(i)

2 = dA
(i)
1 (2.37)

where �1 is the usual 1-form for 1-form gauge transformation.

This is a particular case of an obvious generalization of the abelian 2-group studied before. If
we consider the 2-group

�IU(1)
(0)
I �k̂IJ U(1)

(1)
B (2.38)

where I = 1; 2; : : : n, with background tranformations

A
(I)
1 ! A

(I)
1 + d�

(I)
0 and B2 ! B2 + d�1 +

1

2�

X
IJ

k̂IJ�
(I)
0 F

(J)
2 (2.39)

where k̂IJ 2 Z is an element of a symmetric n� n matrix, our theory is a particular case with
n = 2 and symmetric matrix: �

0 k̂12

k̂12 0

�
: (2.40)

The gauge invariant �eld strength for the 2-form background �eld B2 is

H3 = dB2 −
k̂12

2�

(
A

(1)
1 ^ FA(2)

2 + A
(2)
1 ^ FA(1)

2

�
(2.41)

and it implies the 'modi�ed' Bianchi identity:

dH3 = − k̂12

2�

(
FA(1)

2 ^ FA(2)

2 + FA(2)

2 ^ FA(1)

2

�
= − k̂12

�
FA(1)

2 ^ FA(2)

2 : (2.42)

Each continuos 2-group symmetry arises from gauging a theory with ordinary symmetries and
mixed 't Hooft anomalies. In our case, the parent theory has a U(1)

(0)

A(1) � U(1)
(0)

A(2) � U(1)
(0)
C

symmetry group and mixed 't Hooft anomaly with non trivial anomaly coe�cient kA(1)A(2)C .
Without writing all the long anomaly polynomials and following the previous discussion, we
can argue that, in order to gauge the U(1)

(0)
C symmetry, we need kC3 = 0 and in order to avoid

ABJ anomalies for A
(i)
1 we need kA(i)C2 = 0. Therefore, gauging C1 we obtain the anomaly

contribution

AA(i)(FC
2 ! f c2) =

i

4�

2X
j=1

kA(i)A(j)C

2!

Z
�

(i)
0 F

A(j)

2 ^ f c2 (2.43)

and, to cancel the 'operator valued' shift, we impose the gauge trasformation of the back-
ground gauge �eld for the magnetic 1-form symmetry arising from gauging U(1)

(0)
C : B2 !

B2 + 1
2�

P
i;j k̂ij�

(i)
0 F

A(j)

2 . The 2-group structure constant can be identi�ed k̂ij = −1
2
kA(i)A(j)C .

In order to correctly reproduce our 2-group theory we require that the anomaly coe�cient
kA(1)2C = kA(2)2C = 0. Therefore, we have k̂12 = −1

2
kA(1)A(2)C = k̂21.

To study the 't Hooft anomalies for the 2-group symmetry we start from the parent theory and
we write the terms of the anomaly 6-form polynomial that can contribute to the anomalies.

I6 �
1

(2�)3

�
kA(1)3

3!
FA(1)

2 ^ FA(1)

2 ^ FA(1)

2 +
kA(1)2A(2)

2!
FA(1)

2 ^ FA(1)

2 ^ FA(2)

2 +

+
kA(1)A(2)2

2!
FA(1)

2 ^ FA(2)

2 ^ FA(2)

2 +
kA(2)3

3!
FA(2)

2 ^ FA(2)

2 ^ FA(2)

2

�
:

(2.44)
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Calculating via descent equation the anomaly shifts and �xing the free parameter in order to
equally divide the contributions, we obtain

AA(1) =
i

4�2

Z
�A

(1)

0

�
kA(1)3

3!
FA(1)

2 ^FA(1)

2 +
kA(1)2A(2)

4
FA(1)

2 ^FA(2)

2 +
kA(1)A(2)2

4
FA(2)

2 ^FA(2)

2

�
(2.45)

AA(2) =
i

4�2

Z
�A

(2)

0

�
kA(2)3

3!
FA(2)

2 ^ FA(2)

2 +
kA(1)2A(2)

4
FA(1)

2 ^ FA(1)

2 +
kA(1)A(2)2

4
FA(1)

2 ^ FA(2)

2

�
:

(2.46)

Adding the GS counterterms S
(i)
GS = in

2�

R
B2 ^ FA(i)

2 , i = 1; 2, and performing a 2-group sym-
metry transformation we obtain

S
(1)
GS + S

(2)
GS ! S

(1)
GS + S

(2)
GS +

ink̂12

4�2

Z �
�A

(1)

0

(
FA(1)

2 ^ FA(2)

2 + FA(2)

2 ^ FA(2)

2

�
+ �A

(2)

0

(
FA(1)

2 ^ FA(1)

2 + FA(1)

2 ^ FA(2)

2

��
:

(2.47)

Therefore, we cannot adjust the value of the kA(1)3 and kA(2)3 anomaly coe�cients adding the
counterterms since there is no terms of the same form as a result of the gauge transformation
of S

(i)
GS. However, we can modify the others: if we add both the GS counterterms, we induce a

shift in the anomaly coe�cients:

kA(1)2A(2) ! kA(1)2A(2) + 4nk̂12 and kA(1)A(2)2 ! kA(1)A(2)2 + 4nk̂12: (2.48)

Consequently, we can conclude that only the fractional parts of
k
A(1)2A(2)

4k̂12
(mod 1) and

k
A(1)A(2)2

4k̂12

(mod 1) constitute genuine 't Hooft anomaly for the 2-group symmetry, toghether with the
kA(1)3 and kA(2)3 terms. If we set all this terms to 0, we can gauge the 2-group symmetry.

The gauging of the U(1)
(1)
B leads to the parent theory U(1)

(0)

A(1) �U(1)
(0)

A(2) �U(1)
(0)
C with mixed

't Hooft anomaly and in the path integral formalism the partition function is

Z[A
(1)
1 ; A

(2)
1 ; C1] =

Z
Db2Z[A

(1)
1 ; A

(2)
1 ; b2] exp

�
− i

2�

Z
b2 ^ dC1

�
: (2.49)

If the 2-group is 't Hooft anomaly free, we can gauge the entire symmetry group:

Z[X
(1)
2 ; X

(2)
2 ; C1] =

Z
Da

(1)
1 Da

(2)
1 Db2Z[a

(1)
1 ; a

(2)
1 ; b2] exp

�
i

2�

Z
X

(1)
2 ^ da

(1)
1

�
exp

�
i

2�

Z
X

(2)
2 ^ da

(2)
1

�
exp

�
i

2�

Z �
db2 −

k̂12

2�

(
a

(1)
1 ^ F a(2)

2 + a
(2)
1 ^ F a(1)

2

�
^ C1

�
:

(2.50)

The use of the gauge invariant �eld strength h3 gives rise to an ABJ anomaly for the global
U(1)

(0)
C symmetry.
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Chapter 3

Brief introduction to singular
(co)homology and group cohomology

The study of 't Hooft anomalies in quantum �eld theory and 2-group symmetry requires famil-
iarity with the concept of cohomology and group cohomology; however, the study of discrete
symmetries makes these concepts indispensable. Thus, we want to briey but rigorously intro-
duce these topics in order to provide a self-consistent introduction and present some important
results that will be useful later. Before introducing the algebraic de�nitions of homology and
cohomology, we start by presenting manifold triangulation which is another way to describe
a topological space. Using the simplicial complexes introduced for the triangulation, we can
de�ne the simplest homology groups that constitute simplicial homology. Then we discuss sin-
gular homology that is the basis of the �rst important tool: singular cohomology. Finally, we
will focus on group cohomology and in particular on group cohomology for �nite group. The
main reference are [21], [22], [23] and [24].

3.1 Manifold triangulation and simplicial complexes

We start by de�ning what is the meaning of manifold triangulation, which is an alternative
description of the open charts that we use to cover the manifold. We initially de�ne what are
simplices and simplicial complexes. A n-simplex �n is the smallest convex set in Rm containing
n + 1 points p0; p1; : : : ; pn that do not lie in any (n − 1)-dimensional hyperplane, or, in other
words, such that the vectors p1 − p0; : : : ; pn − p0 are linearly independent. Such a set of points
is said to be geometric independent. We denote it with angular brackets:

�n = hp0p1 : : : pni: (3.1)

For instance, the 0-simplex hp0i is a point, the 1-simplex hp0p1i is a line, the 2-simplex hp0p1p2i
is a triangle with its interior included, a 3-simplex hp0p1p2p3i is a solid tetrahedron, and so on.

If we take q+ 1 points pi0 ; : : : ; piq of a n-simplex �n = hp0 : : : pni, with 0 � q � n, we can de�ne
the q-simplex �q = hpi0 : : : piqi, which is called a q-face of �n. One can verify that the number

of q−faces in a n-simplex are

�
n+ 1
q + 1

�
.

A simplicial complex K is a set of �nite number of simplices in Rm with the two following
properties: �rst, an arbitary face �0 of a simplex � 2 K must belong to K (�0 2 K); second,
if � and �0 are two simplices in K, the intersection � \ �0 is either empty or a common face
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of � and �0. For instance, taking the triangle hp0; p1; p2i, then the simplicial complex K is
K = fhp0i; hp1i; hp2i; hp0p1i; hp1p2i; hp0p2i; hp0p1p2ig. If each simplex of a simplicial complex K
is regarded as a subset of Rm, the union of all the simplices are a subset of Rm called polyhedron
and denoted as jKj. The dimension of the polyhedron is the same of the simplicial complex
which is de�ned to be the largest dimension of simplices in K.

A triangulation of a topological space M (D) (for instance a manifold) is the pair (K; t), where
K is a simplicial complex and t : jKj ! M (D) is a homeomorphism. If such a pair exists, the
space M (D) is called triangulable. Notice that, given a topological space, its triangulation is
far from unique. For instance, in Figure 3.1 we report the simplest triangulation of a cylinder
S1 � [0; 1].

Figure 3.1: Triangulation of a cylinder S1 � [0, 1]. Notice that a simpler choice does not exist since
other possibilities do not respect the condition that intersection of simplices in the simplicial complex
must be empty or a simplex.

Finally, we de�ne the orientation of a n-simplex. Taking the sequence of n + 1 geometrically
independent points fp0; p1; : : : ; png we say that the sequence

fpi0 ; pi1 ; : : : ; ping = fpP (1); pP (2); : : : ; pP (n)g (3.2)

is equivalent to the original one, if the permutation P is an even permutation, i.e. it is a permu-
tation originated from an even number of neighbors exchanges. This is an equivalence relation
and we can de�ne an oriented n-simplex as the equivalence class of this relation. Obviously,
there are two equivalence classes and we denote with �n = hp0p1 : : : pni the equivalence class
that contains fp0; p1; : : : ; png and with −�n the other which contains the simplices obtained by
an odd permutation of the prevoius sequence. For instance, we have hp0p1i = −hp1p0i.

3.2 Simplicial homology and singular homology

The simplest and more intuitive homology groups are the ones of the simplicial homology de�ned
via the simplicial complexes. We present the de�nition of these groups since the structure of
other types of homology and cohomology that we will use are similar.

Let K a k-dimensional simplicial complex composed by oriented simplices �i. The n-chain
group Cn(K) of a simplicial complex K is a free abelian group generated by the oriented n-
simplices of K. If n > dimK we set Cn(K) = 0. An element c 2 Cn(K) is called an n-chain
and it can be written as

c =
NX
i=1

ci�n;i (3.3)
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where ci 2 Z are the coe�cients of c, �n;i are di�erent n-simplices in K and N is their number.
The addition of two chains, the neutral element and the inverse one are de�ned in the obvious
way by acting on the coe�cients ci 2 Z.
Cn(K) is a free abelian group of rank N : Cn(K) '

LN
i=1 Z.

We de�ne the boundary of a n-simplex as (n−1)-chain obtained by the action of the boundary
operator @n:

@n�n :=
nX
i=0

(−1)ihp0p1 : : : p̂i : : : pni (3.4)

where p̂i is omitted. A 0-simplex has no boundary, thus we set @0hp0i = 0. For instance,
@2hp0p1p2i = hp1p2i − hp0p2i + hp0p1i. We can notice that with this de�nition we preserve the
orientation of the boundary, since we walk around the triangle via p0; p1; p2 and return to p0.
The boundary operator acts linearly on the chains and it de�nes an homomorphism

@n : Cn(K)! Cn−1(K) with @nc =
X
i

ci@n�n;i: (3.5)

Therefore, we are in presence of a sequence of homomorphisms of abelian groups called chain
complex:

� � � ! Cn+1(K)
@n+1−−−! Cn(K)

@n−! Cn−1(K)
@n−1−−−! � � � @2−! C1(K)

@1−! C0(K)
@0−! 0 (3.6)

If c 2 Cn(K) satis�es @nc = 0, it is called a n-cycle and belongs to the n-cycle group Zn(K) �
Cn(K) with the property that Zn(K) = ker @n. Let c 2 Cn(K), if there exists an element
~c 2 Cn+1(K) such that c = @n+1~c, then c is called a n-boundary. The set of n-boundaries
Bn(K) � Cn(K) is called the n-boundary group and Bn(K) = im @n+1. The crucial property
of the boundary operator is that

@n � @n+1 : Cn+1(K)! Cn−1(K) is a zero map, i.e. @n(@n+1c) = 0: (3.7)

Therefore, we have the inclusion Bn(K) � Zn(K), since an element of Bn(K) is the boundary
of a (n+ 1)-chain. This fact is according to the geometrical interpretation that a boundary has
in turn no boundaries.

Finally, we can de�ne the n-homology group Hn(K) as the quotient group

Hn(C) =
Zn(K)

Bn(K)
=

ker @n
im @n+1

: (3.8)

This is the set of the equivalence classes of n-cycles; two n-cycles are said to be homologous if
they are in the same equivalence class, i.e. if they di�er only by a n-coboundary. We denote
the equivalence class of a n-cycle z as [z]. One can prove that homology groups are topological
invariant since they do not depend on the triangulation of the topological space.

The simplicial homology of simplicial complex is the most intuitive homology that one can
de�ne on a topological space. However, there exists another formulation based on the �-
complexes, which has the advantage of simpler computations since fewer simplices are required.
For example, to consider a triangulation of the torus T2 one need at least 14 triangles, 21
edges and 7 vertices, while a �-complex describing the torus is composed by 2 triangles, 3
edges and 1 vertices. Without entering into details, a �-complex is a quotient space of a
collection of disjoint simplices obtained by identifying certain of their faces via the canonical
linear homeomorphisms that preserve the ordering of vertices.
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As we have anticipated, the most important homology theory in algebraic topology is the
singular homology. We sketch its main features since it is the base of the singular cohomology
that we use to describe discrete gauge symmetries. A singular n-simplex in a topological space
X is a continuous map � : �n ! X, where �n is the standard n-simplex

�n =
n

(t0; : : : ; tn) 2 Rn+1

����X
i

ti = 1 and ti � 0 8i
o

(3.9)

whose vertices are the unit vectors along the coordinate axes. The word 'singular' means that
� is not necessarily a nice embedding but can have 'singularities' where its image does not look
at all like a simplex. The only requirement for � is continuity. As for simplicial homology, we
de�ne the singular n-chain group Cn(X) as the free abelian group with basis the set of singular
n-simplices in X. A singular n-chain is a �nite formal sum

P
i ci�i with coe�cients ci 2 Z.

The boundary map @n : Cn(X)! Cn−1(X) is de�ned by the action on the the basis elements

@n(�) =
X
i

(−1)i�jht0:::t̂i:::tni (3.10)

where j means the restriction of � on the standard (n − 1)-simplex where t̂i is omitted. This
boundary map has the usual properties that we expect in homology: @n@n+1 = 0, the singular
n-cycles are the n-chains belonging to the kernel of @n, i.e. c 2 Cn(X) such that @nc = 0, and
the singular n-boundaries are the n-chains in the im @n+1, i.e the n-chains in Cn(X) that can
be expressed as c = @n+1c

0 for some c0 2 Cn+1(X). These subgroups are denoted respectively
Zn(X) and Bn(X) and the singular n-homology group is

Hn(X) =
Zn(X)

Bn(X)
=

ker @n
im @n+1

: (3.11)

From the de�nitions, it is evident that homeomorphic spaces have isomorphic singular homology
groups and that singular homology are de�ned also for non triangulable spaces. However, one
can prove the equivalence of the singular and the simplicial homology with standard techniques
in algebraic topology.

Finally, there is an easy generalization of the homologies considered so far. Instead of using
chains of the form

P
i ci�i with ci 2 Z, we can take the coe�cients ci in a �xed abelian group G.

Such n-chains form an abelian group Cn(X;G). All the properties and de�nitions based on the
boundary operator remain the same; thus, we can de�ne the n-homology group with coe�cient
in G, Hn(X;G), by quotienting the n-cycle group Zn(X;G) by the n-boundary group Bn(X;G)
as usual. We denote simply with Hn(X) the n-homology group with Z coe�cients, otherwise
we indicate explicitly the group; for instance we can have Hn(X;R) or Hn(X;Z2) and so on.

3.3 Singular cohomology

Cohomology is an alternative algebraic variant of homology and corresponds to the dualization
of homology. The structure and the de�nitions are very similar, except that the induced homo-
morphisms go in the opposite direction after dualization. A particular type of cohomology, the
De Rham cohomology, constitutes also a link between this algebraic structure and di�erential
geometry.

Let us start by de�ning the singular cohomology. Let X a topological space and A an abelian
group, we de�ne the group Cn(X;A) of singular n-cochains with coe�cients in A to be the dual
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group Hom(Cn(X);A) of the singular chain group Cn(X). A n-cochain f 2 Cn(X;A) assigns
to each singular n-simplex � : �n ! X a value f(�) 2 A. Since the singular n-simplices form a
basis for Cn(X), these values can be chosen arbitrarily and a n-cochain is exactly equivalent to
a function from singular n-simplices to A. We denote these cochains with the subscripts that
correspond to the simplices whose they are functions; i.e. fi0i1:::in is a function of the singular
simplex �i with standard simplex hi0i1 : : : ini.

The coboundary map dn : Cn(X;A)! Cn+1(X;A) is the dual @�:

hdnf; ci = (−1)nhf; @n+1ci (3.12)

where f 2 Cn(X;A), c 2 Cn+1(X) and the pairing hf; ci represents the linear A-valued action
of f 2 Cn(X;A) on c 2 Cn(X). In other words, the coboundary dnf for f 2 Cn(X;A) is the

composition Cn+1(X)
@−! Cn(X)

f−! A. This leads to the following formula for the coboundary
dnf on a n-cochain f 2 Cn(X;A):

(dnf)i0i1:::in+1 =
n+1X
j=0

(−1)jfi0:::̂ij :::in+1
(3.13)

where îj is omitted. As for homology, we obtain the sequence of homomorphisms between the
cochain groups called cochain complex:

� � �  Cn+1(X;A)
dn − Cn(X;A)

dn−1 −−− Cn−1(X;A) � � �  C0(X;A) 0 (3.14)

Since @n@n+1 = 0, it is automatic that dn+1dn = 0. Therefore, we can de�ne the n-cohomology
group Hn(X;A) with coe�cients in A to be the quotient

Hn(X;A) =
Zn(X;A)

Bn(X;A)
=

ker dn
im dn−1

(3.15)

where elements of Zn(X;A) = ker dn are n-cocycles or closed n-cochains, that is n-cochains f
that vanish on boundary or in other words that dnf = 0, and elements in Bn(X;A) = im dn−1

are n-coboundaries or exact n-cochains. f 2 Bn(X;A) is an exact n-cochain if there exists
h 2 Cn−1(X;A) such that f = dn−1h. In the following we will omit the subscripts of d.

If the topological space X is a smooth manifold, De Rham's theorem says that the singular
cohomology with real coe�cients is isomorphic to the De Rham cohomology of X constructed
with the di�erential forms. A n-cochain is a n-form, the boundary operator is the exterior
di�erential d that induces the De Rham complex. An element of ker dn is a closed n-form and
belongs to the cocycle group Zn(X;R), while an element of im dn−1 is an exact n-form and
belongs to Bn(X;R). The n-De Rham cohomology group is the quotient

Hn(X;R) =
Zn(X;R)

Bn(X;R)
=

ker dn
im dn−1

: (3.16)

3.4 Group cohomology

We want to introduce a particular type of cohomology groups which are useful in the study of
gauge groups and their backgrounds. Brief introductions are present in [12], [11], [25] and [8].
In order to de�ne the group cohomology, we have to introduce the Eilenberg-Mac Lane space
which serves as a universal classifying space. Let G be a group and q a non negative integer.
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The Eilenberg-Mac Lane space K(G; q+ 1) is a connected topological space with the (q+ 1)-th
homotopy group isomorphic to G, i.e. �q+1 ' G, and all other homotopy groups trivial. It is
de�ned up to homotopy equivalence and when q > 0 G must be abelian.

Let us initially focus on the case q = 0 to present the concept of classifying space. A classifying
space BG is the base space of a particular principal G-bundle EG called universal bundle. A
universal bundle is a principal G-bundle with the property that every principal G-bundle E
over a base space M is a pull-back bundle by a continuos map  : M ! BG. In other words,
any principal G-bundle E admits a bundle map Γ : E ! EG into the universal bundle with the
property that any two such morphism are smoothly homotopic, i.e. Γ � Γ0 8Γ;Γ0 : E;E 0 ! EG
with � the homotopy equivalence relation. A representation of these maps is in the following
diagram, where we denotes with  the induces map of Γ.

E EG

M BG

Γ

� �E



(3.17)

The topology of the bundle E is completely determined by the homotopy class of the classifying
map , that is the di�erent classes of maps [M;BG] are in bijective correspondence with distinct
G-bundles on M .

One can show that BG is uniquely determined up to homotopy by requiring EG to be con-
tractible and the action of G to be free. We remember that an action of a group G on M , i.e.
a map � : G �M ! M with �(e; p) = p 8p 2 M and �(g1; �(g2; p)) = �(g1g2; p) 8g1; g2 2 G,
p 2M , is free if any non trivial g 2 G has no �xed points in M , that is if �(g; p) = p) g � e.
In general the classifying space for compact group are in�nite dimensional space; for instance
BU(1) = CP1 and BZ2 = RP1, where P stands for projective plane.

We can now de�ne the group cohomology of a group, which is distinct from its cohomology as
topological space. It consists of the cohomology groups Hn(BG;A), where BG is the Eilenberg
Mac Lane space K(G; 1) and A is an abelian group. When A is �nite one can take the singular
cohomology of BG; in contrast, when A is continuos the topology of A should be considered,
and we have to use the sheaf cohomology. For our purposes, we will derive an isomorphism
useful when A = U(1).

The elements in Hn(BG;A) are cohomology classes called universal characteristic classes for a
background �eld, since under the pullback � they give rise to cohomology classes in Hn(M;A)
that depends only on the topology of the bundle E. Remember that characteristic classes are
subset of the cohomology of the base space that measure the non triviality or twisting of a
bundle. In general elements in Hn(K(G; q + 1);A) are classifying classes for the q-form gauge
�eld of a symmetry G.

With particular regard to physics, the universal classifying space K(G; q+1) serves as classifying
space for the background �elds for the q-form �nite symmetry group G. We have already seen,
that when q = 0 the background is aG-bundle and distinctG bundles are in corrispondence with
the homotopy class of maps [M;K(G; 1) = BG]. When q � 0, G is abelian and the background
q-form �elds are element of Hq+1(M;G) cohomology group, whose distinct elements are in
bijective correspondence with the homotopy classes of maps [M;K(G; q + 1) = BqG].

If we regard a background �eld on M as a homotopy class of maps, g 2 [M;K(G; q + 1)], and
we take an A-valued cohomology class � 2 Hn(K(G; q + 1);A), we can pullback A via g to
M and �nd a cohomology class g�(�) 2 Hn(M;A). We can denote by �(g) this pullback and
regard � as an operation:

� : [−; K(G; q + 1)]! Hn(−;A): (3.18)
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If we use the simplicial notation for the transition functions of the background �eld (4.1), we
usually denote by Aij the elements g 2 G, but the expression �(A) = A�� has the same meaning
as above.

In the following we will focus only on group cohomology; however the computation and char-
acterization of the di�erent cohomology groups Hn(BG;A) are cumbersome. We will present
some episodic results and in the next section we will focus on �nite abelian groups.

If the group G is compact all odd cohomology groups with real coe�cients vanish

Hn(BG;R) = 0 with n odd; (3.19)

therefore, the odd cohomology consists completely of torsion. Remember that an element h of
a group H is a torsion element if it has �nite order, that is if there exists m 2 N such that
hm = e with e the identity group. A group is a torsion group if all its elements are torsion
elements. If the cohomology groups are even there exists an important isomorphismM

n even

Hn(BG;R) = I(G) with n even (3.20)

where I(G) is the ring of polynomials on the Lie algebra of G invariant under the adjoint
action of G. Using the Chern-Weil homomorphism we map a polynomial P 2 I(G) to the class
[P (F )], where F is the curvature of an arbitrary connection in the universal bundle. The class
[P (F )] is independent of the choice of the connection. For instance, the group cohomology of
the unitary group U(N) contains no torsion and is given by the polynomial ring in the Chern
classes ck(F2): M

n

Hn(BU(N);Z) = P [c1; : : : ; cN ]: (3.21)

We are mainly interested in U(1) whose cohomology is
L

nH
n(BU(1);Z) = P [c1] with c1(F2) =

1
2�
F2.

Finally, we will present an important result for �nite groups, based on the fact that all real group
cohomology are trivial: Hn(BG;R) = 0 when G is �nite. Before that we have to introduce
some other concepts.

A sequence of homomorphisms between generic groups Hi

� � � ! Hi+1
hi+1−−! Hi

hi−! Hi−1 ! � � � (3.22)

is said to be exact if the kernel of each map is the image of the previous one, kerhi = imhi+1.
Since imhi+1 � kerhi is equivalent to hihi+1 = 0, the sequence is a chain complex; on the other
hand, since kerhi � imhi+1 the homology group of this chain complex are trivial. Using exact
sequences we can express some basic algebraic concepts; for example:

1. 0 ! A
�−! B is an exact sequence if ker� = 0 (since the �rst map can be thought as an

inclusion), that is � is injective;

2. A
�−! B ! 0 is an exact sequence if im� = B since B is the kernel of the null map which

must be the image of �, thus, � is surjective;

3. 0! A
�−! B ! 0 is an exact sequence if � is an isomorphism by (1) and (2);

4. 0 ! A
�−! B

�−! C ! 0 is an exact sequence if � is injective, � is surjective and
ker � = im�. Therefore, � induces an isomorphism C ' B=im� which can be written
C ' B=A if we think of � as an inclusion of A as a subgroup of B. An exact sequence of
this type is called short exact sequence and the map � is a projection on the quotient.
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A short exact sequence induces a exact sequence in cohomology if we consider cohomology with
values in those groups; in fact, for each group we can take the set Hom(Cn(X);−) = Cn(X;−)
where Cn(X) is the n-chain group. This gives rise to a long exact sequence in cohomology since
Cn(X) is free. Let

0! A
�−! B

�−! C ' B=A! 0 (3.23)

a short exact sequence that induces a long exact sequence in cohomology:

� � � ! Hn(X;A)
�−! Hn(X;B)

�−! Hn(X;B=A)
Bock−−! Hn+1(X;A)! � � � (3.24)

whose map
Bock : Hn(X;B=A)! Hn+1(X;A) (3.25)

is called Bockstein homomorphism. This map can be always constructed and depends only
on the choice of a class in Hn(X;B=A). Let us take a representative c 2 Zn(X;B=A) of a
cohomology class [c] 2 Hn(X;B=A) and lift to an element b 2 Cn(X;B), namely �(b) = c. b is
not necessarily closed, but �(db) = 0 because it is equal to d�(b) = dc = 0. Since db 2 ker �,
it is in the image of �, thus db = �(a) for some a 2 Cn+1(X;A). Since � is injective, da = 0
and a de�nes a class [a] 2 Hn+1(X;A). Therefore, the Bockstein homomorphism is de�ned as

[c]
Bock−−−! [a] where a 2 Cn+1(X;A) such that �(a) = db for b 2 Cn(X;B) such that �(b) = c.

Since the kernel of Bockstein homomorphism is the image of �, the Bockstein represent the
obstruction to lifting a class in Hn(X;B=A) to a class in Hn(X;B).

Let us go back to group cohomology. Using the short exact sequence

0! Z! R! R=Z ' U(1)! 0 (3.26)

that induces in group cohomology the following exact sequence

� � �Hn(BG;Z)! Hn(BG;R)! Hn(BG;R=Z)! Hn+1(BG;Z)! � � � (3.27)

and the fact that Hn(BG;R) = 0 8n when G is �nite, we obtain the exact sequence

� � �Hn(BG;Z)! 0! Hn(BG;R=Z)! Hn+1(BG;Z)! 0! � � � (3.28)

Therefore, we can conclude that for �nite G the following isomorphism holds

Hn(BG;R=Z) ' Hn+1(BG;Z): (3.29)

Notice that in the long sequence 3.27 the kernel of the homomorphismHn(BG;Z)! Hn(BG;R)
is the torsion elements of Hn(BG;Z). Since for �nite group the kernel of this map is the entire
Hn(BG;Z), we can conclude via the above homomorphism that Hn(BG;R=Z) is constitute
only of torsion.

3.5 Group cohomology for �nite abelian groups

For �nite groups the cohomology group Hn(BG;A) has an algebraic description similar to those
considered above. In the de�nition we consider the general case where A is a G-module, that
is an abelian group on which G acts compatibly with its abelian group structure. We denote
this homomorphism as � : G! AutA.

We de�ne an n-cochain f 2 Cn(BG;A) to be a function

f : G� � � � �G| {z }
n

! A (3.30)
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The di�erential is de�ned to be

(d�f)(g1; : : : ; gn+1) = �g1f(g2; : : : ; gn+1) +
nX
j=1

(−1)jf(g1; : : : ; gjgj+1; : : : ; gn+1)+

+ (−1)n+1f(g1; : : : ; gn):

(3.31)

For instance, we can have

(d�f)(g1; g2) = �(g1)f(g2)− f(g1g2) + f(g1)

(d�f)(g1; g2; g3) = �(g1)f(g2; g3)− f(g1g2; g3) + f(g1; g2g3)− f(g1; g2)

(d�f)(g1; g2; g3; g4) = �(g1)f(g2; g3; g4)− f(g1g2; g3; g4) + f(g1; g2g3; g4)−
− f(g1; g2; g3g4) + f(g1; g2; g3):

(3.32)

The di�erential is nilpotent, that is d2 = 0. Therefore, we can de�ne the n-cocycle group
Zn(BG;A) as the kernel of the di�erential and the n-coboundary group Bn(BG;A) as the
image of the previous di�erential in the cochain complex. The cohomology group Hn(BG;A)
is de�ned as usual by taking the quotient, Zn(BG;A)=Bn(BG;A). These cochains are assumed
to be normalized, i.e. f(g1; : : : ; gn) = 0 if gi = e for some 1 � i � n. The equivalence between
algebraic cocycles and simplicial cocycles of BG is proved using Milnor's construction of BG.

For the simple case of �nite abelian groups we can explicitly provide an expression for the
cocycles of some cohomology groups. Since any �nite abelian group can be expressed as the
product of cyclic abelian groups, we can consider the cohomology groups of ZN , the prototypical
cyclic groups. In particular we will focus on the third cohomology group of the direct product
of k cyclic groups. We will use these results for the calculation of some anomalies in Chapter
6 and 7.

Initially, we observe that in the case of �nite groups the cohomology of the universal classifying
space BG is the same of the group itself, since the following isomorphism holds:

Hn(BG;Z) ' Hn(G;Z): (3.33)

Furthermore, we have proved that also the following isomorphism is valid

Hn(G;Z) ' Hn−1(G;U(1)) 8n > 1 (3.34)

therefore, we can derive the results for the group Hn(G;U(1)), which is more useful for our
goals, from the features of Hn+1(G;Z).

Using the Kunneth formula, a result in algebraic topology, one can prove abstractly the content
of the relevant cohomology groups Hn(ZkN ; U(1)). We only report the results and provide an
euristical motivation by considering explicitly the 3-cocycles for the third cohomology group
(see [26] for details).

H1(ZkN ; U(1)) ' ZkN
H2(ZkN ; U(1)) ' Z

1
2
k(k−1)

N

H3(ZkN ; U(1)) ' Zk+ 1
2
k(k−1)+ 1

3!
k(k−1)(k−2)

N

(3.35)

In order to write the 3-cocycles, we have to �x some notational conventions. We denote the
group elements with the capital letters A;B;C 2 ZkN , and with the lowercase letters the ele-
ments of the di�erent subgroups; e.g. for A we have

A := (a(1); a(2); : : : ; a(k)) with a(i) 2 ZN 8i = 1; : : : ; k: (3.36)
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We adopt the additive notation for ZN and we denote its elements with the �rst N − 1 natural
numbers: ZN = f0; 1; : : : ; N − 1g. When we write a(i) + b(j) for generic elements a(i); b(i) 2
f0; 1; : : : ; N−1g of A and B, we mean the usual addition with values in Z. The group operation
is de�ned as following

A+B = ([a(1) + b(1)]; : : : ; [a(k) + b(k)]) (3.37)

where [�] : Z! f0; 1; : : : ; N − 1g denotes the reduction mod N .

From the abstract derivation of the isomorphism for H3(ZkN ; U(1)), one can argue that there
are three di�erent types of 3-cocycles that belong to the third cohomology group. They di�er
in the number and type of subgroups Z(i)

N involved in their de�nition.

!
(i)
I (A;B;C) = exp

 
2�ip

(i)
I

N2
a(i)(b(i) + c(i) − [b(i) + c(i)])

!
1 � i � k (3.38)

!
(ij)
II (A;B;C) = exp

 
2�ip

(ij)
II

N2
a(i)(b(j) + c(j) − [b(j) + c(j)])

!
1 � i < j � k (3.39)

!
(ijl)
III (A;B;C) = exp

 
2�ip

(ijl)
III

N
a(i)b(j)c(l)

!
1 � i < j < l � k (3.40)

where p
(i)
I ; p

(ij)
II ; p

(ijl)
III are integer parameters that label the di�erent 3-cocycles. These cocycles

are periodic of period N , in accordance with the isomorphisms above; therefore, we can consider
p

(i)
I ; p

(ij)
II ; p

(ijl)
III 2 ZN . The periodicity for the cocyle of type III is obvious, while for the type I

and II it follows from the fact that the factor (b(i) + c(i) − [b(i) + c(i)]) only vanishes or is equal
to N .

The 3-cocycles of type I describe the contribution arising from a single ZN subgroup and the
N − 1 non-vanishing terms are labelled by piI with 1 � i � k; thus, we can understand the �rst
term ZkN in the isomorphism above. The type II cocycles establish pairwise couplings between
two di�erent ZN subgroups and !ijII is equivalent to !jiII since they di�er by a 3-coboundary.
In the counting of di�erent terms we have to consider k terms for the indices i and k − 1 for
j, which must be di�erent from i, and we have to divide by 2 since they do not depend on the
order; therefore, we obtain 1

2
k(k − 1) inequivalent terms. For the same reason, in the cocycles

of type III we can permute the indices i; j; l that must be di�erent; hence, we end up with
1
3!
k(k − 1)(k − 2) di�erent 3-cocycles.

Finally, we can consider the cocycles for general abelian groups which are the direct product
of cyclic groups of di�erent order. If the group is the product of k di�erent cyclic groups, from
the algebraic topological analysis, we can argue that there are again k inequivalent cocycles
of type I, 1

2
k(k − 1) of type II and 1

3!
k(k − 1)(k − 2) of type III. Therefore, one can easily

generalize the previous expressions:

!
(i)
I (A;B;C) = exp

 
2�ip

(i)
I

N (i)2
a(i)(b(i) + c(i) − [b(i) + c(i)])

!
1 � i � k

!
(ij)
II (A;B;C) = exp

 
2�ip

(ij)
II

N (i)N (j)
a(i)(b(j) + c(j) − [b(j) + c(j)])

!
1 � i < j � k

!
(ijl)
III (A;B;C) = exp

 
2�ip

(ijl)
III

gcd(N (i); N (j); N (j))
a(i)b(j)c(l)

!
1 � i < j < l � k

(3.41)

where N (i) denotes the order of the i-th cyclic factor of the direct product that constitutes
the group G and gcd means greatest common divisor. We can make explicit our discussion
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considering as speci�c example the group G = ZN � ZM � ZK . The �rst three cohomology
groups are characterized by

H1(ZN � ZM � ZK ; U(1)) ' ZN � ZM � ZK
H2(ZN � ZM � ZK ; U(1)) ' Zgcd(N;M) � Zgcd(N;K) � Zgcd(M;k)

H3(ZN � ZM � ZK ; U(1)) ' ZN � ZM � ZK � Zgcd(N;M) � Zgcd(N;K) � Zgcd(M;k) � Zgcd(N;M;K)

(3.42)

The cocycles of type I are labeled by p
(i)
I 2 ZN �ZM �ZK and the periodicity is the order N (i)

of the correspondent cyclic group. The type II are labeled by Zgcd(N;M);Zgcd(N;K) and Zgcd(M;k)

and with period gcd(N (i); N (j)). This can be shown by considering the equality

gcd(N (i); N (j))

N (i)N (j)
=

x

N (i)
+

y

N (j)
; x; y 2 Z (3.43)

and by observing that !
(ij)
II becomes a trivial 3-cocycle or a 3-coboundary when we set p

(ij)
II =

gcd(N (i); N (j)). Finally, the type III cocycles have period the greatest common divisor of N;M
and K and are labeled by pNMK

III 2 Zgcd(N;M;K).

We can wonder what is the meaning of this three fundamental cohomology groups. The 1-
cochains belonging to H1(G;U(1)) are maps from G to U(1) and with the cocycle condition
turn them into group homomorphisms. In fact, let c 2 H1(G;U(1)) a map c : G! U(1), since
it satis�es the cocycle condition dc = 0, i.e. in multiplicative notation

c(g1)c(g2) = c(g1; g2) g1; g2 2 G (3.44)

the group law of G is preserved in U(1) and c is a group homomorphism. Therefore, H1(G;U(1))
is the group composed by all the inequivalent irreducible 1-dimensional unitary representations
of G. When G is an abelian �nite group, H1(G;U(1)) ' Hom(G;U(1)) = Ĝ where Ĝ is the
Pontryagin dual group.

The second cohomology group H2(G;U(1)) labels inequivalent projective representations of the
group G. A representation R of a group G in a vectorial space V is a map

R : G! AutV

g 7! R(g)
(3.45)

where AutV is the space of linear operators acting on V . R satis�es the properties: R(e) = IX
with e the identity in G and R(g1) � R(g2) = R(g1g2) 8g1; g2 2 G. A projective representation
is a group representation de�ned up to a phase. We can denote the projective operators R

de�ning
R(g) = fei�(g)R(g); ei�(g) 2 U(1); R(g) a representation of Gg (3.46)

with composition rule R(g1) � R(g2) = R(g1g2). If we take a representative R of the projective
representation, we can rewrite the composition rule

R(g1) �R(g2) = �(g1; g2)R(g1g2) (3.47)

where �(g1; g2) is a phase depending on both the group elements g1; g2. We have also to require
that the representation preserves the associative property of the group; since 8g1; g2; g3 2 G
g1(g2g3) = (g1g2)g3 we have to require R(g1(g2g3)) = R((g1g2)g3), but this leads to a condition
for the phase �. In fact, in order to have the equality of these relations

R(g1(g2g3)) =�(g1; g2g3)R(g1)R(g2g3) = �(g1; g2g3)�(g2; g3)R(g1)R(g2)R(g3)

R((g1g2)g3) =�(g1g2; g3)R(g1g2)R(g3) = �(g1g2; g3)�(g1; g2)R(g1)R(g2)R(g3)
(3.48)
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we obtain the condition

�(g1; g2)�(g1g2; g3) = �(g1; g2g3)�(g2; g3) (3.49)

that is precisely the cocycle condition for the 2-cochain �. Therefore, since we have to satisfy
the associative property of the group, we have to require that � 2 Z2(G;U(1)). On the other
hand, such a cocycle can be shifted by a coboundary of the form

(d�)(g1; g2) =
�(g1)�(g2)

�(g1g2)
(3.50)

which corresponds to a rephasing of the group action on the projective representation. Thus,
we have found that the inequivalent projective phases are de�ned up to coboundaries and
belong to H2(G;U(1)): the di�erent phases in projective representation are classi�ed by the
second cohomology group H2(G;U(1)). Notice that the usual representations (without phases)
corresponds to the trivial element of this cohomology group.

Finally, the group H3(G;U(1)) is useful in di�erent contest, as we will see. It labels the 't
Hooft anomaly in a 2-dimensional quantum �eld theory and the Postnikov classes in a 2-group
symmetry. More generally, since H3(G;U(1)) ' H4(BG;Z), the 3D-Chern-Simons actions
for a compact gauge group G are in one-to-one correspondence with the cohomology group
elements [25].
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Chapter 4

2-group global symmetries with
discrete groups

If we want to discuss discrete symmetries, we cannot use the Noether's formalism since there is
no conserved current. On the other hand, the language of topological operators introduced in
the previous chapter is the basis of the discrete symmetry studies since, even though we cannot
write an explicit form of these operators in terms of the Noether's currents, they successfully
implement these symmetries. To describe these topological operators we couple the theory with
a background gauge �eld, that is the connection of the principal bundle whose structure group
is the symmetry group. The simplicial calculation is a useful tool to represent this bundle, even
if it is necessary to introduce quite a lot of formalism. However, using topological defects in this
formalism, the characterization of 2-group symmetries may be be deeper and more meaningful.
We follow [8] as main reference.

4.1 Symmetry defects

A 0-form global symmetry is implemented by unitary topological operators Ug(M
(D−1)), g 2 G

with G the symmetry group, supported along co-dimension 1 manifold M (D−1). When a charged
object passes through one of these operators, it transforms according to the symmetry. We can
always couple the theory with a background gauge �eld for the global symmetry. The principal
bundle associated to the gauge �eld can be described covering the manifold M (D) with open
contractible patches Vi. The order of them is arbitrary and their intersections are denoted with
ordered indices by Vij = Vi \ Vj, Vijk = Vi \ Vj \ Vk and so on. We choose the covering in such
a way that all possible multiple intersections are either empty or contractible. The transition
function Aij 2 G must satisfy the condition

AijAjk = Aik on triple intersections Vijk (4.1)

for ordered hijki, i.e. are 1-cocycle in the simplicial formalism.

The simplicial formulation of the principal bundle starts from the triangulation of the manifold
M (D) with the following identi�cations: vertices are 0-simplices hii, lines or edges are 1-simplices
hiji, faces are 2-simplices hijki and so on up to D-simplex. The vertex hii corresponds to the
open chart Vi, the edge hiji to the intersection Vij and so on for the multiple intersections.
Notice that each p-simplex (p > 0) gives an orientation following the order of the vertices from
that with lower label to the one with higher index. A q-form on the manifold is represented as
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a q-cochain f 2 Cq(M (D); G) which is a function on q-simplices taking values in the group G.
We denote this q-cochain as fi0i1:::iq and we assume that fi0i1 : : : iqg are ordered. As we have
already presented, we can de�ne singular cohomology groups starting from these cochains (see
section 3.3). Therefore, Aij is a 1-cocycle since it satis�es dA = 0 (in 4.1 we use multiplicative
notation).

In order to describe a topological operator Ug(M
(D−1)) we couple the theory with a G-bundle

with transition functions equal to g if the double intersections cross the support M (D−1) of
the defect. More precisely, we construct the bundle in such a way that when an edge hiji
cuts the manifold M (D−1), we assign Aij = g if the edge crosses the hypersurface with positive
orientation, or Aij = g−1 if with negative orientation. Otherwise, we write Aij = I. The
cocycle condition is satis�ed since for every 2-simplices there is either no edge or two edges
with opposite orientation that cross the defect.

The action of the symmetry operator (in correlators) can be implemented as gauge transforma-
tion. Suppose we have a charged object O located at one of the vertices of the triangulation and
surrounded by a support of a topological operator Ug(M

(D−1)). We can remove Ug(M
(D−1)) by

performing a gauge tranformation

Aij ! Afij := fiAijf
−1
j (4.2)

with fi = g−1 if the vertex i is inside M (D−1) or fi = I if it is outside. Therefore, the operator
O is mapped to its transformation under g (see eq. 1.3).

Topological operators for a 1-form symmetry with (necessarily) abelian group A are unitary
operators Ua(M

(D−2)) supported on codimension-2 manifolds. The background gauge bundle
is realized by assigning an element of A, Bijk 2 A, on triple intersection Vijk such that they
satisfy the cocycle condition:

Bjkl −Bikl +Bijl −Bjkl = (dB)ijkl = 0 (4.3)

for ordered hijkli. Notice that we indicate with "+" the group operation since A is abelian.
Therefore, B 2 Z2(M (D);A). As for 0-form symmetries, the operator Ua(M

(D−2)) is described
by assigning the value a 2 A to the transition function of triple intersections that cross M (D−2).
We write Bijk = a if the defect crosses the triangle hijki with positive orientation, Bijk = −a
if with negative orientation and Bijk = I otherwise.

The charged objects of 1-form symmetries are line operators. If a 1-form symmetry operator
Ua(M

(D−2)) winds around a line operator O(M (1)) of charge �, we can remove such charge
operator from the correlators by performing a gauge transformation:

Bijk ! Bijk + jk − ik + ij = Bijk + (d)ijk (4.4)

on Vijk for ordered vertices.  is de�ned by assigning ij = a if the edge hiji crosses with
positive orientaton a generic surface � whose boundary is M (D−2), ij = −a if with negative
orientation. Since � also cuts an edge along O(M (1)), in the symmetry transformation O(M (1))

acquires a phase e2�i�(a), where � 2 Â = Hom(A;R=Z), the Pontryagin dual of A (see 1.5).

4.2 2-group symmetry in the formalism of defects

If we regard symmetries as topological defects acting on charged objects, the group law is
encoded in the idea of junctions of defects. When two topological operators Ug, Ug0 meet, they
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can fuse into one defect Ugg0 according to the group law. In correlators such junctions usually
have the associative property, i.e. UghUk = UgUhk = Ughk. However, there exist junctions
without this property and this is a possible signal of the presence of both 0-form and 1-form
defects combined in a non-trivial way (2-group symmetry).

When we have two symmetries, a 0-form with group G and a 1-form with group A, we can mix
their actions. Firstly, the group G can act on A by a group automorphism (it preserves the
group structure):

� : G! AutA (4.5)

where AutA is the group of automorphisms of A. In particular, when an operator Ua(M
(D−2))

with a 2 A crosses the support of Ug(M
(D−1)), g 2 G, it transforms in a new operator

U�ga(M
(D−2)) and � acts as a permutation of the 1-dimensional representations of A. On

the other hand, when a line operator O(M (1)) of charge � crosses Ug(M
(D−1)), it becomes a line

operator with charge �g� := ��−1
g in order to assure that �(a) is invariant. This is precisely

the phase that a line operator acquires when it crosses a 1-form defect.

If the mixing is due only to this homomorphism, the cocycle condition becomes twisted since
it involves �:

�(Aij)Bjkl −Bikl +Bijl −Bijk := (dAB)ijkl = 0 ; onVijkl (4.6)

dA is the twisted di�erential that is de�ned as follow:

(dAf)i0i1:::iq+1 = �(Ai0i1)fi1:::iq+1 +
n+1X
j=1

(−1)jfi0:::̂ij :::iq+1
(4.7)

for ordered vertices hiji. This di�erential is nilpotent and leads to the de�nition of twisted
cocycles, twisted coboundaries and twisted cohomology classes, as usual.

The second element of a 2-group is the Postnikov class [�] which is a group cohomology class

[�] 2 H3
�(BG;A) (4.8)

or, more concretely, it is a function

� : G�G�G! A: (4.9)

We can understand the meaning of � considering the junction of three topological defects into
one. Three defects Ug, Uh, Uk with g; h; k 2 G can merge into Ughk in two di�erent ways that
di�er from each other by a codimension-2 symmetry operator �(g; h; k) 2 A.

In D=2 we can view graphically the defects con�guration (Figure 4.1): on the left we have the
fusion (UgUh)Uk = Ughk and if we move topologically the defect Uh to the right (F-move) we
have Ug(UhUk) = Ughk + �(g; h; k) as depicted on the right. This is necessary to mantain the
correlators invariant. In other words, when Uh passes through the junction a codimension-2
symmetry operator �(g; h; k) is created. In D > 2 considering the bordism between the two
con�guration in �gure 4.1, the codimension-3 locus where the four operators meet acts as a
source for the symmetry operator �(g; h; k) 2 A. The presence of such a 1-form defect starting
from this triple junction is the signal of the presence of a global 2-group symmetry.

The function � is normalized such that �(g; h; k) = 0 if g or h or k are the group's identity and
satis�es the twisted cocyle condition

(d��)(g; h; k; l) = �g�(h; k; l)− �(gh; k; l) + �(g; hk; l)− �(g; h; kl) + �(g; h; k) = 0
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ghk

g kh

 !

ghk

g kh

β(g,h,k)

Figure 4.1: The lines are codimension-1 topological defects representig the symmetry operators of G.
The blue dot is the 1-form symmetry operator β(g, h, k) 2 A. On the left the original con�guration of
the junction of the three defects g, h, k, on the right the same defect fusion but with h on the other side
of the junction. They are equivalent only if we insert the 1-form symmetry β. The �gure is inspired
from [8]

for g; h; k; l 2 G. This condition is a consequence of the pentagon identity. The physical theory
depends only on the equivalence class [�] where we identify

� � � + d�� with � : G�G! A: (4.10)

Therefore, the physical invariant of a 2-group symmetry is the equivalence class [�] 2 H3
�(BG;A).

If the Postnikov class is non trivial, i.e. we have a 2-group symmetry, the background �eld for
A is no longer closed and � �xes its coboundary:

(dAB)ijkl = �(Aij; Ajk; Akl): (4.11)

Since A 2 Z1(M (D); G) is a cocycle, we can view it as a homotopy class of maps A : M (D) ! BG
and we can write dAB = A��, where the pull-back A� corresponds to substituting gj ! Aij−1;ij

for each simplex (see 3.4). In this way, we can see that the G-bundle acts as a source for B.
The twisted di�erential of B depends on the representative � of the cohomology class [�]; if we
change the representative � ! �+ d��, with � a 1-cochain, we have to rede�ne simultaneously
the 2-cochain B ! B + A��, so that the modi�ed cocycle condition is still satis�ed. This
rede�nition corresponds to a modi�cation of the theory by adding local counterterms. Notice
that we use the property dAA

� = A�d� valids as long as the cocycle condition for Aij is satis�ed.

In the end, a 2-group global symmetry is described by the quadruplet

G = (G;A; �; [�]) (4.12)

The 2-group bundle consists of two type of transition functions: the usual transition function
Aij 2 G for the G-bundle with the cocycle condition AijAjk = Aik for each triangle hijki with
ordered vertices and the background �eld for A that is an A-valued 2-cochain satysfying the
modi�ed twisted cocycle condition

�(Aij)Bjkl −Bikl +Bijl −Bijk = �(Aij; Ajk; Akl) (4.13)

for each 3-simplices hijkli with ordered vertices.

The gauge transformations in a 2-group bundle are of two types. The �rst is the usual one for
Aij, involving also the �eld 2-cochain B. It depends on a 0-cochain f 2 G, i.e. for each vertex
hii we associate fi 2 G. The 1-cocycle A transforms as

Aij ! Afij := fiAijf
−1
j (4.14)
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The transformation for the 2-cochain B is:

B ! Bf := �(f)B + �(A; f) (4.15)

where �(f)B = �fiBijk for each 2-simplices hijki with ordered vertices and �(A; f) is a 2-cochain
that satis�es

dAf �(A; f) = Af�� − �(f)A�� (4.16)

and vanishes when f = I. This equation always has solution because the cohomology class
for � does not change under a gauge transformation of A. In this way, using the identity
dAf�(f) = �(f)dA, we can see that Bf still satis�es the modi�ed cocycle condition.

The second type of gauge tranformation is the one that involves the 1-form gauge symmetry:
the 1-cocycle A does not transform, while B shifts as

B ! B := B + dA (4.17)

where  2 A is a 1-cochain. Since the de�nition of �(A; f) may leads to ambiguity, we can
reabsorb it by an appropriate choice of .

4.3 Gauge transformations and 2-group symmetry

In this section we want to interpret the so-called F-move as a particular gauge transformation.
In the formalism of defects, we will explicitly see the emergence of a 1-form symmetry defect
in the triple 0-form junction.

Let us consider the two defect con�gurations in �gure 4.2.

ghk

g kh

i m

j l

k

ghk

g kh

i m

j l

k

Figure 4.2: Junctions of defects in two dimensions: g + h+ k ! ghk. On the left, h joins �rst k and
then g, in contrast on the right h joins �rst g and then k. i, j, k, l,m represent the open patches of the
gauge bundle and the dotted lines represent the defect having as transition function the group identity.
The two pictures are related by a gauge transformation in the open patch k given by fk = h−1.

They represent six open patches in two dimensions with the correspondent transition functions:
on the left Aij = Aik = g, Ajl = Akl = h, Alm = k, Ajk = I, Akm = hk and Aim = ghk; on the
right Aij = g, Ajl = Ajk = h, Alm = Akm = k, Akl = I, Aik = hk and Aim = ghk. They are
related by a gauge transfomation in the open patch k given by fk = h−1:

Aik ! Aikf
−1
k : g ! gh; Ajk ! Ajkf

−1
k : I! h;

Akl ! fkAkl : h! I; Akm ! fkAkm : hk ! k:
(4.18)
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The gauge transformation for B is given by B ! B + �(f; A) and we have to �nd the 2-
cochain �(f; A) for every triple intersections hijki, hikmi, hjkli and hklmi. To make sense of
the equation to which � is subject (dA�(A; f) = Af��− �(f)A��), we must consider the theory
in one more dimension setting to I the 2-cochains out of the plane. We also set � = I and we
use the multiplicative notation.

hijkli :
�jkl�ijl
�ikl�ijk

=
�(Afij; A

f
jk; A

f
kl)

�(Aij; Ajk; Akl)
) �jkl

�ijk
=
�(g; h; I)
�(g; I; h)

hijkmi :
�jkm�ijm
�ikm�ijk

=
�(Afij; A

f
jk; A

f
km)

�(Aij; Ajk; Akm)
) 1

�ikm�ijk
=

�(g; h; k)

�(g; I; hk)

hiklmi :
�klm�ikm
�ilm�ikl

=
�(Afik; A

f
kl; A

f
lm)

�(Aik; Akl; Alm)
) �klm�ikm =

�(gh; I; k)

�(g; h; k)

hjklmi :
�klm�jkm
�jlm�jkl

=
�(Afjk; A

f
kl; A

f
lm)

�(Ajk; Akl; Alm)
) �klm

�jlm
=
�(h; I; k)

�(I; h; k)

(4.19)

We observe that we have obtained four equations for four unknowns and we can therefore have
hope of determining the solutions. Exploiting the fact that � is normalized such that � = I if
at least one of the entrances is trivial we obtain

�jkl
�ijk

= I;
1

�ikm�ijk
= �(g; h; k); �klm�ikm =

1

�(g; h; k)
;

�klm
�jlm

= I: (4.20)

Therefore, we have

�jkl = �ijk = �klm and �ikm =
1

�ijk�(g; h; k)
(4.21)

and if �(g; h; k) is non trivial, also B changes under the gauge transformation.

We have the freedom of choosing �jkl = �ijk = �klm = I so that the only non trivial gauge
transformation is

Bikm ! Bikm�
−1(g; h; k) (4.22)

in multiplicative notation.

If we interpret this two con�gurations as the initial and �nal point of the F-move, we can justify
the di�erence between the two junctions. The arising of the inverse of the Postnikov class in the
gauge transfomation is compensated by the insertion of a 1-form symmetry defects �(g; h; k) in
the triple junction in order to satisfy the modi�ed cocycle condition for B. This fact is shown
explicitly in [8] considering the triangulation that implements the modi�ed cocycle condition.

Finally, we want to consider two simple examples that will be useful in the following. We will
discuss the 2-group structure with 0-form symmetry group ZN and ZN � ZN by applying the
formalism developed so far.

4.4 Example: G = ZN

The 2-group structure is given by

G = (Z(0)
N ; U(1)(1); I; [�]) (4.23)

where we assume � = I and � 2 H3(ZN ; U(1)) �= ZN .
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Now we rewrite the cocycle condition using the adictive notation for G and the multiplicative
notation for U(1). The cocycle condition for A 2 ZN is Aij +Ajk = Aik for each triangle hijki.
The modi�ed cocycle condition for B 2 U(1) is

BjklBijl

BiklBijk

= �(Aij; Ajk; Akl) (4.24)

for each 3-simplices hijkli with ordered vertices. The �rst type of gauge transformation takes
the form of

Aij ! Afij = fi + Aij − fj Bijk ! Bijk + �ijk(A; f) (4.25)

where f 2 Z2 for each 0-simplices and � is a U(1) valued 2-cochain that satis�es the relation

�jkl�ijl
�ikl�ijk

=
�(Afij; A

f
jk; A

f
kl)

�(Aij; Ajk; Akl)
(4.26)

The second type of gauge transformation is

Bijk ! B
ijk =

Bijkjkij
ik

(4.27)

where  2 U(1) is a 1-cochain.

From 3.38, a representative of the Postnikov class in H3(ZN ; U(1)) is given by

�(Aij; Ajk; Akl) = exp

�
2�ik̂

N2
Aij(Ajk + Akl − [Ajk + Akl])

�
(4.28)

where k̂ 2 ZN is the 2-group structure and labels the di�erent classes. On the right hand side
of the formula Aij; Ajk; Akl 2 ZN are identi�ed with elements in f0; 1; : : : ; N − 1g 2 Z, the
operations are to be understood as the usual operations in R and not modulo N , while the
square brackets [�] : Z! f0; 1; : : : ; N − 1g indicate the reduction mod N .

Before moving on to the general case, we will begin by analyzing the simple case of G = Z2 in
order to make the steps and calculations explicit. Z2 is an abelian �nite cyclic group. In the
adictive notation Z2 = f0; 1g, the group operation is denoted by "+", the neutral element is 0,
the inverse of 1 is 1−1 = 1 such that 1 + 1 = 0. We calculate explicitly the value of � in order
to �nd the group con�guration (Aij; Ajk; Akl) that gives a non trivial � (Table 4.1 ). Notice

that we choose k̂ = 1 otherwise � is always the identity and the 2-group symmetry vanishes.

Aij Ajk Akl �(Aij; Ajk; Akl)

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1

Aij Ajk Akl �(Aij; Ajk; Akl)

1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 ei� = −1

Table 4.1: Explicit calculation of β(Aij , Ajk, Akl) with A 2 Z2 and k̂ = 1.

In order to have a non trivial � we have to satisfy two di�erent conditions: Aij must be di�erent
from the neutral element 0 and the sum Ajk +Akl must be equal 2 in such a way the di�erence
with the same sum mod 2 does not vanish.
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The necessary condition in order to have a non trivial � is that �(Afij; A
f
jk; A

f
kl) 6= �(Aij; Ajk; Akl).

We can easily check there are many gauge transfomations that satisfy this condition, even if
� is trivial. In our case � can take only two values, � = �1, and a non trivial � must satisfy
�jkl�ijl
�ikl�ijk

= −1; Therefore, there is at least one � di�erent from 1. The ambiguity in the choice of

� is due to the fact that � is de�ned up to coboundaries, � � � + dA where  is a 1-cochain,
and it can be absorbed by the second type of gauge transformation for B. After a gauge trans-
formation the modi�ed cocycle condition is still satis�ed: e.g. if we choose �ikl = �ijl = �ijk = 1
and �jkl = −1 we obtain

BjklBijl

BiklBijk

= �(Aij; Ajk; Akl)!
−BjklBijl

BiklBijk

= �(Afij; A
f
jk; A

f
kl) = −�(Aij; Ajk; Akl) (4.29)

If we consider the particular gauge transformation presented above (Figure 4.2), we can verify
the necessity of the insertion of the 1-form symmetry defect � to mantain the equivalence of
the two con�gurations. � is non trivial if g = h = k = 1. The transition functions for the
picture on the left are Aij = Aik = Aim = Ajl = Akl = Alm = 1 and Ajk = Akm = 0. The
gauge transformation in the open set k is given by fk = 1 and the 1-cocycles transformed
are Aik ! Aik + 1 = 0; Ajk ! Ajk + 1 = 1; Akl ! 1 + Akl = 0 and Akm = 1 + Akm = 1.
The others remain untouched. From the above discussion, for the gauge transformation for
B we can choose �ijk = �jkl = �klm = 1 and therefore �ikm = �(1; 1; 1)−1. The 2-cochains
Bijk; Bjkl; Bklm remain invariant, while Bikm ! Bikm�(1; 1; 1)−1 = −Bikm. Apparently the
gauge transformation given by f seems to change by the phase �(1; 1; 1)−1 the value of the
correlators; however, we note that this gauge transfomation corresponds to a F-move, so we
have to insert the 1-form symmetry defect �(1; 1; 1) in the triple junction. Therefore, this
1-form symmetry defect compensate exactly the gauge transformation for B and the 2-group
symmetry is encoded in this compensation.

For the general case ZN = f0; 1; : : : ; N − 1g we can generalize the results obtained above. We
note that if Ajk + Akl � N , then Ajk + Akl = [Ajk + Akl] +N and we obtain

�(Aij; Ajk; Akl) = exp

�
2�ik̂

N
Aij

�
with k̂ 2 ZN (4.30)

that correspond to the roots of unity. Therefore, the Postnikov class is non trivial if

ˆ k̂ 6= 0;

ˆ Aij 6= 0;

ˆ Ajk + Akl � N ;

ˆ
k̂Aij
N

=2 Z.

The last condition ensures that the particular combination between k̂ and Aij does not give rise
to the trivial phase. The discussion of the gauge transformation for Z2 can be directly applied
also for the general case for every non trivial �.

4.5 Example: G = ZN � ZN

In this case the 2-group structure is given by

G =
(
(Z(1)

N � Z(2)
N )(0); U(1)(1); I; [�]

�
(4.31)
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where we assume � = I and � 2 H3(ZN � ZN ; U(1)) �= ZN � ZN � ZN . We indicate the

transition functions Aij 2 G as Aij = (A
(1)
ij ; A

(2)
ij ). The representatives of the Postnikov class

are of two types (see 3.5): the �rst involves only one of the subgroups Z(1)
N or Z(2)

N , while the
second mixes them. Therefore, the functions � : G�G�G! U(1) take the form

�1
I (Aij; Ajk; Akl) = exp

�
2�ik̂1

N2
A

(1)
ij (A

(1)
jk + A

(1)
kl − [A

(1)
jk + A

(1)
kl ])

�
�

(2)
I (Aij; Ajk; Akl) = exp

�
2�ik̂2

N2
A

(2)
ij (A

(2)
jk + A

(2)
kl − [A

(2)
jk + A

(2)
kl ])

�
�

(1;2)
II (Aij; Ajk; Akl) = exp

�
2�ik̂12

N2
A

(1)
ij (A

(2)
jk + A

(2)
kl − [A

(2)
jk + A

(2)
kl ])

�
�

(2;1)
II (Aij; Ajk; Akl) = exp

�
2�ik̂21

N2
A

(2)
ij (A

(1)
jk + A

(1)
kl − [A

(1)
jk + A

(1)
kl ])

�
(4.32)

where k̂1; k̂2; k̂12; k̂21 2 ZN label the di�erent classes and k̂12 = k̂21. �
(1;2)
II and �

(2;1)
II are equiva-

lent since they di�er by a 3-coboundary.

We will focus only on the second type of Postnikov classes, so we set k̂1 = k̂2 = 0. As in
the above section, we present the full calculation for the simple case G = Z2 � Z2, then we
generalize the results. In the simple case of Z2 � Z2 we can compute explicitly the values of
�II . We choose k̂12 = 1 in order to have non trivial results; we also note that if Aij = (0; 0),
�II is always 1. The calculations are presented in Table 4.2.

A non trivial �
(1;2)
II requires the usual two conditions at the same time: A

(1)
ij must be di�erent

from the neutral element 0 and the sum A
(2)
jk +A

(2)
kl must be equal 2 in such a way the di�erence

with the same sum mod 2 does not vanish. For �
(2;1)
II it su�cient to swap the indices in the

conditions above. We have to note that except for the case with all the transition functions
Aij; Ajk; Akl equal to (1; 1), the Postnikov classes are trivial even if a single representative �

(1;2)
II

or �
(2;1)
II is di�erent from the identity. Indeed, since they are equivalent, we can always �nd a

2-coboundary that connects them:

�
(1;2)
II (Aij; Ajk; Akl) � �

(2;1)
II (Aij; Ajk; Akl)(d��)(Aij; Ajk; Akl) (4.33)

where � : G � G ! U(1) is a 1-cochain. Notice that we also have to rede�ne Bijk !
Bijk�(Aij; Ajk) in order to satisfy the cocycle condition for B.

For example if Aij = (1; 0), Ajk = (0; 1) and Akl = (0; 1) we can choose

�(X; Y ) = exp
�i

2

�
[X(1) +X(2)]− [Y (1) + Y (2)]

�
(4.34)

with X; Y 2 G. Indeed,

(d��)(Aij; Ajk; Akl) =
�(Ajk; Akl)�(Aij; AjkAkl)

�(AijAjk; Akl)�(Aij; Ajk)
(4.35)

and (d��)((1; 0); (0; 1); (0; 1)) = −1.

Secondly, we can consider the gauge tranformation of the section 4.3 in the only non-trivial
con�guration. The transition functions for the picture on the left (Figure 4.2) are Aij = Aik =
Aim = Ajl = Akl = Alm = (1; 1) and Ajk = Akm = (0; 0). The gauge transformation in the open
k is given by fk = (1; 1) and the transformed 1-cocycles are Aik ! Aik + (1; 1) = (0; 0); Ajk !
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Aij Ajk Akl �
(1;2)
II �

(2;1)
II

(1; 0) (0; 0) (0; 0) 1 1
(1; 0) (0; 0) (0; 1) 1 1
(1; 0) (0; 0) (1; 0) 1 1
(1; 0) (0; 0) (1; 1) 1 1

(1; 0) (1; 0) (0; 0) 1 1
(1; 0) (1; 0) (0; 1) 1 1
(1; 0) (1; 0) (1; 0) 1 1
(1; 0) (1; 0) (1; 1) 1 1

(1; 0) (0; 1) (0; 0) 1 1
(1; 0) (0; 1) (0; 1) −1 1
(1; 0) (0; 1) (1; 0) 1 1
(1; 0) (0; 1) (1; 1) −1 1

(1; 0) (1; 1) (0; 0) 1 1
(1; 0) (1; 1) (0; 1) −1 1
(1; 0) (1; 1) (1; 0) 1 1
(1; 0) (1; 1) (1; 1) −1 1

(0; 1) (0; 0) (0; 0) 1 1
(0; 1) (0; 0) (0; 1) 1 1
(0; 1) (0; 0) (1; 0) 1 1
(0; 1) (0; 0) (1; 1) 1 1

(0; 1) (1; 0) (0; 0) 1 1
(0; 1) (1; 0) (0; 1) 1 1
(0; 1) (1; 0) (1; 0) 1 −1
(0; 1) (1; 0) (1; 1) 1 −1

Aij Ajk Akl �
(1;2)
II �

(2;1)
II

(0; 1) (0; 1) (0; 0) 1 1
(0; 1) (0; 1) (0; 1) 1 1
(0; 1) (0; 1) (1; 0) 1 1
(0; 1) (0; 1) (1; 1) 1 1

(0; 1) (1; 1) (0; 0) 1 1
(0; 1) (1; 1) (0; 1) 1 1
(0; 1) (1; 1) (1; 0) 1 −1
(0; 1) (1; 1) (1; 1) 1 −1

(1; 1) (0; 0) (0; 0) 1 1
(1; 1) (0; 0) (0; 1) 1 1
(1; 1) (0; 0) (1; 0) 1 1
(1; 1) (0; 0) (1; 1) 1 1

(1; 1) (1; 0) (0; 0) 1 1
(1; 1) (1; 0) (0; 1) 1 1
(1; 1) (1; 0) (1; 0) 1 −1
(1; 1) (1; 0) (1; 1) 1 −1

(1; 1) (0; 1) (0; 0) 1 1
(1; 1) (0; 1) (0; 1) −1 1
(1; 1) (0; 1) (1; 0) 1 1
(1; 1) (0; 1) (1; 1) −1 1

(1; 1) (1; 1) (0; 0) 1 1
(1; 1) (1; 1) (0; 1) −1 1
(1; 1) (1; 1) (1; 0) 1 −1
(1; 1) (1; 1) (1; 1) −1 −1

Table 4.2: Explicit calculation of β
(1;2)
II (Aij , Ajk, Akl) and β

(2;1)
II (Aij , Ajk, Akl) with A 2 (Z

(1)
2 � Z(2)

2 )

and k̂12 = 1.

Ajk + (1; 1) = (1; 1); Akl ! (1; 1) + Akl = (0; 0) and Akm = (1; 1) + Akm = (1; 1).
For B we can choose �ijk = �jkl = �klm = 1 and therefore �ikm = �II((1; 1); (1; 1); (1; 1))−1. The
2-cochains Bijk; Bjkl; Bklm remain invariant, while Bikm ! Bikm�II((1; 1); (1; 1); (1; 1))−1 =
−Bikm and we see the necessity of the insertion of �II((1; 1); (1; 1); (1; 1)) to preserve the in-
variance of the correlators in the F-move.

If we consider the general case G = (ZN � ZN)(0) we can extend the discussion for ZN . In

particular if A
(a)
jk + A

(a)
kl � N at the same time for a = 1; 2 we obtain that [�II ] corresponds to

the roots of unity. Thus, to have a non trivial Postnikov class we have the following conditions:

ˆ k̂12 = k̂21 6= 0;

ˆ A
(1)
ij and A

(2)
ij 6= 0;

ˆ A
(1)
jk + A

(1)
kl � N and A

(2)
jk + A

(2)
kl � N ;

ˆ
k̂12A

(1)
ij

N
and

k̂12A
(2)
ij

N
=2 Z.
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Chapter 5

Elements of string theory

This chapter is not an introduction to string theory. It contains only a brief presentation of
some string theory topics which constitute the inspiring motive of this thesis work and which
are the prerequisite for understanding the following discussions. In fact, despite its capital
importance in string theory, we will never use the formalism of conformal quantum �eld theory
and we will try to make the presentation clear and coherent even without this important tool.

We will start by presenting the relativistic action for the string and we will give the fundamental
results of the light-cone quantization which allows to become familiar with some fundamental
features such as the critical dimension and the string's spectrum. After a very brief mention of
the superstring action, we will discuss the action for a string moving in a curved background
and introduce some ideas about compacting extra dimensions.

We essentially follow the two Polchinski's books [27], [28], the Tong's lectures notes [29] and
the recent book written by K. Becker, M. Becker and J.H. Schwarz [30] .

5.1 The action principle

We start by introducing the action describing the relativistic dynamics of a one dimensional
object, a string, moving in the spacetime. Firstly we present the action for the bosonic string,
secondly we briey mention the action for the superstring (type IIA or IIB). We initially consider
a D dimensional spacetime with Minkowskian metric ��� = diag(−;+;+; � � � ;+) and then we
take into account also curved spacetime.

In order to consider a one dimensional object, it is useful to review the action for a point particle
(0 dimensional object). We can parametrize the position in the spacetime of a particle by using
D functions X�(�), with � an arbitary real parameter. The simplest Poincar�e invariant action
would be proportional to the proper time along the world-line, the trajectory of the particle in
the space time:

Spp = −m
Z
d�

q
− _X� _X� (5.1)

where � denote � -derivative and the normalization costant m is the particle's mass. The invari-
ance under reparametrization is a gauge invariance of the theory, since it is a redundacy in the
description of the dynamic.

We can also consider another useful form (quadratic in the derivative and without square root)
of the action by introducing an independent world-line metric �� (�) working with the tetrad
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e(�) =
p
−�� (�):

S 0pp =
1

2

Z
d�
(
e−1 _X� _X� − em2

�
(5.2)

By varying the tetrad, we can eliminate e and �nd the earlier Spp.

A string moving in the spacetime sweeps out a two-dimensional world-sheet and we have to use
two parameters to describe it. Let us denote by X�(�; �) the embedding in spacetime of the
world-sheet. Generalizing the point-particle action, the simplest invariant action is proportional
to the area of the world-sheet and is called the Nambu-Goto action. Let hab = @aX

�@bX
����

with a; b = � or �, the induced metric on the world-sheet, the Nambu-Goto action is

SNG = −T
Z
M

d�d�
p
− dethab (5.3)

where M is the world-sheet and T = 1
2��0

is the tension of the string. �0 is called the Regge
slope for historical reasons and it has units of length-squared. The action is invariant under
Poincar�e tranformations and under reparametrizations.

Similarly to the point particle, we can simplfy the action by introducing an independent world-
sheet metric ab(�; �) with Lorentzian signature (−;+). Therefore we obtain the most important
action for the bosonic string, the Polyakov action:

SP = −T
Z
M

d�d�
p
−ab@aX�@bX

���� (5.4)

where  = det ab. The Polyakov action is equivalent to the Nambu-Goto using the equation
of motion obtained by varying the metric to eliminate it. The symmetries of SP are:

ˆ D-dimensional Poincar�e invariance:

X 0�(�; �) = ��
�X

�(�; �) + a�

0ab(�; �) = ab(�; �)
(5.5)

with ��
� a Lorentz transformation and a� a translation.

ˆ reparametrization or di�eomorphism invariance:

X 0�(� 0; �0) = X�(�; �)

@�0c

@�a
@�0d

@�b
0cd(�

0; �0) = ab(�; �)
(5.6)

where �0a(�; �) are the new coordinates.

ˆ 2-dim Weyl invariance:
X 0�(�; �) = X�(�; �)

0ab(�; �) = e2!(�;�)ab(�; �)
(5.7)

for arbitary !(�; �).

There is no analog of the Weyl invariance in the Nambu-Goto action. This invariance under
local rescaling of the world-sheet metric can be explained by the relation between the Polykov
and the Nambu-Goto action. If we vary the metric in the Polyakov action and impose � = 0,
we obtain ab = 2 hab

cdhcd
, where hab is the induced metric of the Nambu-Goto action. We see

by comparison that the worldsheet metric is only proportional to the induced metric, because
the presence of 1

cdhcd
, called the conformal factor. The conformal factor does not appear in the
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equation of motion for X�, therefore the two description are equivalent but with the adjoint of
this extra redundancy.

If there is no topological obstruction, the reparametrization invariance and the Weyl invariance
allow us to gauge �x ab completely setting ab = �ab. We also notice that, from the point of
view of the world-sheet, the coordinates tranformation law X 0�(� 0; �0) = X�(�; �) shows that
X� is a scalar and � is an internal index since the Poincar�e invariance acts at �xed �; �.

From the Polyakov action we can obtain the equations of motion by varying the action. The
variation with respect the metric de�nes the energy-momentum tensor

T ab(�; �) = −4�
p
− �

�ab
SP = − 1

�0
(
@aX�@bX���� −

1

2
ab@cX�@dX�cd���

�
(5.8)

and the equation of motion for ab is T ab = 0. Varying X� gives the Euler-Lagrange equation:

@a(
p
−ab@bX�) =

p
−r2X� = 0: (5.9)

However, to have a complete variational discussion, we have to consider the boundary condi-
tions. Let's take the coordinate region to be −1 < � < 1 and 0 � � � l , thinking of � as
time variable and � as space. So,

�XSP = T

Z +1

−1
d�

Z l

0

d�
p
− r2X��X

� − T
Z +1

−1
d�
p
− @�X��X

�j�=�
�=0 (5.10)

The boundary term can vanish in some di�erent ways and we can have three di�erent type of
strings:

ˆ closed string : if we impose the conditions X�(�; 0) = X�(�; l), @�X�(�; 0) = @�X�(�; l)
and ab(�; 0) = ab(�; l), the �elds are periodic and so there is no boundary and the string
forms a closed loop.

ˆ open string with Neumann boundary conditions : if the component of the momentum
normal to the boundary vanishes, i.e. na@aX� = 0 on @M where na is normal to the
boundary @M . We don't have restriction on �X�, therefore the end-points of string can
move freely. These conditions respect the Poincar�e invariance.

ˆ open string with Dirichlet boundary conditions : if we impose that the position of the
two string end-points are �xed, we have that �X� = 0. It is su�cient to impose that
X�j�=0 = X�

0 and X�j�=l = X�
l where X�

0 and X�
l are constants and � = 1; : : : ; D−p−1.

Neumann boundary conditions are imposed for the other p+1 functions. This breaks the
Poincar�e invariance; however, following the modern interpretation, we interpret X�

0 and
X�

l as belonging to a Dp-branes, special p-branes on which the fundamental strings can
end.

5.2 The light-cone quantization and the spectrum

Our aim is to introduce the spectrum of the open and the closed strings. We use the light-cone
gauge in order to eliminate the reparametrization and Weyl redundancy; even if this gauge
�xing is not manifestly covariant, it allows us to de�ne an Hilbert space with states with non
negative norm and to describe some important general features of the bosonic string (e.g. the
critical dimension). We do not discuss this method in detail since we are interested in the main
results.
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We de�ne the light-cone coordinate in space-time:

x� =
1p
2

(x0 � x1); xi with i = 2; : : : ; D − 1 (5.11)

We use the lower case for spacetime coordinates and the upper case for the embedding func-
tions. The convenient choice is to set x+ = � , so that x+ will play the role of time and the
correspondent momenta p− the role of energy. The longitudinal variables x− and p+ are spatial
coordinate and momentum, as for the transverse xi; pi.

5.2.1 Open string with Neumann boundary conditions

We will start by considering the open string with Neumann boundary conditions. The gauge
�xing that simpl�es the equations of motion is

X+ = �; @��� = 0; det ab = −1: (5.12)

We have three conditions to �x the two world-sheet parameter and the Weyl scaling. We impose
these gauge conditions and we split X−(�; �) into two pieces: the mean value of X− at �xed �

x−(�) = 1
l

R l

0
d�X−(�; �) and Y −(�; �) = X−(�; �)− x−(�) that acts as a Lagrange multiplier.

Therefore, the Polyakov action becomes:

SP = T

Z +1

−1
d�
�
−l��@�x− +

1

2

Z l

0

d�
(
��@�X

i@�X
i − −1

�� @�X
i@�X

i
��
: (5.13)

The degree of freedom is represented by x−(�); ��(�) and X i(�; �) with i = 2; : : : ; D − 1. If
LP is the correpondent Polyakov lagrangian, the conjugate momenta are

p− = −p+ =
@LP

@(@�x−)
= −T l��

�i =
�LP

�(@�X i)
= T��@�X

i =
p+

l
@�X

i:

(5.14)

The hamiltonian HP can be derived by Legendre transform

HP = p−@�x
− +

Z l

0

d��i@�X
i − LP =

lT

2p+

Z l

0

d�
�

2��0�i�i +
1

2��0
@�X

i@�X
i
�

(5.15)

and we can easily derive the equation of motion:

@�x
− =

HP

p+
; @�p

+ = 0; @�X
i =

c

T
�i; @��

i = cT@2
�X

i (5.16)

from which we have the wave equation

@2
�X

i = c2@2
�X

i (5.17)

with velocity c = l
2��0p+ .

Since the transverse coordinates satisfy a free wave equation, it is useful to expand them
in normal modes. De�ning the center of mass variables xi = 1

l

R l

0
d�X i(�; �) and pi(�) =R l

0
d��i(�; �), we can write the general solution with Neumann boundary conditions:

X i(�; �) = xi +
pi

p+
� + i

p
2�0

1X
n=−1
n 6=0

1

n
�in exp

�
−�inc�

l

�
cos
��n�

l

�
(5.18)
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where �i−n = (�in)y to assure the reality of X i.

We impose the equal time canonical commutation relations to quantize the string modes. The
only non vanishing are:

[x−; p+] = i�−+ = −i; [X i(�);�j(�)] = i�ij�(� − �0) (5.19)

and in terms of normal mode components

[xi; pj] = i�ij; [�im; �
j
n] = m�ij�m;−n: (5.20)

If we �x m and i the modes satisfy a harmonic oscillator algebra with non standard normaliza-
tion: [a; ay] = 1 with �im �

p
ma and �i−m =

p
may. Therefore, we can de�ne the state j0; ki,

where k = (k+; ki), that is the state annihilated by the lowering operators and the eigenstate
of the center-of-mass momenta k:

p+j0; ki = k+j0; ki; pij0; ki = kij0; ki and �imj0; ki = 0 with m > 0: (5.21)

To build a general state we can act on j0; ki with the raising operator and each independent
state can be labeled by the center of mass momenta (k+; ki), which are the degrees of freedom
of a point particle, and the occupation numbers Nin with i = 2; : : : ; D − 1 and n = 1; : : : ;1
which represent the internal degrees of freedom of the oscillation modes. From the spacetime
point of view, this di�erent states represent di�erent particles or spin states. Notice that the
state j0; 0i is the state of an open string with 0 momentum and not the vacuum or zero-string
state.

In order to study the spectrum of the string, we can insert the mode expansion in the Hamil-
tonian 5.15 setting the normal ordering of the operators (lowering operator on the right and
raising operator on the left) and leaving A as unknown constant from the commutators:

HP =
pipi

2p+
+

1

2p+�0

� 1X
n=1

�i−n�
i
n + A

�
: (5.22)

Without the pretense of a systematic treatment, we can easily guess, in analogy to the armonic
ocillator, that A = D−2

2

P1
n=1 n, since we are considering only the D− 2 transverse directions1.

In order to regularize the result, we taking into account the Riemann zeta function �(s) =P1
n=1 n

−s with Re(s) > 0 which admits an unique analytic continuation except for the pole in
s = 1. Therefore, we �nd �(−1) = − 1

12
and

A =
2−D

24
: (5.23)

Considering the relativistic invariant mass m2 = 2p+p−−
PD−1

i=2 pipi and recalling that p− = HP

we have

m2 = 2p+HP − pipi =
1

�0

D−1X
i=2

X
n=−1
n6=0

�i−n�
i
n =

1

�0

�
N +

2−D
24

�
(5.24)

1A sketch of calculation is given by:

1

2

D−1X
i=2

X
n=−1
n6=0

αi
−nα

i
n =

1

2

D−1X
i=2

 X
n>0

αi
−nα

i
n +

X
n<0

αi
−nα

i
n

!
=

1

2

D−1X
i=2

 
2
X
n>0

αi
−nα

i
n +

X
n>0

[αi
−n, α

i
n]

!
=

=

D−1X
i=2

1X
n=1

αi
−nα

i
n +

D − 2

2

1X
n=1

n
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with the level N =
PD−1

i=2

P1
n=1 nNin: the mass is determined by the level of excitation of the

string.

Starting from the lightest state, j0; ki, we have m2 = 2−D
24�0

and the mass-squared is negative if
D > 2. This state is a tachyon and it is problematic for the bosonic string, because it implies
that the string vacuum is actually unstable, since it means that we are expanding around a
maximum of the potential. We still do not know if the bosonic string has another vacuum that
is stable, but we know that there exist string that is tachyon-free, the superstring; so we can
overlook this issue.

Before continuing let us recall the results of the Wigner's theorem: in aD-dimensions Minkowski
spacetime, the Poincar�e group is represented by massive particles, classi�ed by representations
of SO(D− 1), and by massless particles organized according to the representations of the little
group SO(D − 2). Therefore, if we consider the �rst excited state n = 1 we have the state
jN; ki = �i−1j0; ki with mass-squared m2 = 26−D

24�0
. Since in D dimensions there is no way to

organise D − 2 states in a massive representation, we can argue that these states must be
massless. The correpondent particle is a massless vector boson. In such a way, we obtain the
critical values D = 26 and A = −1 and we discover the critical spacetime dimension for having
a Lorentz invariant spectrum (the classical theory is always Lorentz invariant, but there is an
anomaly, except for D = 26). The higher excited states of the open string are massive.

5.2.2 Closed string

To quantize the closed string we proceed similarly, but in addition to the gauge �xing conditions
5.12 it is necessary an additional constraint because there is an additional coordinate freedom:

�0 = � + s(�) mod l (5.25)

since the point � = 0 can be chosen anywhere along the string. If we impose in addition
��(�; 0) = 0, we �x all the gauge freedom, except for � -independent translations �0 = � + s
mod l .

Proceeding in parallel to the open string, we obtain the general periodic solution to the equation
of motion:

X i(�; �) = xi +
pi

p+
� + i

r
�0

2

1X
n=−1
n6=0

(
�in
n

exp

�
−2�in(� + c�)

l

�
+

~�in
n

exp

�
2�in(� − c�)

l

�)
(5.26)

In the closed string there are two di�erent and independent sets of oscillators represented by
�in and ~�in and corresponding to the left-moving and right-moving waves along the string. We
can also impose the canonical commutation relations to the independent degrees of freedom:

[x−; p+] = −1; [xi; pj] = i�ij; [�im; �
j
n] = m�ij�m;−n; [~�im; ~�jn] = m�ij�m;−n: (5.27)

The state annihilated by both the operators �im and ~�im with m > 0 is denoted by j0; 0; ki and
we have to distinguish the level number for the right and left mode: N , ~N . Therefore, the mass
formula is now given by

m2 =
2

�0
(N + ~N + A+ ~A) with A = ~A =

2−D
24

: (5.28)

Eventually, the residual gauge freedom for � -independent �-translations allows us to �x N = ~N .
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As for the open string, the lighest state j0; 0; ki is a tachyon for D > 2.

The �rst excited states are �i−1 ~�i−1j0; 0; ki, them mass-squared is m2 = 26−D
6�0

and they does not
form a complete representation of SO(D−1). Therefore, these states are massless, D = 26 and
A = ~A = −1. They are a representation of SO(24). This representation can be decomposed
into a traceless symmetric tensor G�� , an anti-symmetric tensor B�� and a scalar �. G��

represents a particles with spin 2, the graviton, B�� is called the Kalb-Ramond �eld and �
is called the dilaton. By applying the creation operators, it is possible to generate the other
excited massive states of the theory.

From the study of the interactions, it is known that only theories with closed string or closed
plus open strings are consistent. Consequently, the principal �eld content of the bosonic string
are G�� ; B�� and � for the closed string and G�� ; B�� ;� and A� for the closed plus open string,
where A� is a massless vector boson of spin 1.

5.3 The �-model in complex coordinates

The Polyakov action is the action that describes the relativistic dynamics of the bosonic string.
It is useful to rewrite it in the Euclidean spacetime using complex coordinates. In such a way,
from the point of view of the world-sheet, the �-model describes the dynamics of D free massless
scalar �elds in two dimensions.

We can substitute the world-sheet metric with the Euclidean metric, ab ! �ab, in the Polyakov
action 5.4 because we have enough gauge freedom to set the world-sheet metric to the Minkowski
one. The relation between Minkowski (�; �) and Euclidean (�1; �2) spacetime is given by a
standard analytic continuation; we can easily change from Euclidean to Minkowskian replacing
�2 ! i� . Hence, the action takes the form:

S� =
T

2

Z
d2�
�
@1X

�@1X� + @2X
�@2X�

�
: (5.29)

Furthermore, it is useful to adopt complex coordinates:

z = �1 + i�2 ; �z = �1 − i�2 (5.30)

where �z means the complex conjugate of z. We can de�ne also the derivatives

@z = @ =
1

2
(@1 − i@2) ; @z̄ = �@ =

1

2
(@1 + i@2) (5.31)

which have the obvious properties: @z = 1; @�z = 0; �@z = 0 and �@�z = 1. Then the metric
becomes

gzz̄ = gz̄z =
1

2
; gzz = gz̄z̄ = 0; gzz̄ = gz̄z = 2; gzz = gz̄z̄ = 0 (5.32)

and we have to pay attention when we lower or raise indices. From the Jacobian, we have the
measure

d2z = 2d�1d�2: (5.33)

Therefore, the action becomes

S = T

Z
d2z@X� �@X� (5.34)

The classical equations of motion are

@ �@X�(z; �z) = 0 (5.35)
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From the scriptures @(�@X�) = �@(@X�) = 0, it follows that @X� is holomorphic and �@X� is
anti-holomorphic. In the Minkowski spacetime an holomorphic �eld is function only of �−� and
an anti-holomorphic �eld is function only on � + �. Thus, an holomorphic �eld is left-moving
while an anti-holomorphic �eld is right-moving.

5.4 What about fermions?

The bosonic string does not contain fermions in its spectrum. In order to introduce fermions in
string theory, it is necessary to introduce fermionic spacetime �elds in addition to the scalars
X�. In this section we only want to introduce the action for the superstring theory, without
any detail, calculation or development.

In the bosonic string the mass-shell condition is the Klein-Gordon equation for the scalar �eld
in the momentum space:

p�p
� +m2 = 0 (5.36)

In order to introduce spacetime fermions, we should satisfy the Dirac equation

ip�Γ� +m = 0 (5.37)

where Γ is the gamma matrices satisfying the Cli�ord algebra fΓ�;Γ�g = 2��� . Furthermore,
we can guess that the gamma matrices are the center-of-mass mode of the anticommuting
world-sheet �eld  �. Then, we can consider the following action:

S =
1

4�

Z
d2z

 
2

�0
@X� �@X� +  � �@ � + ~ �@ ~ �

!
(5.38)

where  � and ~ � are D anticommuting world-sheet �elds, superparteners of X�, respectively
holomorphic and anti-holomorphic.

One can show that from this action the resulting string theory has spacetime fermions and
no tachyon. The critical spacetime dimension is D = 10, so the world-sheet �elds for the
superstring are 10 free scalars and 10 free fermions. Regarding the continuation of our work,
we are not interested in this fermionic �elds and we mainly focus on the content of the bosonic
string.

5.5 Strings in curved spacetime

Since string theory aims to be a theory that can also describe gravity and gravity is described
as a geometric deformation of the at spacetime, it is interesting to consider the theory that
describes strings moving in a curved spacetime.

Considering the simple case of a point particle in a curved background, we observe that we
have to substitute the spacetime at metric with a general metric G�� in the point-particle
action. Hence, variating X�, we obtain the geodesic equation that represents the motion of a
particle in a gravitational �eld. We can make the same replacement in the Polyakov action. In
this section we consider the Polyakov action in Euclidean spacetime and we indicate with gab,
instead of ab, the Euclidean world-sheet metric with signature (+;+); we do not take gab = �ab
because we do not �x the Weyl gauge redundancy. The corresponent action is:

S� =
T

2

Z
d2�
p
ggabG��(X)@aX

�@bX
� : (5.39)

54



This replacement can be further justi�ed in the conformal �eld theory framework. Without
entering into details, we can consider the spacetime metric close to the at one: G��(X) =
��� + ���(X) with ��� small. Exponentiating S� in the path integral

exp(−S�) = exp(SP )

�
1− T

2

Z
d2�
p
ggab���(X)@aX

�@bX
�

�
(5.40)

one can show that the term proportional to � is the vertex operator for the graviton state of
the string. In other words, putting a curved background in the action it is not an insertion of
the gravity by hand, but it is precisely the background for the graviton states already contained
in the string.

This may suggest a natural generalization obtained by including backgrounds of the other
massless string states:

S� =
T

2

Z
d2�
p
g
n(
gabG��(X) + i�abB��(X)

�
@aX

�@bX
� + �0R�(X)

o
(5.41)

where B�� is the antisymmetric Kalb-Ramond �eld, �ab is the Levi-Civita pseudotensor nor-
malized

p
g�12 = 1, � is the dilaton and R is the Ricci world-sheet scalar.

The Lorentz invariance of the theory is ensured if G�� and B�� transform as tensors and � as
a scalar. From the path integral point of view this corresponds to a �eld rede�nition X 0�(X);
in contrast, from the spacetime point of view it is a coordinate transformation. The action is
also invariant under a generalization of the U(1) gauge transformation, which we will study in
details in the following:

B��(X)! B��(X) + @���(X)− @���(X): (5.42)

Under this tranformation the Lagrangian is inviariant up to a total derivative. Therefore, we
can consider a three-index �eld strength

H��� = @�B�� + @�B�� + @�B�� (5.43)

which is invariant under this gauge tranformation.

This theory, dependent only on gauge invariant objects, describes an embedding given by the
�eld coordinates X� from the world-sheet to the target space. Since the kinetic term is �eld
dependent, i.e. G��(X) depends on X�, the �eld space is a curved manifold and the theory
in the world-sheet is an interacting quantum �eld theory. This theory is called nonlinear �-
model. If we expand the kinetic term around the classical solution X�(�) = x�0 and denote by
X�(�) = x�0 + Y �(�) we obtain the form

G��(X)@aX
�@bX

� =

�
G��(x0) + @�G��(x0)Y � +

1

2
@�@!G��(x0)Y �Y ! + : : :

�
@aY

�@bY
� (5.44)

in which we can see the interaction terms, starting from the cubic and so on. One can see
that the nonlinear �-model is also renormalizable: the dimension of �elds Y � is zero and all
interactions have dimension two; nevertheless the couplings are in�nite in number.

If the characteristic radius of curvature of a target space is rc, the e�ective dimensionless
coupling in the theory is

p
�0r−1

c because derivatives of the metric are of order r−1
c . Perturbation

theory in 2-dim quantum �eld theory can be a useful tool, if the coupling is small, i.e. if the
characteristic length scale of the string is much smaller than the radius of curvature. Notice that,
since the characteristic length scale is longer than the string, we can ignore the internal structure
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of the string and develop a low energy e�ective �eld theory whose coupling are determined by
the string theory. We will discuss the action for such a theory at the end of this section. The
assumption

p
�0r−1

c � 1 is also implicit in the restriction only to massless backgrounds.

From the point of view of the 2-dimensional world-sheet, changing the �elds G�� , B�� and �
seems to give a new di�erent theory. However, from the point of view of the full string theory,
these �eld are merely di�erent backgrounds, a sort of di�erent states in the same theory. This
is an important feature of string theory: there is no free parameters and the coupling constants
depend on the states and are determined in principle by the dynamics.

The action 5.41 is classically Weyl invariant under global transformation (independent on �);
the terms containing G�� and B�� are also classically local Weyl invariant, but the dilaton term
is not. Furthermore, it is known that the Weyl symmetry is anomalous. In order to correctly
quantize the theory, not all con�gurations of the �elds are admitted: we have to consider the
Weyl transformation of the dilaton and the quantum e�ects for all the �elds to obtain some
constraints for the background �elds.

We can express the Weyl invariance requiring that the energy-momentum tensor is traceless
and the presence of an anomaly is phrased in T aa 6= 0. On the other hand, regarding the string
theory in a curved background as an interacting theory in 2-dimensions, we can interpret the
Weyl anomaly in term of the renormalization group ow. If we try to regulate the occurrent
divergences in the interacting process as usual, the renormalization scheme often introduces
some energy scale under which Weyl invariance is broken. Weyl invariance is the independence
of the theory on the energy scale, hence, intuitively, we have to require that the corrispondent
renormalization group �-functions must vanish. In fact, the �-functions govern the dependence
of the physics on world-sheet scale. This fact can be formalized expressing the trace of the
energy momentum tensor in terms of the �-functions, starting from the linear approximation
and then adding loops contributions. We report only the results, without any derivation.

T aa = − 1

2�0
�G��g

ab@aX
�@bX

� − i

2�0
�B���

ab@aX
�@bX

� − 1

2
�ΦR: (5.45)

From the one-loop �-functions computations, we have

�G�� =�0R�� + 2�0r�r��−
�0

4
H��!H

�!
� +O(�02)

�B�� =− �0

2
r!H!�� + �0r!�H!�� +O(�02)

�Φ =− D − 26

6
− �0

2
r!r!� + �0r!�r!�− �0

24
H���H

��� +O(�02)

(5.46)

where R�� is the spacetime Ricci tensor, distinguished from the world-sheet Ricci tensor Rab.
The conditions that the world-sheet theory be Weyl invariant is thus

�G�� = �B�� = �Φ = 0: (5.47)

These are a sort of equations of motion. �G�� = 0 resembles Einstein's equation in presence of
sources from the antisymmetric tensor �eld and the dilaton. �B�� = 0 is the generalization of the
Maxwell's equation for the Kalb-Ramond �eld determinig the divergence of the �eld strength.

We can look at the equation of motion 5.47 in another di�erent perspective; they can be derived
from a spacetime e�ective action. This action takes the form:

S =
1

2k2
0

Z
dDx
p
−Ge−2Φ

(
−2(D − 26)

3�0
+ R− 1

12
H���H

��� + 4@��@�� +O(�0)

)
(5.48)
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where R is the spacetime Ricci scalar. The normalization constant k0 is not determined by the
�eld equation and has no physical signi�cance because it can be changed by a rede�nition of
�. One can take the variation

�S = − 1

2k2
0�
0

Z
dDx
p
−Ge−2Φ

(
�G���G�� + �B���B�� +

�
2��− 1

2
G���G��

��
�G!! − 4�Φ

�
(5.49)

and verify that one can derive the equations 5.47.

Finally, we can consider another form of the e�ective spacetime action which contains exactly
the Hilbert-Einstein action. If we rede�ne the metric by a Weyl transformation

~G��(x) = exp(2!(x))G��(x) (5.50)

the Ricci scalar becomes

~R = exp(2!)
n
R− 2(D − 1)r2! − (D − 2)(D − 1)@�!@

�!
o
: (5.51)

Setting

! =
2�0 − �

D − 2
(5.52)

with �0 the constant part of the dilaton and

~� = �− �0 (5.53)

which has vanishing expectation value, we obtain the action:

S =
1

2k2

Z
dDx

p
− ~G

(
− 2(D − 26)

3�0
e4Φ̃=(D−2) + ~R− 1

12
e−8Φ̃=(D−2)H���

~H���−

− 4

D − 2
4@� ~�~@� ~� +O(�0)

)
:

(5.54)

Tildes has been inserted to remind that one has to raise the indices by the new metric ~G�� .

We �nd the Hilbert action
p
− ~G ~R=2k2, therefore the coupling k = k0e

Φ0 is the gravitational
coupling that in four dimensions can be expressed in terms of the Newton constant. G�� is
called the sigma-metric or string metric, instead ~G�� is called the Einstein metric.

5.6 Compacti�cation of extra dimensions

One important bad feature of the string theory is the need of extra dimensions to have a gauge
invariant quantizable theory, 26 dimensions for the bosonic string and 10 for the superstring.
The presence of general relativity in the low energy e�ective spacetime action provides a sort
of natural way to account for the extra dimensions. Since the geometry of the spacetime is
dynamical, there may be special solutions in which some dimensions are large and at as usual
and others are small, curved and fold in on themselves. As an example, the metric would be

GMN =

�
��� 0
0 Gmn(xp)

�
(5.55)

where M;N = 0; : : : ; 25, �� = 0; : : : ; 3 and m;n; p = 4; : : : ; 25. The coordinates are divided
into four at 'spacetime' coordinates and 22 'internal' coordinates, assumed to be compact.
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More generally, the D-dim spacetime is of the form Md � K, where Md is a d-dimensional
Minkowsky space and K is some (D− d)-dimensional compact Riemannian space. The physics
at length scales much longer than the size of K is the same as in d-dimensional Minkowski and
the (D − d) dimensions are said to be compacti�ed. These compact dimensions are so small
that they have never been observed.

We will present the simplest compacti�cation of string theory consisting in a periodical identi-
�cation for the compact dimensions. Then, we will sketch a more complicated procedure called
orbifold.

5.6.1 Toroidal compacti�cation

The toroidal compacti�cation has not been introduced into the realm of string theory. The �rst
appearence was in the 1914 in the attempt of unifying the electromagnetic and gravitational
�elds as components of a single higher dimensional �eld.

As a starting point let us consider a 5-dim theory with x4 periodic: x4 � x4 + 2�R and the
others x� with � = 0; : : : ; 3 non compact. The 5-dim metric separates into three components
:G�� , G�4 and G44 which, from the 4-dim point of view, are a metric, a vector and a scalar.

Generalizing to D = d+ 1 dimensions we take the d coordinate to be periodic and we leave the
others unchanged.

xd � xd + 2�R (5.56)

The metric tensor can be splitted in compact and non compacts directions and it is parametrized
by

ds2 = GD
MNdx

MdxN = G��dx
�dx� +Gdd(dx

d + A�dx
�)2 (5.57)

where M;N = 0; : : : ; d and �� = 0; : : : ; d− 1. We establish that G�� , Gdd and A� depend only
on the noncompact coordinates x�. Notice also that GD

�� 6= G�� and that the metric 5.57 is the
most general metric invariant under translations of xd. The other symmetries are the change
of coordinates for the compact x0�(x) and a gauge transformation(

x� ! xd + �(x)

A� ! A� − @��(x)
(5.58)

This is the �rst U(1) symmetry that appears. This is called the Kaluza-Klein mechanism.

We can see the e�ect of this periodical identi�cation by considering a massless scalar � in D
dimensions. We assume for simplicity that Gdd = 1. Since the d dimension is periodic, the
momentum in this direction is quantized pd = n

R
. Expanding the xd dependence in a complete

set

�(xM) =
1X

n=−1

�n(x�)e
inxd

R (5.59)

the D-dimensional wave equation @M@
M� = 0 becomes

@�@
��n(x�) =

n2

R2
�n(x�) (5.60)

and the modes �n of the D-dim �eld � becomes an in�nite set of d-dim �elds labeled by n. The
mass-shell condition

p�p� = −n
2

R
(5.61)
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does not vanish if pd 6= 0. Therefore, at energy smaller than R−1 the physics is the d-dimensional
and only the xd-independent �elds remain. At energy above R−1 the Kaluza-Klein states are
visible. These state are charged under the gauge transformation 5.58 with charge pd and they
are massive.

One can also have massless charged �elds by considering the spacetime e�ective action in a
curved background 5.48. Setting Gdd = e2�, the Ricci scalar for the metric 5.57 takes the form:

R = Rd − 2e−�r2e� − 1

4
e2�F��F

�� (5.62)

with R is the Ricci scalar from GD
MN and Rd from G�� . Considering only the terms of the

action 5.48 containing the graviton and the dilaton and integrating over the d-direction, one
obtains:

SGΦ =
1

2k2
0

Z
dDx

p
−GDe−2Φ(R + 4@��@��)

=
�R

k2
0

Z
ddx
p
−Gde

−2Φ+�

 
Rd − 4@��@

�� + 4@��@��− 1

4
e2�F��F

��

!

=
�R

k2
0

Z
ddx
p
−Gde

−2Φd

 
Rd − @��@�� + 4@��d@

��d −
1

4
e2�F��F

��

!
:

(5.63)

In the integration we have assumed that all the �elds do not depend on xd. Gd denotes
the determinant of the d-dimensional metric G�� and �d denotes the d-dimensional dilaton
�d = �− �

2
. There is no potential for � and �, thus these �elds are massless.

One can de�ne the covariant derivative

@� + ipdA� = @� + in ~A� (5.64)

with ~A� = Aµ
R

. We can also de�ne the d-dimensional gauge and gravitational couplings. The

coe�cient of ~F�� ~F �� is conventionally − 1
4g2
d

and the coe�cient of the Hilbert action is 1
2k2 .

Therefore, the couplings are

g2
d =

k2
0e

2Φd

�R3e2�
; k2 =

k2
0

2�Re−2Φd
(5.65)

and they are related via the invariant radius � = Re�:

g2
d =

2k2
d

�2
: (5.66)

We can also consider the antisymmetric tensor which gives rise to another U(1) gauge symmetry.
We split BMN into B�� and Bd� =: B� in the usual way. The gauge parameters �M of the
transformation BMN ! @M�N − @N�M separates into �� with the transformation

B�� ! @��� − @��� (5.67)

and �d with the ordinary U(1) gauge transformation

B� ! B� + @��d: (5.68)

The �eld strength for the U(1) gauge �eld B� is Hd�� = @�Bd� − @�Bd�. We also de�ne a sort
of Chern-Simons term

~H��� = (@�B�� − A�Hd��) + cyclic permutations (5.69)
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to taking into account the e�ect of the metric GMN in raising the indices of HMNL. ~H��� is
gauge invariant because the variation A� ! A�−@�� can be compensated by the transformation
B�� ! B�� − �Hd�� that is precisely of the type 5.67. This type of double transformation will
be discussed in detail in the following chapter.

Eventually, the action for the antisymmetric tensor becomes

SB =
1

24k2
0

Z
dDx

p
−GDe−2ΦHMNLH

MNL

=
�R

12k2
0

Z
ddx
p
−Gde

−2Φd

�
~H���

~H��� + 3e2�Hd��H
��
d

�
:

(5.70)

There is no way to couple the potential BMN minimally to others �elds.

So far we have covered toroidal compacti�cation in a generic quantum �eld theory. Now, we
want to specialize to the case of string theory considering the conformal �eld theory with a
single periodic scalar �eld. We do not discuss this topic in detail, but we only focus into two
main e�ects that toroidal compacti�cation produces. We consider the periodical identi�cation
for the scalar

Xd � Xd + 2�R (5.71)

and we set Gdd = 1; the world-sheet action and the equation of motion remain the same of the
non compact theory. However, there are two e�ects due to the periodicity related to the two
U(1) symmetries described above.

First, string states must be single-valued under the periodical identi�cation 5.71. If e2�iRpd is
the unitary operator that translates strings once around the periodic dimension, it must leave
states invariant. Therefore, the center-of-mass momentum in the compact direction is quantized

kd =
n

R
; n 2 Z (5.72)

like the discussion before. The �rst U(1) symmetry, the one related to A�, is the symmetry
under translation around the compact circe S1 and the conserved charge is the center-of-mass
momentum in the compact direction.

The second e�ect is speci�c for string theory. One can think of a closed string that wraps
itself numerous times around the compact direction. In this case we say that the closed string
winds around this direction and the winding number w 2 Z indicates the number of windings.
Matematically we write

Xd(� + 2�) = Xd(�) + 2�Rw: (5.73)

From the point of view of the world-sheet, strings of nonzero winding number are topological
solitons, i.e. topologically nontrivial �eld con�gurations like vortices. A consistent string theory
must include strings with nonzero winding number. w is the conserved charge of the second
U(1) symmetry considered before.

5.6.2 Orbifolds

We briey sketch another compacti�cation procedure that is fundamental in string theory
since it is more than a simple way to compactify some dimensions, but it allows to produce
new di�erent string theories.

Instead of a periodic identi�cation, we can identify points under the reection

Xd � −Xd (5.74)
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where d is the last coordinate in a D = d + 1-dim spacetime. Therefore, the half-space region
Xd � 0 is su�cient to describe the theory and the hyperplane Xd = 0 is the boundary of this
region. The points of the hyperplane are �xed points under reection, i.e. they do not change
under this transformation. More generally, we could identify points under a simultaneous
reection of k coordinates

Xm � −Xm; D − k � m � d (5.75)

and the space of �xed points is given by XD−k = � � � = Xd = 0. For k � 2 this space is a
singularity, e.g. a conic singularity for k = 2.

The combination of the reection 5.74 after the periodical identi�cation 5.71 generates a com-
pact space. The action of the toroidal identi�cation reduces the non compact d direction to the
compact S1, then the identi�cation under reection of the circle produces a line segment with
0 � Xd � �R as a fundamental region. The �xed points under both the transformations are the
end points of the segment. More generally, we can consider a generic periodical identi�cation:

Xd � Xd + 2�mR; and Xd � 2�Rm−Xd: (5.76)

Similarly we can identify the k-torus under 5.75. We obtain 2k �xed points Xm = 0; �R for
each compact directions. Orbifolds is the name of the singular space obtained in this way.
We indicate Rk=Z2 if the starting space is not compact and Tk=Z2 if the identi�cation is in a
compact space, the k-torus.

One can show that string theory on such singular space makes sense and it is not so di�erent
from toroidal compacti�cation, even if more symmetry is broken. As in the previous case, 5.74
has two e�ects. The �rst is the invariance under reection of the string �elds, i.e. they must be
equal at identi�ed points. Therefore, the center-of-mass string momentum becomes discrete.
Second, there is a new sector in the closed string spectrum, in which

Xd(�1 + 2�) � −Xd(�1): (5.77)

This identi�cation is possible because these are the same points after the reection in space-
time. The strings in this sector are called twisted states. This has a parallel in the toroidal
compacti�cation in which strings are closed only up to periodic identi�cation labeled by the
winding number.

Furthermore, we want to only mention that the orbifold procedure allows us to construct new
string theory from one other theory. If a string theory is described by a CFT and H is a
discrete symmetry group of this theory, we can form a new CFT in two steps. First, we add
the twisted sectors, in which F , a generic closed string world-sheet �elds, is periodic only up
to some transfomation h 2 H

F (�1 + 2�) � h � F (�1): (5.78)

Second, we restrict the spectrum to H-invariant states by a projection. This procedure can
be also thought of as gauging the discrete group H. Intuitively, the twisted sectors can be
considered as non trivial gauge con�gurations on the world-sheet and the projection corresponds
to consider only physical operators that are gauge invariant.

61





Chapter 6

't Hooft anomalies cancellation in
toroidal compacti�cation of 1
dimension

In this chapter we want to focus on the symmetries of a string theory with one direction
compacti�ed on a circle. As we will see, after the periodical identi�cation of one direction,
mixed 't Hooft anomalies potentially arise between di�erent subgroups of the global symmetry
group of the world-sheet theory. In principle, these anomalies are not an issue for the world-
sheet theory; however, they become dangerous when we consider the theory from the spacetime
point of view because global symmetry on the world-sheet are coupled to dynamical gauge �eld
in spacetime. Nevertheless, the presence of higher form symmetries combined in a non-trivial
2-group conspires in such a way the anomalous phase is exactly canceled. We will verify this
explicitly for the global symmetry arising from the toroidal compacti�cation.

6.1 Spacetime action after toroidal compacti�cation

The �rst step of our discussion is to recall the spacetime e�ective action of the string and to make
explicit the gauge symmetries due to the dimensional reduction by periodical identi�cation of
one coordinate. We refer to 5.6.1 for a complete discussion; here the attention will be aimed at
explaining the gauge transformations to which the di�erent �elds are subjected. The starting
point is the spacetime e�ective action describing the low-energy behavior of a string moving
in a curved background. We only consider bosonic string or the NS-NS background of type II
superstring.

S =
1

2k2
0

Z
dDx
p
−Ge−2Φ

(
−2(D − 26)

3�0
+ R− 1

12
HMNRH

MNR + 4@��@�� +O(�0)

)
(6.1)

where HMNR = @MBNR + @NBRM + @RBMN . HMNR is gauge invariant under

BMN ! BMN + @M�N − @N�M ; (6.2)

therefore, the action is invariant under this gauge symmetry.

After the periodical identi�cation of the d-direction in a D = d + 1 dimensional spacetime,
xd � xd + 2�R, the metric splits in three parts: the d dimensional metric G�� , the vector
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A� = Gd� and a scalar Gdd (see 5.57). The indices run in the usual way: M;N = 0; : : : ; d and
�� = 0; : : : ; d− 1. The vector A� transforms under a U(1) gauge symmetry as

A� ! A� + @��: (6.3)

The origin of this U(1) symmetry is the requirement of the invariance under general transfor-
mation of the compact coordinate whose in�nitesimal form is xd ! xd + �(x).

Also the Kalb-Ramond �eld BMN splits in two parts, B�� and Bd� =: B�, but the identi�cation
is a bit trickier. To justify the de�nition of ~H��� in 5.69, one should �rst identify the �eld
strength using tangent-space-indices, i.e. orthonormal Vielbein basis, and then go back to the
original coordinate basis. Therefore, without entering in detail, we obtain

Hd�� =: H�� = @�B� − @�B� (6.4)

and
~H��� = (@�B�� − A�H��) + cyclic permutations: (6.5)

The gauge parameters �M of the transfomation 6.2 separates into �� and �d. The transformation
for B� is

B� ! B� + @��d (6.6)

and that for B�� is

B�� ! @��� − @��� − �H�� : (6.7)

In the last variation, the terms dependent on �� is due to the original gauge symmetry 6.2,
instead the term dependent on � is required to assure the invariance of ~H���. Since the iden-
ti�cation in tangent-space-indices concerns the �eld strength, we have some freedom in the
de�nition of B�� . Instead of assuminig B�� = BD

�� , where BD
�� are the components of the

D-dim tensor, we can de�ne

B�� = BD
�� +

1

2
(A�B� − A�B�): (6.8)

The new �eld strength, that we indicate H��� again, becomes in a certain sense more symmetric:

H��� = (@�B�� −
1

2
A�H�� −

1

2
B�F��) + cyclic permutations (6.9)

with F�� = @�A� − @�A�. The invariance under the gauge transformations 6.6 and 6.3 is
guaranteed if we set the transformation for B�� :

B�� ! @��� − @��� +
1

2
(B�@��−B�@��+ A�@��d − A�@��d) (6.10)

The set of transformation 6.3, 6.6 and 6.10 are called the Nicolai-Townsend transformations.
Finally, following the discussion in 5.6.1, after the integration over xd, we obtain the spacetime
e�ective action in d = D − 1 dimensions:

S =
�R

k2
0

Z
ddx
p
−Gde

−2Φd

�
Rd − @��@�� + 4@��d@

��d

− 1

4
e2�FA

��F
A�� − 1

12
H���H

��� − 1

4
e−2�FB

��F
B��

� (6.11)
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6.2 World-sheet action after toroidal compacti�cation

Let us consider the non-linear sigma model for a string moving in a curved spacetime. The
world-sheet action is

S� =
T

2

Z
d2�
p
g
n(
gabGMN(X) + i�abBMN(X)

�
@aX

M@bX
N + �0R�(X)

o
: (6.12)

We want to consider the world-sheet action for a string moving in a D-dimensional curved
spacetime with one dimension constrained in a circle, i.e. subjected to the identi�cation Xd �
Xd + 2�R. We follow [31] as main reference. Since we want to focus on the terms containing
the periodic scalar Xd, we can neglect the dilaton term and, at low energy, we assume that
the spacetime �elds are independent of Xd. The metric and the Kalb-Ramond �eld split as we
have already seen (5.57 and 6.8); therefore, we can substitute the decomposed �elds into the
action above and we obtain the following action:

S� �
T

2

Z
d2�
p
g
n
gabhab −GddF

2 + i�ab(Bab + AaBb − 2FaBb)
o

(6.13)

where Fa = @aX
d + Aa and

hab = G��@aX
�@bX

� ; Bab = B��@aX
�@bX

� ; Aa = A�@aX
� and Ba = B�@aX

� (6.14)

are the pull-backs of the (D − 1)-dimensional �elds to the world-sheet.

The following step is to write the world-sheet action for the periodic scalar in terms of di�erential
forms, that represent a more useful formalism for our purposes. A generic di�erential form can
be written as F = Fidx

i and the integral
R
d2xFiGj�

ij can be written with the wedge product:R
d2xFiGj�

ij =
R
FiGjdx

i ^ dxj =
R
F ^ B. We set Gdd = 1 for simplicity and we neglect the

terms containing hab that do not depend on Xd. We denote with B2 the 2-form Babd�
a ^ d�b

and with A1; B2 and Xd the other two 1-form and the scalar 0-form. Therefore, the world-sheet
action for the compacti�ed scalar is

S �− T

2

Z n
(dXd + A1) ^ �(dXd + A1) + i[B2 + A1 ^B1 − 2(dXd + A1) ^B1]

o
=

=− T

2

Z n
(dXd + A1) ^ �(dXd + A1) + i[B2 − 2dXd ^B1 − A1 ^B1]

o
:

(6.15)

The square-root of the determinant of the metric is encoded in the Hodge dual operator � since
the Levi-Civita pseudotensor is normalized

p
g�12 = 1. The gauge transformations written in

terms of forms become
A1 ! A1 + d�

Xd ! Xd − �
(6.16)

B1 ! B1 + d�d (6.17)

and
B2 ! B2 + d�1 +B1 ^ d�+ A1 ^ d�d + d�d ^ d� (6.18)

with �1 the 1-form correspondent to the gauge parameter ��. The term d�d ^ d� is necessary
since the group symmetry is the compact U(1) and the integral over 1-cycle of d� or d�d does
not vanish but are integer. In the following we will abandon the subscrit d in �d and the
superscript d in Xd.
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6.3 't Hooft anomaly for a periodic free scalar in 2D

In this section we will discuss a general fact concerning a periodic scalar �eld in a 2-dimensional
�eld theory [13]. Let us consider a free scalar X in a 2-dimensional space. The two 1-form
current dX and �dX are the Noether currents that correspond to two 0-form global symmetries.
The currents are conserved since the scalar is free.

If the target space of X is S1, i.e. we have the identi�cation X � X + 2�R for some R > 0, the
symmetry group is U(1)�U(1): one U(1) with current �dX is associated with the momentum
in the circle and the other with current dX with the winding around S1. The crucial fact
is that there is a mixed 't Hooft anomaly between these two U(1) symmetries. If we couple
the currents with the background gauge �elds for the two U(1) symmetries, the action is not
invariant under the U(1)�U(1) gauge transformations. This means that the gauge �elds cannot
be made dynamical. Let us analyze it in detail [13].

The action for the free scalar and the background �elds coupled to the currents is

− S = − 2�

2g2

Z
(dX + A1) ^ �(dX + A1) + 2�i

Z
B1 ^ dX (6.19)

with g a free positive parameter. The gauge transformations for the background �elds are given
by:

A1 ! A1 + d�; B1 ! B1 + d� (6.20)

while the scalar transforms as
X ! X − �: (6.21)

The action is invariant under the B1 gauge transformation; however, the second term is not
invariant under the A1 gauge transformation

2�i

Z
B1 ^ dX ! 2�i

Z
(B1 ^ dX −B1 ^ d�) (6.22)

and this term cannot be canceled by a gauge transformation for B1.

We can try to modify the second term so as to make it invariant under the A1 gauge transfo-
mation

2�i

Z
B1 ^ (dX + A1); (6.23)

but, unfortunately, it is no longer invariant under the transformation for B1:

2�i

Z
B1^(dX+A1)! 2�i

Z
(B1+d�)^(dX+A1) = 2�i

Z n
B1^(dX+A1)+d�^A1

o
(6.24)

and there is no way to adsorb d� ^ A1 in a total derivative or to cancel with other terms.

Therefore, one of the U(1) symmetry is always violated: when we couple the action to back-
ground �elds A1; B1 the partition function is no longer invariant under gauge transformations.
This is precisely the mixed 't Hooft anomaly for the periodic free scalar in two dimensions.
A similar argument hold for the mixed 't Hooft anomaly for the electric and magnetic U(1)
1-form symmetries (1.2.3).

This argument is valid only on a classical level and we can wonder if there are modi�cations
that arise at quantum level. In order to discuss this problem, we can consider the partition
function in presence of a non-trivial background for the periodic scalar, that is described by an
Euclidean action de�ned on a 2-dimensional world-sheet torus T2.
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Firstly, we set the background �elds to 0 and we consider the theory in the absence of back-
ground. Let � and � the two coordinates in the world-sheet with period 1 subjected to the
identi�cation � � � + 1 and � � �+ 1. The scalar is a map X : T2 ! S1

R, where S1
R is a circle

of radius R, i.e. it is subjected to the identi�cation X � X + 2�R. Since the world-sheet is a
torus, X must transform as

X ! X + 2�n1R when � ! � + 1

X ! X + 2�n2R when �! �+ 1
(6.25)

where n1; n2 2 Z count the number of times the worldsheet T2 is wrapped around the target
space S1

R. Therefore, there are in�nite solitonic sectors labeled by the integers n1; n2 and we
have to sum them in the partition function:

Z[A = B = 0] =
X
n1;n2

Z
DXe−S[X;n1;n2]: (6.26)

We can decompose the boson �eld in two components: X = Xcl+Xq, where Xcl is the solution of
the equation of motion with periodicity depending on n1, n2 and Xq is the quantum uctuation
with standard periodicity Xq ! Xq when � � � + 1 or � � �+ 1. The expansion of the action

S[X] =
1

2

Z
d�d�X@a@

aX (6.27)

around the classical solution is

S[Xcl+Xq] = S[Xcl]+

Z
d�0

�S

�X(�0)

�����
Xcl

Xq(�
0)+

1

2

Z
d�0d�00Xq(�

0)
�S

�X(�0)�X(�00)

�����
Xcl

Xq(�
00)+: : :

(6.28)
where we have denoted with �0 or �00 the set of the two world-sheet coordinates (�; �). The
term �S

�X(�0)

��
Xcl

vanishes since the solution of the classical equation of motion is the solution
that minimize the action. The second term takes the form

�S

�X(�)�X(�0)
=

Z
d�f�(2)(� − �0)@a@a�(2)(� − �00)g: (6.29)

Since the action is quadratic in the �elds X, the partition function factorizes:

Z[A = B = 0] =
X
n1;n2

e−S[Xcl;n1;n2]Zq with Zq =

Z
DXq exp

�
−
Z
d�d�Xq@a@

aXq

�
(6.30)

and Zq depends only on the quantum uctuations which are periodic in the standard way.

Now we consider the same partition function in presence of non trivial background �elds. For
simplicity, we take only backgrounds that are at when restricted on the world-sheet, i.e.
dA = dB = 0. We study only at background since we are mainly interested in the study of
discrete groups and the discussion is simpler than the one with non-trivial curvature. A useful
choice is

A1 =�1d� + �2d�

B2 = �1d� + �2d�
(6.31)

where �i; �i 2 R are real constants. Flat backgrounds are characterized by the holonomy of
the gauge �elds along the two non-trivial cycle of the world-sheet, one in each of the periodic
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directions of T2. We denote with 1 the cycle along � coordinate and 2 the one along the �
direction. The holonomies of the gauge �elds are:I

i

A1 = �i and

I
i

B1 = �i: (6.32)

Since the gauge group is U(1) we can shift the holonomies by integer; in fact, considering the
phase

g = e2�i(m1�+m2�) 2 U(1) (6.33)

well de�ned on T2 if m1;m2 2 Z and making the gauge transformation

A1; B1 ! A1; B1 +
i

2�
g−1dg (6.34)

we can shift �i and �i by the integer mi. Therefore, the di�erent at gauge backgrounds are
parametrized by �i mod Z and �i mod Z.

In order to study how the partition function changes in presence of such non-trivial backgrounds,
we can do a 'singular' gauge transformation to eliminate the �eld A1. Considering

g(�; �) = e2�i(�1�+�2�) (6.35)

we obtain

A1 +
i

2�
g−1dg = �1d� + �2d�− �1d� − �2d� = 0: (6.36)

This transformation is well de�ned only for �; � 6= 0 and it modi�es the periodicity of the �eld:

X ! X + 2�(n1 + �1)R when � ! � + 1

X ! X + 2�(n2 + �2)R when �! �+ 1:
(6.37)

In the same way as before, we can split X = Xcl + Xq, where Xcl has the above periodicity
depending on �1 and �2, while Xq has the standard periodicity.

Considering also the �eld B1, we observe that in the partition function it induces a phase
depending on the winding indices ni and the background �eld itself. Denoting the component
of dX in the usual way dX = X1d� +X2d� where X1 = @X

@�
and X2 = @X

@�
, we can rewrite the

second term of the action

2�i

Z
B ^ dX =2�i

Z
(�1d� + �2d�) ^ (X1d� +X2d�)

=2�i

Z
(�1X2d� ^ d�+ �2X1d� ^ d�)

=2�i

Z
(�1X2 − �2X1)d� ^ d�

=2�i

Z
d�d� �ij�iXj

=2�i�ij�i(nj + �j)

(6.38)

where in the last equality we exploit the integrationZ 1

0

d�
@X

@�
= X(1; �)−X(0; �) = 2�(n1 + �1)R: (6.39)
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Therefore, the presence of B1 induces the phase e2�i�ij�i(nj+�j) in the partition function and we
can observe that only the classical part of Z is modi�ed by the introduction of the background.

Z[A;B] =
X
n1;n2

e−S[Xcl;n1;n2;�1;�2;�1;�2]Zq: (6.40)

The crucial fact is that only the classical partition function changes, while Zq remains untouched
after the introduction of non trivial gauge backgrounds. Therefore, any anomalous phase that
can a�ect the partition function under gauge transformations depends only on the classical
part of the action. Thus, the previous totally classical discussion on the presence of a mixed 't
Hooft anomaly is complete and we do not have to consider quantum e�ects in this treatment.

6.4 't Hooft anomaly cancellation in U(1)
(0)
A � U(1)

(0)
B

So far we have presented the action for the toroidal compacti�cation of the bosonic string and
we have discussed the presence of a mixed 't Hooft anomaly for the periodic scalar in 2D. Now
we want to reinterpret the results in string compacti�cation at light of the concepts of 't Hooft
anomaly and of 2-group symmetry.

When we consider a string moving in a curved D−dimensional spacetime with one direction
periodically identi�ed, the momentum in the compact direction is quantized and conserved
since it is the charge of a U(1) symmetry. It is a 0-form symmetry and, from the point of
view of the world-sheet, it is just a global symmetries with the non-dynamical background
1-form A1. There is also another U(1) symmetry whose charge is the winding number and its

background 1-form is B1. Therefore, the symmetry group is exactly U(1)
(0)
A � U(1)

(0)
B and, if

we couple the background 1-forms with the scalar Noether currents dX and �dX, we are in the
same situation of the previous section: there is a mixed 't Hooft anomaly and we cannot gauge
the entire group U(1)

(0)
A � U(1)

(0)
B .

From the point of view of the world-sheet the 't Hooft anomaly is not so problematic since
we can consider the 1-form �elds as �xed non-dynamical backgrounds and the symmetries can
remain only global. However, from the point of view of the spacetime, we know that there is
a deep conjecture stating that in quantum gravity there cannot be any global symmetries (e.g.
see [14]); therefore, they must be broken or gauged. In the spacetime the 1-forms A1 and B1

must be dynamical gauge �elds. Unfortunately, the mixed 't Hooft anomaly on the world-sheet
would make the coupling with dynamical �elds inconsistent and without the presence of other
terms we will �nd ourselves facing an impasse.

Furthermore, often it is useful to consider the orbifold of a worldsheet theory to obtain a
new theory from the original one. In general the orbifold consists in the gauging of a global
symmetry of the parent theory; however, if this symmetry has 't Hooft anomaly, the orbifold
procedure fails.

The solution to this apparent paradox consists in the presence in the world-sheet action 6.15
of the 2-form B2 that is subject to a gauge transformation with the same parameter of A1 and
B1. The 2-form B2 also transforms under a 1-form global symmetry with parameter �1, but
the relevant fact is the non-trivial mixing of the gauge parameters � and � with the 1-forms A1

and B1. This non-trivial mixing

B2 ! B2 + d�1 +B1 ^ d�+ A1 ^ d� (6.41)
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has exactly the form of the 2-group symmetry

U(1)
(0)
A � U(1)

(0)
B �k̂AB U(1)

(1)
B2

(6.42)

studied before in 2.6, with k̂AB = 1. The 2-group transformation is the same with the only
di�erence that here the exterior derivative acts on the gauge parameters, but by integrating by
parts we can move d to the gauge �elds and obtain exactly 2.37 up to a total derivative that
can be absorbed in the parameter �1.

Even if, in principle, one can set B2 = 0, it cannot rest null after a non-trivial transformation
for A1 or B1. The presence of the 2-group structure guarantees the possibility of the gauging
of these global symmetries, because the variation of B2 cancels out the mixed 't Hooft anomaly
for U(1)

(0)
A � U(1)

(0)
B .

One can see this anomaly cancellation directly in the action by applying 6.16, 6.17 and 6.18:

− T

2

Z n
(dX + A) ^ �(dX + A) + i[B2 − 2dX ^B − A ^B]

o
!

!− T

2

Z n
(dX − d�+ A+ d�) ^ �(dX − d�+ A+ d�) + i[B2 + d�1 +B ^ d�+ A ^ d�

+ d� ^ d�− 2(dX − d�) ^ (B + d�)− (A+ d�) ^ (B + d�)]
o

=

=− T

2

Z n
(dX + A) ^ �(dX + A) + i[B2 +B ^ d�+���

�A ^ d� + d� ^ d�− 2dX ^B − 2dX ^ d�

+ 2d� ^B + 2d� ^ d� − A ^B − d� ^B −����A ^ d� − d� ^ d�]
o

=

=− T

2

Z n
(dX + A) ^ �(dX + A) + i[B2 −���

�
d� ^B −�����d� ^ d� − 2dX ^B +((((

(
2d� ^B +���

��2d� ^ d�

− A ^B −����d� ^B −�����d� ^ d�]
o

=

=− T

2

Z n
(dX + A) ^ �(dX + A) + i[B2 − 2dX ^B − A ^B]

o
:

(6.43)
The term −2dX^d� vanishes up to a total derivative, in fact 2d�^dX = 2d(�dX)−����

�
2� ^ d2X.

This mechanism of anomaly cancellation by a 2-group symmetry occurs in more general sit-
uations than the simple case of a periodic free scalar with U(1)

(0)
A � U(1)

(0)
B symmetry. Let

us generically consider a D-dimensional spacetime having the structure of M (D−d) �K, where
M (D−d) is a (D− d)-dimensional Minkowsky space and K is some d-dimensional compact Rie-
mannian space. Therefore, the world-sheet string theory is the product of a trivial theory for
the (D − d) scalars in the Minkowskian spacetime times a potentially cumbersome quantum
�eld theory describing the compact directions. The theory for the compact direction may have
a symmetry group G in analogy with the U(1)

(0)
A � U(1)

(0)
B group in the case of the toroidal

compacti�cation of one dimension.

Under general assumptions, the global symmetry G for the world-sheet action, should be a
gauge symmetry in the (D − d) dimensional Minkowski spacetime M (D−d), in agreement with
the conjecture that forbids global symmetry in a quantum gravity theory. However, the group
G may have a 't Hooft anomaly on the world-sheet and its gauging may be problematic. The
solution is once again in presence of the B-�eld after its dimensional reduction in the (D− d)-
spacetime. This �eld must transform under a non-trivial transformation that allows us to cancel
the anomaly of G. In other words, the symmetry group is not a simple 0-form symmetry, but
there are also a 1-form symmetry combined in a structure of 2-group.
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If this fact can be easily checked in the case where G is a continuos group, the mechanism
is more subtle in the case of discrete symmetry. For continuos symmetry the correspondent
background �elds have degrees of freedom which propagate and are usually described in the
spacetime e�ective action. In fact, the Nicolai-Townsend 2-group transformation for the B2

�eld was known for a long time and can be derived from the form of the spacetime action. In
superstring an analogous mechanism is known as Green-Schwarz mechanism. In contrast, the
background gauge �elds for discrete symmetries are not included into the e�ective action and
the 2-group structure is unknown and must be derived in a new way.

6.5 More on 't Hooft anomalies and their cancellation

We have already seen that in a generic D-dimensional QFT on a manifold M (D) with global
symmetries G the 't Hooft anomalies can be shown coupling the theory with a background
�eld B for the global symmetry and performing a gauge transformation for this �eld, i.e.
B ! B + �B: if the partition function Z[B] is not gauge invariant even after the attempt of
making it gauge invariant by adjusting local counterterms, the global symmetry has a 't Hooft
anomaly.

Z[B + �B] = ei
R
M(D) �(B;�B)Z[B] (6.44)

where �(B; �B) is the anomalous phase depending only on the background �eld and its trans-
fomation. If we add local D-dimensional counterterms we can modify the anomalous phase,
but we cannot cancel it if it is a genuine anomaly.

There is also another powerful way to describe 't Hooft anomalies using a classical �eld theory
in one dimension higher. This description is a mechanism to remove the obstruction of gauging
called the anomaly inow mechanism. The inow mechanism is based on the extension of
the spacetime manifold M (D) of the theory to one higher dimensional manifold N (D+1) with
@N (D+1) = M (D). We assume that the theory is gauge invariant when N is a closed manifold.
In general, if the partition function for the theory in D + 1 dimensions is

ei
R
N(D+1) F (B); (6.45)

where F denotes some functions of the background �eld, it is gauge invariant by construction
up to boundary terms. Therefore, if we take the gauge transformation of the theory in N we
can cancel the anomalous phase of the original theory.

ei
R
N(D+1) F (B+�B) = e−i

R
M(D) �(B;�B)ei

R
N(D+1) F (B): (6.46)

The original theory coupled to a D + 1 dimensional gauge invariant bulk theory is invariant
under the background gauge transformation.

Notice that, even if the theory is gauge invariant in N , the anomaly is encoded into the di�erent
way of taking the extension N . Let us discuss this in the previuos example of a periodic free
scalar with U(1)

(0)
A � U(1)

(0)
B symmetry.

If we extend the second term of the action 6.19

2�i

Z
M(D)

B1 ^ (dX + A1) (6.47)

to the extended manifold N , we obtain the gauge invariant term

2�i

Z
N(D+1)

dB1 ^ (dX + A1): (6.48)
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Even if it is gauge invariant, it depends on the choiche of N . In fact, let us take another N 0

and compute the di�erence between the two extensions:

2�i

Z
N

dB1 ^ (dX + A1)− 2�i

Z
N 0

dB1 ^ (dX + A1) = 2�i

Z
Nclosed

dB1 ^ (dX + A1) (6.49)

where Nclosed = N[N 0 is a closed manifold obtained by gluing N and the orientation reversal N 0

of N 0 along the common boundary M . The Stokes's theorem assures that
R
Nclosed

dB1^dX = 0;
therefore, the anomaly does not depends on the dynamical �eld X but only onZ

Nclosed

dB1 ^ A1 = −
Z
Nclosed

B1 ^ dA1: (6.50)

We can also see the anomaly cancellation for the scalar by taking a gauge trasformation in the
bulk:Z

N(D+1)

B1 ^ dA1 !
Z
N(D+1)

(B1 + d�) ^ dA1 =

Z
N(D+1)

B1 ^ dA1 −
Z
M(D)

d� ^ A1 (6.51)

where the last term is precisely the anomalous one 6.24.

We want also to consider the case where the symmetry group G for the world-sheet theory of
the compacti�ed scalar is discrete. Gauging a discrete symmetry does not lead to an action
with kinetical term for the gauge �elds and so the discussion of the 't Hooft anomaly is more
subtle than the continuous case. The anomaly for a discrete symmetry can be described using
the formalism of defects (see. [12], 4.1).

Focusing on a 2-dimensional quantum �eld theory, a discrete symmetry can be described using
a network of topological line defects. This network describes the �ber bundle associated to the
background �eld of the global discrete symmetry. To each line we associate an element g 2 G
that represents the transition functions for the bundle. The anomaly arises when we consider
the fusion of three lines: three defects g; h and k can be joined to form the line ghk in two
di�erent ways that di�er for a phase �(g; h; k) 2 U(1). The two con�gurations are depicted in
�gure 6.1: on the left h merges �rst with g and then gh merges to k, in contrast, on the right
h glues �rst with k and suddenly with g. � can in principle be view as a function

� : G�G�G! U(1) (6.52)

and it is precisely a U(1)-valued 3-chain belonging to C3(G;U(1)).

Furthermore, the phase � must satisfy the pentangon identity when we consider the merger of
four defects. In particular, we can switch between two di�erent con�gurations of the fusion of
four lines in two di�erent way that leads to the same results:

g(h(kl))! g((hk)l)! (g(hk))l! ((gh)k)l (6.53)

or
g(h(kl))! (gh)(kl)! ((gh)k)l (6.54)

Since the two �nal con�guration are identical, we require for consitency that

�(h; k; l) + �(g; hk; l) + �(g; h; k) = �(gh; k; l) + �(g; h; kl) (6.55)

where we use the additive notation for the U(1) group. This condition is exactly the cocycle
condition with the twisted di�erential (3.32 with � = I):

(d�)(g; h; k; l) = �(h; k; l)− �(gh; k; l) + �(g; hk; l)− �(g; h; kl) + �(g; h; k) = 0: (6.56)
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ghk

g kh

= �(g;h;k) �

ghk

g kh

Figure 6.1: The lines are line defects representing the symmetry operators ofG. On the left the original
con�guration of the junction of the three defects g, h, k, on the right the same defect fusion but with
h on the other side of the junction. They are equivalent up to a phase α(g,h,k) 2 H3(G,U(1)).

Therefore, � is a U(1)-valued 3-cocycle: � 2 Z3(G;U(1)). Furthermore, we can try to modify
� by adding a 3-coboundary d� 2 B3(G;U(1)) where � : G�G! U(1). In the continuos case,
this corresponds to the adjoint of local counterterms. If the attempt to delete the anomaly is
unsuccessful, we are in presence of a genuine 't Hooft anomaly. As a consequence, the possible
't Hooft anomalies of a theory are described by a class in the third-group cohomology:

[�] 2 H3(G;U(1)): (6.57)

This is in accordance to the general de�nition valid also for continuos symmetry since the
anomaly is always a phase which depends both on the background gauge �eld and the gauge
transformation. We can see that also for continuos symmetry 't Hooft anomalies in 2 dimensions
are labeled by the same cohomology calsses. Initially, we note that H3(G;U(1)) ' H4(G;Z) for
�nite groups. Furthermore, we assume that we can describe the anomaly of a D dimensional
theory as boundary term in the gauge variation of the Chern-Simons action for G in D + 1
dimensions [10]. This is precisely the fact that we can assume that 't Hooft anomaly can be
canceled by anomaly inow from one dimension higher. We know from the work of Dijkgraaf
and Witten [25] that Chern-Simons theories in D + 1 dimensions are classi�ed by elements of
HD+2(BG;Z) and this means that the 't Hooft anomalies for compact connected semi-simple
Lie groups take values in HD+2(BG;Z). Therefore, in a 2-dimensional theory the 't Hooft
anomalies are labeled by classes in H4(BG;Z), like the discrete case.

The fact that the possible 't Hooft anomalies for discrete symmetries are labeled by classes in
the third cohomology group is crucial to their cancellation. In fact, the Postnikov class [�] that
characterizes a 2-group symmetry is precisely a class in the same group cohomology. We can
notice that this is possible since we are considering anomalies in two dimensions. In a generic
D-dimensional space, the 't Hooft anomaly is given by an element ! 2 HD+1(G;U(1)), so there
is not a direct correspondence with the Postnikov classes of the 2-groups. In this case, one can
hope that a similar mechanism exists by considering more complicate n-groups.

The cancellation of the anomaly is possible if we require the presence of a non-trivial 2-group
symmetry that combines the 0-form symmetry with a higher form one. In string theory, the
U(1)(1) 1-form symmetry of the �eld B2 is the higher form symmetry that constitutes a 2-group
structure with G. Therefore, the Postnikov class [�] of this 2-group can exactly cancel the
't Hooft anomaly [�]. In other words, the non-trivial transfomation for B2 shows that the
spacetime gauge group is not simply the product of a 0-form symmetry G with a U(1) 1-form
symmetry, but these symmetry are mixed in a 2-group structure. Following 4.2, the 2-group
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that cancels the anomaly can be denoted by

G = (G;U(1); I; [�]) (6.58)

with [�] = [�] 2 H3(G;U(1)).

We can view the anomaly cancellation by assuming that the gauge invariant �eld strength for
B2 is

H3 = dB2 + A�� (6.59)

where A� is the pull-back of a class in H3(BG;U(1)) to one in H3(M;U(1)); indeed, as presented
in 3.4, a G-bundle with at connection on a space M can always be de�ned by a map A : M !
BG. If the world-sheet is a closed manifold M and the 3-dimensional manifold N is the
extension of M such that @N = M , the B2 term in the action gives usZ

M

B2 =

Z
N

dB2 =

Z
N

H3 −
Z
N

A��: (6.60)R
N
H3 is gauge invariant and the gauge variation of the last term exactly cancels the 't Hooft

anomaly � by inow mechanism.

As a �rst example of the presence of this anomaly cancellation for discrete symmetries, we can
consider again the free periodic boson which in addition to the continuos U(1)

(0)
A � U(1)

(0)
B is

also symmetric under the inversion of the periodic coordinate.

6.6 't Hooft anomalies in coordinate inversion

A scalar �eld compacti�ed on a circle S1 has a larger symmetry group than the one considered
so far. We can always invert the coordinate on the circle, i.e. X ! −X, acting with a Z2 group
symmetry. The coordinate inversion acts by charge conjugation on all the U(1) factors. The
0-form global symmetry group of the world-sheet theory is the semidirect product:

G = ZC2 n (U(1)
(0)
A � U(1)

(0)
B ): (6.61)

The normal subgroup U(1)
(0)
A � U(1)

(0)
B is exactly the same considered before: the �rst U(1)

(0)
A

factor represents the invariance under translation along the circle with the internal momentum
as conserved charge and the second U(1)

(0)
B is the translations in the dual circle with winding

number as charge. As before, A1 and B1 are the 1-form gauge �elds and there is a mixed 't Hooft
anomaly that forbids the gauging of both these �elds. ZC2 is the subgroup of the coordinate
inversion and we denote by C its generator that it is not uniquely de�ned. In fact, we can take
C as an element in G with non-trivial image under the projection G! ZC2 and we identify ZC2
with the subgroup of G generated by C. Since, as we will see, all such elements are conjugate
to each other in G, the freedom in the choice of C is perfectly licit. C acts non-trivially on the
gauge �elds and on the �eld strengths:

CA1 = −A1 ; CF2 = CdA1 = −F2

CB1 = −B1 ; CH2 = CdB1 = −H2;
(6.62)

therefore, we can easily see that G is non-abelian.

We want to study the presence of mixed 't Hooft anomaly between the ZC2 subgroup and the

normal subgroup U(1)
(0)
A � U(1)

(0)
B . In order to do this we can consider the abelian subgroup

~G = ZC2 � ZA2 � ZB2 (6.63)
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where the �rst is the charge conjugation and the others Z2 are �nite subgroups of order 2 of
the two U(1) groups. We can visualize these two subgroups as the choice of one point and its
opposite in the circle S1 �= U(1) or, in other words, the elements of these subgroups are the
phases e0 and ei�. These subgroups commute with the charge conjugation.

The restriction to �nite groups allows us to use the tools developed in the previous chapter
(section 3.5), since we have an explicit expression for the cocycle in H3( ~G;U(1)). We denote
by � the anomalous phase, which is just a representative of a class in the third cohomology
group, H3( ~G;U(1)). We know (see eq. 3.35) that

H3(ZC2 � ZA2 � ZB2 ; U(1)) ' Z7
2 (6.64)

and we can choose the generators of Z7
2 to be divided into three di�erent types, corresponding

to the generators in eqs. 3.38 3.39 3.40. The classes of type I are non-trivial when restricted to
a ZA2 , ZB2 or ZC2 subgroups. On the other hand, the cocycles of type II are trivial if restricted to
a single ZA2 , ZB2 or ZC2 subgroups but non trivial when restricted to a product of two subgroups:
ZA2 � ZB2 , ZA2 � ZC2 or ZB2 � ZC2 . Finally, the class of type III becomes trivial if restricted to
any of these subgroups. A generic class in H3(ZC2 �ZA2 �ZB2 ; U(1)) can be written by summing
the di�erent contributions coming from these seven components which we denote by

�AI ; �BI ; �CI ; �ABII ; �ACII ; �BCII ; �ABCIII (6.65)

where the subscript represents the type and the superscript the groups where the generator has
non-trivial restriction. Therefore, we have seven possible sources of anomaly for ~G and we have
to study, in our particular QFT, which contributions are trivial and which are signi�cant.

From the study of the U(1)
(0)
A �U(1)

(0)
B possible anomalies we know that the single U(1) is not

anomalous, while there is a mixed 't Hooft anomaly between the two U(1) subgroups. Since

ZA2 � ZB2 is a subgroup of order two of U(1)
(0)
A � U(1)

(0)
B , we can easily conclude that �AI and

�BI are trivial, while we have a non-vanishing contribution to the ~G anomaly from �ABII .

A crucial observation is that the anomaly restricted to any Z2 subgroup of G generated by
the multiplication of C by any element of ZA2 � ZB2 , is the same of the subgroup generated
exclusively by C. In other words, denoting with g an element of ZA2 and with h an element of
ZB2 , we have that

�(C;C;C) = �(Cgh;Cgh;Cgh): (6.66)

This is due to the fact that in the original group G all such Z2 subgroups are conjugated to
each other; therefore they have the same anomalies. We can show this by considering the most
general case, i.e. C is conjugated to Cgh. Let us set g = ei�QA and h = ei�QB with 0 6 �; � 6 2�
and QA; QB respectively the charge of the U(1)

(0)
A ; U(1)

(0)
B subgroup. Since C acts by charge

conjugation on the U(1) charges, i.e. it changes their sign, the following equality holds:

Cei�QA+i�QB = e−i
µ
2
QA−i ν2QB C ei

µ
2
QAi

ν
2
QB : (6.67)

This is precisely the de�nition of the conjugation between the two elements Cei�QA+i�QB and
C, i.e. there exists k 2 G such that Cei�QA+i�QB = k−1Ck.

Returning to the anomalies, we can consider the simple case �(C;C;C) = �(Cg;Cg;Cg) with
g 2 ZA2 . The possible contributions are only of the �rst type for the left-hand-side and of the
type I and type II for the right-hand-side; we have

�CI = �CI + �AI + �ACII (6.68)

where we used the additive notation. Since �AI = 0 we can argue that also �ACII must be trivial;
therefore, there is no mixed 't Hooft anomaly between ZA2 and ZC2 . With a similar argument
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we can prove that also �BCII must vanish and there is no mixed 't Hooft anomaly between ZB2
and ZC2 .

With the more general equality �(C;C;C) = �(Cgh;Cgh;Cgh) we can deduce that

�CI = �CI + �ABII + �ABCIII (6.69)

where we have already omitted the vanishing terms. Since �ABII is non-trivial, we �nd that also
�ABCIII must be non-trivial. We have proved that there is a mixed anomaly between ZC2 and
ZA2 � ZB2 . We can �gure the presence of the anomaly through the formalism of defects. Let
g 2 ZA2 , h 2 ZB2 and C be three defects and let us consider their triple junction. We can observe
the presence of the anomaly in the arising of a non trivial phase �, which in practice is a minus
sign if it is non-trivial. In fact, the explicit expression for the 3-cocycle that represents the
mixed anomaly is:

�ABCIII (g; h;C) = exp

 
2�ipABCIII

2
ghc

!
(6.70)

where c = 1 is the non-trivial elements in Z2 corresponding to the generator. If g = h = 1,
then �ABCIII (1; 1; 1) = −1.

ghC

g Ch

= −1 �

ghC

g Ch

Figure 6.2: Moving the defect h through the triple junction causes the onset of an anomlous phase
αABCIII (g, h,C) = −1 if g = h = 1. The phase is precisely a minus sign.

Notice that, in order to identify completely the cocycle for the anomaly of ~G, we should consider
also the anomaly for the ZC2 subgroup �CI . Using conformal �eld theory techniques one can
prove that �CI is trivial. We will not need this fact in the following.

Finally, we can observe that a mixed 't Hooft anomaly must be present also between ZC2
and U(1)

(0)
A � U(1)

(0)
B . Since this anomaly is visible even restricting to the abelian subgroup

ZC2 � ZA2 � ZB2 , we can conclude that it is present also in the original group G.

6.7 't Hooft anomaly cancellation in ZC2 n(U(1)
(0)
A �U(1)

(0)
B )

The 't Hooft anomaly in the world-sheet theory costitutes a problem when we take into account
the theory in spacetime: the global symmetry of the world-sheet theory must become gauge
symmetry in the spacetime theory. As we have already see for the case of U(1)

(0)
A �U(1)

(0)
B , the

solution of this problem is given by the presence of the B2 �eld and by the non-trivial 2-group
symmetry in which it is involved. For the mixed ZC2 anomaly the cancellation is more subtle,
since we are in presence of discrete groups.
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In order to study the e�ect of the charge conjugation on B2, we �rstly focus on the restriction
to the subgroup ~G = ZC2 � ZA2 � ZB2 . This subgroup is abelian and it is the centralizer ZG(C)
of ZC2 in G, that is all its elements commute with C: Cg = gC 8g 2 ~G. The restriction of the
gauge �elds to ZG(C) is equivalent to the restriction of the path integral to gauge bundles that
commute with C. Let us prove this claim.

To have C-invariant �eld strengths we have to impose

F2 = −F2 ; H2 = −H2 with F2 = dA1 ; H2 = dB1 (6.71)

and this implies that the U(1)
(0)
A �U(1)

(0)
B connections must be at, as we expected for discrete

group:
F2 = 0 ; H2 = 0: (6.72)

Since C inverts the sign of the gauge 1-form, we have to impose also:

A1 � −A1 ; B1 � −B1 (6.73)

where � denotes equality up to U(1)
(0)
A � U(1)

(0)
B gauge tranformations and this implies

2A1 � 0 ; 2B1 � 0 (6.74)

i.e. 2A1 and 2B1 must be pure gauge. Since we are considering at U(1) connections, the
condition on the pure gauge is

1

2�

I


2A 2 Z ;
1

2�

I


2B1 2 Z (6.75)

with  is a 1-cycle. The consequence of these requirements is not that the gauge �elds are
trivial, since they can have half integer holonomies; therefore, since ei

H
γ A1 and ei

H
γ B1 must be

signs, we can conclude that the gauge �elds takes values on the subgroup ZA2 � ZB2 .

Since we want to study the e�ects of C on the 2-group gauge �elds, we have to consider also
the transformation for the �eld B2. In this case we refer to transformation 6.7 that is slightly
di�erent from the one considered before 6.10. The two transfomations are related by a �eld
rede�nition: B2 ! B2 − �B1 ^A1; � 2 R, that is always possibile if we insert �A1 ^B1 in the
world-sheet action. In the rede�nition before, we have setted � = 1. Therefore, in this case the
gauge transformations are:

A1 ! A1 + d� ; B1 ! B1 + d� ; B2 ! B2 + d�1 +B1 ^ d� (6.76)

where � and � are U(1) gauge 0-forms, i.e. they have values in R=Z, and �1 is a 1-form de�ned
modulo U(1) gauge transformations. Notice that no transformation for the �eld B2 can cancel
the dependence on the B1 �eld and gauge parameters � and �.

The generators of the charge conjugation C acts on these �elds as

A1 ! −A1 ; B1 ! −B1 ; B2 ! B2: (6.77)

The �eld B2 remains untouched by the coordinate inversion on S1 because it corresponds to
the non compact components of the Kalb-Ramond �eld, i.e. the tensor B�� whose indices are
not along the circle.

In order to restrict to the Z2 subgroup of the two U(1) we have to impose the conditions 6.73
on the gauge �elds. In particular, grouping the �elds into a triplet, we set

(A1; B1; B2) � (−A1;−B1; B2) (6.78)
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where � denotes equality up to 6.76 gauge tranformations. At this point we can exploit the
fact that 2A1 and 2B1 must be pure gauge. Using a simple trick we can write

(A1; B1; B2) � (−A1;−B1; B2) = (A1 − 2A1; B1 − 2B1; B2) = (A1 + d�;B1 + d�; B2) (6.79)

where we −2A1 = d� and −2B1 = d� for some gauge U(1) 0-forms � and �. Then, we can
make a gauge transformation 6.76 in order to restore A1 and B1 in the triplet:

(A1+d�;B1+d�; B2) � (A1+d�−d�;B1+d�−d�; B2−B1^d�) = (A1; B1; B2−2A1^B1) (6.80)

where we set �1 = 0.

We can wonder if a gauge transformation with parameter �1 can readsorbe the extra term:

− 2A1 ^B1 = −1

2
d� ^ d�: (6.81)

In order to cancel this term we have to choose �1 with the correct quantization condition and
such that d�1 = 1

2
d� ^ d�. However, this is not possible since the integral over a 2-cocycle 2H

2

1
2
d� ^ d� has values in 1

2
Z instead of Z. Also the �eld rede�nition B2 ! B2 − �B1 ^ A1

does not work since B1 ^ A1 is inviariant under the gauge transformations with parameters
−2A1 = d� and −2B1 = d�.

Let us explain what we have found out so far. Apparently, the conditions 6.73, which allow us
to restrict to the subgroup ZA2 � ZB2 , seem to be su�cient in order that the background �elds
are C-invariant; in reality we have to impose 6.78 to taking into account also the �eld B2. The
condition 6.78 is stronger than the condition 6.73. In fact, if we impose only 6.73 we obtain
that the right-hand side of 6.78 is gauge equivalent to the last term of 6.80. However, this is
the same as the left-hand side of 6.78 only if, in addition to the condition that 2A1 and 2B1 are
pure gauge, one also requires that the integral of 2A1 ^B1 over any closed 2-manifold is even.

In general, eq.6.80 tells us that if A1 and B1 are restricted to ZA2 � ZB2 , we can describe the
action of C on the triplet of �elds as

(A1; B1; B2)! (A1; B1; B2 − 2A1 ^B1) (6.82)

because it is equivalent to 6.77.

Since there is no way to cancel the extra term −2A1 ^ B1 by a d�1 term, we conclude that,
when we restrict to the subgroup ZC2 � ZA2 � ZB2 , the transformation C acts on B2 by a shift

B2 ! B2 − 2A1 ^B1 (6.83)

which can be non-zero in the presence of a non-trivial background for A1 and B1.

This transformation of B2 under C gives precisely the term to cancel the mixed 't Hooft anomaly
considered before. Taking into account again the defects con�guration in �gure 6.2, we can
consider the defects as (d − 1)−dimensional manifolds in spacetime. Each pairs of defects
cross in a (d − 2)-dimensional intersection and the triple junction point represents a (d − 3)-
dimensional triple intersection. We know that when B2 crosses C it jumps by 2A1 ^ B1 which
represents an half integer ux localized at the intersection of a g- and h-defect. In fact, if we
consider a small sphere S2 surrounding a triple intersection between a C, a ZA2 and a ZB2 defect,
we have that

ei2�
R
S2 B2 = −1 (6.84)

at least in the limit where S2 is small. In fact, the defect C divides S2 into two hemispheres
and the di�erence of B2 from the two sides of C is 2A1 ^ B1. If the value of B2 is about
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constant in the small sphere, the ux
R
S2 B2 reduces to the integral of 2A1 ^ B1 over one of

the two hemispheres and we know from the previous discussion that this integral has values in
1
2
Z. Therefore, the transformation of B2 under coordinate inversion provides exactly the minus

sign that cancels the mixed 't Hooft anomaly that are present when we consider the F-moving
between these three defects. The mixed anomaly, that is problematic from the point of view
of coupling the global symmetry of the world-sheet to dynamical �elds in spacetime, does not
constitute a problem since it is canceled by the non-trivial 2-group symmetry that characterized
any string compacti�cation. However, if we consider the orbifold of the world-sheet theory, the
presence of a mixed anomaly is still relevant and suggests that the ordinary orbifold is not
consistent, but we have to make an operation that involves the 1-form symmetry of B2 in a
non trivial way [18].
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Chapter 7

't Hooft anomalies cancellation in
toroidal compacti�cation with Z3
symmetry

A more complicated case is the compacti�cation of two dimensions on a torus with a particular
discrete rotational symmetry. More generally in (super)string theory one can consider the
compacti�cation of six dimensions in T2 � T2 � T2 with the same geometry (Z-model) or one
can consider the orbifold by this discrete symmetry [32]. Before presenting this particular torus,
we briey introduce the ideas of compacti�cation of several dimensions.

We consider the periodic identi�cation of k dimensions in the bosonic string:

Xm � Xm + 2�R ; 26− k � m � 25: (7.1)

If d = 26−k is the number of noncompact dimensions, the spacetime is Md�Tk. Let us consider
the spacetime e�ective action 5.48 introduced before. Following the same procedure as in 5.6.1,
we can obtain the low dimensional action by integrating over the compact dimensions. Notice
that with more than one compact dimension, the antisymmetric tensor BMN also has scalar
components Bmn and the total number of scalars from the Kalb-Ramond �eld and the metric is
k2. There are also k Kaluza-Klein gauge bosons Am� with �eld strength Fm

�� and k antisymmetric
tensor gauge bosons Bm

� with �eld strength Hm
�� . The low energy action is:

S =
(2�R)k

2k2
0

Z
ddx
p
−Gde

−2Φd

�
Rd + 4@��d@

��d −
1

4
GmnGpq(@�Gmp@

�Gnq + @�Bmp@
�Bnq)

− 1

4
GmnF

m
��F

n�� − 1

4
GmnHm��H

��
n −

1

12
H���H

���

�
(7.2)

where �d = �− 1
4

ln detGmn and the latin indices run in the compact directions 26−k � m � 25,
while the greek indices in the 26− k non compact.

7.1 Compacti�cation on a torus with Z3 symmetry

We want to consider the compacti�cation of two dimensions on a torus T2 with a particular
geometry. The two compact scalars on which we focus on are

X1 � X1 + 2�R1 ; X2 � X2 + 2�R2: (7.3)
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The target space is T2 = S1 � S1 with a special geometry that allows a discrete rotational
symmetry. In order to describe it we consider the torus as a complex manifold. Let us de�ne

Z = X1 + iX2 Z 2 C ' R2 (7.4)

and assume the euclidean metric in C. We set to zero the value of the single scalar that we get
from the compacti�cation of the Kalb-Ramond �eld BMN and we consider the identi�cations

Z � Z + 2�R Z � Z + 2�Rei
π
3 : (7.5)

With this identi�cation the torus can be identi�ed with a fundamental region in the complex
plane, a parallelogram with the opposite sides identi�ed (see Figure 7.1). The sides are equally
long, thus we have R1 = R2 = R.

There are two types of symmetries that one can consider in such a structure. If we rotate
the complex manifold by 2

3
� we obtain an equivalent torus; the same happens if we consider

the reection with respect the origin, i.e. the coordinates inversion. If we combine these two
discrete symmetries we obtain a group generated by a rotation by �

3
. Let us study in detail

these symmetries and explain why the transformed torus is equivalent to the original one.

Let us consider a lattice in the complex plane C

�(!1; !2) = f!1n1 + !2n2 jn1; n2 2 Zg � C (7.6)

where !1 and !2 are non vanishing complex numbers such that !2=!1 =2 R. The manifold
C=�(!1; !2) is obtained by identifying the points z1; z2 2 C such that z1 − z2 = !1n1 + !2n2

for some n1; n2 2 Z and the metric on T2 is then induced by the Euclidean metric on C. We
know that a lattice �(!01; !

0
2) de�ne the same T2 if and only if there exists a matrix�

a b
c d

�
2 PSL(2;Z) =

SL(2;Z)

Z2

(7.7)

such that �
!01
!02

�
=

�
a b
c d

��
!1

!2

�
: (7.8)

This happens because (!1; !2) and (!01; !
0
2) are di�erent generators of the same lattice �(!1; !2) =

�(!01; !
0
2), thus also the torus is the same.

The torus that we are considering is described by the lattice �(1; ei
π
3 ), where we have setted

2�R = 1 for simplicity. It corresponds to the identi�cations of z = a+ ib

z � z + n1 ) a � a+ n1 ; b � b

z � z + n2e
iπ

3 ) a � a+
n2

2
; b � b+

p
3

2
n2:

(7.9)

A rotation of 2
3
� corresponds to a transfomation

z ! zei
2
3
� ) a! −a

2
−
p

3

2
b ; b!

p
3

2
a− b

2
: (7.10)

The lattice of the torus after this rotation is described by !01 = ei
2
3
� and !02 = −1. The tori

de�ned by these two di�erent lattices are equivalent, in fact we can �nd a SL(2;Z) matrix that
relates the two lattices. We search for a matrix such that�

−1
2

+
p

3
2
i

−1

�
=

�
a b
c d

��
1

1
2

+
p

3
2
i

�
=

 
a+ b

2
+
p

3
2
ib

c+ d
2

+
p

3
2
id

!
(7.11)
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X1

X2

60°
X

X

Figure 7.1: The lattice �(1, ei
π
3 ) on the complex plane. C/�(1, ei

π
3 ) is homeomorphic to the torus T2

which can be described by the blue rhombus with the opposite sides identi�ed.

and we obtain

b = 1) a+
1

2
= −1

2
! a = −1 ; d = 0 ; c = −1: (7.12)

We denote with g−1 such a matrix for reasons that will become clear afterwards,

g−1 =

�
−1 1
−1 0

�
(7.13)

and we can easily verify that det g−1 = 1 and (g−1)3 = I. Therefore, if we repeat three times
this rotations we return to the original con�guration, thus this is a Z3 symmetry. Notice also
that

(g−1)2 = g =

�
0 −1
1 −1

�
(7.14)

and fI; g−1; gg are the elements of a SL(2;Z) representation of Z3. Also the integer n1; n2

transform with the matrix g−1 (
n01 = −n1 + n2

n02 = −n1

(7.15)

and this result can be depicted in the Figure 7.2. This transformation will be particularly
important in the following since ni represents the winding number of the string along the i-
circle and via this transformation we will deduce the transformation for the background �elds.

n1

n2

n02

n01

Figure 7.2: In black the original fundamental region describing the torus with the winding numbers
n1, n2 in the two directions. In blue the rotated lattice with the winding numbers n01, n

0
2.
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We can also �nd the �xed points of the transformation z ! zei
2
3
� by imposing z � zei

2
3
� which

corresponds to

a+ n1 +
n2

2
+ i
�
b+

p
3

2
n2

�
= −a

2
−
p

3

2
b+ i

�p3

2
a− b

2

�
: (7.16)

We have to impose that(
a+ n1 + n2

2
= −a

2
−
p

3
2
b

b+
p

3
2
n2 =

p
3

2
a− b

2

)

(
a = −n1

2

b = − n1

2
p

3
− n2p

3

(7.17)

and we obtain three �xed points

n1 = 0 n2 = 0 ) ~z1 = 0

n1 = −1 n2 = 0 ) ~z2 =
1

2
+

1

2
p

3
i =

1p
3
ei
π
6

n1 = −2 n2 = 0 ) ~z3 = 1 +
1p
3
i =

2p
3
ei
π
6 :

(7.18)

The torus that we are considering is also symmetric under coordinates inversion, since if we
map z ! −z we obtain a metric that is equivalent to the previous one. Indeed, we have�

−1
−eiπ3

�
=

�
−1 0
0 −1

��
1
ei
π
3

�
: (7.19)

We denote

g2 =

�
−1 0
0 −1

�
(7.20)

and we note that it is of order two, thus tori's coordinates inversion corresponds to a Z2

symmetry. The �xed points can be found by solving

a+ n1 +
n2

2
+ i
�
b+

p
3

2
n2

�
= −a− ib (7.21)

and they are

~z01 = 0 ; ~z02 =
1

2
; ~z03 =

1

2
ei
π
3 ; ~z04 =

p
3

2
ei
π
6 : (7.22)

~z1

~z2

~z3

~z01
~z02

~z03
~z04

Figure 7.3: In blue the �xed points of the transformation z ! zei
2
3
�, in red the ones under z ! −z.

Finally, we can consider the combination of the Z3 symmetry with the Z2 to obtain a Z6

symmetry that represents the rotation in the complex plane by �
3
. In Figure 7.4 we depict the

di�erent lattices that are related by the matrix g6 that we obtain by considering 
1
2

+
p

3
2
i

−1
2

+
p

3
2
i

!
=

�
0 1
−1 1

��
1

1
2

+
p

3
2
i

�
: (7.23)
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All these lattice transformations are generated by the matrix g6 for the Z6 symmetry:

g6 =

�
0 1
−1 1

�
(g6)2 =

�
−1 1
−1 0

�
= g−1 (g6)3 =

�
−1 0
0 −1

�
= g2

(g6)4 =

�
0 −1
1 −1

�
= g (g6)5 =

�
1 −1
1 0

�
= g−1g2 (g6)6 =

�
1 0
0 1

�
= I:

(7.24)

X1

X2

Figure 7.4: The di�erent Z6 rotation of the fundamental region of T2 in the complex plane. In blue
with a thick line the original torus and with thin lines the torus after Z3 rotation. In gray the results
of Z2 coordinates inversion.

7.2 Gauge �eld transformations

Let us consider the world-sheet theory describing the two scalars on T2. Each of the two scalars
compacti�ed on T2 has the same global symmetries considered for a single free scalar on a circle.
For each boson there is a U(1)

(0)

A(i) symmetry due to the invariance under translations on the

i-circle with charge the center of mass momentum and a U(1)
(0)

B(i) symmetry due to transaltions
in the dual torus whose charge is the winding number ni. Due to the particular geometry of T2

there are also the discrete ZR3 rotational symmetry and the ZC2 coordinates inversion symmetry.
Therefore, the 0-form global symmetry group is the semi-direct product:

G =
(
ZR3 � ZC2

�
n
�
U(1)

(0)

A(1) � U(1)
(0)

A(2) � U(1)
(0)

B(2) � U(1)
(0)

B(2)

�
: (7.25)

The gauge tranformations for the U(1) background gauge �elds are the usual ones:

A
(i)
1 ! A

(i)
1 + d�(i) B

(i)
1 ! B

(i)
1 + d�(i) with �(i); �(i) 2 U(1) (7.26)

and they are independent since each of them is related to one of the two free periodic scalars.
We denote with F

(i)
2 = dA

(i)
1 and with H

(i)
2 = dB

(i)
1 the �eld strengths for the gauge �elds A

(i)
1

and B
(i)
1 , respectively.
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The generator C of ZC2 acts as charge conjugation on the U(1) gauge �elds: CA
(i)
1 = −A(i)

1 and

CB
(i)
1 = −B(i)

1 . We refer to the previous chapter for a discussion about this symmetry.

The action of the ZR3 can be derived by studying the action on the B1 charges. In fact, if
we consider the transfomation of the charges, we know that it must be compensated by the
transformation of the gauge �elds, as one can easily see thinking to the standard covariant
derivative of gauge theories. Since the charges of the B

(i)
1 U(1) �elds are the winding numbers

ni, we can derive from their transformation law the action of the ZR3 on B
(i)
1 . From the previous

discussion we know that the transformation is described by the matrix g−1 (7.13), thus 
B

(1)0

1

B
(2)0

1

!
=

�
−1 1
−1 0

� 
B

(1)
1

B
(2)
1

!
=

 
−B(1)

1 +B
(2)
1

−B(1)
1

!
: (7.27)

Since the background gauge �elds Ai1 are the duals of the B
(i)
1 , they transform with the inverse

matrix g:  
A

(1)0

1

A
(2)0

1

!
=

�
0 −1
1 −1

� 
A

(1)
1

A
(2)
1

!
=

 
−A(2)

1

A
(1)
1 − A

(2)
1

!
: (7.28)

We can denote these Z3 transformations using the generator R:

RA
(1)
1 = −A(2)

1 RB
(1)
1 = −B(1)

1 +B
(2)
1

RA
(2)
1 = A

(1)
1 − A

(2)
1 RB

(2)
1 = −B(1)

1 :
(7.29)

We can verify that the multiple applications of the generator R are cyclic and after three actions
we return to the original con�guration. In other words, we can write that R3 = I.

RA
(1)
1 = −A(2)

1

R2A
(1)
1 = R(−A(2)

1 ) = −A(1)
1 + A

(2)
1

R3A
(1)
1 = R(−A(1)

1 + A
(2)
1 ) = A

(2)
1 + A

(1)
1 − A

(2)
1 = A

(1)
1

RA
(2)
1 = A

(1)
1 − A

(2)
1

R2A
(2)
1 = R(A

(1)
1 − A

(2)
1 ) = −A(2)

1 − A
(1)
1 + A

(2)
1 = −A(1)

1

R3A
(2)
1 = R(−A(1)

1 ) = A
(2)
1

RB
(1)
1 = −B(1)

1 +B
(2)
1

R2B
(1)
1 = R(−B(1)

1 +B
(2)
1 ) = B

(1)
1 −B

(2)
1 −B

(1)
1 = −B(2)

1

R3B
(1)
1 = R(−B(2)

1 ) = B
(1)
1

RB
(2)
1 = −B(1)

1

R2B
(2)
1 = R(−B(1)

1 ) = B
(1)
1 −B

(2)
1

R3B
(2)
1 = R(B

(1)
1 −B

(2)
1 ) = −B(1)

1 +B
(2)
1 +B

(1)
1 = B

(2)
1

(7.30)

The world-sheet action for these two periodic scalars contains also the Kalb-Ramond �eld B2

that transforms under a U(1)(1) global gauge transformation B2 ! B2 + d�1. As usual, there
is also a 2-group non-trivial structure that a�ects the transfomation of B2:

B2 ! B2 +B
(1)
1 ^ d�(1) +B

(2)
1 ^ d�(2): (7.31)
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Notice that other forms of this transformation are possible because we can always rede�ne B2 !
B2−�(1)B

(1)
1 ^A

(1)
1 −�(2)B

(2)
1 ^A

(2)
1 with �(1); �(2) 2 R by inserting �(1)B

(1)
1 ^A

(1)
1 +�(2)B

(2)
1 ^A

(2)
1

in the action. For our purposes, it will be more useful the more symmetric form:

B2 ! B2+A
(1)
1 ^d�(1)+A

(2)
1 ^d�(2)+B

(1)
1 ^d�(1)+B

(2)
1 ^d�(2)+d�(1)^d�(1)+d�(2)^d�(2): (7.32)

7.3 't Hooft anomalies

The 0-form global symmetry with group G for the world-sheet theory of two periodic scalars
is a�ected by di�erent 't Hooft anomalies that apparently forbid the gauging. Notice that this
happens if we neglect the coupling with B2, that is if we consider only the 0-form symmetries
of the theory. Some of them are the same discussed in the previous chapter and we only recall
them for completeness. For each scalar there is a 't Hooft anomaly between the two U(1)

subgroups: we cannot gauge both the U(1)
(0)

A(i) and U(1)
(0)

B(i) since in the gauge transfomations

for the background �elds the action varies by an extra term −B(i)
1 ^ d�(i) that makes non

invariant the partition function (see 6.3). However, once the coupling with the B2 �eld is
considered, the 2 group transformation for the B2 �eld exactly cancels this anomaly thanks to
the presence of the B

(i)
1 ^ d�(i) terms. There is also a mixed 't Hooft anomaly between the

subgroup ZC2 of coordinates inversion and the U(1) subgroups. Its study and its cancellation is
quite similar to the one discussed in the previous chapter for a single scalar and can be easily
generalized by extending the analysis for two U(1)

(0)

A(i) � U(1)
(0)

B(i) subgroups.

More interesting is the case that involves the ZR3 subgroups since under this symmetry there is

a non trivial mixing between the �elds A
(1)
1 ; A

(2)
1 and B

(1)
1 ; B

(2)
1 . This is di�erent from the other

anomalies that can be split on each U(1)
(0)

A(i) � U(1)
(0)

B(i) subgroups. For simplicity, we neglect
the ZC2 by restricting to

~G = ZR3 n
�
U(1)

(0)

A(1) � U(1)
(0)

A(2) � U(1)
(0)

B(2) � U(1)
(0)

B(2)

�
; (7.33)

the subgroup of G with trivial ZC2 elements, since we are mainly interesting in the rotational
symmetry. We adopt the previous strategy to study the anomalies; therefore, we search for the
subgroup of ~G that commutes with ZR3 , i.e. we search for the centralizer subgroup

ZG̃(R) = f~g 2 ~G j R~g = ~gRg: (7.34)

From the path integral point of view, this means that we restrict to the background con�gura-
tions that are invariant under ZR3 .

Let us initially focus on the �elds A
(i)
1 . In order to make the background ZR3 -gauge invariant,

we have to impose
A

(i)
1 � RA

(i)
1 ) (1− R)A

(i)
1 � 0 (7.35)

where � means up to U(1)
(0)

A(i) gauge transformations, and, in matrix notation, corresponds to

(
I− g

� A(1)
1

A
(2)
1

!
� 0 �

�
d�(1)

d�(2)

�
)

 
A

(1)
1

A
(2)
1

!
=
(
I− g

�−1
�

d�(1)

d�(2)

�
: (7.36)

Thus, the background gauge �elds must be pure gauge and must satisfy the following quanti-
zation conditions when integrated over a 1-cycle :

1

2�

I


(1−R)A
(i)
1 2 Z ) 1

2�

I


�
A

(1)
1 +A

(2)
1

�
2 Z and

1

2�

I


�
2A

(2)
1 −A

(1)
1

�
2 Z: (7.37)
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We can also �nd the holonomies for the �elds A
(i)
1 ; indeed, since

(
I− g

�−1
=

1

3

�
2 −1
1 1

�
(7.38)

we obtain that A
(i)
1 is equal to 1

3
d� for some combination of the gauge parameters �(i) 2 U(1)

and the quantization condition for the gauge parameters implies

1

2�

I


3A
(i)
1 =

1

2�

I


d� 2 Z ) ei
H
γ A

(i)
1 = e

2πk
3 with k 2 Z; (7.39)

i.e. the holonomies for A
(i)
1 take values in Z3.

The same argument holds for B
(i)
1 : if we impose up to gauge transformations that B

(i)
1 � RB

(i)
1 ,

we obtain that the background �elds must be proportional to pure gauge:

(
I− g−1

� B(1)
1

B
(2)
1

!
� 0 �

�
d�(1)

d�(2)

�
)

 
B

(1)
1

B
(2)
1

!
=
(
I− g−1

�−1
�

d�(1)

d�(2)

�
(7.40)

with the quantization conditions

1

2�

I


�
B

(1)
1 +B

(2)
1

�
2 Z and

1

2�

I


�
2B

(1)
1 −B

(2)
1

�
2 Z: (7.41)

The holonomies can be found by considering the matrix

(
I− g−1

�−1
=

1

3

�
1 1
−1 2

�
(7.42)

from which we obtain that B
(i)
1 is equal to 1

3
d� for some U(1)-valued function and

1

2�

I


3B
(i)
1 =

1

2�

I


d� 2 Z ) ei
H
γ B

(i)
1 = e

2πk
3 with k 2 Z: (7.43)

Therefore, if we consider all the background �elds that are invariant under ZR3 , from the study

of their holonomies we discover that they must take values in the ZA(1)

3 � ZA(2)

3 � ZB(1)

3 � ZB(2)

3

subgroup of U(1)
(0)

A(1) � U(1)
(0)

A(2) � U(1)
(0)

B(2) � U(1)
(0)

B(2) ; thus the centralizer is

ZG̃(R) = ZR3 � ZA(1)

3 � ZA(2)

3 � ZB(1)

3 � ZB(2)

3 : (7.44)

Since the ZR3 inviariant gauge �elds are proportional to pure gauge, it is straightforward that

the background curvatures are null: F
(i)
2 = H

(i)
2 = 0.

In order to discuss the anomalies, a crucial preliminary observation is that the subgroup ZR3 is

conjugated with other Z3 subgroups derived from di�erent U(1). If h 2 ZA(1)

3 �ZA(2)

3 �ZB(1)

3 �
ZB(2)

3 , we have that R and Rh are in the same conjugacy class, that is there exists ~g 2 ~G such
that

R = ~gRh~g−1: (7.45)

In fact, there is an ambiguity in the vary choice of R in the group ~G since we can choose any
representative of such conjugacy class. In order to prove 7.45, we have to consider the general
form of the group elements and we have to introduce some notation.
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Let us denote ~g 2 U(1)
(0)

A(1)�U(1)
(0)

A(2)�U(1)
(0)

B(2)�U(1)
(0)

B(2) � ~G by e2�i�iT
i
where fT ig; i = 1; : : : 4

are the generators of the di�erent U(1)
(0)
i subgroups of ~G ordered as in the original group 7.25

and f�ig are real numbers. We can denote h 2 ZG̃(R)\U(1)
(0)

A(1)�U(1)
(0)

A(2)�U(1)
(0)

B(2)�U(1)
(0)

B(2)

in the same way since ZG̃(R) � ~G, so h = e2�i�iT
i

with �i 2 Z=3. We want to prove that for
any h we can �nd ~g 2 ~G such that the conjugacy relation 7.45 holds.

Let us rewrite 7.45:
~g−1R~g = Rh  ! R−1~g−1R~g = h: (7.46)

In order to describe the action of R on ~g we have to use the matrix notation. Let us de�ne the
4� 4 matrix

�g =

�
g 0
0 g−1

�
; (7.47)

thus, we get the action:
R~g = Re2�i�iT

i

= e2�iT iḡij�jR: (7.48)

Now we can simplify the previous relation:

e2�i�iT
i

= R−1e−2�i�iT
i

Re2�i�iT
i

= e−2�iT i(ḡ−1)ij�jR−1Re2�i�iT
i

= e2�iT i(I4−ḡ−1)ij�j (7.49)

and, given the parameters f�ig that characterize h 2 ZG̃(R), we can �nd the paramenters f�ig
if (I4 − �g−1) is invertible:

�i = (I4 − �g−1)−1
ij �j: (7.50)

As we have already seen, the matrix (I2 − g) and (I2 − g−1), that constitute the blocks of the
4� 4 matrix �g, are invertible, therefore the conjugacy 7.45 is proved. Notice that the di�erent
conjugacy classes are given by the presence of R, R2 or the ZR3 identity in ZG̃(R) elements.

Being reduced to studying �nite groups we can exploit the results presented in 3.5 and discuss
esplicitely the anomalies. Denoting the anomaly by �, we know that it is a representative of a
class in the third cohomology group

H3(ZR3 � ZA(1)

3 � ZA(2)

3 � ZB(1)

3 � ZB(2)

3 ; U(1)) ' Z25
3 : (7.51)

We can list the di�erent contributions to � from the di�erent types of 3-cocycles: 5 cocycles of
type I,

�RI ; �
A(1)

I ; �A
(2)

I ; �B
(1)

I ; �B
(2)

I (7.52)

10 cocycles of type II,

�RA
(1)

II ; �RA
(2)

II ; �RB
(1)

II ; �RB
(2)

II ; �A
(1)A(2)

II ; �B
(1)B(2)

II ; �A
(1)B(1)

II ; �A
(2)B(2)

II ; �A
(1)B(2)

II ; �A
(2)B(1)

II (7.53)

and 10 cocycle of type III,

�RA
(1)A(2)

III ; �RA
(1)B(1)

III ; �RA
(1)B(2)

III ;�RA
(2)B(1)

III ; �RA
(2)B(2)

III ; �RB
(1)B(2)

III ;

�A
(1)A(2)B(1)

III ; �A
(1)A(2)B(2)

III ;�A
(1)B(1)B(2)

III ; �A
(2)B(1)B(2)

III :
(7.54)

We have denoted with the superscript the di�erent ZR3 subgroups that contribute and with the
subscript the type of cocycle (see section 6.6).

Since we know that for each boson there is a mixed 't Hooft anomaly between the U(1)
(0)

A(i) and

U(1)
(0)

B(i) gauge groups, we argue that �A
(1)B(1)

II and �A
(2)B(2)

II are non-trivial. In contrast, the

other contributions that involve the U(1) �elds, �A
(1)A(2)

II ; �B
(1)B(2)

II ; �A
(1)B(2)

II and �A
(2)B(1)

II , are
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trivial since the two scalars are free and the subgroups U(1)
(0)

A(1)�U(1)
(0)

B(1) and U(1)
(0)

A(2)�U(1)
(0)

B(2)

are independent. Also the contribution of type I for the various U(1) subgroups are trivial.

Since ZR3 is conjugated to other Z3 subgroups, we can deduce that the restriction of the
anomaly to ZR3 and the restriction to the group generated by Ra(1)a(2)b(1)b(2) are the same.
Here we have denoted with the lower case the generic elements of the Z3 subgroups of the
U(1) gauge �elds (e.g. a(1) 2 ZA(1)

3 and so on). Thus, if we consider the equality �(R;R;R) =
�(Ra(1);Ra(1);Ra(1)) we obtain

�RI = �RI + �A
(1)

I + �RA
(1)

II (7.55)

and, since �A
(1)

I is trivial because the single U(1)(0) is not anomalous, we can conclude that also

�RA
(1)

II is trivial. The same holds for the other cocycles of type II that involve R: �RA
(2)

II ; �RB
(1)

II

and �RB
(2)

II vanish.

For the cocycle of type III we focus on those containing R. Considering for instance

�(R;R;R) = �(Ra(1)a(2);Ra(1)a(2);Ra(1)a(2)); (7.56)

we obtain
�RI = �RI + �A

(1)

I + �A
(2)

I + �RA
(1)

II + �RA
(2)

II + �A
(1)A(2)

II + �RA
(1)A(2)

III : (7.57)

Notice that there are no anomalies for the single U(1)
(0)

A(i) and all the cocycles of type II are

trivial, so we can conclude that �RA
(1)A(2)

III must be trivial. The same happens for the 3-cocycles

�RA
(1)B(2)

III ; �RA
(2)B(1)

III and �RB
(1)B(2)

III . Di�erently, if we consider the combination of the two gauge
�elds of the same scalar we have, for instance,

�(R;R;R) = �(Ra(1)b(1);Ra(1)b(1);Ra(1)b(1)); (7.58)

from which we obtain

�RI = �RI + �A
(1)

I + �B
(1)

I + �RA
(1)

II + �RB
(1)

II + �A
(1)B(1)

II + �RA
(1)B(1)

III : (7.59)

Since �A
(1)B(1)

II are non trivial, we can argue that also �RA
(1)B(1)

III must be non-trivial. With the

same argument, we observe that �RA
(2)B(2)

III is not null.

Therefore, from the study of the discrete group ZG̃(R) we can deduce that there must be a

mixed 't Hooft anomaly between ZR3 and U(1)
(0)

A(1) � U(1)
(0)

A(2) � U(1)
(0)

B(2) � U(1)
(0)

B(2) , since this
anomaly is visible even when restricting to the abelian subgroup ZG̃(R). Finally, we can observe

that also the cocycles �A
(1)A(2)B(1)

III ; �A
(1)A(2)B(2)

III ; �A
(1)B(1)B(2)

III and �A
(2)B(1)B(2)

III are trivial because
the partition function factorizes and there cannot be a mixed anomaly between groups acting
on di�erent factors.

The explicit form of the cocycles �RA
(1)B(1)

III and �RA
(2)B(2)

III are

�RA
(1)B(1)

III = exp
�2�i

3
pRA

(1)B(1)

III ra(1)b(1)
�

�RA
(2)B(2)

III = exp
�2�i

3
pRA

(2)B(2)

III ra(2)b(2)
�

(7.60)

where r 2 ZR3 and pRA
(1)B(1)

III ; pRA
(2)B(2)

III 2 Z3 label the di�erent cocycles. We have non-trivial

cocycle for pRA
(1)B(1)

III ; pRA
(2)B(2)

III = 1; 2 and we can compute the non-trivial values of the anomaly

by focusing for instance in the �rst case �RA
(1)B(1)

III (see Table 7.1).

We have a non trivial anomalous phase every time that we have non trivial entries in the
cocycle, i.e. r; a(1); b(1) 6= 0. The possible values of the anomaly cocycles are the non trivial
cubic root of units in the complex plane that correspond precisely to the non trivial elements
of the Z3 cyclic group. The exact values of pRA

(1)B(1)

III ; pRA
(2)B(2)

III can be �xed by considering the

anomalies �A
(1)B(1)

II and �A
(2)B(2)

II .
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pRA
(1)B(1)

III = 1

r a(1) b(1) �RA
(1)B(1)

III

1 1 1 e
2πi
3

1 1 2 e
4πi
3

1 2 1 e
4πi
3

1 2 2 e
2πi
3

2 1 1 e
4πi
3

2 1 2 e
2πi
3

2 2 1 e
2πi
3

2 2 2 e
4πi
3

pRA
(1)B(1)

III = 2

r a(1) b(1) �RA
(1)B(1)

III

1 1 1 e
4πi
3

1 1 2 e
2πi
3

1 2 1 e
2πi
3

1 2 2 e
4πi
3

2 1 1 e
2πi
3

2 1 2 e
4πi
3

2 2 1 e
4πi
3

2 2 2 e
2πi
3

Table 7.1: Explicit calculation of the non trivial anomaly cocycle αRA
(1)B(1)

III for the mixed ZR3 't Hooft
anomaly.

7.4 't Hooft anomaly cancellation

As we have already discussed, the presence of a 't Hooft anomaly in the world-sheet theory
does not costitute an immediate problem for the theory, but is dangerous when we consider
the spacetime action or if we want to consider the orbifold of the theory. However, as for the
previous cases, the presence of a non trivial 2-group structure between the 0-form gauge �elds
and the Kalb-Ramond 1-form provides the way to get rid of this mixed anomaly. Let us explain
how.

We have to search for the transformation of the B2 �eld under the rotation of 2
3
� in the complex

plane where the torus are de�ned. If we want to restrict to the ZR3 invariant con�gurations we
have to impose on the quintet of gauge �elds that

(
A

(1)
1 ; A

(2)
1 ; B

(1)
1 ; B

(2)
1 ; B2

�
�
(
RA

(1)
1 ;RA

(2)
1 ;RB

(1)
1 ;RB

(2)
1 ; B2

�
: (7.61)

The rotation of the circles in the compact directions does not a�ect the Kalb-Ramond �eld B2

since its tensor has no indices in the compact spacetime directions. Using the same trick as in
the previous chapter, we can rewrite the second term

(
A

(1)
1 − (1− R)A

(1)
1 ; A

(2)
1 − (1− R)A

(2)
1 ; B

(1)
1 − (1− R)B

(1)
1 ; B

(2)
1 − (1− R)B

(2)
1 ; B2

�
=(

A
(1)
1 + d�(1); A

(2)
1 + d�(2); B

(1)
1 + d�(1); B

(2)
1 + d�(2); B2

� (7.62)

and we require that−(1−R)A
(i)
1 and−(1−R)B

(1)
1 are pure gauge, as in 7.36 and 7.40. Therefore,

we can make a gauge transformation with parameter −d�(i);−d�(i) in order to cancel these pure
gauge terms, but the transformation involves also B2 (7.32):

(
A

(1)
1 + d�(1) − d�(1); A

(2)
1 + d�(2) − d�(2); B

(1)
1 + d�(1) − d�(1); B

(2)
1 + d�(2) − d�(2);

B2 − A(1)
1 ^ d�(1) − A(2)

1 ^ d�(2) −B(1)
1 ^ d�(1) −B(2)

1 ^ d�(2)
�
:

(7.63)
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Developing the calculations for the �eld B2 we obtain:

B2 + A
(1)
1 ^ (1− R)B

(1)
1 + A

(2)
1 ^ (1− R)B

(2)
1 +B

(1)
1 ^ (1− R)A

(1)
1 +B

(2)
1 ^ (1− R)A

(2)
1 =

= B2 + A
(1)
1 ^ (2B

(1)
1 −B

(2)
1 ) + A

(2)
1 ^ (B

(1)
1 +B

(2)
1 ) +B

(1)
1 ^ (A

(1)
1 + A

(2)
1 ) +B

(2)
1 ^ (2A

(2)
1 − A

(1)
1 )

= B2 + 2A
(1)
1 ^B

(1)
1 − A

(1)
1 ^B

(2)
1 + A

(2)
1 ^B

(1)
1 + A

(2)
1 ^B

(2)
1 +

+B
(1)
1 ^ A

(1)
1 +B

(1)
1 ^ A

(2)
1 + 2B

(2)
1 ^ A

(2)
1 −B

(2)
1 ^ A

(1)
1 =

= B2 + A
(1)
1 ^B

(1)
1 +B

(2)
1 ^ A

(2)
1 :

(7.64)
Finally, we obtain that 7.63 equals(

A
(1)
1 ; A

(2)
1 ; B

(1)
1 ; B

(2)
1 ; B2 + A

(1)
1 ^B

(1)
1 +B

(2)
1 ^ A

(2)
1

�
(7.65)

that in principle is di�erent from the original quintet 7.61. In order to make sense of these
equality and transfomation we have to impose that under the ZR3 rotation the �eld B2 transforms
as

B2 ! B2 + A
(1)
1 ^B

(1)
1 +B

(2)
1 ^ A

(2)
1 : (7.66)

This means that even if A
(i)
1 and B

(i)
1 are restricted as in 7.36 and 7.40, the quintet

(A
(1)
1 ; A

(2)
1 ; B

(1)
1 ; B

(2)
1 ; B2) is not invariant under ZR3 , but transforms as(

A
(1)
1 ; A

(2)
1 ; B

(1)
1 ; B

(2)
1 ; B2

�
!
(
A

(1)
1 ; A

(2)
1 ; B

(1)
1 ; B

(2)
1 ; B2 + A

(1)
1 ^B

(1)
1 +B

(2)
1 ^ A

(2)
1

�
: (7.67)

Let us express this transformation in terms of the gauge parameters in order to study its
quantization. Notice that we have neglected the last two term in 7.32 since they only contribute
by integer to the ux of B2 so they do not a�ect the phase. From 7.36 and 7.40, we get

A
(1)
1 =

2

3
d�(1) − 1

3
d�(2) A

(2)
1 =

1

3
d�(1) +

1

3
d�(2)

B
(1)
1 =

1

3
d�(1) +

1

3
d�(2) B

(2)
1 = −1

3
d�(1) +

2

3
d�(2)

(7.68)

and we can substitute the �elds in 7.66 with them.

A
(1)
1 ^B

(1)
1 +B

(2)
1 ^ A

(2)
1 =

=
1

9
(2d�(1) − d�(2)) ^ (d�(1) + d�(2)) +

1

9
(−d�(1) + 2d�(2)) ^ (d�(1) + d�(2))

=
1

9

(
2d�(1) ^ d�(1) + 2d�(1) ^ d�(2) − d�(2) ^ d�(1) − d�(2) ^ d�(2)−

− d�(1) ^ d�(1) − d�(1) ^ d�(2) + 2d�(2) ^ d�(1) + 2d�(2) ^ d�(2)
�

=

=
1

3

(
d�(1) ^ d�(1) + d�(2) ^ d�(2)

�
:

(7.69)

Therefore, the non-trivial transfomation of B2 under ZR3 cannot be reabsorbed by a gauge
transformation of B2 with parameter �1 because the integral of 7.69 over a 2-dimensional closed
manifold is not integer. So, the holonomy of B2 changes.

The non trivial transformation of B2 is the solution for the cancellation of the 't Hooft anomaly
between ZR3 and the di�erent U(1) subgroups. Let us consider a (d−1)−dimensional topological

defect in spacetime M (d) representing the generator R of the ZR3 -rotations. If the �elds A
(i)
1 and

B
(i)
1 are restricted as in 7.36 and 7.40, the �eld B2 di�ers by A

(1)
1 ^B

(1)
1 +B

(2)
1 ^A

(2)
1 from the two

sides of the defect, that is by 1
3

(
d�(1) ^ d�(1) + d�(2) ^ d�(2)

�
if we use the gauge parameters. If
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we described the ZG̃(R) background by a network of (d− 1)−dimensional defects in spacetime

labeled by elements in ZG̃(R), then A
(i)
1 ^B

(i)
1 (or more precisely 1

3
d�(i) ^ d�(i)) is the Poincar�e

dual of the intersection between the defect labeled by a(i) and the one labeled by b(i). Taking
into account, for instance, the (d−3)-dimensional triple junction of three defects R, a(i) and b(i)

we can consider the integral of B2 over a small sphere S2 which encircles the triple intersection.
Therefore, we know that the defect R divides the sphere into two parts and, in the limit where
the radius of S2 is in�nitesimal so that B2 is about constant, the ux

H
S2 B2 is equivalent to

the integral of A
(1)
1 ^B

(1)
1 +B

(2)
1 ^A

(2)
1 over one of the two hemispheres. Since 1

3
d�(i) ^ d�(i) is

the Poincar�e dual of the intersection between the defects a(i) and b(i) and since this intersection
necessarily crosses the hemisphere, we obtain that the integral of A

(1)
1 ^B

(1)
1 +B

(2)
1 ^A

(2)
1 over

such hemisphere has values in Z=3. Therefore, in the triple intersection of the three defects R,
a(i) and b(i), we have

e2�i
H
S2 B2 = ei

2kπ
3 k 2 Z: (7.70)

In such a way, we obtain exactly the phase that cancels out the anomalous phase that we want
to eliminate. Once again the presence of a non-trivial 2 group structure solves the problem of
the presence of mixed 't Hooft anomalies between subgroups of the 0-form global symmetry
group of compacti�ed string theory models.
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Appendix A

Elements of group theory

We want essentially to recall without systematicity some de�nitions regarding the theory of
groups that are used in the previous chapter. In particular, we will recall the notion of product
and quotient between groups and that of �nite, cyclic and �nitely generated groups.

De�nition 1. A group (G; �) is a set G with a composition law, called multiplication

� : G�G! G

(g1; g2) 7! g1 � g2

satisfying the following properties:

ˆ associativity: g1 � (g2 � g3) = (g1 � g2) � g3 8 g1; g2; g3 2 G;

ˆ existence of neutral element (or identity) e: g � e = e � g = g 8 g 2 G;

ˆ existence of the inverse: 8g 2 G;9g−1 j g−1 � g = g � g−1 = e.

De�nition 2. A group (G; �) is said to be Abelian (commutative) if the composition law is
commutative: g1 � g2 = g2 � g1 8 g1; g2 2 G.

De�nition 3. A subset of a group H � G is a subgroup H < G if it is closed under the
composition law of G.

De�nition 4. The center of a group is the subgroup ZG < G that contains all the elements
that commute with all the others:

ZG = fa 2 G j a � g = g � a 8g 2 Gg

By de�nition, the center of a group is Abelian and it is straightforward to see that if G is
Abelian than the ZG is the whole group.

De�nition 5. The centralizer of a subset H � G in the group G is de�ned as the set ZG(H)
of elements of G such that each member g 2 ZG(H) commutes with each element of H:

ZG(H) = fg 2 G j gh = hg 8h 2 Hg:
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If a group is �nite, i.e. it has a �nite number of elements (jGj < 1, with jGj the cardinality
of G), when we multiply an element by itself enough times, we recover the group identity. In
fact, multiplying any element of a �nite group by itself more than jGj times must lead to a
recurrence of the product, because there are at most jGj distinct elements.

De�nition 6. The order of a �nite group G is its cardinality, i.e. the number of its elements
jGj. The order of an element g 2 G is the smallest integer n such that gn = e.

Ler us consider the notion of �nite generated abelian groups.

De�nition 7. Let g1; : : : gr 2 G, the elements of G of the form n1g1 + � � � + nrgr with ni 2 Z
form a subgroup of G. This subgroup is said to be generated by g1; : : : gr and these elements
are called generators.
A group G is said to be �nitely generated if it is generated by a �nite number of generators.

If n1g1 + � � � + nrgr = 0 is satis�ed only when n1 = : : : nr = 0, g1; : : : gr are said to be linearly
independent.

De�nition 8. A group G is called a free Abelian group of rank r if it is �nitely generated by
r linearly independent generators.

De�nition 9. G is a cyclic group if it is generated by one element g: G = f0;�g;�2g; : : : g.
If ng 6= 0 for any n 2 Z−f0g, G is a in�nite cyclic group, while if ng = 0 for some n 2 Z−f0g
it is a �nite cyclic group.

Any in�nite cyclic group is isomorphic to Z while any �nite cyclic group is isomorphic to ZN .
Furthermore, any �nitely generated Abelian group G (not necessarily free) with m generators
is isomorphic to the direct sum of cyclic groups:

G ' Z� � � � � Z� ZN1 � � � � � ZNk (A.1)

In order to de�ne the quotients of groups we recall the de�nition of equivalence relations, since
the quotient is essentially an identi�cation of elements via equivalence relation.

De�nition 10. A binary relation � on a set X is said to be an equivalence relation if and only
if it satis�es the following properties:

ˆ a � a

ˆ a � b ) b � a

ˆ a � b and b � c ) a � c

An equivalence class for an element a 2 X is the set of all elements in X equivalent to a:

[a] := fx 2 X j x � ag

.
De�nition 11. Let H < G and r 2 G. The equivalence classes

Hr = fhr j h 2 Hg Hr = frh j h 2 Hg

are said respectively right cosets and left cosets.
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Note that in general gH and Hg are not in H unless also g 2 H and they are not even sub-
groups of G. One can prove that two cosets of a subgroups have the same element or they have
not any element in common; therefore, we can write G as the disjoint union of cosets of its
subgroup H and we can de�ne

De�nition 12. The right quotient G=H of a group G by its subgroup H is the set of all the
right cosets of H, i.e. the set of all the equivalence classes of elements of G obtained by right
multiplications with H: g1 � g2 if 9h 2 H j g1 = g2h.
The left quotient H n G is the set of all the left cosets of H, i.e. the set of all the equivalence
classes of elements of G de�ned by the relation: g1 � g2 if 9h 2 H j g1 = hg2.

In general G=H 6= H nG and they do not form a group with respect to the group multiplication
in G. This may happen only if H is a normal subgroup, i.e. it is self-conjugated:

De�nition 13. A subgroup N < G is said to be normal or invariant (N C G) if all the right
and left cosets coincide:

Hg = gH 8 g 2 G
or equivalently

8 g 2 G; h1 2 H 9h2 2 H j gh1 = h2g

De�nition 14. Two elements g1; g2 2 G are said to be conjugate if 9g 2 G j g2 = gg1g
−1

The conjugation is an equivalence relation.

De�nition 15. A subgroup H < G is said to be self-conjugate if 8g 2 G gHg−1 = H, i.e.

8 g 2 G; h1 2 H 9h2 2 H j gh1g
−1 = h2

Obviously, a subgroup N < G is normal if and only if it is self-conjugate. Now, we can de�ne
the group quotient since, one can prove that if NCG is a normal subgroup, then G=N is a group.

De�nition 16. If N < G, the group G=H is the group whose elements are the the equivalence
classes given by the cosets and the composition law is

g1H � g2H = g1g2H

with g1g2 2 G in according to the multiplication in G.

With respect to conjugation, we can also observe that if a group G is abelian, all its subgroups
are normal. Furthermore, we can notice that the center ZG of a group G is normal in the group
itself (ZG CG).

De�nition 17. A group G is said to be simple if it has no non-trivial normal subgroups. A
group G is said to be semi-simple if it has no normal abelian subgroups.

Groups can be combined to form a more general group via the product of di�erent groups.

De�nition 18. Given two groups G1 and G2, the group G1 �G2 is the group whose elements
are the couple

(g1 2 G1; g2 2 G2) 2 G1 �G2

with the composition law
(g1; g2) � (g01; g

0
2) = (g1g

0
1; g2g

0
2)

and
eG1�G2 = (e1; e2) (g1; g2)−1 = (g−1

1 ; g−1
2 ):
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For �nite groups, the order of the product group is the product of the order of the groups:
jG1 �G2j = jG1jjG2j.

De�nition 19. Let N and H two groups and � a map from H to the automorphisms of N

� :H ! Aut N

h 7! �h

the semi-direct product of N and H determined by � is denoted by N oΦ H and de�ned to be
the group whose elements are (n 2 N; h 2 H) 2 N oΦ H and the composition law is

(n1; h1) � (n2; h2) = (n1�h1(n2); h1h2) ; eNoΦH = (eN ; eH) ; (n; h)−1 = (�h−1(n−1); h−1)

Notice that, if we denote with G = N oΦ H, we have N CG and H < G.
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