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Introduction

Cox semi-parametric proportional hazards regression model represents one of the most
widely used tools in the analysis of survival data. The underlying theory of profile
likelihood allows one to effectively perform, given a certain set of regressors, a rela-
tively easy-to-interpret estimation of the risk and survival curves and predictions for
the outcome of interest.
Although such a model has been, and still is, much appreciated precisely because of its
ease of use and interpretation, it is also acknowledged that said ease of use comes at the
cost of some very stringent assumptions, which in fact pose uncomfortable limitations
when it comes to having to face various real-world situations.
An important caveat to this theory is that the values of the regressors must be deter-
mined at time t0, when the patient enters the study, and remain constant thereafter.
However, there are numerous situations in which the effects of the variables included
in the model are subject to time-dependence, thus resulting in the violation of the car-
dinal assumption of proportionality of the risks and consequently losing the capability
of producing reliable predictions.
To accomodate covariates which may change their effects on the risk over time, special
adjustments have to be done on the structure of the initial model. Furthermore, con-
sidering a whole class of non-multiplicative hazards models for the risk function can
be a valuable option. On a more general level, this approach, in which some of the
assumptions of a regression model are relaxed, is commonly referred to, in the statistics
literature, as flexible regression.
In this dissertation, following some brief recalls on the main quantities and estima-
tors used in survival analysis, the assumptions, diagnostics and limitations of the Cox
proportional hazards regression model are discussed, along with the issue of handling
time-dependent effects and exploring the main methods for evaluating and selecting the
most appropriate functional form of the variables. Next, we show the usage of P-splines
in the Cox model which allow a more dynamic modelling of nonlinear effects over time,
followed by two examples of more flexible model families: additive hazards models and
multiplicative-additive hazards models. Said models represent an effective solution for
the aforementioned scenario, for they allow data to be modeled even if the effects of
the variables on the risk are subject to time-dependence.
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CONTENTS

Comparison among the models, in terms of fitting and performance, is shown upon
application to a set of real data concerning 181 stage I-IIIb NSCLC patients treated
with (chemo-)radiotherapy between March 2007 and September 2013, in which blood-
biomarkers related to hypoxia, inflammation, immune response and tumour load were
reported. All patients participated in the Biobank project (Clinical trials.gov identifier:
NCT01936571) launched in 2003.
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1 Multiplicative hazards model

In this section we provide a presentation of the main element of the class of multiplica-
tive hazards models, namely the Cox semi-parametric proportional hazards model.

1.1 Brief recalls on fundamental quantities and estimators in survival anal-
ysis

In the following, we recall the main quantities that define the basis for any descriptive
and inferential procedure concerning survival data. For a more specific discussion we
refer the reader to Klein & Moeschberger[16].

Survival data are data whose principal interest is the waiting time with respect to
the occurrence of a set of one or more events, which are designated as interest events.
Censoring is a mechanism peculiar to this type of data and can occur in various
forms: right, left, interval. In addition, it can be dependent or independent. Survival
data whose observations exhibit right-handed censoring are characterized by the fact
that at least one of the subjects in the study does not experience the event of interest
within the observation period.
Let us focus on right censoring and define two variables known as X ≥ 0 waiting time
to event and C ≥ 0 censoring time. According to what was explained earlier, only one
of the two is observed, then:

T = min(C,X) ≥ 0 (1)

is called survival time.
If censoring time C is predetermined and has the same value for all subjects, it’s defined
as simple type I right-hand censoring; this generally coincides with the end of the study.
If the censoring times happen at two or more predetermined time points, we speak of
progressive type I censoring. If the units enter the study at predetermined different
times from each other but the censoring time is the same for all, we speak of generic
type I censoring.
In simple type II, the study continues until the r-th event is observed, with r < n where
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1.1 Brief recalls on fundamental quantities and estimators in survival analysis

n is the number of subjects. In generic type II, the n statistical units continue to be
observed until the occurrence of r1 events. n1 − r1 units are then censored among the
remaining n− r1; thus, n−n1 units remain in the study. Subsequent r2 events are then
observed, and among the remaining units more n2 − r2 are censored, and so on. In the
random type, all censoring times are random; this typically occurs when withdrawal
and lost-to-follow-up cases are present in the study.

The survival function is a function which indicates the probability that an individual
will survive beyond a certain period of time, considering the information collected up
to that point. In other words, the survival function indicates the probability that an
individual did not experience the event of interest (e.g., death or a disease) during the
observation period.
The survival function is denoted by the letter S and can be defined as:

S(t) = P (T > t) (2)

In other words, the survival function S(t) is defined as the probability that the survival
time is greater than t. Obviously, S(0) = 1, and limx→1 S(x) = 0.
The survival function can also be expressed in terms of: S(t) = 1− F (t) where F (t) is
the cumulative distribution function of survival time T .

The hazard function is a function which indicates the instantaneous probability that
an individual suffers the event of interest in a given instant of time, considering the
information collected up to that moment. In other words, the risk function indicates
the speed at which the event of interest occurs in a given instant of time. Such function
is frequently indicated with the letter h and can be defined as:

h(t) = lim∆t→0
P (t ≤ T < t+∆t|T ≥ t)

∆t
(3)

and represents the ratio of the probability that the event of interest occurs between t

and t + ∆t (given that the individual has already survived up to t) and the length of
the time interval ∆t, to infinity. The two functions just presented are closely related
by the following relationship:

h(t) = − d

dt
log[S(t)] (4)

that is, the risk function h(t) can be obtained by deriving the logarithm of the survival
function S(t) with respect to time.

Finally, the cumulative risk function can be obtained by integrating the risk function
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1.1 Brief recalls on fundamental quantities and estimators in survival analysis

up to time t:

H(t) =

∫ t

0

h(u)du (5)

Intuitively, it is defined as the sum of the risk functions for all times before or equal to
t. In other words, it represents the cumulative probability of occurrence of the event of
interest up to time t.
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Figure 1: Plot of estimated survival curves
for a two-levels factor with 95% confidence
intervals and p-value of the Log-Rank test.
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Figure 2: Cumulative hazard plot for a two-
levels factor with 95% confidence intervals
and p-value of the Log-Rank test.

According to the formulas previously introduced, it is natural to ascertain that the
following relations hold: S(x) = e−H(x) and H(x) = − log(S(x)).
Assuming a right censorship mechanism, the survival function can be inferred using the
Kaplan-Meier estimator:

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)
(6)

The quantity ĥi = di/ni represents the MLE estimate of the risk function, relative to
the conditional probability that a subject who is still at risk just before it suffers the
event at instant ti.
The Kaplan-Meier estimator is a non-increasing function, continuous from the right
and at intervals, for which the amplitude of the jumps is proportional to ĥi = di/ni,
and therefore increases when the number of observed events at ti increases.
If the last survival time is an event, then Ŝ(t) = 0 from this time onward, while if the
last observed survival time is a censoring, then Ŝ(t) > 0.
For a sufficient sample size, the approximation to a normal random variable can be
applied, according to which:

Ŝ(t)∼̇N (S(t), V̂ (Ŝ(t)) (7)
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1.2 Cox semi-parametric proportional hazards regression model

where the variance is estimated via Greenwood’s formula[16].

An alternative estimate for the survival function is provided by the Nelson-Aalen
estimator, which is defined as it follows:

S̃(t) = e−H̃(t) (8)

The estimated risk function ĥ(t) corresponds to the amplitudes of the jumps of the
estimated Nelson-Aalen curve.
Further insights into the nature and behaviour of these estimators are exhaustively
covered by Klein & Klainbaum[17].

1.2 Cox semi-parametric proportional hazards regression model

1.2.1 Assumptions, formulation and profile likelihood

Specification of a model in the analysis of duration data and especially in survival anal-
ysis must address the need to define how survival is related to the type of treatment
under study or other characteristics; in any case, it is always a matter of specifying
how to regress the risk function based on a certain set of covariates. In this section we
shall discuss the main characteristics of the Cox model, focusing on the assumptions
underlying its structure and formualtion.

On a general level, the Cox model specifies the hazard for an individual i as:

hi(t|Z) = h0(t)e
Zi(t)β (9)

where h0(t) is an unspecified, nonparametric nonnegative function of time called the
baseline hazard, β is a p-dimensional vector of coefficients and Zij(t) is the jth regressor
of the ith subject (from which the appellation of semi-parametric); from this, it’s natural
to think that Zi denotes the whole regressor vector for the individual i.
For this model, it’s assumed a right-censoring mechanism, also the censoring must be
independent from Z.
Setting the covariates as fixed with respect to time is imperative to satisfy the core
assumption which states that the hazards are, in fact, proportional, whence the explicit
form of the Cox model:

hi(t|Z) = h0(t)e
Ziβ (10)

Insights about the methodologies for verifying this assumption are discussed in Section
1.2.2.
The exponential operator ensures that the final estimates of the outcome of interest
are a physical possibility, by implying that the observed deaths (or events) can not
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1.2 Cox semi-parametric proportional hazards regression model

unhappen, meaning event rates can not be negative; the main consequence of this is
that covariates have multiplicative effect on baseline risk and, consequently, additive
effect on the baseline log-risk[31].
The term proportional hazards comes from the assumption that the hazard ratio for
two subjects with time-fixed regressor vectors Zi and Zj:

hi(t|Z)
hj(t|Z)

=
h0(t)e

Ziβ

h0(t)eZjβ
=
eZiβ

eZjβ
(11)

is constant over time. Estimation of β is discussed later in this section.
Under these premises, the corresponding survival function can be written in the form
of:

S(t|Z) = S0(t)
eβ

T Z (12)

where the baseline survival for Z = 0 is:

S0(t) = e−H0(t) = e−
∫ t
0 h0(u) du (13)

For the i-th covariate assumed continuous, eβi expresses by how much the risk of the
event of interest varies multiplicatively for each unit change in Zi, all other covariates
being equal. Meanwhile, if Z is assumed to be categorical, saying there are Z1, Z2... Zl

levels, the relative risk eβi for the variable Zi expresses how many times the risk that
the event is likely to occur increases/decreases. For example, if Z has only two levels,
let’s say [0, 1], then the relative risk for Z is given by:

h(t|Z = 1)

h(t|Z = 0)
= eβ1 (14)

Another important assumption is that there must be no ties among the data, that
is, no more than one event can happen at time t: ties are usually more likely to occur
when the event time scale is discrete or because continuous event times are grouped into
intervals. The two possibilities imply different probability structures which are reflected
in the approximation that is chosen among different approaches; further insights on this
issue are covered by Therneau and Grambsch[31].
The profile likelihood is a useful tool for constructing confidence intervals when the
maximum likelihood estimates (MLEs) of the parameters are of interest.[16]
For the Cox proportional hazards model, the likelihood function can be written as it
follows:

L(β) =
n∏

i=1

[
eβ

′xi∑
j∈R(ti)

eβ′xj

]
(15)

where β represents the vector of regression coefficients, xi is the vector of covariates for
the ith individual, δi is the censoring indicator and R(ti) denotes the risk set at time
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1.2 Cox semi-parametric proportional hazards regression model

ti. To obtain the profile likelihood function, we fix the parameter of interest, say βk, at
a particular value, denoted as β0

k , and maximize the likelihood function with respect to
the remaining parameters β−k. This yields the profile likelihood function for βk:

PL(βk) = max
β−k

L(βk, β−k; β
0
k), (16)

where β−k represents all parameters except for βk.

1.2.2 Proportional hazards assumption assessment and nonproportionality handling
strategies

We focus here on testing the adequacy of the Cox model in relation to the assumption
of proportional risks.
If we consider a set of time-fixed covariates with a relatively small number of levels,
a useful graphical test for this assumption is to directly take a look at the survival
curves: if the assumption holds the log curves should not consistely drift apart[10].
The Kaplan-Meier curves, under the definition of survival function presented at (8),
exhibit approximately parallel behaviour if plotted on log-log scale. If the variable is
continuous or can’t be divided in a smaller number of classes because of its many levels,
Kaplan-Meier plots do not represent the best option.
Another common method to test the proportional hazards assumption is provided by
considering time-dependent coefficients, which result in the specification of the
model as:

hi(t|Z) = h0(t)e
Ziβ(t) (17)

If β(t) is not constant, the effect of a covariate may consequently not be constant over
time. This is the case, for example, when a subject develops resistance in response to a
certain treatment, such as an antibiotic. The proportional hazards assumption implies
that β(t) = β and the main consequence of this is that βj(t), if plotted against time,
would approximately be described by a horizontal line[11].
Another method to test for proportional hazards is given by considering scaled Schoen-
feld residuals, which are defined for the kth event as:

sk =

∫ tk

tk−1

∑
i

(Xi − x̄(β̂, s))dN̂i(s) (18)

where Ni(t) comes from the counting martingale process for the ith individual and the
di is the deviance residual under the same circumstances[6]. The set of Schoenfeld
residuals is a p column matrix with one row per event. Grambsch and Thurneau[10]
demonstrate that, given β̂, the coefficient from an ordinary Cox model, then:

E(s∗kj) + β̂j ≈ βj(tk) (19)
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1.2 Cox semi-parametric proportional hazards regression model

where s∗k is the scaled Schoenfeld residual. From this relation comes the possibility
to plot s∗kj + β̂j against time or a certain function of time g(), as a tool to visualize the
level of nonproportionality. A line is fitted to the plot followed by a test for zero slope:
a nonzero slope is evidence against the hypothesis of proportional hazards. Further
insights on the test statistic used under the null hypothesis are discussed by Therneau
and Grambsch[31].
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Figure 3: Plot of Schoenfeld residuals v. time.

As mentioned earlier, if we suspect that the effect on the hazard is not constant with
time, we can incorporate a time-dependent coefficient, thus making the model result in
the following expression:

λ(t) = λ0(t)e
Zβ(t) (20)

If β(t) is not constant, the impact of one or more regressors may vary over time. To
verify this, it’s possible to plot βj(t) against time: if the impact on the hazard is not
time-dependent, this will result in a horizontal line.
If nonproportionality of the hazards does in fact appear during the analysis of the data,
there are a certain number of strategies, depending from case to case, one can apply to
possibly overcome the issue:

• Stratification: It’s possible to incorporate covariates which cause violation of the
proportional hazards assumption as stratification factors rather than considering
them as regressors. The shape of the baseline risk varies for each category while
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1.2 Cox semi-parametric proportional hazards regression model

the effect of covariates remains equal in all strata. This means that the stratified
model is not equivalent to estimating l separate models for each category. Inference
is performed by constructing l functions of partial likelihood, each specific to the
respective layer.
While this approach is of relatively easy to use, it comes at the cost of some
drawbacks, which are:

– Lose of information of the variable used as a single factor to perform the strat-
ification on the overall survival since it is omitted from the set of regressors.

– While stratification comes as a natural possibility for categorical variables,
quantitative variables have to be discretized into intervals, but choosing how
many and how wide said intervals are is not obvious and can result in bias for
the coefficients of the regressors or a diminishment in efficiency.

– Stratified analyses are, in general, less efficient compared to the ones without
stratification factors or to anaylses which include interactions with time, when
a time-dependent structure is assumed to be present.

• Use of time-dependent covariates: Time-dependent covariates are a possibility
when working with time-varying effects in a sense that a time-dependent covariate
X(t) can be created so that:

β(t)X = βX(t) (21)

The choice for X(t) has to be considered in relation to the specific goal of the
study and to the relative theoretical considerations or it can be a function chosen
as evidence emerged from the smoothed residual plots. In section 1.2.3 we provide
an overview on the usage of P-Splines which serve as a very flexible tool to model
the functional form of a covariate.
Frequently, time-dependent covariates are a repeated measure of a certain variable
over the period of observation. In these cases, there might be correlation among the
single measures, for example when multiple doses of a drug are administered over
time. A common approach is to define (start, stop] intervals for the variable, thus
assuming a step function which jumps at the measurement points. The flexibility
of the (start, stop] approach is frequently used in survival analysis and, more in
general, in EHA (event history analysis), however sometimes choosing the points
of break of the intervals might not be so obvious, especially when there are more
than two measurements; short intervals might result in producing biased estimates
as well.

• Use of AFT or (multiplicative-)additive hazards models: There are cases
in which the data are more suited to be modeled with Accelerated Failure Time
(AFT) models, which are common in industrial applications. In survival analysis’
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1.2 Cox semi-parametric proportional hazards regression model

context, the primary goal is to study the time until an event of interest occurs,
such as death, failure, or recurrence of a disease.
The AFT model assumes that the logarithm of the survival time, denoted as T ,
follows a linear relationship with covariates. The general formulation of the AFT
model is given by:

ln(T ) = β0 + β1x1 + β2x2 + . . .+ βpxp + σϵ (22)

where:

– β0, β1, . . . , βp are the regression coefficients for the covariates x1, x2, . . . , xp,
respectively.

– σ is a positive parameter representing the scale parameter of the model.

– ϵ is a random error term assumed to follow a standard extreme value distri-
bution with a location parameter of 0 and a scale parameter of 1.

The AFT model implies that a one-unit increase in any of the covariates multiplies
the survival time by a constant factor. If βj is the regression coefficient of a co-
variate xj, then the acceleration factor is given by eβj . This factor determines the
amount of acceleration or deceleration of the survival time for each unit change
in the corresponding covariate. For instance, if the acceleration factor is 2, it
means that a unit increase in the covariate results in a doubling of the survival
time, indicating a decelerating effect. Conversely, an acceleration factor less than
1 would lead to a shorter survival time for higher values of the covariate, implying
an accelerating effect. More insights on AFT models are provided by Klein[16].
Another approach, even more flexible in at least some cases, is given by working
with two whole different families of models which consider the effects of the co-
variates on the risk respectively on a additive and a multiplicative-additive scale;
these two categories of models for the hazard function are presented and discussed
as core of this work, respectively, in sections 2.2 and 2.3.

• Checking for omitted variables: While we’ll just provide a mention of this
other issue, it is also worth noting that omitting covariates can, in some cases, be
cause for a lack of proportionality among the hazards: we illustrate this scenario
by considering a simple model in the form of:

λ(t) = λ0e
x1β1+x2β2 (23)

given that x1 is a 0-1 binary treatment indicator and x2 is an important predictor.
By omitting x2 for any reason from the initial model we would fit it as:

λ(t) = λ0e
x1β (24)

14



1.2 Cox semi-parametric proportional hazards regression model

This could result in the violation of the assumption of proportional hazards and
also in the fact that the partial likelihood estimate of β based in the misspecified
model is a biased estimate of β1 since, when a covariate is ignored, the operative
hazard is the average hazard of those at risk at each time point, a mixture of
hazards[31].

1.2.3 Evaluation methods for the functional form and P-Splines usage

As previously stated, when the proportional hazards assumption is satisfied, this im-
plies that, considering a variable related to the age of the subjects as an example, the
ratio of the risks between a 30- and a 45-year-old is the same as that between a 65- and
a 80-year-old. What if the risk does not begin to rise until a certain age or if it exhibits
a non-constant behaviour throughout the years? Meaning, we are trying to understand
if some sort of nonlinearity is present in the effects of a variable on the risk over time.
This issue is consistent with the necessity of investigating correct procedures for evaluat-
ing the best functional form for a covariate; we’ll show two main procedures: martingale
residuals plots and P-splines.
As for the first method, we firstly have to define what martingale residuals are: let
Ti be the survival time of the i-th subject, and let Ĥ(t) be the estimated cumulative
hazard function at time t. The martingale residual ri for the i-th subject is computed
as:

ri =
δi − Ĥ(Ti)√
V̂ (Ĥ(Ti))

(25)

where δi is the event indicator variable for subject i (1 if an event occurred, 0 otherwise),
and V̂ (Ĥ(Ti)) is the estimated variance of the cumulative hazard function at time Ti.
Nonlinearity is not an issue for categorical variables, so we only examine plots of mar-
tingale residuals against a continuous variable.
Therneau et al.[31] suggest plotting the martingale residuals from a null Cox model,
where β̂ = 0, against each variable separately and superimposing a scatterplot smooth
(an example is shown in Figure 4). Note that fitted lines should be approximately linear
to satisfy the Cox proportional hazards model assumptions.
The interpretation of this type of graph is very close to that of scatterplots used to as-
sess the relationship between one response variable and another covariate in the usual
linear regression models for data that do not have censoring.
In the software R, the procedure can effectively be implemented by using the function
ggcoxfunctional() of the library survminer, more details related to this com-
mand can be found at the R help section[19].
The other approach to identify the most appropriate functional form of a covariate is
via P-splines.
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Figure 4: Martingale residuals from a null Cox model plotted against a continuous variable inherent
to age.

On a general level, splines are a mathematical technique used to approximate complex
functions or irregular relations between two or more variables. A spline is a piecewise
curve composed of low-degree polynomial segments, connected in a way that ensures
continuity and smoothness of the resulting curve[13]. The main goal of splines is to
provide an accurate approximation of a dataset without being excessively influenced by
noise or random fluctuations.
A spline of degree k with n nodes can be defined as:

S(x) =
n∑

i=1

ciNi(x) (26)

where:

• Ni(x) are the basis functions (often polynomials) that depend on the nodes and
form the piecewise curve.

• ci are the coefficients that determine the height of each segment.

The choice of basis functions Ni(x) is often made to ensure the continuity and smooth-
ness of the curve. A common example of a spline is the cubic spline, where each segment
is a cubic polynomial.
P-splines (penalized splines) are a variant of splines that use a regression approach to
estimate the coefficients of the basis polynomials. Unlike traditional splines, p-splines
incorporate a penalty term in the optimization process to control the complexity of the
model and reduce overfitting[23].
P-splines are particularly useful when dealing with large amounts of data or when
tighter control over model flexibility is desired. Additionally, p-splines can be compu-
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Figure 5: P-spline interpolating a variable.

tationally more efficient than traditional splines.
In the case of p-splines, the model is defined as:

S(x) =
n∑

i=1

ciNi(x) + λ

∫
S ′′(x)2 dx (27)

where:

• The first term is similar to that of traditional splines, with coefficients ci estimated
through regression analysis.

• The second term is the penalty term, penalizing the curvature of the spline. λ is
a regularization parameter controlling the intensity of the penalty.

The most appropriate number of degrees of freedom used to approximate the form of
a variable can be computed by several optimization methods such as cross-validation
or automatic methods based on Akaike’s Information Criteria; the correct number of
degrees of freedom represents a compromise between variance and bias, as if it is too low
the spline won’t be able to explain the behaviour of data, and if too high, as previously
stated, it will result in overfitting.
While the usage of P-splines provides a simple yet powerful tool of the functional form
analysis of a covariate, this procedure suffers from the additional technical difficulty
of nonpredicatability: the value of the smooth at any point in time i is a function of
resiuduals from the future relative to that point[31].
In the software R, smoothing splines can be used via the package survival by us-
ing the command pspline()[28]. The command can be used on the regressors of a
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1.2 Cox semi-parametric proportional hazards regression model

Cox model; note that setting the argument df to 0 implies choosing AIC as an au-
tomatic method to select the number of degrees of freedom for the variable on which
pspline() is used.
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2 Extending the Cox model and flexible regression

In this section, after introducing the extended Cox model for time-varying ef-
fects and the relative procedure to test for their significance, we explore the family of
additive hazards models; said models relate the conditional hazard function of the
failure time to covariates in a linear way. The relation between risk and regressors is
expressed in form of a risk difference rather than a risk ratio, which was the case for
the multiplicative hazards model.
The additive hazards framework can be used effectively to incorporate frailty and to
handle interval-censored data, and the semi-parametric inference deriving from its struc-
ture results in much simpler inference procedures computationally speaking.[20]
Last, we focus on the class of multiplicative-additive hazards models, exploring in
particular the Cox-Aalen model, which, as we’ll show, represents a compromise between
the first two classes of models presented in this dissertation.

2.1 Extended Cox model for time-varying effects

As mentioned in the previous sections, there are ways in which, to a certain extent,
variables with time-varying effects can still be incorporated in the Cox model by relaxing
its assumptions. To do so, we now consider the more general Cox model with time-
varying regression effects.
Let’s allow the coefficients of the model to be able to depend on time, thus resulting in
the following formulation:

h(t|Z) = h0(t)e
Z(t)β(t) (28)

β(t) is now a vector of regression functions which depend on time. Ideally, to best
explain the behaviour of the phenomena over time, it’s often better to consider the
parametric part of the model as split in two parts, one whose effects are time-dependent
and one whose are not, thus resulting in the following expression:

h(t|Z) = h0(t)e
Z1(t)β(t)+Z2(t)γ (29)

Parameters can still be estimated via partial likelihood.
To investigate if the coefficients included in the model as time-dependent are, in fact,
dependent on time, we need to test if their effects on the risk are constant; to do
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2.1 Extended Cox model for time-varying effects

this, it is necessary to provide an estimation of γ and B(t) =
∫ t

0
β(u)du; the quantity

√
n(B̂(t)−B(t)) is asymptotically a gaussian process with mean equal to zero, this can

be used to construct uniform confidence bands.[22] The hypothesis H0 : β1(t) = η1 is
validated by obtaining a p-value derived from a supremum test statistics defined as it
follows:

sup
t∈[0,τ ]

|B̂1(t)−
B̂1(τ)

τ
t| (30)

One can consider, as a simple approach, to establish, at the beginning, all coefficients
of covariates as time-dependent, thus excluding from the model those which doesn’t
significantly appear as nonlinear, and then re-fit the model with only covariates which
resulted as significantly nonlinear upon performing said test. Since it’s not always
easy to establish the correct functional form for these covariates, it can be useful to
consider automatic procedures to evaluate the shape of the estimates with techniques
as P-splines, as shown in section 1.2.3.
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Figure 6: Observed test-process for a covariate along with 50 simulated processes under the null hy-
pothesis of proportional hazards.

The estimation of the survival function can be somehow complicated since we have
a fixed set of regressors in the model; on a general level, given a set of covariates Z0,
said function can be expressed in the form of:

e
∫ t
0 λ0(u)eZ01β(u)du (31)
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2.2 Additive hazards models

which requires estimates of β(t) and γ. The difficulty of working with such quan-
tity is given by its computational onerousness, further details on the exact procedure
are provided by Martinussen & Scheike[22]. A graphical representation of the effects
over time on the risk for each covariate can be obtained by simulating a certain num-
ber of processes under the null hypothesis of time-invariant effects; said approach
is quite useful for determining at which point in time the process deviates from the
time-indipendency assumption’s zero line.[22]
Focusing on the inferential side, while in the proportional hazards model all the time-
varying regression coefficient are constant (under the hypothesis H0 : β(t) = β), now
the regression coefficients are considered individually and one can investigate the two
hypotheses which follows: H01 : βp(t) = 0

H02 : βp(t) = βp
(32)

so we can focus on the p-th regression coefficient without loss of generality. It is im-
portant to notice that the other regression coefficients in the model are allowed to
vary with time.
Testing the significance of the regression coefficients will equivalently lead to con-
struction of confidence bands; we address the reader to Martinussen & Scheike[22] for
a deeper overview on these testing procedures.

2.2 Additive hazards models

2.2.1 Aalen’s additive hazards model

Aalen’s additive hazards model is a fully nonparametric model expressed in the following
form:

h(t|Z) = ZTα(t) (33)

where α(t) is the regression coefficients vector composed by functions representing time-
varying effects of the covariates on the base risk over the time. The first term of Z
will usually be 1, while the term α1(t) represents the baseline hazard; every other term
included in the model, Zjαj(t), refers to the excess additive risk due to the presence of
the j-th regressor with respect to the baseline risk.
The inferential procedures can be easily performed by evaluating the cumulative re-
gression coefficients which are defined as:

A(t) =

∫ t

0

α(t)du (34)

whose estimation is given via least squares. More details on the estimation procedure
are provided by Klonecki et al.[18].
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2.2 Additive hazards models

There can be a certain variety of hypotheses about the regression coefficients which
can be evaluated; we therefore show a test-statistic based on the estimated cumulative
regression coefficients to investigate said hypotheses.
Cumulative coefficients are better suited than regression coefficients when it comes
to inference for the additive hazards model. β(t) will have a bias part and variance
part.[22]
In the following, we consider the two hypotheses:H01 : βp(t) = 0

H02 : βp(t) = γ
(35)

meaning that, without loss of generality, we formulate the hypothesis for the p-th re-
gression coefficient function. Both these hypotheses are about the functional behavior
of the regression coefficient function and the stated equalities are for the entire consid-
ered time range [0, τ ]. These hypotheses may also be of relevance for multiple regression
coefficients simultaneously and all the procedures mentioned here can easily be gener-
alized to a multivariate setting.
We now switch from the hypotheses above to the respective ones involving the cumu-
lative regression coefficients defined at (34):H01 : Bp(t) = 0

H02 : Bp(t) = γt
(36)

Again, it is possible to consider a maximal deviation test statistic such as:

sup
t∈[0,τ ]

|B̂p(t)| (37)

If Bp(t) is expected to be monotone, it’s possible to use Bp(τ) to test the null hypothesis,
but this test statistic will have low power if Bp(τ) is equal to zero. On the other hand
the test statistic will have low power if βp(t) differs only substantially from 0 towards
the end of the time period [0, τ ]; given so, a test statistic in the form of:

sup
s,t∈[0,τ ]

|B̂p(s)− B̂p(t)| (38)

should be better in terms of detecting departures of βp(t) from the null hypothesis.
Further insights on this matter are exhaustively covered by Martinussen & Scheike[22].
The relative survival probability for the model is given as:

eX
T
0 B(t)−ZT

0 Btγ (39)
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2.2 Additive hazards models

2.2.2 Ling & Yin’s and McKeague & Sasieni’s semi-parametric additive hazards mod-
els

As stated in the previous section, all coefficients in the Aalen model are time-varying;
once it’s been fitted, and after having observed which covariates do in fact exhibit time-
varying effects and which don’t, it may be of interest to split the model in two parts, one
with time-varying coefficients and one with constant effects. The model resulting from
this diagnostic process of time-varying coefficients selection is the semiparametric
additive hazards model of McKeague & Sasieni:

h(t) = ZTα(t) +XT (γ) (40)

in which γ, the effects of the set of regressors X, are fixed in time. Given this, it comes
natural to think of the Aalen model as a special case of the McKeague & Sasieni’s.
The model represents a good compromise in terms of flexibiliy, variance and bias when
there’s indeed a heterogeneity among the behaviours of the effects of the covariates over
time.
When p, the dimension of X, is equal to 1, the model can be written as follows:

h(t) = ZTα(t) + β(t) (41)

and is known in survival analysis literature as the Lin & Ying’s semiparametric
additive hazards model[20].
From a practical point of view it is preferable to work with a more elaborate model
that can describe time-dynamics of covariate effects when needed, rather than forcing
all regression effects to be constant.
In section 2.2.1 we provided a simple test to verify if a covariate effect was significant
and to test if a covariate had a time-invariant effect using the full Aalen additive model.
The test was limited to considering one covariate only, and although it’s possbile to
construct a multidimensional version of it, it is often preferable to work with successive
tests for time-varying effects, that is testing one component at a time using the reduced
model as the starting point for the next analysis and test.
As for inference, we shall focus on the two hypotheses:H01 : Bp(t) = 0 ⇐⇒ Bp(t) = 0

H02 : Bp(t) = 0γq+1 ⇐⇒ Bp(t) = γq+1t
(42)

where, without loss of generality, we consider only the last nonparametric component
of the model.
Focusing on H01, a confidence band for Bp(t) can be obtained (analytical details are
provided by Martinussen & Scheike[22]). In the following, we illustrate a resampling
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2.2 Additive hazards models

approach to provide a well described limit-distribution for n1/2(B̂p(t)−Bp(t)). The
resampling approach is based on the following decomposition into i.i.d. residuals. First,
note that:

n1/2(γ̂ − γ) = C−1
1 n−1/2

n∑
i=1

ϵ2i + op(1) (43)

where:
C1 = n−1

∫ τ

0

ZT (t)H(t)Z(t)dt (44)

given:
H(t) = W (t)(I−X(t)X−(t)) (45)

in which W (t) is a diagonal weight matrix. Martingale residuals are then derived as:

Mi(t) = Ni(t)−
∫ τ

0

Yi(s)(X
T
i (s)dB(s) + Zi(s)γds) (46)

The sum of martingales is asymptotically equivalent to a sum of i.i.d. terms:

ϵ̃2i =

∫ τ

0

(Zi(t)− E(Yi(t)Zi(t)X
T
i (t))E(Yi(t)Zi(t)X

T
i (t))

−1Xi(t))dMi(t) (47)

An estimation of the variance of n1/2(γ̂ − γ) is provided by:

C−1
1 (n−1

n∑
i=1

ϵ̂⊗2i
2)C−1

1 (48)

and where ϵ̂2i is estimated using:

M̂i(t) = Ni(t)−
∫ τ

0

Yi(s)(X
T
i (s)dB̂(s) + ZT

i (s)γ̂ds) (49)

the variance of n1/2(B̂p(t)−Bp(t)) can be estimated with the robust variance estimator:

ψ̂(t) = n−1

n∑
i=1

ϵ̂⊗3i
2(t) (50)

of which:
ϵ3i(t) = ϵ4i(t)− P (t)C−1

1 ϵ2i (51)

noting that:
ϵ4i(t) =

∫ τ

0

(n−1XT (s)X(s))−1Xi(s)dMi(s) (52)

and:
P (t) =

∫ t

0

X−(s)Z(s)ds (53)
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2.3 Multiplicative-additive hazards models

The relative estimated survival function for the semi-parametric model is given by:

Ŝ0(t) = e−XT
0 B̂(t)−ZT

0 tγ (54)

Further details on its pointwise confidence intervals are deeply discussed by Martinussen
& Scheike.[22]
One drawback in using additive hazards models is that estimates of the regression
coefficients may be negative, as a consequence of this their cumulative estimates will
therefore decrease. One alternative, as we show in the following section, is to consider
a further generalisation to overcome the issue, which is, in this context, provided by
the family of multiplicative-additive hazards models.

2.3 Multiplicative-additive hazards models

Multiplicative-additive hazards models are born with the aim of incorporating the flex-
ibility of additive models, which are fit to handle time-varying effects, and proportional
hazards model based on a multiplicative scale of the effects on the base risk. In this sec-
tion, we show the main representative of this class of models: the Cox-Aalen model.

2.3.1 Cox-Aalen’s multiplicative-additive hazards model

The Cox-Aalen model is defined as it follows:

h(t) = (XT (t)α(t))eZ
T β (55)

For this model, some covariate effects are believed to result in multiplicative effects,
whereas other effects are better described as additive. On a practical level, covariates
which do exhibit time-varying behaviour would be inserted in the additive part, while
the time-constant ones would be incorporated in the multiplicative part of the model.
The main quantities which characterize its formulation, β and A(t) =

∫ t

0
α(u)du are still

easily computed and estimated in order to establish their asymptotic properties.[22]
Since the survival function directly depends on A(t), it is still quite easy task to estimate
the quantity:

e−ZT
01A(t)eZ

T
02β (56)

Goodness-of-fit procedures, to establish whether the model is appropriate to fit the data
or not, are provided upon application of martingale residuals.[22]
Focusing on the inference, the log-likelihood function of the model is derived as:

l(β) =
n∑

i=0

∫ τ

0

log(Yi(t)Xi(t)
TdA(t)eZi(t)

T β)dNi(t)−
n∑

i=0

∫ τ

0

Yi(t)e
Zi(t)βXi(t)

TdA(t)

(57)
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2.3 Multiplicative-additive hazards models

where Yi(t) is the at risk indicator. Therefore, we obtain the score equations inherent
to β and dA(t): ∫

Z(t)T (dN − Y (β, t)dA(t)) = 0

Y (β, t)TW (t)(dN − Y (β, t)dA(t)) = 0

(58)

where W is a diagonal weighted matrix. If β is known, the estimator of the cumulative
intensity is:

Â(β, t) =

∫ t

0

Y −(β, s)dN(s) (59)

where:
Y −(β, t) = (Y (β, t)TW (t)Y (β, t))−1Y (β, t)TW (t) (60)

is a weighted generalized inverse of Y (β, t) with the convention that Y −(β, t) is 0 when
the above inverse does not exist. Inserting this estimator into the score equation for β
gives U(β) = 0 with:

U(β) =

∫ t

0

ZT (t)G(β, t)dN(t) (61)

in which:
G(β, t) = I − Y (β, t)Y −(β, t) (62)

is the projection onto the orthogonal space spanned by the columns of Y (β, t). Now, to
compute the estimator, we need weights that do not depend on the unknown baseline
intensities. Such can be derived as:

wi(t) = Yi(t)hi(t)e
−Zi(t)

T β (63)

in which hi(t) for i = 1, ..., n are known functions independent from β. β̂ is given as
solution to the score equation:

U(β, t) = 0 (64)

and estimate A(t) by:
Â(β̂, t) (65)

These estimates can now be used to estimate the likelihood weights, the estimators
related to such weight are efficient. For further details on the inferential procedures
concerning the Cox-Aalen model we refer the reader to Martinussen & Scheike.[22]
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3 Application to NSCLC data

Lung cancer is among the most deadly cancers for both men and women. Its death
rate exceeds that of the three most common cancers (colon, breast, and pancreatic)
combined. Over half of patients diagnosed with lung cancer die within one year of
diagnosis and the 5-year survival is around 17.8%.[15]
NSCLC stands for Non-Small Cell Lung Cancer, which is the most common type of
lung cancer. NSCLC is further categorized into different typologies or subtypes based
on the specific cell types and histological features present in the tumor.
Subtypes of NSCLC include:

• Adenocarcinoma: Adenocarcinoma is the most common subtype of NSCLC, ac-
counting for about 40% of all lung cancers. It arises from the cells that line the
smaller airways and tends to develop in the outer regions of the lungs. Adeno-
carcinoma is more common in non-smokers and is often associated with certain
genetic mutations.

• Squamous Cell Carcinoma: Squamous cell carcinoma, also known as epider-
moid carcinoma, accounts for approximately 25-30% of NSCLC cases. It typically
arises in the central part of the lungs and is strongly linked to smoking. Squamous
cell carcinoma develops from the cells that line the bronchial tubes.

• Large Cell Carcinoma: Large cell carcinoma is a less common subtype of
NSCLC, comprising about 10-15% of cases. It is called large cell because the
cancer cells appear large and undifferentiated when viewed under a microscope.
Large cell carcinoma can occur in any part of the lung and tends to grow and
spread rapidly.

The therapeutic approach includes radiotherapy, chemotherapy or a mix of both. Radio-
therapy uses high-energy beams to damage DNA within cancer cells, thereby destroying
them. This therapy can help control or eliminate tumors at specific sites in the body.
Patients with NSCLC that is localized to the chest and who are not candidates for
surgical resection may benefit from radiotherapy. Radiotherapy also can be part of pal-
liative care to improve quality of life in NSCLC patients who do not respond to surgery
or chemotherapy[1]. As for chemotherapy, the American Society of Clinical Oncology
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3.1 Data overiew and missing values imputation

Figure 7: NSCLC histology. HE stain of primary NSCLC PDX tumors including two ADC and two
SCC.

states that treatment for a patient with a Performance Status[27] of 0 or 1 is a reg-
imen of a platinum (cisplatin or carboplatin) plus paclitaxel, gemcitabine, docetaxel,
vinorelbine, irinotecan, or pemetrexed[24].
Personalized medicine by targeting appropriate molecular targets in tumors has helped
improve survival in patients with NSCLC, along with hematic biomarkers which can
serve as prognostic factors for the expected survival of the patients, such as in this case.
We therefore analysed the dataset described in the following section to show how non-
proportional hazards models can serve as an additional tool to model said prognostic
factors even when the proportional hazards assumption of the Cox model, starting point
of every survival modeling approach, happens to fail, and how the estimated survival
can differ noticeably from one model to another, thus leading, consequently, to different
conclusions.

3.1 Data overiew and missing values imputation

The following analyses were performed in the software R, flexible models have been
fitted using the timereg[22] package.
Data are inherent to a cohort of 181 NSCLC patients treated between March 2007
and September 2013. Measurements included biological characteristics such as age and
various health-performance indexes, including the following blood-biomarkers: OPN,
CA-IX, IL-6, IL-8, CRP, CEA, CYFRA 21-1, VEGF, α2M, TLR4 and sIL2R.
37.5% of patients received radiotherapy alone according to the August 2005 protocol,
with an individualized total dose delivered in fractions of 1.8 Gy twice daily, limited by
the mean lung dose or the spinal cord dose[32].
55% received concurrent chemo-radiotherapy scheme for a prescribed dose of 45 Gy,
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3.1 Data overiew and missing values imputation

followed by an individualized dose ranging from 8 to 24 Gy, delivered in fractions of 2.0
Gy once daily, again limited by the dose to surrounding organs at risk[33].
6.6% of patients followed the Phase II Positron Emission Tomography (PET) boost trial,
in which a dose escalation protocol was based on the Fluorine-18-Fluorodeoxyglucose
distribution of the PET scans[34].
We now provide an overview on each of the variables included in the dataset:

• ID: Numeric identifier indicating each patient as a statistical unit.

• Survival: Quantitative variable which indicates when, over the time of the study,
each patient has experienced the event of interest, which in this case was the death
of the patient itself.

• Status: Status indicator which indicates if the patient has or has not died over
the time of the study.

• Gender: Two-levels factor indicating the sex of each patient: male or female.

• age: Discrete quantitative variable indicating the age in years of each patient.

• stage: Four-levels factor indicating the state of the disease: levels are I, II, IIIa
and IIIb.

• histology: Three-levels factor indicating the NSCLC histotype: adeno is for ade-
nocarcinoma, SCC is for squamous cells carcinoma and finally NOS stands for cell
lung carcinoma not-otherwise specified.

• WHO-PS: Stands for World Health Organization Performance Status and serves
as an indicator which quantifies the capability of a subject to carry out all normal
activities without restriction. It is here represented as a five-level factor with levels:
0, 1, 2, 3, 4. The levels stand for:

– 0: Able to carry out all normal activity without restriction.

– 1: Restricted in physically strenuous activity but ambulatory and able to carry
out light work.

– 2: Ambulatory and capable of all self care but unable to carry out any work;
up and about more than 50% of waking hours.

– 3: Capable only of limited self care; confined to bed or chair more than 50%
of waking hours.

– 4: Completely disabled; cannot carry out any self care; totally confined to bed
or chair.

• FEV1s: Continuous quantitative variable indicating the forced expiratory volume
in one second for a patient.
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3.1 Data overiew and missing values imputation

• Lymph nodes: Discrete quantitative variable indicating the number of positive
lymph node stations identified in the diagnostic PET scans.

• RT Protocol: Type of protocol corresponding to the treatment of each patient.
Type of protocol is encoded in a three-level factor as: Concurrent RT, PET Boost,
New protocol August 2005, i.e. standard external beam radiation therapy (EBRT).

• Total dose (1st): Continuous quantitative variable indicating the Gy dose re-
ceived in the radiotherapy.

• Total dose (2nd): Continuous quantitative variable indicating the additional Gy
dose received in the second exposition to radiotherapy.

• GTV: Continuous quantitative variable indicating gross tumour volume[5].

• OPN: Discrete quantitative variable related to osteopontin, a blood-biomarker
related to hypoxia. More info on this protein are provided by Lund et al[2].

• CA-9: Discrete continuous variable related to the blood-biomarker carbonic an-
hydrase IX [14].

• IL 6: Continuous quantitative variable related to the level of interleukin-6, blood-
biomarker related to inflammation response[9].

• IL 8: Continuous quantitative variable related to the level of interleukin-8, blood-
biomarker related to inflammation response[29].

• CRP: Continuous quantitative variable related to the level of C-reactive protein[7].

• CEA: Continuous quantitative variable related to the level of carcinoembryonic
antigen, a blood-biomarker inherent to tumour load[12].

• Cyfra 21-1: Continuous quantitative variable related to the level of cytokeratin
fragment, a blood-biomarker inherent to tumour load[35].

• alpha-2M: Continuous quantitative variable related to the level of carcinoembry-
onic antigen, a blood-biomarker inherent to immunologic response[4].

• sIL2R: Discrete quantitative variable related to the level of carcinoembryonic
antigen, a blood-biomarker inherent to immunologic response[25].

• TLR-4: Continuous quantitative variable related to the level of toll-like receptor
4, a blood-biomarker inherent to immunologic response[8].

• VEGF: Continuous quantitative variable related to the level of vascular endothe-
lial growth factor, a blood-biomarker inherent to immunologic response[26].
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3.1 Data overiew and missing values imputation

The initial situation of the dataset, for those variables that had NA values, is shown in
Table 1. An imputation of missing values was chosen in order to handle variables which
showed a percentage of NAs/observations ratio below 10%, since literature suggests
that, below this threshold, estimates obtained via imputation can still be considered
reliable[3]. Imputation was performed by replacing the ith missing data with the mean
of the values if there was no evidence of skewness in the distribution of that covariate,
viceversa with the median if a varying degree of skewness was, indeed, present. Mode
imputation was chosen for categorical variables with a percentage of NAs/Observations
<10%.
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Figure 8: Density graphs of quantitative variables. The median is indicated by the black dashed line,
the mean by the red one.

To handle variables with more than 10% NAs/observations, one approach consists in
using the predicted values obtained via linear regression for the variable against all
other predictors, which could have been the case for FEV1s; however, since the output
of the MCAR test[21] for this covariate was significant (toss: 36.0, df : 23, p: 0.0408), a
more robust approach was chosen, i.e. multiple imputation by chained equations,
commonly known in the statistical literature as MICE[3]. Another issue arisen during
the phase of data inspection was that, for some covariates, values under a certain
threshold were not reported; this is most likely due to the fact that the biomarkers
could not be detected by the biomedical equipment under said limit. In the original
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3.2 Exploratory and nonparametric analyses

Variable NAs Type Imputation/Motivation
TLR-4 1 Quantitative Median imputation: Skewed distribution.
VEGF 1 Quantitative Median imputation: Skewed distribution.

Cyfra 21-1 1 Quantitative Median imputation: Skewed distribution.
OPN 1 Quantitative Median imputation: Skewed distribution.
CA-9 1 Quantitative Median imputation: Skewed distribution.
Stage 2 Qualitative Mode imputation: Qualitative, NAs/data < 10%.
GTV 3 Quantitative Median imputation: Skewed distribution.

alpha2M 5 Quantitative Median imputation: Skewed distribution.
histology 8 Qualitative Mode imputation: Qualitative, NAs/data < 10%.

IL-8 11 Quantitative Insertion of arbitrary values between 0 and x for value < x.
WHO-PS 12 Qualitative Mode imputation: Qualitative, NAs/data < 10%.

IL-8 21* Quantitative Insertion of arbitrary values between 0 and x for value < x.
FEV1s 35* Quantitative MICE (MCAR test: toss : 36.0, df : 23, pval : 0.0408).

TotalDose(2nd) 78** Quantitative Excluded from imputation for excess of NAs.

Table 1: Number of NAs for each variable with one or more NA values along with the type of Miss-
ing Values Imputation performed and relative motivation. *: NAs/data >10%. **: NAs/data >30%.

dataset, these values were reported simply as being inferior to a certain value. Given
the nature of these hematic components, and the fact that obviously their presence
in the circulatory system can not be negative, given also that the threshold was, for
each covariate, very low, imputation was made in this case by simulating values from a
uniform distribution defined in (0, m], where m is the threshold of detection.
It was decided to remove the covariate TotalDose(2nd) from the analysis since, given a
percentage of NAs/observations >30%, even estimates obtained via MICE would have
been highly susceptible to bias[3].

3.2 Exploratory and nonparametric analyses

We therefore proceeded to analyze the variables in relation to the overall survival of the
patients to provide a first overview of the general situation of the data. As previously
said, most of the continuous variables present a skewed distribution, which is also
confirmed via graphical approach (Figure 8). Age of the subjects goes from a minimum
of 43 years to a maximum of 88 years, with a mean of 68 years and a median of 67 years.
5 people in the [40-50) age group experienced the event of interest, 17 in the [50-60)
group, 49 in the [60-70) group, 48 in the [70-80) group and 4 in the [80-90) group. There
are a total of 49 censors and 132 events among the patients. As for categorical variables,
i.e. stage of the tumour, histology, Gender, World Health Organization Performance
Status, number of Lymph nodes attacked and type of protocol chosen for therapy, the
events are reported from Table 2 to Table 8. No significative correlations were found
among the hematic biomarkers which were included in the dataset. A graphical overview
of the correlation levels of the continuous covariates included in the dataset is presented
in Figure 9. The first step in every survival analysis is to estimate the overall survival
of patients and to examine if the curves related to different levels of the categorical
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Stage level Censors Events
I 5 15
II 5 20

IIIa 17 32
IIIb 22 65

Table 2: Censors and events for different levels of stage.

Hystotype Censors Events
adeno 16 23
NOS 9 57
NCC 24 52

Table 3: Censors and events for different levels of hystology.

Gender Censors Events
male 17 41

female 32 91

Table 4: Censors and events for different levels of Gender.

Gender Censors Events
male 17 41

female 32 91

Table 5: Censors and events for different levels of Gender.

WHOPS level Censors Events
0 21 27
1 23 82
2 5 18
3 0 4
4 0 1

Table 6: Censors and events for different levels of Gender.

Number of lymph nodes attacked Censors Events
0 15 30
1 6 22
2 8 26
3 11 14
4 9 40

Table 7: Censors and events for different numbers of lymph nodes attacked.

RTProtcol Censors Events
Concurrent RT 35 66

New Protocol August 2005 12 56
Pet Boost 2 10

Table 8: Censors and events for different types of protocol of therapy.
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Figure 9: Corrplot related to continuous predictors.

variables significantly differ from each other. If a variable is continuous, it must be
categorized into classes. The curves are based and calculated on the Kaplan-Meier
estimator. To test if there is a significant difference among the curves for a covariate, a
Log-Rank test is performed: if the p-value of the Log-Rank test is significant, then the
survival of different levels of the tested variable can not be assumed to be random[16].
Since age is an important predictor of survival in every clinical case, we proceeded to
divide it in classes, each with a length of 10 years.
In Figure 10, we illustrate the K.M. survival plots for the overall dataset and for different
levels of each categorical covariate, along with the p-value of the Log-Rank test. Each
estimated survival curve is comprehensive of the relative 95% confidence interval; these
have been removed for stage and age in order to make the plots more readable. The
Log-Rank test has proven to be statistically significant at 10% α level for variables
related to therapy protocol (p: 0.064) and to histotype (p: 0.056). WHOPS index has
proven to be significant at every α level (p: 0.00023); it’s important to note that the
sample size for its upper level, as it’s shown in Table 6, is very low.
Hematic biomarkers were discretized into classes based upon their distribution, also
outlier were taken into account when comparing their estimates. As we can see in
Figure 11, the blood-biomarkers which resulted as significant to the Log-Rank test,
after having been divided in classes, are a2M (p: 0.0012), Cyfra21-1 (p: 0.00037),
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Figure 10: Estimated K.M. survival curves for factors.
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Figure 11: Estimated K.M. survival curves for discretized blood-biomarkers.
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CRP (p: 0.002), IL8 (p: 0.042), IL6 (p: 0.0007), OPN (p: 0.00034). Although OPN,
a2M and IL6 have a low number of observed events for the upper classes (respectively,
7, 6 and 14). In all 6 cases of these covariates, classes of higher values, i.e. higher
blood concentrations of the above biomarkers, always result in worse patient survival
expectancy. This result appears to be in line with what was presented in the cited
papers[4, 35, 7, 29, 9, 2] and thus confirms the increasing linear relationship between
NSCLC mortality and the level of certain immunologic and flogistic predictors.

3.3 Modelling: fitting, selection and comparisons

The starting point of this dissertation, in terms of modelling, was represented by ap-
plication of the Cox semi-parametric proportional hazards model to the data.
The first model, fitted by including all covariates included in the dataset except for
TotalDose(2nd), was defined as it follows:

hi(t|Z) = h0(t)e
Z1β1+Z2β2+...+Z21β21 (66)

where:
Z1: age, Z2: stage, Z3: histology, Z4: Gender, Z5: WHOPS, Z6: Nodes, Z7: RTProto-
col, Z8: TotalDose1st, Z9: GTV, Z10: OPN, Z11: CA9, Z12: IL6, Z13: IL8, Z14: CRP,
Z15: CEA, Z16: Cyfra211, Z17: a2M, Z18: sIL2R, Z19: TLR4, Z20: VEGF, Z21: FEV1s.
Selection of the variables was then performed via AIC, taking also account for the
biomarkers related to cancer parameters, which led to the following final model:

hi(t|Z) = h0(t)e
Z1β1+Z2β2+...+Z11β11 (67)

where:
Z1: Gender, Z2: CEA, Z3: histology, Z4: WHOPS, Z5: Nodes, Z6: RTProtocol, Z7:
GTV, Z8: OPN, Z9: a2M, Z10: sIL2R, Z11: TLR4.
The summary of estimates related to this model is presented in Table 9. The ex-
ponential of the estimated coefficient, i.e. the H.R. (hazard ratio) for male subjects,
considering female ones as a baseline, doesn’t seem to indicate that there’s difference
in the mortality for this covariate (H.R.: 0.995, C.I.: [0.631, 1.569], p: 0.982). The
same can be asserted for CEA and for biomarkers related to GTV, OPN, a2M, sIL2R,
TLR4. OPN, a2M and sIL2R are significant at every level of α. Subjects with a NOS
histotype have an addition of 25% of the risk (C.I.:[0.729, 2.162], p: 0.411) while those
with SCC have an overall decrease of the mortality rate by 18% (C.I.:[0.729, 2.162],
p: 0.509) with respect to adenocarcinoma subtype patients. Estimates for the risk of
different levels of WHOPS are coherent with the representative nature of said index,
although an extremely wide interval for the upper level (H.R.: 15.665, (C.I.:[1.941,
126.450], p: 0.009) should be carefully reconsidered upon increase of the sample size
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Covariate Coef. exp(Coef.) SE(Coef.) z P(>|z|) Lower 0.95 Upper 0.95
Gender male -0.0052216 0.9947921 0.2324791 -0.022 0.982081 0.6307 1.569

CEA -0.0009898 0.9990107 0.0007496 -1.320 0.186685 0.9975 1.000
histology NOS 0.2277218 1.2557359 0.2771691 0.822 0.411305 0.7294 2.162
histology SCC -0.1863336 0.8299967 0.2824956 -0.660 0.509512 0.7294 2.162

WHOPS1 0.6487922 1.9132286 0.2393567 2.711 0.006717** 1.1968 3.058
WHOPS2 0.8186976 2.2675446 0.3592306 2.279 0.022665* 1.1214 4.585
WHOPS3 0.9414885 2.5637948 0.6173533 1.525 0.127249 0.7645 8.598
WHOPS4 2.7514329 15.6650617 1.0655363 2.582 0.009817** 1.9406 126.450

Nodes 0.2079295 1.2311264 0.0689194 3.017 0.002553** 1.0756 1.409
Protocol Aug. 2005 0.4297267 1.5368374 0.2217192 1.938 0.052604 0.9952 2.373
Protocol PET Boost -0.2276432 0.7964084 0.3935071 -0.578 0.562928 0.3683 1.722

GTV 0.0011168 1.0011174 0.0006214 1.797 0.072321 0.9999 1.002
OPN 0.0024168 1.0024197 0.0006663 3.627 0.000287*** 1.0011 1.004
a2M 0.3375303 1.4014822 0.1222630 2.761 0.005768** 1.1029 1.781

sIL2R 0.0001355 1.0001355 0.0000338 4.010 6.08e-05*** 1.0001 1.000
TLR4 -0.0437253 0.9572169 0.0259773 -1.683 0.092334 0.9097 1.007

Table 9: Summary of the Cox model with covariates selected via AIC.

Covariate Chisq. df P(>|z|)
Gender 0.542 1 0.461
CEA 4.055 1 0.044*

histology 0.980 2 0.613
WHOPS 3.755 4 0.440
Nodes 5.802 1 0.016**

RTProtocol 0.184 2 0.912
GTV 0.132 1 0.717
OPN 0.241 1 0.623
a2M 1.039 1 0.308

sIL2R 0.298 1 0.585
TLR4 4.542 1 0.033*

Global 26.355 16 0.037*

Table 10: Test for proportional hazards for the Cox model with covariates selected via AIC.

(only one subject was observed for this level). As for lymph nodes which showed to
be attacked by the tumor under PET examination, an increase of one unit, meaning
one more lymph node involved in the carcinogenic process, corresponds to an increase
in the risk by 23% (C.I.:[1.075, 1.409], p: 0.002). Therapy related to the August 2005
Protocol has proven to be, under this model, less efficient (H.R.: 1.5368, C.I.:[0.995,
2.373], p: 0.052) than the one with PET Boost (H.R.: 0.7964, C.I.:[0.358, 1.722], p:
0.563) when compared to the baseline (Concurrent RT).
We therefore proceeded to evaluate the adequacy of the model under the null hypothesis
of proportional hazards with the relative proportional hazards test. Different transfor-
mations for the survival times (i.e.: logarithmic, rank, identity, Kaplan-Meier’s) did not
lead to any substantial variation in the results. Results for this test are shown in Table
10.
The model appears to be overall significant in terms of violating the null hypothesis
(Chisq.: 26.355, df: 16, p: 0.037) at level of α 5%. Single regressors which have proven
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to violate the null hypothesis are CEA (Chisq.: 4.055, df: 1, p: 0.04), Nodes (Chisq.:
5.802, df: 1, p: 0.016) and TLR-4 (Chisq.: 4.542, df: 1, p: 0.03).
A first comparison among the overall estimated survival curves for the data and under
the Cox model is shown in Figure 12. Survival appears to be overestimated under the
Cox model with respect to the one obtained via application of the Kaplan-Meier esti-
mator to the data. Diagnostics for this model were particularly driven to the aim of
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Figure 12: Comparison between estimated survival curves: nonparametric Kaplan-Meier estimator
(sx) v. Cox model (dx).

verifying the hypothesis of proportional hazards, taking account of these evidences. In
Figure 13 we illustrate the Schoenfeld residuals plot for covariates which seem to violate
the null hypothesis, according to the previous test. Score processes with 50 unweighted
simulated processes under the null hypothesis of the Cox model were done in order
to further investigate the behaviour on the risk over time for these three covariates.
Plots are shown in Figure 14: all three of them seem to indicate that a deviation from
the null hypothesis of proportional hazards is indeed present. Because of this, it was
concluded that the standard Cox semi-parametric proportional hazards model was not
fully able to represent the effects of the covariates over time and, because of this, its
time-varying version was fitted. Following the approach of Martinussen & Scheike[22],
it’s possible to include all covariates in the extended Cox model as time-varying and
then test for the linearity of their effect on the risk over time. The functional form of the
covariates which resulted significantly nonlinear in the output of the model can be then
adequately represented upon investigation of the martingale residuals. In his recent
article[30], Thurneau suggest that a p-value of how strongly nonlinear the form of a
covariate is can be obtained by directly using the pspline() R command on the term
and then by looking at the output of the model. The estimates of the extended Cox
model for time-varying effects are presented in Table 11. Upon consecutive re-fittings
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Figure 13: Schoenfeld residuals plots for CEA, Nodes and TLR-4.
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Figure 14: Score processes for with 50 unweighted simulated processes under the null hypothesis for
CEA, Nodes and TLR-4.
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Covariate exp(Coef.) SE(Coef.) Chisq. df P(>|z|) Lw0.95 Up0.95
Gender male 1.02 0.24 0.01 1.00 0.9200 0.63 1.69

CEA 0.99 0.0007 4.00 1.00 0.0450* 0.997 1.000
histologyNOS 0.99 0.285 0.00 1.00 0.9800 0.567 1.733
histologySCC 0.63 0.286 2.49 1.00 0.1100 0.363 1.11

WHOPS1 2.16 0.245 10.18 1.00 0.0014*** 1.348 3.488
WHOPS2 3.35 0.376 10.30 1.00 0.0013*** 1.60 7.01
WHOPS3 3.81 0.632 4.50 1.00 0.0340* 1.11 13.17
WHOPS4 33.17 1.089 10.34 1.00 0.00133*** 3.93 280.26

Nodes 1.22 0.072 7.40 1.00 0.0065*** 1.056 1.358
Protocol Aug. 2005 1.54 0.224 3.82 1.00 0.0510 0.998 2.388
Protocol PET Boost 0.78 0.412 0.34 1.00 0.5600 0.349 1.763
Pspline(GTV, linear) 1.00 0.0004 1.846 1.00 0.08 0.99 1.004

Pspline(GTV, nonlinear) 11.75 3.22 0.34 1.00 0.001*** 1.8 74.17
OPN 1.00 0.0007 6.93 1.00 0.0085*** 1.00 1.03
a2M 1.27 0.128 3.83 1.00 0.0500 0.99 1.61

sIL2R 1.00 3.5e-05 9.20 1.00 0.0024*** 1.00 1.00
TLR-4 0.97 0.03 0.87 1.00 0.3500 0.92 1.08

Table 11: Summary of the extended Cox model for time-varying effects after removal of the non-
significant nonlinear parts of the regression terms.

of the initial model with all covariates being time-varying, the only covariate which
exhibited a significant nonlinear trend over time was GTV. As discussed in section
1.2.3, a penalized spline approach was implemented to best represent the functional
form of this covariate in the final model. The number of degrees of freedom selected
as an ideal representation of its functional form was five. In Figure 15 we can observe
martingale residuals for GTV and how they can not be properly described by a straight
line; we then proceeded to interpolate its functional form with a penalized spline term
as previously explained, the graphical representation of the p-spline interpolating GTV
is shown in Figure 16. Estimates computed under the extended Cox model for time-
varying effects show a decrease of the effect of a2M (H.R.: 1.27, C.I.:[0.99, 1.61], p:
0.05) if compared with the previous model. Estimated risk for Gender does not seem
to vary much between one model and the other (0.03% difference for the exponential
of the estimated coefficient). All three levels of WHOPS, compared to the baseline
(WHOPS: 0), as can be seen by looking at Table 9 and Table 11, differ: the model with
time-varying effects appears to overall provide higher estimates. No substantial change
can be observed for covariates related to lymph nodes and CEA.
What certainly looks evident is an overestimation of risk for GTV, whose functional
form was interpolated with a p-spline with 5 degrees of freedom: an increase of one
unit for this hematic biomarker leads us to assume an increase of almost twelve times
the risk, the upper limit of the confidence interval being also equal to almost 75. This
downward is most likely due to the fact that the estimation strongly relies on the num-
ber of degrees of freedom selected for the penalized spline term of GTV.
This leads us to the necessity of validating the accuracy of the extended Cox model
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Figure 15: Functional form evaluation of GTV by inspection of its martingale residuals.
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Figure 16: Penalized spline term for GTV, based on the previous martingale residuals inspection.
Degrees of freedom are equal to five.
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for time-varying effects even after having considered p-spline transformations for those
variables which did not exhibit costant effect over time. The multiplicative approach
alone might not be well suited to adequately describe our data, or it might be appro-
priate to, at least, try a different strategy. We therefore proceeded to fit the Aalen
additive hazards regression model, McKeague & Sasieni additive hazards model and
Cox-Aalen multiplicative-additive hazards model.
We start by considering the following Aalen additive-hazards model:

h(t|Z) = ZTα(t) (68)

in which Z includes the regressors related to GTV, age, stage, histology, Gender, Nodes,
RTProtocol, CEA, Cyfra21-1, a2M, TLR-4 and VEGF; other covariates had to be
omitted because of convergence issues of the model which could not be overcome even
by allowing the number of iterations to increase; this issue is related to the R timereg
package, whose models, we noticed, can not always reach convergence when several
covariates or when spline terms are included. The approach for fitting this model is
similar to the one illustrated for the extended Cox model for time-varying effects: all
covariates are initially included in the model as time-varying. Then, a Supremum test of
significance and a test for time-constant effects are performed. To ensure best flexibility,
the model is then re-fitted with the covariates which were resulted as not significant
from the test, being inserted as time-constant, and the other ones as time-varying:
this results in the semi-parametric additive hazards regression model of McKeague &
Sasieni[22].
We first fit the Aalen model and look directly at the output, which is shown in Table 12,
to see which covariates are significant for the Supremum test and which are significant
for the time-constant effects test. Using the Supremum test, we see that the number of
lymph nodes, therapy protocol and CEA are significant at 5% α level.
Looking at the results in Table 12, we now start to simplify the model by a number of
successive tests with the purpose of reducing the number of nonparametric components,
since stageII, Nodes, Protocol, CRP and CEA seem to have a significant time-varying
effect on the risk, while the other covariates don’t.
This means we’re fitting the previously mentioned semi-parametric additive hazards
model of McKeague & Sasieni, which is defined as it follows:

h(t) = ZTα(t) +XT (γ) (69)

The set of regressors X, whose effects are fixed in time, coherently with the aforemen-
tioned results, are GTV, age, histology, Gender, Cyfra21-1, a2M, TLR-4 and VEGF.
P-values of the second test for time-invarying effects is shown in Table 13. To further
explore the behaviour over time on the risk of the covariates which were significant
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Covariate Sup. test of significance P(>|z|) (Sup. test of significance) P(>|z|) (Time-constant effects)
(Intercept) 1.12 0.815 0.669
WHOPS1 2.01 0.215 0.535
WHOPS2 1.58 0.473 0.17
WHOPS3 1.75 0.232 0.185
WHOPS4 25.7 0.197 0.112

GTV 1.93 0.321 0.128
age 2.13 0.199 0.484

stageII 2.48 0.069 0.023*
stageIIIa 1.71 0.344 0.237
stageIIIb 1.55 0.443 0.299

histologyNOS 1.19 0.827 0.590
histologySCC 1.87 0.301 0.465
Gender male 1.98 0.291 0.133

Nodes 3.15 0.025* 0.004**
Prot.Aug.2005 2.99 0.017* 0.008**

Prot.PET Boost 1.85 0.285 0.08
CRP 2.55 0.073 0.023*
CEA 3.06 0.027* 0.013*

Cyfra21-1 1.52 0.680 0.36
a2M 2.08 0.276 0.611

TLR-4 1.74 0.460 0.383
VEGF 1.43 0.673 0.255

Table 12: P-values for the Supremum test of significance and for the test for time-invarying effects of
the initial Aalen model.

Covariate P(>|z|) (Time-constant effects)
(Intercept) 0.059

stageII 0.255
stageIIIa 0.308
stageIIIb 0.293

Nodes 0.043*
Prot. Aug. 2005 0.425
Prot. PET Boost 0.553

CRP 0.682
CEA 0.004**

Table 13: P-values of the second test for time-invarying effects for the reduced model of McKeague
& Sasieni.
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3.3 Modelling: fitting, selection and comparisons

for the second time-constant effects test, we plotted the cumulative coefficients of the
model: if the effects are not time-varying, they should approximately be well-described
by a straight line[22]. The only two covariates which did not satisfied this indication
were Nodes and CEA, as it’s shown in Figure 17. This is consistent with the fact that
Nodes and CEA were the only two covariates which, again, resulted as significant in
the output of the test for McKeague & Sasieni’s model, we therefore conclude that the
effects of these two covariates on the risk are not constant over time, and we fit the fi-
nal model of McKeague & Sasieni whose estimates for parametric terms are illustrated
in Table 14. Given this, we fit the final model whose output is illustrated in Table
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Figure 17: Cumulative coefficients plots for CEA and Nodes with 95% pointwise confidence inter-
vals: both are not well described by a straight line.

14. Looking at the estimates for this model, no covariate seems to show a drastically
increase in terms of effect. Histotype NOS has an increased estimated intensity for
subjects equal to 0.19 (C.I.:[-0.02, 0.418], p: 0.04) and subjects with therapy protocol
August 2005 have an increased estimated intensity of 0.179 (C.I.:[-0.0017, 0.375], p:
0.082). What we can note is that the impact of these regressors over the risk differs a
lot from the previous Cox models, thus indicating how different modelling approaches
may result in different conclusion of the results. The increasing effect on the risk for
a higher score of the WHOPS index is coherent with the estimates of the previous
Cox model (and with the Cox-Aalen model which follows). Nevertheless, one problem
which arises from this model, as discussed in section 2.2.2, is that the estimates for
some coefficients appear to be negative or very close to zero. Given this, we proceed
with possibly the best compromise in terms of flexibility so far which is represented by
the multiplicative-additive hazards model of Cox-Aalen.
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Covariate Coef. SE Robust SE z P-val low2.5% up97.5%
const(WHOPS)1 0.219352 0.0675 0.0638 3.43 0.000609 0.0867 0.351
const(WHOPS)2 0.360352 0.1410 0.1550 2.33 0.0199 0.0836 0.636
const(WHOPS)3 0.616754 0.4280 0.2640 2.34 0.0193 -0.2230 1.450
const(WHOPS)4 2.560552 2.67 0.0785 32.50 0.0523 -2.67 7.790

const(GTV) 0.000344 0.000261 0.000293 1.170 0.24100 -0.000168 0.000856
const(age) 0.000799 0.005060 0.004170 0.192 0.84800 -0.009120 0.010700

const(stage)II -0.066700 0.155000 0.156000 -0.427 0.66900 -0.370000 0.237000
const(stage)IIIa -0.117000 0.157000 0.167000 -0.701 0.48400 -0.425000 0.191000
const(stage)IIIb -0.083600 0.153000 0.163000 -0.513 0.60800 -0.383000 0.216000
const(hist.)NOS 0.195000 0.114000 0.096500 2.020 0.04370 -0.028400 0.418000
const(hist.)SCC -0.040700 0.097500 0.090300 -0.451 0.65200 -0.232000 0.150000

const(Gender)male -0.030200 0.103000 0.090400 -0.334 0.73800 -0.232000 0.172000
const(Prot.Aug.2005) 0.179000 0.100000 0.103000 1.740 0.08200 -0.017000 0.375000

const(Prot.PET Boost) 0.109000 0.196000 0.186000 0.586 0.55800 -0.275000 0.493000
const(CRP) 0.002200 0.001180 0.001210 1.810 0.06960 -0.000113 0.004510

const(Cyfra211) 0.009340 0.005160 0.002910 3.210 0.00131 -0.000773 0.019500
const(a2M) 0.106000 0.062700 0.058800 1.810 0.07080 -0.016900 0.229000

const(TLR4) -0.005860 0.010300 0.009450 -0.620 0.53500 -0.026000 0.014300
const(VEGF) 0.000186 0.000394 0.000462 0.402 0.68800 - 0.000586 0.000958

Table 14: Estimates of parametric terms of the reduced model of McKeague & Sasieni.

The model is fitted as it follows:

h(t) = (XT (t)α(t))eZ
T β (70)

Since we learned from the previous models that the only two covariates which exhibit
time-varying effects are Nodes and CEA, these last two covariates are incorporated in
the flexible additive part of the model, while all other previous covariates are included
in the multiplicative part. The summary of the parametric components of the Cox-
Aalen model is illustrated in Table 15 along with the p-values of the proportionality
hazards test, while the one related to the usual tests performed on the components
of the additive part is illustrated in Table 16. First, we note that both Nodes and
CEA are still significant for the test of time-invariant effects (respectively, p.: 0.006 and
p.: 0.002), while every other covariate included in the multiplicative part of the model
does satisfy the proportional hazards hypothesis. Under these premises, the Cox-Aalen
model would seem to fit the data reasonably well.
Looking at the estimates of the parametric part, the only covariates which result sig-
nificant at 5% α level for this model are the three hematic biomarkers a2M, CRP and
Cyfra21-1. All four levels of WHOPS, compared to the baseline WHOPS0 (always tak-
ing into account for the fact that WHOPS4 has a really low number of observed events)
are significant at 5% α level; considering the exponential of the estimated coefficients, a
subject with a WHOPS score equal to 1 has an increased risk of 69% (C.I.: [1.05, 2.77],
p: 0.025), 2 has an increase by 174% (C.I.:[1.28, 5.87], p: 0.006), and 3 by 278% (C.I.:
[0.99, 14.43], p: 0.04). Although a higher number of subjects would be useful to deter-
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Covariate Coef. SE z P-val low2.5% up97.5% Prop.Test(z) Prop.Test(P-val)
WHOPS1 0.53 0.24 2.24 0.025* 0.05 1.02 5.27 0.198
WHOPS2 1.01 0.39 2.7 0.006** 0.25 1.77 4.64 0.052
WHOPS3 1.33 0.68 2.02 0.04* -0.009 2.67 1.16 0.5
WHOPS4 2.97 1.07 6.77 1.33e-11 0.873 5.07 0.879 0.3

GTV 0.0009 0.0006 1.44 0.14 -0.0002 0.002 874.0 0.818
age 0.06 0.013 0.53 0.59 -0.01 0.031 97.9 0.22

stageII -0.217 0.355 -0.59 0.54 -0.91 0.5 3.8 0.164
stageIIIa -0.32 0.38 0.79 0.43 -1.06 0.42 5.42 0.11
stageIIIb -0.152 0.353 -0.401 0.69 -0.84 0.54 4.48 0.298

histologyNOS 0.478 0.289 1.91 0.057 -0.088 1.04 5.06 0.274
histologySCC -0.045 0.294 -0.163 0.871 -0.621 0.531 3.21 0.766
Gender Male -0.117 0.266 -0.496 0.62000 -0.63800 0.4040 5.68 0.104

Prot.Aug.2005 0.474 0.247 1.82 0.069 -0.01 0.95 5.94 0.106
Prot.PET Boost 0.372 0.429 0.921 0.357 -0.469 1.21 1.70 0.688

CRP 0.005 0.002 2.69 0.007** 9e-4 0.009 288.00 0.646
Cyfra21-1 0.013 0.005 2.75 0.006** 0.002 0.025 187.00 0.128

a2M 0.247 0.131 1.92 0.05* -0.01 0.504 9.36 0.132
TLR-4 -0.018 0.027 -0.677 0.5 -0.07 0.036 53.30 0.160
VEGF 0.0006 0.001 0.502 0.62 -0.002 0.003 930.00 0.28

Table 15: Estimates of parametric terms (multiplicative part) of the Cox-Aalen model; each covari-
ate is also tested for proportionality of the hazards.

Covariate Time-invariant effects test(z) Time-invariant effects test(P-value)
Intercept 1.25 0.44

Nodes 3.47 0.006**
CEA 4.21 0.002**

Table 16: Test for time-invariant effects for the components of the additive part of the Cox-Aalen
model.
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mine it, it’s safe to assume that a higher WHOPS score does indeed result in a worse
outcome for the survival of patients with NSCLC. This is in line with the result of the
Cox for time-varying effects and with the model of McKeague & Sasieni. In Figure 18
the cumulative coefficients plots for Nodes and CEA are illustrated, both now appear
to be able to be described by a straight line much better than in the previous model
although they still resulted as significant for the test for time-varying effects. In Figure
19, we illustrate the score processes for the multiplicative components of the Cox-Aalen
model with 50 realizations. Comparison among the survival curves estimated under
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Figure 18: Cumulative coefficients plots for CEA and Nodes (Cox-Aalen model) with 95% pointwise
confidence intervals.

the Cox model, the Cox model for time-varying effects, the McKeague & Sasieni’s model
and the Cox-Aalen model has met the necessity of including only a certain part of the
initial set of covariates of the dataset, either because some of them were selected via
AIC at the preliminary stage of the analyses, or because some of them, due to limita-
tions of the R timereg[22] package that implements the Aalen, McKeague & Sasieni,
and Cox-Aalen models, do have convergence issues when the number of regressors ex-
ceeds a certain threshold. Upon these considerations, the regressors included when we
compared the five different curves were: Gender, RTProtocol, WHOPS, GTV, stage,
histology, Cyfra21-1, a2M and TLR-4. That being said, we illustrate the comparison
of the estimated survival curves under the three models in Figures 20 and 21. What
can be observed, in terms of predictive abilities of the three models, is first of all how
the Cox model largely overestimates survival compared with the reduced McKeague
& Sasieni reduced model, and moderately compared with the Cox-Aalen model. To
quantify this comparison we note that the median survival time for the Cox model is
about 3 years and 11 months, for the McKeague & Sasieni model it is about 1 year and
2 months, and for the Cox-Aalen model it is about 2 years. The gap between the pre-
dicted survival estimate under the Cox model should be viewed with great caution, as
we can see that the confidence interval increases greatly as time advances, particularly
at the upper extreme; this reflects the instability in the production of the estimates that
had also been seen with regard to the handling of GTV using a penalized spline. On the
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Figure 19: Score processes for multiplicative part of Cox-Aalen model with 50 random realizations
under the model.
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Figure 20: Comparison among estimated survival curves under the flexible model of McKeague &
Sasieni (in blue) and the Cox for time-varying effects (in black). 95% confidence bands for the McK-
eague & Sasieni’s model and 95% confidence interval for the Cox model for time-varying effects are
also present. Predictions are for patients with age [60-70), stage I, histotype SCC, WHOPS 0 and
protocol concurrent RT.
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Figure 21: Comparison among estimated survival curves under the flexible model of Cox-Aalen (in
red) and the Cox for time-varying effects (in black). 95% confidence bands for the Cox-Aalen model
and 95% confidence interval for the Cox model for time-varying effects are also present. Predictions
are for patients with age [60-70), stage I, histotype SCC, WHOPS 0 and protocol concurrent RT.
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other hand, the reduced McKeague & Sasieni model and the Cox-Aalen model exhibit
worse survival performance when compared with the extended version of the previous
semi-parametric model; however, they provide a more accurate estimate (looking at the
95% uniform confidence bands) and are more proportional to each other. The median
estimated survival time differs for these two models by 8 months; this gap can be con-
sidered more plausible than with the Cox model precisely because of the width of the
confidence bands. Setting different risk categories combinations has always resulted,
obviously in different measures, in an overestimation of the Cox model for time-varying
effects in comparison to the models of McKeague & Sasieni and of Cox-Aalen.
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Results and conclusions

This thesis aimed to demonstrate how the results in terms of predicted survival can
vary significantly when, due to the presence of time-varying effects among the covari-
ates, the Cox model alone is not able to adequately manage the survival modeling. The
data underwent an intense data cleaning process due to the presence of several missing
values, also using more advanced procedures to set them for analysis, such as MICE.
The choice of the type of imputation adopted was based on the number of NAs present,
on the nature of the variable and on the symmetry of its distribution.
The main limitations encountered in carrying out these analyses were mostly dictated
by software limitations, in particular by the timereg package used to fit the flexible
models, which is not always able to guarantee convergence when the number of covari-
ates is high or when terms incorporate penalized splines, as in the case of GTV for the
time-varying effects Cox model, in order to evaluate its functional form.
Following a brief exploratory analysis which highlighted the distribution of censorships
and events for the various predictors, a standard Cox model was initially fitted, whose
covariates were selected via AIC; variables inherent to tumor load, number of lymph
nodes reported as positive by PET and blood-biomarker TLR-4 violated the propor-
tional hazards assumption of the model.
Estimates of blood-biomarkers confirmed the findings of the aforementioned studies
which explained that higher concentrations in the circulatory system of a2M, Cyfra21-
1, CRP, IL8, IL6, and OPN correspond to a worse survival expectancy for patients with
NSCLC.
For the time-varying effects Cox model, the approach that was chosen aimed to directly
describe the functional form of the covariates that were significant in a test based on
their nonlinearity on the risk over time, this was the case for GTV. A poor fitting of
this last model, particularly in relation to the variable whose functional form has been
interpolated via p-spline, has led to the usage of several more flexible models, in which a
compromise between parametric and non-parametric components is performed, to take
into account those variables that demonstrate effects on the risk that vary over time.
The Aalen model highlighted how the covariates which exhibited this behavior were
Nodes and CEA: this is consistent with the nature of the variables, as we can expect
that the number of lymph nodes attacked by the tumor and the tumor load both in-
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crease over the course of time and consequently have a more incisive influence on the
survival outcome.
Having established this, these two covariates have been included in the part that can
vary over time, while all the others have been incorporated in the parametric part.
The semi-parametric approach within the family of additive models results in what is
called the semi-parametric McKeague and Sasieni’s additive risks model. The biggest
limitation of additive risks models is that estimates can often be negative or very close
to zero. To deal with this eventuality, which then effectively occurred, a Cox-Aalen
model was fitted: said model incorporated the two covariates previously found to be
significant with the test for time-constant effects: these were then incorporated in the
additive part, while all the others in the multiplicative part. The exponential operator
ensures that non-negative estimates for the parametric components are produced.
While estimates for blood-biomarkers did not show particular increases or decreases
of the effect on the risk, a variable that was always significant in all models was the
WHOPS indicator: higher levels of this indicator always corresponded to worse out-
comes in terms of survival for patients, regardless of the type of therapy adopted or the
stage of the tumor. What can be deduced from this, and which is in line with the nature
of the indicator, is that a higher score and consequently an unfavorable health situation
of the patient with NSCLC results in worse survival expectations for this condition.
Compared to the concurrent radiotherapy type of therapy, all models predicted a worse
outcome for patients with the August 2005 type of therapy than for those with the
PET Boost type of therapy.
Different stages of advancement of the neoplasm proved to have different effects in re-
lation to the best one in terms of outcome, though this did not result always in an
increase of the effect for superior stages: this can be derived from the number of events
for the 4 types of stage being not perfectly balanced. An increase of the sample size,
as well as for the highest level of the WHOPS indicator, could provide further details
in this regard.
NOS subtype of NSCLC has proven to be deadlier than the SCC subtype, in compari-
son to the adenocarcinoma baseline, for all three models.
In conclusion, both flexible multiplicative-additive and additive hazards models provide
a useful tool for investigating if time-varying effects are present in the data, especially if
the Cox model reveals weaknesses in relation to the proportional hazards assumption.
This is valid also when, even after adequately interpolating a covariate’s functional
form, the model isn’t still able to produce reliable estimates.
Starting from a nonparametric framework which assumes all covariate effects to be
time-varying, these can later be tested for being time-constant. If, such as in this case,
some components appear to have their effect as not constant over time, the model might
be simplified step by step leading then to a semi-parametric model which also results
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in a simpler interpretation. These evidences also come from the fact that the differ-
ent approaches implemented throughout this dissertation have consequently resulted in
different estimations of the survival probability, as it was shown in Figures 20 and 21.
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Code

# LIBRERIE
library(survival)
library(survminer)
library(timereg)
library(reshape)
library(reshape2)
library(ggplot2)
library(readxl)
library(MASS)
library(GGally)
library(lmtest)
library(mice)
library(naniar)
library(glmnet)
library(ggfortify)

# UPLOAD
dati_V = read_excel("carvalho-prognostic-biomarkers-NSCLC_IMP_Mea_Med_MLRI.xlsx", 2)
View(dati_V)
dim(dati_V)
table(dati_V$RTProtocol)
str(dati_V)

# RENAMING DELLE VARIABILI CON IL CARATTERE DI SPAZIO
colnames(dati_V)[colnames(dati_V) == "Lymph nodes"] = "Nodes"
colnames(dati_V)[colnames(dati_V) == "RT Protocol"] = "RTProtocol"
colnames(dati_V)[colnames(dati_V) == "Total dose (1st)"] = "TotalDose1st"
colnames(dati_V)[colnames(dati_V) == "Total Dose (2nd)"] = "TotalDose2nd"
colnames(dati_V)[colnames(dati_V) == "IL 6"] = "IL6"
colnames(dati_V)[colnames(dati_V) == "IL 8"] = "IL8"
colnames(dati_V)[colnames(dati_V) == "Cyfra 21-1"] = "Cyfra211"
colnames(dati_V)[colnames(dati_V) == "WHO-PS"] = "WHOPS"
colnames(dati_V)[colnames(dati_V) == "CA-9"] = "CA9"
colnames(dati_V)[colnames(dati_V) == "FEV1s%"] = "FEV1s"
colnames(dati_V)[colnames(dati_V) == "TLR-4"] = "TLR4"
colnames(dati_V)[colnames(dati_V) == "α2M"] = "a2M"
names(dati_V)
View(dati_V)
dim(dati_V)
str(dati_V)

# IMPUTAZIONE DEI VALORI MANCANTI (MEDIANA, MODA E M.I.C.E.)
sum(is.na(dati_V$age))

sum(is.na(dati_V$CRP))

sum(is.na(dati_V$CEA))
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sum(is.na(dati_V$stage))
find_mode <- function(x) {
u <- unique(x)
tab <- tabulate(match(x, u))
u[tab == max(tab)]

}
moderes = find_mode(dati_V$stage)
ii = which(is.na(dati_V$stage))
dati_V$stage[ii] = moderes

sum(is.na(dati_V$TLR4))
shapiro.test(dati_V$TLR4)
boxplot(dati_V$TLR4)
medres = median(na.omit(dati_V$TLR4))
ii =which(is.na(dati_V$TLR4))
dati_V$TLR4[ii] = medres

sum(is.na(dati_V$VEGF))
shapiro.test(dati_V$VEGF)
boxplot(dati_V$VEGF)
median(na.omit(dati_V$VEGF))

sum(is.na(dati_V$Cyfra211))
shapiro.test(as.numeric(dati_V$Cyfra211))
boxplot(dati_V$as.numeric(Cyfra211))
median(na.omit(dati_V$Cyfra211))

sum(is.na(dati_V$OPN))
shapiro.test(dati_V$OPN)
boxplot(dati_V$OPN)
median(na.omit(dati_V$OPN))

sum(is.na(dati_V$CA9))
shapiro.test(dati_V$CA9)
boxplot(dati_V$CA9)
median(na.omit(dati_V$CA9))

sum(is.na(dati_V$GTV))
shapiro.test(dati_V$GTV)
boxplot(dati_V$GTV)
median(na.omit(dati_V$GTV))

sum(is.na(dati_V$a2M))
shapiro.test(dati_V$a2M)
boxplot(dati_V$a2M)
median(na.omit(dati_V$a2M))

sum(is.na(dati_V$histology))
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find_mode(dati_V$histology)

sum(is.na(as.numeric(dati_V$IL8))) # Post numericizzazione per conversione "<" in NA
shapiro.test(as.numeric(dati_V$IL8))
boxplot(as.numeric(dati_V$IL8))
# inserimento valori arbitrari compresi tra 0 e x per "valore < x"

sum(is.na(as.factor(dati_V$WHOPS)))
find_mode(na.omit(as.factor(dati_V$WHOPS)))

sum(is.na(as.numeric(dati_V$IL6))) # Post numericizzazione per conversione "<" in NA
shapiro.test(as.numeric(dati_V$IL6))
boxplot(as.numeric(dati_V$IL6))
# inserimento valori arbitrari compresi tra 0 e x per "valore < x"

sum(is.na(dati_V$TotalDose2nd)) # **: valori NA/dati eccedenti il 43%

mcar_test(dati_V[,-13])

sum(is.na(dati_V$FEV1s))
shapiro.test(dati_V$FEV1s)
boxplot(dati_V$FEV1s)
View(dati_V)

dati_V$Status = as.factor(dati_V$Status)
dati_V$stage = as.factor(dati_V$stage)
dati_V$histology = as.factor(dati_V$histology)
dati_V$Gender = as.factor(dati_V$Gender)
dati_V$WHOPS = as.factor(dati_V$WHOPS)
dati_V$RTProtocol = as.factor(dati_V$RTProtocol)
imp = mice(dati_V[, -c(1,13,22)], method = c(rep("",7), "midastouch",
rep("",14)), print=FALSE, seed=1234)
names(imp)
dim(imp$data)
imp$imp
imp$imp$FEV1s
imputed_values_FEV1s <- mice::complete(imp)$FEV1s
imputed_values_FEV1s[3]
imputed_values_FEV1s[5]
imputed_values_FEV1s[14]
dati_V$FEV1s = imputed_values_FEV1s
sum(is.na(dati_V$FEV1s))

# FATTORIZZAZIONI E NUMERICIZZAZIONI
dati_V$histology = as.factor(dati_V$histology)
dati_V$stage = as.factor(dati_V$stage)
dati_V$Gender = as.factor(dati_V$Gender)
dati_V$RTProtocol = as.factor(dati_V$RTProtocol)
dati_V$WHOPS = as.factor(dati_V$WHOPS)
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dati_V$IL6 = as.numeric(dati_V$IL6)
dati_V$IL8 = as.numeric(dati_V$IL8)
dati_V$Cyfra211 = as.numeric(dati_V$Cyfra211)
str(dati_V)
View(dati_V)
sum(is.na(dati_V$`IL 8`))

# CONVERSIONE
# (dei valori "alive" e "dead" di dati_V di Status in 0 e 1)
convert_status <- function(dati_V) {
dati_V$Status <- ifelse(dati_V$Status == "alive", 0, 1)
return(dati_V)

}
dati_V <- convert_status(dati_V)
View(dati_V)

# CREAZIONE DELLE VARIABILI AGE E NODES SUDDIVISE IN CLASSI
# Age_cat
dati_V$age_cat <- cut(dati_V$age, breaks = c(40, 50, 60, 70, 80, 90), labels = c("40-50",
"50-60", "60-70", "70-80", "80-90"))
dati_V$age_cat <- as.factor(dati_V$age_cat)

# Nodes_cat
bins = c(0, 1, 4)
labels_lymph <- c("0-1", "2-3-4")
dati_V$Nodes_cat <- cut(dati_V$Nodes, bins, labels = labels_lymph)

# ANALISI ESPLORATIVA
# Fattori
# Table per status (dataset di validazione)
table(dati_V$Status)

# Barplot per Sesso
ggplot(dati_V, aes(x = Gender)) + geom_bar(fill = c("steelblue", "pink"))
+ geom_text(stat = 'count', aes(label = ..count..), vjust = 2) +
labs(title = "Distribuzione per genere", x = "Genere", y = "Frequenza")

# Barplot per histology (dataset di validazione)
ggplot(dati_V, aes(x = histology)) + geom_bar() + geom_text(stat = 'count',
aes(label = ..count..), vjust = 2) +
labs(title = "Distribuzione per istotipo", x = "Histology", y = "Frequenza")

# Barplot per stage (dataset di validazione)
ggplot(dati_V, aes(x = stage)) + geom_bar() + geom_text(stat = 'count',
aes(label = ..count..), vjust = 2) +
labs(title = "Distribuzione per stage tumorale", x = "Stage", y = "Frequenza")

# Barplot per RTProtocol (dataset di Validazione)
ggplot(dati_V, aes(x = RTProtocol)) + geom_bar() + geom_text(stat = 'count',
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aes(label = ..count..),vjust = 2) +
labs(title = "Distribuzione per protocollo RT", x = "Protocollo", y = "Frequenza")

# Barplot per classi d'età (dataset di validazione)
table(dati_V$age_cat)
ggplot(dati_V, aes(x = age_cat)) +
geom_bar(stat = "count", fill = "steelblue") +
labs(title = "Distribuzione per classi d'età", x = "Età", y = "Frequenza")

# Barplot per Linfonodi (accorpati in due classi: 0-1 e 2-3-4) (dataset di validazione)
# NOTA: D'ora in poi questa variabile verrà considerata solo come suddivisa in classi
table(dati_V$Nodes_cat)
ggplot(dati_V, aes(x = Nodes_cat)) +
geom_bar(stat = "count") +
labs(title = "Distribuzione per linfonodi", x = "Linfonodi", y = "Frequenza")

# Variabili quantitative, dataset di validazione (uni- e bi-variate mediante GGpairs)
View(dati_V)
dati_V_quantitative = dati_V[,c(8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25)]
ggpairs(dati_V_quantitative)

# ANALISI NON PARAMETRICA
# Curva di sopravvivenza generale
sopr_V = survfit(Surv(Survival, Status) ~ 1, data = dati_V)
ggsurvplot(sopr_V, data = dati_V, conf.int = TRUE)

# Curva di sopravvivenza per Sesso
sopr_gender_V = survfit(Surv(Survival, Status) ~ Gender, data = dati_V)
ggsurvplot(sopr_gender_V, data = dati_V, conf.int = TRUE, pval = TRUE, pval.method = TRUE)

# Curva di sopravvivenza per Terapia (RTProtocol)
sopr_rtprotocol_V = survfit(Surv(Survival, Status) ~ RTProtocol, data = dati_V)
ggsurvplot(sopr_rtprotocol_V, data = dati_V, conf.int = TRUE, pval = TRUE, pval.method = TRUE)

# Curva di sopravvivenza per Istologico
sopr_hist_V = survfit(Surv(Survival, Status) ~ histology, data = dati_V)
ggsurvplot(sopr_hist_V, data = dati_V, conf.int = TRUE, pval = TRUE, pval.method = TRUE)

# Curva di sopravvivenza per Stage
sopr_stage_V = survfit(Surv(Survival, Status) ~ stage, data = dati_V)
ggsurvplot(sopr_stage_V, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# Curva di sopravvivenza per WHOPS (**)
sopr_whops_V = survfit(Surv(Survival, Status) ~ WHOPS, data = dati_V)
ggsurvplot(sopr_whops_V, data = dati_V, conf.int = TRUE, pval = TRUE, pval.method = TRUE)

# Curva di sopravvivenza per Linfonodi
sopr_nodes_V = survfit(Surv(Survival, Status) ~ Nodes, data = dati_V)
ggsurvplot(sopr_nodes_V, data = dati_V, conf.int = TRUE, pval = TRUE, pval.method = TRUE)
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# Curva di sopravvivenza per Linfonodi categoriale
sopr_nodes_V = survfit(Surv(Survival, Status) ~ Nodes_cat, data = dati_V)
ggsurvplot(sopr_nodes_V, data = dati_V, conf.int = TRUE, pval = TRUE, pval.method = TRUE)

# Curva di sopravvivenza per classi d'eta
sopr_age_V <- survfit(Surv(Survival, Status) ~ age_cat, data = dati_V)
ggsurvplot(sopr_age_V, data = dati_V, conf.int = FALSE, pval = TRUE, pval.method = TRUE)

# CURVE DI SOPRAVVIVENZA DEI BIOMARKER
# opn
dati_V$opn_cat <- cut(dati_V$OPN, breaks = c(0, 75,
150, 225, 300), labels = c("0-75", "75-150", "150-225", "225-300"))
dati_V$opn_cat <- as.factor(dati_V$opn_cat)
sopr_opn_cat = survfit(Surv(Survival, Status) ~ opn_cat, data = dati_V)
ggsurvplot(sopr_opn_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# ca9
dati_V$ca9_cat <- cut(dati_V$CA9, breaks = c(0,
250, 500, 750, 1000), labels = c("0-250", "250-500", "500-750", "750-1000"))
dati_V$ca9_cat <- as.factor(dati_V$ca9_cat)
sopr_ca9_cat = survfit(Surv(Survival, Status) ~ ca9_cat, data = dati_V)
ggsurvplot(sopr_ca9_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE, xlab)

# il6
dati_V$il6_cat <- cut(dati_V$IL6, breaks = c(0, 10,
20, 30, 40), labels = c("0-10", "10-20", "20-30", "30-40"))
dati_V$il6_cat <- as.factor(dati_V$il6_cat)
sopr_il6_cat = survfit(Surv(Survival, Status) ~ il6_cat, data = dati_V)
ggsurvplot(sopr_il6_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# il8
dati_V$il8_cat <- cut(dati_V$IL8, breaks = c(0, 10, 20, 30, 40), labels = c("0-10", "10-20",
"20-30", "30-40"))
dati_V$il8_cat <- as.factor(dati_V$il8_cat)
sopr_il8_cat = survfit(Surv(Survival, Status) ~ il8_cat, data = dati_V)
ggsurvplot(sopr_il8_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# il8
dati_V$crp_cat <- cut(dati_V$CRP, breaks = c(0, 20, 40, 60, 80), labels = c("0-20",
"20-40", "40-60", "60-80"))
dati_V$crp_cat <- as.factor(dati_V$crp_cat)
sopr_crp_cat = survfit(Surv(Survival, Status) ~ crp_cat, data = dati_V)
ggsurvplot(sopr_crp_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# cea
dati_V$cea_cat <- cut(dati_V$CEA, breaks = c(0, 1.5, 3, 4.5, 6), labels = c("0-1.5",
"1.5-3", "3-4.5", "4.5-6"))
dati_V$cea_cat <- as.factor(dati_V$cea_cat)
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sopr_cea_cat = survfit(Surv(Survival, Status) ~ cea_cat, data = dati_V)
ggsurvplot(sopr_cea_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# cyfra
dati_V$cyfra_cat <- cut(dati_V$Cyfra211, breaks = c(0, 1, 2, 3, 4), labels = c("0-1",
"1-2", "2-3", "3-4"))
dati_V$cyfra_cat <- as.factor(dati_V$cyfra_cat)
sopr_cyfra_cat = survfit(Surv(Survival, Status) ~ cyfra_cat, data = dati_V)
ggsurvplot(sopr_cyfra_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# cyfra
dati_V$a2m_cat <- cut(dati_V$a2M, breaks = c(0, 1, 2, 3, 4, 5), labels = c("0-1",
"1-2", "2-3", "3-4", "4-5"))
dati_V$a2m_cat <- as.factor(dati_V$a2m_cat)
sopr_a2m_cat = survfit(Surv(Survival, Status) ~ a2m_cat, data = dati_V)
ggsurvplot(sopr_a2m_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# sil2r
dati_V$sil_cat <- cut(dati_V$sIL2R, breaks = c(0, 3125, 6250, 9375, 12500),
labels = c("0-3125", "3125-6250", "6250-9375", "9375-12500"))
dati_V$sil_cat <- as.factor(dati_V$sil_cat)
sopr_sil_cat = survfit(Surv(Survival, Status) ~ sil_cat, data = dati_V)
ggsurvplot(sopr_sil_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# tlr4
dati_V$tlr_cat <- cut(dati_V$TLR4, breaks = c(0, 5, 10, 15), labels = c("0-5",
"5-10", "10-15"))
dati_V$tlr_cat <- as.factor(dati_V$tlr_cat)
sopr_tlr_cat = survfit(Surv(Survival, Status) ~ tlr_cat, data = dati_V)
ggsurvplot(sopr_tlr_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# vegf
dati_V$vegf_cat <- cut(dati_V$VEGF, breaks = c(0, 75, 150, 225, 300), labels = c("0-75",
"75-150", "150-225", "225-300"))
dati_V$vegf_cat <- as.factor(dati_V$vegf_cat)
sopr_vegf_cat = survfit(Surv(Survival, Status) ~ vegf_cat, data = dati_V)
ggsurvplot(sopr_vegf_cat, data = dati_V, conf.int = F, pval = TRUE, pval.method = TRUE)

# CORRELAZIONI
# correlazione tra variabili fisiche e biomarker
str(dati_V)
daticor_V = na.omit(dati_V[,c(9,10,14,15,16,17,18,19,20,21,22,23,24,25)])
str(daticor_V)
cormat_V <- round(cor(daticor_V),2)
melted_cormat_V <- melt(cormat_V)
ggplot(data = melted_cormat_V, aes(x=Var1, y=Var2, fill=value)) + geom_tile()

# MODELLI DI COX (STANDARD)
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# MODELLO COMPRENSIVO DI TUTTE LE VARIABILI
M1step = coxph(Surv(Survival, Status) ~ age + stage + histology + Gender + WHOPS + Nodes
+ RTProtocol + TotalDose1st + GTV + OPN + CA9 + IL6 + IL8 + CRP + CEA + Cyfra211 + a2M + sIL2R
+ TLR4 + VEGF + FEV1s, data = dati_V)
summary(M1step)
cox.zph(M1step, transform = "log")
cox.zph(M1step, transform = "km")
cox.zph(M1step, transform = "identity")
cox.zph(M1step, transform = "rank")
cox.zph(M1step)

M2 = coxph(Surv(Survival, Status) ~ Gender + CEA + histology + WHOPS + Nodes
+ RTProtocol + GTV + OPN + a2M + sIL2R
+ TLR4, data = dati_V)
summary(M2)
cox.zph(M2, transform = "log")
cox.zph(M2, transform = "km")
cox.zph(M2, transform = "identity")
cox.zph(M2, transform = "rank")
table(dati_V$RTProtocol, dati_V$Status)

#simulazione under null hypothesis
fit.cox<-cox.aalen(Surv(dati_V$Survival, dati_V$Status)~prop(dati_V$Gender)+prop(dati_V$CEA)
+prop(dati_V$histology)+prop(dati_V$WHOPS)+prop(dati_V$Nodes)+prop(dati_V$RTProtocol)
+prop(dati_V$GTV)+prop(dati_V$OPN)+prop(dati_V$a2M)+prop(dati_V$sIL2R)+prop(dati_V$TLR4),
weighted.test=0,pbc);
plot(fit.cox,xlab="Time (years)",ylab="Test process",score=T, specific.comps=2)
plot(fit.cox,xlab="Time (years)",ylab="Test process",score=T, specific.comps=9)
plot(fit.cox,xlab="Time (years)",ylab="Test process",score=T, specific.comps=16)

# VALUTAZIONE DELLE FORME FUNZIONALI DEL MODELLO DI BASE
# Res. martingala vs variabile
# residui martingala sul modello finale M2
residui_martingala <- resid(M2, type="martingale")
plot(dati_V$Nodes, residui_martingala, xlab="Nodes", ylab="Residui Martingala")
plot(dati_V$CEA, residui_martingala, xlab="CEA", ylab="Residui Martingala") # **
plot(dati_V$OPN, residui_martingala, xlab="OPN", ylab="Residui Martingala")
plot(dati_V$age, residui_martingala, xlab="age", ylab="Residui Martingala")
plot(dati_V$sIL2R, residui_martingala, xlab="sil2r", ylab="Residui Martingala")
plot(dati_V$GTV, residui_martingala, xlab="GTV", ylab="Residui Martingala") # **
plot(dati_V$Cyfra211, residui_martingala, xlab="cyfra211", ylab="Residui Martingala") #**
plot(dati_V$TLR4, residui_martingala, xlab="TLR4", ylab="Residui Martingala") #**
plot(dati_V$a2M, residui_martingala, xlab="a2M", ylab="Residui Martingala")
plot(dati_V$TotalDose1st, residui_martingala, xlab="dose1st", ylab="Residui Martingala") #**
plot(dati_V$IL6, residui_martingala, xlab="il6", ylab="Residui Martingala")
plot(dati_V$IL8, residui_martingala, xlab="il8", ylab="Residui Martingala")
plot(dati_V$CRP, residui_martingala, xlab="crp", ylab="Residui Martingala") #**
plot(dati_V$VEGF, residui_martingala, xlab="vegf", ylab="Residui Martingala")
ggcoxdiagnostics(M2, type = "martingale", ggtheme = theme_bw())
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# Residui di Schoenfeld
# Residui schoenfeld CEA (*)
Mcea = coxph(Surv(Survival, Status) ~ CEA, data = dati_V)
ccea = cox.zph(Mcea, transform = "km")
plot(ccea)
ccea = cox.zph(Mcea, transform = "rank")
plot(ccea)
ccea = cox.zph(Mcea, transform = "identity")
plot(ccea)
ccea = cox.zph(Mcea, transform = "log")
plot(ccea)

# Residui schoenfeld OPN
Mopn = coxph(Surv(Survival, Status) ~ OPN, data = dati_V)
copn = cox.zph(Mopn, transform = "km")
plot(copn)
copn = cox.zph(Mopn, transform = "rank")
plot(copn)
copn = cox.zph(Mopn, transform = "identity")
plot(copn)
copn = cox.zph(Mopn, transform = "log")
plot(copn)

# Residui schoenfeld VEGF
Mvegf = coxph(Surv(Survival, Status) ~ VEGF, data = dati_V)
cvegf = cox.zph(Mvegf)
plot(cvegf)

# Residui schoenfeld Nodes (**)
Mnodes = coxph(Surv(Survival, Status) ~ Nodes, data = dati_V)
cnodes = cox.zph(Mnodes, transform = "km")
plot(cnodes)
cnodes = cox.zph(Mnodes, transform = "rank")
plot(cnodes)
cnodes = cox.zph(Mnodes, transform = "identity")
plot(cnodes)
cnodes = cox.zph(Mnodes, transform = "log")
plot(cnodes)

# Residui schoenfeld Cyfra211 (*)
Mcyf = coxph(Surv(Survival, Status) ~ Cyfra211, data = dati_V)
ccyf = cox.zph(Mcyf, transform = "km")
plot(ccyf)
ccyf = cox.zph(Mcyf, transform = "identity")
plot(ccyf)
ccyf = cox.zph(Mcyf, transform = "rank")
plot(ccyf)
ccyf = cox.zph(Mcyf, transform = "log")
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plot(ccyf)

# Residui schoenfeld WHOPS (*)
Mwhops = coxph(Surv(Survival, Status) ~ WHOPS, data = dati_V)
cwhops = cox.zph(Mwhops)
plot(cwhops)

# Residui schoenfeld Gender (*)
Mgen = coxph(Surv(Survival, Status) ~ Gender, data = dati_V)
cgen = cox.zph(Mgen)
plot(cgen)

# Residui schoenfeld TLR4
Mtlr4 = coxph(Surv(Survival, Status) ~ TLR4, data = dati_V)
ctlr4 = cox.zph(Mtlr4)
plot(ctlr4)

# Residui schoenfeld histology (*)
Mhist = coxph(Surv(Survival, Status) ~ histology, data = dati_V)
chist = cox.zph(Mhist)
plot(chist)

# Residui schoenfeld a2M
Ma2m = coxph(Surv(Survival, Status) ~ a2M, data = dati_V)
ca2M = cox.zph(Ma2m)
plot(ca2M)

# Residui schoenfeld RTProtocol (**)
Mrtp = coxph(Surv(Survival, Status) ~ RTProtocol, data = dati_V)
crtp = cox.zph(Mrtp)
plot(crtp)
?cox.zph

# Residui schoenfeld sIL2R
Msil = coxph(Surv(Survival, Status) ~ sIL2R, data = dati_V)
csil = cox.zph(Msil)
plot(csil)

# Residui schoenfeld GTV (*)
Mgtv = coxph(Surv(Survival, Status) ~ GTV, data = dati_V)
cgtv = cox.zph(Mgtv)
plot(cgtv)

# Residui schoenfeld Age
Mage = coxph(Surv(Survival, Status) ~ age, data = dati_V)
cage = cox.zph(Mage)
plot(cage)

# Residui schoenfeld TotalDose1st
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Mttd = coxph(Surv(Survival, Status) ~ TotalDose1st, data = dati_V)
cttd = cox.zph(Mttd)
plot(cttd)

# Residui schoenfeld IL6
Mil6 = coxph(Surv(Survival, Status) ~ IL6, data = dati_V)
cil6 = cox.zph(Mil6)
plot(cil6)

# Residui schoenfeld IL8
Mil8 = coxph(Surv(Survival, Status) ~ IL8, data = dati_V)
cil8 = cox.zph(Mil8)
plot(cil8)

# Residui schoenfeld CA9
Mca9 = coxph(Surv(Survival, Status) ~ CA9, data = dati_V)
cca9 = cox.zph(Mca9)
plot(cca9)

# Residui schoenfeld CRP
Mcrp = coxph(Surv(Survival, Status) ~ CRP, data = dati_V)
crp = cox.zph(Mcrp)
plot(crp)

# Residui schoenfeld FEV1s
Mfev = coxph(Surv(Survival, Status) ~ FEV1s, data = dati_V)
cfev = cox.zph(Mfev)
plot(cfev)

# curve di sopravvivenza stimate dai due modelli
soprM2 = survfit(M2, data = dati_V)
ggsurvplot(soprM2, data = dati_V, conf.int = TRUE, pval = TRUE, pval.method = TRUE)

sopr_V = survfit(Surv(Survival, Status) ~ 1, data = dati_V)
ggsurvplot(sopr_V, data = dati_V, conf.int = TRUE)

# MODELLO DI COX ESTESO
M2new = coxph(Surv(Survival, Status) ~ Gender + CEA + histology + WHOPS + Nodes
+ RTProtocol + pspline(GTV, df = 0) + OPN + a2M + sIL2R + TLR4, data = dati_V)
summary(M2new)
soprM2new = survfit(M2new, data = dati_V)

termplot(M2new, term=7, se=TRUE, col.term=1, col.se=1)
termplot(M2new, term=11, se=TRUE, col.term=1, col.se=1)
ptemp <- termplot(M2, se=TRUE, plot=FALSE)
attributes(ptemp)

termplot(M2new, term=11, se=TRUE, col.term=1, col.se=1)
ptemp <- termplot(M2, se=TRUE, plot=FALSE)
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attributes(ptemp)
?pspline

# VALUTAZIONE DELLE FORME FUNZIONALI DEL MODELLO A EFFETTI T.DIP.
res = resid(M2tt, "martingale")
ggcoxdiagnostics(M2tt, type = "martingale", ggtheme = theme_bw())

plot(M2new,xlab="Time (years)",ylab="Test process",score=T, specific.comps=10)

mm = timecox(Surv(Survival, Status) ~ Gender + CEA + histology + WHOPS + Nodes + RTProtocol
+ GTV + OPN + a2M, dati_V)
summary(mm)
names(dati_V)

# MODELLI FLESSIBILI: MODELLO A RISCHI ADDITIVI DI AALEN
library(timereg)
fit_aa = aalen(Surv(Survival, Status) ~ GTV + age + stage + histology + Gender
+ Nodes + RTProtocol
+ CRP + CEA + Cyfra211 + a2M + TLR4 + VEGF, data = dati_V)
summary(fit_aa)

# MODELLO DI MCKEAGUE E SASIENI
fit_ms = aalen(Surv(Survival, Status) ~ const(GTV) + const(age)
+ stage + const(histology) + const(Gender) + Nodes + RTProtocol + CRP + CEA + const(Cyfra211)
+ const(a2M) + const(TLR4) + const(VEGF), data = dati_V)
summary(fit_ms)
plot(fit_ms, what = "survival")
plot(fit_aa,xlab="Time (years)",ylab="Test process",score=T, specific.comps=10)
plot(fit_aa,xlab="Time (years)",ylab="Test process",score=T, specific.comps=13)
plot(fit_aa,xlab="Time (years)",ylab="Test process",score=T, specific.comps=14)
plot(fit_aa,xlab="Time (years)",ylab="Test process",score=T, specific.comps=4)
plot(fit_aa,xlab="Time (years)",ylab="Test process",score=T, specific.comps=12)
plot(fit_ms,score=T,xlab="Time (years)",ylab="Test process")

# MODELLO FINALE DI MCKEAGUE E SASIENI
fit_ms2 = aalen(Surv(Survival, Status) ~ const(GTV) + const(age) + const(stage)
+ const(histology) + const(Gender) + Nodes + const(RTProtocol) + const(CRP) + CEA
+ const(Cyfra211) + const(a2M) + const(TLR4) + const(VEGF),
data = dati_V)
summary(fit_ms2)

# MODELLO MOLTIPLICATIVO ADDITIVO DI COX AALEN
fit_ca = cox.aalen(Surv(Survival, Status) ~ prop(WHOPS) + prop(GTV) + prop(age) + prop(stage)
+ prop(histology) + prop(Gender) + Nodes + prop(RTProtocol) + prop(CRP)
+ CEA + prop(Cyfra211) + prop(a2M) + prop(TLR4) +
prop(VEGF), max.time = 8,Nit = 1000, dati_V)
summary(fit_ca)
cox.surv<-list(time=fit_ca$cum[,1],surv=exp(-fit_ca$cum[,2]))
lines(cox.surv$time,cox.surv$surv,type="s",lwd=2,lty=2)
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plot(fit_ca)
plot(fit_ca,score=T,xlab="Time (years)")
fit = aalen(Surv(Survival, Status) ~ const(GTV) + const(age) + const(stage) + const(histology)
+ const(Gender) + Nodes + const(RTProtocol) + const(CRP) + CEA + const(Cyfra211)
+ const(a2M) + const(TLR4) + const(VEGF), data = dati_V,max.time=8, resample.iid=1)
x0<-c(0,0,1); z0<-c(1,0,0);
delta<-matrix(0,length(fit$cum[,1]),181)
for (i in 1:181) {delta[,i]<-x0%*%t(fit$B.iid[[i]])+fit$cum[,1]*sum(z0*fit$gamma.iid[i,]);}
S0<-exp(- x0 %*% t(fit$cum[,-1])- fit$cum[,1]*sum(z0*fit$gamma))
se<-apply(delta^2,1,sum)^.5
plot(fit$cum[,1],S0,type="l",ylim=c(0,1),xlab="Time (years)",ylab="Survival")
fit_ca_s<-cox.aalen(Surv(Survival, Status) ~ prop(WHOPS) + prop(GTV) + prop(age) + prop(stage)
+ prop(histology) + prop(Gender) + Nodes + prop(RTProtocol) + prop(CRP) + CEA
+ prop(Cyfra211) + prop(a2M) + prop(TLR4) + prop(VEGF),
data = dati_V,max.time=8, resample.iid=1)
x0<-c(0,0,1); z0<-c(1,0,0);
delta<-matrix(0,length(fit_ca_s$cum[,1]),181)
for (i in 1:181) {delta[,i]<-x0%*%t(fit_ca_s$B.iid[[i]])+fit_ca_s$cum[,1]
*sum(z0*fit_ca_s$gamma.iid[i,]);}
S0<-exp(- x0 %*% t(fit_ca_s$cum[,-1])- fit_ca_s$cum[,1]*sum(z0*fit_ca_s$gamma))
se_ca_s<-apply(delta^2,1,sum)^.5
surv_ms2 = aalen(Surv(Survival, Status) ~ const(Gender) + const(RTProtocol)
+ const(WHOPS) + const(GTV) + const(stage) + const(histology) + const(Cyfra211)
+ const(a2M) + const(TLR4) + Nodes + CEA, resample.iid = 1, data = dati_V)
summary(surv_ms2)
sur_ms2 = predict.aalen(surv_ms2, dati_V, uniform = F, unif.bands = F)
plot(sur_ms2, col = "blue", ylab = "Survival", xlab = "Time (Years)")
surv_ca = cox.aalen(Surv(Survival, Status) ~ prop(Gender) + prop(RTProtocol)
+ prop(WHOPS) + prop(GTV) + prop(stage) + prop(histology) + prop(Cyfra211) + prop(a2M)
+ prop(TLR4) + Nodes + CEA, resample.iid = 1, data = dati_V)
summary(surv_ca)
sur_ca = predict.cox.aalen(surv_ca, dati_V, uniform = F, unif.bands = F)
plot(sur_ca, col = "red", ylab = "Survival", xlab = "Time (Years)")
?predict.aalen
M2 = coxph(Surv(Survival, Status) ~ Gender + RTProtocol + WHOPS + GTV
+ stage + histology + Cyfra211 + a2M + TLR4 + Nodes + CEA, data = dati_V)
soprM2 = survfit(M2, data = dati_V)
plot(soprM2)
lines(soprM2, conf.int = T, col = "black", lwd = 1)
lines(soprM2, conf.int = F, col = "black", lwd = 2)
lines(soprM2new, col = "orange", lwd = 1, conf.int = T)
lines(soprM2new, col = "orange", lwd = 2, conf.int = F)
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