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Abstract

Due to the short range interaction of the nucleon-nucleon force, the nuclear surface
is well delimited and therefore the nuclear radius. This fundamental nuclear property is
so far, however, not satisfactorily described by microscopic nuclear methods. Theoretical
models based on different approaches disagree in the predictions and with the available
experimental data. In this thesis a systematic study of charge radii and isotopic shifts in
nuclei with mass A=16-70 is performed in the framework of the shell model. Nowadays,
with the advent of the radioactive beam facilities, it is possible to follow the behaviour of
the charge radii as a function of the isospin along isotopic chains towards the drip lines. In
the last years it has been put in evidence the fact that nuclear theoretical descriptions are
unable to reproduce in detail the experimental findings. On the other hand, shell model
analysis of the radii of mirror nuclei has shown very interesting and unexpected behaviour
of the radii of single-particle orbits with low angular momentum value. In addition, it has
been shown that due to the isovector monopole polarization, neutron and proton radii keep
almost equal, independently of the neutron excess. Based on these evidences, a systematic
analysis of isotopic shifts of nuclei with protons filling the sd and pf shells is performed in
the framework of the shell model, using the available theoretical descriptions, in order to
better understand the evolution of charge radii with respect to the isospin.






Chapter 1

Introduction

Even if the nuclear radius is a fundamental property of the nucleus, it is not well reproduced by
microscopic calculations. This is not something peculiar of the nuclear system, but also the radii of
atoms have puzzled physicist for a long time [1].

While for the atoms the interaction between the charged nucleus and the electrons is the well known
electromagnetic one, when considering nuclei the interaction is very troubling, since the nuclear sys-
tem, with the exception of the lightest nuclei, cannot be treated exactly and the nuclear force is not
known analytically.

The density distribution of matter inside the nucleus is usually parameterized via a two-parameter
Fermi function [2] (2pF):

o) = T
1+ elr—R)/a

where R is the half-density radius, a the diffuseness and pg a constant density. Clearly the mass
number is given by A = fooo d®r p(r). As it can be seen from Fig. 1.1 the distribution of matter inside
the nucleus presents a characteristic saturation behaviour close to the center.
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Figure 1.1: Matter density as a function of the radial distance r. In this figure an example of (matter) nuclear
density distribution, parametrized as a 2pF function for 48Ca, is shown, The typical values p(0) = 0.176 fm 3,
a = 0.5 fm and R = 1.24'3 fm have been employed (see Ref. [2]). The dashed line is in correspondence of
r=R.
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The nuclear radius associated to the mass distribution inside the nucleus is known as the nuclear
“matter” radius. The matter radius is difficult to measure directly, since to determine the distribution
of both protons and neutrons one needs a probe which is sensitive to the strong force.

On the other hand the nuclear “charge” radius, that is defined by the distribution of the protons
inside the nucleus, can be probed via electron elastic scattering. From these experiments the nuclear
saturation properties have been unveiled [3].

However, constructing a target of nuclei is only feasible for stable or long-lived isotopes. An alternative
approach, which can be used for exotic nuclei, is to use a beam of isotopes.

Thanks to the development of modern beam facilities, it is now possible to measure with great precision
the nuclear charge radii, and in particular the isotope shifts, defined as the difference between the mean
square charge radii of two isotopes of mass numbers A and A’:

S(RE)VM = (RE) — (RE) (1.1)

where A’ usually denotes a reference nucleus of which the charge radius is already known.

Studying a specific atomic transition of the isotopes via laser spectroscopy it is possible to determine
directly the isotope shifts.

This basic property of the nucleus is very difficult to reproduce with the current nuclear theoretical
methods, even by state of the art ab initio calculations.

In this work, the problem of calculating the isotope shifts will be tackled in the framework of the Shell
Model, introducing recent developments inspired by phenomenological approaches.

A traditional approximation, due to Fermi, considering the nucleus as a spherical system, of the nu-
clear radius is (see for example Ref. [4]) R = rgA!/3, where the constant 7 is usually taken to be
rg ~ 1.1 — 1.2 fm. This approximation, while giving an idea of the general behavior for the nuclear
radii, does not reproduce the peculiar trends that can be seen in the experimental radii, in particular
following an isotopic chain. An example of this is reported in Fig. 1.2, where the experimental charge
radii for some isotopic chains are shown. It should be clear that the way that the charge radii evolve
with the neutron number is not as straightforward as one might expect, and their theoretical deter-
mination needs a profound knowledge of the nuclear interaction’s details.

The calcium isotopes are an area of great interest, especially after the discovery of the abrupt raise of
the charge radius for neutron-rich nuclei after 4*Ca [7].

As can be seen from Fig. 1.3, which is taken from ref. [7], the nuclear charge radii are difficult
to reproduce along an isotopic chain, even with state of the art ab initio (i.e. starting from “first
principles” interactions) and DFT (density functional theory) methods.

The mechanism driving the peculiar trends seen in the experimental isotope shifts is not yet well
understood. In some cases it is possible to attribute the difference in radii between neighboring
isotopes to changes in the does not of nuclei, i.e. deformation. One well-studied isotopic chain is the
Hg (Z = 80) one [8]. The isotope shifts can be seen in Fig. 1.4, which present a very distinct pattern
in the mass region A = 180 — 187. In this region the addition of a single neutron produces dramatic
effects on the shape of the nucleus (this is known as “shape staggering”), thus driving the staggering
in the isotope shifts. As explained in Ref. [8] this happens because of the shape coexistence of a
low-energy excited deformed state for even-even Hg isotopes, which becomes the ground state for an
odd mass number.

While this can explain the behaviour of mercury isotope shifts, for calcium isotopes this explanation
cannot hold. Ca isotopes are in fact characterized by a magic number of protons, thus they are of
spherical shape. A new explanation and method of calculating the nuclear radii, especially in a Shell
Model framework is needed.

Another important experimental hint, which further enriches the picture of nuclear radii, is the dis-
covery of the peculiar “halo” nuclei. These nuclei, which are typically low mass, are characterised by
one or two nucleons in a low angular momentum orbit weakly coupled to a well defined core. This

4
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Figure 1.2: Charge radius as a function of the mass number A. In this figure the experimental charge radii for
some isotopic chains covering the mass region A = 20 — 64; data taken from [5] and [6].
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Figure 1.3: (a) Isotope shifts as a function of the mass number A. (b) Isotope shifts §(r?)4®:52 for different
interactions. In these two figures, adapted from Ref. [7], experimental and theoretical results of the Calcium
isotopes are presented. On the left the nuclear charge radii (experimental data in black solid line) are reported.
On the right the isotope shift §(r2)48:52 = (r2)48 — (252 is compared with theoretical predictions, in particular
with ab initio methods, density functional theory (DFT) and configuration interaction (CI).

weak bound between the core and the halo nucleon(s) allows the latter to have a much larger spatial
spreading.

Another interesting fact is that very light nuclei, up until '2C and 60O, probably present a cluster
structure. In fact, for these nuclei cluster calculations have been successful.

Their cluster structure highly impact the nuclear radii, which in turn are not reproduced by Shell
Model calculations.

With these insights this work’s aim is to explore different prescriptions, in the the Shell Model frame-
work, through a systematic analysis of the isotope shifts in medium mass nuclei.
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Figure 1.4: Isotope shifts as a function of the mass number. Figure adapted from Ref. [8], showing the
experimental isotope shifts, obtained via laser spectroscopy of Hg isotopes with 198Hg as reference. The data
is extracted from two different works, Ref. [8] (reported in red circles) and Ref. [9] (reported in blue circles).
The difference between filled and empty circles is that for the former the measured state is the ground state
and in the latter it is an isomeric state, for both sets of data. Finally, the black solid line reports the results
for Pb isotopes (Z = 82), measured in Ref. [10], as a comparison with the quasi-spherical trend. One can
notice that the error bars are appreciably small. This works show the interesting link of increase in radius to
the deformation of the nuclei.
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Figure 1.5: Experimental RMS radii of the He, Li and Be nuclei as a function of the mass number. This unveils
the “halo” structure, which drives the sudden increase of the observed radius. Image taken from [11].
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In Chapter 2 the Shell Model will be introduced, explaining the basics of the theory as well as giving
insights about how Shell Model calculations are performed. The relevant effective interactions used
to describe the various isotopes will be reported.

In Chapter 3 the problem of calculating the nuclear charge radius will be tackled in both a macro-
scopic and microscopic approach. In the former approach the main focus will be the Duflo-Zuker [12]
phenomenological prescription, a five parameter formula able to reproduce a large number of charge
radii. In the latter the challenging task of calculating the isotope shifts in the Shell Model framework
will be discussed, following the recent theoretical works [13, 14].

Finally, in Chapter 4 the methods will be applied to a variety of isotopic chains and the result dis-
cussed.






Chapter 2

Nuclear Shell Model

In this chapter the nuclear Shell Model (SM) theory, as well as the code used for the calculations, will
be presented. The solutions of the Schrodinger equation will give information regarding the behavior
of the nucleons inside the nucleus. These information will play a crucial role in determining the nuclear
radius, as it is going to be explained in Chapter 3.

2.1 The Non-Interacting Shell Model

The Shell Model (SM) is a microscopic approach in order to treat nuclear systems, which are strongly-
interacting quantum many-body systems, first developed in [15] and [16] in order to explain the shell
structure and the nuclear “magic numbers”.

An exact treatment for the Schrodinger of an A body system is possible only for the lightest nuclei,
so one has to resort to a certain degree of approximation; this is due to computational problems, for
example the interaction matrix may be too large to be diagonalized.

The non-interacting Shell Model, also referred to as single-particle SM or independent particle SM, is
justified by the mean field approximation, considering a single nucleon under the influence of a central
mean field generated by the other A — 1 nucleons present in the nucleus.

Considering the hamiltonian:
A

A

Hy = Z hoi = Z(Tz +U;) (2.1)
i=1 i=1

where the hg; are the single-particle hamiltonians, sum of the single-particle kinetic term 7; and the

single-particle potential Us;.

The single-particle wavefunctions are the solutions of the eigenproblem:

hoig; = €id; (2.2)

with ¢; the single-particle energy of the i nucleon.
The many-body wavefunction representing the nuclear state is taken as the anti-symmetrized many-
body wavefunction, i.e. the Slater determinant of the single particle wavefunctions of the nucle-

ons: ¢1(:1) ¢A(:1)
\11(771, .. ,FA) = \/lAjdet ¢1( 2) ¢A( 2) (2‘3)
d1(Fa) -+ da(Fa)

where A is the mass number of the nucleus, V¥ is the many-body wavefunction and ¢ the single-particle
one.
This approximation can be justified since the mean free path of nucleons inside the nucleus is of the



2.1. THE NON-INTERACTING SHELL MODEL CHAPTER 2. NUCLEAR SHELL MODEL

order of the nuclear radius itself, so they behave like a non-interacting Fermi gas.

In this way, the full eigenproblem can be written as:
Ho W) = E|0) (2.4)

where E is the total energy of the many-particle state, £ =), ;.

2.1.1 The Nuclear Potential

The choice of the single-particle potential that appears in the eigenproblem needs to explain the
experimental evidence of the shell structure. Since the theory governing the nucleons cannot be solved
analytically, one has to resort to an approximate form.

A typical choice is the Woods-Saxon potential [17]:

V()= —— O (2.5)

1+4elr-R)a
where Vj is a constant representing the value of the potential in the center of the nucleus, R describes
the range of the potential (as a first approximation R = 1.1 — 1.2AY/ 3) and a represents the surface
thickness.
This parametrization of the potential takes the form of the one used to describe the matter density
distribution inside the nucleus.
The parameters of the Woods-Saxon potential can be fitted in order to obtain a phenomenological
realistic potential.
A spin-orbit coupling term is also added to the single particle potential. To account for the surface
nature of this coupling, a usual choice is [4]:

dv(r)

(-5 2.
= l-3 (2.6)

Vis o

where [ and § are the angular momentum and spin vector of the nucleon. The effect of the spin-orbit
coupling consists splitting the orbits of a given ¢ quantum number into two orbits, respectively with
total angular momentum j = ¢+ 1/2.

Although the Woods-Saxon potential describes well the shell structure, it is not analytically solvable.
Thus, other approximate forms of the potential can be considered. Another choice for the potential,
firstly proposed in [15, 16] consists in:

1 o o o
U= Quw2f2+C’l-§+ DU/ (2.7)

where the first term is a 3D isotropic harmonic oscillator potential of a particle of mass p and with
oscillation frequency w, and C' and D are dimensional quantities.

Considering only the harmonic oscillator potential one would obtain the wrong magic numbers: that
is why there are two more terms added. The second term is the the spin-orbit interaction responsible
for the splitting of the levels accordingly to their total angular momentum j. The third term 7 0is
added in order to mimic the Woods-Saxon orbits.

Focusing on the first term of Eq. (2.7), that represents an isotropic 3D quantum harmonic oscillator,
the eigenfunctions of Hiy = E1 can be chosen to be also eigenfunctions of the square angular momen-
tum and its projection over the z axis. This happens because the potential is spherically symmetric.
Namely:

124 = h20(0 4+ 1) 28)
Loty = himgp '

10
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The solution of the Schrédinger equation for a harmonic oscillator potential can be written in spherical
coordinates as:

N K2 1
Hwnfmg = { MVQ + 2m£w27“2} wnfmg = néwnémg (2'9)

with Ynem, = Rpe(r)Yem, (0, ), where R, is the radial part and Yz, (6, ¢) are the spherical harmonics.
Explicitly the wavefunctions are:

Uratmy (7,0, 0) = RugYom (0, ) Nuer LS (20r2) Yoy, (0, ) (2.10)

where 6 and ¢ are the polar and azimuthal angles, v = uw/2h, L2 (2vr?) are the generalised Laguerre

polynomials, and
23 Qn+2+3 14
\/\/ k—l—f + ! (2.11)

is a normalisation factor.

The energy levels E,,; can be described by a single quantum number, the principal quantum number
p': E, = (p+ 3/2)hw, where p = 2n + £, with n = n, + ny + n, is the number of nodes and ¢ the
orbital angular momentum of the state.

For a given level p > 0 we can have 0 < ¢ < p, and since p = 2n + £ if p is odd then ¢ must be odd.
The usual notation for the state is £ =0,1,2,3,4,--- = s,p,d, f, g, ...

This gives rise to the well known degenerate energy levels, where the degeneration is given by the fact
that the harmonic oscillator is isotropic and the nucleons are spin-1/2 particles; the degeneracy of a
principal shell (i.e. determined by p) is given by D, = (p+ 1)(p + 2).

Adding now the second term of Eq. (2.7), we are considering the spin-orbit interaction, and in this
case the conserved quantum number is the total angular momentum j = £+ s. The total wavefunction
takes the form:

j
Ujnem(r) = R [Yf ® xs]m (2.12)

where R, refers to the radial part, Y are the spherical harmonics and x the spinorial part. The

J .
[YE ®xs} = Z (Emy, smis|gm) Yom, Xsm. (2.13)
m mems
where m = j,, my = £, and ms = s, are the projections along the z-axis of the total angular

momentum, orbital angular momentum and spin respectively.

The introduction of the spin-orbit coupling splits the levels: since it can have total angular momentum
j =1+1/2. This coupling enters the hamiltonian as: Vs = Cl- §, with C' < 0.

This way, when considering the effect of this coupling on a state |¥), one gets:

-

20 5|W) = 12 [(I+ )2 = (32 = (1%] 19) = B2 [j( + 1) = s(s + 1) = £(¢ + 1)] [ @) (2.14)

where the usual law for the square of a sum was used, as well as f: (+5
At this point there are two possibilities: j =¢+1/2 or j =¢ —1/2:

(2.15)

j=0+1/2=20-3|V) = K2 |W)
j=0-1/2=20-3|0) = —(I + 1)h2|D)

Since the spin-orbit term enters the hamiltonian with an overall negative sign, the energy will be
higher for a state with j = ¢ — 1/2 with respect to the state with j = £+ 1/2. This way the spin-orbit

!This is the notation usually employed in the works relevant for this thesis, as in [14, 12, 13]; in other contexts the
principal quantum number is usually denoted as N.

11
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interaction breaks the degeneracy.

The substructure created by the splitting due to the spin-orbit coupling are often referred to as orbits,
and each orbit of total angular momentum j will have a degeneracy of D; = 2j + 1, for each particle
species, due to the possible projections on the third axis.

The addition of the third term D¢ - ¢ changes the energy of the orbits accordingly to their orbital
angular momentum /¢, since

0010 = h20(0+ 1) | )

This is added to recover the correct energy spacing of the orbits.

Putting together all these information the structure of the nuclear orbits is described as reported in
Fig. 2.1. This agrees with the experimental evidences, in particular with the magic numbers.

Harmonic oscillator Oof Spin-orbit Magic numbers
e 82
0h
p=0 1112
-------- ——e 251 2
. - 1dy:
p= . 2s - 42
. Tl L 1g7/2
Og . i 1ds - 50
- 1gg/2
- 1p1.."2
1p . -
p:‘3 - b - . 0f5a2

- of 7T e Iy 9 28

T 0f7/2 20
p=3 1s Ods/2
- S e 1s1 /2

. 0d ”

oo 0ds /2 8
- Opy 4
p=2 Op =T -7 P1/2
Tt Opa/2

_____________________ 2 ..
:1 .

s ---- 05 ———————— | — 031{;2

Figure 2.1: Shell Model orbits. In this figure from left to right are present the harmonic oscillator major shells,
which are then split by the addition of the spin-orbit interaction (Eq. (2.7)). On the far right the “magic
numbers” obtained by the spin-orbit coupling are reported.

In Fig. 2.2 the comparison between the Woods-Saxon potential and the harmonic oscillator can be
appreciated.

12
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Harmonic oscillator vs Woods-Saxon
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Figure 2.2: Potential as a function of the radial distance r. In this figure a comparison between the harmonic
oscillator potential and the Woods-Saxon one is reported. For the Woods-Saxon form, Eq. (2.5), the parameter
used are Vo = 50 MeV, R = 1.1A'/3 has been chosen (with A = 100), and @ = 0.50 fm. For the harmonic
oscillator hw = 8.83 MeV has been chosen (consistently with the Bohr-Mottelson approximation for A = 100),
and it has been re-scaled by a constant term, V3 = —54.25 MeV, in order to have the two forms coincide at
r=R.

2.2 The Interacting Shell Model

The non-interacting Shell Model can work relatively well considering only one closed shells and a
nucleon above it. When one has to deal with more than one nucleon the effects of the interaction
between them needs to be considered.

However the formalism, as noted in Ref. [18], is still helpful when dealing with more complex systems;
the harmonic oscillator orbits define the basis for the many-body Slater determinants in the so-called
m-scheme. This will allow to a formulation of the Schrédinger problem in a number representation,
and it will be relevant in the following.

In the interacting Shell Model, two-body forces are considered. A common method to obtain the two-
body force is to start from a realistic potential, which should fit the data coming from nucleon-nucleon
(NN) scattering [19].

Usually these potentials cannot be plugged in the hamiltonian directly, because of the peculiar strong
short-range repulsion of the nuclear force; a regularisation procedure has to be employed, in order to
overcome these issues.

Schematically, a possible procedure used to construct the interacting SM hamiltonian can be stated
as:

e one starts with a realistic bare nucleon-nucleon interaction, Vi, which fits the data coming
from NN scattering experiments

o following the methods used in effective field theory, the potential is smoothed-out by integrating
out the high-momentum part (i.e. the short-range part), obtaining the potential Vjy,_x (see
Ref. [20])

e starting from Vj,,_k, an effective interaction is obtained to be used for the nuclear shell model

13
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calculations

The full nuclear problem, considering all the possible orbits that can be occupied by a nucleon, would
be infinite-dimensional. Thus, one must work in a restricted Hilbert space, choosing to consider only
a limited amount of orbits, as it will be discussed in more detail afterwards.

A second procedure used in order to obtain the interaction consists in starting from the empirical
data, fitting the interaction’s matrix elements; this is for example the case of the USDa interaction
[21].

Model Space and Effective Hamiltonian

Let’s consider two-body interactions; the hamiltonian of an A-nucleon system then reads

A A
H=Y T+ Vj (2.16)

1<j

where T; is the kinetic energy of the i*" nucleon and Vij is the interaction potential between the ith
and j*" nucleons.
The Schrédinger equation can be written as:

) = (S @40+ v - S0 | 19) = B W) (2.17)

i i<j i

where |U) is the many-body state, and an auxiliary single-body potential, U;, has been added and
subtracted. Such a potential can be chosen in a way such that H; = ZKj Vii —>.; Ui, i.e. the
perturbed hamiltonian, is much smaller than the unperturbed one, i.e. Hy =), (T; +U;). In this way
a perturbative approach can be justified.

The energy E appearing in Eq. (2.17) is the true energy of the system. As already observed, one
cannot really treat the full problem, so working in a restricted space is mandatory. To simplify the
system the full Hilbert space can be divided into two subspaces. Only one of them will be considered.
With this procedure the eigenproblem will be defined on a so-called model space. In this way, one can
consider only the projections of the states |¥’) into the subspace, requiring:

Hepp |0 = E|T') (2.18)

where H.ry is the effective hamiltonian, and E should be the same energy as the full problem.

The model space is specified by an inert core and a valence space.

The inert core is the interacting vacuum of the theory, made of the fully-occupied orbits; the nucleons
inside the inert core are “frozen” and cannot jump to other orbits. Outside the inert core the nucleons
can be arranged in different configurations in the valence space. Outside the valence space the orbits
cannot be occupied: this can be called external space.

The choice of valence space should be made in a way so that the system is simple enough to be treat-
able, while still containing all the relevant degrees of freedom.

Working in the model space, the effective hamiltonian can be written as

A
Heff = Ho + Hyes = Z ho(i) + Hyes (2.19)
=1

where hg(i) are the single-particle hamiltonians and H,.s is the residual hamiltonian.
The total energy of the system can be split into two contributions: H |¥) = (Hy+ Hyes) |¥) = E|V) =

14
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(Eo+ Eres) |0).

One can construct a basis of eigenstates |¢;) of the single-particle hamiltonians, each with eigenvalue
€

ho(2) [¢s) = €i i) (2.20)

The many-body (anti-symmetric) wavefunction can be constructed as the Slater determinant of the
single-particle wavefunctions:

) o1(ri) - o1(Ta)
Yp=—=det | . (2.21)
val da(ri) -+ @a(ra)

where the index k indicates the particular configuration of the many-body state of the system, and
obeys the Schrédinger equation Hy |¢f)) = Ep [¢), with Ep = Y4 e

Configurations

The possible configurations specify what valence orbits of the model space are occupied by which
valence nucleon. The configurations can also include particle-holes pairs. Usually, configurations are
represented with the following notation:

m(ay™ o) @v(B - BY°)) (2.22)

where 7 and v indicate the fluids (protons and neutrons respectively), a and  are the valence orbits
occupied and m, n the number of protons and neutrons respectively that occupy the orbits. In the sd
shell the valence space is composed of the orbits 0ds /5, 1512 and 0d3/9, and taking for example MNa
some possible configurations are:

7(0d3)5) @ v(0dd ) ), |7 (02 o1t ) @ w(0dLyg) ), |m(0dd ) @v(0dh0)), o (2:23)

|m(0d2,,) ® v(0d3,,)) |7w(0dZ 5151 ,5) ® v(0d} 5))

0ds /2 0ds /2 0d 2 0ds
Valence space 1s1/2 Ls1/2 1s1/2 1s1/2
0d; 5 - 0ds /5 0ds /5 < PN 0ds /o
Op1/2 | ® S 0py/2 0py /2 S < > 0p1/2
Inhert core Ops/2 | R e 0ps3 /2 Opsy2 S S Ops /2
\ 081/2 < s 031/2 051/2 P < PN 051/2

™ v T v

(a) (b)

Figure 2.3: Visual representation of two possible configurations for 2°Na, where the inert core and the valence
space are highlighted. The external space is composed of all the other higher energy orbits not shown

It is clear that the number of configurations rapidly increases with the dimension of the valence space.
The full many-body wavefunction will then be constructed by summing over all the possible configu-
rations:

[Up) = ap 1)) such that » a2, =1 (2.24)
k k

15



2.3. SOLVING THE SCHRODINGER PROBLEM CHAPTER 2. NUCLEAR SHELL MODEL

and the probability that the system will be in the configuration k is given by the square of the ampli-

: 2
tude, i.e. P, = A

The Schrédinger equation can be rewritten as:

n n
H|Vy) = E,|Vp) = Epzapk ‘¢2> — Zapk <¢?‘ H ‘¢2> = Epap (2.25)
k=1 k=1

where both sides of the equation have been multiplied by <wl0‘ and the orthonomality conditions
<1/1?‘1/12> = d;; have been used.

Since ‘1/12> is an eigenfunction of the unperturbed hamiltonian of eigenvalue EY, the matrix elements
of the hamiltonian Hj, = <¢10’ H |¢2> = <¢l0| Ho+ Hyes ’w2> can be split into a diagonal and an off-
diagonal part, Hj, = E251k+<w?| Hies ‘w2>. The value of E, can be obtained from ), Hjpar, = Epayp,
solving the associated matrix equation [H|[A] = [E][A], where [A] is the matrix constructed from the
coeflicients ay.

Using then the orthonormalisation condition Y} Grpaiy = Oppr:

n n
Z alp/Egélkakp + Z Ay <1/J?} Hres ‘1/)2> Apl, = Ep5pp/ (2.26)
l,k=1 l,k=1

which is a matrix equation of the form [A]7![H][A] = [E].

2.3 Solving the Schrodinger Problem

Considering the discussione above, in the Shell Model, the problem of obtaining the energies of the
states and the corresponding occupation of the orbits reduces to a matrix eigenvalue problem.

One has to diagonalize the interaction matrix, and for this purpose the Lanczos method is commonly
employed. Then one has to solve Eq. (2.26) in order to obtain the a, coefficients, and different codes
have been written for this aim. In particular in this work the ANTOINE code [22] was used. In the
current section the main ideas behind this code will be reported.

2.3.1 The Lanczos Method

The Lanczos method, proposed in Ref. [23], is used in order to diagonalize the hamiltonian matrix, so
that the energies of the states can be obtained. This method takes as an input a pivot state, and with
an iterative method is able to construct an eigenvector; this way giving an initial state of defined spin
(J) and party (P), ‘J P >, one can get the energy of the lowest lying state with this spin and parity.
This algorithm is useful in Shell Model calculations since usually only few eigenstates of a given total
angular momentum and isospin are needed. Moreover it also benefits from the fact that the matrices
involved in these calculations are sparse: the non-zero matrix elements actually increase linearly with
the dimension of the matrix, instead of quadratically [18].

Let’s consider an hermitean matrix H. The algorithm starts with an orthonomalized pivot state
|1), and one defines a new state as |a;) = H [1), which takes the form |a1) = Hi1|1) + |2"), where
Hy; = (1| H|1) and |2') is an orthogonal state, (1|2") = 0.

The matrix element Hqp can be obtained also from Hy; = (1]a;) (since [1) is orthogonal to |2')), and
then the second vector |2') can be normalised, |2) = |2') /1/(2/|2/).

From this, one can also obtain the matrix element Hyz as Hio = (1| H |2) = /(2/]2/).

This procedure can then be iterated n times, until the |n) vector is found, to which one can associate
lan) = H |n), that necessarily takes the form |a,) = Hpp—1|n — 1) + Hpp In) + [(n+ 1)), and again
the element H,,, can be obtained as H, = (n| H |n) = (n|ay,). The “newest” state can be normalised
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in the same fashion as before: |n+ 1) = |(n + 1)) /1/((n (n+1)).
In this way, one obtains the matrix:
Hyy Hip -+ Hip
Hyy Hyy -+ Hay
H, = . ) ] . (2.27)
Hnl Hn2 to Hnn

where H;; = (i| H |j), and it is symmetric, so H;; = Hj;. Notice that, since the matrix H is hermitean,
all the elements H;; with |i — j| > 0 are null, i.e. the matrix is tridiagonal, and can be now easily
diagnalized.

The matrix is diagonalized at each step of the iteration, until the eigenvalues are convergent accord-
ingly to some criterion. Typically it is chosen that the difference in energy of the states between two
consecutive iterations, AE = Ej1 — Fy, should smaller than a set value.

2.3.2 Shell Model Calculations

The Choice of Basis

The choice of the scheme basis is a matter of convenience. There are two main options:
e the m-scheme
e the coupled J or JT scheme

In the m-scheme, the basis is given by the set of the Slater determinants of the A particles distributed
in k orbits, which can be represented as states |nimj7), defined by their principal quantum number
n, orbital and total angular momenta [ and j, magnetic quantum number m and isospin 7. This is
the harmonic oscillator basis.
The Slater determinants read:

¢a1(1) ¢aA(1)

1
Boyoan(l, ..., A) = ——d : : =al ---al |0 2.28
v ( ) met </5'(A) -.-qs'(A) g, -+ ag, 0) (2.28)

The main reason why the m-scheme is appealing is due to the fact that in this basis the many-body
matrix elements of H reduce to the two-particle matrix elements of H with a phase ([22]); however
the flip of the coin is that in this basis only the projections J, and T, are good quantum numbers.
This implies that all the possible (J, T') states are in this basis, so the dimension of the basis of Slater
determinants will depend on the total degeneracy of the protons and neutrons in the valence spaces

D, and D,:
D D,
# of SD = ( ”) X < ) (2.29)
N Ny

The J and JT coupled schemes split the full matrix, considered in the m-scheme, into much smaller
boxes.

In the coupled schemes the basis is constructed in order to have a good total angular momentum (and
total isospin) quantum number. For example in the J coupled scheme the states should be eigenstates
of J?; in order to have this, one defines a state for the i*" orbit having j; angular momentum, n;
particles, v; seniority and other additional quantum numbers z; as |y;) = [(ji;)™v;z;J;). Then for a
system with A particles distributed in &k orbits, the total state is found by applying successive angular

momentum couplings [18]:

} JiTh

[lv) )22 ) (2.30)
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The ANTOINE Code

The ANTOINE code [22] is an efficient implementation of the already discussed Lanczos algorithm,
and is based on the ideas developed by the Glasgow group [24], working in the m-scheme basis and
representing the Slater determinant basis as an integer to be stored in the calculator.

The input it takes is composed of:

e the valence space, i.e. the considered orbits that the valence nucleons can occupy, which depends
on the nucleus considered and the relevant degrees of freedom;

e the number of valence nucleons of the nucleus, separated between protons and neutrons
e an effective interaction valid in that model space, e.g. USDa, USDb, zbm2, ...
e a set of initial states, JP?, each characterised by its total angular momentum J and its parity p

Let’s proceed with the description of how the ANTOINE code works. First of all, each state |nljmr)
gets an associated value, either 1 or 0, which indicates if that state is occupied or not, respectively.

The two-body operators of the interaction can be represented, in the context of the 2"¢ quantization,
in terms of annihilation and creation operators, & and af. The application of @' to a certain unoccu-
pied state will switch the associated value from 0 to a 1, while the application of @ will do the opposite.

The states can be written, in an m-scheme basis, separating the neutrons and protons Slater de-
terminants: |I) = |i, ), where the uppercase latin characters, I, indicates the full space states, the
lowercase latin ones, 7, the protons subspace states and the greek ones, «, the neutron subspace states.
These states can be classified by the values of M, and M = M; + M, being M; the value of the M
quantum number for one particle species and M for the other. M will be the total projection of the
angular momentum, associated to the full state, |I).

In this way, since M is fixed, only if M = M; 4+ Ms the Slater determinants of the two states will
be associated; given a value of M, for each |i) (with associated M) one will have a minimum and
maximum possible value of M, associated to the neutron state |a).

It is then possible to build an array R(:) that points to the |I) state: I = R(i) + o. Here with i is
denoted the position in the basis of the |i) states, a of the |«) state and so on.

The values of R(i), R(j), o,  and the non-zero many-body matrix elements for proton-proton
((i| H |j)) and neutron-neutron ({«| H |3)) interactions are pre-calculated, therefore with the Lanczos
method a simple loop on « and ¢ generates all the non-zero values (I| H |J).

For proton-neutron interactions the procedure is slightly less straightforward. Let’s assume that
I} = |i,a), |J) = |, B), and that the |i) and |j) states are connected by a one-body operator, at the
position s, &g&r, with ¢ = |nljm), r = [n/l'j’m/), and let’s define Am = m’ — m. In the same fashion
let’s assume that |«) and |5) are connected by a one-body operator, at the position .

Being the total M conserved, necessarily the values of m and m/ for the neutrons will have difference
—Am, so that it cancels out with the difference in the quantum numbers for the protons.

One can then define a new array Q. In this way, K = Q(s)+ p will label the two-body matrix elements
V(K). As before I = R(i) + o and J = R(j) + 3, are pre-calculated, so that the non-zero matrix
elements V(K) = (I| H|J) = (J| H |I) can be calculated and stored.

Effective Interactions

For the calculations, different effective interactions have been chosen: the USDa interaction [21], the
zmb2 [25], the SDPF-U-MIX [26], the GXPF1la [27] and the LNPS [28]. The choice of the interaction
clearly depends on the particular isotope that one wants to study, since its behaviour needs to be
well reproduced in the valence space in which the effective interaction is defined. The most important
aspect is that the valence space needs to be large enough in order to include all the relevant degrees
of freedom, but not too large, in order to make the calculation feasible. What can happen, especially
when dealing with neutron rich isotopes, is that the valence space considered by a specific interaction

18



2.3. SOLVING THE SCHRODINGER PROBLEM CHAPTER 2. NUCLEAR SHELL MODEL

becomes too limited.

The USDa interaction [21] has been used to perform calculations for nuclei with valence nucleons in
the sd shell: the core is composed by the 0sy /o, Op5 /2 and Opg /o orbits (i.e. the s and p shells) for both
protons and neutrons, so the core is the 10 nucleus. The valence space is composed by 0ds /2, 1812
and 0Odg/y for both protons and neutrons.

This interaction is obtained starting from the shell-model effective hamiltonian, specialised to the sd
shell, written as (Ref. [21]):

Hepp = Z €qMa + Z Z Vir(ab; ed)T 7 (ab; cd) (2.31)
a a<b,ec<d JT

where ¢, is the usual one-body energy, n, = dida the number operator for the a orbit, Vyr(ab;cd) is
the two-body matrix element and the operator T can be expressed as :

Tyr(abyed) = > AYy g (ab)Ajarrr, (cd) (2.32)
MT,

which represents the scalar two-body density operator for nucleon pairs.

In order to ease the notation the authors propose to write the effective hamiltonina as Hepr = 3, xiOi,
where z; can stand for both ¢, and V7, and the operator O; for both n and T. In this way the hamil-
tonian can be fully determined by the vector Z, and it will have eigenstates |¢y) with corresponding
eigenvalues \y:

Ne = (S| Hepg [ox) = > i {0kl Oi lon) = > i3y (2.33)

where ¥ = (¢x| O; |¢r.).
In this way the derivation from experimental data of the matrix elements of the hamiltonian can be
done by minimizing the y?:

2
EE, — A
=3 (ka > (2.34)

& erp

where Efzp and afxp are respectively the experimental energy and errors. The dataset used in Ref.

[21] was composed of 608 states distributed in 77 sd-shell nuclei.

For the zmb2 interaction [25] the core is composed by the s shell, p shell and the 0dj /2 orbit for both
protons and neutrons, so it is the 2Si nucleus. The valence space is composed by the 1s; /25 0d3 /2,
0f7/2 and 1ps3,o orbits for both kinds of nucleons.

This interaction is based on three building blocks, which are:

e the USD interaction [29] for the nucleons in the sd shell
e a modified Kuo-Brown (KB) interaction [30] for the nucleons in the fp shell
e the G-matrix? of Lee, Kahanna and Scott [32] for cross-shell excitations.

The SDPF-U-MIX interaction [26] also has been employed for the Ca isotopes. This interaction has
a core of %0 and as valence space the sd and pf shells for both protons and neutrons, where the pf
shell is composed of the orbits 0f7/2, 1p3/2, 0f3/2 and 1py .

This interaction is an evolution of the SDPF-U interaction [26] based on the USD one for the sd shell,
a variant of the KB one for the pf shell.

In the SDPF-U-MIX interaction the off-diagonal sd — pf elements have been added, as well as a re-
tuning of the interaction matrix has been performed, so that the shell gap between the sd and pf
shells is in accordance with the experimental data.

2For the G-matrix method see Ref. [31]
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The GXPF1la [27] is another example of interaction with fitted matrix elements, as the USDa interac-
tion. In this case the inert core is the °Ca nucleus, and the valence space is composed of the pf shell
for both protons and neutrons, so it is suited for nuclei with 20 < N, Z < 40. It has been employed
for the 20~59Mn and ?*~64Ni isotopes.

The LNPS [28] interaction has been employed for the 50=5°Mn and %~7°Ni isotopes. For this interac-
tion the core is “8Ca, while the valence space considered is the pf shell for protons and for neutrons
the orbits 0f5/2, 1p3/2, 1p1/2, 099/2 and 1d5/2.

Also in this case the interaction has been built by considering different blocks, such as a variant of
the KB interaction for the pf shell nucleons, the renormalized G-matrix presented in Ref. [31] for
the neutron orbits 1ps/9, 1p1/2, 0f5/2 and Ogg/p and finally the G-matrix based on Ref. [32] for the
matrix elements involving the neutron 1ds/; orbit. As for the other cases the final tuning of the matrix
elements has been performed considering experimental constraints, such as the proton gap at Z = 28
and the neutron N = 50 gap.

The results coming from the ANTOINE code Shell Model calculations will be reported in Appendix A.
In particular the occupation numbers for the ground states will be presented, as well as a selection
of energy levels. This is done to provide a comparison with experimental data, in order to have an
indicator of the goodness of the interaction.
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Chapter 3

Nuclear Radii Theory

In this chapter the problem of a theoretical definition and formula for the nuclear radii is tackled,
from both a macroscopic and a microscopic approach. As it will be here explained, one can build
the formula for the nuclear radius starting from global properties of the nuclear system, devising a
macroscopic phenomenological formula for the radius.

Another way to look at the same problem is to start from a harmonic oscillator potential, which is
only an approximation for the far more complex real nuclear potential. The main problem in this
microscopic formulation is to account for the needed corrections.

3.1 Macroscopic Approach

In the Ref. [12] Duflo and Zuker proposed a phenomenological formula for the proton and neutron
radii of nuclei, in a macroscopic framework.

Their work was based on the isospin conservation assumption, and the fact that the proton radii can
be written in the form of a Coulomb energy, so that through the same arguments that lead to the
Isobaric Multiplet Mass Equation [33] (IMME) one can write:

(r2) = a(A,T) + B(A, T)T. + (A, T)T? (3.1)

where A is the mass number of the nucleus, T is the isospin and T, its projection.

3.1.1 Isobaric Multiplet Mass Equation

The IMME can be derived assuming a macroscopic approach, treating the total hamiltonian as re-
sultant of the effects of a charge invariant (CI) and a charge violating (CV) part, H = Hor + Hevy .
In this case, employing an isospin representation of the states, |«,T,T,) is an eigenstate of H¢y, of
energy F, 7, while the contribution of the charge violating part can be further split into three separate
contributions, considering nucleon-nucleon forces only:

2
Hey =S HY) (3.2)
k=0

with Hg]‘)/ = (Vpp + Van + Vpp)/3 the isoscalar term, Hg‘)/ = Vpp — Vian the isovector term and

H(CQ‘)/ = Vip + Vi — Vpn the isotensor term, having identified V;,,, as the potential between two
neutrons, Vj, between two protons and V), between a neutron and a proton.
At this point one can calculate the binding energy BE(«,T,T,) = (oTT,| H |aTT,), however the

charge invariant part will produce F,r, independently of the projection of the isospin, while for the
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charge violating part the Wigner-Eckart theorem can be used in order to work with the reduced matrix
elements only, giving:

1 T
ABE(a,T,T.) = ————=M" + : MOy
(1.1 = s VTERT + 1)(T + 1)
2 _
372 — T(T +1) ) 53)

- VT —1DTQRT +1)(T +1)(2T + 3)

where A denotes that we are only considering the CV part and M®*) = (aT||H, (Ck‘)/\ |aT") are the re-
duced matrix elements.
At this point the relation between the binding energy and the isospin projection can be made
schematic:

BE(o, T, T,) = a(a,T) 4 b(e,, T)T, + c(a, T)T? (3.4)

which is the usual formulation of the isobaric multiplet mass equation.
One simplified example is the Coulomb energy, which can be written in terms of T:

3

32 [A(A-2)
E.=
BR."

" 5roAl/3 4

27(Z -1) +(1— AT, + T2 (3.5)

having considered the rough approximation of a spherically symmetric nucleus of radius R, = rqA/3,
and having exploited T, = N —Z, A= N+ Z.

3.1.2 Duflo-Zuker Phenomenological Formula

The link to the proton radii is given by [12]:

r2 = % SO(1/2— )12 — ) (3.6)

i<j

where r;; is the distance between the i" and j** nucleons and ¢! is the isospin of the i*" nucleon. This
expression takes on a form similar to the Coulomb energy, if one exchanges T?j with szl, thus one can
make the same reasoning which brings to Eq. (3.1).

In particular Duflo and Zuker proposed in [12], specializing to mirror nuclei with 7, = 2t = N — Z,
the formula: . 2

Pr = A3 <PO - gﬁ - ;AZ> ed/4 (3.7)
where A'/3 is the general asymptotic behaviour for self-bound systems (r ~ pgA/3), e9/4 is a correction
made to account for the experimental fact that we observe larger radii for small A.
The ¢ term measures the difference in radii between the fluids (the neutrons and the protons, i.e. the
neutron skin if ¢ > 0) and v is the measure of the overall dilatation or contraction.
In particular it is possible to also calculate the proton radius by flipping the sign of ¢ in Eq. (3.7).
By taking the difference between the neutron and the proton radii, it is possible to estimate the
neutron skin:

Aryr = Af_tl/?) eI/ (3.8)

Finally, it is possible to interpret the exponent o; there are two interesting cases:

e 0 = 1 = “volume skin”, which would be what one would expect if there was strong attraction
between particles of the same fluid (i.e. if v — v and 7 — 7 interactions were the strongest)

e 0 =4/3 = “surface skin”, which is the proposed one since v — 7 interactions are the strongest
(so the interaction between particles belonging to different fluids)
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Starting from the experimental data sets available at the time of the publication of Ref. [12], the au-
thors fitted the data, finding that py and g had consistent values for different (v,() couples, and
to discriminate the optimal choice of (v,() they resorted to the Coulomb displacement energies,
CDE = BE(Z~,N.) — BE(Z-,N>).

Note that the results found in Ref. [12] are only valid as long as the isospin is a conserved quantity,
which was one of the assumptions made. In this macroscopic formula there is no mention of the
underlying shell structure of the nucleus: a correction is needed in order to account for the shell
effects.

The Extruder-Intruder Space

An important concept, needed in order to introduce the correction for shell effects for the phenomeno-
logical Duflo-Zuker formula for the nuclear proton and neutron radii is the so called extruder-intruder
(EI) shell structure.
These shells are constructed starting from the harmonic oscillator levels, plus the spin-orbit interaction
which splits them into orbits. As already stated, the energy of those orbits depends on their total
angular momentum.

The extruder-intruder main shells are constructed starting from the p harmonic shell. From this shell,
the highest-angular momentum one (i.e. the lowest-energy orbit) is shifted towards the p —1 harmonic
oscillator shell. This will be called the “extruder” orbit. Then the lowest-angular momentum one (i.e.
the highest energy orbit) is shifted towards the p+ 1 harmonic oscillator shell. This will then be called
the “intruder” orbit.

One can graphically appreciate the construction of the four lowest-lying EI shells in Fig. 3.1.

The Phenomenological Duflo-Zuker Formula

Following Ref. [12], in order to account for shell-corrections Duflo and Zuker introduced a new term,
D = AS:Sy + uQrQ,, which is a functional of the occupancy numbers in the EI (extrunder-intruder)
space, where:
2(Dy — 2) Q. = 2(Dypr — 2)

pz = T D2
where z is the number of valence protons in the EI shells, D; = (pr+1)(pz+2)4+2 and D,r = pr(pz+1)
are the degeneracy of intruder and non-intruder orbits respectively. The expression for S, and @, are
the same of S, and @), exchanging only z <+ n and © < v.
The A term refers to spherical nuclei, while the p term to deformed ones; the D term is referred to as
the Duflo term or Duflo correction.
In this way, the shell-corrected radii result to be p° = pr + D. Notice that the shell correction term
D is constructed in a way such that it vanishes at the EI closures, since z,n = 0.

Sr =

Considering only the corrections for spherical nuclei one obtains [14]:

D, — D, — _ .
Py = Py + A (n( 3 n) X A foF Z>> A3 5 correlated radius (3.9)
2
t t . :
pr = AY3 <Po - gA4/3 - g (A) > e9/4 s naive radius

where t, = N—Z, n|z] is the number of valence neutrons between the extruder-intruder magic numbers
and D, [D;] are the corresponding degeneracies.

In particular, we can define the neutron skin thickness as Ar,, = p,° — pp© = %69/ 4. notice that
this is the only term that depends on the sign of ¢,, meaning that if we were to consider two mirror
nuclei (i.e. nuclei with the number of neutrons N and number of protons Z exchanged) this is the
only term which can account for a difference in their radii.
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Figure 3.1: Graphic depiction of the construction of the extruder-intruder (EI) space shells, which are found
inside the shaded blue areas, starting from the harmonic oscillator shells. The first four extruder-intruder shells
are here called EIO, EI1, EI2 and EI3. D is the degeneracy of these shells.

3.2 Harmonic Oscillator Radii

In the previous part of this chapter the calculation of the nuclear radius by means of a macroscopic
formula has been described. In order to introduce now a microscopic formula, first of all it is easier
to consider the calculation of the radius in the approximation of an harmonic oscillator potential, and
afterwords the corrections due to shell effects will be added.

3.2.1 The 3D Harmonic Oscillator Radius

Let’s consider a 3D isotropic harmonic oscillator hamiltoninan:

-9
p m 99
H=—+ —wr 3.10
2m 2 ( )
where m is the mass, w the oscillation frequency and p'= (ps, py, p.) and 7" = (ry, 7y, ;) in a cartesian

coordinate system.
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Following the usual first quantization, the momentum and position of the particle are promoted to
operators, R .

pP—p, =T
and ladder operators a; and ?L;r (with i = x,y, ) are introduced, which are related to the position and
momentum operator as:

>

VB (7 + ) Fi =\ o (@] + i)

)
Al — /M (g ; N o
{ai = V%% (7 = 75D pi = iy/ " (a] — a,)

They follow the commutation relations:

la, 6] = i, [as,a;] = 0 = [al,al], withi==,y,2 (3.12)
Let’s then introduce an orthonormal basis of eigenstates of the energy, {|7), = |1z, 7y, n2), }a=0,1,...
(Fock states). The application of the & and &' ladder operators to an energy eigenstate gives:

i i) = i | — 1y, @) = vy F 1|+ 1) (3.13)

It is then possible to define the number operator as N; = d;rdi, which is such that Nj |7@) = n; |77) due
to the relations listed above.

Now it is possible to calculate the expectation value of the radial dimension for a given eigenstate of
the energy.

For a given Fock state |i):

(| r? |73) = (1] (r2 + 7, + r2) |7) (3.14)

and considering, e.g., only the contribution along x, using the relation aLaaE |ng) = ng ng) as well as
the commutation relation [d,,a}] = 1, one obtains:

h h
(nal72 Ina) = 5 (na] |(a})? + a2 + acal + alas | Ins) = 3 (.| |2a}as +1] In) =
h
= — 1/2 3.15
L, +1/2) (315)
Thus, summing over the three spatial directions:
(172 7)) = (4 my 4z +3/2) =~ (p £ 3/2) (3.16)
mw Y mw

where the principal quantum number p = n; + n, + n. has been made explicit.

Spherical Coordinates

Since the 3D harmonic oscillator has spherical symmetry, one can pass to spherical coordinates and
construct eigenstates with quantum numbers n, £ and m; in this basis the principal quantum number
isp=2n+L,p>0,0<L<p.

The same relation for the mean square radius holds, however now the principal quantum number can
also be written in term of the spherical quantum numbers.

3.2.2 Harmonic Oscillator Radius for Nuclear Orbits

Starting from the 3D harmonic oscillator result Eq. (3.16), one can generalize then the formula for
the radius of the nuclear system by summing over all the harmonic oscillators orbits [14]:

h) = Y72 1) = e 3 i+ 3/2) (317)

% i
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where the possible orbits |i) = |n;¢;j;) are specified by the principal quantum number p; = 2(n;—1)+¢;,
and m; = z; + n; is the total occupation number of the orbits, which tells us how many particles are,
on average, present in that orbit (z; is the proton occupation number and n; is the neutron one).
Notice that also the inert core orbits are considered, and these are always fully occupied.
In order to retrieve the second equality, it is useful to introduce the size parameter:
2.2

v = % = %% = % MeV fm? (3.18)
where mc? = Muucleonc® =~ 938 MeV (since the case of interest in this work is the nuclear system),
and the relation hic = 197 MeV fm was used. In this way, when expressing the Aw parameter in MeV
units, it is possible to obtain the mean square radius directly in fm? units.
From now on the parameter iw will be implicitly assumed to be expressed in MeV.

Eq. (3.16) only considers an harmonic potential, which is known to not be able to describe the nuclear
system. This result will not be used as it is in order to perform calculations: starting from Eq. (3.16)
one can provide corrections in order to make realistic calculations.

3.3 Microscopic Formulation of Mean Square Radii

In this section the various methods that have been identified to calculate the nuclear charge radii, in
particular accounting for corrections due to the correlations, will be introduced and discussed. They
will then be applied to the calculations of the isotope shifts.

Starting from the expression for the mean square radius given in Eq. (3.17), Bonnard and Zuker in
Ref. [14] proposed to link the microscopic formulation to the phenomenological Duflo-Zuker formula

via the relation?: 47
) m;
(rho) = T Zz(pz‘ +3/2) ~ (p2)? (3.19)

1
where the mean square radius is expressed in fm?, and p? refers to the “naive” proton radius as
calculated in Eq. (3.7).
Thus, the authors linked the naive form of the phenomenological formula to the mean square radius
in a microscopic framework obtained by considering an harmonic oscillator potential.

Since the relation in Eq. (3.19) holds for the “naive” radius, one should account for corrections to
the microscopic formula in order to integrate the contributions coming from the addition of the Duflo
term, present in Eq. (3.9). The Duflo term, as already mentioned, accounts for shell effects.

The corrections will be twofold: firstly the presence of the so-called d; terms, needed to account for
the presence of “halo” orbits, will be discussed. Secondly, a correction concerning the harmonic oscil-
lator energy parameter hw will be introduced. These corrections will then be applied to Eq. (3.19),
producing an expression for the corrected proton radius which will then be related to the “correlated”
form of the Duflo-Zuker formula, Eq. (3.9).

3.3.1 The § Correction

The first correction that is going to be discussed is the § correction term, related to “halo” orbits.
In the study done in Ref. [13], the Bonnard, Lenzi and Zuker studied mirror nuclei, i.e. nuclei with
interchanged N, Z, with T, = 1/2. The authors considered nuclei with mirror nuclei with A = 15,
focusing on the first 1/2~ and 3/2~ states, A = 17, focusing on the 5/2% and 1/2% states, A = 39,
focusing on the 3/27 and 1/27" states, and A = 41 focusing on the 7/27, 3/27, 1/2™ and the first two
5/2~ states. The authors investigated the mechanism behind the observed mirror energy differences

'In this work the notation used for the square radii is (7"2) for the ones calculated via a microscopic formula, and p? for
the ones coming from the phenomenological approach. In a microscopic approach one always deals with the expectation
value of the radius operator.
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(MED) and mirror displacement energies (MDE). The former refers to the differences in the spectra
of two mirror nuclei, the latter to the differences between the ground states.

Exploiting the knowledge of the Duflo-Zuker equation Eq. (3.9), the authors have linked the MED
to the enlargement of an orbit; the idea behind this consists in adjusting the { parameter, which is
related to the neutron halo dimension in order to solve the so called Nolen-Schiffer anomaly [34]. This
anomaly is the discrepancy between the prediction and the experimental results of the differences in
binding energies between the two mirror nuclei.

The results of the study [13] predict an enlargement of the 1s; /2: 1p3/2 and 1ps /5 orbits.

In particular, from the mirror nuclei with A = 17 the prediction is that the 1s;/; orbit is about 1.2
fm larger than the Ods 5, while from the mirror nuclei with A = 41 that the p orbits in the pf shell
are larger than the f orbits by about 0.7 fm. Thus, the authors propose to attribute the experimental
isotope shifts to the “halo” nature of these orbits. Moreover the enlargement was found to not be
constant: considering the A = 39 mirror nuclei the s orbit is still larger than the d ones, but not at
the same extent.

In a subsequent study, Ref. [14], Bonnard and Zuker proposed a microscopic parametrization of the
mean square proton radii accounting for the results presented in Ref. [13].

The authors proposed to add a correction to Eq. (3.19) would account for the “halo” orbits, as well
as for the Duflo correction A present in the phenomenological formula Eq. (3.9):

1) = T S 8/ 80~ () (320)
where pS refers to the “correlated” proton radius of Eq. (3.9), and d; are the corrections mentioned
above.

These 0; terms should be referred to the “halo” orbits, and should act as a correction of the harmonic
oscillator result.

In this study, Bonnard and Zuker focused on two dataset composed of 21 and 24 sd shell nuclei with
2T, = N — Z =0, 1,2 respectively, and fitted them with Eq. (3.20), adopting a step-function form for

the & correction discontinuous at the EI closure N, Z = 14:

5 _ 6> ifN,Z <14
S ifN,Z>14

The calculation of the occupation numbers m; have been performed via two different interactions: the
USDa [21] and the monopole corrected interaction [35] (MCI).

Then the authors have estimated the radius of the i*" orbit as:

41.47
pi = (imy,|r® imy,) = W(Pi +3/246;) (3.21)

and their results have been reported in Fig. 3.2.

In the paper Ref. [14] the authors tackled systematically the sd shell. However also the other shells will
contain “halo” orbits, as proposed in Ref. [13]. In particular a recent study [36] showed experimentally
that the difference between the radius of the p and f shells of ®>Ca is indeed about 0.61 fm, compatible
with what predicted in Ref. [13] for the p “halo” orbit. So in the same fashion as the sd shell, one
can also introduce:

5 — o, ifN,Z <28

P les ifN,Z>28

where this time the correction refers to the 1ps/ and 1p;/, “halo” orbits of the pf shell. The step-
function form of the d, correction is now discontinuous at IV, Z = 28, since this represents the closure
of the next EI shell after N, Z = 14.
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Figure 3.2: Difference between the s and d orbits radii as a function of A. In this figure, taken from Ref. [14],
the estimated difference between the radius of the s orbit (ps) and the one of the d orbit (pg), obtained using
Eq. (3.21), is displayed. In blue are reported the results obtained using 6 = 4.90 — 1.40, while in red using

0 = 5.50 — 1.35. The values of 0« and J- are obtained using two different interactions (USDa and MCI).

A consideration which may arise regards the fact that the the proton radius depends only on m; and
does not have any term which depends on the protons and neutrons occupation numbers separately.
As shown in Ref. [12], considering Eq. (3.9), it is always possible, for different values of ¢, to reproduce
the same root-mean-square deviation by changing the value of v, so that the isovector term does not

actually influence the radius. Another consideration is the fact that the Duflo term A is itself isoscalar,
thus an isospin representation is actually justified.

The hw parameter, i.e. the energy of the harmonic oscillator, is crucial for Shell-Model calculations,
since it scales the 2-body matrix elements, for given a reference value hw, of the harmonic oscillator
energy, as V (hw) = V(hwr)ﬁ%. This will be later discussed in more detail, as it will play an important
role in the calculations.

The Charge Radius

The radius calculated in Eq. (3.20) or Eq. (3.9) is called “point proton radius”. The point proton
radius can be related to the experimentally observed “charge radius” via Ref. [37]

N 3h?
2y _ /2 2 2

(Rg) = (rz) + () + 7< ) W (3.22)
where (r7) = 0.77 fm? is the mean square charge radius of the proton [38] and (r2) = —0.1149 fm? is

the mean square charge radius of the neutron [5]. Finally the term 3A2/ 4m§c2 = 0.033 fm?, where mp

is the proton mass, is the Darwin-Foldy correction, which takes into account the “zitterbewegung” of
the proton due to virtual particle-antiparticle pairs.

This is the charge radius that can then be compared with the experimental data.

Notice that in this work the focus is actually on the isotope shifts, i.e. the differences §(R?)44" =
(R2)A — (R?)#" between two isotopes of mass numbers A and A’; the constant terms will cancel out,

however the correction related to the point neutron radius will remain since it is proportional to N/Z,
which indeed changes along the isotopic chain.

3.3.2 The Harmonic Oscillator Parameter

Now the second correction that can be employed will be tackled, concerning the energy parameter hw
of the harmonic oscillator.
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The usual Shell Model assumption for the oscillator energy is:
hw = 45A713 — 254723 MeV (3.23)

being A the mass number of the nucleus. This is the classical assumption [4] referred to as the Bohr-
Mottelson Aw parameter. Notice that it is the same for neutrons and protons.

The main problem with the Bohr-Mottelson form of the parameter is that it is smooth and mono-
tonically decreasing for A > 2, and being inversely proportional to the square radius its contribution
makes the radius grow monotonically as well. This is not compatible with experimental observations
of isotope shifts, and thus one may try to look into this parameter in order to provide corrections to
the microscopic formula.

A possible procedure that can be used in order to modify the Bohr-Mottelson parameter is to use
the correlated radius formula, given by Eq. (3.9), for protons and neutrons, which is a function of
5 parameters (po, ¢, v, g and A) and find the best fit for the experimental data, thus obtaining the
Duflo-Zuker (DZ) form of fw.

Here one has to be careful in the interpretation of this fact. In particular a fit of (3.20) has been
performed in order to retrieve the five parameters and finds the values of the radii and of the oscillator
energies. In particular, the hw parameter is extracted by considering that each nucleon occupies the
first lowest-lying available orbit, and then the relation:

41.47
2 _ .
Pr = E m;(p; +3/2)/A

is inverted, where p, is the value of radius coming from Eq. (3.9). In this case, the implication is
that the Duflo correction is actually only modifying the value of fuww, (the correlated “DZ” parameter).

Another way to tackle this is to perform the five-parameter fit of Eq. (3.9), and setting A = 0 after-
words: in this way one should obtain the “uncorrelated” fiw, (A = 0), which should represent only a
correction to the Bohr-Mottelson approximation.

Then one should be able to reproduce the result of the full fit by adding the J; terms to the correct
the dimension of the halo orbits.

One can then compare the hw obtained by fitting a set of data with the Duflo-Zuker formulae Eq. (3.9)
and Eq. (3.7); for example taking the Na isotopes with A = 20 — 28 the difference between the Duflo-
Zuker and Bohr-Mottelson parameters is striking (see Fig. 3.3).

These considerations will be later applied in order to get a prescription which will account for both
sources of corrections.

3.4 Microscopic Description

Following what was discussed previously in this chapter, the goal is now to devise a way to calculate
and reproduce the experimental isotope shifts, reproducing as closely as possible the observed values
and trend.

The starting point is the Duflo-Zuker phenomenological formula, given by Eq. (3.9) and Eq. (3.7). One
can use the correlated form for the nuclear proton radius in order to perform a five-parameter fit of a
set of experimental nuclear charge radii. Notice that this will not be done for each isotopic chain that
will be considered, but only fitting a set of experimental data in order to preserve the “universality”
of the formula: one set of the five values should be able to reproduce all the isotope shifts, and it
should not change for different isotopic chains.

This procedure allows to extract the “correlated” hw, parameter inverting the relation given by
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Figure 3.3: hw, parameter as a function of the mass number A. In this figure the difference between the hw,
parameter of the Bohr-Mottelson (BM) form (blue stars), usually employed for shell model calculations, and
the Duflo-Zuker (DZ) form is highlighted. The “DZ naive” curve (magenta triangles) refers to the result coming
from the fit of Eq. (3.7), while the “DZ correlated” curve (red diamonds) comes from the fit of Eq. (3.9), which
accounts for shell corrections. Notice that the BM form is the same for protons and neutrons, while the DZ
form is specifically for the protons.

Eq. (3.20) by considering the approximation in which each nucleon occupies the lowest-lying free
orbit, as already explained. The extracted hw, parameter can in turn be used to calculate the proton
radii directly via the harmonic oscillator formula, and one can think of this parameter to be the only
responsible for the trend of the isotope shifts.

This procedure does not really help in understanding what drives the isotope shifts, however a possible
explanation is, as already stated, the presence of the so-called “halo” orbits.

By taking the parameters coming from the fit of Eq. (3.9) and setting A = 0 afterwords, the result
should be the “uncorrelated” radius and hw, parameter. In this sense the Duflo-Zuker formula tells
us how the oscillator parameters deviates from the Bohr-Mottelson one, just because of the form of
the potential itself, and not because of correlations. The idea is thus to use the fitted “uncorrelated”
energy parameter, hw, (A = 0), since the theoretical energy is limited by the current knowledge of the
nuclear force itself. In this way, one should find a phenomenological form of the hw parameter, which
is more accurate with respect to the Bohr-Mottelson one.

Notice that this is not going to solve all the discrepancies between the h.o. result and the experimental
isotope shifts, since the Duflo term has been left out: the correlations will then be tackled using the
already discussed J; corrections for the “halo” orbits.

In order to calculate the proton radii, three different methods have been identified and they will be
discussed in the following.
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3.4.1 The “BZ10” Method

The first method comes from equation (10) of Ref. [14] by Bonnard and Zuker (and it will thus be
referrer to as “BZ10” method). Here the proposed form for the calculation of the proton radii is:

41.47 m;
2 2 7
= A=0 _ —0; 3.24
) = looh = O + i (3:24)
where pr(A = 0) and fw, (A = 0) are the important parameters coming from the “uncorrelated” fit,
and in particular pr(A = 0) represents the “uncorrelated” proton radius. In Eq. (3.24) the larger

radius of the “halo” orbits is accounted for by the d; terms.

3.4.2 The “BZ3c” Method

A second method consists in proceeding directly from the formula proposed by Bonnard and Zuker in
[14] for the “correlated” proton square radius:

(r7) = %Z?(m +3/2+6) (3.25)

i

This methods has been called “BZ3c” since it comes from equation (3) in Ref. [14] and the “c” stands
for the correlated form of the proton radius.

Essentially, the difference between Eq. (3.24) and Eq. (3.25) lies in the fact that for the former
pr(XA = 0) is taken directly from the “uncorrelated” Duflo-Zuker fit, while in the second is calculated
using fuwr (A = 0) (it is given by Eq. (3.25) taking §; = 0 Vi). In this way, also the “uncorrelated” part
accounts for the occupation numbers of the orbits m;, while in the “BZ10” method comes directly
from a macroscopic formula.

3.4.3 The “BLZ9” Method

A final alternative approach, proposed in equation (9) of Ref. [13] and thus referred to as “BLZ9”,
is:
41.47 2
2 )
=—— —(p; +3/2+6; 3.26
<r7r> MW(A—O);Z(M_‘_ / + l) ( )
where z; is the occupation number of the proton orbits only. Notice that in this case the hw,(A = 0)
parameter extraction will be different from the previous two cases, since in this formula only the
protons occupations are relevant, as explained in Section 3.3.2.

3.4.4 The Choice of the § Correction

The §; terms need to account for the effects of the Duflo term of the phenomenological formula in the
microscopic approach. As discussed, Bonnard and Zuker predict an abrupt change of the charge radii
in correspondence of the extruder-intruder shell closure, i.e. at IV, Z = 14, 28 in the cases relevant for
this work.

As explained in Section 3.3.1, Bonnard and Zuker [14] performed a comprehensive study of sd shell
nuclei, considering a set of 21 nuclei with 27, = 0,1, 2. Considering a step-function form for the §,
correction:

s Nz <1
12 T >N, 2 > 14

the authors fitted this dataset with Eq. (3.24), using the occupation numbers coming from the USDa
[21] interaction. The fitted values 0< = 4.9 and §~ = 1.4 described well the experimental data.
For the pf shell a hint of the value of d- for the p orbits can be found in the Ref. [13], where the
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authors predicted a difference between the p and f orbits of about 0.7 fm. In a recent study [36] the
authors experimentally measured the difference in radius of the p and f orbits for 2Ca, finding a
difference of 0.61(32) fm, compatible with what suggested by Bonnard, Lenzi and Zuker

, .
)
In this way, employing a step-function form also for the ¢, correction discontinuous at the N, Z = 28
EI closure one can estimate the corresponding value of the §; term via the difference

41.47 41.47
plpg/g p0f7/2 =0.61 fm = \/— 9/2+(s>) W(9/2) (327)
since Dipsss = Pofrj0 = 3
By taking the value of lw (X = 0) from the fit for °>Ca one finds that for § = 1.5 the difference of radii
is indeed compatible with 0.61(32) fm, as it can be seen in Fig. 3.4

(see figure Figs. 3.2 and 3.4)

Since %2Ca has 32 neutrons, we expect this to be (5p>, suitable when N, Z > 28, while for N, Z < 28
the value for 62 has been assigned in order to reproduce a drop similarly to the one followed by &

Dl R O
4914 4 |15

Table 3.1: Summary of the values of ¢ chosen following the sd shell systematic study in Ref
experimental result from Ref. [36]
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the p and f orbits calculated for the 3°~52Ca isotopes has been shown. Notice that this actually depends on
the hw, parameter: i i i

Section 3.3.2 (i.e. the one referred to as hw, (A = 0))

Figure 3.4: Difference between the p and f orbits radii as a function of A. In this figure the difference between
in this case it was chosen to use the “uncorrelated” energy parameter, as explained in
T = .

made, given by Eq. (3.22)

Remember that what is calculated by the three methods or by the Duflo-Zuker formula is the proton
radius of the nucleus, and in order to compare it with the experimental data a correction has to be

Notice that the extrapolation of hw(A = 0), provided that the fit is good enough, allows for a more

accurate form of such parameter. Indeed, the smooth Bohr Mottelson form does not really work in
reproducing the main features of the observed isotope shifts
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3.4.5 The Caurier Method

The chapter will be concluded by reporting a different method introduced by Caurier, Langanke,
Martinez-Pinedo, Nowacki and Vogel in Ref. [25] used to calculate the isotope shifts for *0=#8Ca.
Calcium isotopes have Z = 20, and the explanation for the peculiar behaviour of the experimental
isotope shifts reported in Fig. 3.5 has been attributed to cross-shell excitations of the protons, between
the sd and pf shells.

An interaction has been proposed in Ref. [25], based on the work in Ref. [39]. In particular the model
space has a 160 core, and the valence space is composed by the ds /25 S1/2, fr/2 and p3 /e orbits for
both protons and neutrons, in order to describe neutron rich calcium isotopes.

The mechanism driving the trend of the isotope shifts has been attributed to the excitations of the
protons to the pf shell.

The differences in the square radii of the isotopes with respect to “°Ca can then be estimated as:

b2 A 2 A=40
5<r3r>A,40 - (%(ZOﬁ/Q + le3/2)> — <2—6(zof7/2 + le3/2)> (3.28)

where z; is the occupation of the proton i shell, b2 is the oscillator parameter for the calcium isotopes
considered.

In general, the size parameter b, depends on the mass number A, however in Ref. [25] the authors
opted for a constant b; = 1.974 fm has been employed, arriving to the result shown in Fig. 4.8. The
general trend of the isotope shifts is well represented, however the staggering features are less pro-
nounced in the calculations with respect to the experimental data.

This method will be later discussed in Chapter 4, when considering the results for the calcium isotope
shifts.
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Figure 3.5: Isotopes shifts of calcium isotopes as a function of the mass number A. This figure, taken from Ref.
[25], presents a comparison between the experimental data (hollow circles connected by a solid line) and their
calculations (stars connected by a dashed line). For the details of the calculation see text.
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Chapter 4

Systematic Study of Isotope Shifts

In this chapter the main methods used in this work in order to calculate the isotope shifts, both in
a macroscopic and microscopic framework, are applied to the isotopic chains of Na, Mg, Ar, Ca, Mn
and Ni are then the results reported and discussed.

4.1 Application of the Empirical Formula

In this section the empirical Duflo-Zuker formula will be applied, and the results will be analyzed.

It is important to remind that the fit of Eq. (3.9) involves 5 parameters, of which one can be roughly
set by studying the neutron skin, i.e. { = 0.8 fm; moreover, it has been shown that different values of
this parameter ranging between 0.0 < ¢ < 1.2 fm do not really change the quality of the fit [14].

The fitted function depends on the isospin of the nucleus and on the valence neutrons and protons
between the E.I. orbits, as well as on the corresponding degeneracy of the orbits.

For consistency of notation’s sake, one can distinguish three different fits:

e “DZ correlated fit”, meaning the fit coming from the correlated Duflo-Zuker Eq. (3.9);
e “DZ naive fit”, meaning the fit coming from the uncorrelated Duflo-Zuker formula Eq. (3.7).

The fit has been performed on a dataset, reported in Appendix B, which consisted of measured charge
radii up to Z = 30. The results of the fitting procedure are shown in Table 4.1:

Fit | po [fm] | g | Alfm] | v [fm] | C [fm] | rmsd [fm]
“DZ correlated” | 0.944 | 0.985 | 5. 561 0.368 0.0176
“DZ naive” 0.957 | 1.280 —1.139 2 3 0.0390

Table 4.1: Values obtained from fitting Eq. (3.9) (“DZ correlated”) and Eq. (3.7) (“DZ naive”) with the set of
data reported in Appendix B, where the rmsd are the root-mean-square deviation.

The corresponding isotope shifts are then reported in Fig. 4.1, where both the “correlated” and
“naive” fit results are shown, with the intent of understanding if they reproduce the experimental
data. Moreover the necessity of the Duflo term should be clear from this comparison.

In order to quantify the goodness of the agreement between the results form of the Duflo-Zuker
phenomenological formula better and the experimental data, one can compare the mean differences
between the observed values O; and the calculated ones Ej;:

rmsd = \/Z?:l(Oi — B (4.1)

n

Overall, the “DZ correlated” fit works well for the isotopic chains chosen in this work, however it is
clear that all the staggering features, which are caused by the underlying shell structure, are lost in
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Figure 4.1: Isotope shifts for different isotopi chains. The results of the fit of Eq. (3.9) are shown in red
(diamonds) and of Eq. (3.7) in cyan (triangles), compared to the experimental data in blue (stars), which come
from Ref. [5] for the Na, Ar and Ca isotopic chains, from Ref. [40] for the Mg isotopic chain, from Ref. [6] for
the Mn isotopic chain and from Ref. [41] and [42] for the Ni one.

the macroscopic formula.

Note that the E.I. closure for Na, at A = 25, is largely overestimated, as well as for Mg, at A = 26,
meaning that at the closure the resulting isotope shift is much smaller than the neighbouring ones.
Considering then the Ar nuclei, for the N = 15 — 18 isotopes the isotope shifts are underestimated,
while the trend afterwords seems to be well described.
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Isotopic chain ‘ Na ‘ Mg ‘ Ar ‘ Ca ‘ Mn ‘ Ni

rmsd for DZ [fm? | 0.0990 | 0.1746 | 0.1978 | 0.0862 | 0.1644 | 0.0935
rmsd for DZ naive [fm?] | 0.1881 | 0.1537 | 0.2603 | 0.3174 | 0.0991 | 0.2231

Table 4.2: In this table the mean differences calculated via Eq. (4.1), between the experimental isotope shifts
and the results from the fits obtained from Eq. (3.9) (DZ) and Eq. (3.7) (DZ naive) are reported.

Considering to the Ca isotopes, the “correlated” fit works very well, also predicting the increase after
N = 28.

For the Mn isotopes the “correlated” fit deviates significantly from the experimental result, always
overestimating the isotope shifts after N = 30.

Finally for the Ni isotopes the “correlated” fit follows well enough the rather linear experimental trend;
notice that the Ni isotopes have Z = 28, so the Duflo correction does not contribute.

Considering then the “naive” fit results, it is clear that they do not really reproduce the data, but the
isotope shifts predicted are always of parabolic shape, and can reproduce the data only in a limited
mass region, deviating then greatly in the neutron and proton rich sides (look at the Ar isotopes for
example). Another feature that they fail to predict is the decrease near the EI closure (for example
this is clear in the Ca isotopes).

From the “DZ correlated” fit parameters, and thus from the calculated p2, it is possible to obtain the
corresponding “correlated” oscillator energy, fuvr, by inverting (3.7):

hey = 4;'247 3 %(pi +3/2) (4.2)
Ty
Here an approximation is needed in order to extract hw;,; in particular the occupation number will
be determined assuming that each nucleon will occupy the next lowest-energy free orbit. Notice that
this has a subtle and important difference with respect to the procedures listed above; in fact in this
way all the orbits have the same radial extension, and what changes is only the fAw, for each nucleus.
Clearly, the extracted h.o. energy parameter will have a different meaning depending on the radius
used. If one plugs the result from the DZ “correlated” fit into Eq. (4.2), the corresponding extracted
hw; can be considered as the “correlated” energy parameter.
As it was already introduced in Chapter 3, one can also start from the “DZ correlated” fit, and then
set A = 0; doing this the result is the “uncorrelated” proton radii. Namely, the parameters used for
the calculation of the radii using the Duflo-Zuker formula, i.e. Eq. (3.9), are the ones that are found
in Table 4.1 but with A = 0.
Using now this “uncorrelated” p,(A = 0), inverting equation Eq. (4.2) one obtains the “uncorrelated”
energy parameter iw,(A = 0), which will be employed for the microscopic calculations.

The same procedure holds for the “BLZ9” method introduced in Chapter 3 (Eq. (3.26)), which however
takes into account only the proton occupations; in this case one has to replace m; with z; and A with Z.

It is important to stress that the fit has not been performed for each isotopic chain. This choice has
been done so that only one set of parameters describes all the proton radii. This is the reason why
for the nickel isotopes the DZ and DZ “naive” fit do not provide the same result: in fact, having the
Ni isotopes Z = 28, the Duflo correction term is actually vanishing.
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4.2 Theoretical Description of Isotopic Shifts

Following the description provided in Chapter 3 relative to the calculations of the isotope shifts, here
the methods used are briefly summarized.

The first method is labelled as “BZ10”, as it was proposed by Bonnard and Zuker in Eq. (10) of Ref.
[14], and here it was reported as Eq. (3.24):

2) = lon(3 = O + 525 30 B

%

where fuw, (A = 0) and pr(A = 0) are obtained from the “uncorrelated” fit as discussed, so they are
respectively the “uncorrelated” energy and proton radius.

The second method essentially represents a variant of the “BZ10” one, where this time the “uncorre-
lated” proton radius is calculated in a microscopic approach from the knowledge of fuw, (A = 0) and
of the occupation numbers m;, as described in Eq. (3.25):

(r2) = hu;l(l/\im Z %(pz' +3/2+6;)

The results coming from this method will be labelled as “BZ3c”.

In the last method, which was introduced in Ref. [13], the isospin representation is ditched, and
only the proton occupancy are considered in the calculation of the proton radius, as described in the
previously introduced Eq. (3.26):

08) = oy 2 g+ 32+ 8

Concerning the values of the §; corrections, following the experimental status of the “halo” orbits (Ref.
[14], [36]), a step function form has been employed, that is:

5 — 68 for N, Z < 14,28, ...
~ | 0L for N, Z > 14,28, ...

depending on the ¢ orbit in consideration. The values assumed are here reported:

AR

49 14| 4 |15

Table 4.3: Summary of the values of § assumed in this work

Notice that for isotopic chains which can be described by valence nucleons in only one shell, e.g. the
sd shell, the “BZ10” and “BZ3c¢” methods will provide the same result. This happens because of the
specific extraction method of the hw, (A = 0) parameter: when dealing with only one major shell, the
principal quantum number p; will not change, thus summing the mean occupations will give the same
result as the approximation used.

This will be relevant for the Na and Mg isotopic chains, since they can be described by the valence sd
shell.

Finally the occupation numbers have been calculated using the ANTOINE code explained in Sec-
tion 2.3.2 using different interactions depending on the isotope considered. The quality of the in-
teraction has been tested considering some excited states, comparing the results with the available
experimental data. The comparison and the occupation numbers are reported in Appendix A.
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4.3 Microscopic Description of the Isotope Shifts

4.3.1 The Na Isotopic Chain

In Fig. 4.2 the results of the isotopes shifts for the isotopic chain 2°=28Na are reported.

For these nuclei the interaction chosen is the USDa [21], since the model space in which the effective
interaction is employed consists of an 190 inert core, while the valence space is composed of the sd
shell for both nucleon types, and such valence space can then accommodate from 1 up to 12 valence
neutrons and protons.

Na isotope shifts
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Figure 4.2: Isotope shifts in Na. The values of the isotope shifts from experimental data (black stars) are taken
from Ref. [5]. The results coming from Egs. (3.24) and (3.25) (red diamonds) and from Eq. (3.26) (blue dots)
are reported. The reference isotope is 22Na.

Since these isotopes are described using only the sd shell valence space, the “BZ10” and “BZ3c”
methods are equivalent, thus one may refer to them collectively as “BZ”.

All the methods overestimate the E.I. closure at A = 25, i.e. N = 14, in the sense that the results
present a lower value for the isotope shift. This can be interpreted as the fact that at N = 14 the
neutrons close a shell. Thus, one expects that such isotope should be more bound, so the radius is
expected to be smaller.

The method that seems to better describe the data is “BZ” (Egs. (3.24) and (3.25)), which works well
also for 26=28Na in the neutron rich part, while “BLZ9” (Eq. (3.26)) underestimates the isotope shift
for these isotopes.

All the methods present a sudden drop at N = 9, i.e. in the proton-rich isotope.

One can also appreciate that the slope after N = 14 is more closely followed by the “BZ” method,
which however underestimates the isotope shifts. On the other hand the “BLZ9” method provides a
less steep increase.

The values reported in table 4.4 suggest that the “BZ10” and “BZ3c” methods (i.e. obtained using
Egs. (3.24) and (3.25)), better reproduce the experimental data for the Na isotopic chain.
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Method | “BZ10” | “BZ3¢” | “BLZ9”
rmsd | 0.1662 fm? | 0.1662 fm? | 0.2774 fm?

Table 4.4: Calculated root mean square difference values via Eq. (4.1) for the three different method displayed
in Fig. 4.2

4.3.2 The Mg Isotopic Chain

In Fig. 4.3 the results of the isotopes shifts for the isotopic chain 2!3°Mg are reported.

For these nuclei the interaction chosen is the USDa [21]. The model space in which the effective
interaction is employed consists of an 160 inert core, while the valence space is composed of the sd
shell for both nucleon types.

Mg isotope shifts
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Figure 4.3: Isotope shifts in Mg. The values of the isotope shifts from experimental data (black stars) are taken
from Ref. [40]. The results coming from Egs. (3.24) and (3.25) (red diamonds) and from Eq. (3.26) (blue dots)
are reported. The reference isotope is 26Mg.

As in the previous case, the “BZ10” and “BZ3c¢” methods give the same result, so they can be collec-
tively referred to as “BZ”.

While both the “BZ” and “BLZ9” curves tend to deviate for odd-A isotopes of Mg, for the neutron-rich
part the Eq. (3.24) formula tends to be in better agreement, while “BLZ9” tends to underestimate
the values.

In the proton-rich part, in particular for the 2'=22Mg isotopes, both methods largely underestimate
the data.

It is clear that both curves tend to overestimate the closure at A = 26, where N = 14; this feature has
also been found using chiral effective field theory methods in [43]. In this work only even-A Mg isotopes
are reported, however it is clear that even with state of the art three-nucleon forces calculations the
values of Mg and 2®Mg are overestimated, while the isotope shift for 2®Mg is quite in agreement
when Eqgs. (3.24) and (3.25) are used.

Notice also that in [43] 13 harmonic oscillator orbits are considered, while in this work the valence
space is only composed of the sd shell.
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Figure 4.4: Isotope shifts in Mg. In this figure the results for the isotope shifts are shown; the predictions
are labelled as ANNLOgo(394/450), where 394/450 are the momentum cut-off in Mev units, and the bands
represent the difference between an harmonic oscillator frequency of fiw = 12 MeV and 16 MeV.

The experimental data is also in this case taken from Ref. [5], and the reference isotope is 2°Mg. Figure taken
from Ref. [43].

Method | “BZ10” | “BZ3c¢” | “BLZ9”
rmsd | 0.1795 fm? | 0.1795 fm? | 0.1939 fm?

Table 4.5: Calculated root mean square difference values via Eq. (4.1) for the three different method displayed
in Fig. 4.4

Comparing the values present in Table 4.5 one concludes that the “BZ3c”, obtained using Eq. (3.25),
and “BZ10”, obtained via Eq. (3.24), are the best in reproducing the experimental data for the Mg
isotopic chain.
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4.3.3 The Ar Isotopic Chain

In Fig. 4.5 the results for the isotope shifts for 33=%% Ar are reported.

In this case the number of protons is 18, just under the maximal number of protons that can be ac-
commodated in the sd shell, so the chosen interaction is the USDa for *>Ar only, while the calculations
for all the other isotopes have been performed using the zbm2 interaction [25], which is defined on
the model space composed of an inert core that is 28Si, so it is suited for nuclei with N, Z > 14. The
valence space consists of the orbits 1sy /9, 0d3/2, 0f7/2 and 1pg)s.
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Figure 4.5: Isotope shifts in Ar. The values of the isotope shifts from experimental data (black stars) are taken
from Ref. [5]. The results coming from Eq. (3.24) (green triangles), from Eq. (3.25) (red diamonds) and from
Eq. (3.26) (blue dots) are reported. The reference isotope is 38Ar.

All three methods do a good job and are mostly within 3¢ from the experimental data.
“BZ3¢” produces the lowest values for the isotope shifts in the range 3~37Ar, but it predicts well the
decrease at 35Ar.

Method | “BZ10” | “BZ3¢” | “BLZ9”
rmsd | 0.0929 fm? | 0.1238 fm? | 0.0658 fm?

Table 4.6: Calculated root mean square difference values via Eq. (4.1) for the three different method displayed
in Fig. 4.5

Comparing the values present in Table 4.6 one concludes that the “BLZ9” method (i.e. obtained using
Eq. (3.26)), is the best in reproducing the experimental data for the Ar isotopic chain.
4.3.4 The Ca Isotopic Chain

In Fig. 4.6 the results for the isotope shifts for 9°°2Ca, are reported.

In this case the interaction chosen is the SDPF-U-MIX [26]. This interaction has a core composed
of the 0sy /5, Op3/o and Op; o orbits for both neutrons and protons (0 core). The valence space is
composed of the sd and pf shells for both neutrons and protons.

In this case the “correlated” DZ fit worked well, especially in reproducing the experimental fact that
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Ca isotope shifts
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Figure 4.6: Isotope shifts in Ca. The values of the isotope shifts from experimental data (black stars) are taken
from Refs. [5] and [7]. The results coming from Eq. (3.24) (green triangles), from Eq. (3.25) (red diamonds),
from Eq. (3.26) (blue circles) and form Section 4.3.4 (cyan crosses) are reported. The reference isotope is 1°Ca.

40Ca and *®Ca have nearly the same radius.

The three methods employed, i.e. “BZ10”, “BZ3c” and “BLZ9”, present problems in producing the
drop at A = 48, all remaining very high above the experimental data.

This seems to be due to the fact that the naive hw, (A = 0) and p,(\ = 0) bring on a major contribu-
tion, leading to the increase. Indeed looking at the “uncorrelated” fitted isotope shifts for Ca isotopes
in Fig. 4.7 it is clear that they are well above the experimental results, and adding the correction for
the “halo” orbits only further worsen the situation. In this case the Duflo correction is necessary in
order to obtain the right trend, and the microscopic formulation cannot explain it starting from the
“uncorrelated” energy parameter hw; (A = 0) and radius pr(A = 0).

One can notice that the “BZ10” and “BZ3c” methods actually provide the right slope for the sudden
increase in the isotope shifts after A = 28, while the “BLZ9” method has a much less steep slope.

A fourth method has been added in this case, also present in Fig. 4.6 which comes from:

41.47 m;
2y — . )
<Tﬂ> hwﬂ- - A (p’Z + 3/ )

2

where hw, is now the correlated value extracted from the fit, so the §’s are not needed since in this
oscillator energy the effect of the A term is already accounted for. This reproduces the results arguably
better than the “correlated” fit presented in Fig. 4.1, also having the wanted staggering, and even the
data after A = 48 is reproduced better.

Being the shape so peculiar, considering only the occupations of the s;/5 orbit (which has a high
occupation number, for the protons it has a mean occupation of 1.58 and for the neutrons of 1.73)
and the p3/o (which is not occupied, at least for protons it has a mean occupation of 0.1, and also
for neutrons since up to *Ca it never reaches 1 full neutron in that orbit), it fails to be reproduced
starting from the monotonic naive fitted parameters.
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Ca isotope shifts
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Figure 4.7: Isotope shifts in Ca. In this figure the results from the “uncorrelated” Duflo-Zuker formula (blue
triangles) and the “correlated” one (red diamonds) are compared. The experimental data (black stars) is taken
from [5]. The reference isotope is *°Ca.

Another method has been explored, which comes from the procedure explained in [25], where the
isotope shifts are considered to be only due to cross-shell excitations of the protons from the sd to the
pf shell. In this way Eq. (3.28) can be used in order to estimate the isotope shifts:

5<T2>A740 = (41'47 . 20f7/2 + 21P3/2>A B (41.47 . 2072 + le3/2)A:4o

T hewr VA hewy VA

where it is subtracted the value for §(r2)4=40,
Considering Fig. 4.8, this methods work well for reproducing the downfall at A = 48, and the stagger-
ing feature is present. However the estimate from Eq. (3.28) does not predict the rapid increase after

48Ca, and it actually continues to diminish.

4.3.5 The Mn Isotopic Chain

In Fig. 4.9 the results for the isotope shifts for the 53~%3Mn isotopes are shown.

The effective interaction used for the calculations is the GXPF1a [27] for the 59~5°Mn isotopes, which
is defined on the model space composed of the “°Ca nucleus inert core, while the valence space is the
pf shell for both fluids. This means that the number of valence nucleons and protons that can be
accommodated is 20.

The interaction employed for the 59=63Mn isotopes is the LNPS [28], which has a inert core composed
of ¥Ca. The valence space is composed of the pf shell for the protons, while for the neutrons it is
composed of the 0f5/2, 1p3/2, 1p1/2, 0gg/2 and 1ds/o. The change of interaction is done since after
N = 35 the Ogg/2 and 1ds/; neutron orbits starts to be occupied: for 60Mn the neutron occupation
predicted by the LNPS interaction is N0gy o+1d5 /5 = 0.24, and for 5*Mn is Mgy o +1ds /9 = 1.37, so the
contributions of these two orbits start to be important.

In this case the curves “BZ10” and “BZ3c” only differ appreciably after A = 59. in the neutron rich
region after A = 56 the “BLZ9” curve is always lower then the other two. In this case this makes it
better agree with the experimental data, well reproducing the experimental trend.
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Figure 4.8: Isotope shifts in Ca. The values of the isotope shifts from experimental data (blue stars) are taken
from Ref. [5] and [7]. The results from Eq. (3.28) using the interactions zbm2 (cyan diamonds) and SDPF-
U-MIX (yellow triangles) are reported. The employed energy parameter is the “uncorrelated” hw,(A = 0).The

reference isotope is *°Ca.

Mn isotope shifts

1.0 { -&- BZ10 R
-
—- BZ3c ’,’
0.8 - -@- BLZ9 ,,’ /,A
¥ exp K 2
4 - -
/’/" -
0.6 1 "‘_‘.f e
’ e
™ I’ -
E 044 & -9
- -
= y iad T4
% 0.2 4-”’: +
el
0.0 A
-
2ol
,/
—0.2 A i
f ’
’
*
—0.4' T T T T T
28 30 32 34 36 38

Figure 4.9: Isotope shifts in Mn. The values of the isotope shifts from experimental data (black stars) are taken

from Ref. [6]. The results from Eq. (3.24) (green triangles), from Eq. (3.25) (red diamonds) and from Eq. (3.26)
(blue dots) are reported. The reference isotope is 5°Mn.

A change of trend can be appreciated at N = 35, presented by all three methods. However only the
“BZ3c” and the “BLZ9” methods predict the right slope.
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Notice that from the interaction used in order to calculate the occupancy numbers of the ground states
of the various Mn isotopes the Ogg/o and 2d3/, are also contained in the valence space, only for the
neutrons. So one should also add a §4 term in order to take into account the fact that the d orbit
is the “halo” orbit in this shell; not having much information about it, having only considered two
isotopic chains which include these orbits (Mn and Ni), and also considering the fact that the d orbit
is scarcely populated, d, was set to zero.

However, it seems that a smaller value for it would work better, at least for “BZ10” and “BZ3c”,
since it will tend to give higher values of the isotope shifts for the highest-mass isotopes, and those
methods already overestimate them. Moreover, as it can be seen in Section 4.1, the DZ fit itself over-
estimates the isotope shifts in the N = 32 — 38 region, so one may also conclude that a better fit would
provide a more accurate fuvr (A = 0) parameter, which in turn would lower the calculated isotope shifts.

Method | “BZ10” | “BZ3¢” | “BLZ9”
rmsd | 0.1448 fm? | 0.1905 fm? | 0.0712 fm?

Table 4.7: Calculated mean difference values via Eq. (4.1) for the three different method displayed in Fig. 4.9

Comparing the values present in Table 4.7 one concludes that the “BLZ9” method (i.e. obtained using
Eq. (3.26)), is the best in reproducing the experimental data for the Mn isotopic chain.

4.3.6 The Ni Isotopic Chain

In Fig. 4.10 the results for the isotope shifts for the **~66Ni isotopes are shown.
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Figure 4.10: Isotope shifts in Ni.The values of the isotope shifts from experimental data (black stars) are taken
from Ref. [41] for 54~53/60Ni and in Ref. [42] for ' =68Ni. The results from Eq. (3.24) (green triangles), from
Eq. (3.25) (red diamonds) and from Eq. (3.26) (blue dots) are reported. The reference isotope is “°Ni.

The effective interaction used for the calculations is the GXPF1a [27] for the 54~64Ni isotopes, which
is defined on the model space composed of the “°Ca inert core, while the valence space is the pf
shell for both fluids. The interaction employed for the ®~7Ni isotopes is the LNPS [28], which has a
inert core composed of #*Ca. The valence space is composed of the pf shell for the protons, while for
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the neutrons it is composed of the 0fs/2, 1p3/2, 1p1/2, 0gg/2 and 1ds/,. The change of interaction is
done since after N = 37 the Ogg /5 and 1d5,, neutron orbits starts to be occupied: for 65Ni the neutron
occupation predicted by the LNPS interaction is N0gg /o+1ds /o = 0.48, and for %Ni is N0gg jo+1ds /5 = 0.77,
so the contributions of these two orbits start to be important.

Nickel is a special case, since it has Z = 28 and this implies a zero Duflo term in Eq. (3.9); in this
case the correlated and naive fit will give the same result.

The overall behaviour of the isotope shift is followed quite closely by both “BZ10” and “BZ3c” curves,
while “BLZ9” predicts lower values of the isotope shifts for 64=68Ni.

Method | “BZ10” | “BZ3¢” | “BLZ9”
rmsd | 0.0916 fm? | 0.0772 fm? | 0.1497 fm?

Table 4.8: Calculated root mean square difference values via Eq. (4.1) for the three different method displayed
in Fig. 4.10

Comparing the values in Table 4.8 one concludes that the “BZ3c” method (i.e. obtained using
Eq. (3.25)), is the best in reproducing the experimental data for the Ni isotopic chain.

Summing all the calculated rmsd for the three methods employed for each isotopic chains, one obtains:

Method | “BZ10” | “BZ3¢” | “BLZ9”
Total rmsd | 0.675 fm? | 0.7372 fm? | 0.758 fm?

Table 4.9: Calculated total root mean square difference values, obtained by summing the values present in
Tables 4.4 to 4.8.

The best method considering the isotopic chains Na, Mg, Ar, Mn and Ni has been found to be the
“BZ10”.
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Chapter 5

Conclusions

The nuclear radius is a fundamental property of the nucleus. It represent an important probe of the
nuclear interaction which dictates the behaviour of the nucleons inside the nucleus. Investigations of
the exotic nuclei regions, i.e. the proton- and neutron-rich isotopes, are a crucial goal for future ex-
perimental campaigns as well as for the theoretical developments. In this regard, recent experimental
findings [7] for the neutron-rich Ca isotopes have put in evidence a sudden rise of the isotope shifts
after NV = 28. While an increase in radii is related to nuclear deformations, for Ca isotopes this is not
the case since they are spherical. This has puzzled the theoretical interpretations.

This work aimed to find, discuss and apply a method, based on previous studies, which could describe
the behaviour of the experimental isotope shifts and, at the same time, help with the interpretation
of the results. In particular, Shell Model calculations have been performed, in the harmonic oscillator
basis, and two main ingredients have been crucial to get a satisfactory description of the experimental
data.

The first one concerns the harmonic oscillator energy, the Aiw parameter. This can be obtained from
the Duflo-Zuker phenomenological formula [12], and it represents an improvement with respect to the
monotonic Bohr-Mottelson form.

The second ingredient consists of corrections that account for the larger spatial extension of the lowest-£
orbits in a main shell, which are the so-called “halo” orbits [13]. These corrections have been sug-
gested in Ref. [14] to account for the Duflo-Zuker correlations in a microscopic approach. Notably, the
studies done by Bonnard and collaborators [13, 14] suggest that ¢; correction factors are not constant
with respect to the neutron and proton numbers, but they can be described in a first approximation
as a step function discontinuous at the extruder-intruder shell closures (e.g. N,Z = 14,28). Indeed,
the orbital radii of low-£ orbits reduce considerably when these orbits are occupied by at least a nucleon.

Three different microscopic prescriptions have been applied:

e the “BZ10” method, given by Eq. (3.24), which employs an isospin representation (thus only
involve the total occupation number m; = n; + z;) and uses the result coming from the Duflo-
Zuker formula for the “uncorrelated” square radius;

e the “BZ3c” method, given by Eq. (3.25), which also uses an isospin representation but calculates
the “uncorrelated” square radius in a microscopic approach;

e the “BLZ9” method, given by Eq. (3.26), which only considers the contributions from the pro-
tons.

Overall, of these three methods, the one that described better the Na, Mg, Ar, Mn and Ni isotopic
chains was found to be the “BZ10” method.
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In the future these methods can be applied to other isotopic chains, allowing for a better understanding
of their merits as well as their shortcomings. The evolution of the J; correction factors with respect
to the mass number A as well as its dependence on the isospin t, is still not understood: one may
try to find an ansatz for a functional representation 6;(A,t,), to get a best fit of the available data on
isotope shifts for a variety of mass regions.

Moreover, the results from the phenomenological Duflo-Zuker formula (Eq. (3.9)) can still be improved,
for example by expanding the number of fitted radii, or, as hinted in Ref. [14], by supplementing the
Duflo-Zuker formula with an isovector term.

Finally, the behavior of the calcium isotopes is still challenging since it seems to be well-reproduced
by considering only the “cross-shell excitations” between the sd and pf protons shells. However, this
prescription only works in a very limited mass region (N = 19 — 28) and fails to reproduce the rapid
increase of the radius after N = 28.

The three microscopic methods employed in this work give the correct slope for the increase after
N = 28, thus interpreting the increase in isotope shifts with the occupation by neutrons of the low-£
orbit p3/o. However, they do not describe well the parabolic behaviour of the isotope shifts for lighter
isotopes.

In summary, in this thesis work we have explored different methods to obtain the isotopic shifts along a
variety isotopic chains, from Z = 11 to Z = 28. In all cases the parameters used have been maintained
constant without the scope of getting a best or “ad hoc” fit. The goal was to understand the role of
the “halo” orbits in driving the radial behavior. The description of data is very satisfactory and this
work paves the way for future studies.
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Appendix A

Shell Model Calculations

In this appendix the occupation numbers obtained via the ANTOINE code [22], using the different
effective interactions discussed in Chapter 2, will be reported. Also a selection of the excitation energy
of some yrast states will be reported, in order to display how they describe the various isotopes, and
compared with the available experimental data coming from [44].

These interaction have already been tested, in particular in the regions of the chart of nuclides impor-
tant or this thesis” work (see Refs. [45], [46], [47], [48]).
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Figure A.1: Energy levels for the 2°~2"Na isotopes calculated via the USDa interaction [21] and then compared
with the experimental ones [44].
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Figure A.2: Energy levels for the 21 ~28Mg isotopes calculated via the USDa interaction [21] and then compared
with the experimental ones [44].
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Figure A.3: Energy levels for the 33736 Ar isotopes calculated via the USDa interaction [21] and 37~4Ar via the
zbm?2 interaction [25], then compared with the experimental ones [44].
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Figure A.4: Energy levels for the 41746 Ar isotopes calculated via the zbm?2 interaction [25], then compared with
the experimental ones [44].
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Figure A.5: Energy levels for the °~47Ca isotopes calculated via the zbm2 interaction [25] and then compared
with the experimental ones [44].

56



APPENDIX A. SHELL MODEL CALCULATIONS

— 4504 MeV, 4+ —————— — 4547 MeV, 4+
————— 1495 MeV, 1/2°
— 3.832 MeV, 2+
— 3314 MeV, 2¢ ——————— — 3585 MeV, 5/2
T 3361 MeV, 5/2
— 2023 MeV, 1/2-
— 0.000 MeV, 0% — 0000 MeV, 0% ——————— — 0,000 MeV, 3/2- ——————— —0.000 MeV, 3/2~
BCa (exp) ¥Ca (zbm?2) 90 9Ca (zb
p a (exp) a (zbm2)
— 4515 MeV, (4%) AT MeV, 4t —_—  4TOMeV, 5/2

— 4.446 MeV, 1/2-

— 2.378 MeV, (5/27)
— L.718 MeV, (1/27)

— 1.027 MeV, 2+ — 0.931 MeV, 27

— 0.000 MeV, 07 ————0.000 MeV, 0% — 0.000 MeV, 3/2(7) ——————— —0.000 MeV, 3/2~
Ca (exp) Ca (zbm?2) 1Ca (exp) ICa (zbm2)
— 14.963 MeV, 2+
— 2.563 MeV, 2*
— 0.000 MeV, 0 ——————— 0.000 MeV, 0F
2Ca (exp) ’Ca (zbm?2)

Figure A.6: Energy levels for the 4852Ca isotopes calculated via the zbm2 interaction and then compared with
the experimental ones [44].
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Figure A.7: Energy levels for the Ni isotopes calculated via the GXPF1la interaction [27] for 74~64Ni isotopes

and with the LNPS interaction [28] for 54~7"Ni ones; the results are then compared with the experimental ones
[44].
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Isotope ‘ g.s. ‘ T ds /o ‘ T 8172 ‘ T d3 /o ‘ v ds o ‘ v S1/2 ‘ v dg/o

20Na 2t 2.43 0.33 0.23 0.68 | 0.23 | 0.09
AUNa | 3/2F | 2.26 0.45 0.29 1.28 | 050 | 0.23
22Na 3t 2.28 0.44 0.28 228 | 044 | 0.28
BNa | 3/2F | 2.26 0.45 0.28 3.07 0.44 0.49
24Na 4+ 2.41 0.31 0.28 418 | 0.37 | 0.45
BNa | 5/2F | 259 | 0.17 | 024 | 494 | 053 | 053
26Na 3t 2.61 0.18 0.22 5.38 1.09 | 0.54
Na | 5/2+ | 259 | 0.22 0.19 5.60 | 1.36 1.04
28Na 1+ 2.60 0.25 0.15 5.81 1.70 1.49

Table A.1: Occupation numbers of the valence orbits for the Na isotopes as calculated via the USDa interaction.

Isotope ‘ g.s. ‘ T ds /o ‘ T 8172 ‘ T d3 /o ‘ v ds/o ‘ v S1/2 ‘ v dg o

2Mg |5/2T | 333 | 034 | 034 | 082 | 0.14 | 0.04
2Mg 0" 3.18 | 038 | 044 | 1.43 | 039 | 0.18
BMg | 3/2T | 307 | 044 | 049 | 226 | 045 | 0.28
Mg 0F 298 | 044 | 058 | 298 | 044 | 0.58
BMg | 5/2F | 3.07 | 038 | 055 | 4.05 | 043 | 0.52
Mg | ot | 317 | 033 | 050 | 4.75 | 0.57 | 0.68
Mg | 1/2F | 329 | 030 | 041 | 536 | 0.94 | 0.70
BMg | 0F 3.36 | 032 | 032 | 556 | 1.08 | 1.37
PMg | 1/2T | 348 | 026 | 026 | 575 | 1.28 | 1.97
3OMg | o0F 3.60 | 0.16 | 0.24 | 582 | 1.91 | 227

Table A.2: Occupation numbers of the valence orbits for the Mg isotopes as calculated via the USDa interaction.
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Table A.3: Occupation numbers of the valence orbits for the Ar isotopes as calculated via the USDa interaction for 32Ar and the zbm2 interaction for all the other

isotopes.

Isotope ‘ g.8. ‘ m d5/2 ‘ ™ 8172 ‘ T d3/2 ‘ T f7/2 ‘ T P3/2 ‘ v d5/2 ‘ vV s1/2 ‘ v d3/2 ‘ v f7/2 ‘ vV P32

32 Ar
33 Ar
34 Ar
35 Ar
36 Ay
37 Ar
38 Ar
39 Ar
40 Ar
41 Ar
42 Ar
43 Ay
44 Ar
45 Ay
46 Ar

O+
1/2+

5.81
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00

1.54
1.80
1.82
1.82
1.77
1.81
1.74
1.67
1.44
1.36
1.11
1.15
0.92
1.18
0.96

2.65
1.72
1.71
1.72
1.68
1.68
1.71
1.79
1.92
2.04
2.22
2.32
2.56
2.41
2.67

0.00
0.39
0.37
0.36
0.46
0.43
0.47
0.47
0.57
0.53
0.61
0.48
0.47
0.36
0.32

0.00
0.09
0.11
0.09
0.09
0.08
0.08
0.07
0.07
0.06
0.06
0.05
0.05
0.05
0.04

5.28
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00

0.43
0.94
1.71
1.82
1.77
1.86
1.82
1.81
1.66
1.67
1.49
1.64
1.50
1.95
1.96

0.29
0.02
0.16
0.98
1.68
2.62
2.97
3.01
2.72
2.81
2.70
3.03
3.08
3.83
3.84

0.00
0.03
0.11
0.16
0.46
0.43
1.06
2.00
3.33
4.19
5.41
5.90
6.96
6.79
7.73

0.00
0.01
0.02
0.04
0.09
0.09
0.15
0.18
0.29
0.33
0.40
0.44
0.46
0.42
0.47
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Isotope ‘ g.8. ‘ ™ d5/2 ‘ T 512 ‘ Q d3/2 ‘ T f7/2 ‘ T P3/2 ‘ v d5/2 ‘ vV 5172 ‘ v d3/2 ‘ v f7/2 ‘ vV P3/2

SQCa
4OCa
4ICa
42Ca
430a
44Ca
45Ca
460a
47Ca
480&
490&
SOCa
510&
52Ca

Table A.4: Occupation numbers of the valence orbits for the Ca isotopes calculated via the zbm2 interaction.

3/2+

6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00

1.85
1.80
1.76
1.49
1.48
1.24
1.32
1.24
1.66
1.68
1.73
1.76
1.82
1.86

3.17
3.09
3.06
2.74
2.86
2.81
2.99
3.12
3.42
3.54
3.59
3.61
3.70
3.74

0.86
0.98
1.06
1.61
1.53
1.82
1.59
1.56
0.85
0.71
0.62
0.58
0.46
0.39

0.13
0.12
0.12
0.15
0.13
0.13
0.09
0.08
0.07
0.07
0.05
0.05
0.03
0.02

6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00

1.85
1.80
1.78
1.55
1.57
1.38
1.54
1.46
1.93
1.96
1.98
1.98
2.00
2.00

2.54
3.09
3.09
2.73
2.89
2.82
3.13
3.19
3.79
3.83
3.87
3.76
3.98
4.00

0.52
0.98
1.99
3.47
4.28
5.48
5.99
7.00
7.00
7.92
7.95
7.93
8.00
8.00

0.09
0.12
0.14
0.24
0.26
0.32
0.35
0.35
0.28
0.29
1.20
2.33
3.03
4.00
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APPENDIX A. SHELL MODEL CALCULATIONS

Isotope ‘ g-s. ‘ T dsjo + d3/o ‘ T S1/2 ‘ T f1/2 ‘ T P3/2 ‘ v ds/y + dg)o ‘ v 81/2 ‘ v f7/2 ‘ v P3/2

10Ca 0t 9.73 1.87 | 027 | 0.13 9.73 1.87 | 0.27 | 0.13
UCa | 7/27 9.75 1.88 | 0.25 | 0.12 9.81 1.91 | 1.19 | 0.09
12Ca 0t 9.23 1.61 0.77 | 0.39 9.57 1.78 | 2.30 | 0.35
BCa | 7/27 9.54 1.77 | 0.46 | 0.23 9.80 1.93 | 3.09 | 0.19
44Ca 0t 9.11 1.56 | 0.89 | 0.44 9.78 1.89 | 4.00 | 0.34
BCa | 7/27 9.57 1.79 | 043 | 0.21 9.94 1.97 | 4.89 | 0.20
46Cq ot 9.60 1.80 | 0.40 | 0.20 9.98 1.98 | 5.78 | 0.26
TCa | 7/27 9.95 1.98 | 0.05 | 0.02 10.00 2.00 | 6.83 | 0.16
48Ca ot 10.00 2.00 | 0.00 | 0.00 10.00 2.00 | 7.80 | 0.20
YCa | 3/2” 10.00 2.00 | 0.00 | 0.00 10.00 2.00 | 7.88 | 1.12
50Ca ot 10.00 2.00 | 0.00 | 0.00 10.00 2.00 | 7.86 | 2.15
SlCa | 3/27 10.00 2.00 | 0.00 | 0.00 10.00 2.00 | 7.98 | 3.02
52Ca ot 10.00 2.00 | 0.00 | 0.00 10.00 2.00 | 8.00 | 4.00

Table A.5: Occupation numbers of the valence orbits for the Ca isotopes calculated via the SDPF-U-MIX
interaction.
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Table A.6: Occupation numbers of the valence orbits for the Mn isotopes. The interaction used is the GXPF1a for the isotopes °°~59Mn isotopes, while the LNPS for

the remaining ones.

Isotope | gs. | 7 fopo | mpspe | 7 fspp | mp1j2 | v frpe | vpspe | v fspp | vrge | v ge | v s

501\/{n
511\/1n
52Mn
53Mn
54MI1
55Mn
56Mn
STMn
58Mn
S9Mn
60MD
61 Mn
62Mn
63Mn
64MH
65Mn

4.23
4.45
4.57
4.65
4.64
4.60
4.44
4.46
4.47
4.57
4.60
4.45
4.36
4.34
4.16
4.29

0.43
0.28
0.17
0.10
0.23
0.21
0.35
0.36
0.35
0.30
0.27
0.33
0.36
0.37
0.46
0.40

0.27
0.22
0.22
0.22
0.09
0.15
0.18
0.16
0.15
0.13
0.11
0.19
0.25
0.25
0.32
0.27

0.07
0.05
0.04
0.03
0.03
0.04
0.03
0.03
0.02
0.02
0.02
0.03
0.04
0.04
0.06
0.04

4.23
5.29
6.44
7.40
7.57
7.54
7.40
7.27
7.58
7.85
8.00
8.00
8.00
8.00
8.00
8.00

0.43
0.32
0.23
0.22
0.95
1.29
1.96
2.50
2.85
3.58
3.70
3.66
3.76
3.78
3.82
3.89

0.27
0.32
0.28
0.32
0.26
0.70
1.21
1.73
2.04
2.26
2.69
2.46
2.77
2.88
2.80
3.01

0.07
0.07
0.05
0.06
0.21
0.46
0.43
0.51
0.53
0.59
0.37
0.51
0.51
0.63
0.46
0.66

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.20
1.16
1.65
2.26
3.17
3.26

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.04
0.21
0.30
0.45
0.75
0.69
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Table A.7: Occupation numbers of the valence orbits for the Ni isotopes as calculated via the GXPF1a interaction for the 54~%4Ni isotopes and the the LNPS interaction

for the remaining ones.

Isotope | gs. | 7 fopo | mpspe | 7 fspp | mp1j2 | v frpe | vpspe | v fspp | vrge | v ge | v s

54Ni
55Ni
56Ni
57Ni
58Ni
59Ni
GONi
GlNi
62N
63N
64N
65Ni
66Ni
67Ni
68Ni
70Ni

7.43
7.55
7.60
7.51
7.40
7.39
7.29
7.12
7.16
7.23
7.50
7.44
7.47
7.71
7.75
7.50

0.29
0.24
0.22
0.29
0.38
0.40
0.49
0.64
0.62
0.59
0.37
0.35
0.32
0.15
0.11
0.25

0.22
0.18
0.16
0.15
0.16
0.14
0.15
0.16
0.14
0.12
0.10
0.18
0.18
0.12
0.12
0.22

0.05
0.03
0.03
0.04
0.06
0.07
0.07
0.08
0.08
0.06
0.03
0.03
0.03
0.01
0.01
0.03

5.62
6.66
7.60
7.64
7.66
7.75
7.76
7.75
7.84
7.88
7.92
8.00
8.00
8.00
8.00
8.00

0.19
0.19
0.22
1.08
1.41
2.29
2.33
2.48
2.82
3.32
3.22
3.68
3.71
3.90
3.91
3.92

0.16
0.13
0.16
0.21
0.73
0.70
1.53
2.30
2.59
2.72
4.03
4.20
4.62
5.56
5.60
5.56

0.03
0.02
0.03
0.07
0.19
0.25
0.38
0.46
0.74
1.08
0.83
0.64
0.90
1.04
1.76
1.63

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.45
0.73
0.46
0.67
2.75

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.04
0.03
0.05
0.14
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Appendix B

Radii Dataset

In this appendix the data use for the fit of the Duflo-Zuker phenomenological formula will be reported
in Appendix B.
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APPENDIX B. RADII DATASET

‘ T [fm] ‘ Ary [fm] ‘ Z ‘ N ‘ 7 [fm] ‘ Ary [fm] ‘ Z ‘ N ‘ T [fm] ‘ Ary [fm]

N

1 1.959 0.006 11 | 18 | 2.979 0.016 20 | 23 | 3.428 0.006
2 1.556 0.050 111 19 | 3.005 0.021 20 | 24| 3.454 0.006
1 1.762 0.050 11| 20 | 3.060 0.014 20 | 25 | 3.428 0.006
2 1.468 0.002 12 | 12 | 2.920 0.010 20 | 26 | 3.430 0.006
3 | 2.442 0.050 12 | 13 | 2.885 0.011 20 | 27 | 3.405 0.006
4 | 2.273 0.050 13| 14 | 2.933 0.015 20 | 28| 3.412 0.006
5 2.395 0.012 14 | 14 | 2.995 0.025 20 | 30 | 3.455 0.006
5

6
6
7
8
7
8
8

2.305 0.050 14 | 15 | 2.985 0.020 21 | 24| 3.438 0.005
2.284 0.025 14 |1 16 | 3.036 0.021 22 1 24| 3.522 0.005
2.343 0.005 15 | 16 | 3.085 0.010 22 25| 3.510 0.005
2.326 0.010 16 | 16 | 3.152 0.015 22 126 | 3.512 0.005
2.390 0.020 16 | 18 | 3.183 0.010 22 | 27| 3.486 0.004
2.411 0.025 16 | 20 | 3.188 0.010 22 | 28 | 3.487 0.005
2.490 0.010 17120 | 3.294 0.017 23 [ 28| 3.514 0.040
2.610 0.008 18 | 16 | 3.282 0.025 24 1 26| 3.576 0.004
10 | 2.628 0.020 18 | 17 | 3.280 0.025 24 | 28 | 3.561 0.003
10 | 2.787 0.010 18 | 18 | 3.307 0.020 24 29| 3.574 0.004
8 | 2.821 0.030 18 119 | 3.308 0.020 24 130 | 3.597 0.006
9 | 2.860 0.015 18120 | 3.320 0.010 25 30| 3.623 0.010

S5 © 000000 Ut WWN N = | N

10 | 10 | 2.857 0.010 18] 21 | 3.326 0.020 26 | 28 | 3.610 0.010
10 | 11 | 2.819 0.015 18 | 22 | 3.346 0.015 26 | 30 | 3.659 0.010
10 | 12 | 2.800 0.020 18 | 28 | 3.356 0.030 26 | 31| 3.673 0.010
10 | 13 | 2.755 0.025 19 119 | 3.355 0.008 26 | 32 | 3.696 0.010
10 | 14 | 2.745 0.030 19 ] 20 | 3.363 0.005 27 1 32| 3.712 0.010
10 | 15 | 2.775 0.035 19 | 21 | 3.367 0.006 28 | 30 | 3.690 0.008
10 | 16 | 2.771 0.035 19 | 22| 3.382 0.006 28 | 32| 3.725 0.010

10 | 17 | 2.811 0.040 19| 23 | 3.382 0.006 28 | 33 | 3.735 0.010
111 9 | 2.854 0.015 19 | 24 | 3.386 0.006 28 | 34| 3.751 0.010
11 | 10 | 2.898 0.012 19 | 25 | 3.387 0.006 28 | 36 | 3.776 0.010
11| 11 | 2.869 0.011 19126 | 3.390 0.006 29 [ 34| 3.799 0.012
11|12 | 2.877 0.009 19| 27 | 3.385 0.006 29 | 36 | 3.831 0.010
11| 13 | 2.856 0.011 19 ] 28 | 3.383 0.006 30 [ 34| 3.850 0.012
11| 14 | 2.859 0.010 20 | 19| 3.394 0.016 30 [ 36 | 3.870 0.012
11 | 15 | 2.876 0.010 20 | 20 | 3.412 0.006 30 | 38 | 3.883 0.012
11| 16 | 2.898 0.011 20 | 21| 3.409 0.006 30 | 40 | 3.912 0.010
11| 17 | 2.925 0.012 20 | 22 | 3.442 0.006

Table B.1: Experimental set of data employed for the fit of the Duflo-Zuker phenomenologcal formula (Eq. (3.9),
Eq. (3.7)).
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