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Abstract

The development of turbomachinery components for aircraft engines and power generation
relies heavily on the usage of computational fluid dynamics (CFD). Due to the high num-
ber of simulations required in design optimizations, the Reynolds-averaged Navier-Stokes
(RANS) approach with turbulence modelling will be the industry standard for many years
to come as it offers fast turnaround times. However, the semi-empirical turbulence models
were developed and calibrated for rather simple canonical flows with simplifying assump-
tions, whereas the flow in turbomachines, particularly in off-design operation, is complex
and at a time difficult to predict. On the other hand, scale resolving methods like Large
Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are presently limited in
an industrial context, as they require a high computational effort to (partially) resolve
all turbulent spatial and temporal scales. However, in research context, LES and DNS
simulations are feasible for selected configurations and operating points. The LES and
DNS results of these cases can assess the validity of lower order turbulence models and
contribute to the model development. Within the scope of this thesis, the mixing process
of a turbulent wake flow of a compressor blade is investigated with the RANS k − ω tur-
bulence model and compared to the results of an LES simulation of the same geometry.
This works aims to identify deficits of the turbulence model formulations in the wake
region and to highlight approaches to improve the investigated turbulence models. Start-
ing with a literature review, the flow features of a turbulent wake flow are identified and
described. Next, the RANS study is performed on a compressor cascade. First, a turbu-
lence inflow study is conducted to provide similar operating condition with respect to the
LES. Afterwards, in order to separate the errors predicted in the wake flow and the errors
introduced in the cascade passage by the RANS simulations, the LES is post-processed to
derive suitable inlet boundary conditions downstream of the trailing edge for the RANS
simulation wake domain. A grid study is performed to ensure grid independent results.
The total pressure loss coefficient, the strain rate tensor, the Reynolds stress tensor and
its anisotropy are the inspected flow quantities in the comparison between the RANS and
LES simulations. The results show that the k − ω model is able of capturing the total
pressure loss and the strain rate tensor, while the turbulence state shows deviations with
the LES and it is not capable to accurately reproduce the Reynolds stress tensor and its
anisotropy.
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1 Riassunto Esteso

Lo sviluppo di componenti di turbomacchine per motori aeronautici e per la gener-
azione di energia si basa principalmente sull’uso della fluidodinamica computazionale. A
causa dell’elevato numero di simulazioni necessarie per la loro ottimizzazione, l’approccio
Reynolds-averaged Navier-Stokes (RANS) con modelli di turbolenza verrà utilizzato nel
settore industriale per molti anni a venire. Tuttavia, i modelli di turbolenza semi-empirici
sono stati sviluppati e calibrati per flussi relativamente semplici con varie ipotesi sempli-
ficative, mentre il flusso nelle turbomacchine, in particolare nel funzionamento fuori pro-
getto, è complesso e talvolta difficile da prevedere. D’altra parte, i metodi scale resolving,
come la Large Eddy Simulation (LES) o la Direct Numerical Simulation (DNS), sono at-
tualmente limitati a bassi numeri di Reynolds nel contesto industriale, poiché richiedono
un elevato sforzo computazionale per risolvere (parzialmente) tutte le scale spaziali e tem-
porali della turbolenza. Tuttavia, nell’ambito della ricerca, le simulazioni LES e DNS sono
attuabili per configurazioni e punti operativi selezionati. Diverse ricerche hanno provato
l’affidabilità delle simulazioni LES e DNS, che possono essere utilizzate per assicurare la
validità dei modelli di turbolenza di ordine inferiore e contribuire al loro sviluppo.

In questa tesi viene studiato il processo di miscelazione della scia turbolenta di una schiera
di pale di un compressore utilizzando il modello di turbolenza RANS k − ω, per poi con-
frontare i risultati con quelli di una simulazione LES della stessa geometria. Questo lavoro
mira a identificare i deficit dei modelli di turbolenza e a fornire approcci per migliorarli. Si
parte da un’analisi teorica in merito alle caratteristiche del flusso di una scia turbolenta.
In seguito, viene ricavato il setup numerico per le simulazioni RANS. In primo luogo, per
confrontare e valutare i risultati RANS, viene condotto uno studio sul decadimento del
livello di turbulenza in ingresso, garantendo così condizioni operative simili rispetto alla
LES. Da questa analisi vengono ricavati i valori più idonei dell’intensità di turbulenza e
della scala degli "eddy". Successivamente, per separare gli errori introdotti nella zona di
scia e quelli nel passaggio del fluido all’interno del canale palare nelle simulazioni RANS,
la simulazione LES viene post-processata per ricavare le condizioni al contorno d’ingresso
per il dominio di scia della simulazione RANS, collocato a valle del bordo di uscita della
schiera di pale. Poiché varie ricerche affermano che la variabile ω nel modello di turbu-
lenza k − ω non ha nessun significato fisico e ha valori completamente diversi da quelli
della simulazione LES, l’approccio "Frozen" è utilizzato: si tratta di una procedura che
permette di preservare i valori delle variabili della simulazione LES (pressione totale, ve-
locità, pressione, etc...), ma di risolvere l’equazione di trasporto per ω nell’intero dominio
della schiera, utilizzando le variabili di turbulenza precedentemente scelte. Conseguente-
mente, viene eseguita l’operazione di estrazione dei dati in modo tale da fornire le varibili
in ingresso al dominio della sola scia. Per garantire risultati indipendenti dal livello di
densità della Mesh adottata, viene svolta un‘analisi di sensitivtà della griglia "Mesh Sen-
sitivity Analysis", utilizzando il coefficiente di perdita di pressione totale come variabile
dello studio, seguendo la procedura "Grid Convergence Method" (ASME).

Il coefficiente di perdita di pressione totale, il tensore di deformazione, il tensore degli
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1 Riassunto Esteso

sforzi di Reynolds e la sua anisotropia sono le quantità fluidodinamiche prese in consider-
azione nel confronto tra le simulazioni RANS e LES. L’indagine rivela che la RANS riesce
a predire le perdite di pressione totale rispetto alla LES, mostrando solo una piccola dis-
crepanza nella zona centrale della scia e sulla larghezza di quest’ultima, ma non in una
misura tale da compromettere il processo di progettazione e ottimizzazione. Inoltre, il
tensore di deformazione è stato analizzato all’interno di un sistema di coordinate carte-
siane allineato con la direzione del flusso, mostrando che la RANS è in grado di catturare
ogni componente, nonostante una piccola variazione nella pendenza in corrispondenza del
lato in depressione man mano che la scia si sviluppa più a valle. Riguardo al tensore degli
sforzi di Reynolds, la simulazione RANS non riesce a predire l’andamento delle compo-
nenti rispetto alla LES. Per ottenere una miglior panoramica degli sforzi di Reynolds, la
sua anisotropia è visualizzata utilizzando l’assegnazione dei colori di Emory e Iaccarino
(2014) applicata alla mappa baricentrica di Banerjee et al. (2007). Lo stato turbulento
può essere isotropo 3C (tre componenti), anisotropo 2C (due componenti), anisotropo 1C
(una componente), o una combinazione di questi tre stati. La simulazione RANS mostra
un significativo stato di turbolenza 2C, soprattutto nella regione di scia vicino alla re-
gione di flusso indisturbato, che tende a conservarsi verso l’uscita, mentre la LES rileva
uno stato turbolento 2C del deflusso, che passa ad uno più isotropo 3C.

In conclusione, il modello k − ω è in grado di prevedere la perdita di pressione totale e il
tensore di deformazione, quindi il tensore degli sforzi viscosi medio. Al contrario, lo stato
turbolento mostra discrepanze con la LES e non è in grado di riprodurre accuratamente
il tensore degli sforzi di Reynolds e la sua anisotropia. Pertanto, le piccole deviazioni
nel rimescolamento della scia e nella distribuzione della perdita di pressione totale sono
probabilmente legate alle differenze negli sforzi di Reynolds.

Questa ricerca apre alla possibilità di studiare la scia utilizzando i modelli di trasporto
degli sforzi di Reynolds o i modelli algebrici espliciti degli sforzi di Reynolds (EARSM) e
di confrontare i risultati con il modello standard k − ω. Inoltre, il presente studio fornisce
una possibile guida per le future estensioni dei modelli basati sulla "eddy viscosity", in
quanto evidenzia le principali carenze del modello nel riprodurre una corretta topologia
della turbolenza nella regione della scia.
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2 Introduction

Within this chapter, the motivation of this thesis is introduced first. Afterwards, the
state of the art regarding current engine developments and the aerodynamic of High-
pressure-compressor cascade (HPC) is presented, as well as numerical methods employed
for simulating compressors. Objectives and the outlines of the thesis are given at the end
of this chapter.

2.1 Motivation

The development of turbomachinery components for aircraft engines plays a major role
in aircraft propulsion systems both in turbofan and turboprop engines. For the aviation
industry, the Advisory Council for Aviation Research and Innovation in Europe (ACARE)
has developed diverse aims in reducing greenhouse emissions and ensuring a sustainable
mobility [23]. Compressors and turbines have a significant influence on the fuel consump-
tion, as the latter depends on the aerodynamic efficiency of the engine and its weight.
With a focus on the compressor, the trend in design optimization is to push towards
highly-loaded compressor blades, in order to reduce the number of stages. By doing so,
the boundary layers on the blades of compressors and fans are exposed to an higher ad-
verse pressure gradient, that can lead to the detachment of the fluid flow and compromise
the engine performance, in particular during off-design operation. To take account of
that, the blade design leads to a reduction in the aspect ratio (blade length to chord)
and an increase in the solidity (chord to pitch ratio) of the blades resulting in shorter
deeper blades. Nevertheless, a reduce in efficiency is presented at the design point due
to the increased boundary layer length, though there is an improvement in the pressure
rise. Consequently, in order to design both lighter and more efficient engines, as well as
quieter, it is essential to understand the fluid dynamic processes within these machines.

As experimental researches are challenging to perform on turbomachinery components, as
they provide limited access to the flow for measurement equipment and requires long se-
tups, the Computational Fluid Dynamics (CFD) [15] represents the most commonly used
tool in industrial and research areas for solving fluid problems, since it offers expeditious
detailed view on characteristic flow phenomenons and gives strong insights into the main
fluid flow properties. By means of this, the usage of CFD for numerically solving the gov-
erning equations of fluid dynamics opens a great potential in investigate and optimizing
a great numbers of different geometries, thus achieving the exposed aims.

Within the industrial sector, Reynolds-Averaged-Navier-Stokes (RANS) methods remain
the standard approach for design and optimization process, as the solution generated
with RANS-Methods represents a low-cost solution method [55]. However, the accuracy
of RANS-based CFD predictions heavily depends on the ability of the closure models to
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2 Introduction

take account of the effect of all unsteadiness, stochastic and deterministic, on the mean
flow field. Thus, the development of such predictions is a main challenge and an active
research area, where Large Eddy Simulation (LES) and Direct Numerical Simulation
(DNS) are widely used as "Numerical experiments" [40].

By means of this, the presented work focuses in the wake region by comparing RANS
results with an LES simulation and to underline the main discrepancies in regards of the
main wake characteristics.

2.2 State of the Art

Thanks to geared Turbofan (GTF), the trend of modern subsonic engine concepts is in
developing Turbofan with ultra-high bypass (UHB) engines, with bypass ratio in 12–15
range [13]. Nowadays, conventional turbofan engines offer a bypass ratio of 8-10. The
main idea behind is an increased propulsion efficiency due to the additional integrated
fan powered by the low-pressure turbine (LPT), meaning that part of the incoming air
bypasses the core engine. The advantages of employing the Turbofan are engine length
size and weight reduction, increased efficiency, improved off-design operation and reduced
noise emissions. Moreover, axial compressors and fans provide mechanical compression
for the air stream that enters the aircraft engine and they are extremely sensitive to the
operating condition, which can results in critical conditions such as stall or chocking of
the entire engine. Therefore, the research focused on understanding the phenomenon that
governs the loss mechanism and the exchange of energy with the fluid flow, and providing
the tools to achieve a better design and optimization process. An overview of the work
done in the past years is given in the following section.

2.2.1 Airflow Analysis over Compressor Cascades

Within subsonic compressor cascade, various source of losses arise, such as passage vortex,
leading edge horseshoe vortex and blade trailing edge vortex [20] as shown in figure
2.1. There are three main zones of interest in regards of the compressor blade: the mid
section, the hub flow and the tip flow. In the mid-section of the blade passage, the flow is
assumed to be two-dimensional. By moving towards both the hub or casing, the end wall
boundary layers of the blade passage generate mean spanwise flows, leading to complex
three-dimensional flows. Near the hub or blade attachment point, the interaction of the
hub boundary layer and blade boundary layer causes root vortex interactions, while at the
tip of the blade, various three-dimensional flow structures arise due to tip gap flows and
casing boundary layer interactions. In addition to the fundamental flow structures of a
single blade, incoming wakes from upstream blade rows interact with the blade boundary
layer and end wall region.

4



2.2 State of the Art

Figure 2.1: Schematic overview of secondary flow structure topology (Kang and Hirsch,
1991 [20])

Since this thesis focuses on the mixing out of the wake, an overview of the work done on
zone is presented in the following .

Considerable researches have been conducted to understand flow phenomena in the wake
region. Lieblein et al. [30] provided a simple equation expressing the wake momentum
thickness of conventional low-speed cascade blades, derived from boundary-layer theory
in conjunction with simplifying approximations, that was used to gain an insight into
qualitative effects on stalling. Lowson [31] presented a general theoretical analysis of
compressor noise for the discrete-frequencies sound radiated by axial-flow fans and com-
pressors. It is to mention that the predominant radiation mechanism is via the fluctuating
forces on the blade, that are directly connected to the wakes passing effect. The study
aims to give a tool in the preliminary design stage of an engine to minimize the the noise
by choosing an appropriate number of rotors and stators blades, as well as rotational
speed. Raj and Lakshminarayana [41] studied the near and far wake characteristics of
a cascade of airfoils by analyzing the mean velocity, turbulence intensity and Reynolds
stress across the wake at several distances downstream of the cascade, revealing that the
wake is asymmetrical. Moreover, The wake edge velocity changes continuously, giving rise
to either slower decay of the wake defect or faster decay. Reynolds et al. [42] conducted
an experimental investigation on the wake of a fan rotor blade. Results show that radial,
tangential and axial velocity defects in the rotor wake decay very rapidly in the trailing-
edge region and large radial velocities in the near-wake region, indicating a large radial
migration of momentum and energy. Furthermore, increased blade loading slows the de-
cay rates of tangential and axial velocity defects. Adamczyk [1] presented a research in
which the unsteady flow process associated with the recovery of the total pressure deficit
of a wake as it passes through a blade row was delineated. The impact of the recovery
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process on wake mixing can play an important role on the efficiency of a stage. The wakes
that pass through a blade row before being mixed-out by viscous diffusion can reduce the
wake mixing loss by as much as seventy percent. In more recent studies, according to
Halstead et al. [59], the effects of wake passing suppress the laminar separation bubble
because of the existence of a calmed region. The resulting effect is the reduction of profile
losses. Shi et al. [48] conducted a research on the unsteady behavior of the wake when
blade suction side separation is located close to the trailing edge in a compressor cascade.
Results reveal that under the influence of laminar separation vortex shedding [21], the
suction side of the wake shows slower velocity recovery in comparison with the pressure
side of the wake and that the dominant flow loss is produced by the wake instability and
the laminar vortex shedding.

2.2.2 Numerical Methods

With the advent of modern computers and large clusters, the CFD is able to perform
simulations on engine Reynolds number flows of relevant geometries. However, within
the industrial field, the accuracy of the CFD methodology employed is still limited. The
Reynolds-Averaged-Navier-Stokes (RANS) methods are still widely used as it provides
a trade-off between computational time and valid results. Moreover, the RANS models
have been tuned to provide better accuracy for specific flows. Nevertheless, RANS mod-
elling only provides statistically averaged results and does not simulate instantaneous flow
features, meaning that it can lead to misleading "loss bucket" [13] and inaccurate design
optimization. The prediction of unsteady phenomenon, such as wake interaction, have
also been studied with unsteady RANS. According to Lardeau and Leschziner [25], the
mesh resolution requirements need to be substantially increased to capture the unsteady
features of interest, leading to lower computational efficiency. Furthermore, a tendency
for unsteady RANS to overestimate the coherence of unsteady structures, resulting in
poor turbulent energy prediction of the wakes.

Instead, scale-resolving-simulations (SRS) come into account, like Large Eddy Simulation
(LES) and Direct Numerical Simulation (DNS), to predict unsteadiness, large and small
turbulent structures and vortexes. Currently the use of DNS is still too computationally
expensive for compressor design condition, especially within the industrial context. In
the research field, the DNS is feasible and it leads to to unmatched accuracy [40], as all
the scales of motion are resolved. Regarding the Large-Eddy-Simulations (LES), only the
large scales of motion are resolved, whereas the smallest turbulent structures are modeled
[54]. It represents a cost benefit compared to DNS, but LES still requires a high amount
of computational resources and thus remains in the field of research applications [39].
Although the LES models the small scales of turbulence, studies has proven the reliability
of this method. You et al. [58] conducted a study on the impact of tip clearance on
cascade losses by utilizing Large Eddy Simulation (LES). The obtained results showed
improvements in predicting the decay and Reynolds stresses of the vortex over previous
studies employing RANS methods, as well accurately traced the trajectory and evolution
of the tip clearance vortex.
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2.3 Objectives and Outline of the thesis

More recent research works, Medic et al. [33] investigated the performance of LES in
capturing flow properties such as transition when compared with experimental data for
a range of different airfoil shapes. The study showed LES performed well in predicting
the transition and boundary layer behaviour and for the evaluation of loss of different
profile designs. Moreover, Legget [27] focused on a single compressor cascade stage and
on the effects variation in inflow incidence and free-stream flow conditions have on the
stages’ performance. The results showed to what processes loss is attributed and how
this loss varies over the incidence range, and secondly highlighted the differences in loss
attribution of the breakdown between RANS and LES.

In this thesis, the RANS results are compared with an LES, as the LES simulations is
proving to be useful in investigating unsteady effects that were previously overlooked in
RANS studies.

It is worth mentioning that within this thesis the "Frozen Approach" is used that was
first introduced by Parneix [38] in backward-facing step case-study. This "a priori" test is
one in which a model is assessed outside of its full predictive context. The objective of a
priori testing is to remove ambiguities or inaccuracies that occur in solutions of the full
set of equations, such as numerical errors and inaccuracies in terms additional to those
being tested. The study consisted of isolating the turbulence model by solving the full
transport equation for one isolated component of the Reynolds stress tensor and preserve
the mean flow field that can be taken from a DNS data base. The results showed that
the main problem comes from the Reynolds stress transport equation, which gives an
over-prediction of the turbulent force, and not from both Daly-Harlow transport model
for k [9], and the ϵ-equation, as they do perform well, to the contrary of what is generally
thought in the literature.

2.3 Objectives and Outline of the thesis

As high fidelity simulations are still too expensive for commercial design, industry relies on
RANS. This present study aims to identify the deficiencies in predicting the turbulence
topology in the wake region of one of the most used turbulence model, the k − ω by
Wilcox, and to highlight approaches to improve it by comparing the results with an LES
simulation of the same geometry. By means of this, the RANS simulation that is used for
the comparison, is performed by using inlet flow variables that arise from the LES data set
downstream of the trailing edge as boundary condition. The resulting operation ensures
the separation between the error generated by the wake flow and the error introduced by
RANS in respect of the transitional flow around the blade (fig. 2.2). The inspected flow
field quantities are the total pressure loss coefficient, the strain rate tensor, the Reynolds
stress tensor and its anisotropy.

Chapter 3 presents the theoretical background in detail and it introduces the fundamental
governing equations of fluid dynamics. Moreover, an insight about the logic and numerical
methods employed to resolve the equations of RANS and LES are given, as well as a brief
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theoretical framework of the turbulent wake flow. In chapter 4, the RANS study is
conducted on the NACA 65 V103-220 compressor cascade. Hence, a turbulence inflow
study is conducted in order to provide similar operating condition with respect to the
LES. Afterwards, the "Frozen Approach" is used to derive suitable boundary condition
for the wake domain simulation and thus isolate the wake flow behaviour, followed by
a grid independence study. In chapter 5 the comparison between the RANS and LES
simulations is presented. Finally, the thesis outcome is summarized and an outlook is
provided in chapter 6.

Figure 2.2: Schematic representation of the procedure to isolate the wake flow error (not
to scale).
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3 Fundamentals of Compressible Fluids

The present chapter provides a theoretical background regarding turbulence flow and
its related properties. The primary objective of this thesis is to distinguish and delineate
the main differences between Reynolds-(Favre)Averaged-Navier-Stokes (RANS) and Large
Eddy Simulation (LES) approach in the wake region. To do so, an insight into the
numerical methods employed to solve the Navier-Stokes equations is presented, and an
overview of the fundamental theory of turbulent wake flow is considered.

3.1 Navier-Stokes Equations

The governing equations of fluid flow represent mathematical statements of the conserva-
tion laws of physics:

• Conservation of mass: the rate of change of mass in a fluid element equals the net
rate of flow into the fluid element

• Newton’s second law: the rate of change of momentum equals the sum of the forces
on a fluid particle

• First law of thermodynamics: the rate of change of energy of a fluid particle is equal
to the rate of heat addition to the fluid particle plus the rate of work done on the
particle

The fluid is regarded as a continuum, calorically ideal and perfect gas. The behaviour of
the fluid is described in terms of macroscopic properties, such as velocity, pressure, density
and temperature, and their space and time derivatives. Moreover, the operating fluid is
considered as a "Newtonian fluid", meaning that the viscous stresses are proportional to
the rates of deformation. The gravitational forces are neglected. With these assumptions,
it is possible to obtain the unsteady conservative form of Navier-Stokes-Equations as
follows:

∂ρ

∂t
+ ∂ρui

∂xi

= 0 (3.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj

= − ∂p

∂xi

+ ∂σij

∂xij

(3.2)

∂

∂t

[︃
ρ
(︃

e + ui ui

2

)︃]︃
+ ∂

∂xj

[︃
ρuj

(︃
h + ui ui

2

)︃]︃
= ∂

∂xj

[ui σij − qj] (3.3)
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3 Fundamentals of Compressible Fluids

with the ui represents the velocity, xi the spatial coordinate, ρ the density, t the time, p
the pressure, qj the heat-flux and σij is the viscous stress tensor. The variable e governs
the specific internal energy, which takes part in the definition of the specific enthalpy,
defined as:

h = e + p

ρ
(3.4)

Considering Einstein’s summation convention [11] regarding the Kronecker symbol δij (δij

= 1 for i = j and δij = 0 otherwise), the viscous stress tensor can be expressed as:

σij = 2µEij − λ

(︄
∂uk

∂xk

)︄
δij. (3.5)

In this equation, λ is defined according to the Stoke’s hypothesis as:

λ = −2
3µ, (3.6)

where µ is the dynamic viscosity and the term Eij, which is the strain-rate tensor, is
defined as:

Eij =

(︂
∂ui

∂xj
+ ∂uj

∂xi

)︂
2 . (3.7)

Regarding the heat-flux, it is determined with the following equation:

qj = −λc
∂T

∂xj

(3.8)

whereas, λc is the thermal conductivity of the fluid and T is the temperature.

As previously mentioned, the operating fluid within this research is air, assumed as ideal
gas. The state of an ideal gas is considered in thermodynamic equilibrium by means of
just two state variables, so it is possible to determine it with the Equation of State:

p = ρRT (3.9)

in which R is the specific ideal gas constant.
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3.1 Navier-Stokes Equations

Under this assumptions, the specific internal energy e can be described by the following
equation:

e = cvT (3.10)

whereas cv is the the specific heat at constant volume, while the dynamic viscosity is
defined by the Sutherland’s law:

µ = µ0
T0 + S

T + S

(︃
T

T0

)︃ 3
2

, (3.11)

with consideration of the reference viscosity µ0 = 1.7198 · 10−5 the Sutherland’s constant
S = 110K and the reference temperature T0 = 273K.

In the flow of compressible fluids, the equations of state provide the linkage between
the energy equation on one hand and mass conservation and momentum equations on
the other. This linkage arises through the possibility of density variations as a result of
pressure and temperature variations in the flow field.

Navier-Stokes equations describe all states of the flow, which can be laminar or turbulent.
In order to determinate the regime state of a fluid flow, Reynolds Number [43] is used.
The Reynolds number of a flow gives a measure of the relative importance of inertia forces
(associated with convective effects) and viscous forces:

Re = ρuL

µ
(3.12)

whereas, ρ represents the density, u represents the velocity, L the characteristic length
dimension and µ the dynamic viscosity. Depending upon the value of that number, it is
possible to state if the regime is laminar or turbulent [35]:

• Laminar regime: the flow is smooth and adjacent layers of fluid slide past each other
in an orderly manner. In this scenario, inertial forces are negligible compared with
the viscous forces (small Re)

• Turbulent regime: the flow is completely filled with 3D non stationary eddies and
fluctuations interval, thus inertial forces are predominant upon the viscous one (high
Re)

The investigation is focused on the wake region, which is characterized by a turbulent mix-
ing process. Therefore, an overview regarding the turbulent flow is given in the following
chapters.
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3 Fundamentals of Compressible Fluids

3.1.1 General Properties of Turbulence

In order to acknowledge the concept of "Turbulence", it is mandatory to provide a defini-
tion. Quoting Bradshaw (1971) [8]: “Turbulence is a three dimensional time dependent
motion in which vortex stretching causes velocity fluctuations to spread to all wavelengths
between a minimum determined by viscous forces and a maximum determined by the
boundary conditions."

To better understand this definition, it is possible to split the instantaneous fluid field
Φ(xi, t) in a constant Φ̄(xi) and a time dependent part Φ′(x, t):

Φ(xi, t) = Φ̄(xi) + Φ′(x, t) (3.13)

The mean part shows a behaviour that is predictable, while, on the other hand, the
time dependent part is always three-dimensional and unsteady, thus mandating the use
of statistical methods to analyze it.

Most of the time, in the engineering field, the flow properties are integrated in time to
extract mean values. However, time-averaging will lead to the closure problem that is
analyzed in the section 3.2.1.

As previously said, turbulence consists of a continuous spectrum of scales ranging from
largest to smallest or "eddies". A turbulent eddy can be thought of as a local swirling
motion. Analyzing a turbulent flow, it is possible to observe that eddies overlap in space,
whereas large ones interact with smaller ones. This mechanism leads to what is called a
"energy cascade process", which is analysed thoroughly in the following section.

3.1.2 The Kolmogorov Energy Cascade

One of the defining characteristics of turbulent flows is the broad range of scales present
in the turbulent structures. The notion of an "energy cascade" was first proposed by
Richardson (1922) [45], whereby larger turbulence eddies transfer the Turbulent Kinetic
Energy (TKE) to smaller scales through an inviscid process. However, only at the smallest
ones, dissipation occurs due to molecular viscosity.

By analyzing a turbulent flow from a macroscopic perspective, its characteristic depends
on the geometry that generated it. Instead, at microscopic scales, the behavior of the
turbulent flux is homogeneous and isotropic (Universal Equilibrium). Moreover, as the
Reynolds number increases, the range of scales in the turbulent structures expands, leading
to the break down of larger structures into smaller ones as a result of vortex interactions.

From these considerations, the energy cascade process was investigated in depth and
extended by Kolmogorov, resulting in what is now known as Kolmogorov’s Theory (K41)

12



3.1 Navier-Stokes Equations

[22].

To better understand this theory, the dissipative scale η and dissipation rate ϵ are defined.
The dissipative scale represents the scale at which Turbulent Kinetic Energy (TKE) is
converted into heat, while the dissipation rate represents the rate at which TKE is dissi-
pated by the smallest scales.

Furthermore, the turbulent length scale l, a characteristic velocity u(l), and timescale
τ(l) are defined. According to Kolmogorov’s Theory, the velocity u(l) and timescale τ(l)
decrease as a result of the transfer of TKE to smaller scales and the break down of larger
structures into smaller length scales l. Therefore, the Reynolds number

Re = u(l)l
ν

(3.14)

for a given structure, decreases as well, which causes an increase in viscous effects, leading
to the dissipation process.

Since turbulence contains a continuous spectrum of scales, it is convenient to think in
terms of spectral distribution of energy a shown in the figure 3.1. In general, a spec-
tral representation is a Fourier decomposition [50] into wavenumbers k, or, equivalently,
wavelengths:

λw = 2π

k
(3.15)

Figure 3.1: Schematic illustration of the energy cascade with the energy spectra over
the wavenumber
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The first Kolmogorov’s hypothesis is as follows: at sufficiently high Reynolds number
(Re >> 1) and for the small-scale turbulent motions (l << l0), the flux is statistically
homogeneous and isotropic.

On the left side of the spectrum, the wavenumber k0 is associated to the largest scales
l0 and u(l0), whereas the large eddies are anisotropic and are affected by the boundary
conditions of the flow. The characteristic length scale lEI (lEI ≈ 1

6 l0) splits large energy-
containing eddies (l > lEI) and the small isotropic length scales (l < lEI).

In the energy cascade for l < lEI or k < kEI , the two dominant processes are the transfer
of TKE to smaller scales and viscous dissipation. Thus, the important parameters are the
rate at which the small scales receive energy from the large scales TEI and the kinematic
viscosity µ. It is reasonable to assume that the dissipation rate ϵ is nearly the same
as the transfer rate of energy TEI . This leads to the Kolmogorov’s first similarity
hypothesis: in every turbulent flow at sufficiently high Reynolds number (Re >> 1),
the statistics of the small-scale motions (l < lEI) have a universal form that is uniquely
determined by ϵ and ν. From a pure dimensional analysis, the dissipative Kolmogorov
scales in length, velocity and timescale are denoted as follows:

η =
(︄

ν3

ϵ

)︄ 1
4

(3.16)

uη = (νϵ)
1
4 (3.17)

τη =
(︃

ν

ϵ

)︃ 1
2

(3.18)

The Reynolds number based on the Kolmogorov scale is unity, expressed as:

Reη = uηη

ν
= 1. (3.19)

This is in agreement with the notion that the energy cascade continues towards smaller and
smaller scales until the Reynolds number is low enough for dissipation to occur efficiently.
The dissipation rate at this scale is given by:

ϵη = ν

(︄
uη

η

)︄2

= ϵ (3.20)

indicating that the energy that reaches the Kolmogorov scale dissipates at the same rate
it arrives.

Additionally, as the Reynolds number increases, the spread between the largest and small-
est scales becomes larger. The equations that highlight this relationship are:
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lo
η

∼ Re3/4 (3.21)

uo

uη

∼ Re1/4 (3.22)

τ

τη

∼ Re1/2 (3.23)

Finally, Kolmogorov’s second similarity hypothesis states that in every turbulent
flow at sufficiently high Reynolds number (Re >> 1), the statistics of the motions of scale
l in the range (l0 >> l >> η) have a universal form that is uniquely determined by ϵ and
independent by ν.

The basis for this hypothesis lies in the observation that eddies in this range are consid-
erable larger than dissipative eddies, leading to significant higher Reynolds numbers in
which the viscous effects are neglected.

Thanks to the Kolmgorov’s Theory, it is possible to develop models to describe the tur-
bulence behaviour through numerical simulations.

3.2 Numerical Methods

The aim of this chapter is to briefly introduce the logic and numerical methods employed
to resolve the equations of RANS, LES and turbulence models. All numerical simulations
are conducted using TRACE [4], a solver developed by the German Aerospace Center.

3.2.1 Reynolds-(Favre)Averaged-Navier-Stokes (RANS)

The Reynolds-(Favre)Averaged Navier-Stokes (RANS) approach incorporating turbulence
modeling continues to be the prevalent technique numerous industrial applications, due
to the low computational effort needed to solve the governing equations. Reynolds de-
composition [43] is used in order to split the fluid flow quantities into their mean and
fluctuating components, as represented by the equation:

Φ = Φ̄ + Φ′. (3.24)

The averaging operation can be in time, space or whole averaged. The mean part is
obtained with the following equation:
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Φ̄ = lim
N→∞

N∑︂
n=1

Φ (3.25)

In this present study, a computational investigation is performed on a case of compress-
ible fluid flow. The application of Favre-Averaging [14], a density-weighted averaging
technique, is employed into the analysis. This is mathematically expressed as:

˜︁Φ = 1
ρ

ρΦ (3.26)

wherein, the flow quantities at any given instant are split into a Favre-averaged mean and
a fluctuating component through the following expression:

Φ = ˜︁Φ + Φ′′ (3.27)

Except for the density and pressure, which are split into a mean (time, space or ensemble
average) and a fluctuating part, all the other quantities are formulated with the Favre-
Averaging:

ρ = ρ + ρ′ (3.28)
p = p + p′ (3.29)

ui = ˜︁ui + u′′
i (3.30)

e = ˜︁e + e′′ (3.31)
h = ˜︁h + h′′ (3.32)

Applying the averaging method to the N-S equations, the Reynolds-(Favre)Averaged
Navier-Stokes (RANS) are obtained:

∂ρ

∂t
+ ∂

∂xi

(ρ˜︁ui) = 0 (3.33)

∂

∂t
(ρ˜︁ui) + ∂

∂xj

(ρ˜︁uj ˜︁ui) = − ∂p

∂xi

+ ∂

∂xj

[︂
σij − ρu′′

i u′′
j

]︂
(3.34)

∂

∂t

⎡⎣ρ

⎛⎝˜︁e +
˜︁ui˜︁ui

2 +
˜︁u′′

i u′′
i

2

⎞⎠⎤⎦+ ∂

∂xj

⎡⎣˜︁ujρ

⎛⎝˜︁h +
˜︁ui˜︁ui

2 +
˜︁u′′

i u′′
i

2

⎞⎠⎤⎦ =

∂

∂xj

[︃
−qj − ρ˜︁u′′

j h′′ + ˜︁σiju′′
i − 1

2ρ ˜︂u′′
j u′′

i u′′
i

]︃
+

∂

∂xj

[︂˜︁ui

(︂
σij − ρu′′

i u′′
j

)︂]︂
(3.35)
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P = ρR ˜︁T (3.36)

With regards to the derived set of equations, new unknown correlations of fluctuating
quantities are emerge. This is the so-called closure problem, where the equations for higher
correlations continuously lead to new unknown variables due to the non-linear nature of
the problem. In order to solve the equations, Wilcox [55] defined certain correlations,
such as the description of the turbulent transport of heat:

qj = ρu′′
j h′′ = − µcp

PrT

∂T

∂xj

(3.37)

in which PrT is the constant turbulent Prandtl number, while the terms

˜︁σiju′′
i − 1

2ρ ˜︂u′′
j u′′

i u′′
i (3.38)

correspond to molecular diffusion and turbulent transport of turbulence kinetic energy.

Favre-averaged Reynolds-stress symmetric tensor

τij = ρu′′
i u′′

j (3.39)

is defined as the mean transport of momentum due to turbulence. The present term
consist of six unknown components.

The most common approach to the closure problem is to relate the Favre-averaged
Reynolds-stresses to the mean shear using the Boussinesq approximation:

τij = 2µT

(︄˜︃Eij − 1
3

∂˜︂uk

∂xk

δij

)︄
− 2

3ρkδij. (3.40)

Hereby, k is defined as the turbulent kinetic energy

k =
˜︁u′′

i u′′
i

2 , (3.41)

A new unknown variable appears in the Boussinesq approximation called eddy viscosity
µT . Several turbulence models are available to calculate it. However, the Boussinesq
approximation is often not properly valid in complex flows where the mean shear rates are
not linearly related to the Reynolds stresses. Despite this, eddy viscosity based models do
perform well enough to be useful and form the basis for most commercial RANS solvers.
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Since the two-equation model k − ω by Wilcox (1988) is employed within this work, an
insight about this model is given.

In the k − ω turbulence model for compressible flow, the eddy viscosity is determined in
dependency of the turbulent kinetic energy k and the specific dissipation rate ω:

µT = ρk

ω
(3.42)

By means of this, the specific dissipation rate ω is defined as the ratio of turbulent
dissipation rate ϵ and TKE k:

ω = ϵ

k
(3.43)

To determine the unknowns, two transport equations of the turbulent kinetic energy k
and the specific dissipation rate ω are introduced and have to be solved:

∂

∂t
(ρk) + ∂

∂xj

(ρ˜︂ujk) = Pk − βkρωk + ∂

∂xj

[︄
(µ + σkµT ) ∂k

∂xj

]︄
(3.44)

∂

∂t
(ρω) + ∂

∂xj

(ρ˜︂ujω) = α
ω

k
τij

∂˜︂ui

∂xj

− βωρω2 + ∂

∂xj

[︄
(µ + σωµT ) ∂ω

∂xj

]︄
(3.45)

Herewith, Pk is defined as the production term

Pk = τij
∂˜︂ui

∂xj

, (3.46)

and Dk is called destruction term and it is determined as follows:

Dk = βkρωk. (3.47)

The production term Pk represents the rate at which kinetic energy is transferred from the
mean flow to the turbulence, while the dissipation one Dk is the rate at which turbulent
kinetic energy is converted into thermal internal energy.

The respective closure coefficients are listed below:

α = 5
9 , βk = 9

100 , βω = 3
40 , σk = σω = 1

2 (3.48)
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To improve the accuracy and the reliability of the k − ω model, various model extensions
exist.

Within this test case, high turbulent intensity levels are present, causing the non-physical
behavior of turbulent kinetic energy overproduction. The Kato-Launder modification [26]
aims to reduce the tendency to over-predict the turbulent production in regions with large
normal strain, for instance on the stagnation points. To do so, the production term Pk is
reformulated as shown:

τij
∂˜︂ui

∂xj

= µT

⃓⃓⃓˜︃Eij

⃓⃓⃓2
≈ µT

⃓⃓⃓˜︃Eij

⃓⃓⃓ ⃓⃓⃓ ˜︁Ω⃓⃓⃓ (3.49)

with the rotation tensor ˜︁Ω
˜︁Ω =

(︄
∂˜︂ui

∂xj

− ∂˜︂uj

∂xi

)︄
(3.50)

Another model extention used to enhance the capability of the k − ω turubulent model
is the the transition model by Langtry and Menter [24]. It is an empirical method based
on two new transport equations γ − ReΘ, in addition to the k and ω equations. Its
purpose is to improve the prediction of the transition from laminar to turbulent state in
the boundary layers.

The numerical intermittency γ indicates the state of the flow in the boundary layer and
it can assume values from zero to one. The transport equation for the intermittency γ is
described as follows:

Dργ

Dt
= ∂

∂xj

[︄
(µ + σγµT ) ∂γ

∂xj

]︄
+ Pγ − Eγ (3.51)

The production term Pγ and the destruction source Eγ are defined as follows:

Pγ = Flengthca1ρS(γFonset)0.5(1 − ce1γ) (3.52)

Eγ = ca2ρΩγFturb(1 − ce2γ) (3.53)

in which Flength indicates the transition length, whereas Fonset describes the begin of the
transition.

Regarding the second equation, the criteria for transition is set based on the local Reynolds
number ReΘt, indicating the transition begin based on the momentum thickness Θ.
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DρRẽθt

Dt
= ∂

∂xj

[︄
σθt (µ + µT ) Rẽθt

xj

]︄
+ PΘt (3.54)

where the production term PΘt is denoted by the following equation:

PΘt = cθt
(ρu)2

ctµ
(Reθt − Rẽθt)(1 − Fθt) (3.55)

To account the separation induced transition, the following equation for the separation
intermittency γsep is based on the critical Reynolds number

γsep = min
[︃
s1 max

(︃
Rev

3.235Reθc

− 1
)︃

Freattach, 2
]︃

Fθ (3.56)

The remaining closure coefficients are described by empirical correlations in .

To complete the setup of the γ − ReΘt transition model, the effective intermittency

γeff = max(γ, γsep) (3.57)

is considered, hence the production and destruction term of the TKE transport equation
(3.46) in terms of the k − ω turbulence model are determined as follows:

Pk̃ = γeffPk̃ (3.58)

Dk
˜ = min[max(γ, 0.1)1.0]Dk

˜ . (3.59)

The implementation in TRACE is described in [16].

For the k − ω model, the Viscous Blending Limiter [6] is available. This extension limits
the eddy viscosity and thus the production of turbulent kinetic energy in turbulent flows.
The eddy viscosity formulation is changed to:

µT = a1ρk

max(a1ω, bvS) (3.60)

with a1 = 0.31 and bv being a detection factor for areas of viscous flow that depends on
the model version. S denotes the traceless strain tensor norm of the flow. In the present
study, both Viscous blending version 1, in which bv is defined as
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bv = min
(︃

max
(︃

ωQuot

500 , 0.1
)︃

, 1
)︃

(3.61)

ωQuot = ω/ωcorr (3.62)

ωcorr = k−0.613 (3.63)

and version 2, where bv is defined as follows:

bv = min

(︄
max

(︄2 atan( ω
ωcorr

+ c2)
π

− c3 fV RP M,w, 0
)︄

, 1
)︄

(3.64)

ωcorr = ωref

(︄
k

kref

)︄−0.613

c1 (3.65)

fV RP M,w = min

(︄
max

(︄
fV RP M

Ω2
SW

Ω2 , 0
)︄

, 1
)︄

, (3.66)

are employed. Hereby, c1 = 1, c2 = 0,

are model constants, the quantities kref and ωref are reference values that are defined as
the area average of the respective turbulence model quantities at the inlet panel [17].

3.2.2 Large Eddy Simulations (LES)

Large Eddy Simulation (LES) approach is based on the observation that the larger eddies
need to be computed for each problem with a time-dependent simulation, while, for the
small-scale turbulent motions, the flux is statistically homogeneous and isotropic [15].
Instead of time-averaging, LES applies a spatial filtering operation to separate the large
energy-containing eddies and smaller ones.

First, a spatial filtering operation, by means of a filter function G∆(r, x), is defined with
the aim of resolving in an unsteady flow computation all those eddies with a length scale
greater than the cutoff width. Eddies below the threshold are modeled. According to Pope
[40], it is necessary to resolve at least 80% of the total energy to achieve an acceptable
LES solution.

The filtering operation can be described as
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3 Fundamentals of Compressible Fluids

ϕ =
∫︂

R3
G∆(r, x)ϕ(x − r, t)dr

where the integration is performed over the entire domain, and the specified filter satisfies
the following property:

∫︂
R3

G(r, x)dr = 1

Applying this filtering to the flow variables results in a set of filtered flow quantities that
can be decomposed in a similar manner as the time averaged quantities

ϕ = ϕ + ϕ′ (3.67)

in which ϕ is the filtered variable and ϕ′ is the residual quantities.

The application of Favre-filtered quantities is employed into the analysis for the derivation
of the LES equations for compressible fluid flow. In this case the Favre filtering is defined
in the same manner but now with a spatially filtered density

˜︁ϕ = 1
ρ

ρϕ (3.68)

wherein, the flow quantities at any given instant are split into a Favre-filtered quantity
and a residual component through the following expression:

ϕ = ˜︁ϕ + ϕ′′ (3.69)

In TRACE, the filter width ∆ is set as

∆ = V
1
3 (3.70)

whereby V is the cell volume of the grid.

The filtering operation applied on the conservation laws leads to the so-called filtered
Navier-Stokes-equation as follows:

∂ρ

∂t
+ ∂

∂xi

(ρ˜︁ui) = 0 (3.71)
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∂

∂t
(ρ˜︁ui) + ∂

∂xj

(ρ˜︁uj ˜︁ui) = − ∂p

∂xi

+ ∂

∂xj

[τij + τij
s] (3.72)

∂

∂t

[︃
ρ
(︃˜︁e +

˜︁ui˜︁ui

2

)︃]︃
+ ∂

∂xj

[︃˜︁ujρ
(︃˜︁e +

˜︁ui˜︁ui

2

)︃]︃
= ∂

∂xj

[−qj + ujτij − uip] (3.73)

Hereby, the filtered viscous stress tensor τij is defined as:

τij = µ( ˜︁T )
Re∞

(︃
Sij − 2

3Sijδij)
)︃

(3.74)

with the Sij represents the filtered strain rate tensor and Re∞ represents the free stream
Reynolds number.

Regarding the filtered heat flux vector, it depends on the Reynolds number Re, the
heat capacity ratio γr, the Prandtl number Pr, the Mach number M and the filtered
temperature ˜︁T :

qj = − µ( ˜︁T )
(γ − 1) RePrM2

∂ ˜︁T
∂xj

. (3.75)

Considering the unresolved sub grid scale stress tensor τij
s, it is given by:

τij
s = −(ρuiuj − ρ˜︁ui˜︁uj) (3.76)

Analogous to the Reynolds-(Favre)averaged Navier-Stokes, in order to solve the closure
problem, a sub grid scale model (SGS) needs to be formulated. In this present study,
the large eddy simulation has been performed by using the Wall-Adapting Local Eddy-
viscosity (WALE) model [36]. Therefore, an overview is given in the following section.

The adopted solver TRACE implements the WALE model according to Nicoud and
Ducros, which is based on the square of the velocity gradient tensor gij, represented
by:

gij = ∂˜︂ui

∂xj

. (3.77)

The description of the SGS stress tensor τij
s is made by using the Boussinesq approxima-

tion:

τij = 2µT

(︄
Sij − 1

3
∂˜︂uk

∂uk

δij

)︄
− 2

3ρkδij. (3.78)
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The eddy viscosity µT is determined from resolved quantities:

µT = ρ(Cw∆)2 (Sd
ijS

d
ij)

3
2

(SijSij)
5
2 + (Sd

ijS
d
ij)

5
4

(3.79)

in which the constant Cw is

Cw = 0.5587, (3.80)

computed from the relation

C2
w = αC2

s (3.81)

with Cs = 0.17 and the factor α is the average of Table I in [ref...].

The WALE tensor Sd
ij is given by

Sd
ij = SikSkj + ΩikΩkj − 1

3δij(SnmSnm − ΩnmΩnm). (3.82)

whereby Ωij the filtered rotation tensor

Ωij =
(︄

∂˜︂ui

∂xj

− ∂˜︂uj

∂xi

)︄
(3.83)

and Sij is the filtered strain rate

Sij =
(︄

∂˜︂ui

∂xj

+ ∂˜︂uj

∂xi

)︄
(3.84)

The resulting formulation ensure that all the turbulence structures relevant for the ki-
netic energy dissipation are detected. Moreover, the eddy-viscosity tends to go naturally
to zero in the vicinity of a wall, removing the need for any dynamic constant adjustment
or damping functions in the computation of wall-bounded flows. Finally, the model is in-
variant to any coordinate translation or rotation, meaning that it can be used for complex
geometries.

24



3.3 Fundamental theory of a turbulent wake flow

3.2.3 Flow solver

The above presented Favre-averaged Navier-Stokes equations and the filtered Navier-
Stokes equation are numerically solved by the turbomachinery’s flow solver TRACE.
Hereby, the cell-centered finite volume method for spatial and temporal discretization
is utilized for all simulations [29]. Structured mesh are distributed to different blocks
to allow for parallel computation. The finite volume method is based on the integral
conservation of the governing equations by applying the Gauss’s theorem, leading to the
following finite volume discretization scheme [37]:

∫︂
V

∂q
∂t

dV +
∮︂

∂V
(F · n) dA = +

∮︂
∂V

(Fv · n) dA +
∫︂

V
S dV (3.85)

with the control volume V, the vector of conservative variables q, the inviscid F and
viscid Fv flux vectors as well as the volume source term S. The balance in equation needs
to be fulfilled for each cell in the respective domain. In terms of spatial discretization,
in order to solve the the so-called Riemann-Problem (RP) regarding the inviscid fluxes
[37], the MUSCL-Scheme (Monotonic Upstream Scheme for Conservation Laws) [19] is
implemented.

The numerical setup for both LES and RANS simuations are presented in the relative
sections 4.2 and 4.3.

3.3 Fundamental theory of a turbulent wake flow

The aim of this present chapter is to examine the development of turbulent boundary
layer in wall-bounded flow for high Reynolds number and the resulting wake. Moreover,
an insight regarding Reynolds stress anisotropy and its visualisation is presented.

3.3.1 Turbulent wake flow generation

The process of the boundary layer development can be explained by regarding an airflow
over a semi-infinite flat plate model illustrated in the following figure:
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Figure 3.2: Schematic representation of the boundary layer development process on a
an exemplary semi-infinite flat plate, by Munson [35]

Hereby, the y coordinate represents the distance from the wall, the x coordinate the flow
direction and U∞ represents the free stream velocity. According to Schlichting et al. [47],
the airflow with high Re can be decomposed as an inviscid outer flow area far from the
wall and a thin boundary layer close to the wall, in which viscous forces are significant.
As already stated, the Reynolds number is representative of the state regime of the flow
and for a semi-infinite flat plate is defined as:

Rex = ρ U∞x

µ
. (3.86)

By observing the airflow, it develops a thin boundary layer of laminar state due to the
no-slip condition from the leading edge (Rex ≈ 1). With increasing distance from the
leading edge, the boundary layer thickness δ(x) becomes larger, concurrently with the
Reynolds number. At some distance downstream from the leading edge, the transition
from laminar to turbulent boundary layer flow occurs at a critical value of the Reynolds
number, Rexcrit, that can ranging from 2·105 to 3·106 (Schlichting et al.[47]). Furthermore,
according to Schlichting et al., the transition location depends on: the roughness of the
surface, the amount of turbulence in the upstream flow, the Reynolds number and the
outer flow pressure distribution. After the transition, the boundary layer flow becomes
fully turbulent with the emergence of three-dimensional and unsteady eddies.

In the description of the boundary layer along a semi-infinite flat plate, the pressure is
constant throughout the fluid. In a compressor cascade, the pressure varies because of the
imposed curvature: the decrease in pressure in the direction of flow is termed as favorable
pressure gradient
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3.3 Fundamental theory of a turbulent wake flow

(︄
∂u

∂x

)︄
> 0, (3.87)

while the increase in pressure in the direction of flow is termed as adverse pressure gradi-
ent

(︄
∂u

∂x

)︄
< 0. (3.88)

In presence of adverse pressure gradient, a phenomenon commonly referred to boundary
layer separation can occur: the wall shear stress τwall, defined as

τwall = µ

(︄
∂u

∂y

)︄
y=0

, (3.89)

reaches the zero value, leading to the detachment of the fluid from the wall, with a reverse
flow in the boundary layer as shown in the following figure:

Figure 3.3: Development of the separation zone [52].

The coalescence of boundary layers on the suction and pressure sides at the trailing edge
of the blade, along with the separation zone, leads to generation of the turbulent wake
flow. Therefore, it is characterized by a velocity and total pressure deficiencies, that
are maximum at the center wake and they tend to decrease to zero towards the inviscid
outer flow area. The width of the wake increases with increasing distance from the blade
because of the diffusion term σij in the Navier-Stokes equations, resulting in a turbulent
mixing process, that tends to uniform the properties of the fluid flow.

According to Raj and Lakshminarayana [41], another feature of the turbulent wake in
a cascade is that it exhibits asymmetry as consequence of loading on the blade. This
asymmetry is maintained up to 3

4 of the chord length from the trailing edge but it depends
upon the operating conditions, such as the incidence angle.

27
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3.3.2 Reynolds stress anisotropy

As the following comparison is regarded in terms of the Reynolds stress anisotropy tensor
and its invariant, the definiton and its physical meaning is presented. It serves as a
measure to describe turbulence anisotropy and it is defined as

aij =
˜︁u′′

i u′′
j

k
− 2

3δij. (3.90)

Thus, this quantity describes the non-dimensional deviation of the Reynolds stress tensor
from the isotropic state

˜︁u′′
i u′′

j = 2
3kδij. (3.91)

However, it depends on the chosen coordinate system. Lumley (1979) used the invariants
of aij and its constraints to visualize the state of turbulence, which are independent of
the coordinate system. In this research, the barycentric map of Banerjee et al. (2007)
is used in conjuction with the Emory and Iaccarino (2014) color map assignmenet [12].
Therefore, an insight of this turbulence anisotropy visulization technique is given.

The turbulence state can be described by a linear combination of the three limiting tur-
bulence states: one-component (1C), isotropic two-component (2C) and isotropic (3C).
In the Isotropic 3C turbulence, the anisotropy is forced to be zero. The Isotropic 2C
turbulence represents a turbulence state in which only two fluctuating components of
equal intensity exist. Finally, the one-component turbulence (1C) is characterized by one
fluctuating component which dominates over the other two.

In principal coordinates, the spectral theorem states that the anisotropy tensor can be
constructed as a linear combination

aij = C1Ca1C + C2Ca2C + C3Ca3C (3.92)

with

C1C = λ1 − λ2 C2C = 2(λ2 − λ3) C3C = 3λ3 + 1, (3.93)

whereby, the eigenvalues λ1 > λ2 > λ3 are used to compute the weights CiC of the linear
combination of the three limiting turbulent states 1C, 2C and 3C.

To visualize the Reynolds stress anisotropy, the weights CiC of turbulent states are mapped
to the RGB channels, where, red is assigned to 1C, green is assigned to isotropic 2C and
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blue is assigned to isotropic 3C. The RGB barycentric map is shown in the following
figure:

Figure 3.4: Reynolds stress anisotropy contours plotted in the anisotropy invariant
barycentric map
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4 RANS-Study of NACA65 cascade

The following chapter summarizes the performed RANS simulations study. First, the
geometry of the cascade is outlined. Afterwards, the numerical setup of the NACA65
cascade is provided for both RANS and LES approaches. The methodology to achieve
a correct turbulent inflow boundary conditions for the RANS simulations is presented,
according to the available LES data. Second, the frozen approach is performed to extract
the input data for the wake domain. Finally, a grid study is conducted in the wake region
to ensure a grid independent results.

4.1 Overview of NACA65 cascade

For both RANS and LES, simulations are performed on a NACA 65 V103-220 compressor
cascade, which is representative of the mid-span section of a rotor blade in a highly loaded
axial compressor. Leipold et al. [28] and Hilgenfeld and Pfitzner [18] conducted researches
on regards of this airfoil performance by specifically examining the midspan section of a
linear cascade rig. The researchers chose this approach to reduce the impact of complex
flow interactions resulting from end walls and tip leakages. The experiments cover design
and off-design incidence as well as the impact of incoming wakes.

In this present study, the LES simulation performed by Deutsch [10] is used as high fidelity
data to highlight the deficiencies of RANS simulations. The geometry and the operating
conditions employed in this analysis are outlined in Tab. 4.1.

Figure 4.1: Schematic of the NACA 65 V103-220 linear compressor cascade.
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Table 4.1: Nominal simulation parameters.
Reynolds number 200,000

Mach 0.676
Flow angle α 42◦

t 0.121 mm

C 220 mm

Caxial 203, 2 mm

t/C 0.59
d/C 0.059
βs 112.5◦

βu 48◦

% Tu at LE (pitch average) 1.95%

4.2 LES Numerical Setup

The LES simulation has been performed on one blade-row with 81 791 228 cells, with 83
cells in spanwise (z) direction using 1008 cores. The domain of the LES had pitchwise
(y) and spanwise (z) periodic boundary condition, and viscous wall on the blade surface.
This setup ensure a non-dependency of the complex flow interactions that end walls and
tip leakages cause. The schematic representation of the control domain is shown in figure
4.2. The applied boundaries conditions are shown in Tab. 4.2.

Table 4.2: Boundary condition for the LES.
Inlet boundary conditions

Absolute Total Pressure 7138.28 Pa

Flow angle 42◦

Absolute Total Pressure 288.15 K

Isotropic Reynolds stress 233.513 m2/s2

Eddy Length Scale 0.006 m

Outlet boundary condition
Static Pressure 6197.73 Pa

With respect of producing an appropriate fluctuation field, the synthetic turbulence gen-
erator (Shur et al) [49] is used, that was implemented by Morsbach and Franke [34]
and tested by Matha et al [32] in TRACE. According to Shur et al [49], the synthetic
turbulence generator is based on a set of non-time dependent wave numbers kn and a pre-
scribed spatial spectrum of the kinetic energy of turbulence represented by a modified von
Karman spectrum. Afterwards, the velocity fluctuations are added to the mean velocity
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components at the inlet panel of the computational domain. This method is capable of a
plausible representation of the anisotropy of the vortical structures, which is an essential
feature of near-wall turbulence [49].

Figure 4.2: Schematic representation of the LES control domain (not to scale).

The simulation was performed by setting the following parameters:

Table 4.3: LES Numerical Setup.
Spatial Discretization

Scheme 3rd Upwind

Limiter Off
Temporal Discretization

Scheme Explicit Runge Kutta

Accurancy 3rd Order

Boundary condition
Inlet Riemann

Unsteady − 1DOutlet
Characteristic

Wall No − Slip

Turbulence
Turbulence Treatment LES

Turbulence Model WALE
Dimensionless wall-distance

Wall-normal < 1
Streamwise < 45

Spanwise (z) < 25
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4 RANS-Study of NACA65 cascade

As the LES simulations was initialized with a RANS simulations, based on the investi-
gations of Bergmann et al. [5], a statistical averaging of the flow variables took place
after the transient phase was completed. This operation was achieved by using 20 t∗

through-flow [53] [57], where t∗ is defined as:

t∗ = C

Uaxial

. (4.1)

Hereby, C represents the chord length and Uaxial the in the inlet section. Subsequently, a
space averaged has been accomplished along the spanwise direction (z).

4.3 RANS Numerical Setup

In figure 4.3 the RANS simulations control domain is presented. Hereby, one blade-row
structured mesh of 997 454 cells is computed with a span length of one cell using 24
cores. The domain is set as periodic boundary conditions in the pitchwise direction (y),
symmetry boundary conditions in the spanwise direction (z) and viscous wall on the blade
surface

Figure 4.3: Schematic representation of the RANS control domain (not to scale).

The RANS simulations are performed by using the same geometry that is highlighted in
the previous section 4.1. Regarding the inlet and outlet boundary conditions, the same
thermodynamic values and velocity angles of the LES are set. The turbulence quantities,
such as turbulence intensity Tu and eddy length scale Lt, are determined in the section
4.3.2.
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The simulations are performed by setting the following parameters:

Table 4.4: RANS Numerical Setup.
Spatial Discretization

Scheme Fromm Scheme

Limiter V anAlbadaSqr

Temporal Discretization
Solution Method PredictorCorrector

Boundary condition
Inlet Steady2D

Outlet Steady2D

Wall No − Slip

Wall-Treatment LowReynolds

Turbulence
Turbulence Treatment (U)RANS

Turbulence Model Wilcox k − ω

Stagnation Point Anomaly Fix KatoLaunder

Transition Model γ − ReΘ Menter 2009

4.3.1 Finding suitable boundary condition

The inlet turbulence intensity and eddy length scale play a significant role in the prediction
of the laminar-turbulent transition in the boundary layer development [6], as well as overall
loss distribution in the wake region. This is due to the fact that different turbulence length
scale and eddy length scale lead to different dissipation rates, resulting in significantly
altered decay of turbulence intensity in the inlet region.

For a compressible flow, turbulence intensity is defined as:

Tu = u′′

˜︁u (4.2)

with the u′′ represents the root mean square (RMS) of the turbulent velocity fluctuations

u′′ =
√︄

1
3
(︂
u′′2

x + u′′2
y + u′′2

z

)︂
=
√︄

2
3k, (4.3)

while ˜︁u represents the mean velocity field computed using Reynolds-averaged (see sec-
tion 3.2.1). Nevertheless, turbulence intensity measures the magnitude of the turbulent
fluctuations.

35



4 RANS-Study of NACA65 cascade

On the other hand, eddy turbulence length scale Lt is defined as follows

Lt =
√

k

ω
, (4.4)

in which k is the turbulent kinetic energy and ω is the specific dissipation rate.

By setting the turbulence intensity and eddy length scale, the turbulent kinetic energy
and the specific dissipation rate in the inlet boundary condition are fixed.

4.3.2 Matching LES Turbulence intensity decay

Within this section, the analysis to find an adequate turbulence inflow is performed to
ensure similar operating conditions in regards of the LES data.

In figure 4.5 and 4.6, several simulations are shown. The respective curves represent the
evolution of the turbulent intensity in the free stream flow along a centered streamline,
as show in figure 4.4.

Figure 4.4: Schematic representation of the centered streamline.
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In regards of the turbulence intensity decay of the LES, it shows a nonphysical behaviour in
the near inlet boundary region, as it drops significantly. The reason is due to the synthetic
turbulence generator as it introduces random fluctuations, which size in space and time
are dependent on an fitted von Karman spectrum, unlike real turbulence, where a con-
nection between the different velocity components is presented. Therefore, an evolution
time (or length) is required before the random fluctuations become physical meaningful
fluctuations. As a result, the turbulence values close to the inlet are not taken into ac-
count as they do not become meaningful by longer averaging times. Moreover, the blade
influences the turbulent intensity slope. As a result, the region of the study is constrained
to an interval of -1.4 to -0.5 of the normalized x-coordinate by the axial chord length
Caxial upstream the leading edge.

In order to match the turbulence intensity of the LES, a study regarding the behaviour
of different inlet turbulence intensity and eddy length scale is conducted.

First, the influence of the eddy length scale for a specified turbulence intensity is shown
in figure 4.5(a). By setting a lower eddy length scale, the decaying of the turbulent
intensity is increased. This is in agreement with the Lt equation (4.4): by fixing the
the inlet turbulence intensity Tu, thus the turbulent kinetic energy k, a lower value of
the turbulent length scale Lt leads to an greater inlet specific dissipation rate ω and,
consequently, a faster degradation of the fluctuations in the free stream.

Afterwards, the influence of changing the inlet turbulence intensity is conducted for a
fixed eddy length scale is presented in figure 4.5(b). By fixing the eddy length scale in the
inlet region, an higher inlet turbulence intensity leads to greater turbulent kinetic energy
introduced in the flow domain and, therefore, higher values of turbulence intensity decay
curve.

(a) (b)

Figure 4.5: Turbulence intensity decay plotted over the normalized x-coordinate by the
axial chord length Caxial for constant inlet Tu (a) and constant inlet Lt (b).

The study is further investigated by varying the turbulence intensity and eddy length scale
according to the previous observations. Moreover, the viscous blending limiter version 1
and 2 are employed to control the production of turbulent kinetic energy in turbulent flows.
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Figure 4.6 show that this extension results in a negligible deviation from the standard
eddy viscosity formulation, as the three curves are aligned. The selected parameters that
better fit the turbulence intensity decay are shown in figure 4.7. This setup minimize the
deviation in regards of the LES turbulence decay in the region of study, and thus ensure
similar operating conditions.

Figure 4.6: Turbulence intensity decay plotted over the normalized x-coordinate by the
axial chord length Caxial for viscous blending limiter version 1 and 2.

Figure 4.7: Best parameters fit curve of turbulence intensity decay plotted over the
normalized x-coordinate by the axial chord length Caxial.
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4.4 Frozen Approach

Since the aim of this present study is to isolate the behaviour of the k − ω model in the
downstream region of the cascade, the following comparison is conducted by simulating
only the wake domain with RANS simulations by using inlet flow properties that derive
from the LES data set. Regarding the turbulence quantities, as stressed by many authors,
the specific turbulent dissipation rate in RANS simulations is only a variable that aids to
reproduce the turbulence kinetic energy field and has no physical meaning for itself [51].
Within a LES context, it has a completely different meaning and values compared to the
RANS approach. Hence, a new computation of the specific turbulent dissipation rate ω
field needs to be fulfilled. To do so, the "Frozen Approach" is used. This method was first
introduced by Parneix [38] in backward-facing step case-study, which consist of isolating
the turbulence model by solving the full transport equation for one isolated component
of the Reynolds stress tensor and preserve the mean flow field that can be taken from a
DNS data base.

Within this research, a similar procedure is used to compute the turbulence transport
equation (3.45) for ω in the entire cascade domain, by using the previous turbulence
intensity and eddy length scale, and by fixing every flow field variable that arise from the
LES data set. Afterwards, a cut is performed to obtain the inlet boundary condition for
the wake domain.

Figure 4.8: Schematic representation of the methodology employed to extract the inlet
boundary condition for the wake domain.

In the following chapter, the numerical setup of the wake domain is presented and a grid
independence study is conducted.
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4.5 Grid Independence Study

The grid convergence study is an important process in verifying that discrete numerical
solutions are valid representations of the physic involved in the phenomenon under in-
vestigation. Therefore, a grid independence study is performed according to the Fluids
Engineering Division of ASME [7]. The total pressure loss distribution as integral value
is taken into account to evaluate the discretization error.

4.5.1 Wake Numerical Setup

The respective CFD-simulation model of the wake region is illustrated in figure 4.9. The
inlet panel is located at the normalized x − coordinate = 1.14 to mitigate the influence
of vortex shedding [21], as it is an unstable region. In the inlet panel, the data set
that derives from the frozen approach is stored. The domain is set as periodic boundary
conditions in the pitchwise direction (y) as well as in the spanwise direction (z). The
characteristic measurement cut planes Cut1.5 and Cut2, which are located at 150% and
200% of the axial chord length, are used in order to analyze the outflow region,

Figure 4.9: CFD simulation model of the wake domain of NACA 65 linear compressor
cascade.

The simulations are performed by setting the following parameters:
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Table 4.5: Wake Domain Numerical Setup.
Spatial Discretization

Scheme Fromm Scheme

Limiter V anAlbadaSqr

Temporal Discretization
Solution Method PredictorCorrector

Boundary condition
Inlet Riemann

Outlet Steady2D

Turbulence
Turbulence Treatment (U)RANS

Turbulence Model Wilcox k − ω

Stagnation Point Anomaly Fix KatoLaunder

4.5.2 Grid Refinement Setups

According to the Fluids Engineering Division of ASME [7], three significantly different
sets of grids are selected. For each grid, the representative grid size h is determined as:

h =
[︄

1
N

N∑︂
n=1

∆Vi

]︄ 1
3

. (4.5)

As suggested by the Grid Convergence Method [7], the grid refinement factor r, which is
defined as

r = hcoarse

hfine

, (4.6)

should be greater than 1.3 based on experience. The following table resume the chosen
parameters within this case study:

Coarse(3) Average(2) Fine(1)
Grid Size h 6 · 10−4 3 · 10−4 2.1 · 10−4

N. of Cells 113 524 452 972 925 656
Grid Refinement Factor r21 1.42
Grid Refinement Factor r32 2

Table 4.6: Selected sets of Grids.
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4 RANS-Study of NACA65 cascade

The number of cells is referred to a domain with a span length of one cell and equidistant
grid, meaning that the cells in x-y plane have the same length and no refinements are
performed in areas with high gradients. It has been found out that TRACE solver [29]
does not properly work within this test case, as it created a significant velocity component
along the spanwise direction (z) for symmetric boundary condition, thus invalidating the
results. To fix the problem, a refinement of 9 cells along the spanwise direction (z) has
been achieved using periodic boundary conditions.

4.5.3 Wake Analysis

As key variable important to the objective of the study, the total pressure loss distribution
is considered in regards of the characteristic measurements cut planes. Within this thesis,
the total pressure loss is quantified by the total pressure loss coefficient ωloss, which is
defined as

ωloss = Pt,1 − Pt

Pt,1 − P1
(4.7)

with the inlet total pressure Pt,1, the static pressure at the inlet position P1 and the total
pressure Pt at the location of interest. The pressure loss distribution in the wake domain,
along the normalized y-coordinate, is presented in figure 4.10 for both characteristic planes
at Cut1.5 and Cut2.

(a) Cut1.5 (b) Cut2

Figure 4.10: Grid indipendence study: Pressure loss distribution over pitch (y/t) in the
wake region for the different grid cases.

It is evident that the grid convergence is achieved, as the total pressure loss coefficient is
aligned for every set of grid. Hereby, it is to mention that the outflow angles of all grid
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4.5 Grid Independence Study

cases do not show significant deviations. According to the Grid Convergence Method, the
error estimates are presented in tab, that are computed with the Richardson extrapolation
(RE) method [44] [46], along with the apparent order p. The total pressure loss coefficient
in integral values are taken into account to extrapolate these error estimates.

Table 4.7: Error estimates values for the Cut planes at 150% and 200%.
Cut plane at 150% Cut plane at 150%

Coarse(3) Average(2) Fine(1) Coarse(3) Average(2) Fine(1)
ωloss 0.045091 0.045094 0.045096 0.043689 0.043691 0.043692

p 3.65 0.44968
ϕ21

ext 0.0451 0.043697
e21

a 0.0045 0.002152
e21

ext 0.00169 0.012373
GCI21

fine 0.00211 0.015469

The table supports the evidence that the medium size grid delivers sufficient grid inde-
pendent results since the approximate relative error remains below 1% in total pressure
loss. Furthermore, in figure 4.11 is visualized the grid convergence where the extrapolated
value, which is the expected value for a finer grid, clearly shows that all the convergence
criteria are matched. Therefore, the medium size grid provides adequate results and it is
adopted as a valid representation within the following comparison with the LES simula-
tion.

(a) Cut1.5 (b) Cut2

Figure 4.11: Grid convergence curve: total pressure loss coefficient ωloss in integral val-
ues over total number of cells N for the different grid cases.
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4 RANS-Study of NACA65 cascade

4.5.4 Influence of the Prescribed Inflow Turbulence

Within this section, the sensitivity of employing different inlet turbulence intensity and
eddy length scale is conducted in regards of the total pressure loss coefficient ωloss.

The RANS simulations used within this case are shown in figure 4.12. The "frozen" setup
is the simulation that ensure the best fit in regards of the turbulence intensity decay of the
LES. The "frozen2" setup is chosen as it overestimates the turbulence intensity decay, while
the "frozen3" setup is used as it predicts a slower turbulence intensity decay compared
to the "frozen" setup. Figures 4.12(a) and 4.12(b) show the pressure loss distribution in
the wake domain along the normalized y-coordinate for both characteristic cut planes.
Results show that small deviations of inlet turbulent intensity and eddy length scale do
not affect the total pressure loss distribution as the slopes are aligned for the three cases.

(a) Cut1.5 (b) Cut2

Figure 4.12: Inflow turbulence sensitivity: total pressure loss coefficient ωloss over pitch
(y/t) in the wake region for the different grid cases.
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In the following, the comparison is conducted between RANS and LES simulations. Re-
garding RANS, the simulation in which Tu = 8 % and Lt = 0.000545455 m is taken into
account as the inflow turbulence intensity decay minimize the deviation with the LES
one. The study focuses on the total pressure loss coefficient ωloss, the strain rate tensor
Eij, the Reynolds stress tensor τij and its anisotropy in the wake region. The goal of this
comparison is to highlight the limitations and performance of the RANS simulation in
regards of the turbulence quantities and to provide a possible outlook for the development
of appropriate RANS model extensions or analysis.

5.1 Total Pressure Loss

As the total pressure loss is a critical parameter in turbomachinery design, figs. 5.1(a)
and 5.1(b) compare the wake profiles by LES and RANS for the two characteristic mea-
surement cut planes.

(a) Cut1.5 (b) Cut2

Figure 5.1: Total pressure loss coefficient over pitch (y/t) in the wake region for the LES
(Blue color) and RANS (Orange color).

Generally, the LES predicts wider wakes compared to the RANS, while the latter tend to
estimate a deeper total pressure deficit [27]. Within this research, as shown in figure 5.1,
the RANS predicts a deeper wake loss peak for both cut planes compared to the LES.

Regarding the total pressure loss coefficient distribution at Cut1.5 of the chord length,
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5 RANS-LES Results Comparison

the RANS simulation matches the LES wake width, mainly at the suction side, but
exhibits a higher peak deficit in the total pressure loss coefficient distribution. As the
wake progresses towards the outlet, at the second location, the RANS simulation predicts
a narrower wake compared to the LES case. A slightly lower deviation between the
peaks deficiencies between the RANS and the LES is presented compared to the previous
location.

Moreover, figure 5.2 displays the integral values of the total pressure loss coefficient for
both cut planes. The greater deviation at the second location suggests that the mixing
out of the wake in the LES case is faster than in the RANS simulation.

Figure 5.2: Integral values of the total pressure loss coefficient ωloss for the LES (Blue
color) and RANS (Orange color).

Despite the highlighted differences, the RANS performs well enough in predicting the
total pressure deficiencies.

5.2 Strain Rate Tensor

The strain rate tensor ˜︃Eij emerges in the mean viscous stress tensor σij and in the Reynolds
stress tensor τij in the RANS equations (3.33). As both terms are responsible of the change
in mean momentum and energy of a fluid element, the strain rate tensor is analysed in
depth since it may play a role in the deviation of the total pressure losses in the wake
region compared with the LES.

The strain rate tensor describes the rate of change of the deformation of a molecule and
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5.2 Strain Rate Tensor

it consists of a symmetrical matrix of six components. The strain rate tensor is rotated
with respect to the mean outflow angle of the wake, so as to proceed the analysis within
a streamwise Cartesian coordinate system, that is shown in figure 5.3.

Figure 5.3: Coordinate rotation over the velocity magnitude contour plot of the RANS
simulation.

As the velocity field along the principle axis 3 is negligible, the three components of the
principle strain rate tensor are

˜︃E3j ≈ 0, (5.1)

therefore, they are not considered within this analysis.

In fig. 5.4 and 5.5 the comparison of the strain rate tensor between the LES and RANS
is presented for both cut locations, where the pressure side (P.S.) and the suction side
(S.S.) are taken into account for the analysis.

The ˜︃E11 component is analyzed at the Cut1.5 position (fig. 5.4(a)), in which the RANS
simulation matches the slope of the LES. However, a small deviation is observable at the
pressure side location. At the second cut plane Cut2 (fig. 5.5(a)), the RANS simulation
shows a good alignment with the LES curve at the pressure side location. Nevertheless,
the behaviour of the first component it is not fully captured by the RANS at the suction
side location, as the RANS shows a narrower strain rate component compared to the
LES.

The second component ˜︃E22 is taken into account for both location. It is observable a
similar trend in respect of the previous component ˜︃E11. The RANS manifests a slightly
higher peak at the pressure side location for the first cut plane (figure 5.4(b)). On the
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5 RANS-LES Results Comparison

other hand, at the suction side location along the Cut2 (figure 5.5(b)), the RANS is not
able to properly predict the decay of the LES.

Finally, the shear strain ˜︃E12 component is also considered (figure 5.4(c)). At the first cut
location, a good alignment between both simulation is recognizable. As for the previous
components at the second cut plane (figure 5.5(c)), the suction side location is not fully
matched by the RANS, with a slightly lower peak compared to the LES.

Within this analysis, the k−ω model shows good alignment with the LES results, showing
only minor discrepancy between the slope of the LES wake decay at the suction side
location. The analysis is extended in regards of the Reynolds stresses in the following
chapter.

(a) ˜︃E11 (b) ˜︃E22

(c) ˜︃E12

Figure 5.4: Strain rate tensor components over pitch (y/t) in the wake region at 150% of
the axial chord length for the LES (Blue color) and RANS (Orange color).
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(a) ˜︃E11 (b) ˜︃E22

(c) ˜︃E12

Figure 5.5: Strain rate tensor components over pitch (y/t) in the wake region at 200% of
the axial chord length for the LES (Blue color) and RANS (Orange color).

5.3 Reynolds Stress Tensor

As the Reynolds stress tensor can be related to the total pressure (Bear et al. [3]), the
presenting chapter aims to provide a linkage between these two key variables in a turbulent
flow. The Reynolds stress tensor appears after the averaging process and it describes the
turbulent contribution to the mean flow, thus the change in mean momentum and energy
of a fluid particle equation (3.33). As for the strain rate tensor, the Reynolds stress is
rotated in respect of the mean outflow angle of the wake. The figures 5.6 and 5.7 compare
the diagonal Reynolds stress components ˜︁u′′

i u′′
i of LES and RANS at 150% (Cut1.5) and

200% (Cut2) of the axial chord length.

First, the ˜︁u′′
1u′′

1 component is taken into account at the first cut plane (figure 5.6(a)). As
for the total pressure loss, the RANS shows a narrower curve with a slightly lower peak at
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the pressure side location. As the wake progresses downstream to the second cut plane,
a greater deviation from the LES is observed, as illustrated in figure 5.7(a). Despite this,
the RANS does perform well in regards of the LES.

Second, the ˜︁u′′
2u′′

2 component shows a significant deviation between the two cases in Cut1.5
(figure 5.6(b)). While the LES shows one peak at the pressure side location, the RANS
predicts two peaks, with a much greater peak values at the suction side location that
contributes in increasing the total pressure losses. This behaviour is maintained in the
Cut2 (figure 5.7(b)), with a narrower wake spread compared to the LES.

(a) ˜︁u′′
1u′′

1 (b) ˜︁u′′
2u′′

2

(c) ˜︁u′′
3u′′

3

Figure 5.6: Diagonal Reynolds stress tensor components over pitch (y/t) in the wake
region at 150% of the axial chord length for the LES (Blue color) and RANS
(Orange color).

Finally, the third component ˜︁u′′
3u′′

3 highlights the fact that even if the case study is two-
dimensional, eddies are unsteady and three-dimensional as this components has significant
values compared to the others. While the wake width is well-matched, the RANS simula-
tion over-predicts the values that arise from LES for both peaks. At the second location
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5.3 Reynolds Stress Tensor

(figure 5.7(c)), the deviation between the two peaks persists and a narrower curve is
predicted by the RANS simulation.

(a) ˜︁u′′
1u′′

1 (b) ˜︁u′′
2u′′

2

(c) ˜︁u′′
3u′′

3

Figure 5.7: Diagonal Reynolds stress tensor components over pitch (y/t) in the wake
region at 200% of the axial chord length for the LES (Blue color) and RANS
(Orange color).

The Reynolds stress component ˜︁u′′
1u′′

2 is now taken in consideration in figure 5.8, as it
arises due to the existence of a mean velocity gradient. In this scenario, the transversal
fluctuations components feed the fluctuations that are aligned with the mean flow and
so in the other way around, leading to a phenomenon that amplifies the fluctuations in
the fluid flow. Along the Cut1.5, a significant deviation is presented, with the RANS
simulation predicting a lower peak at the pressure side location and a higher peak at the
suction side location compared to the LES. This trend is maintained at the second cut
location, showing a narrower curve spread. Furthermore, the LES captures the component
in the outer wake region, while the RANS fails to predict it. The reason is due to the
applied inlet boundary condition, as the turbulence kinetic energy k and specific turbulent
dissipation rate ω are the only turbulence quantities that are given, while no information
are provided in regards of the Reynolds stresses.
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5 RANS-LES Results Comparison

The two components ˜︁u′′
1u′′

3 and ˜︁u′′
2u′′

3 are negligible compared to the previous components
and therefore not considered.

(a) Cut1.5 (b) Cut2

Figure 5.8: Non-diagonal Reynolds stress tensor component ˜︁u′′
1u′′

2 over pitch (y/t) in the
wake region for the LES (Blue color) and RANS (Orange color).

5.4 Reynolds stress anisotropy

To get a better overall understanding of the turbulence state and its development in the
wake region, figure 5.9 shows the componentality contours of the LES cascade. Afterwards,
the comparison of the wake domain is presented between RANS and LES in figure 5.10(a)
and 5.10(b), respectively. To do so, the methodology of Emory and Iaccarino (2014) [12]
is used, by mapping the weights Cic of the barycentric map to the RGB channels.

In figure 5.9, the LES inflow is characterized by an isotropic 3C turbulence state, indicated
by blue color, which is consistent with the applied turbulent boundary conditions (STG).
As the flow enters the passage, a shift from an isotropic 3C state to a slightly more 2-
component turbulence flow (darker blue) is presented because of the imposed curvature.
Within compressor application, the fluid flow is decelerated in the passage, implying that
the mean velocity gradient does not promote the production and the redistribution of the
turbulent fluctuations, as in turbine applications (Fard Afshar, Deutsch et al [2]).

At the leading edge, the redistribution effect of the incoming freestream 3C isotropic
turbulence (Xiong and Lele, 2007)[56] leads to 2C region directly above the 1C layer next
to the wall, mainly at the suction side of the blade (green color, region 1⃝). The boundary
layer is dominated by 1C component, highlighted by the red color. The 1C layer spans
from near leading edge to the separation point, where a redistribution of the fluctuations
is detectable near the trailing edge, indicated by the green color (region 2⃝).
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5.4 Reynolds stress anisotropy

Figure 5.9: Componentality of Reynolds stress anisotropy tensor for the LES cascade.

(a) RANS

(b) LES

Figure 5.10: Componentality of Reynolds stress anisotropy tensor in the wake domain
for the RANS (a) and LES (b).
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In figure 5.10 the comparison is illustrated. It is observable that the RANS simulation
fails to predict the redistribution of the 3C isotropic component of the freestream. This
is consistent with the previously analyzed Reynolds stress component ˜︁u′′

1u′′
2, as the RANS

does not fully capture the two fluctuation components in the freestream (figure 5.10(a)).

The center wake area (region 3⃝) is characterized by 3C turbulent state. Within the LES,
the center wake is wider compared to the RANS simulation. This is in agreement with the
total pressure loss distribution, as the RANS simulation predicts a narrower and greater
peak, in contrast with the LES.

Another area of interest is the zone 4⃝ as it is directly connected to the boundary layer
development. By moving along the perpendicular direction of the the streamwise direction
from the center wake towards the freestream region, the LES shows a blue color that shifts
towards a darker blue, promoting a shift to a more anisotropic 2 component. Subsequently,
the separation layer leads to a greater 2C turbulence state, that is consistent with the
previous analyzed region 2⃝. The isotropy is reinstated once the wake encounters the
freestream. As the wake progress further downstream, the anisotropy switches to a lighter
blue due to the mixing out of the wake with the freestream. On the other hand, the RANS
simulation predicts a significant 2C turbulence state shift (yellow-green color) from the
isotropic 3C turbulent, especially near the outer wake region, and it is maintained towards
the outlet. Hence, it is consistent with the total pressure loss distribution, along with the
Reynolds stress tensor, as the decay of the wake is slower compared to the LES.
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The work presented here focuses on the performance of RANS turbulence model regarding
the mixing process of the turbulent wake flow of an high-pressure-compressor cascade.
Hereby, the results have been compared with an high fidelity data LES simulation. In
order to compare and evaluate the RANS results, an inlet boundary condition study has
been conducted to find an adequate turbulence inflow, and thus ensure similar operating
conditions in regards of the LES data. Afterwards, the "Frozen approach" has been
employed for computing the ω transport equation and by preserving the LES flow field.
This operation has been carried out to extract the inlet panel for the wake domain. A grid
independence study has been performed in order to provide adequate result validations.
Consequently, the influence of the prescribed inflow turbulence has been studied, showing
that different turbulent intensity and eddy length scale only affect the total pressure loss
peak by a negligible deviation. The comparison between the RANS and LES simulations
is conducted by analyzing and relating the turbulence quantities with the total pressure
losses distribution. The investigation reveals that RANS agrees well with the total loss
trends shown by the LES, exhibiting only minor discrepancy in the center wake and on the
curve width, but not in an extent that would compromise the design processes. Moreover,
the strain rate tensor has been analyzed within a streamwise Cartesian coordinate system,
showing that the RANS is able to capture every component, despite a small variation in
predicting the slope at the suction side location as the wake develops further downstream.
The analysis has been extended in regards of the Reynolds stresses. Results show that the
RANS simulation is able to predict the first diagonal component of the Reynolds stress
tensor according to the LES, but it fails to accurately reproduce all the others. Mainly,
the ˜︁u′′

2u′′
2 and ˜︁u′′

3u′′
3 are responsible for the deviation of the total pressure loss distribution

between the RANS and LES simulations. On one hand, the RANS simulation predicts a
double peak curve in regards of the ˜︁u′′

2u′′
2 component, while the LES shows only one peak.

On the other hand, the ˜︁u′′
3u′′

3 is significantly over-estimated by the RANS simulation. To
get a better overview of the Reynolds stress tensor, its anisotropy has been visualized
with the the Emory and Iaccarino (2014) color map assignment applied on the baricentric
map of Banerjee et al. (2007). The RANS simulation shows a significant 2C turbulence
state, especially in the wake region near the freestream, that is conserved towards the
outlet, while the LES detects a 2C turbulent state that shifts to a more 3C isotropic state
as the wake develops along the streamwise direction.

In conclusion, the k − ω model is capable of predicting the total pressure loss and the
strain rate tensor, thus the mean viscous stress tensor. On the contrary, the turbulence
state shows discrepancies with the LES and it is not able to accurately reproduce the
Reynolds stress tensor and its anisotropy. Therefore, the small deviations in the mixing
out of the wake and total pressure loss distribution are likely connected to the differences
in the Reynolds stresses.

This research opens to the possibility of investigating the wake by using the Reynolds
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stress transport models or the explicit algebraic Reynolds stress models (EARSM) and
compare the results with the standard k −ω model. Moreover, the present study provides
a possible guidance for future model extensions of standard eddy viscosity models, as it
highlights the main deficiencies of the model in reproducing proper turbulent topology in
the wake region.
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