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Abstract

Quantum error-correcting codes offer a solution to mitigate quantum noise, which is inherent to
quantum mechanics, and therefore they enable reliable quantum computation. Among these codes,
quantum low-density parity-check codes are promising candidates for future quantum error correcting
codes due to their ability to provide fault tolerance with constant overhead and recent advancements
in designing asymptotically good quantum low-density parity-check codes.

A notable challenge in implementing quantum low-density parity-check codes for practical quantum
computers is the absence of a universal decoder that delivers good decoding performance across various
quantum low-density parity check codes.

Among the proposed solutions, the neural belief propagation decoder, leveraging machine and deep
learning techniques, emerges as a promising approach [1]. Neural belief propagation generalizes be-
lief propagation decoding by incorporating trainable weights optimized through supervised learning,
thereby accelerating the decoding process and enhancing accuracy in quantum error correction.

In this thesis, we explore the application of machine learning and deep learning techniques in quantum
error correction, focusing specifically on the toric code that is typically decoded using the minimum
weight perfect matching algorithm. This algorithm has a worst-case complexity O(n3) (where n is
the number of qubits), and is considered to be too complex for a practical decoder. In particular,
we investigate the quaternary neural belief propagation decoder proposed by Miao et al. [2] which
has linear complexity in n and we introduce techniques such as residual connections, weight-sharing,
higher weight overcomplete check matrices, and weight reuse to potentially improve the decoder’s
performance.

Our results demonstrate that some of these techniques (the use of weight-sharing and higher weight
overcomplete check matrices) can lead to a significant performance improvement for small systems.
In particular, for L = 4 and L = 6 we can largely outperform the minimum-weight perfect matching.
However, these gains decrease as L increases, and they are negligible for L ⩾ 10. Furthermore,
reusing the weights trained for a small toric code with larger toric codes significantly improves the
performance with respect to standard belief propagation, although it fails to reach the performance
of minimum-weight perfect matching.
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Chapter 1

Introduction

1.1 Motivation

The idea of computers that use the laws of quantum mechanics was introduced the first time by
Feynman in 1982, in order to simulate quantum systems which are exponentially hard to simulate on
classical computers [3]. Since then, the field of quantum computing has been subject to considerable
progress, and today we know that quantum computers can provide a speed up compared to classical
ones for other relevant problems. The best example is probably Shor’s algorithms [4], which can provide
an exponential speedup compared to the best known classical factoring algorithm. This technology
presents the potential to speed up algorithms that classically are computationally hard in terms of
computational complexity. Therefore, novel quantum processors could improve different applications
related to cryptography, optimization, or basic science, for example, all fields that have a huge impact
in modern society. However, this new technology presents different obstacles that must be overcome
in order to achieve the theoretical promised results. One of the main challenges is related to quantum
noise, which is intrinsic in quantum mechanics. In fact, the qubits that constitute quantum computers
are prone to suffer from errors (which can have many origins such as decoherence or imperfect gates,
for instance, [5]) implying that the computations being performed are inaccurate.

Quantum Error Correcting Codes (QECC) provide a solution to face this challenge and enabling
reliable quantum computation consequently. Quantum Error Correction (QEC) was demonstrated to
be possible theoretically when the 9-qubit Shor code was proposed in 1995 and generalized afterwards
with the theory of Quantum Stabilizer Codes (QSC). From that point on, the field of QEC has
advanced significantly, and different families of QECC have been proposed, such as topological codes
and Quantum Low-Density Parity-Check (QLDPC) codes. In particular, the latter ones are among the
most promising canditates for future QEC due to the fact that they display the potential of providing
fault-tolerance with constant overhead and the recent breakthroughs in designing asymptotically good
QLDPC.

The lack of a universal decoder that provides good decoding performances across a wide range of
QLDPC codes is one of the most notable challenges that the implementation of QLDPC for practical
quantum computers faces. Two main families of potential decoders have been explored in the litera-
ture. The first family consists of graph-theory-based decoders, such as the Minimum Weight Perfect
Matching (MWPM) decoder, which is commonly used for topological codes even if it is not optimal
in that it has a worst-case complexity O(n3) (where n is the number of qubits). The second family
is the class of message-passing decoders such as the belief propagation decoder or its low-complexity
variant, the min-sum (MS) decoder. Belief Propagation (BP) works by iteratively passing messages
between the so-called variables and check nodes in the code, and updating their probabilities based
on the received messages. In this case, the decoding complexity is linear with respect to the block
length and the number of decoding iterations. Although message passing decoders exhibit excellent
performance for classical Low-Density Parity-Check (LDPC) codes thanks to the condition that the
Tanner Graph has no short cycle, the performance deteriorates for QECC due to the unavoidable
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2 CHAPTER 1. INTRODUCTION

presence of length 4 cycles [6].

Among the several methods that have been proposed to address this problem, the neural belief prop-
agation decoder, based on machine and deep learning techniques, is one of the most promising [1].

Neural Belief Propagation is a generalization of BP decoding in which the messages passed between
variable and check nodes are multiplied by (trainable) weights that can be optimized relying on
supervised learning.

Neural Belief Propagation for quantum error correction codes offers significant advantages. Primarily,
it significantly reduces the computational cost of the decoding procedure. Traditional QECC tech-
niques can be expensive in terms of computation and resources, but the application of neural networks
can overcome this issue by accelerating the decoding process. Furthermore, NBP can lead to higher
accuracy in decoding QECCs. Neural networks have the ability to learn and capture correlations
between quantum errors, enabling them to handle even large-scale quantum systems more effectively.
This ability to recognize complex error patterns contributes to improved decoding performance, po-
tentially surpassing traditional methods in both speed and accuracy. Finally, NBP has linear decoding
complexity (as BP) and this could be really advantageous.

This thesis is driven by the need to advance quantum error correction techniques beyond conventional
methods. The focus is on investigating the potential of neural belief propagation in the context
of quantum error correcting codes. This approach merges two powerful concepts: the adaptability
and learning capabilities of neural networks and the probabilistic reasoning of belief propagation
algorithms.

The primary objective is to develop a system that is capable of accurately detecting and identifying
quantum errors that may arise during quantum computations. This system will utilize advanced deep
learning methodologies to ensure the precise recognition of various types of errors, thereby enhancing
the reliability and performance of quantum information processing. In particular, we start with the
quaternary neural belief propagation decoder (NBP4) proposed in [2]1 and we introduce the following
deep learning techniques to improve the performance of the decoder itself:

• Residual Connections: This is a deep learning framework where the weight layers are designed
to learn residual functions in relation to the inputs of the layers. This allows information to
bypass one or more layers, facilitating direct data transfer from earlier layers to later ones.

• Weight-Sharing : This fundamental concept in convolutional neural networks significantly en-
hances their efficiency and performance. It refers to the practice of using the same set of weights
(filter) across different spatial locations in the input data, allowing the network to learn features
in a more efficient manner.

• Weights Reuse: This technique involves training our model for a fixed system size and subse-
quently applying the obtained weights to systems of different sizes (whether larger or smaller) by
leveraging the symmetry introduced by the application of the weight-sharing filter. This leads
to significant savings in both time and computational costs (in fact training NBP is complex for
very large systems), as we need to train only one system.

In addition to this, we utilized the overcomplete check matrices proposed in [2]. In particular, overcom-
plete check matrices are distinguished by the inclusion of supplementary redundant rows in addition to
the initial full-rank check matrix. The quaternary belief propagation algorithm can be implemented
on the Tanner graph corresponding to these overcomplete check matrices. In the work of Miao et
al. [2], they used overcomplete check matrices with weight 6. In this thesis, we have increased the
weight to 8 in an attempt to obtain improved performance.

By exploring this intersection of machine & deep learning and quantum information theory, we seek
to overcome the limitations of traditional error correction methods. In particular, our challenges are

1In this thesis, we have used (and modified) the code proposed in [2], whose source can be found at https://github.
com/kit-cel/Quantum-Neural-BP4-demo.
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to get good performances for the NBP and to reduce the complexity of the training for large systems.
The goal is to contribute to the development of more robust and scalable quantum computing systems,
potentially paving the way for practical, large-scale quantum applications.
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1.2 Existing Work

Although the application of neural networks for decoding algorithm is a well-established approach
for several years, NBP is quite new for decoding QECC. In this chapter a state of art’s overview is
presented in order to underline the most important discoveries in this field.

In 2016, the field of error correction in communication systems experienced a significant breakthrough
with the publication of Nachmani et al.’s seminal work [1]. This innovative research marked a pivotal
moment by introducing deep learning techniques to address challenges in error correction algorithms.
Conventional error correction methods, particularly the belief propagation algorithm, had consis-
tently struggled with the complexities of high-dimensional data and intricate error patterns. These
traditional approaches often relied on manually designed error models and heuristics, which have
difficulties in fully encapsulating the interdependencies and correlations inherent in real-world com-
munication channels. The approach in [1] utilized the capabilities of deep neural networks, offering a
fresh perspective on error correction. Their method demonstrated remarkable improvements in both
accuracy and efficiency compared to the standard BP algorithm. Crucially, these enhancements were
achieved without incurring additional computational complexity, a factor that had previously limited
the practical application of more sophisticated error correction techniques.

A significant progress in quantum error correction’s field can be found in Poulin et al.’s NBP decoders
studying [7]. In this work, published in 2019, a new approach based on the combination between
neural networks and BP is presented, which led to higher accuracy and efficiency of error correction
in quantum system. Indeed, the union between NBP algorithms that leverage graphical models to
perform probabilistic inference and optimize error correction, and neural networks allows to capture in-
tricate correlations and dependencies in quantum error patterns with improvements in error correction
capabilities consequently.

Poulin et al. proposed the implementation of enhanced NBP for quantum error correction with the
introduction of a new loss function that takes into account error degeneracy. Furthermore, they
introduced weight sharing and soft weight techniques for toric codes in order to study the scalability
of the approach to larger quantum systems. Finally, they explored some potential enhancements for
the optimization of error correction performances.

Miao et al.’s is one of the most recent works in quantum error correction field which brought a signifi-
cant advancement [2]. In this research, they initially suggested using a belief propagation decoder that
functions on overcomplete check matrices to interpret QLDPC codes. Subsequently, they extended the
scope of the neural NBP decoder, which was originally examined for suboptimal binary BP decoding
of QLPDC codes, to encompass quaternary BP decoders. The outcome of their numerical simulations
illustrate that both methodologies, as well as their integration, produce a swift and highly effective
decoder for various QLDPC codes ranging from short to moderate lengths.

Recent research into NBP for quantum error correction has yielded encouraging outcomes across a
spectrum of quantum error-correcting codes. These studies have introduced diverse neural network
structures and training approaches for NBP, demonstrating enhanced decoding capabilities compared
to alternative quantum error correction methods. Nonetheless, the field still faces numerous unre-
solved issues and hurdles. Key areas requiring further investigation include refining neural network
architectures to better suit quantum error correction tasks and developing more efficient training pro-
tocols, particularly for large-scale quantum systems. These ongoing challenges underscore the need
for continued research and innovation in the application of NBP to quantum error correction. As the
field progresses, addressing these open questions could potentially lead to significant advancements in
the reliability and efficiency of quantum computing systems.
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1.3 Outline of this Thesis

The application of machine learning and deep learning techniques to enhance the decoding performance
of quantum codes represents a concrete and promising possibility. In particular, the NBP algorithm has
already demonstrated more than satisfactory results comparable to MWPM. The primary objective
of this thesis is to explore the extension of neural belief propagation from the binary case to the
quaternary case, as proposed in [2]. In doing so, we aim to incorporate advanced artificial intelligence
techniques to enhance the performance of this framework, for achieving significant improvements in
the accuracy and efficiency. The thesis is structured as follows:

• Chapter 1 : Introduction, this chapter offers a summary of the motivation and context for
utilizing NBP in Quantum Error Correction Codes. It also outlines the goals of the thesis and
highlights some pertinent research in the field.

• Chapter 2 : Quantum Error Correction, this chapter provides a concise overview of the fun-
damental concepts of quantum computing and information. The chapter begins with a brief
introduction to the core principles of quantum information and computing. Following this, it
presents the mathematical formalism used to describe quantum error correcting codes and the
various operations that can be performed on them.

• Chapter 3 : Classical Decoding Algorithms, this chapter provides the basics of classical error-
correcting codes, it explains how these codes can detect and correct errors in classical information.
In particular it delves into the explanation of the quaternary belief propagation.

• Chapter 4 : Neural Networks & Deep Learning Techniques, this chapter details the extension
of the NBP framework to the quaternary belief propagation decoder and describes the deep
learning techniques adopted in this thesis in order to try to improve the performances.

• Chapter 5 : Numerical Results, this chapter details the training and test procedure applied for
the neural belief propagation. Furthermore it discusses the results obtained and it compares
them with the literature´s ones.

• Chapter 6 : Conclusions, this chapter summarizes the main findings and contributions of the
thesis.





Chapter 2

Quantum Error Correction

In this chapter, we provide a concise overview of the fundamental concepts of quantum computing and
information. We begin with a brief introduction to the core principles of quantum information and
computing. Following this, we present the mathematical formalism used to describe quantum error
correcting codes and the various operations that can be performed on them.

2.1 Classical Information

In classical information theory, the bit serves as the fundamental unit of information, represented by
elements of the set {0, 1} ∈ Z2. The physical state of a classical system can manifest itself in two
distinct forms:

1. A deterministic state, represented by either |0ð ï0| or |1ð ï1|.
2. A probabilistic state, described by q |0ð ï0|+ (1− q) |1ð ï1|, where q ∈ R and 0 < q f 1.

In the case of a probabilistic state, the system exhibits uncertainty. This uncertainty is quantified
by the probability q of finding the system in state |0ð ï0|, and consequently, a probability (1 − q) of
it being in state |1ð ï1|. It’s important to note that this uncertainty is a reflection of our knowledge
about the system, rather than an inherent property of the system itself.
The sole single-bit operation in classical information theory is the bit-flip, which operates as follows:

0 → 1

1 → 0

In the context of classical information, noise typically transitions the system from a deterministic state
to a probabilistic state.

Building upon our understanding of classical bits and their states, we can now explore the concept of
computation in classical information theory. Computation is the process of manipulating multiple bits
through specific mappings. More formally, it consists of logical operations that act on one or more
bits simultaneously. When we model computation by means of a circuit, the devices that carry out
logical operations are known as logical gates. It is important to note that while we typically represent
computational operations as mappings between deterministic states, real-world scenarios often involve
uncertain states. Thus, in practice, computations map one probabilistic state to another.

7



8 CHAPTER 2. QUANTUM ERROR CORRECTION

2.2 Quantum Information

In the realm of quantum information, the state of the system is represented by a quantum state, a
normalized vector in a two-dimensional Hilbert space, denoted H2. We express this as:

|Èð ∈ H2, such that ïÈ|Èð = 1 (2.1)

The standard basis for quantum information is known as the computational basis, comprising {|0ð , |1ð}.
Any system state can be expressed as a linear combination (superposition) of these basis states:

|Èð = ³ |0ð+ ´ |1ð , where ³, ´ ∈ C and |³|2 + |´|2 = 1 (2.2)

Given that the global phase is physically irrelevant, we can choose ³ to be real and non-negative.
This, combined with the normalization condition |³|2+ |´|2 = 1, allows us to represent the qubit state
as:

|Èð = cos

(

¹

2

)

|0ð+ eiϕ sin

(

¹

2

)

|1ð (2.3)

where 0 f ¹ f Ã and 0 f ϕ < 2Ã. The parameters ¹ and ϕ can be interpreted as spherical coordinates,
giving rise to a unit sphere in R

3 known as the Bloch sphere (illustrated in Fig. 2.1). Each point on
the Bloch sphere, characterized by the unit vector n⃗ = (sin ¹ cosϕ, sin ¹ sinϕ, cos ¹), corresponds to a
unique qubit state. It is noteworthy that antipodal points on the Bloch sphere represent orthogonal
states.

Figure 2.1: Bloch sphere representation of a qubit state.

The Bloch sphere representation can be extended to encompass mixed states as well. Any density
operator ρ in a two-dimensional Hilbert space can be expressed as:

ρ =
1

2
(I+ r⃗ · Ã⃗) (2.4)

where I denotes the identity matrix, r⃗ = (rx, ry, rz) ∈ R
3 is a real vector, and Ã⃗ = (σx,σy,σz) is the

vector of Pauli matrices.

The Pauli matrices, which are fundamental to this representation, also play a crucial role in quantum
computing, as quantum gates, the building stones of quantum circuits. Quantum gates, represented
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as matrices, are operations that transform the state of qubits, enabling the execution of quantum
algorithms and computations. These matrices represent essential operators used in quantum error
correction and quantum circuit operations. As concern the Pauli’s ones, they are defined as:

X ≡ σx =

(

0 1
1 0

)

, Y ≡ iσy =

(

0 −i
i 0

)

, Z ≡ σz =

(

1 0
0 −1

)

(2.5)

Each of these matrices corresponds to a specific type of quantum gate:

• The Pauli-X gate (bit-flip)

• The Pauli-Y gate (bit-phase-flip)

• The Pauli-Z gate (phase-flip)

These gates, along with others like the Hadamard gate and the CNOT gate, form the building blocks
of quantum circuits. They enable the execution of quantum algorithms by transforming the state of
qubits. The effect of these Pauli operators on a generic single qubit state in superposition (³|0ð+´|1ð)
can be described as:

X(³|0ð+ ´|1ð) = ³|1ð+ ´|0ð (2.6)

Y (³|0ð+ ´|1ð) = i(³|1ð − ´|0ð) (2.7)

Z(³|0ð+ ´|1ð) = ³|0ð − ´|1ð (2.8)

These transformations correspond to specific movements on the Bloch sphere, reinforcing the connec-
tion between the abstract mathematical representation and the geometric visualization provided by
the Bloch sphere.

The Pauli matrices exhibit two fundamental properties: Hermiticity and Unitarity.

Hermiticity: Each Pauli matrix is self-adjoint, which means it is identical to its own conjugate
transpose. Mathematically, we express this as:

A = A (2.9)

where A denotes the Hermitian conjugate (also called the adjoint or conjugate transpose) of matrix
A.

Unitarity: The Pauli matrices are also unitary, a property that implies the inverse of a matrix is
equal to its Hermitian conjugate. We can represent this mathematically as:

A A = AA = I (2.10)

where I represents the identity matrix.

An intriguing property emerges when we multiply Pauli matrices: the product of any two distinct
Pauli operators yields another Pauli operator, disregarding a phase factor of i (the imaginary unit).
This relationship can be summarized as follows:

XY = iZ Y X = −iZ (2.11)

Y Z = iX ZY = −iX (2.12)

XZ = iY ZX = −iY (2.13)

These multiplication rules highlight the cyclic nature and interrelationships among the Pauli matrices,
which are fundamental to their application in quantum mechanics and quantum computing.
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2.3 Stabilizer Formalism

In this section, we aim to leverage the properties just discussed to construct a more comprehensive
code for n qubits, known as the stabilizer code. To establish the stabilizer formalism, we must first
introduce the Pauli group.

Definition 2.3.1. The Pauli group, P1, is the group consisting of the 2 × 2 identity matrix, I, and
the Pauli matrices together with the product of these matrices with the factor −1, which are

P1 ≡ {±I,±X,±Y ,±Z}

where X, Y , and Z are defined in Equation 2.5.

It is worth noting that the Pauli group has an order of eight, |P1| = 8, indicating that it contains
eight elements. These elements are interconnected through the commutation relations of the Pauli
matrices:

[X,Y ] = 2iZ

[X,Z] = −2iY

[Y ,Z] = 2iX

When we consider the n-fold tensor product of the Pauli group, we obtain another group, denoted as
Pn:

Pn ≡ {±I,±X,±Y ,±Z}¹n ≡ {±G³⃗}
For concise notation, we define G³⃗ = σ³1

¹ · · · ¹ σ³n
where σ³1

= I, σ³2
= X, σ³3

= Y , and
σ³4

= Z.

Some notable properties of the group Pn include:

• Its order is |Pn| = 2 · 4n = 22n+1

• Any element G³⃗ ∈ Pn satisfies G2
³⃗ = I and G

 
³⃗
G³⃗ = I

• For any two distinct elementsG³⃗,G⃗́ ∈ Pn, they either commute ([G³⃗,G⃗́] = 0) or anticommute

({G³⃗,G⃗́} = 0). In the case of commutation, they also share a common eigenbasis.

The weight w of a Pauli operator Pn is the number of non-identity components in the tensor product.

Having examined the Pauli group and its generalization to n qubits, we can now proceed to define the
stabilizer code.

Definition 2.3.2. Let S be an abelian1 subgroup of Pn. A stabilizer code, C, is defined as:

C ≡ {|Èð | S |Èð = |Èð ∀S ∈ S}

We refer to S as the stabilizer (group) of the code, and the elements S ∈ S as stabilizer operators of
the code. The stabilizer group completely characterizes the code.

It’s important to note that stabilizer operators do not generally exhibit linear independence. The
concept of linear independence is traditionally associated with vector spaces rather than groups. In
our context, when we discuss linear independence, we’re actually referring to a mapping of elements
from Pn onto the vector space (Z2)

2n. This mapping is defined as:

φ :
(

Pn

Z2
; ·
)

−→ (Z2)
2n

1A group is abelian if all its elements commute, i.e., [S1, S2] = 0 ∀Si ∈ S.
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Once this mapping is established, we can apply the notion of linear independence within (Z2)
2n. This

concept has a straightforward interpretation for elements of Pn: two elements are considered linearly
independent if their product does not belong to Pn. It is worth noting that any product of these
elements remains within the group.

To simplify our approach, we aim to identify the smallest set of elements capable of generating the
entire stabilizer group. We refer to these as the generators of the stabilizer group. More precisely, the
generators are a set of operators {Sj}mj=1, Sj ∈ S, which are both mutually commuting and linearly
independent. This formulation leads to an important result: the stabilizer code contains k = n −m

logical qubits. In other words, the code space C has a dimension of 2k.

Example 2.3.1. Consider the Shor code represented by nine qubits. The stabilizer group is generated
by eight operators, denoted as S = ï{Sk}8k=1

ð, which can be expressed as follows:

S1 = Z1Z2, S2 = Z2Z3, S3 = Z4Z5,

S4 = Z5Z6, S5 = Z7Z8, S6 = Z8Z9,

S7 = X1X2X3X4X5X6, S8 = X4X5X6X7X8X9.

We can derive additional stabilizer operators by multiplying any two generators of the stabilizer group:

S1S2|ϕð = Z1Z3|ϕð = Z1Z3(³|0̄ð+ ´|1̄ð) = Z1Z3(³|+++ð+ ´| − −−ð) =

= Z1(³| −++ð+ ´|+−−ð) = (³|+++ð+ ´| − −−ð) = |ϕð,

where |0̄ð, and |1̄ð are defined as the logical qubits of the Shor code:

|0̄ð = 1√
23

(|000ð+ |111ð) (|000ð+ |111ð) (|000ð+ |111ð)

|1̄ð = 1√
23

(|000ð − |111ð) (|000ð − |111ð) (|000ð − |111ð) .

while for |±̄ð it is easy to see that the structure of the logical qubits consists of three chunks of three
qubits each. If we focus on a single chunk, we can interpret it as a logical ± of the classical repetition
code, i.e.:

|±̄ð = 1√
2
(|000ð ± |111ð) .

Therefore, we conclude that S1S2|ϕð = |ϕð, which indicates that S1S2 ∈ S.

Let us examine a state |Èð within the code space C, and an operator T that commutes with all stabilizer
operators, such that [T, Sk] = 0 ∀ Sk ∈ S. We can demonstrate that the state T |Èð also resides in the
code space through the following sequence:

T |Èð = TSk|Èð = SkT |Èð
⇒ SkT |Èð = T |Èð
⇒ T |Èð ∈ C

Furthermore, we designate T as a logical operator because it maps a state in the code space, |Èð ∈ C,
to another state2 within the same code space, |È′ð ∈ C. It is important to note that this property does
not hold when T anticommutes with the stabilizer operators.

2Stabilizer operators are not logical operators because they map a state in the code, |ψð, to itself, not to another
state.
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Example 2.3.2. Consider the Shor code on nine qubits. Its logical operators are defined as follows:

X̄ = X1 ·X9 =
9
∏

j=1

Xj and Z̄ = Z1 ·Z9 =
9
∏

j=1

Zj , (2.14)

where [X̄, Z̄] = 2Ȳ . We are interested in the effect of these operators on the logical qubits, which is
given by:

X̄|0̄ð = |1̄ð, Z̄|0̄ð = |0̄ð,
X̄|1̄ð = |0̄ð, Z̄|1̄ð = −|1̄ð,

where |0̄ð and |1̄ð are the logical qubits of Shor code. Thus, the operators X̄ and Z̄ are the logical
Pauli operators X and Z.

Consider a state |Èð ∈ C. We can demonstrate that any operator of the form X̄Sk also functions as
a logical operator, as it maps |Èð ∈ C to another state |È′ð ≡ X̄|Èð ∈ C. This can be illustrated as
follows:

X̄Sk|Èð = X̄|Èð = |È′ð ∈ C
This property leads to an important observation: logical operators are not uniquely defined. In fact,
there exists a class of equivalent logical operators that produce the same effect on the code space.

Example 2.3.3. Consider the Shor code on nine qubits. More logical operators apart from X̄ and Z̄

(Eq. 2.14) would be:
X̄S8 = X1X2X3,

X̄S2 = X1Y 2Y 3X4X5X6X7X8X9

It can be demonstrated that the minimum weight of all logical operators corresponds to the code’s
distance. This is intuitive because a logical operator transforms one logical state into another. Con-
sequently, the minimum length of a logical operator represents the fewest number of qubit operations
required to map between two distinct logical states. In fact, this is the definition of the code’s distance.

Let us consider a general error of the form E = exX + eyY + ezZ, we can correct errors X, Y , and Z

individually. For an error E³ ∈ Pn, it either commutes or anticommutes with the stabilizer operators.
We can analyze these cases as follows:

• If the error commutes with a stabilizer operator S:

SE³|Èð = E³S|Èð = E³|Èð

• If the error anticommutes with a stabilizer operator S:

SE³|Èð = −E³S|Èð = −E³|Èð

In other words, for |Èð ∈ C, the state E³|Èð is an eigenvector of the stabilizer operators. The corre-
sponding eigenvalue is +1 if [E³, S] = 0 (commutation) and −1 if {E³, S} = 0 (anticommutation).
This property enables the stabilizer to function as a parity check, effectively detecting errors by mea-
suring these eigenvalues.
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2.4 Sympletic and Quaternary Representations

To construct a valid stabilizer code, it is essential to determine the stabilizer group S, which is an
Abelian subgroup of Pn. This task can be converted into a classical coding problem by mapping Pauli
errors to binary strings as follows:

Pn 7→
(

x1 · · ·xn | z1 · · · zn
)

=:
(

pX | pZ
)

where Pi = XxiZzi . Pauli errors A and B in Pn commute if the symplectic product of their corre-
sponding binary strings (aX | aZ) and (bX | bZ) equals zero, i.e.,

n
∑

i=1

aX,i · bZ,i +
n
∑

i=1

aZ,i · bX,i = 0 (2.15)

where the addition is performed in the binary field (modulo 2). Consequently, a stabilizer code can be
derived from a [2n, k] classical binary code, represented by its full-rank parity-check matrix (PCM)
H=

(

HX | HZ

)

with dimensions m = 2n− k by 2n, satisfying the symplectic condition:

HXHT
Z +HZH

T
X = 0 (2.16)

Calderbank–Shor–Steane (CSS) codes represent a specialized class of stabilizer codes characterized by
a parity check matrix of the form:

H =

(

H ′
X 0
0 H ′

Z

)

(2.17)

In this structure, 2.16 is satisfied when H ′
XH ′T

Z = 0, which simplifies the code construction process.

To simultaneously decode the four types of Pauli errors, it is advantageous to consider the quater-
nary form of H, denoted as S ∈ GF(4)m×n, where the Galois Field GF(4) consists of the elements
{0, 1, É, É} which are linked to the Pauli operators by the following map:

I → 0 X → 1 Z → É Y → É

To properly adopt this representation the sum and product in GF(4) are reported in Tables 2.1 and
2.2.

+ 0 1 É É

0 0 1 É É

1 1 0 É É

É É É 0 1
É É É 1 0

Table 2.1: Addition Table in GF(4).

× 0 1 É É

0 0 0 0 0
1 0 1 É É

É 0 É É 1
É 0 É 1 É

Table 2.2: Multiplication Table in GF(4).

Based on this isomorphism, multiplying Pauli operators is equivalent to adding them over GF(4).
Additionally, since Pauli operators are mapped to a quaternary symbol, it is feasible to express the
PCM as a quaternary matrix.

In light of these considerations, the matrix H (Eq. 2.17) can be transformed into S by mapping
binary vectors to vectors over GF(4) as follows:

(

x1 · · ·xn | z1 · · · zn
)

7→
(

p1 · · · pn
)

=: p with pi = xiÉ + ziÉ.
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We can then verify that for Pauli errors A and B, mapped to vectors a and b over GF(4), equation
2.15 is equivalent to:

ïa, bð =
n
∑

i=1

ïai, bið = 0, (2.18)

where ï·, ·ð denotes the trace Hermitian inner product over GF(4), which is defined as tr(a · b), with
b being the conjugate of b and a · b representing the Hermitian inner product of a and b. The trace
operation yields the following results: tr(É) = tr(É̄) = 1 and tr(0) = tr(1) = 0. According to [9] it is
also important to underline that two operators in the set of stabilizers commute if the inner product
of their images, the vectors over GF(4), is either 1 or 0.

The matrix S is called quaternary parity check matrix. Each row of S (called check) represents a
parity check, corresponding to one of the m stabilizers that generate the stabilizer group S.
An [[n, k, d]] stabilizer code is defined as a 2k-dimensional subspace within the n-qubit Hilbert space
(C2)¹n. This subspace is characterized as the joint +1 eigenspace of S.
We denote the normalizer of S as N (S). Furthermore, S§ represents the matrix containing vectors
corresponding to the 2n−m generators of N (S). The minimum distance d of a code is defined as the
smallest error weight in the set N (S) \ S.
A code is classified as degenerate if S contains a stabilizer with weight less than d. Moreover, a code
is considered highly degenerate when d significantly exceeds the minimum weight of the stabilizers.

2.5 Quantum Error Correction

Quantum error correction is essential for the advancement of practical quantum computers. Quantum
systems are inherently vulnerable to errors that arise from environmental noise. In the absence of
effective QEC, even minor errors can accumulate quickly, leading to ineffective computations. To
leverage the principles of quantum mechanics, it is crucial that qubits, the basic units of quantum
information, are implemented with precision. Specifically, qubits must be realized using single particles
or a small number of particles [9].

To manage errors in quantum computers, quantum communication plays a crucial role in that we
can module the errors through a quantum channel. Thus, it is important to understand the basics of
quantum communication. Quantum communication systems generally comprise three main compo-
nents: a sender, a receiver, and a communication channel. The sender is responsible for preparing the
quantum state to be transmitted. The receiver, on the other hand, measures the state to retrieve the
transmitted information. The communication channel, which can be a fiber optic cable or a free-space
channel, serves as the physical medium for transmitting the quantum state between the sender and
receiver.

Quantum codes introduce two significant challenges:

• Tanner Graphs and Small Loops: Tanner graphs in quantum codes inherently contain small
loops, which can undermine the performance of belief propagation algorithms.

• Sparsity and Degeneracy : Sparse quantum codes are, by definition, highly degenerate, posing
additional challenges.

Another critical problem in quantum communication is the fragility of quantum states. Any interaction
with the environment, such as noise or interference, can introduce errors and lead to loss of information.
To mitigate this issue, quantum error correction techniques are used to protect quantum information
from errors [10].

The fundamental principle underlying QEC is to safeguard encoded quantum information against
errors that arise from two primary sources: uncontrolled interactions with the environment and im-
perfect implementations of quantum logical operations [11]. To achieve this protection, stabilizer codes
are typically employed.
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Figure 2.2: Block diagramm of QEC.

The quantum error correction process can be represented by the block diagram shown in Fig. 2.2,
made by the following components:

1. Input Quantum State: This represents the initial quantum state or qubits that need to be protected
from errors. It could be a logical qubit or a collection of physical qubits.

2. Encoder: The encoder transforms the input quantum state into an encoded state by applying a
set of quantum gates and operations. Various quantum error correction codes, such as stabilizer
codes or topological codes, can be used for encoding. Examples of encoding techniques include the
application of Hadamard gates, controlled gates, or other unitary operations.

3. Quantum Channel: It describes the presence of noise and errors that can occur during the trans-
mission or storage of the encoded state. It may include various types of errors, such as bit-flip
errors, phase-flip errors, or more complex errors.

4. Syndrome Measurements: Syndrome measurements are performed on the encoded state to identify
the presence and location of errors. These measurements are typically performed by applying a set
of specific measurements or operations to certain qubits in the encoded state. The measurement
outcomes provide information about the syndrome, which is used to identify the error type and
location.

5. Syndrome Decoder: The syndrome decoder processes the measurement outcomes obtained from
the syndrome measurements to determine the appropriate error correction operations. It employs
decoding algorithms, such as maximum likelihood decoding or minimum weight decoding, to infer
the most likely error configuration based on the syndrome information.

6. Error Correction Operations: Based on the decoding results, error correction operations are applied
to the encoded state to reverse the effects of errors. These operations aim to restore the original
quantum information by applying appropriate quantum gates or recovery operations.

7. Output Quantum State: The output quantum state represents the corrected version of the encoded
state. It should ideally match the original input quantum state, thereby preserving the integrity of
the quantum information.

It should be emphasized that the block diagram outlined above presents a broad conceptualization
of a quantum error correction system. The actual architecture and execution can differ significantly,
depending on the selected error correction methodology, the nature of the error model under con-
sideration, and the particular experimental configuration employed. The main purpose of any error
correction scheme is to accurately identify the most probable error E that has affected the system,



16 CHAPTER 2. QUANTUM ERROR CORRECTION

given a specific set of syndrome measurements z [12]. This process of error inference and correction is
essential in maintaining the integrity of quantum information in the face of environmental noise and
system imperfections.

One of the primary obstacles in QEC is the development of efficient decoding algorithms that can
swiftly identify and rectify errors. A widely-used method for this purpose is minimum-weight perfect
matching decoding, which entails determining the minimum-weight match between the error syndrome
and potential error locations.

QEC is a rapidly advancing field, presenting numerous challenges and opportunities for further in-
vestigation. A significant hurdle is the creation of QEC techniques capable of managing larger qubit
systems and more intricate error models. Currently, there are promising opportunities to leverage
QEC to devise powerful new quantum algorithms and technologies.

2.5.1 Quantum Error Correction with Stabilizer Codes

The process of error correction utilizing stabilizer codes is depicted in Fig. 2.3.

Figure 2.3: Block diagram of QEC using QSCs.

To protect a logical quantum state |ϕð consisting of k qubits, it is encoded into a state |Èð comprising
n qubits through the application of a stabilizer code. Noise that affects quantum memory can be
represented as a depolarizing channel characterized by a depolarizing probability ϵ. Within this
channel, the errors X, Z, and Y occur with equal likelihood, each with a probability of ϵ

3
(more

details are provided in Sect. 2.7).

In the event of a potentially corrupted state, the syndrome vector z is extracted and forwarded to
a decoder, which seeks to identify the most likely error corresponding to the syndrome z. This
study focuses on enhancing the syndrome decoder, specifically a quaternary belief propagation (BP4)
decoder. The result of the decoding process is utilized as a reverse operation that is applied to the
corrupted quantum state, with the aim of recovering the state |Èð.
Clarify Let ê denote the estimate of the error e provided by the decoder, and let Ê represent the
associated Pauli error. The objective of the decoder is to find an ê that produces the same syndrome
z and satisfies the condition EÊ ∈ S. This condition can be verified using the equation

ï(e+ ê),S§
i ð = 0 (2.19)

for each row i ∈ {1, 2, . . . , 2n−m} of S§.

From 2.19, we can observe that when correcting errors using a Quantum Stabilizer Code (QSC), four
potential outcomes may occur:

• Type I success: The estimated error ê is exactly the error that occurred, meaning e+ ê = 0.

• Type II success (with degeneracy): The estimated error ê is not exactly the same as e, but Eq. 2.19
is satisfied.
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• Type I failure (flagged): The BP decoder is unable to find an ê that matches the syndrome z.

• Type II failure (unflagged): The syndrome matches, but Eq. 2.19 is not satisfied. This results in an
undetectable erroneous quantum state.

One approach to improve the decoding of QSC is to design a decoder that maximizes the probability
of Type I success, adhering to classical decoding principles. However, this strategy often proves
inadequate to achieve satisfactory decoding performance in QSCs. To develop a near-optimal decoder
for quantum codes, it is essential to maximize the sum of the probabilities of Type I and Type II
successes in order to correctly identify the exact error (Type I), while also accounting for degenerate
cases, where the estimated error may not be exact but still corrects the state (Type II). This dual
requirement highlights a significant challenge, as no effective decoding algorithm currently exists that
systematically utilizes degeneracy.

This limitation has led researchers to investigate the potential of neural network (NN) decoders. The
advantage of NN decoders lies in their ability to learn complex patterns and relationships within data,
which allows them to uncover and leverage degeneracy in ways that traditional algorithms cannot.

2.6 QLDPC Codes

Quantum low-density parity-check codes are among the most promising types of quantum error cor-
rection codes due to their practical benefits. To understand QLDPC codes, we first need to define
classical low-density parity-check codes.

Low-density parity-check codes are a family of linear block codes characterized by the fact that both
row and column weights of H are bounded by a relatively small constant, independent of the block
length. This results in a sparse parity check matrix H. These codes are typically represented using a
bipartite or Tanner graph [13] (more details about Tanner Graph are explained in 3.2).

It is well established that the performance of LDPC codes under belief propagation decoding deteri-
orates when short cycles are present in their Tanner graph [14]. A cycle is defined as a path in the
graph that returns to its starting point, as highlighted in Fig. 2.4, where the Tanner graph of the
(7,4) Hamming code is shown [15]. Consequently, when designing an LDPC code, a primary objective
is to maximize the girth, which represents the length of the shortest cycle in the graph.

To satisfy the constraint H ′
XH ′T

Z = 0, the parity check matrix H of the dual-containing Calderbank-
Shor-Steane code must have rows that overlap with each other at an even number of positions3 . This
requirement inherently leads to a Tanner graph with numerous small loops (of length 4). To improve
the code properties, one can consider relaxing the dual-containing CSS constraint.

Figure 2.4: Tanner graph of the (7, 4) Hamming code with highlighted cycle.

QLDPC codes are a quantum analogue of classical LDPC codes. They are defined by a sparse parity-
check matrix, where each row corresponds to a stabilizer operator that checks the parity of a subset

3It is important to underling that this is true for any non-trivial stabilizer code, not just dual-containing CSS codes.
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of qubits. The sparsity of the matrix is crucial for efficient error correction, as it reduces the number
of measurements needed to detect and correct errors.

The design of high-performance QLDPC codes is much more complicated than in the classical setting.
This complexity arises from several factors, the most notable being that the parity-check matrix of
quantum LDPC codes must satisfy certain orthogonality constraints originating from the fact that the
stabilizes must mutually commute with each other [6]. The performance of QLDPC codes depends
significantly on the choice of the parity-check matrix. One method to construct a QLDPC code is
to randomly generate a sparse parity-check matrix with specific properties, such as regularity, where
each row and column have a fixed number of nonzero entries.

One advantage of QLDPC codes is their potential for efficient error correction. Unlike some other
quantum error-correcting codes, QLDPC codes do not require complex decoding algorithms and can be
decoded using simple belief propagation algorithms. This makes QLDPC codes a promising candidate
for practical implementations of quantum error correction.

QLDPC codes also hold potential for fault-tolerant quantum computation. Fault-tolerant quantum
computation is a quantum computation that remains resilient to errors and can be performed with high
accuracy. QLDPC codes have been shown to have a relatively high threshold for fault-tolerant quantum
computation, meaning that they can tolerate a certain amount of noise before the computation fails.

2.7 Error Model

In this section, we provide a concise explanation of the effects of measurement and how a quantum
channel can be modeled to apply classical decoding techniques in a quantum context.

The measurement of quantum information imposes constraints on the use of various decoding al-
gorithms. As discussed in previous sections, a quantum bit , unlike a classical bit, can exist in a
superposition of states, |Èð = ³|0ð + ´|1ð, and when the qubit is measured, it collapses to the state
|0ð with probability |³|2 and to |1ð with probability |´|2. To address this, one typically measures the
effect of the error in the form of a syndrome and applies a correction to the corrupted quantum states.

Another significant aspect of the quantum channel, which imposes strict constraints on the decoding
scheme, is known as decoherence and is described as the destructive interaction between the environ-
ment and the qubit [16]. In a quantum channel, this phenomenon, also known as quantum noise, is
the primary obstacle to the practical implementation of a quantum communication system [17].

Finally, it is important to underline that the error model is highly dependent on the hardware. Typi-
cally, a standard model known as the depolarizing channel is used, which will also be employed in this
study.

2.7.1 Depolarizing Channel

A commonly used model is the depolarizing channel with error probability ϵ. In this model, a quantum
state of n qubits is subject to a random Pauli error:

E = E1 ¹ · · · ¹ En (2.20)

where each Ei ∈ {I,X,Z,Y } independently affects a single qubit, potentially causing a bit-flip, a
phase-flip, or both, with equal probabilities:

P (Ei = X) = P (Ei = Z) = P (Ei = Y ) =
ϵ

3
(2.21)

The depolarizing channel, characterized by the probability of error ϵ, assumes that the errors X,
Y , and Z occur with the same probability ϵ

3
. Consequently, this channel is isomorphic to a 4-ary

symmetric channel [6].
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Figure 2.5: The likelihood of a state transition in a depolarizing channel with a given probability ϵ.

2.8 Quantum Degeneracy

In traditional coding theory, distinct error vectors applied to a single codeword result in unique received
words. However, quantum communication systems exhibit a phenomenon known as degeneracy, where
two different errors acting on the same quantum state |Èð can produce an identical (corrupted) state
|ϕð. Specifically, for a quantum state |ϕð within the +1 eigenspace of a stabilizer code (i.e., a codeword),
two operators E³ and E´ will generate the same quantum state if they differ only by a stabilizer:

E³ = E´Si =⇒ E³|ϕð = E´Si|ϕð = E´ |ϕð. (2.22)

Degeneracy has significant implications for quantum error correction. Consider a scenario in which
a quantum state |Èð has been transformed to |ϕð = E³|Èð. As discussed previously, to restore the
system to state |Èð, it suffices to apply the same operator E³ again:

E³|ϕð = E³E³|Èð = |Èð.

Interestingly, due to degeneracy, the quantum system can also be returned to its original state |Èð by
applying any operator E´ = SiE³, where Si is any stabilizer. In fact, for a given stabilizer code, all
possible error patterns can be categorized into equivalence classes or cosets. A coset comprises a set
of error operators that differ only by a stabilizer. Consequently, any error operator within the same
coset, when applied to |Èð, results in the same state. Thus, given Ej |Èð and Ei as an error operator of
the coset G:

∀Ei ∈ G : Ei|Èð = Ej |Èð. (2.23)

The degeneracy of the toric code adds complexity to the problem of optimal decoding compared
to classical codes. In classical codes, the goal is to find the most likely error that occurred during
transmission. However, in the toric code, due to its degeneracy, there are multiple errors that lead to
the same syndrome. Therefore, the objective shifts from finding the most likely error to finding the
most likely coset [18].
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2.9 Toric Code

In this section, we employ the stabilizer formalism, previously discussed, to explain the concept of

the toric code, Ctoric. Alexei Kitaev introduced this quantum error correction scheme in 1998. Its

significance stems from its potential as the primary code for initial quantum computing systems. The

toric code derives its name from its implementation on a lattice with periodic boundary conditions,

effectively forming a torus.

Figure 2.6: The fundamental structure of the toric code is based on a lattice with cyclical boundaries,
effectively mapping the lattice onto the surface of a torus.

Figure 2.7: A representation of the toric grid used in the toric code, illustrating the arrangement of
qubits and the connections between them.
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As a stabilizer code, it is characterized by two types of stabilizer operators:

1. Vertex operators (AX):
AX ≡Xu ¹Xd ¹X l ¹Xr

2. Plaquette operators (BZ):
BZ ≡ Zu ¹Zd ¹Z l ¹Zr

Here, u, d, l, and r represent the “up”, “down”, “left”, and “right” qubits, respectively, surrounding
a vertex or plaquette. The stabilizer operators AX and BZ are defined for each vertex (cross) and
face (plaquette) of the lattice, respectively (illustrated in Fig. 2.8).

A key feature of the toric code is the locality of its stabilizers, which contrasts with the non-local
nature of stabilizers in other quantum error correction schemes, such as the Shor code [8]. This
locality can be a big advantage since in some quantum computing platforms, such as those based on
superconducting qubits, it is difficult to implement long-range interactions between far-away qubits.

For a lattice of dimensions L× L, the toric code employs:

• n = 2L2 physical qubits

• L2 plaquette operators of weight 4

• L2 cross operators of weight 4

This structure provides a scalable framework for quantum error correction, with the code distance
increasing linearly with the lattice size.

Figure 2.8: In the toric code, both Z operators (plaquettes) and X operators (cross) function as
stabilizers. When a face operator intersects with a vertex operator, their interaction consistently
involves two qubits.

We can easily verify that the stabilizers of the toric code commute. The cases [AX ,AX′ ] = 0 and
[BZ ,BZ′ ] = 0 are straightforward because Z

2 = X
2 = I. The case [AX ,BZ ] = 0 is also trivial if AX

and BZ do not overlap. When they do overlap, the operators AX and BZ coincide on two qubits,
causing the phase produced by XZ = −ZX to cancel out (see Fig. 2.8).
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The multiplication of two plaquettes can be easily understood through illustrations (see Fig. 2.9).
Consider two overlapping plaquettes, BZ and BZ′ , where the right qubit of the first plaquette is
the left qubit of the second plaquette. On this qubit, two Z operators are applied, one from each
plaquette. However, since Z

2 = I, the identity is effectively applied on this qubit. This results in
a plaquette composed of six Z operators (see Fig. 2.9), which is also a stabilizer. Note that the
multiplication of plaquettes will always produce open strings. We will primarily discuss the plaquette
operators, but the discussion for cross operators can be conducted analogously.

Figure 2.9: The combination of two elementary surface elements, BZ and BZ′ , through multiplication
results in an expanded surface element. This larger element also maintains the stabilizing properties
inherent to the toric code structure.

In the section on the stabilizer formalism, we discussed that the stabilizer generators must be linearly
independent. We can easily verify that the cross and plaquette operators, AX and BZ , are not linearly
independent since

∏

all crosses

AX = I and
∏

all plaquettes

BZ = I.

To obtain a set of independent stabilizers for the toric code, we simply need to remove one plaquette
and one cross. Consequently, the toric code has

m = 2L2 − 2

independent stabilizers. The number of encoded qubits (logical qubits) in a stabilizer code is given by

k = n−m.

For the toric code, this results in k = 2 logical qubits.

To complete the characterization of the code space Ctoric, we need to identify the logical operators.
Recall that these operators must commute with the stabilizers without being stabilizers themselves.
Logical operators can be either a product of Z or a product of X. We have observed that multiplying
plaquettes results in loops of different sizes, which are also stabilizers, but they never form open
strings.

Consider a product of Z along an entire horizontal string of the lattice, i.e., Z1 ≡ Z1 ¹ · · · ¹ ZL.
It commutes with BZ and AX for the same reasons that have implied [AX ,AX′ ] = [BZ ,BZ′ ] =
[AX ,BZ ] = 0 (see Fig. 2.10). This is also true for a product of Z along an entire vertical string, Z2,
and for a product of X along an entire horizontal and vertical string, X1 and X2 (see Fig. 2.10).
Note further that {Zi,Xi} = 0 and [Zi,Xj ] = 0 for i ̸= j and i, j = 1, 2.

Defining {|01ð, |11ð} as the eigenvectors of Z1, we can easily verify that the logical operators satisfy:

X1|01ð = |11ð, Z1|01ð = |01ð,

X1|11ð = |01ð, X1|11ð = −|11ð.

We find analogous equalities for X2 and Z2 as shown in Fig. 2.10.
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Figure 2.10: Fundamental operators in the toric code framework. The logical operators Z1 and Z2

(as well as X1 and X2) intersect with either a vertex or plaquette operator on precisely two qubits.

Recall from Sect. 2.3 that logical operators do not have a unique representation. In fact, we can
obtain a new logical operator by multiplying any operator X1, X2, Z1, Z2 by any stabilizer operator,
i.e., by any plaquette or cross. In the toric code, this property translates to the fact that Z1, which
is a straight line, can be stretched in various ways and still represent the same logical operator (see
Fig. 2.11). Note that the same is true for X1, X2, Z1, and Z2. Therefore, the logical subspace is the
subspace spanned by all strings with ”the same topology”.

The distance of a stabilizer code is defined as the weight of the minimal representation of logical
operators, and for the toric code we have dToric = L.

In summary, we can characterize the toric code as a [2L2, 2, L] code. It is important to note that the
toric code has a topological nature because its encoded information is defined by objects that exist
solely due to the topology of the space, i.e., the torus.
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Figure 2.11: The product of a face operator BZ and a logical operator, such as Z1, yields an alter-
native representation of the same logical operator. Consequently, any closed loop encircling the torus
constitutes a valid logical operator.

2.9.1 Overcomplete Check Matrices

Overcomplete check matrices are distinguished by the inclusion of supplementary redundant rows in
addition to the initial full-rank check matrix. The quaternary belief propagation algorithm can be
implemented on the Tanner graph corresponding to these overcomplete check matrices. This technique
is designated as BP4 utilizing an overcomplete check matrix (OBP4) decoding. In this subsection, we
explain two possible ways to construct overcomplete check matrices and then investigate the reason
for the improvement in performance of OBP4 [2].

To generate additional parity checks, we considerHX andHZ as distinct binary matrices. The process
of creating overcomplete check matrices is equivalent to identifying numerous low-weight stabilizers,
and there are different ways to do this.

The first approach involves a comprehensive search, which is generally computationally intensive.
However, probabilistic techniques can be leveraged to enhance the likelihood of discovering low-weight
stabilizers during the exhaustive search.

The alternative approach uses the inherent features of topological codes. For example, as illustrated in
Fig. 2.12, merging two adjacent stabilizers in a toric code produces a new stabilizer of weight 6. This
phenomenon occurs because each toric code stabilizer is supported by four qubits, with neighboring
stabilizers sharing one qubit. Consequently, for every toric code, we can construct 2n redundant X

stabilizers and 2n redundant Zstabilizers, each of weight 6. When combined with the n weight-4
stabilizers, we obtain an overcomplete check matrix of dimensions 3n × n for toric codes, which is
utilized in this study.

The values of redundant syndromes can be determined without additional syndrome extraction op-
erations. Let H represent either HX or HZ . The parity-check matrix Hoc with redundant rows is
obtained by Hoc = MH, where M is a binary matrix of size moc × m. The original syndrome is
calculated as HeT = z. Subsequently, the new syndrome associated with Hoc is given by:

zoc = Hoce
T = MHeT = Mz (2.24)
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This represents a linear transformation of z defined by M .

The concept of performing belief propagation decoding using an overcomplete parity-check matrix
has been explored in prior works [2] for classical linear codes. One of the primary motivations was
to enable more parallel node updates, thereby mitigating the impact of short cycles. Interestingly,
this method significantly enhances the decoding performance of QLDPC codes, regardless of whether
the number of iterations is limited or unlimited. This contrasts with classical linear codes, where
using overcomplete check matrices primarily accelerates convergence and does not yield noticeable
improvements with a high number of iterations.

For QLDPC codes, this technique is similar to matrix augmentation, where some rows of the check
matrix are duplicated. The benefit is that the messages associated with duplicated check nodes are
amplified, aiding in breaking the symmetry during decoding and leading to a more accurate error
estimate [2].

Figure 2.12: Example of the construction of a weight-6 stabilizer for the toric code with L = 4. The
red edges are the qubits which support an X stabilizer.

2.10 Minimum Weight Perfect Matching

The Edmonds algorithm, also known as the perfect minimum weight matching algorithm, functions
by establishing pairs from all measurements of the syndrome [8]. This decoding procedure can be
formally expressed as:

MWPM =matching Q

∑

(i,j)∈Q

d(i, j) (2.25)

where d(i, j) represents the distance between syndromes i and j.

The (worst-case) computational complexity of this decoding method is given by:

Time Complexity = O(n3)

where n denotes the number of syndrome measurements. This cubic time complexity makes this
algorithm impractical for large topological codes.





Chapter 3

Classical Decoding Algorithms

3.1 Graph-Based Decoding of LDPC Codes

Graph-based decoding is a widely utilized technique for interpreting low-density parity-check codes.
An LDPC code is defined by a parity-check matrix that possesses specific characteristics: each column
contains a small, fixed number j > 3 of ones, and each row contains a small, fixed number k > j of
ones [19]. This method employs the Tanner graph representation of the code to create a factor graph,
which aids in the iterative decoding process.

In the graph-based decoding algorithm, messages are exchanged between variable nodes and check
nodes within the factor graph. These messages convey information regarding the probability that a
bit is 0 or 1, based on the values of the other bits connected to it at the respective check or variable
nodes.

Research has demonstrated that graph-based decoding is effective in decoding LDPC codes, particu-
larly for those with large block sizes. Moreover, the efficacy of graph-based decoding can be enhanced
through the application of advanced techniques such as neural belief propagation.

3.2 Tanner Graph

The belief propagation decoding process for QLDPC codes is carried out on the Tanner graph asso-
ciated with the code. This Tanner graph is a bipartite structure consisting of two distinct types of
vertices. The first type comprises variable nodes (VNs), each representing a code bit (or qubit) and
corresponding to a column in the check matrix S . The second type consists of check nodes (CNs),
each linked to a specific check and corresponding to a row in the check matrix.

A variable node vi is connected to a check node cj if the corresponding entry Sj,i ̸= 0, where Sj,i ∈
GF(4)\{0} denotes the coefficient of the edge between them. For instance, consider the [[7, 1, 3]]
quantum Bose–Chaudhuri–Hocquenghem (BCH) code, where bothHX′ andHZ′ represent the parity-
check matrix of a [7, 4, 3] BCH code:

HBCH =





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1





The check matrix S ∈ GF(4)6×7 can be represented as follows:

S =

(
ÉHBCH

ÉHBCH

)

(3.1)

27
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The Tanner Graph of BCH code is shown in Fig. 3.1.

Figure 3.1: The Tanner graph of the [[7,1,3]] quantum BCH code where VNs are represented by circles
and CNs by squares. Blue solid edges indicate coefficients É, while yellow dashed edges represent
coefficients É.

In accordance with the principles of belief propagation algorithms, messages are naturally transmitted
between the check nodes and the variable nodes. Specifically, messages flow from CNs to VNs and
from VNs back to CNs, facilitating the iterative decoding process [20].

The messages are iteratively refined until a valid codeword is produced or a predefined maximum
number of iterations is reached. This decoding process can be interpreted as a type of belief prop-
agation, where each node adjusts its belief based on the beliefs of its neighboring nodes within the
Tanner graph.

The configuration of the Tanner graph is dictated by the parity-check matrix associated with the code.
The rows of this matrix represent the parity-check equations, while the columns correspond to the
individual code bits. A nonzero entry in the matrix signifies that the associated variable is involved
in the respective parity-check equation.

Tanner graphs serve as a valuable framework for evaluating the performance of a code and for the
development of new codes. The minimum distance of a code can be assessed by analyzing the cycles
present in the Tanner graph. A cycle of length h in the graph corresponds to a collection of h equations
that share a nontrivial common solution, indicating that the code can accommodate at least h errors
in a codeword.

3.3 LDPC Decoding: Quaternary Belief Propagation

The fundamental concept of belief propagation involves the exchange of messages. This algorithm
iteratively refines messages exchanged between nodes in the Tanner graph through local computations.
These messages encapsulate beliefs or probabilities linked to each variable, providing insights into the
system’s state. Updates occur in a parallel and distributed fashion, enabling efficient processing of
large-scale graphical models.

In the realm of quantum error correction, the objective is to safeguard the information encoded within
a quantum state from potential errors during computation or communication. Directly measuring
a qubit’s state would destroy its fragile quantum information, rendering error correction impossible.
Instead, we measure error syndrome, which involves a series of measurements on multiple qubits. This
approach reveals the type and location of errors without disrupting the encoded quantum state.

In this thesis, the syndrome decoder depicted in Fig. 2.3 is the quaternary BP4 decoder. Unlike
binary decoding, which is less effective and exhibits a higher error floor, the BP4 decoder considers
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the correlation between X and Z errors. The primary drawback of the traditional BP4 decoder is its
high complexity, resulting from the transmission of vector messages rather than scalar messages, as
is done in BP2 (Binary Belief Propagation). This issue is addressed by the newly introduced refined
BP4 decoder, which utilizes scalar messages. In particular, we employ the log-domain refined BP4
decoder discussed in [21,22]. This decoder takes advantage of the binary nature of the syndrome in a
stabilizer code, which denotes whether the error commutes with the stabilizer, thus facilitating scalar
message passing.
We will now provide a brief overview of the algorithm.

For each variable node vi, where i ∈ {1, 2, . . . , n}, we start by setting up the log-likelihood ratio (LLR)

vector Γi→j as Λi = (Λ
(1)
i Λ

(É)
i Λ

(É)
i ) ∈ R

3 with

Λ
(·)
i = ln

(
P (ei = 0)

P (ei = ·)

)

= ln

(
1− ϵ0

ϵ0
3

)

where · ∈ GF(4) \ {0} and ϵ0 is the estimated physical error probability of the channel. To exchange
scalar messages, a belief-quantization operator ¼¸ : R3 → R is defined as

¼¸(Λi) = ln

(
P (ïei, ¸ð = 0)

P (ïei, ¸ð = 1)

)

= ln




1 + e−Λ

(η)
i

∑

· ̸=0,· ̸=¸ e
−Λ

(ζ)
i





The operator ¼¸ transforms the LLR vector into a scalar LLR associated with the binary random
variable ïei, ¸ð, where ¸ iterates over the nonzero elements of S . The initial scalar messages for the
variable nodes are computed as

¼i→j := ¼Sj,i
(Γi→j) (3.2)

and are passed to the neighboring CNs where i→ j denotes the message from VN vi to CN cj .

The outgoing messages from check node cj j ∈ {1, 2, . . . ,m} are determined by

∆i←j = (−1)zj · ⊞
i′∈N (j)\{i}

¼i′→j (3.3)

where N (j) represents the indices of the neighboring VNs of cj , and the ⊞ operation is defined as

I

⊞
i=1

xi := 2 tanh−1

(
I∏

i=1

tanh
xi
2

)

.

During the variable node update, we begin by computing the log-likelihood ratio vector

Γi→j = (Γ
(1)
i→j Γ

(É)
i→j Γ

(É)
i→j) with

Γ
(·)
i→j = Λ

(·)
i +

∑

j′∈M(i)\{j},ï·,Sj′,ið=1

∆i←j′ (3.4)

for all · ∈ GF(4) \ {0}, where M(i) indicates the indices of the neighboring check nodes of the
variable node vi. Subsequently, the outgoing messages ¼i→j = ¼Sj,i

(Γi→j) are computed and sent to
the neighboring CNs.

To assess the error, a hard decision is made at the variable nodes by computing Γi for i ∈ {1, 2, . . . , n}
using the formula

Γ
(·)
i = Λ

(·)
i +

∑

j∈M(i),ï·,Sj,ið=1

∆i←j (3.5)

for all · ∈ GF(4) \ {0}. If all Γ
(·)
i > 0, then êi = 0, otherwise êi = argmin· Γ

(·)
i .

The iterative procedure continues until either the maximum number of iterations R is achieved or the
syndrome is satisfied. In Fig. 3.4 the node processor schema is shown for one iteration.
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∆i←j

λi→j

λi−1→jλ1→j

zj

cj

vi

. . . . . .

Figure 3.2: CN decoder

λi→j

∆i←j

∆i−1←j∆1←j

vi

Λ
(·)
i

cj

. . . . . .

Figure 3.3: VN decoder

Figure 3.4: Node processors



Chapter 4

Neural Networks & Deep Learning

Techniques

Recent advancements in machine learning, particularly through the use of neural networks, have
opened new possibilities for improving quantum error correction methods. Neural networks possess
the capability to learn complex patterns and relationships within data, making them well-suited for
tasks such as syndrome decoding and error prediction in quantum systems. For instance, studies have
demonstrated that artificial neural networks can effectively decode syndrome measurement data from
quantum error correcting codes, providing a promising alternative to traditional decoding methods
[23] [24]. In particular, neural belief propagation has proven to be effective in enhancing the decoding
performance of classical linear codes without increasing latency [23]. The application of NBP to
improve the decoding of quantum stabilizer codes has been explored in [7] for the BP2 decoder, which
processesX and Z errors independently. In this chapter, we detail the extension of the NBP framework
to the BP4 decoder by incorporating a modified loss function designed to leverage degeneracy, as
described in [2]. The proposed NBP model can be utilized with both the original check matrix and
the overcomplete check matrix, resulting in a Quaternary Neural Belief Propagation (NBP4) decoder
and a NBP4 utilizing an overcomplete check matrix (ONBP4) decoder, respectively.
Moreover, in this chapter we also describe some deep learning techniques adopted in this thesis to try
to improve the performances of Miao et al.’s decoder [2].

4.1 Quaternary Neural Belief Propagation

Standard belief propagation can be interpreted as a deep neural network when the Tanner graph
associated to the BP algorithm is unfolded [1]. In particular, each BP iteration is represented as
two successive layers within a neural network, a method known as the ”unfolding” or ”layer-by-layer”
approach, as illustrated in Fig. 4.1.

The expanded BP architecture enables the use of backpropagation-based training methods to learn
the network’s parameters. This structure supports end-to-end training, allowing for the simultaneous
optimization of the entire architecture’s parameters. Moreover, the expanded BP can be adapted into
neural belief propagation. Following the training phase, messages from variable to check and from
check to variable are appropriately weighted to account for small cycles in the Tanner graph.

31
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VNs CNs

Unfolded BP

a Priori
Γi→j →

a Posteriori
Γi→

︸ ︷︷ ︸

1 Decoding Iteration

Figure 4.1: The Tanner Graph of Toric Code with L = 4, n = 32 and m = 30 associated to the
BP is unfolded by a ”layer-by-layer” approach where each iteration is represented as two successive
layers within a neural network. Messages are passed between VNs and CNs in one direction until the
maximum iteration number is reached.

As illustrated in Fig. 4.2, the input layer corresponds to the initial data or observations provided
to the NBP model, such as the prior log-likelihood ratios. The hidden layers serve as the message-
passing layers, facilitating the exchange of messages between VNs and CNs. The neural network’s
output is the final estimation of the variable nodes’ values, specifically the estimated error value at
each qubit position. Training the neural network involves minimizing a loss function that quantifies
the discrepancy between the inferred and actual errors.
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Input Layer (a priori LLR)

Hidden Layer (Variable Nodes)

Hidden Layer (Check Nodes)

Output Layer (a posteriori LLR)

Figure 4.2: An example of a feedforward neural network architecture. Neurons, edges and layers
correspond to the quantities related to BP algorithm.

Fig. 4.3 shows the structure of a deep neural network architecture that incorporates the syndrome
neuron [7]. The neural network receives the error syndrome derived from measurements of the quantum
system as input and produces the likelihood of errors occurring at each qubit within the code as output.
Training of the neural network is conducted through backpropagation and stochastic gradient descent,
aiming to reduce the discrepancy between the predicted error probabilities and the actual observed
values.

By incorporating neural networks into the message-passing and belief-update steps, neural belief prop-
agation harnesses the expressive capabilities of deep learning to capture complex dependencies and
nonlinear relationships, resulting in enhanced performance compared to the traditional belief prop-
agation algorithm. The messages exchanged between variable nodes and check nodes are typically
adjusted by trainable weights acquired during the neural network’s training phase. This adjustment
enables the neural network to learn the significance or relevance of various incoming messages in the
message-passing process, allowing it to mitigate the effects of unavoidable short cycles in the Tanner
graph, particularly in the context of quantum error correction.
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Input Layer (a priori LLR)

Hidden Layer (Variable Nodes)

Hidden Layer (Check Nodes)

Output Layer (a posteriori LLR)

Syndrome Layer

Figure 4.3: The feedforward neural network architecture associated to NBP with the syndrome layers.

With the addiction of trainable weights equations 3.3 and 3.4 become:

∆i←j = (−1)zj · ⊞
i′∈N (j)\{i}

w
(l)
v,i′,j · ¼i′→j (4.1)

Γ
(·)
i→j = w

(l)
v,i · Λ

(·)
i +

∑

j′∈M(i)\{j},ï·,Sj′ ,ið=1

w
(l)
c,i,j′ ·∆i←j′ (4.2)

where l represents the index of the decoding iteration, and w
(l)
v,i′,j , w

(l)
c,i,j′ , and w

(l)
v,i denote the trainable

real-valued weights assigned to the variable node messages, check node messages, and channel log-
likelihood ratio values, respectively.

As concern the loss, we consider the one proposed in [2] which takes degeneracy into account. Using
Γi computed by 3.4 in the hard-decision pass, we can calculate

P (ïêi, ¸ð = 1 | z) =
(

1 + e−¼η(Γi)
)−1

(4.3)

for ¸ ∈ GF(4) \ {0}, representing the estimated probability of the i-th error commuting with X, Z,
and Y , respectively.
Consequently, the proposed loss function for each error pattern can be expressed as

L(Γ; e) =
2n−m∑

j=1

f

(
n∑

i=1

P (ïei + êi, S
§
j,ið = 1 | z)

)

(4.4)
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where f(x) = |sin(Ãx/2)|, which approaches zero as x nears any even number (i.e., a ”soft modulo
2” function) [7]. The loss value is accumulated over all rows S§j of S§. For each row j, we sum the

values P (ïei + êi, S
§
j,ið = 1 | z) for all elements S§j,i in S

§
j , representing the probability that S§j,i is

unsatisfied after estimating ei as êi. In particular we can apply the following mathematical operation
P (ïêi, S

§
j,ið = 1 + ïei, S

§
j,ið | z) that leads to two possibilities:

• if ïei, S
§
j,ið = 0 −→ P (ïêi, S

§
j,ið = 1 | z) is calculated through Eq. 4.3, with ¸ = S§j,i .

• if ïei, S
§
j,ið = 1 −→ P (ïêi, S

§
j,ið = 0 | z) = 1− P (ïêi, S

§
j,ið = 1 | z) is calculated.

The loss L is minimized if Eq. 2.19 holds.

In the case where a large number of redundant check nodes is utilized, it becomes essential to accu-
rately normalize the messages, as the interdependence between messages intensifies during decoding.
Consequently, using a relatively large ϵ0 may not offer sufficient flexibility for message normalization.
To address this, we introduce another parameter, wr, which acts as a normalization factor for the

check node messages, similar to w
(l)
c,i,j in equation 4.2, but independent of the number of iterations l

and the indices of the connected CN j and VN i :

Γ
(·)
i→j = Λ

(·)
i +

∑

j′∈M(i)\{j},ï·,Sj′ ,ið=1

wr ·∆i←j′ (4.5)

This assumption can be used as in the OBP4 decoder as for the initial weight of w
(l)
c,i,j′ in the NOBP4’s

training. When optimization of the decoder configuration is performed, we set wr = 1 if adjusting ϵ0
alone provides satisfactory decoding performance, as this achieves the fastest convergence speed. If
this approach does not suffice, the optimal pair (ϵ0, wr) presented in the Tab. 5.1 are used.

4.2 Residual Connections

A residual neural network, commonly known as a residual network or ResNet, is a deep learning
framework where the weight layers are designed to learn residual functions in relation to the inputs
of the layers. This architecture was introduced in 2015 specifically for image classification tasks and
achieved victory in that year’s ImageNet Large Scale Visual Recognition Challenge [25].

In terms of terminology, a ”residual connection” or a ”skip connection” denotes the distinctive archi-
tectural pattern represented as

x 7→ f(x) + x

where f signifies any arbitrary neural network module. Although residual connections were used
prior to the advent of ResNet, such as in Long Short-Term Memory (LSTM) networks and highway
networks, the introduction of ResNet significantly popularized this concept, leading to its adoption in
various unrelated neural network architectures.

In the context of QECC, they were introduced by Poulin et al. [7] with the following adhoc adaptation:

∆
(p+1)
i←j = NBP

(

∆
(p)
i←j

)

+ rp ·∆
(p)
i←j (4.6)

where ∆
(p+1)
i←j denotes the input to the (p + 1)-th layer, while NBP

(

∆
(p)
i←j

)

represents the current

output of the NBP decoder, with rp as the trainable parameters that scale the previous message.

Residual connections allow information to bypass one or more layers, facilitating direct data transfer
from earlier layers to later ones. This approach enhances gradient flow, which improves training and
mitigates the vanishing gradient problem, especially in quantum error correction contexts.
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∆
(p)
i←j

Γ
(p)
i→j

NBP
(

∆
(p)
i←j

)

rp ·∆
(p)
i←j

NBP
(

∆
(p)
i←j

)

+ rp ·∆
(p)
i←j

layer CN update

layer V N update

Figure 4.4: Residual Block in the NBP. The message ∆
(p)
i←j from check to variable nodes is passed

through the CN’s layer and then through VN’s layer in order to perform a NBP decoding. The scaled
previous message is added to NBP output and passed through the (p+ 1)-layer.

In neural belief propagation, residual connections can be added between layers responsible for horizon-
tal and vertical message passing, promoting efficient information sharing. By enabling the addition of
a layer’s input to its output, these connections create shortcuts for gradients, allowing them to bypass
layers and flow more freely.

This mechanism helps counteract the vanishing gradient problem, which can hinder learning in deep
networks by causing minimal updates to parameters during backpropagation. As a result, the network
can learn more effectively and converge faster.

4.3 Weight-Sharing

Weight-sharing is a fundamental concept in convolutional neural networks (CNNs) that significantly
enhances their efficiency and performance. It refers to the practice of using the same set of weights,
known as filters or kernels, across different spatial locations in the input data, such as images. This
means that as a filter slides over the input image, it applies the same weights to various regions, allowing
for easier training and enabling the network to consistently learn features across the entire image [26].
In light of these considerations, we have decided to introduce weight-sharing in the decoding of the
toric code.

In the context of QECC, weight-sharing involves creating a filter that is applied to the various cells
of the toric code, following the periodic boundary conditions imposed by the toric code itself. The
application of this filter across the grid ensures that the different CNs share the same weights, rather
than each one having its own weight (the same for VNs and LLRs).

The addition of weight-sharing transforms our feedforward neural network into a convolutional neural
network (more details in Sect. 4.3.1). In particular, our decoder with weight-sharing offer several
advantages typical of the CNNs [27]:

• Fewer weights for the same number of output neurons: weight-sharing reduces the number of
parameters required, making the network more efficient.
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• Higher efficiency in encoding information: by leveraging spatial structure, CNNs are better at
encoding relevant features.

• Reduced likelihood of overfitting : shared weights help to prevent the model from memorizing the
training data.

• Lower memory requirements : fewer parameters mean less memory is needed, making the network
more resource-efficient.

• Deeper networks : with fewer parameters, it is feasible to implement much deeper networks that
can learn increasingly complex features.

As illustrated in Figure 4.5, we employ the same set of weights (trainable parameters) for multiple
edges. This approach reduces the number of trainable parameters, which in turn leads to easier
convergence during the training process. The figure 4.5 depicts the duplication of 16 checks for
plaquette operators, which correspond to Z-operators, to other segments of the lattice. The same
idea is also implemented for X-operators. Consequently, a total of 32 weights are trained during the
neural network training process.

Figure 4.5: Weight-sharing in a toric code with L=6. A 2x2 kernel is moved across the lattice to share
the weights.

Figures 4.6 and 4.7 illustrate the distribution of CN weights before and after training and the imple-
mentation of weight-sharing for operators X and Z (the same consideration has been also taken for
the weights of VNs and LLRs). Initially, all trainable parameters are set to 1, and then these weights
are replicated across different segments of the toric code. The topological structure enables weight
sharing not only within a single lattice size but also across toric codes of varying sizes.

In addition to replicating weights within the lattice of the toric code, weight sharing can be applied
to reuse weights across different system sizes. Specifically, we can train our model for a fixed length L
and subsequently apply the weights obtained to systems of different sizes (whether larger or smaller)
without losing in performance by leveraging the symmetry introduced by the application of the weight-
sharing filter. In particular, the computations executed by each neuron are the same, allowing for the
sharing of weights among them. In other words, the weights are tied across all edges in the Tanner
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graph that share the same geometry, such as all vertical or all horizontal edges. This concept is of
significant importance as it allows us to train small systems and apply the results obtained to systems
that may be exponentially larger, which would otherwise require substantial computational power and
memory in that training NBP for large systems is very complex. Consequently, this leads to significant
savings in both time and computational costs. In our study, neural network training was conducted
for toric code with L = 8, and the weights were reused for other code sizes, specifically for toric codes
with L = 4, L = 6, L = 8, L = 10, L = 12 and L = 14.

In summary, weight-sharing offers numerous advantages in the context of neural belief propagation for
quantum error correcting codes. Firstly, it decreases the number of parameters in the model, resulting
in faster training times and improved generalization performance. Secondly, it serves to regularize
the model by promoting similarity among the weights across various edges in the Tanner graph. This
can enhance the model’s capability to generalize effectively to new quantum error-correcting codes.
Finally, it allows us to reuse weights across several systems without the need of training all of them,
leading to significant saving in computational costs and time.
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Figure 4.6: Left) Distribution of the wc,i,j′ related to Z operators after the training in a toric code
with L=6, n=72 and m=70. Right) Implementation of weight sharing for plaquette operators.
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Figure 4.7: Left) Distribution of the wc,i,j′ related to X operators after the training in a toric code
with L=6, n=72 and m=70. Right) Implementation of weight sharing for vertex operators.

4.3.1 Convolutional Neural Networks for Toric Code

As mentioned above, the application of weight sharing transforms our feedforward neural network
in a convolutional neural network. In this section, we present a brief parallel between the typical
definitions of CNNs and their ad hoc usage in our decoder for the toric code.

The general framework of CNNs, shown in Fig. 4.8 is the following [27]:

• Input Layer: the network takes an input tensor with dimensions typically represented by
(height,widht,channels).

• Convolutional Layer: this layer applies convolutional filters to the input image to create
feature maps. Each filter learns to recognize specific features like edges, textures, etc. The main
components include:

– Filters/Kernels: small matrices (e.g., 3x3, 5x5) that slide (convolve) over the input image.

– Stride: which refers to the number of steps the filter is shifted, it is represented by the
movement of our kernel across the grid.

– Padding : which involves adding zeros to the edges of the input tensors so that the filter
fits an integer number of times.

• Pooling Layer: this layer, applied after the convolutional layer, reduces the spatial dimensions
of the feature maps (subsampling), lowering the number of parameters and computation needed
in the network. Typical pooling functions are:

– Average pooling : it calculates the average value for patches of a feature map and uses it
to create a downsampled (pooled) feature map.

– Max pooling : it takes the max value for patches of a feature map.

• Fully Connected Layers: after several convolutional and pooling layers, the high-level rea-
soning in the neural network is done via fully connected layers. Every neuron in this layer is
connected to every neuron in the previous layer. The output of these layers can be fed into a
softmax function to provide probabilities for classification tasks.
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input
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Figure 4.8: General framework of a Convolutional Neural Network.

The main characteristic of CNNs is the presence of the convolutional layer, which utilizes the
convolution operation. Convolution is defined as:

oi,j = f





D∑

q=1

(Kq ∗Xq)(i, j) + b



 (4.7)

where K is the filter containing the learnable weights wi,j , X is the input tensor, oi,j is the
output of the layer (feature map) associated with the weights wi,j , f is the activation function,
b is the bias and D the number of filters [27].

Adapting this operation to our toric code, we first define the filter H type, represented by a
matrix of dimensions m × n containing values from 0 to m. These values represent the indices
that define which check nodes, as well as log-likelihood ratios and variable nodes, share the same
weight. This filter is then applied to the input weight tensor of our toric code, which allows us
to obtain the activation map.

Subsequently, the activation function f is applied. In particular, we consider f as the identity
function when the index in the pivot of H type is different from 0. In this case, the corresponding
input weight for each index is retained, and the filter is applied to all elements of the tensor
located at the corresponding index position. Conversely, if the pivot´s value is 0, the weight is
set to 0. This approach ensures that the output tensor presents identical weights for all indices
that are equal in H type, thereby enabling weight sharing. This output tensor serves as our
feature map o, which is fed as input to the next layer. It is important to note that we consider
a bias b to be zero. This represents the adaptation of the classic operation between two layers
of a standard CNN to our weight-sharing decoder for the toric code.

In order to obtain the convolutional layer we also need the stride and the padding. The first is
set to 2 (in fact the 2x2 kernel is moved across the lattice kernel as shown in Fig. 4.5), while the
padding is simply replaced by the periodic boundary conditions of the toric code. This condition
imposes a symmetric filter in both width and height, resulting in the filter being repeated an
integer number of times.
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X
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input tensor (j × i) feature map (j × i)

filter (m× n)

H type

Figure 4.9: Schematic representation of the convolutional layer used in our decoder.

Regarding the pooling operation, we considered an average pooling between the weights corre-
sponding to the same value in the pivots of H type. On the other hands, the fully connected layer
is represented by the NBP architecture discussed in Sect. 4.1. The schema of our ad hoc CNN
is shown in Fig. 4.10.

Input Layer (a priori LLR)

Hidden Layer (Variable Nodes)

Hidden Layer (Check Nodes)

Output Layer (a posteriori LLR)

Syndrome Layer

input

Convolutional layer
Convolutional layer

Pooling layerPooling layer

Fully connected layers

output→

filter
︸ ︷︷ ︸

Feature Extraction

︸ ︷︷ ︸

Classification

Figure 4.10: Schematic representation of the CNN used in this thesis.





Chapter 5

Numerical Results

In this chapter, we present the outcomes derived from the implementation and evaluation of the
NBP4 decoder with the deep learning techniques described in the previous chapters. The results
obtained have been compared with existing findings in the literature computed by Miao et al. [2]
to assess the effectiveness and improvements offered by deep learning to the NBP decoder in
detecting and correcting quantum errors.

The findings illustrate how the integration of deep learning methodologies enhances performance.
In cases where improvements are not observed, the results still demonstrate comparability with
those documented in the literature, achieved with a reduction in computational complexity and
memory resource requirements.

This comparative analysis not only highlights the potential of the NBP4 decoder in the realm of
quantum error correction but also emphasizes the efficiency gains that can be realized through the
use of deep learning techniques. The results suggest that the NBP4 decoder is a valuable option
to effectively address quantum errors while maintaining manageable resource consumption.

5.1 Training

In this section, we present the training procedure for the NBP decoder. The training phase
was conducted using the PyTorch library in Python 3.11.7 on a CUDA-enabled device, while
the testing part was implemented in C++ 13.2.0. To accelerate the computations, an Ubuntu
virtual machine equipped with 2 NVIDIA RTX 6000 Ada EDU GPUs and 48GB of RAM was
utilized.

At the beginning of the training process, the initial values for w
(l)
v,i′,j , w

(l)
v,i are both set to 1 and

ϵ0 to 0.1. If an overcomplete check matrix is used, we use the initial weight wr for redundant

checks in conjunction with ϵ0. In this scenario, the initial value of w
(l)
c,i,j will be set to wr. In

contrast, when redundant checks are not employed, the initial value of w
(l)
c,i,j′ is set to 1. The

optimal values used for ϵ0 and wr are taken from [2] and shown in Tab. 5.1.

L n k d wc moc ϵ0 wr

4 32 2 4 4 96 0.45 -
6 72 2 6 4 216 0.35 0.1
8 128 2 8 4 384 0.37 0.1
10 200 2 10 4 600 0.45 0.15

Table 5.1: Parameters used for the training.

Following this, the neural network decoder training is executed using the proposed loss function
4.4 through a standard stochastic gradient descent. During the training phase, mini-batches

43
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containing 120 samples are utilized. Each mini-batch consists of six sets of 20 randomly generated
error patterns derived from depolarizing channels, each associated with six distinct physical error
probabilities ϵ. For training the NBP4 decoder, the set of ϵ values is {0.02, 0.03, ..., 0.07}, while
for the ONBP4 decoder, we employ the set {0.06, 0.07, ..., 0.11}. In addition, to ensure sufficiently
accurate results, 300 logical errors are collected for each data point. Throughout this thesis, we
use a flooding schedule where all VNs/CNs are updated in parallel in each decoding iteration.

The loss function 4.4 is computed after each decoding iteration l, which yields a loss value
L(l). The loss per error pattern is determined as the minimum value across all 25 iterations,
represented as min{L(l) : l ∈ {1, 2, . . . , L}}. In cases where multiple iterations produce the
same minimum value, we select the earliest iteration. The plots showing the behaviors of L
for the different decoders are reported in Appendix 7. To prevent exploding gradients during
the initial decoding iterations, where the magnitude of the messages is small, the gradients
are clipped to 10−3. Furthermore, we gradually reduce the learning rate from 1 to 0.1 using
a linear scheduler. For the NBP4 decoder without overcomplete check matrices, we conduct
training over 2000 batches. In contrast, when using ONBP4 decoder, we limit the training to
200 batches. We maintain the same batch counts for the implementations of the decoders with
residual connections (RNBP4 and RONBP4) and weight-sharing (WSNBP4 and WSONBP4).

5.2 Quaternary Neural Belief Propagation

In this section, we introduce the results for the NBP4 and ONBP4 decoders (considering over-
complete check matrix with weight w = 6), without the application of additional deep learning
techniques at this stage. The results are taken from Miao et al. paper [2], where they have been
compared with those obtained from the neural BP2 decoder and the Minimum Weight Perfect
Matching decoder. The results are illustrated in Fig. 5.1.

The findings indicate that, following training, both the binary and quaternary neural belief prop-
agation methods (without the use of overcomplete check matrices) show significant improvements
compared to standard belief propagation. This demonstrates the effectiveness of the training
process. In both cases, the performance is lower bounded by the MWPM decoder, which is
regarded as near-optimal for the XZ channel.

Furthermore, the introduction of overcomplete check matrices enables us to surpass this per-
formance bound for all values of L except for L = 10, requiring only 25 iterations. However,
for larger block lengths, it becomes necessary to increase the number of iterations to achieve
performance levels comparable to those of the MWPM decoder.

Finally, from the results shown in Fig. 5.1, it is intersting to observe that the performance of
belief propagation deteriorates as L increases in both binary and quaternary cases. This can
be attributed to several factors. In BP, information is exchanged between neighboring qubits
through message passing. As the size of the system increases, the distance between qubits also
increases, resulting in longer propagation paths for messages and a higher probability of errors
occurring. Longer message paths make it more challenging for BP to accurately estimate error
probabilities, leading to reduced performance.

In larger systems, the likelihood of errors occurring and spreading throughout the code is higher.
The presence of multiple errors in different locations can result in error accumulation, compli-
cating BP’s ability to differentiate between various error configurations. Accumulated errors can
introduce additional complexities and increase the difficulty of accurately inferring and correcting
errors.

Another factor affecting BP performance is the computational complexity, which grows with
the size of the system. As the number of qubits and syndrome measurements increases, the
computational resources required for BP also rise. This increased complexity makes it harder to
execute BP efficiently, especially for large-scale quantum systems.
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So in contrast to standard BP, neural belief propagation improves performance as the system
size L increases in the context of the toric code and can overcome MWPM bound with the
employment of overcomplete check matrices, showing that NBP itself has certain advantages
that enable it to handle larger toric code systems more effectively.
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Figure 5.1: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimensions L ∈ {4, 6, 8, 10} utilizing the trained NBP decoders.

5.3 Residual Connections

The first deep learning technique applied to improve the performance is residual connections.
The results of residual quaternary neural belief propagation and RNBP4 using an overcomplete
check matrix decoders are shown in Fig. 5.2

From the results, we observe that the application of residual connections does not lead to a
significant improvement in the decoder’s performance, unlike what is observed with the NBP2
decoder presented in [7] and [28]. The lack of benefit from residual connections may be attributed
to the architecture of the neural network. In fact, for ONBP4, the performance is already quite
remarkable, indicating that the network is well-optimized for the task at hand. Consequently,
the training process remains effective even in the absence of residual connections.
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Figure 5.2: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimensions L ∈ {4, 6, 8, 10} utilizing the residual connections.

5.4 Weight-Sharing

The second advanced deep learning technique used to enhance the performance of the decoder is
weight-sharing that leads us to weight-sharing quaternary neural belief propagation (WSNBP4)
decoder and WSNBP4 utilizing overcomplete check matrix (WSONBP4) decoder.

To obtain the best filter size and error interval for the architecture, preliminary training and
testing sessions for WSONBP41 were conducted using kernels of sizes 1x1, 2x2, and 4x4, along
with intervals of ϵ equal to {0.02, 0.03, . . . , 0.07}, {0.06, 0.07, . . . , 0.11}, and {0.09, 0.10, . . . , 0.14}.
In particular, firstly we have seeked for the best filter size keeping ϵ fixed to {0.06, 0.07, . . . , 0.11}
in that it was the best interval provided in [2]. Once the optimal plaquette was found, we searched
for the best ϵ interval. Investigation of these parameters revealed that the optimal filter size is
2x2, while the best interval for ϵ is {0.09, 0.10, . . . , 0.14}. The results of this investigation are
presented in Fig. 7.3 in Appendix 7.

The results concerning weight-sharing decoder with optimize parameters, obtained from the
previous investigation, are presented in Fig. 5.3.

The results demonstrate that implementing weight-sharing with the overcomplete check matrix
leads to slight performance improvements compared to ONBP4, for all values of L, with the
exception of L = 10, where the performance still falls short of the MWPM lower bound. In
particular, the case of L = 6 shows the greatest benefit from the weight-sharing approach,

1We have chosen to focus our investigation on the overcomplete check matrix case, as it has shown to represent the

most effective decoder in previous results, even without the implementation of weight-sharing.
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indicating that this method is especially advantageous in this scenario.

On the other hand, when the overcomplete check matrix is not utilized, the performance for
L = 6 does not exhibit the same level of improvement. While some enhancements are observed
for other values of L, they are less pronounced, and crucially, the MWPM threshold is surpassed
only for the L = 4 case, even with the weight-sharing implementation.

0.015 0.045 0.075 0.105 0.135

Physical Error Rate ε

10
−4

10
−3

10
−2

10
−1

10
0

L
o
g
ic
a
l
E
rr
o
r
R
a
te

L = 4

0.015 0.045 0.075 0.105 0.135

Physical Error Rate ε

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

L
o
g
ic
a
l
E
rr
o
r
R
a
te

L = 6

0.015 0.045 0.075 0.105 0.135

Physical Error Rate ε

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

L
o
g
ic
a
l
E
rr
o
r
R
a
te

L = 8

0.015 0.045 0.075 0.105 0.135

Physical Error Rate ε

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

L
o
g
ic
a
l
E
rr
o
r
R
a
te

L = 10

WSNBP4 WSONBP4 NBP4 ONBP4 MWPM

Figure 5.3: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimensions L ∈ {4, 6, 8, 10} utilizing weight-sharing.

Furthermore, to evaluate the effectiveness of weight-sharing and overcomplete check matrices
more comprehensively, we increased the weight of the latter from 6 to 8. Specifically, we followed
the procedure outlined in Sect. 2.9.1, considering combinations of three consecutive elementary
cells both vertically and horizontally. This approach allowed us to construct matrices that in-
corporate all previously used weight-4 and weight-6 stabilizers, along with n weight-8 stabilizers.
The updated values for training and validation are presented in Tab. 5.2, while the results are
illustrated in Fig. 5.4.

L n k d wc moc ϵ0 wr

4 32 2 4 4 128 0.45 -
6 72 2 6 4 288 0.35 0.1
8 128 2 8 4 512 0.37 0.1
10 200 2 10 4 800 0.45 0.15

Table 5.2: Parameters used for the training with weight-8 overcomplete check matrix.

From the graph in Figure 5.4, we observe that the introduction of an overcomplete check matrix
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with weight 8 results in a substantial improvement for L = 4 and L = 6. In particular, the
decoders outperform the MWPM decoder by two orders of magnitude and the results from Miao
et al. [2] by one order of magnitude. For L = 8, there is an improvement, but it is less pronounced
compared to the previous cases (one order of magnitude with respect to MWPM). Meanwhile,
for L = 10, the performance reaches that of the MWPM decoder.

This analysis demonstrates that weight-sharing and the use of an overcomplete check matrix with
w = 8 are effective in enhancing decoder performance compared to other methods. Specifically,
these techniques provide the most significant benefits for systems with smaller sizes, achieving
improvements up to two orders of magnitude. However, as the size of the system increases, the
performance gains become less pronounced.
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Figure 5.4: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimensions L ∈ {4, 6, 8, 10} utilizing weight-sharing and overcomplete check matrix
with weight w=6 and w=8.
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5.4.1 Weights Reuse Strategy

The implementation of weight-sharing allows us to consider the reuse of weights obtained from
training of one code to the others. We can train our model for a fixed length L and subsequently
apply the weights obtained to systems of different sizes without losing in performance by lever-
aging the symmetry introduced by the application of the weight-sharing filter as explained in
Sect. 4.3.

In this thesis, we have chosen to reuse the weights obtained from the WSNBP4 and WSONBP4
decoders trained on the toric code with L = 8 (the abbreviation used to denote weight-reuse is
RW8). The results without the use of overcomplete check matrices are presented in Fig. 5.5,
while those with the use of overcomplete check matrices are shown in Fig. 5.6.

Regarding the NBP4 decoder, from Fig. 5.5 it is evident that weight reuse matches the perfor-
mance in the system as the size increases, while for smaller systems, it presents an improvement
in L = 4 and a deterioration in L = 6. This demonstrates that reusing weights for larger systems
can be advantageous; however, the performance does not reach that of MWPM (both with and
without weight reuse). Consequently, it is necessary to focus on the case of the decoder with the
use of overcomplete check matrices, ONBP4.
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Figure 5.5: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimensions L ∈ {4, 6, 8, 10} reusing the weights of L=8 from WSNBP4 decoder.

In the case of the ONBP4 decoder, the results presented in Fig. 5.6 show that reusing the weights
obtained for a toric code of size L = 8 allows surpassing the error threshold given by the MWPM
decoder, except for the case of L = 10. In particular, using overcomplete check matrices with
larger weights improves the performance of weight reuse, obtaining optimal results especially
for L = 6 where the gain is two orders of magnitude with respect to MWPM. However, as the
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system size increases, the performance decreases slightly, preventing it from surpassing that of
the ONBP4 decoder and the MWPM decoder. As a result, to achieve the performance of the
MWPM decoder as the system size increases, it is necessary to increase the number of decoding
iterations (in our case from 25 to 50, as shown in Fig. 7.4 in Appendix 7).
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Figure 5.6: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimensions L ∈ {4, 6, 8, 10} reusing the weights of L=8 from WSONBP4 decoder.

Furthermore, when considering even larger systems with L = 12 and L = 14, reusing the weights
from L = 8 proves to be even less effective, as shown in Fig. 5.7. In this case, even increasing
the number of iterations does not allow us to achieve the performance levels of the MWPM (as
demonstrated by the graph 7.5 in Appendix 7).

This analysis leads to the conclusion that the reuse of weights does not result in performance
gains as L increase. So it is essential to train the system individually as the system size increases.
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Figure 5.7: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimensions L ∈ {12, 14} reusing the weights of L=8 from WSONBP4 decoder.





Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we have explored the application of machine learning and deep learning techniques
in quantum error correction, focusing specifically on the toric code. We investigated the imple-
mentation of the NBP4 decoder proposed by Miao et al. [2] and introduced techniques such as
residual connections, weight-sharing (which introduces a convolutional structure in the neural
network), higher weight overcomplete check matrices, and weight reuse to potentially improve
the decoder’s performance.

Our results indicate that the use of residual connections does not lead to an improvement in the
performance of the NBP4 decoder presented in [2]. This contrasts with the binary case, where
the introduction of residual connections yields benefits, as reported in [7] and [28].

Regarding the application of weight-sharing and higher weight overcomplete check matrices, our
results demonstrate an improvement of two orders of magnitude for L = 4, 6 compared to the
results obtained with MWPM and an improvement of one order of magnitude compared to those
presented by Miao et al. [2]. For L = 8, an improvement is observed, though it is less significant,
while for L = 10, we achieve a performance comparable to that reported in the literature [2].

Weight-sharing also allowed us to introduce the technique of weight reuse. Training for large
toric codes can be computationally expensive and time-consuming, so reusing weights from a
moderately sized system for much larger systems could present a viable alternative. Our results
show that, while weight reuse largely improves performance with respect to standard BP, it
does not appraoch the performance of miminum-weight perfect matching. More concretely, the
performance under weight reuse appears to saturate, so that the performance does not improve
even if the toric code size L increases. However, we have also observed that increasing the
number of decoding iterations can improve performance in this case, see Appendix 7.

In conclusion, this thesis has further investigated the potential of neural belief propagation
applied to the toric code in quantum error correction. We have implemented advanced artificial
intelligence techniques to improve the performance of the NBP4 decoder proposed in [2]. Our
results demonstrate that the integration of weight-sharing and higher-weight overcomplete check
matrices leads to a significant improvement in results for small systems compared to those in
the literature. However, as the size of the toric code grows, the improvement diminishes.

These findings contribute to ongoing research on quantum error correction and provide insights
into the scalability and effectiveness of machine learning techniques in this field. In order to en-
hance quantum error correction algorithms, future work could focus on developing other strate-
gies to maintain performance improvements for larger system sizes, on exploring the use of other
optimizers or schedulers for the NBP architecture, and on the implementation of a more realistic
circuit level noise model as channel. Moreover, the results obtained in this work represent a solid
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foundation for the publication of a future scientific article, which could further investigate and
expand upon the findings presented here.
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Appendix
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Figure 7.1: The training loss curves for the NBP4 decoder and its deep learning variations are analyzed
for the toric code with L = 10. The WSNBP4 decoder converges to the highest loss value, indicating
that its training is the least effective among the decoders considered. In contrast, the NBP4 decoder
appears to be the most efficient. The same considerations are applied also for the other values of L.
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Figure 7.2: The training loss curves for the ONBP4 decoder and its deep learning variations are
analyzed for the toric code with L = 10. The ONBP4-w = 8 decoder converges to the highest loss
value, indicating that its training is the least effective among the decoders considered. In contrast, the
ONBP4-w = 6 decoder appears to be the most efficient training (with risk of overfitting altough).Same
considerations are applied also for the other values of L.
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Figure 7.3: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimension L = 8 using different filter sizes and ϵ interval.
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Figure 7.4: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric codes with dimensions L ∈ {4, 6, 8, 10} reusing the weights of L=8 from WSONBP4 decoder.
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Figure 7.5: Comparison of the Logical Error Rate as a function of the depolarizing probability ϵ for
toric code with dimension L = 12 reusing the weights of L=8 from WSONBP4 decoder.
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