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Abstract

Optimization of black-box functions has been of interest to researchers for many years and has
become more relevant since the advent of reinforcement learning problems, which goes along
with the development of machine learning.

One of the ways used to tackle the problem is the use of evolutionary strategy algorithms.
These are able to optimize the given function without the need to compute the gradient of the
function itself, which is the main problem while dealing with black-box functions, and they
also have theoretical guarantees for their ability to converge to an optimum. After a brief dis-
cussionof state-of-the-art algorithms, in this thesis a novel algorithm is presented and compared
to them. The algorithm, called ASHGF, implements adaptivity of parameters to escape local
global minima and use of historical gradients in order to deal with the exploration-exploitation
trade-off. Some theoretical results are given, and it is further numerically validated.

All the algorithms arefirst comparedon a standard testbed and thenona set of reinforcement
learning problems. It will be shown that the algorithm can outperform all the other state-of-
the-art algorithms.
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1
Introduction

1.1 Historical Introduction

In recent years, starting from the advance of robotics [1], [2], and then the popularization and
spread of machine learning, the need for affordable and powerful algorithms able to optimize
functionwithout the need to compute their derivative has increased. These kind of algorithms
trace back to the 1970s, with the definition of theNelder-Mead strategy [3], and since then this
field has been largely expanded and developed.

The paths taken by the literature are various:

• Zeroth-order algorithms: a branch of optimization focused on the study of algorithms
thatmimics first ordermethods. These algorithms implement the same structure adopted
in their first order counterpart and, instead of computing the gradient and use it as de-
scent direction, an estimation of the gradient is used. Relevant examples of this com-
mitment are the work from Nesterov [4], who laid the theoretical ground for further
works i.e. the use of Gaussian Smoothing to estimate the gradient of the function to be
optimized, the adaptation to the Zeroth-order framework of the stochastic gradient de-
scent [5], stochastic variance reduction [6], the largely used algorithm in deep learning
AdaMM [7];

• Evolution Strategies: this branch focuses on the idea of evolution strategy, of which a
prime example is CMA-ES [8]. This kind of research converged, de facto, into algo-
rithms, of which the one presented in this thesis is an example, which are somehow re-
lated to random searches and Nesterov’s algorithm. The connection with Zeroth-order
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algorithm is now becoming increasingly clear thanks to the use of the Gaussian Smooth-
ing technique to compute a descent direction.

• Derivative-Free Optimization: A large number of algorithms and techniques fall into
this class of methods. Depending on the problem that needed to be solved, various ap-
proaches were and are developed, like, e.g., directional direct-searchmethods [9], model-
based methods [10, 11].

Themethod presented in this work does not use the usual techniques studied in the Zeroth-
order literature; thus it is to be categorised as an Evolution Strategy. It implements a peculiar
way of choosing the descent directions, a different way to estimate the gradient and adaptivity
of some hyperparameters. Relevant works associated with this one are the algorithms SGES
[12] and ASGF [13]. In fact, in ASGF the authors proposed an algorithm that uses:

• Alternative gradient estimationmethod: this substitutes ad−dimensionalGaussianSmooth-
ing with d 1−dimensional Gaussian Smoothing;

• The use of a random orthonormal basis of the space in which the first direction is the
direction of estimated gradient at the previous iteration;

• The adaptivity of smoothing parameter and learning rate.

The relevance of SGES is given by the way in which it uses previously estimated gradients:

• it keeps track of the last k estimated gradients and uses them to influence the choice of
some of the directions used to estimate the gradient in the following iteration;

• at each iteration it adapts the number of directions to be influenced by previously esti-
mated gradients.

1.2 ProblemDefinition

1.2.1 Black-Box optimization

The general problem that the algorithm aims to solve is the one of finding global minima
for a high-dimensional nonconvex objective function F : Rd → R. Here is considered
the unconstrained black-box optimization problem, parameterized by a d -dimensional vector
x = (x1, . . . , xd) ∈ Rd, i.e.,
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min
x∈Rd

F (x) (1.1)

F (x) is assumed to be of black-box type, and the gradient∇F (x) is inaccessible, thus (1.1)
is typically solvedwith a derivative- or gradient-free optimizationmethod. Such a functionwill
be defined as a black-box function.

1.2.2 Reinforcement Learning problem

The reinforcement learning problem is meant to frame a problem in which to achieve a goal
an agent learns from interaction with the environment. Here we call an agent the learner and
decision-maker, while we denominate the environment everything outside of the agent. More
specifically here the problem is considered as an episodic problem, as defined in [14].

The cycle of learning is characterized by a sequence of discrete time steps, t = 0, 1, 2, 3, . . . ,
where at each time t, the state St ∈ S (S set of all possible states), a representation of the
environment at time step t, is given to the agent, who, depending on the state, chooses an
action At ∈ A(St) (A(St) set of all actions available in step St). At the next step a reward
Rt+1 ∈ R ⊂ R and the new state of the environment are given to the agent. Note that the
reward is stochastic in the sense that the agent does not always face the same problem within
the same environment because the latter presents always randomdifferences (think for example
at the fact that when playing chess no play is the same as the one before that).

The choice of the action is done through a mapping of the state to probabilities of selecting
each possible action. Such mapping is called a policy and is written as πt, with πt(a|s) is the
probability of choosing action a if at state t.

The goal of the agent is to maximize the total amount of reward received in the long run.

Reinforcement Learning via black-box oracle

When solving Reinforcement Learning problem, given πx : Rd → Rp a policy parametrized
by x, the average total reward of a given policy Eξ [r (πx, ξ)], whose maximization is the main
goal, can be seen as a black-box function F (x), hence the problem can be written as:

max
x∈Rd

Eξ [r (πx, ξ)] = max
x∈Rd

F (x) (1.2)

Through this interpretation of the problem, the algorithm is concerned with only the result
of awhole episode, treating the function as a black-box oracle. This approach to the solution of
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reinforcement learning problems is not a novel idea. As [1] points out, reinforcement learning
algorithms evolved during the years showing increasing similarities with evolution strategies.
This in turns reflects the abandonment of the classical framework of reinforcement learning
problems and the adoption of the concept of black-box oracle.

1.3 Aim of this work

The aim of this work is to take the idea of SGES and insert it into the framework of ASGF,
specifically changing the update of the orthonormal basis, which will have a number of direc-
tions dependent on the previous gradients that will be adapted during the execution of the
algorithm.

Then the algorithm is tested against some state-of-the-art algorithms on a suit of challenging
functions taken from [15] and [16], and on some Reinforcement Learning problems taken
from [17].
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2
State-of-the-art algorithms

2.1 Random Search

The first relevant algorithm proposed in the literature to approach the problem (1.1), is the
algorithm from [4], Random Search, with the aim to simulate the working of the gradient
descent but translated in the zeroth-order optimization.

In order to overcome the limitations posed by the impossibility of computing the gradient,
the idea ofNesterov, and the literature that followed, was to replace the objective functionwith
a new function which keeps most of the properties of the original but makes the computation
of the gradient possible. This strategy is the so called Gaussian Smoothing:

Definition 2.1 (Gaussian Smoothing). Let σ > 0 the smoothing parameter, then we denote by
Fσ(x) the Gaussian Smoothing of F with radius σ, i.e.

Fσ(x) =
1

πd/2

∫
Rd

F (x+ σξ)e−∥ξ∥22 dξ = Eξ∼N (0,Id)[F (x+ σξ)] (2.1)

Fσ keeps all the features of F , such as convexity and the Lipschitz constant, while being
always differentiable, even when F is not. This is relevant because, given that ∥F − Fσ∥ can
be bounded by the Lipschitz constant, (1.1) can be replaced with

min
x∈Rd

Fσ(x) (2.2)
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Now, the gradient of the smoothed F is:

∇Fσ(x) =
2

σπd/2

∫
Rd

ξF (x+ σξ)e−∥ξ∥22 dξ =
2

σ
Eξ∼N (0,Id)[ξF (x+ σξ)] (2.3)

This is still a difficult object to compute, but it can be estimated easily. The estimator usu-
ally exploited to estimate this gradient is obtained via Monte Carlo sampling, with a central fi-
nite difference approach, which is used to reduce the variance of the estimation; namely, given
M ∈ N+ the number of directions and {ξj}Mj=1

iid∼ N (0, 1) the directions, then we have the
following:

Definition 2.2 (Gradient of Gaussian Smoothed function).

∇Fσ(x) ≈
1

2σM

M∑
j=1

ξj (F (x+ σξj)− F (x− σξj)) (2.4)

Actually, Nesterov in its work first proposed and studied the theoretical properties of its
algorithm withM = 1; following literature increased it.

Algorithm 1 Random Search
Input: function f , state x0, smoothing parameter σ, stepsize λ

1: for t = 0, 1, 2, . . . do
2: Sample ξ ∼ N (0, In)
3: Compute returns F+ = F (xt + σξ), F− = F (xt − σξ)
4: Set xt+1 = xt − λ

2σ
(Ft+ − Ft−)ξ

The main theoretical result proved by Nesterov for smooth convex functions is the follow-
ing.
At first, note that this method generates a random sequence {xk}k≥0 .Denote by

Uk = (ξ0, . . . , ξk) (2.5)

a randomvector composed by i.i.d. variables {uk}k≥0 related to each iteration of the scheme.
Denote ϕ0 = F (x0), and ϕk

def
= EUk−1

[F (xk)] , k ≥ 1. Then it holds:

Theorem 2.1.1. LetF have Lipschitz Continuos Gradient, and sequence {xk}k≥0 be generated
by 1 with
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λ =
1

4(d+ 4)L
(2.6)

Then, for anyN ≥ 0, we have

1

N + 1

N∑
k=0

(ϕk − f ∗) ≤ 4(d+ 4)L ∥x0 − x∗∥2

N + 1
+

9σ2(d+ 4)2L

25
(2.7)

Let function F be strongly convex. Denote δσ = 18σ2(d+4)2

25τ
L. Then

ϕN − F ∗ ≤ 1

2
L

[
δσ +

(
1− τ

8(d+ 4)L

)N (
∥x0 − x∗∥2 − δσ

)]
(2.8)

Considering the strongly convex case, the smoothing parameterµ has to be chosen such that
it satisfies the inequality 1

2
Lδµ. In this case, the number of iterations needed by the method to

satisfy ϕN − F ∗ ≤ ε, is of the order ofO(d log 1
ε
). It is interesting to note that the original

gradient method requiresO(log 1
ε
) iterations, which shows that this method, and all the other

methods presented in this work, suffer from the curse of dimensionality. This problem can not
be avoided: in fact usingM = d directions to estimate the gradient would lead to O(log 1

ε
)

iterations, at the cost of increasing the computational time for each iteration by a factor of d.

2.2 ES

The following algorithm, from [18], is essentially an analogous of Nesterov’s Random Search
which has its main focus on the increment on the number M of directions used during the
estimation of the gradient.

Algorithm 2 ES algorithm
Input: function f , state x0, smoothing parameter σ0, stepsize λ

1: for t = 0, 1, 2, . . . do
2: Sample ξ1, . . . , ξn ∼ N (0, In)
3: Compute returns Fi+ = F (xt + σξi), Fi− = F (xt − σξi), for i = 1, . . . , n
4: Set xi+1 = xi − λ

2nσ

∑n
i=1(Fi+ − Fi−)ξi

The authors focused on the use of the algorithm to solve RL problems, as in 1.1, and the
possibility of parallelizing the execution of the algorithm which showed the strength of the
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algorithm to train AI’s for this aim. This is proven to be able to led to an incredible advantage
against other RL algorithms.

2.3 ASEBO

Inspiredby the classicalRL literature, in [19], the authors tried to embed the ideaof the exploration-
exploitation tradeoff into the framework given by Algorithm 1 and 2. To achieve this they in-
troduced the idea of active subspaces, originally presented in [20], and they devised an adaptive
method that tries to balance between exploration and exploitation. In their work they identi-
fied exploration as the choice of directions independent of previous gradients directions, while
exploitation was associated to choice of random directions dependent of previous gradients.

Algorithm 3 ASEBO algorithm
Input: functionF , statex0, smoothing parameterσ0, stepsizeλ, decay rate ν, termination

tolerance ε, number of iterations of full-sampling l, total iterationsmaxiter
Output: point of minimum x̃

1: Set x̃ = x0, σ = σ0 and letΣ be a random orthonormal basis
2: Initialize an archive G of maximum capacity k
3: for t = 0 tomaxiter do
4: if t < l then
5: Let nt = d. Sample ξ1, . . . , ξnt fromN (0, Id)
6: else
7: Take top r eigenvalues λi of Covt, where r is smallest such that:

∑r
i=1 λ̇i ≥

ϵ
∑d

i=1 λi using its SVD as described in text and take nt = r.
8: Take the corresponding eigenvectors u1, . . . ,ur ∈ Rd and letU ∈ Rd×r be ob-

tained by stacking them together. Let Uact ∈ Rd×r be obtained from stacking
together some orthonormal basis of LES

active
def
= span {u1, . . . ,ur} . Let U⊥ ∈

Rd×(d−r) be obtained from stacking together some orthonormal basis of the or-
thogonal complementLES,⊥

active ofLES
active

9: Sample nt vectors g1, . . . , gnt as follows: with probability 1 − pt from
N (0,U⊥(U⊥)⊤) and with probability pt fromN (0,Uact (Uact )⊤).

10: Renormalize g1, . . . , gnt such that marginal distributions ∥gi∥2 are χ(d).
11: Compute ∇̂AT

MCF (xt) as: ∇̂AT
MCF (xt) =

1
2ntσ

∑nt

j=1 (F (xt + gj)− F (xt − gj)) gj

12: SetCovt+1 = λCovt +(1− λ)Γ, where Γ = ∇̂AT
MCFσ (xt)

(
∇̂AT

MCFσ (xt)
)⊤

.

13: Set pt+1 = popt for popt output by Algorithm 2 and: xt+1 = xt − η∇̂AT
MCF (xt).
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Definition 2.3. F has a τ -smooth third order derivative tensor with respect to σ > 0, so that
F (x + σg) = F (x) + σ∇F (x)⊤g + σ2

2
g⊤H(x)g + 1

6
σ3F ′′′(x)[v,v,v] for some v ∈ Rd

(∥v∥2 ≤ ∥g∥2) satisfying | F ′′′(x)[v,v,v] ≤ τ∥v∥32 ≤ τ∥g∥32

The authors proved the following bounds:

Theorem 2.3.1. If F has Lipschitz Continuos Gradient and τ -smooth third order derivative
tensor, the estimators ∇̂AT,base

MC ,k=1Fσ(x) and ∇̂AT,asebo
MC, k=1Fσ(x) are close to the true gradient∇F (x),

i.e.: ∥∥∥Eg∼N (0,Id)

[
∇̂AT, base

MC,k=1Fσ(x)
]
−∇F (x)

∥∥∥ ≤ ϵ (2.9)

and ∥∥∥Eg∼P̂

[
∇̂AT, asebo

MC,k=1Fσ(x)
]
−∇F (x)

∥∥∥ ≤ ϵ (2.10)

Algorithm 4 ASEBO subroutine
Hyperparameters: smoothing parameter σ, horizonC , learning rate α, probability regu-

larizer β, initial probability parameter qt0 ∈ (0, 1)

Input: subspaces: LES
active ,L

ES,⊥
active , function F , vector xt

Output: pC
1: for t = 0 tomaxiter do
2: Compute ptl−1 = (1− 2β)qtl−1 + β and sample atl ∼ Ber (ptl)

3: If atl = 1, sample gl ∼ N
(
0, σILES

active

)
, otherwise sample gl ∼ N

(
0, σILES,⊥

active

)
4: Compute vl = 1

2σ
(F (xt + gl)− F (xt − gl))

5: Set el = (1− 2β)


(
−atl(dim(LES

ative )+2)
(ptl)

3

)
(
−(1−atl)(dim(Lactive )+2)

(1−ptl)
3

)
 v2l

6: Set qtl =
qtl−1 exp(−αel(1))

qtl−1 exp(−αl(1))+(1−qtl−1) exp(−αel(2))

Theorem2.3.2. The followingholds forsUact =
∥∥∥(Uact)

⊤∇F (x)
∥∥∥2

2
andsU⊥ =

∥∥∥(U⊥)⊤∇F (x)
∥∥∥2

2
:

• The variance of ∇̂AT ,asebo
MC,k=1Fσ(x) is close to Γ, i.e.

∣∣∣Var [∇̂AT, asebo
MC,k=1Fσ(x)

]
− Γ

∣∣∣ ≤ ϵ

9



• The choice of pt that minimizesΓ satisfies pt∗ :=
√

(sUact )(dactive+2)√
(sUact )(dactive+2)+

√
(sU⊥)(dU⊥+2)

and the

optimal variance V aropt corresponding to pt∗ satisfies: | V aropt −∆ |≤ ϵ for

∆ =

[√(
sUact )(dactive+2) +

√(
sU⊥)(d⊥+2)

]2
− ∥∇F (x)∥2

• Varopt ≤ Var
[
∇̂AT, base

MC,k=1Fσ(x)
]
+ ϵ

−
∣∣∣√(sU⊥) (dactive + 2)−

√
(sUact) (d⊥ + 2)

∣∣∣2 − 2∥∇F (x)∥2︸ ︷︷ ︸
λ

.

2.4 SGES

Following the work of [19], [12] tried to improve and simplify Algorithm 3.
Instead of keeping track of all the gradients via momentum-like update of a covariance ma-

trix, a fixed-size buffer of gradients is kept updated andused to compute a covariancematrix; the
routine responsible for the choice of directions is also simplified and more numerically stable.
To do so, k ≪ d gradients are collected from the beginning, and then always the most recent
k gradients in the buffer are kept. Then at each iteration t ≥ k, givenGt ∈ Rnxk, which is
a matrix made with the last k gradients, the algorithm generates the subspace LG, using the
vectors in the buffer. This subspace captures the structure of the optimization problem and,
in the reinforcement learning optic, it captures the directions related to exploitation. Then the
algorithm samples the search directions from:{

ξ ∼ N
(
0,G⊥G

)
with probability α

ξ ∼ N (0, I) with probability 1− α
(2.11)

α ∈ (0, 1) represents the trade-off between exploitation, choosing a direction from LG,
and exploration, from the whole space. The algorithm adapts α at each iteration such that the
amount of exploitation and exploration varies depending on how the algorithm is performing.
To do that the following are computed:

r̂G =
1

M

M∑
i=1

min
m=1,...,mi

{F (x+ σξi)} (2.12)
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r̂⊥G =
1

d−M

d∑
i=M+1

min
m=1,...,mi

{F (x+ σξi)} (2.13)

Then, at iteration t, α is chosen as:

αt =

{
min {δαt−1, κ1} if r̂G does not exist or r̂G < r̂⊥G
max

{
1
δ
αt−1, κ2

}
if r̂⊥G does not exist or r̂G ≥ r̂⊥G

(2.14)

with δ > 1 a scaling factor, k1 and k2 are upper and lower bounds of α. Intuitively, if
r̂G < r̂⊥G or r̂G does not exist, than the algorithm increases α, otherwise it is decreased.

Algorithm 5 SGES algorithm
Input: function F , state x0, smoothing parameter σ0, learning rate λ, hyper-parameters

k, total iterationsmaxiter, warmup iteration Tw ≥ k
Output: point of minimum x̃

1: Initialize an archive G of maximum capacity k
2: for t = 0 tomaxiter do
3: if t < Tw then
4: Sample search directions ξ1, . . . , ξn fromN (0, In)
5: else
6: Obtain gradient matrixG ∈ Rnxk from G
7: Generate subspacesLG and L⊥

G

8: Sample search directions ε1, . . . , εn from (2.11)
9: Normalize these search directions
10: Compute gradient estimate∇Fσ (xi) by (2.2)
11: Update the parameters xi+1 = xi − λ∇Fσ (xi)
12: Add the gradient estimate∇Fσ (xi) to G
13: if i < Tw then
14: Adaptively adjust α as in (2.14)

Their main theoretical result is:

Theorem2.4.1. Assuming the objective function hasLipschitzContinousGradient, 2.3 andσ <
1
35

√
εmin{α,1−α}
τn3 max{L,1} for some precision parameter ε > 0, it holds

∥∥Eϵ∼P
[
ĝsges

]
−∇f(x)

∥∥ ≤ ε
∣∣Var [ĝsges ]− Ω

∣∣ ≤ ε (2.15)

where
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Ω =
k + 2

α
·
∥∥U⊤∇F (x)

∥∥2 − ∥∇F (x)∥2 + n− k + 2

1− α
·
∥∥∥(U⊥)⊤∇F (x)

∥∥∥2

(2.16)

2.5 ASGF

This algorithm from [13] embeds a number of changes with respect to the previous literature.
At first, as it was done in [21], it replaces Gaussian Smoothing with Directional Gaussian

Smoothing. Where, insteadofdoing a singled−dimensionalGaussianSmoothing,d1−dimensional
Gaussian Smoothing are performed, which can be approximated via Gauss-Hermite quadra-
ture.

To achieve this, a functionG : R→ R is defined as a cross section of F along ξ as

G(y | x, ξ) = F (x+ yξ), y ∈ R (2.17)

It is further defined the Gaussian smoothing ofG(y), denoted asGσ(y), by

Gσ(y | x, ξ) :=
1√
2π

∫
R
G(y + σv | x, ξ)e−

v2

2 dv = Ev∼N (0,1)[G(y + σv | x, ξ)] (2.18)

which is the Gaussian smoothing ofF (x) along ξ near x. Using a one-dimensional expecta-
tion, the derivative ofG(y | x, ξ) at y = 0, is

D [Gσ(0 | x, ξ)] =
1

σ
Ev∼N (0,1)[G(σv | x, ξ)v] (2.19)

Now letΞ = (ξ1, . . . , ξd) anorthonormal basis, than the following vectorDirectionalGaus-
sian Smoothing gradient (henceforth DGS gradient), can be defined:

Definition 2.4 (DGS Gradient).

∇σ,ξ[F ](x) := [D [Gσ (0 | x, ξ1)] , · · · ,D [Gσ (0 | x, ξd)]] Ξ (2.20)

At this point, the key is that each of the components of the DGS gradient requires a one-
dimensional integral, which is approximated with high accuracy with the Gauss-Hermite rule.
Hence we obtain the following estimator forD [Gσ(0 | x, ξ)]:

12



D̃M [Gσ(0 | x, ξ)] =
1√
πσ

M∑
m=1

wmF
(
x+
√
2σvmξ

)√
2vm (2.21)

Thus we define the DGS Gradient Estimator as

Definition 2.5 (DGS Gradient Estimator).

∇̃M
σ,Ξ[F ](x) =

[
D̃M [Gσ (0 | x, ξ1)] , · · · , D̃M [Gσ (0 | x, ξd)]

]
Ξ (2.22)

The authors then fix the balance between exploration and exploitation by assigning, at each
iteration, the previous estimated gradient as first vector of the new set of direction, keeping the
remaining directions randomly chosen. It then estimates for each direction a Local Lipschitz
Constant to update, with a momentum-like mechanism, the learning rate like in 3.2.

Algorithm 6 ASGF algorithm
Input: function f , state x0, smoothing parameter σ0, termination tolerance ε, hyper-

parameters α, k, total iterationsmaxiter
Output: point of minimum x̃

1: Set x̃ = x0, σ = σ0 and let Ξ be a random orthonormal basis
2: for i = 0 tomaxiter do
3: for j = 1 to d do
4: compute D̃M [Gσ (0 | x, ξj)] by (2.21) and estimate local Lipschitz constantsLj

5: Average Lipschitz constantL∇ and compute learning rate λ
6: Assemble the gradient ∇̃M

σ,Ξ[F ](xi) by (2.22) and update xi+1 = xi − λ∇̃M
σ,Ξ[F ](xi)

7: Add the gradient estimate toG
8: if f (xi+1) < f(x̃) then
9: Update x̃ = xi+1

10: if ∥xi+1 − xi∥2 < ε then
11: break
12: else
13: Update smoothness parameter σ and the search directionsΣ by Algorithm (7)

13



Algorithm 7 Parameter update
Input: smoothing parameter σ, gradient ∇̃M

σ,Ξ[F ](xi), local Lipschitz constants
L1, . . . , Ld

Data: number of resets r and reset factor ρ, decay rate γσ, threshold parametersA,B and
their change ratesA+, A−, B+, B−

Output: smoothing parameter σ and directionsΣ
1: if r > 0 and σ < ρσ0 then
2: Assign Ξ to be a random orthonormal basis and set σ = σ0

3: SetA,B to their initial values and set r = r − 1
4: else
5: Update directionsD
6: if max1≤j≤d

∣∣∣D̃M [Gσ (0 | xi, ξj)] /Lj

∣∣∣ < A then
7: Decrease smoothing σ = σ ∗ γσ and lower thresholdA = A ∗ A−

8: else if max1≤j≤d

∣∣∣D̃M [Gσ (0 | xi, ξj)] /Lj

∣∣∣ > B then
9: Increase smoothing σ = σ/γσ and upper thresholdB = B ∗B+

10: else
11: Increase lower thresholdA = A∗A+ and decrease upper thresholdB = B ∗B−

14



3
The Algorithm

In this chapter the proposed algorithm is described in Section 3.4 while the previous sections
explain the various pieces that compose it.

3.1 Historical Gradients

As in Algorithm 5, the proposed method uses a buffer of previously calculated gradients in
order to sample directions which strives to achieve a better trade-off between exploration and
exploitation. Themain differencewith respect toAlgorithm5 lies in the fact that the presented
algorithm orthonormalizes the set of directions produced at each iteration, this being needed
for the estimation of the gradient.

3.2 The Gradient Estimator

Like in Algorithm 6, the algorithm does not exploit Gaussian Smoothing, but rather makes
use Directional Gaussian Smoothing in order to estimate the gradient of the function which
is to be optimized. The main difference between Algorithm 6 and 8 is that the last one uses
a equal fixed amount of quadrature points both for directions chosen completely at random
and those dependant on the previous estimated gradients as in (2.11), while the former uses
a smaller amount of points for completely random directions and for the single direction de-
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pendent on the gradient, it increases the number of points until a threshold of given accuracy
is reached. Both from a practical and theoretical point of view the latter approach should be
preferable because, at the same time, reduces the time needed to execute the algorithm, reduces
the number of function evaluations required by the algorithm and thenmakes it feasible to talk
about convergence results.

3.3 Adaptation of the Parameters

Lastly, instead of keeping for the whole execution of the algorithm some fixed values of the
smoothing parameter σ and the learning rate λ, it modifies them at each iteration, in order to
estimate their best values.

3.3.1 Learning rate

To update the learning rate, at each iteration the directional local Lipschitz constants Lj are
estimated as:

Lj = max
{i,k}∈I

∣∣∣∣F (x+ σpiξj)− F (x+ σpkξj)

σ (pi − pk)

∣∣∣∣ (3.1)

where I =
{
{i, k} ∈ {1, . . . ,m}2

∣∣ | i − ⌊m
2
⌋ − 1 |̸=| k − ⌊m

2
⌋ − 1 |

}
. Then the

learning rate is computed as:

L∇ ← (1− γL)LG + γLL∇ and λ = σ/L∇ (3.2)

where LG is the max of the estimated Lipschitz constants associated to the directions sam-
pled fromLG. Note that until iteration Tw, LG is the max of all the local Lipschitz constants.

3.3.2 Smoothing parameter

At each iteration, to adapt the smoothing parameter to the local geometry, ∀j = 1, . . . , d,
D̃M [Gσ (0 | x, ξj)] is compared to the corresponding local Lipschitz constant Lj . If the max
of all the ratios of the absolute value of the two quantities is sufficiently large, σ is increase, else
it is increased.

Furthermore, the algorithm has a given number of reset of the smoothing parameter σ and
directions to initial conditions. This is implemented in order to help the algorithm escaping
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local minima that would otherwise make it stop. This happens whenever the smoothing pa-
rameter becomes sufficiently small, σ < ρσ0.

3.4 The Algorithm

Algorithm 8 ASHGF algorithm
Input: function f , state x0, smoothing parameter σ0, termination tolerance ε, hyper-

parameters α, k, total iterationsmaxiter, warmup iteration Tw = k
Output: point of minimum x̃

1: Set x̃ = x0, σ = σ0 and let Ξ be a random orthonormal basis
2: Initialize an archive G of maximum capacity k
3: for i = 0 tomaxiter do
4: for j = 1 to d do
5: compute D̃M [Gσ (0 | x, ξj)] by (2.21) and estimate local Lipschitz constants Lj

by (3.1)
6: Average Lipschitz constantL∇ and compute learning rate λ by (3.2)
7: Assemble the gradient ∇̃M

σ,Ξ[F ](xi) by (2.22) and update xi+1 = xi − λ∇̃M
σ,Ξ[F ](xi)

8: Add the gradient estimate to G
9: if f (xi+1) < f(x̃) then
10: Update x̃ = xi+1

11: if ∥xi+1 − xi∥2 < ε then
12: break
13: else
14: if i < Tw then
15: Set historical = False
16: else
17: if i >= Tw + 1 then
18: Adaptively adjust α by (2.14)
19: Set historical = True

20: Update smoothness parameter σ and the search directions Ξ by Algorithm (9)

The algorithm, shown in Algorithm 8, is a modification of the random search defined by
[4] and the Evolutionary Strategy by [18]. As said in the previous sections, the three main
differences, with respect to the algorithms from the literature, are:

• the use of previously generated gradients to pick the direction used to get the gradient
estimate;
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• the adaptivity of the learning rate and of the smoothing parameter;

• the use of Gauss-Hermite quadrature instead of finite differences.

Furthermore, it is to be noted that the algorithm does not use any kind of technique which
stems from the zeroth-order optimization literature. In fact it does not exploit variance reduc-
tion, momentum, the sign of gradient, estimated hessian or other approaches. It is, in this
regard, a simple random search.

Algorithm 9 Parameter update
Input: smoothing parameter σ, gradient ∇̃M

σ,Ξ[F ](xi), local Lipschitz constants
L1, . . . , Ld, historical, archive of gradients G

Data: number of resets r and reset factor ρ, decay rate γσ, threshold parametersA,B and
their change ratesA+, A−, B+, B−

Output: smoothing parameter σ and directions Ξ
1: if r > 0 and σ < ρσ0 then
2: Assign Ξ to be a random orthonormal basis and set σ = σ0

3: SetA,B to their initial values and set r = r − 1
4: else
5: if historical then
6: Obtain gradient matrixG ∈ Rdxk from G
7: Generate d directions as in (2.11)
8: Ortho-normalize the directionsD
9: whileD does not generateRd do
10: ComplementD with random vectors fromN (0, I) and orthonormalize
11: else
12: Set asD a random orthonormal basis
13: Update Ξ = D
14: if max1≤j≤d

∣∣∣D̃M [Gσ (0 | xi, ξj)] /Lj

∣∣∣ < A then
15: Decrease smoothing σ = σγσ and lower thresholdA = A ∗ A−

16: else if max1≤j≤d

∣∣∣D̃M [Gσ (0 |, ξj)] /Lj

∣∣∣ > B then
17: Increase smoothing σ = σ/γσ and upper thresholdB = B ∗B+

18: else
19: Increase lower thresholdA = A∗A+ and decrease upper thresholdB = B ∗B−

3.4.1 Implementation Details

Below the table with the parameters used can be found:
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parameter m A B A− A+ B− B+ γL γσ r ρ k maxiter ε
value 5 0.1 0.9 0.95 1.02 0.98 1.01 0.9 0.9 10 0.01 50 10000 10−8

Table 3.1: Table of the parameters used in 8 and 9.

The strength of this algorithm lies also in the fact that varying these parameters, keep almost
the same performance on average, with some fluctuations depending on the function that is to
be optimised.

3.5 Theoretical Results

3.5.1 Background notions and results

In this section the theoretical background needed in order to prove convergence results for the
algorithm is presented.

Definition 3.1 (Lipschitz Continuos Gradient). Let F ∈ C1(R). F has Lipschitz Continuos
Gradient if there exists L > 0 such that ∥∇F (x+ ξ)−∇F (x)∥ ≤ L ∥ξ∥, ∀x, ξ ∈ Rd.

Definition 3.2 (Strong Convexity). Let F ∈ C1(Rd). F is a strongly convex function if there
exists a positive number τ such that ∀x, ξ ∈ Rd, F (x+ ξ) ≥ F (x) + ⟨∇F (x), ξ⟩+ τ

2
∥ξ∥2. τ

is called the convexity parameter of F .

Theorem 3.5.1 (Gauss-Hermite quadrature error). Let D̃M andD as in 2.21 and 2.19, respec-
tively. Then the error of the one-dimensional GH quadrature is∣∣∣(D̃M −D

)
[Gσ]

∣∣∣ ≤ C
M !
√
π

2M(2M)!
σ2M−1, (3.3)

withC > 0 a constant independent ofM and σ.

Proposition 3.5.2 (Lemma3 - [4]). IfF haLipschitz ContinuosGradient with constantL, then

∥∇Fσ(x)−∇F (x)∥ ≤ σ

2
L(d+ 3)3/2 (3.4)

For F ∈ C2(Rd) such that ∥∇2F (x+ ξ)−∇2F (x)∥ ≤ L ∥ξ∥, ∀x, ξ ∈ Rd with constant
L, we can guarantee that

∥∇Fσ(x)−∇F (x)∥ ≤ σ2

6
L(d+ 4)2 (3.5)
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Proposition 3.5.3 (Theorem 2.1.5 - [22]). Let x, y ∈ Rn and α ∈ [0, 1]. The following
expressions are equivalent to say that F has Lipschitz Continous Gradient:

0 ≤ F (y)− F (x)− ⟨F ′(x), y − x⟩ ≤ L

2
∥x− y∥2 , (3.6)

F (x) + ⟨F ′(x), y − x⟩+ 1

2L

∥∥F ′(x)− F ′(y)2
∥∥ ≤ F (y), (3.7)

1

L
∥F ′(x)− F ′(y)∥2 ≤ ⟨F ′(x)− F ′(y), x− y⟩ , (3.8)

⟨F ′(x)− F ′(y), x− y⟩ ≤ L ∥x− y∥2 , (3.9)

αF (x) + (1− α)F (y) ≥ F (αx+ (1− α)y) +
α(1− α)

2L
∥F ′(x)− F ′(y)∥2 , (3.10)

αF (x) + (1− α)F (y) ≤ F (αx+ (1− α)y) + α(1− α)
L

2
∥x− y∥2 . (3.11)

3.5.2 Convergence of the algorithm

A first result is a bound on the difference between∇F and the DGS estimator.

Proposition 3.5.4. Let Ξ = (ξ1, . . . , ξd) be a orthonormal basis of Rd and let F have a Lips-
chitz Continous Gradient with constant L. Then

∥∥∥∇̃M
σ,Ξ[F ](x)−∇F (x)

∥∥∥2

≤ 2C2πd(M !)2

4M((2M)!)2
σ4M−2 + 32dL2σ2 (3.12)

Proof. First, adapting 3.5.2 to 1−dimensional Gaussian smoothing, for any ξ being a unit vec-
tor inRd, there holds

|D [Gσ(0 | x, ξ)]−∇ξF (x)| ≤ 4σL, (3.13)

where d = 1, being a 1−dimensional Gaussian smoothing.
From (3.3) and (3.13), we have
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∣∣∣D̃M [Gσ (0 | x, ξi)]−∇ξiF (x)
∣∣∣2 ≤ 2

∣∣∣(D̃M −D
)
[Gσ]

∣∣∣2 + 2 |D [Gσ]−∇ξiF (x)|2

≤ 2C2(M !)2π

4M((2M)!)2
σ4M−2 + 32σ2L2, ∀i ∈ {1, . . . , d}

(3.14)

Summing 3.14 from i = 1 to d, given that the bound does not depend on i, gives 3.12.

The next result aims to give a bound on the difference in the value of the function at an
iteration t with respect to its global minima. For the following results the stepsize λ and the
smoothing parameter σ are assumed to be constant.

Theorem 3.5.5 (Bound on the descent). Let F be a strongly convex function with Lipschitz
ContinuosGradient,L being its Lipschitz constant,x∗ the globalminimizer ofF and the sequence
{xt}t≥0 be generated by Algorithm 8 with λ = 1

8L
. Then, for any t ≥ 0,

F (xt)− F (x∗) ≤ 1

2
L

[
δσ +

(
1− τ

16L

)t (
∥x0 − x∗∥2 − δσ

)]
. (3.15)

Here,

δσ =

(
128

τ 2
+

16

τL

)
L2dσ2 +

(
8

τ 2
+

1

2τL

)
C2(M !)2πd

4M((2M)!)2
σ2. (3.16)

Proof. Firstly, let’s find an upper bound for
∥∥∥∇̃M

σ,Ξ[F ](x)
∥∥∥. Recall that

∥∥∥∇̃M
σ,Ξ[F ](x)

∥∥∥2

=
d∑

i=1

∣∣∣D̃M [Gσ (0 | x, ξi)]
∣∣∣2 . (3.17)

Each term of the sum defined above can be bounded as
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∣∣∣D̃M [Gσ (0 | x, ξi)]
∣∣∣2 = ∣∣∣D̃M [Gσ (0 | x, ξi)]− 0

∣∣∣2
≤ 2

∣∣∣D̃M [Gσ (0 | x, ξi)]−D [Gσ (0 | x, ξi)]
∣∣∣2 +

2
∣∣∣D̃M [Gσ (0 | x, ξi)]− 0

∣∣∣2
= 2

∣∣∣D̃M [Gσ (0 | x, ξi)]−D [Gσ (0 | x, ξi)]
∣∣∣2 +

2
∣∣∣D̃M [Gσ (0 | x, ξi)]

∣∣∣2
≤ 2C2(M !)2π

4M((2M)!)2
σ4M−2 + 4

∣∣∣D̃M [Gσ (0 | x, ξi)]−∇ξiF (x)
∣∣∣2 +

4 |∇ξiF (x)|2

≤ 2C2(M !)2π

4M((2M)!)2
σ4M−2 + 64σ2L2 + 4 |∇ξiF (x)|2 ,

(3.18)

where (3.13) and (3.3) were used. This bound can then used in (3.17), in order to obtain

∥∥∥∇̃M
σ,Ξ[F ](x)

∥∥∥2

≤ 2C2(M !)2dπ

4M((2M)!)2
σ4M−2 + 4

d∑
i=1

|∇ξiF (x)|2 + 64dσ2L2. (3.19)

Now, let’s define that rt = ∥xt − x∗∥. Then

r2t+1 =
∥∥∥xt − λ∇̃M

σ,Ξ[F ] (xt)− x∗
∥∥∥2

= r2t − 2λ
〈
∇̃M

σ,Ξ[F ] (xt) , xt − x∗
〉
+ λ2

∥∥∥∇̃M
σ,Ξ[F ] (xt)

∥∥∥2

(3.19)

≤ r2t − 2λ
〈
∇̃M

σ,Ξ[F ] (xt)−∇F (xt) , xt − x∗
〉
− 2λ ⟨∇F (xt) , xt − x∗⟩

+ 4λ2

d∑
i=1

|∇ξiF (xt)|2 + 64λ2L2dσ2 +
2C2λ2(M !)2πd

4M((2M)!)2
σ4M−2.

(3.20)

Now, the aim is to bound the right side of (3.20). Given the strong convexity of F ,
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− 2λ ⟨∇F (xt) , xt − x∗⟩ ≤ 2λF (x∗)− 2λF (xt)− λτ ∥x∗ − xt∥2 . (3.21)

Now, given that

(a+ b) · (a+ b) = ∥a∥2 + 2a · b+ ∥b∥2 ≥ 0 =⇒ ∥a∥2 + ∥b∥2 ≥ −2a · b,

then it holds:

− 2λ
〈
∇̃M

σ,Ξ[F ] (xt)−∇F (xt) , xt − x∗
〉

≤ 2λ

τ

∥∥∥∇̃M
σ,Ξ[F ] (xt)−∇F (xt)

∥∥∥2

+
λτ

2
∥xt − x∗∥2

(3.12)
≤ 4λ

τ
· C

2πd(M !)2

4M((2M)!)2
σ4M−2 +

64λ

τ
L2dσ2 +

λτ

2
∥xt − x∗∥2 .

(3.22)

Using a bound for functions with Lipschitz Continuos Gradients from 3.5.3, it gives

4λ2

d∑
i=1

|∇ξiF (xt)|2 = 4λ2 ∥∇F (xt)∥2 ≤ 8λ2L (F (xt)− F (x∗)) . (3.23)

Now, joining (3.20) and (3.23), it holds

r2t+1 ≤ r2t −
(
2λ− 8λ2L

)
(F (xt)− F (x∗))

+

(
64λ

τ
+ 64λ2

)
L2dσ2 +

(
4λ

τ
+ 2λ2

)
C2(M !)2πd

4M((2M)!)2
σ4M−2.

(3.24)

Given the strong convexity ofF and that λ∗ = 1
8L

is the maximum for 8λ2L− 2λ, we have
that

−
(
2λ− 8λ2L

)
(F (xt)− F (x∗)) ≤ τ

16L
∥xt − x∗∥2 (3.25)

Let’s now assume that σ < 1. Then, from (3.24), (3.25) and (3.16), holds that

r2t+1 − δσ ≤
(
1− τ

16L

) (
r2t − δσ

)
, (3.26)
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which gives

r2t − δσ ≤
(
1− τ

16L

)t (
r20 − δσ

)
. (3.27)

Now, since forF holdsF (xt)−F (x∗) ≤ 1
2
L ∥xt − x∗∥2, because of (3.6), the conclusion

is achieved.

Thanks to the theorem above, it can be proved the global linear rate of convergence with
ASHGF, which is to be expected in the case of strongly convex functions. In order to prove it,
let ε > 0. Then to guarantee F (xt) − F (x∗) ≤ ε, the smoothing parameter has to be such
that σ ≤ O

(√
ε
d

)
and the number of iterations have to be t = O(log 1

ε
), which yields the

result.
It is relevant to note that the number of iterations required by Algorithm 8 is independent

of the dimensionality of the problem considered.
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4
Numerical Results

4.1 Minimization of functions

The first set of tests used to verify the goodness of the proposed algorithm focused on a col-
lection of functions taken from [15] and [16], some characterized by deep valleys, others by
extended plateaus or the presence of many local minima. The optimization problems were set
at three different dimensions: 10, 100, 1000. Moreover ES, SGES, ASEBO and ASGF were
tested alongside ASHGF, to show how well it would score against SOTA available algorithms.
It appears that all code for the algorithms, excluding ASEBO which was available through the
GitHub page of the author *, were written following exactly the related papers. Also, the im-
plementation of ASGF is different from the one presented in [13]: at one step the algorithm
should have tried to estimate the value of the gradient along the direction of the previous esti-
mated gradient, increasing the number of quadrature points until the difference between the
last estimation and the previous one was less then a threshold, meanwhile in this comparison
it was kept a fixed number of quadrature point. This was done for two main reasons: decrease
the computational time required by the algorithm to be executed; ease the comparison of the
number of function evaluations required by the algorithms.

For ASEBO, ES and SGES the step-size was fixed to 10−4, the smoothing parameter to 10−4.
Now, to test the performance and efficiency of the algorithms, performance anddata profiles

*https://github.com/jparkerholder/ASEBO
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are used in this work, as defined in [23]. Let’s call fL the smallest value of f obtained by any
solver for each function within µL function evaluations, the number of function evaluations
allowed during the execution of the solvers; thus we can define:

Definition 4.1 (Convergence test). Let p ∈ P be a problem, s ∈ S a solver and µL a fixed
number of function evaluations. A solver is said to satisfy the convergence test if holds

Fxk
≤ FL + τ(F (x0)− FL), (4.1)

with 0 < τ < 1 a parameter indicating the tolerance of distance from FL, which is the best
objective function value achieved among all the solvers for problem p.

Then it can be defined

Definition 4.2 (Performance measure). Given a problem p ∈ P and a solver s ∈ S , fixed a
number of function evaluations L. We define the performance measure of s for problem p the
number of function evaluations to satisfy the convergence test for a given tolerance τ and compu-
tational budget µL. If the test is not satisfied, tp,s is set to∞.

Thus the following quantities can be defined:

Definition 4.3 (Performance and data profiles). Let s ∈ S be a solver and µL fixed a number
of function evaluations. Its performance and data profiles are, respectively,

ρs(α) =
1

|P |

∣∣∣∣{p ∈ P :
tp,s

min {tp,s′ : s′ ∈ S}
≤ α

}∣∣∣∣ (4.2)

ds(α) =
1

|P |
|{p ∈ P : tp,s ≤ α (np + 1)}| . (4.3)

Note that np is the number of variables in p ∈ P .
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Ackley F (x) = −20 exp
(
−0.2

√
1
d

∑d
i=1 x

2
i

)
− exp

(
1
d

∑d
i=1 cos (2πxi)

)
+ 20 + exp(1)

Almost Perturbed Quadratic F (x) =
∑n

i=1 ix
2
i +

1
100

(x1 + xn)
2

Cube F (x) = (x1 − 1)2 +
∑n

i=2 100
(
xi − x3

i−1

)2
Extended Feudenstein and Roth

F (x) =
∑n/2

i=1

[
(−13 + x2i−1 + ((5− x2i) x2i − 2) x2i)

2

+(−29 + x2i−1 + ((x2i + 1) x2i − 14) x2i)
2 ]

Extended Hiebert F (x) =
∑n/2

i=1

[
(x2i−1 − 10)2 + (x2i−1x2i − 50000)2

]
Extended Himmelblau F (x) =

∑n/2
i=1

[(
x2
2i−1 + x2i − 11

)2
+ (x2i−1 + x2

2i − 7)
2
]

Extended PSC1 F (x) =
∑n/2

i=1

[(
x2
2i−1 + x2

2i + x2i−1x2i

)2
+ sin2 (x2i−1) + cos2 (x2i)

]
Extended Rosenbrock F (x) =

∑n/2
i=1 100

(
x2i − x2

2i−1

)2
+ (1− x2i−1)

2

Extended Tridiagonal1 F (x) =
∑n−1

i=1

[
(xi + xi+1 − 3)2 + (xi − xi+1 + 1)4

]
Extended Tridiagonal2 F (x) =

∑n−1
i=1

[
(xixi+1 − 1)2 + 0.1 (xi + 1) (xi+1 + 1)

]
Extended Trigonometric F (x) =

∑n
i=1

[(
n−

∑n
j=1 cos xj

)
+ i (1− cos xi)− sin xi

]2
ExtendedWhite and Holst F (x) =

∑n/2
i=1 100

(
x2i − x3

2i−1

)2
+ (1− x2i−1)

2

Generalized Quartic F (x) =
∑n−1

i=1

[
x2
i + (xi+1 + x2

i )
2
]

Generalized Rosenbrock F (x) =
∑n−1

i=1 c (xi+1 − x2
i )

2
+ (1− xi)

2, c = 100

GeneralizedWhite and Holst F (x) =
∑n−1

i=1

[
c (xi+1 − x3

i )
2
+ (1− xi)

2
]
, c = 100

Griewank F (x) =
∑d

i=1
x2
i

4000
−

∏d
i=1 cos

(
xi√
i

)
+ 1

Levy
F (x) = sin2 (πw1) +

∑d−1
i=1

[
(wi − 1)2

[
1 + 10 sin2 (πwi + 1)

]]
+(wd − 1)2

[
1 + sin2 (2πwd)

]
, wi = 1 + xi−1

4
, ∀i = 1, . . . , d

Perturbed Quadratic F (x) =
∑n

i=1 ix
2
i +

1
100

(
∑n

i=1 xi)
2

Perturbed Quadratic Diagonal F (x) = (
∑n

i=1 xi)
2
+
∑n

i=1
i

100
x2
i

Power F (x) =
∑n

i=1 (ixi)
2

Rastrigin F (x) = 10d+
∑d

i=1 [x
2
i − 10 cos (2πxi)]

Schwefel F (x) = 418.9829d−
∑d

i=1 xi sin
(√
|xi|

)
Sphere F (x) =

∑d
i=1 x

2
i

Sum of Different Powers F (x) =
∑d

i=1 |xi|i+1

Trid F (x) =
∑d

i=1 (xi − 1)2 −
∑d

i=2 xixi−1

Zakharov F (x) =
∑d

i=1 x
2
i +

(∑d
i=1 0.5ixi

)2

+
(∑d

i=1 0.5ixi

)4

Table 4.1: Table of the functions used to test the algorithms.
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The functions used for the experiment are the ones listed in the Table 4.1; they are taken
both from [15] and [16]. They range from strongly convex functions to non-convex functions,
plateau functions, deep valley functions and others.

4.1.1 Performance profiles

This quantity aims to describe howmuch the solver performs with respect to the other solvers
on the given set of problems P . It is to be noted that for α sufficiently large, ρs(α) represents
the fraction of problem solved by the solver s; also, for a given α, it represents the fraction of
problems with tp,s

min tp,s′
bounded by α, thus a solver with a high value of ρs(α) is preferable.

As it canbe seen in the followingfigures,with the increase ofproblemdimensionality,ASHGF
requires increased computational budget that, when it is given, let the algorithm to perform
better than the other algorithms.

Dimension 10

Figure 4.1: Performance profiles with µL = 104
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Figure 4.2: Performance profiles with µL = 105

Figure 4.3: Performance profiles with µL = 106
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Figure 4.4: Performance profiles with µL = 107

Figure 4.5: Performance profiles with µL = 108
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Dimension 100

Figure 4.6: Performance profiles with µL = 104

Figure 4.7: Performance profiles with µL = 105

31



Figure 4.8: Performance profiles with µL = 106

Figure 4.9: Performance profiles with µL = 107
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Figure 4.10: Performance profiles with µL = 108

Dimension 1000

Figure 4.11: Performance profiles with µL = 104
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Figure 4.12: Performance profiles with µL = 105

Figure 4.13: Performance profiles with µL = 106
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Figure 4.14: Performance profiles with µL = 107

Figure 4.15: Performance profiles with µL = 108

4.1.2 Data profiles

With this quantity is measured the percentage of problems solved within a tolerance τ for a
certain number of function evaluations.
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As it canbe seenwith the performance profiles, again thanks to the data profiles it canbe seen
that increasing the dimensionality of the problem, ASHGF requires increased budget. Given
that, the algorithm shows itself to be more efficient than others given a bigger budget.

Dimension 10

Figure 4.16: Data profiles with µL = 104
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Figure 4.17: Data profiles with µL = 105

Figure 4.18: Data profiles with µL = 106
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Figure 4.19: Data profiles with µL = 107

Figure 4.20: Data profiles with µL = 108
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Dimension 100

Figure 4.21: Data profiles with µL = 104

Figure 4.22: Data profiles with µL = 105
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Figure 4.23: Data profiles with µL = 106

Figure 4.24: Data profiles with µL = 107
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Figure 4.25: Data profiles with µL = 108

Dimension 1000

Figure 4.26: Data profiles with µL = 104
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Figure 4.27: Data profiles with µL = 105

Figure 4.28: Data profiles with µL = 106
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Figure 4.29: Data profiles with µL = 107

Figure 4.30: Data profiles with µL = 108

4.1.3 Statistical analysis of the convergence

In order to understand the robustness of the algorithm varying the random seed, four of the
previously defined functions were selected, namely: Sphere, Rastrigin, Levy and Ackley; they
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were optimized using ASHGF with one hundred different random seeds, the same for each
function.

Figure 4.31: Results of the optimization of the functions Sphere, Rastrigin, Levy and Ackley on 100 different random seeds.
The figures on the left show all the function decay. The figures on the right show the slowest, fastest and average decay,
with the highlighted area being the standard deviation from the mean.
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The algorithm converged for each seed and function. The dimension of choice was 100,
being both high enoughwhile still being feasible in terms of computational times. As expected,
with Sphere, a strongly convex function, the algorithm converged in a very small number of
iterations.

In the following figures the presented algorithm is compared in its average run on 100 ran-
dom seeds, on the same functions as in 4.31, against 2.2, 3, 5 and 6.

Figure 4.32: Results of the optimization of the functions Sphere, Rastrigin, Levy and Ackley on 100 different random seeds
for each of the algorithms in 2. In the figures are reported the average function decay for each algorithm.

Again, like with the results of the performance and data profiles, the proposed algorithm
shows to be faster with respect to the competitors, as it can be seen in 4.32. It is to be noted
that in the case ofRastrigin, Levy and Ackley only algorithm 8 converged in the given number
of iterations, 10000; furthermore, contrarily to what shown in the paper of 6, in these tests the
algorithm never decreased the value of the function in the case of Levy (this is the reason why
we removed it from the plot).

4.2 Reinforcement learning problems

The Algorithm 8 was tested on two Reinforcement Learning problems against the other algo-
rithms presented in 2. The two problems are CartPole-v1 and Pendulum-v0. Those were
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implemented using the Python library OpenAI gym [17]. As defined in (1.2), the algorithms
are asked tomaximise the sum of the reward of the episodes. In both graphs the horizontal axis
is the number of iterations, while the vertical axis is the total reward of the point reached by the
algorithm at that given iteration. Furthermore the displayed data are, for each algorithm, the
average results among the same 10 random seed.

Figure 4.33: The figures show the average run of the algorithms in two different RL problemswith10 different random seeds.

As it can be seen, on average the presented algorithm achieves higher rewards and does so
faster with respect to the considered state-of-the-art algorithms.
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5
Conclusion

Starting with Chapter 2, this thesis presented and studied current state-of-the-art algorithms
proposed and used in the field of black-box optimization. The path follows the historical
progress and evolution of the field showing ideas and techniques used by authors to improve
the fundamental idea ofNesterov [4], to enhance performances in optimization of non-convex
functions and Reinforcement Learning problems. The main basic ideas are the following:

• to parallelize the computationsmade by the algorithmwith the use of multi-core CPUs;

• to specialize the choice of randomdirections inorder to take into account the exploration-
exploitation trade-off, view taken from the Reinforcement Learning framework;

• to implement a novel way to estimate the gradient and adaptivity of the parameters of
the algorithm itself.

InChapter 3 a novel algorithmwas presented inspired by the ones presented in the literature.
Its adaptivity and use of previous gradients information allow to improve the performance
with respect to state-of-the-art methods. In ASHGF the adaptivity of the parameters and the
novel way of estimating the gradient, was adapted to the handling of the trade-off between
exploration and exploitation.

Chapter 4 shows numerical results of ASHGF and other state-of-the-art algorithms on a
widely used testbed and twoReinforcement Learning problems. The presented algorithm out-
performs the others in all benchmarks: in terms of data and performance profiles, it achieves a
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better accuracy most of the time while requiring less function evaluations; in terms of its aver-
age behaviour, it is the one that performs better on average, outperforming all the algorithms in
some functions; solving Reinforcement Learning problems it achieves higher average rewards
faster than the competitors.
Further work should focus on rewriting the algorithm, and the others, in order to parallelize

its execution and then testing them in a greater pool of functions and, more importantly, rein-
forcement learning problems, which in this case were few due to technical limitations.
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