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Abstract

Graph data structures are ubiquitous in computer science: the Web,
the Internet and social networks are only a few examples. Computer
science is not the only field in which graphs are used. In biology,
graphs are used to model interactions between proteins or metabo-
lites, or for sequencing DNA. Sensors networks that are used, among
other things, in earth science are described as graphs.

The graphs that are used in this wide variety of contexts share a
common property: they tend to be huge objects, with millions or
even billions of nodes. When dealing with objects of this magnitude,
using a single machine to extract data is inefficient or simply not fea-
sible, because of hardware limitations. To overcome these limitations
and have a boost in performance, parallel algorithms on distributed
architectures need to be developed.

MapReduce is a model of computation developed to process large
amounts of data in parallel using clusters of commodity machines.
Originally developed to process large text files, recently it has been
used in the context of graph algorithms, scientific calculus and data
mining.

One of the most interesting properties of graphs is the diameter, the
longest shortest path in the graph. Questions about the evolution of
the Web, the degrees of separation between any two people in a social
network or the maximum number of reactions to obtain a metabolite
from another one can be answered using the diameter.

In this thesis we study the adaptation of several existing algorithms
for the diameter computation to the MapReduce model and we de-
velop a novel approach based on the reduction of the graph size.
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1
I N T R O D U C T I O N

Graph data structures are ubiquitous in computer science. The most
famous examples are perhaps the Internet and the World Wide Web.
Recently we have seen so-called social graphs become widespread:
Facebook, Twitter, LinkedIn are just a few of them.

Graphs are not limited to computer science, however. A graph can
be used to model a road network, for instance. Or it can represent a
network of sensors spread over a geographical area [VKR+

05, HM06].
Graph data structures often arise in biology, where they are used
to represent interactions between proteins or metabolites [MRK04,
PPP05].

All these diverse graphs share a common property: they tend to be
really large objects. In 2012 the Facebook graph had approximately
721 million nodes and 69 billion edges [BBR+

12]. The World Wide
Web graph is even bigger: it contains 3 billion nodes and 50 bil-
lion arcs, but these are just lower bounds obtained by search engines
[BV03].

Since graphs are so widespread, it is important to study their prop-
erties in order to better understand the domain they represent. An
interesting property of graphs is the diameter, i.e. the maximum dis-
tance between any two nodes.

The diameter of a graph is an interesting property in network opti-
mization problems. For instance, a flight company may be interested
in minimizing the number of flights that are needed to reach any air-
port from any other one. If we represent the network of airports as a
graph, where each airport is a node and flights are edges, the prob-
lem of minimizing the number of flights that are needed to reach any
airport from any other one corresponds to minimizing the diameter
of the graph.

Many graphs are subject to the small world phenomenon [WS98].
This occurs when a graph with n nodes has a diameter of the order
of log n. Historically this property has been observed in synthetic,
random graphs [BR04, Bur73, Bol81]. Recently, the small world prop-
erty has been spotted in real world graphs, such as the Facebook
graph [BBR+

12].

In the case of the Web graph, the diameter indicates how quickly
we can reach any page from any other page. Studying the evolu-
tion of the diameter over time, using different snapshots of the Web,
allows us to understand how the Web evolves.
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introduction

In biological networks, for example in metabolic networks, the
diameter indicates how many reactions are needed to produce any
metabolite from any other metabolite [JS08].

Given the importance of the diameter as a metric of a graph, effi-
cient algorithms for its computation are needed. The textbook algo-
rithm involves the solution of the All Pairs Shortest Paths problem
[CLRS09], whose complexity is prohibitive for large graphs.

In this thesis we analyze several approaches to the diameter com-
putation problem and propose a novel approach based on the graph
size reduction.

1.1 overview

This thesis describes different approaches to the diameter problem.
First we will give some graph definitions that will be used throughout
the thesis. We will also describe the MapReduce paradigm and the
associated computational model.

The first approach described (chapter 2) is based on the classical
textbook algorithm: solving the All Pairs Shortest Paths problem. We
analyze the problem and the algorithm in the MapReduce paradigm.
This approach gives us the exact value of the diameter. However it
requires multiplying big matrices, an operation that can be too costly
in many situations.

As it often happens when dealing with problems whose solution
takes a long time to compute, randomized algorithms come to help.
Chapter 3 analyzes four such algorithms. They all follow the same al-
gorithmic pattern and they all return an approximation of the result.

Getting the answer to our problem directly is surely nice, but graphs
can become really big. What would happen if we reduced the size of
the graph before computing? Chapters 4, 5 and 6 are devoted to
answering to this question.

Chapter 4 describes the modular decomposition, a technique that
can reduce a graph’s size without changing the diameter. The draw-
back of this technique is that the actual graph size reductions we
found experimentally are not significant.

Continuing along this path, in chapters 5 and 6 we introduce the
star decomposition and ball decomposition. With these two tech-
niques we give up the requirement of obtaining a graph with the
exact same diameter and we get in turn great size reductions. More-
over we prove that the diameter reduction is bounded and that exper-
imentally is often much better than the theoretical bound.

We conclude with appendices A and B by describing the datasets
and the software used in the experiments.

12



1.2 common graph definitions and notation

1.2 common graph definitions and notation

An undirected graph G = (V, E) is made up by two sets: V, the set
of vertices, and E ⊂ VxV, the set of edges. In this thesis, every time
we write G = (V, E) we refer to an undirected graph.

A directed graph G = (V, A) is made up by the vertex set V and
the set of arcs A ⊂ VxV. In this thesis the notation G = (V, A) refers
always to a directed graph.

Unless otherwise noted, the number of nodes of a graph is n. This
is also called the cardinality of the graph. The number of edges is
denoted as m.

We will now define the two graph attributes that are the focus of
this thesis.

Definition 1 (Diameter). The diameter of a graph is the length of the
longest shortest path of a graph. It is denoted with d.

Definition 2 (Effective diameter). Given a graph G and a number α ∈
[0, 1], the effective diameter of G at α is the smallest value dα such that for
at least a fraction α of the pairs of nodes (u, v) that can reach each other, the
distance between u and v is dα.

More formally, we can define Nα as the number of pairs of vertices
of the graph that can reach each other in at most dα hops. Let N be
the number pairs of vertices in G that can reach each other, then dα is
the effective diameter if

Nα

N
≥ α

1.3 the map-reduce model

MapReduce is model of computation developed to process large amounts
of data in parallel using clusters of commodity machines [DG08].

Algorithms in this model are expresses in terms of map and reduce
functions. This approach is reminiscent of map and reduce functions
found in functional languages such as Lisp or Haskell. These func-
tions operate on key-value pairs:

• A map function takes as input a pair of type < Kin, Vin > and
outputs a finite number (possibly zero) of key value pairs of
type < Kout, Vout >.

• A reduce function takes as input a key K and the list of all the
values associated with that key. It then reduces this list of values
to a possibly smaller one.

These functions can be run in parallel on different parts of the input.
For the map function, in fact, the set of key-value pairs produced
depends only on the input pair. Similarly, for the reduce function,

13



introduction

the result depends only on the input key and list of values. Hence
the input can be divided in several splits that are processed in parallel,
possibly on different machines.

A computation in the MapReduce model is structured in three
phases:

1. Map phase. The input is fed to the map function that processes
each key-value pair.

2. Shuffle phase. The results of map functions are sent across the
network. All the values associated with the same key are sent
to the same machine, ready to be processed in the next step.

3. Reduce phase. After all the values associated with a key are
grouped together, the reduce function processes them to pro-
duce the output.

Most algorithms are too complex to be expressed by only one map
and reduce pair of functions. The computation is then organized in
rounds, where each round is made up by a map and reduce function.
The output of the reduce function of a round is fed as input to the
map function of the next round.

1.3.1 Computational model

The original paper [DG08] does not provide a computational model
to analyze the time and space complexity of algorithms expressed
in MapReduce. Several models of computation for MapReduce have
been proposed, like in [GSZ11, KSV10]. However they are somewhat
incomplete, in that they do not take into account the space limitations
of single computational nodes.

A more complete model is given in [PPR+
12]. The model is de-

fined in terms of two parameters, m and M and is called MR(m, M).
Algorithms in this model are specified as a series of rounds. Round
r takes as input a multiset Wr and outputs two multisets: Wr+1, that
will be the input of the next round, and Or, that is the output of the
round.

The parameters m and M specify the constraints on the memory
that are imposed on each round of a MapReduce algorithm. The pa-
rameter m stands for the local memory of each computational node,
whereas M is the aggregated memory of all the computational nodes.
The model imposes that in each round the memory used at each com-
putational node is O(m) and the memory used across all computa-
tional nodes is O(M). The only requirement for map and reduce
functions is that they run in time polynomial in the input size n.

The complexity of an algorithm in MapReduce is the number of
rounds that it executes in the worst case, as a function of the input
size n and the memory parameters m and M.
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1.3 the map-reduce model

For a more in-depth discussion of the model, we refer the reader to
[PPR+

12].

1.3.2 The Cogroup primitive

The original MapReduce model embodies only two primitives: the
map and the reduce functions. In the algorithms described in this
thesis, another primitive is useful: the cogroup primitive. Given two
datasets of key value pairs, < K, V1 > and < K, V2 >, the cogroup
operation produces a third dataset of type < K, ([V1], [V2]) >, where
the [ ] symbol denotes a list. Given a key k, the lists associated to
it are made up by all the values of the two set of values V1 and V2

associated to k in the original datasets.
This operation can be easily simulated in a constant number of

rounds in MapReduce. First, two map functions, one for each dataset,
will output the key-value pairs of each dataset, where the value is
marked as coming from the first or second dataset. Then a reduce
function will gather all the marked values associated to a key. It
will then create the output lists, putting the values coming from the
original datasets in the appropriate list. Each reducer will receive a
number of values equal to nk

1 + nk
2, where nk

1 is the number of values
associated to a key k in the first dataset and nk

2 is the number of values
associated to the same key k in the second dataset. Since the reducer
simply outputs the aggregation of the values, the output size is also
nk

1 + nk
2.

In the rest of the thesis we will assume that we have this primitive
at our disposal, during the description of the algorithms.

1.3.3 Implementations

There are several open source MapReduce implementation, in a wide
variety of programming languages. The most widely used is Hadoop,
implemented in Java [Whi12]. The distributed filesystem it provides,
HDFS, is used by many other frameworks. Among these there is
Spark [ZCF+

10], implemented in Scala. This framework has been
used to perform the experiments of this thesis. The reason we pre-
ferred it over the more used Hadoop is that it runs faster for algo-
rithms with more than one round, like the ones presented in this the-
sis. This performance advantage is due to the fact that Spark caches
the results between subsequent rounds in memory. On the contrary,
Hadoop writes data to the distributed filesystem after each round.
For multi-round algorithms this is a serious performance issue. Fi-
nally, Spark is written in Scala, meaning that applications are much
faster to write and require less code.
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2
C O M P U T I N G T H E D I A M E T E R B Y S O LV I N G A L L
PA I R S S H O RT E S T PAT H S

In this chapter we present an approach to diameter computation
based on the solution of the All Pairs Shortest Path problem. If we
compute all the shortest paths in a graph, the longest one will give
us the diameter, by definition.

2.1 definitions

In this section we present some definitions that we will need in what
follows.

Definition 3. Given a graph G = (V, A) with n vertices, the incidence
matrix IG is the n x n matrix that has a 1 in position (i, j) if there is an edge
between i and j and +∞ otherwise.

Definition 4 (Distance matrix). Given a graph G = (V, A) with n ver-
tices, the distance matrix DG is the n x n matrix that in position (i, j) holds
the length of the shortest path between nodes i and j.

For unweighted graphs the value of each matrix element is the
number of hops of the shortest path. If there is no path between two
nodes then in the matrix the corresponding element will be +∞.

2.2 serial algorithm for apsp

One method to compute the distance matrix is to repeatedly square
the incidence matrix until there is no element that changes. The pro-
cedure is depicted in algorithm 1. The algorithm and the subsequent
analysis are based on [JaJ97]

The matrix multiplication used in the algorithm is defined over
the semiring (N, min,+). The multiplication C = A · B of two nxn
matrices is then defined as follows

Cij = min
1≤k≤n

{Aik + Bkj}

We are now going to prove the correctness and running time of
algorithm 1.

Theorem 1. Let IG be the incidence matrix of a graph G = (V, A). For
each s > 0, let D(s) be the matrix such that D(s)(i, j) is equal to the weight
of the shortest path between i and j that contains at most s arcs. Then

D(s+1)
ij = min

1≤h≤n
{D(s)

ih + IGhj}
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diameter by apsp

Algorithm 1: Algorithm to compute the distance matrix
Input: IG, the incidence matrix of graph G
Output: DG, the distance matrix of graph G
begin

Dprev ← IG
D ← IG · IG
while D 6= Dprev do

Dprev ← D
D ← D · D

end
return D

end

is the matrix containing the weights of the shortest paths between each i and
j with at most s + 1 arcs.

Proof. The theorem is proved by induction. Let D(0) be the matrix
defined as follows:

D(0)
ij =

{
0 i = j

+ ∞ i 6= j

This matrix is the zero-step distance matrix.
The base case is for s = 0. Being +∞ the identity element for the

min operation, we have that D(0) is the identity matrix for the product
defined over the semiring (N, min,+). Hence we have

D(1) = D(0) IG = IG

so D(1)
ij is equal to the weight of the arc connecting i and j: 1 if the

vertices are adjacent and +∞ if they are not.
Assume now that the induction hypothesis holds for every value

less than or equal to s, with s > 0. We have that D(s+1)
ij = min1≤h≤n{D

(s)
ih +

IGhj}. By the inductive hypothesis we know that D(s)
ih is the weight

of the shortest path between i and h with at most s arcs. Hence
D(s)

ih + IGhj is the weight of a path from i to j passing through h as the
last step. By taking the minimum of all these sums we get the weight
of the shortest path from i to j in s + 1 steps.

Theorem 2. Algorithm 1 computes the distance matrix of a graph of diam-
eter d with dlog2 de matrix multiplications.

Proof. The distance matrix DG of a graph G is clearly Id
G. To compute

this matrix we can square IG dlog2 de times. So the running time of
the algorithm is O(log n) if we consider the matrix multiplication a
base operation.

We are now going to describe a slightly different version of the
distance matrix algorithm that will be useful later, when we will deal
with the computation of the effective diameter.

18



2.3 computing the diameter

Lemma 1. Given a connected graph G, its distance matrix DG has no ele-
ment equal to +∞.

Thanks to this lemma, we can now develop the algorithm for dis-
tance matrix multiplication depicted in pseudocode 2. The basic idea
of the algorithm is to repeatedly square the incidence matrix of the
graph until no elements are equal to +∞.

Algorithm 2: A different distance matrix algorithm.
Input: IG, the incidence matrix of graph G
Output: DG, the distance matrix of graph G
begin

D ← IG
while There are elements of D equals to ∞ do

D ← D · D
end
return D

end

Theorem 3. Algorithm 2 computes the diameter of a graph with log2 d
matrix multiplications.

Proof. As stated in lemma 1 the distance matrix of a connected graph
has no element equal to ∞. If we repeatedly square the incidence
matrix of G until we have no more ∞ elements we are basically com-
puting the distance matrix. As we have seen before this matrix is Id

G.
Since at each iteration we perform a squaring, to obtain Id

G we need
log2 d iterations.

2.3 computing the diameter

In this section we will see how to use the distance matrix to compute
the diameter of a graph G.

The distance matrix can be computed using algorithm 1. Recall that
the element (i, j) in the distance matrix is the lenght of the shortest
path between nodes i and j in the graph. Hence the maximum value
in the matrix is the longest shortest path in the graph, i.e. its diameter.
In algorithm 3 we depict a MapReduce algorithm to compute the
diameter, given the distance matrix.

The basic idea of the algorithm is to divide the matrix into sub-
matrices and look for the maximum in each submatrix. The diameter
of the graph is the maximum of these maxima.

We will analyze the given algorithm in the MR(m, M) model de-
scribed in [PPR+

12]. In what follows, n is the number of elements in
the matrix DG rather than the number of nodes of the graph. More-
over, m is the local memory of each computational node and M is the
aggregated memory of all nodes.

19



diameter by apsp

Algorithm 3: Computing the diameter of a graph from its dis-
tance matrix.

begin
Split the matrix into smaller ones
Compute the maximum of each submatrix
Compute the global maximum with a prefix computation

end

The
√

n x
√

n input matrix DG is divided into sub-matrices of size√
m x
√

m.
The algorithm proceeds in rounds, dealing with K = M/m sub-

matrices at a time. At the end of round n/(m · K) = n/M all maxima
have been computed. The global maximum (i.e. the diameter) can be
computed using a prefix computation.

Theorem 4. The above algorithm finds the maximum element in a
√

n x√
n matrix in

O
( n

M
+ logm

n
m

)
rounds in the MR(m, M) model.

Proof. The algorithm complies with the memory constraints of MR(m, M)

[PPR+
12], since each reducer deals with matrices whose size is linear

in the local memory of each computational node. Moreover the at
each round the memory requirements of the algorithm never exceeds
the aggregate memory M.

The number of rounds used to compute the maximum for each
submatrix is n/M. The final prefix computation, since it has to com-
pute the maximum among n/m values, takes O(logm n/m) rounds
[PPR+

12]. Combining these two results yields the total complex-
ity.

We observe that the algorithm executes in a constant number of
rounds whenever m = Ω(nε), with ε > 0, and M = Ω(n).

To compute the distance matrix we can use one of the matrix multi-
plication algorithms described in [PPR+

12]. The running time of the
computation of the diameter, taking into account the matrix exponen-
tiation and the maximum computation, is then

O
(

log d
(

n3/2

M
√

m
+ logm n

)
+
( n

M
+ logm

n
m

))
For suitable values of the parameters m and M the algorithm takes

a logarithmic number of rounds to complete. More precisely, if

m = Ω(nε), with ε > 0

M
√

m = Ω(n3/2)

M = Ω(n)

we have that the algorithm completes in O(log d) rounds.

20



2.4 computing the effective diameter

Algorithm 4: Algorithm to compute the effective diameter of a
graph G.

Input: IG, the incidence matrix of graph G
Output: dα, the effective diameter of G at α

begin
D ← IG
while There are more than n(1− α) elements of D equals to ∞
do

D ← D · D
end
dα ← max{D}
return dα

end

2.4 computing the effective diameter

In this section we describe a modification of the algorithm presented
in above that can compute the effective diameter in a smaller number
of rounds.

To compute the effective diameter the idea is to use algorithm 2

with a different stopping condition, based on the desired value of α.
Instead of stopping the iterations when there are no elements equals
to ∞, we stop the computation when there are no more than n(1− α)

elements equals to ∞.
After we have computed Is

G, the stopping condition is equivalent
to say that there must be at least αn vertices that can reach each other
in at most s hops. Hence we seek to compute Idα

G , i.e. the matrix
that contains the length of the shortest paths between nodes that can
reach each other in at most dα hops. The algorithm to compute such
a matrix is presented in pseudocode 4.

The algorithm to find the maximum element in the matrix is a
slightly different version than the one presented in pseudocode 3:
elements that are equal to ∞ are ignored. This does not affect the
asymptotic running time of the algorithm.

We are now going to prove the correctness and running time of
algorithm 4.

Theorem 5. Given a graph G and a value α ∈ [0, 1], algorithm 4 correctly
computes the effective diameter of G at α.

Proof. Suppose that we have computed the matrix Is
G for which the

condition that there are no more than α(n − 1) elements equals to
infinity holds. According to theorem 1 the elements of this matrix are
the lengths of the shortest paths shorter than s between the vertices
of the graph. Recalling the definition of effective diameter at α, we
have that among these elements there is the value dα of the effective
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diameter by apsp

diameter. Since this value is the maximum among the elements of the
matrix, the max procedure finds correctly the effective diameter.

Theorem 6. Given a graph G and a value α ∈ [0, 1], algorithm 4 finds the
effective diameter dα of G at α in

O
(

log dα

(
n3/2

M
√

m
+ logm n

)
+
( n

M
+ logm

n
m

))
in the MR(M, m) model.

Proof. The time complexity of the matrix multiplication and the max-
imum algorithm is the same as in algorithm 2. The only thing that
changes is the number of matrix multiplications performed. Since
we have to compute Idα

G we have to perform log2 dα matrix multiplica-
tions. Hence we have the claimed number of rounds.

We can observe that for suitable values of the memory parameters
the algorithm runs in a logarithmic number of rounds. More precisely,
if

m = Ω(nε), with ε > 0

M
√

m = Ω(n3/2)

M = Ω(n)

then algorithm 4 runs in O(log dα) rounds. This is better than the
round complexity of the algorithm that computes the diameter, since
the effective diameter may be significantly smaller.
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3
I T E R AT I V E , P R O B A B I L I S T I C A L G O R I T H M S F O R

D I A M E T E R C O M P U TAT I O N

When data sets become too big to handle or when algorithms have too
high time complexities, the usual approach is to resort to randomized
or probabilistic algorithms. The graph diameter calculation problem
makes no exception.

Here we study three algorithms, namely ANF [PGF02], HyperANF
[BRV11] and HADI [KTA+

08]. Finally, we propose an adaptation of
HyperANF to the MapReduce framework.

All these algoritms share the same structure: the computation of
the diameter is performed through the iterative computation of the
neighbourhood function. The difference between the algorithms reside
in how they keep track of the number of nodes that can be reached
from a given node in a given number of steps. Moreover ANF and
HyperANF are algorithms that run on a single machine, whereas
HADI is a MapReduce algorithm.

In what follows we give an overview of the concepts shared by all
algorithms, of the probabilistic algorithms used to count the number
of reachable nodes and finally a description of the algorithms them-
selves.

3.1 common definitions

Given a graph (directed or undirected) G = (V, E) the neighbourhood
function NG(h) is the number of pairs that can reach each other in at
most h steps, for all h.

More formally, we define the ball of radius r.

Definition 5. The ball of radius r centered in vertex x is the set

B(x, 0) = {x}

B(x, r) =
⋃

(x,y)∈E

B(y, r− 1)

that is the number of vertices reachable from vertex x in at most r hops.

The neighbourhood function is then defined as follows

Definition 6. The neighbourhood function is

N(t) = ∑
v∈V
|B(v, t)|

Closely related to this function is the cumulative distribution function
of distances (distance cdf in short):
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Definition 7 (Distance CDF). Given a graph G the cumulative distribu-
tion function of distances is the fraction of reachable pairs at distance at most
t:

HG(t) =
NG(t)

maxt NG(t)

Note that this function is monotone in t.
The diameter of the graph G can easily be obtained as the smallest

t such that HG(t) = 1. Similarly, the effective diameter at α is the
smallest t such that HG(t) ≥ α. If α is omitted, it is assumed to be
α = 0.9.

So far we have talked about relations that hold when the exact
value of the neighbourhood function NG(t) is known for all t. How-
ever the algorithms that will be described later are probabilistic, in the
sense that they provide an estimation of the neighbourhood function.
Suppose then that we have an estimation N̂G(t) of the neighbourhood
function we can state the following theorem:

Theorem 7 ([BRV11]). Assume NG(t) is known for each t with error ε and
confidence 1− δ:

Pr
[

N̂G(t)
NG(t)

∈ [1− ε, 1 + ε]

]
≥ 1− δ

The function
ĤG(t) = N̂G(t)/ max

t
N̂G(t)

is an (almost) unbiased estimator for HG(t). Moreover, for a fixed sequence
t0, t1, . . . , tk−1, for every ε and all 0 ≤ i < k we have that the error on
ĤG(tk) is 2ε and the confidence is 1− (k + 1)δ:

Pr

 ∧
i∈[0,k]

ĤG(t)
HG(t)

∈ (1− 2ε, 1 + 2ε)

 ≥ 1− (k + 1)δ

Proof. If the neighbourhood function is known with error ε then we
have

1− ε ≤ N̂G(t)
NG(t)

≤ 1 + ε

and the inverse
1

1 + ε
≤ NG(t)

N̂G(t)
≤ 1

1− ε

Note that even if the maxima of N̂G(t) and NG(t) can be attained for
different values, say t1 and t2, the ratio of the two maxima remains
the same for every t ≥ max{t1, t2}. Hence, by taking such a t, we can
say

1− ε ≤ maxt N̂G(t)
maxt NG(t)

≤ 1 + ε
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Algorithm 5: Algorithm to compute the effective diameter at α

of a graph G

foreach t = 0, 1, 2, . . . do
compute N̂G(t) (with error ε and confidence 1− δ)
if Some termination condition holds then break

end
M← maxt N̂G(t)

find the largest D− such that N̂G(D−)
M ≤ α(1− 2ε)

find the largest D+ such that N̂G(D+)
M ≥ α(1 + 2ε)

return [D−, D+] with confidence 1− 3ε

As a consequence, we have

1− 2ε ≤ 1− ε

1 + ε
≤ ĤG(t)

HG(t)
≤ 1 + ε

1− ε
≤ 1 + 2ε

The probability 1− (k + 1)δ is derived from th union bound, since
we are considering k + 1 event at the same time.

Using this theorem we can obtain the following result:

Corollary 1 ([BRV11]). Assume that N̂G(t) is known for each t with error
ε and confidence 1− δ and there are points s and t such that

ĤG(s)
1− 2ε

≤ α ≤ ĤG(t)
1 + 2ε

than, with probability 1− 3δ the effective diameter at α lies in [s, t].

Hence, to compute the effective diameter of a graph, we can use
algorithm 5, depicted in [BRV11]

3.2 probabilistic counters

All the algorithms that compute the neighbourhood function described
here share a common problem: at iteration i they have to keep track
of the cardinalities of the balls (definition 5) of radius i associated
with each vertex.

Keeping explicitly the elements of each ball is not practicable for
big graphs. To solve this problem the algorithms described here
make use of probabilistic counters, namely Flajolet-Martins counters
[FMM85] and HyperLogLog counters [FFGea07]. By using these coun-
ters we accept to be able only to add new elements to the set and to
query about its size. Moreover we accept to deal with estimations
rather than exact values for the cardinalities. The gain is that the
space used to represent the set drops from at least O(n) to O(log n)
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Algorithm 6: Algorithm to add elements to a Flajolet-Martins
counter.

Input: x, an element of the set and BITMAP, the counter.
begin

i← ρ(hash(x))
BITMAP[i] = 1

end

(in the case of Flajolet-Martins counters) or O(log log n) (for Hyper-
LogLog counters).

In what follows we describe two different algorithms to represent
sets in a concise way: Flayolet-Martins counters and HyperLogLog
counters.

3.2.1 Flajolet-Martins counters

In [FMM85], the authors present an algorithm to keep track of the
number of distinct elements in large collections of data. This algo-
rithm is based on statistical observation made on bits of hashed val-
ues of records.

We assume to have at out disposal a hash function that maps the
elements of the set V into the set of bit strings of length L

hash : V → {0, 1}L

The function bit(y, k) returns the value of the k-th bit in the bit
string y. Thus we have that the integer value of y given its binary
representation is

y = ∑
k≥0

bit(y, k)2k

We also define the function ρ(y) that returns the position of the
least significant 1-bit in the bit string y.

ρ(y) = min
k≥0

bit(y, k) 6= 0 if y > 0

= 0 if y = 0

The key observation is the following

Observation 1. If the values of hash(x) are uniformly distributed, then the
problability of the pattern 0k1 is 2−k−1.

The algorithm keeps track of the occurrences of such patterns in a
vector BITMAP with L elements. The procedure to add an element
of the set to the counter is depicted in algorithm 6.

So BITMAP[i] is equals to 1 if and only if the pattern 0i1 has
appeared among hashed values. From the observations made on
bit pattern probabilities, it follows that, at the end of the execution,
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BITMAP[i] will be almost certainly 0 if i � log2 n and will be 1 if
i� log2 n. For i ≈ log2 n there will be a fringe of zeros and ones.

In [FMM85] the authors propose the index R of the leftmost 0 (i.e.
the 0 with the smallest index) as an indicator of log2 n.

More precisely we have that the expectation and the standard devi-
ation of R are

E(R) ≈ log2 ϕn ϕ = 0.77351 . . . (1)

σ(R) ≈ 1.12 (2)

The non trivial proof is provided in [FMM85] and we refer the inter-
ested reader to that paper.

We can observe that using R as an indicator of the cardinality of the
set gives us an error that is typically of one order of binary magnitude.
To reduce this problem, a first approach would be tu use m bitmaps
and m hash functions, one for each bitmap. We can then take the
average

A =
R1 + R2 + · · ·+ Rm

m
(3)

where Ri is the index of the leftmost 0 in the i-th bitmap. This way A
is what we take as an indicator for the cardinality of the set, with the
following mean and standard deviation

E(A) = log2 ϕn (4)

σ(A) =
σ∞√

m
(5)

where ϕ ' 0.77351 and σ∞ ' 1.12127 [FMM85].
This approach is simple and enables to control the standard devi-

ation using the parameter m. However it’s not simple to obtain m
distinct hash functions.

The solution is to use stochastic averaging. We assign each of the
m bitmaps an index. Then we use a single hash function h(x) to
distribute each record of the set into one of the m lots by computing
α = h(x) mod m. We then update only the bitmap with index α,
using the value h(x) div m ≡ bh(x)/mc to set to one the bit at the
appropriate index. The procedure to add an element to the counter
in this way is depicted in algorithm 7.

At the end of execution the estimate of n is

n = m
(

1
ϕ

)
2A (6)

We now define the bias and the standard error as quality metrics.

Definition 8 (Standard error). The standard error of an estimate of n is
the quotient of the standard deviation of the estimate by the value of n.

The standard error is thus an indication of the expected relative accu-
racy of an algorithm estimating n.
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Algorithm 7: Adding an element to a counter with stochastic
averaging

Input: x, an element of the set and m bitmaps, the counters
begin

hash← h(x)
α← hash mod m
i← ρ(hash div m)

BITMAPα[i]← 1
end

Definition 9 (Bias). The bias of an algorithm that estimates n is the ratio
between the estimate of n and its exact value, for n large.

The quality of Flajolet-Martins counters is then measured as fol-
lows:

bias: 1 +
0.31
m

(7)

standard error:
0.78√

m
(8)

The proof of these values can be found in [FMM85].

3.2.2 HyperLogLog counters

In [FFGea07] the authors propose an algorithm similar to the one pre-
sented in the previous section but based on a different observable.
This is leads to a standard error that is actually worse but enables
a substantial gain in the space required. In fact this algorithm only
needs O(log log n) memory (hence the name) to keep track of cardi-
nalities up to n.

In the description that follows we assume again that we have an
hash function h(x) that maps the set elements into binary strings.
The function ρ(y) is used to get the position of the leftmost 1-bit in
the binary string y.

This algorithm, like the previous one, uses stochastic averaging to
control the standard error on the estimated value. The input multiset
M is partitioned in m = 2b multisetsM1 . . .Mm using the first b bits
of the hashed values.

Then for eachMj the observable is

Mj = max
x∈Mj

ρ(x) (9)

The intuition underlying the algorithm is the following: each mul-
tiset Mj is expected to contain n/m distinct elements at the end of
the execution. Hence the parameter Mj should be close to log2(n/m).
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Algorithm 8: HyperLogLog algorithm
Input: An element x of the multiset and a collection of

registers M1 . . . Mm

begin
h← hash(x) // h = h1h2, · · · hbhb+1, · · ·
j← 1+ < h1 · · · hb >2 // Index of the register to

update

Mj ← max(Mj, ρ(hb+1hb+2 · · · ))
end

The harmonic mean of the quantities 2Mj
should then be in the order

of n/m.
The algorithm returns the following estimate of the cardinality

N =
αmm2

∑m
j=1 2−Mj with αm =

(
m
∫ ∞

0

(
log2

2 + u
1 + u

)m

du
)−1

(10)

The parameter αm is used to correct a multiplicative bias of the
algorithm. The counting procedure is specified in algorithm 8.

The quality of the algorithm, measured with bias and standard
error, is assured by the following theorem.

Theorem 8 ([FFGea07]). Let algorithm 8 be applied to a multiset of cardi-
nality n, using m > 3 registers. The value N is the estimated cardinality.

1. The estimate N is almost unbiased, in the sense that

E(N) =
n→∞

1 + δ1(n) + o(1)

where |δ1(n)| < 5 · 10−5 for m ≥ 16.

2. The standard error σ/n satisfies, for n→ ∞

σ

n
=

n→∞

βm√
m

+ δ2(n) + o(1)

where |δ2(n)| < 5 · 10−4 for m ≥ 16. The constants βm are bounded,
with β16 = 1.106, β32 = 1.070, β64 = 1.054, β128 = 1.046 and
β∞ = 1.03896.

The proof of this theorem, as well as the derivation of the constants
α and β, is provided in [FFGea07].

3.3 algorithms

In this section we describe four different algorithms. The first two
algorithms, namely ANF and HyperANF are single-machine, sequen-
tial algorithms. The last two, HADI and our own D-HANF are al-
gorithms on MapReduce. The algorithms described in this section
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all share a common structure, they differ only in the type of counter
used. Before introducing the algorithms, we describe the general pat-
tern they follow.

The diameter is computed by means of the neighbourhood func-
tion computation (see definition 6). By theorem 1 we can compute
the effective diameter at α given the neighbourhood function of a
graph. The problem is hence to compute the neighbourhood function
of the given graph. The algorithms proceed iteratively. At iteration
t, each node v collects the cardinality of the ball of radius t centered
in v. The sum of all these cardinalities is N(t), the t-th value of the
neighbourhood function. Since the neighbourhood function is strictly
monotone, once we get N(t) = N(t− 1) we can stop the algorithm,
since we arrived at the diameter.

The problem is how to count the cardinalities of the balls, whose ra-
dius increases at each iteration. Keeping an explicit set for every node
is impractical, since it leads to a memory requirement that is O(n) for
each node, that is O(n2) for the entire graph. This is where proba-
bilistic counters come into play. Each node maintains a counter that
estimates the size of the ball centered in the node at the current iter-
ation. The type of counter used is what differentiates the algorithms.
Now instead of computing explicitly the balls, at each iteration each
node sends its counter to all its neighbours. Then each node performs
the union of all the counters it received. The result is the counter that
estimates the cardinality of the ball at the current iteration.

3.3.1 ANF

ANF stands for Approximate Neighbourhood Function [PGF02]. This
algorithm uses Flajolet-Martins counters, described in section 3.2.1. It
is implemented in the snap tool1.

Since the algorithm stops once it reaches the diameter and runs
sequentially through all the nodes of the graph at each iteration, its
running time is O(nd).

Each counter takes O(log n) bits, hence the space requirement of
the algorithm is O(n log n). This is a big improvement on the O(n2)

solution, however for really big graphs it is impractical.

3.3.2 HyperANF

HyperANF [BRV11] is an improvement over ANF. The running time
is the same, however the space requirements are much better. The
counters used are HyperLogLog counters. This means that they take
up only O(log log n) bits each. For the typical situation of a graph
with 32-bit integer IDs, this means that each HyperLogLog counter is
5 bits long, versus the 32 bits of Flajolet-Martins counters. The overall

1 http://snap.stanford.edu
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space requirement of the algorithm is O(n log log n). This allows the
implementation of the algorithm to deal with extremely big graphs2.

3.3.3 HADI

The data parallel nature of each iteration of the general algorithm
lends itself to a parallelization on MapReduce. HADI [KTA+

08] is a
parallelization of ANF on MapReduce.

Each iteration is divided in two steps. The first one maps, for each
counter, the current counter to all the neighbours of the node. The re-
duce function then performs the union of all the counters associated
to a node. The second step performs the sum of all the estimates of
the cardinalites, yielding at iteration t the t-th value of the neighbour-
hood function.

Each iteration runs in a constant number of rounds, hence the run-
ning time of the algorithm is O(d).

The algorithm is implemented in Hadoop3. This has a rather se-
vere impact on the actual performance, since Hadoop stores every
intermediate result to disk. This means that at the beginning of each
iteration, at its end and even between the two steps that compose the
iteration, the distributed filesystem is written or read. Each access to
the distributed filesystem bears a significant time penality. This is one
of the reasons why HyperANF can outperform HADI, even if it uses
a single machine [BRV11]. The others are smart programming tech-
niques, like broadword programming or systolic computation. See
the paper for further details.

3.3.4 D-HANF: Distriduted HyperANF

Much as HADI is a parallelization of ANF, D-HANF is a paralleliza-
tion of HyperANF. The algorithm has the same iterative structure of
the others.

Pseudocode 9 depicts the algorithm. The first step, initialization,
consists in a single map that associates the node id to a newly created
counter. The node id is pushed into the counter, using the algorithm
described in pseudocode 8. Then the iterative process begins. The
counters and graph datasets are cogrouped, yielding a dataset with
the same number of elements. A map function sends the counter
of each node to all the neighbours. The reduce function then com-
bines all received counters using the union operation over them. This
yields the new counters dataset. Finally a map function takes the
counters and computes their estimated sized. The sum of these sizes,
performed as a prefix computation, gives the value N(t) of the neigh-
bourhood function at iteration t.

2 http://webgraph.di.unimi.it/

3 http://www.cs.cmu.edu/ pegasus/
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Algorithm 9: D-HANF algorithm
Input: A graph G represented as a < nodeId, neighbourhood >

dataset.
Output: The neighbourhood function of the graph

Function newCounter (nodeId) is
counter← a new empty HyperLogLog counter ;
add nodeId to the counter ;
return counter ;

end
counters← Map (id, neighbourhood) to (id, newCounter(id)) ;
t ← 0;
while there are changed counters do

Cogroup counters, graph on nodeId ;
Map ( nodeId, (counter, neighbourhood) ) to

foreach n in neighbourhood do Output (n, counter) ;
end
counters← Reduce ( nodeId, counters ) to

newCounter← union of all counters;
Output ( nodeId, newCounter ) ;

end
Map ( nodeId, counter ) to ( nodeId, size of counter ) ;
N(t) ← sum of all counter sizes ;
t ← t + 1;

end

Since each iteration runs in a constant number of rounds, the entire
algorithm runs in O(d) rounds.

The implementation of the algorithm is available as free software4.
To implement the algorithm, given its iterative nature, we leveraged
the in memory caching capabilities of the Spark framework. This is
an improvement over an Hadoop based implementation, in that it
avoids costly repeated writes to the distributed filesystem.

3.3.5 Scalability and performance of D-HANF

We have run the implementation of the algorithm5 against some datases,
namely DBLP, Amazon and Youtube (see appendix A). As shown in
figures 1, 2 and 3 the algorithm has a good scalability. The plots are
in logarithmic scale on both axes. The figures show that incrementing
the number of processors regularly decreases the running time of the
algorithm.

4 https://github.com/Cecca/spark-graph

5 https://github.com/Cecca/spark-graph
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Figure 1.: Scalability of D-HANF on the DBLP dataset.

All tests have been performed with on a Power 7 machine with 128

GB of RAM and 48 cores, running SUSE Linux 11 SP2.
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Figure 2.: Scalability of D-HANF on the Amazon dataset.
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Figure 3.: Scalability of D-HANF on the youtube dataset.
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4
M O D U L A R D E C O M P O S I T I O N

Modular decomposition is a technique that is often used as a pre-
processing step in many graph-related algorithms. The main applica-
tions are in transitive orientation algorithms, optimizations problems
on graphs and graph drawing [HP10]. A module of a graph is a
subset M of vertices that share the same neighbourhood outside M.

This chapter is organized as follows. First we define the modular
decomposition of a graph. Then we present a theorem that states that
the diameter of the modular decomposition and the original graph
are equals. Finally we present some experimental results showing
that, unfortunately, the modular decomposition does not significantly
reduce the cardinality of the graph.

4.1 definitions

In this section are gathered some basic definitions related to the mod-
ular decomposition theory. We deal with undirected graphs, using
the usual notation: G(V, E) is a graph with V the set of vertices and
E the set of edges. The neighbourhood of a vertex v of graph G is
denoted NG(v) or N(v) if there is no possible ambiguity. Ḡ denotes
the complement graph of G. The description that follows is based on
[HP10].

4.1.1 Modules and modular partitions

Let M ⊆ V be a set of vertices of graph G(V, E) and x a vertex in
V \M. x is said to be a splitter of M if there exist y, z ∈ M such that
{x, y} ∈ E and {x, z} /∈ E. M is uniform or homogeneous with respect
to x if x is not a splitter of M. A set M uniform with respect to every
y ∈ V \M is called a module. More formally

Definition 10 (Module). Given a graph G(V, E) a set M ⊆ V is a module
if and only if

∀v ∈ V \ E : (∀x ∈ M : {x, v} ∈ E) ∨ (∀x ∈ M : {x, v} /∈ E)

The vertex set V and the singleton sets {v} with v ∈ V are obvi-
ously modules and are called trivial modules. A graph that only has
trivial modules is called prime.

We say that two modules A and B are overlapping if A ∩ B 6= ∅,
A \ B 6= ∅ and B \ A 6= ∅ and we write A⊥B [HP10].

Note that the definition of overlapping modules implies that if a
module is a subset of another module then they are not considered
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Figure 4.: A graph, its modules and the quotient graph

overlapping. This will be a key concept in the definition of the mod-
ular decomposition tree.

Definition 11 (Strong module). Given a set of modules M, a module
M ∈ M is said to be strong if it does not overlap any other module inM.
More formally, M is a module if and only if

∀X ∈ M, X 6= M : M ∩ X = ∅

∧M \ X = ∅

∧ X \M = ∅

Definition 12 (Maximal module). A module M is maximal with respect
to a set of vertices S if M ⊂ S and there is no module M′ such that M ⊂
M′ ⊂ S . If the set S is not specified, the entire vertex set is intended.

A particularly interesting case is when a set of modules defines a
partition of the vertex set V. In this case we talk of a modular partition.

Definition 13 (Modular partition). Let P = {M1, M2, · · · , Mk} a parti-
tion of the vertex set of a graph G(V, E). If ∀i ∈ [1, k], Mi is a module of G,
then P is said to be a modular partition.

The following observation and the subsequent quotient graph defi-
nition will enable us to represent graphs in a more compact way.

Observation 2. Two disjoint modules are either adjacent or non-adjacent.

We say that two modules X and Y are adjacent if and only if any
vertex in X is connected to all vertices in Y. Conversely, X and Y are
not adjacent if no vertex of X is adjacent to any vertex of Y.

This observation leads to the definition of the quotient graph:

Definition 14 (Quotient graph). Given a graph G(V, E) and a modu-
lar partition P = {M1, M2, · · · , Mk} of G, the quotient graph is G\P =

(V\P, E\P) where each vertex in V\P corresponds to a module of P and there
is an edge between vi and vj if their corresponding modules are adjacent.

Figure 4 shows an example of a graph, one of its modular partitions
and the corresponding quotient graph.

36



4.1 definitions

4.1.2 Modular decomposition

The problem with modular partitions is that their number can be
exponential in the cardinality of the vertex set. This is the case of
complete graphs. However, given that modules can be nested one
into another, a compact representation of all possible modules exists,
namely the modular decomposition tree.

Before moving to the modular decomposition theorem that defines
the tree, let’s define a useful concept: maximal modular partitions.

Definition 15 (Maximal modular partition). A maximal modular par-
tition is a partition P that contains only maximal strong modules.

There are a couple of caveats when dealing with maximal modular
partitions. If a graph is not connected, every union of its connected
components is a module. In this case the maximal modular parti-
tion is considered the one made up by the connected components,
even if these modules aren’t maximal. In the case of a connected
graph whose complement graph is disconnected, the same argument
applies: the modules of the maximal modular partition are the co-
connected components, i.e. the connected components of the comple-
ment graph.

With this convention we can state that each graph has a unique maxi-
mal modular partition.

We can now move on to the statement of the modular decomposi-
tion theorem.

Theorem 9 (Modular decomposition theorem). For any graph G(V, E)
one of the following conditions is valid:

1. G is not connected

2. Ḡ is not connected

3. both G and Ḡ are connected. The quotient graph G\P , with P the
maximal modular partition of G, is a prime graph.

From this theorem follows the recursive definition of the modular
decomposition tree.

Definition 16 (Modular decomposition tree). Given a graph G, the root
of the modular decomposition tree is the entire graph.

1. if G has a single node, then root of the modular decomposition tree has
no children.

2. if G is not connected the children of the root are the roots of the modu-
lar decomposition trees of the connected components.

3. if Ḡ is not connected then the children of the root are the roots of the
modular decomposition trees of the connected co-components.

37



modular decomposition

a

b

c

d

e

f

g

(a) The graph

parallel

series

seriesa b

parallel d

c e

f g

parallel

parallel

(b) Unreduced form

parallel

series series

a b parallel d

c e

f g

(c) Reduced form

Figure 5.: A modular decomposition tree in unreduced and reduced
form

4. if both G and Ḡ are connected the children of the root are the roots of
the modular decomposition trees of the modules of the maximal modu-
lar partition of G.

This definition gives us a modular decomposition tree in reduced
form [MS00]. A modular decomposition tree is not in reduced form
(or is unreduced) if there is at least a parallel node that is child of
another parallel node or a series node that is child of another series
node. Figure 5b shows an example of such a tree.

Since the maximal modular partition of a graph is unique, we can
conclude that the modular decomposition tree in reduced form is
unique.

4.2 relations between graph diameter and modular par-
titions

In this section we describe the relations between the diameter of undi-
rected graphs and the diameter of their nontrivial modular partitions.
In particular the diameter of an undirected graph is equal to the di-
ameter of its nontrivial modular partitions if it is greater than 2.

The theorems proved in the remainder can be summarized as fol-
lows:

• The quotient graph of a nontrivial modular partition of a con-
nected graph is itself connected.
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4.2 relations between graph diameter and modular partitions

• A path between two nodes in the same module is at most of
length 2 if the module is connected to another one.

• The length of shortest path between two nodes in different mod-
ules of the quotient graph of a nontrivial modular partition is
equal to the length of the shortest path between their containing
modules.

• If the diameter of a connected graph is greater than 2, then it
is equal to the diameter of the quotient graphs of its nontrivial
modular partitions.

Lemma 2. A nontrivial modular partition of a graph G = (V, E) is con-
nected if and only if G is connected.

Proof. Case 1: The graph G is connected⇒ the quotient graph of any
modular partition of G is connected.

Assume that the quotient graph Ĝ = (V̂, Ê) of a nontrivial modular
partition is not connected. Then ∃V̂ ′ ∈ V̂ and V̂ ′′ = V̂\V̂ ′ such that
∀x ∈ V̂ ′, ∀y ∈ V̂ ′′ we have {x, y} /∈ Ê. Let V̂ ′ = {x ∈ V|x is in a
module in V̂ ′} and V̂ ′′ = {x ∈ V|x is in a module in V̂ ′′}. From
the definition of module follows that ∀x ∈ V ′, ∀y ∈ V ′′, {x, y} /∈ E,
against the hypothesis that G is connected.

Case 2: The quotient graph Ĝ of a modular partition of G is con-
nected⇒ The graph G is connected.

Assume that the graph G = (V, E) is not connected. The simplest
(i.e. with the smallest number of nodes) nontrivial modular partition
is the one made up by a module that contains all the nodes of a
connected component and another module with all the remaining
nodes. Since the graph is not connected there is no edge between the
two modules, hence any modular partition is not connected, against
the hypothesis.

Lemma 3. Given a graph G = (V, E) and the quotient graph Ĝ = (V̂, Ê)
of a nontrivial modular partition of G the shortest path between two nodes
in the same module is at most 2 if the module is connected to at least another
one.

Proof. The intuition behind the proof is that if two nodes in the same
module, connected to another module, are not neighbours, then there
exists a path between them passing through a node in the other mod-
ule. This gives a path of length 2.

Case 1: The two nodes are neighbours. Then the shortest path
between them is of length 1.

Case 2: The nodes vi and vj in the same module M are either not
connected by a path in M or such a path has length longer than 2. Let
M′ be the module of Ĝ connected to M. Then from the definition of
module follows that all the vertices in M are connected to all vertices
in M′. Let vk be a node in M′. Then the path < vi, vk, vj > is a path
of length 2 connecting vi and vj in G.
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Lemma 4. Given a graph G and the quotient graph Ĝ of one of its nontrivial
modular partitions, the shortest path between two vertices of G in different
modules is equals to the shortest path between between the two modules in
Ĝ.

Proof. The idea is that the shortest path between two vertices takes at
most one node from each module.

Assume that the shortest path between vertices vi, vj ∈ V contains
two vertices u and w from the same module. Let this path be

ψ =< vi, · · · , t, u, · · · , w, z, · · · , vj >

From the definition of module {t, u} ∈ E ⇒ {t, w} ∈ E and {w, z} ∈
E ⇒ {u, z} ∈ E since u and w are from the same module. Hence the
path

ψ′ =< vi, · · · , t, u, z, · · · , vj >

connects vi and vj and is shorter than ψ, so the assumption of ψ being
the shortest path is absurd. From his follows that the shortest path
between two nodes in different modules takes at most one node from
each module.

Since a different module is associated to each node in a shortest
path between vi and vj, then such a path has the same length of the
shortest path between the modules containing vi and vj.

Theorem 10. Given a connected graph G with diameter greater than 2,
its diameter is equal to the diameter of the quotient graph Ĝ of any of its
nontrivial modular partitions.

Proof. From lemma 4 we know that the shortest path between two
modules is equal to the shortest path between all the nodes that they
respectively contain. From the hypothesis of connection and from
lemmas 2 and 3 we know that the shortest path between two vertices
in the same module is at most 2. Since the diameter of the graph
is greater than 2 for hypothesis, then the longest shortest can’t be be-
tween two nodes in the same module. Being the longest shortest path
in G between nodes in different modules, we have that the longest
shortest path in Ĝ has the same length. Hence the diameter of G and
Ĝ is the same.

4.3 relation with directed graphs

Unfortunately the theorems of the previous section do not hold any-
more for directed graphs. This is due to the fact that lemma 3 does
not hold anymore.

An example of this situation is shown in figure 6. Figure 6a shows
a directed graph where the longest shortest path is between vertices
2 and 5. These two vertices are in the same module . The diameter
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4.4 experimental results

1

2 3 4 5

6

(a) A directed graph with diameter 3.

1

2 3 4 5

6

(b) A nontrivial modular partition of
the graph in figure 6a.

Figure 6.: A case of a directed graph and a modular partition with
different diameters.

of this graph is 3. However the quotient graph shown has diameter
2. This is due to the fact that since lemma 3 does not hold we are
not guaranteed that the shortest path between two nodes in the same
module has length at most 2.

4.4 experimental results

We have conducted some experiments to verify the reduction in car-
dinality given by the modular decomposition. The experiments have
been conducted on datasets described in Appendix A.

The datasets used are Facebook (A.1), Autonomous Systems (A.2),
DBLP (A.3) and the Power Law graphs (A.7). The quotient graph is
obtained by grouping together all the nodes that pertain to the same
module in the first level of the modular decomposition tree. Using
other levels of the modular decomposition tree does not make sense,
since they yield quotient graphs with more nodes.

Figure 7 shows the changes in cardinality between the original
graph and the graph obtained through modular decomposition. Ta-
ble 1 compares the cardinalities of the original and quotient graph for
each dataset.

Reductions in cardinalities are negligible. For power law graphs
the quotient graph is identical to the original one. For the three real
world dataset used (Facebook, Autonomous Systems and DBLP) the
reduction is around 15%, in the best case (DBLP).

These experiments show that, although interesting from a theoret-
ical point of view, the modular decomposition is of little practical
interest in this case, since it does not bring substantial reductions in
the graph size.
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Figure 7.: Cardinality change of graphs using modular decomposi-
tion

Dataset Original cardinality Quotient graph cardinality

Power law 1 9996 9996

Power law 2 19985 19985

Power law 3 39938 39938

Power law 4 59974 59974

Facebook 3963 3858

Autonomous systems 6474 6225

DBLP 317080 263388

Table 1.: Cardinality values for original graph and its modular decom-
position for various datasets
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5
S TA R D E C O M P O S I T I O N

We have seen that the modular decomposition does not yield signif-
icant reductions in the graph cardinality. This is mainly due to the
very rigid nature of the definition of modular decomposition. More-
over, the algorithms to find the modular decomposition are somewhat
convoluted. Finally, the parallelization of the algorithm is not trivial.

Here we are going to describe a decomposition technique that is
simpler to compute and with better compression ratios. However,
we are going to pay this gain in simplicity and cardinality reduction
with an approximate result. This algorithm no longer finds a quotient
graph with the exact same diameter as the original one. Instead it
finds a graph with a diameter that is smaller, within constant bounds.

This decomposition is called star decompositions after the idea from
which is builds up.

The basic idea is that, as for the other decompositions, we need
to substitute a set of nodes of the graph with a single node that in
some way represents a summary of the connectivity of the set. So we
can take stars in the graph and replace them with a single node, that
inherits all the edges that the star has towards the outside.

5.1 star decomposition

In this section we describe star decomposition. The idea is that we want
to decompose the graph in stars, where each star is then replaced by
a single node.

Definition 17 (star). Given a graph G = (V, E) a set of nodes S ∈ V is
said to be a star if it is composed of a vertex c, named the center of the star,
and all the neighbours of c.

Definition 18 (star decomposition). Given a graph G = (V, E), a star
decomposition is a graph Ĝ such that:

1. there is a bijective function ϕ : V̂ → S between the set of nodes V̂ of
Ĝ and a partition S of V. Each element S ∈ S is a subset of a star in
G of center c, with c ∈ S.

2. given any two vertices u and v in Ĝ there is an edge between u and v
if there is an edge between any x ∈ ϕ(u) and y ∈ ϕ(v).

We are interested in the decomposition with the smallest possible
number of nodes. Note that finding such a decomposition is an in-
stance of Set Cover and hence is NP-hard [CLRS09]. In fact we can
take the vertex set V as the universe set and the stars of G as the
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Algorithm 10: Serial algorithm to compute the star decomposi-
tion of a graph G

Input: A graph G
Output: The star decomposition of G
begin

nodes← list of nodes of G sorted by degree;
foreach node c ∈ nodes do

if c is not colored then
foreach v ∈ neighbourhood(c), v not colored do

color v with the c’s color;
end

end
end
foreach edge (u, v) of the graph do

cu ← the color of u ;
cv ← the color of v ;
Create nodes cu and cv in the quotient graph ;
Add edge (cu, cv) to the quotient graph ;

end
end

sets we are using to cover V. The algorithms that we will develop
will then be targeted to finding a star decomposition with a small
number of nodes that may not be optimal.

Now that we have formally defined the decomposition, we can
move on to the description of the serial algorithm to find it.

5.1.1 Algorithm for the star decomposition

The algorithm should find a decomposition with a small number of
nodes. The idea is then to first sort the nodes by decreasing degree.
Then each vertex is processed following this order. If it is not already
assigned to a star it is taken as a center for a new star. All of its
unassigned neighbours will become part of the new star. Since nodes
are processed in a decreasing degree order, we are sure that condition
2 is met, since if a node is assigned to a star with center c it means
that no node with degree higher than c claimed that node for its own
star. Pseudocode 10 describes the algorithm.

In this algorithm a node is colored with the ID of the center of the
star it pertains to. Clearly each edge is visited at most one time, so,
ignoring the initial sorting, the running time of the algorithm is O(m),
where m is the number of edges of the graph G.
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5.1 star decomposition

5.1.2 Bounds on the diameter of the star-decomposition

In this section we shall see that there are precise and constant bounds
to the diameter of the star decomposition’s quotient graph. First, we
state a lemma about the distance of the nodes in subsets of stars.

Lemma 5. Let G = (V, E) be a graph and S ⊆ S̄, where S̄ is a star in G
with center c, with c ∈ S. Then, ∀u, v ∈ S the distance between u and v is
at most two.

Proof. The nodes are either adjacent or connected by the node c. Hence
the shortest path length between u and v is 1 or 2.

With this lemma we can state the following theorem, that puts a
bound on the diameter of the quotient graph of the star decomposi-
tion.

Theorem 11. Let G = (V, E) be a graph and Ĝ = (V̂, Ê) a star decompo-
sition of G. Then

d− 2
3
≤ d̂ ≤ d (11)

where d is the diameter of G and d̂ is the diameter of Ĝ.

Proof. Recall from definition 18 that ϕ(v) is the bijective function that
maps the nodes v ∈ V̂ to the sets S ∈ S.

Consider two nodes u, v ∈ V̂ at distance d̂. Consider now x ∈ ϕ(u)
and y ∈ ϕ(v) and assume that there is a path σ between x and y
whose length is strictly less than d̂. If such a path exists, then we can
build a path between u and v in Ĝ made up by ϕ−1(w), ∀w ∈ σ. This
path will have a length l ≤ len(σ) < d̂ which is absurd, since u and v
are at distance d̂. Since d̂ ≤ len(σ) ≤ d, the upper bound d̂ ≤ d holds.

Conversely, for the lower bound, consider two nodes x and y in V
at distance d. Consider then u = ϕ−1(x) and v = ϕ−1(y) and assume
that there is a path σ̂ between u and v (see figure 8) such that

len(σ̂) <
d− 2

3

If such a path exists, then we can build a path σ from x to y in G by
taking nodes from ϕ(w), for each w ∈ σ̂. Thanks to lemma 5, we can
state that each node w ∈ σ̂ corresponds to at most 2 arcs in σ. The
length of σ is then

len(σ) ≤ 2 (len(σ̂) + 1) + len(σ̂) = 3 len(σ̂) + 2 < d

however, this is absurd, since the distance between x and y is d. Since
d−2

3 ≤ len(σ̂) ≤ d̂, we have that the lower bound holds.

We might be interested in obtaining a greater reduction in the
graph’s size than the one that the star decomposition allows us to
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σ

σ̂

x y

u . . . v

Figure 8.: The expansion of the path σ̂ between u and v in Ĝ yields
the path σ in G.

Table 2.: Statistics for the Facebook dataset

Original graph Star decomposition

nodes 4039 250

edges 88234 976

diameter 8 3

average degree 44.5 7.808

maximum degree 1034 240

achieve. We can apply the star decomposition repeatedly to the quo-
tient graph of the previous application. In this way we can get a
quotient graph that is arbitrarily smaller than the original one. How-
ever the degradation of the diameter becomes so big that the quotient
graph is unlikely to be useful. In fact the bound on the diameter wors-
ens of a factor of approximately 3 at each application. This means that
after k applications, the bound on the diameter of the quotient graph
is approximately 3k.

In the next chapters we shall see alternative decompositions that
address the problem of reducing the graph size at will while main-
taining the bound on the diameter under control.

5.1.3 Experimental results

The star decomposition has been applied to a some real world datasets.
They are all described in Appendix A.

Note that for the bigger graphs (namely DBLP, Amazon, Youtube
and the California road network) the diameter has been computed
using WebGraph [BV03], using the Hyper Approximate Neighbour-
hood Function, hence it as an estimate of the real diameter.

Figure 9 summarize the results of the application of the decompo-
sition on the number of nodes of the graphs.

Figure 10 shows the relation between the diameters of the original
and decomposed graph for various datasets.

facebook graph star decomposition The star decomposi-
tion has been applied on a Facebook graph (Section A.1). For statistics
about the graph and its star decomposition refer to the first column
of table 2.
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Figure 9.: Cardinality of the original and star decomposed graph for
various datasets

autonomous systems graph star decomposition The Au-
tonomous Systems graph (Section A.2) represents the graph of routers
comprising the Internet. Statistics about this graph and its star decom-
position can be found in the first column of table 3.

dblp graph star decomposition The DBLP graph (Section
A.3) represents relationships between scientific papers authors.

Statistics about the original graph are displayed in the first column
of table 4, whereas its second column gives information about the star
decomposition of the graph.

Table 3.: Statistics for the Autonomous Systems Graph

Original graph Star decomposition

nodes 6474 2865

edges 12572 3585

diameter 9 5

average degree 3.89 2.5
maximum degree 1458 2363
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Figure 10.: Relation between the diameter of graphs and their star
decomposition. The result relative to the California roads
dataset (that can be found in table 7) isn’t included for
scale reasons.

Table 4.: Statistics for the DBLP graph and its star decomposition

Original graph Star decomposition

nodes 317080 89420

edges 1049866 239640

diameter 22 10

average degree 6.62 5.36

maximum degree 343 1741

Table 5.: Statistics for the Amazon graph and its star decomposition

Original graph Star decomposition

nodes 334863 82944

edges 925872 193526

diameter 44 21

average degree 5.53 4.67

maximum degree 549 651
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5.1 star decomposition

Table 6.: Statistics for the Youtube graph and its star decomposition

Original graph Star decomposition

nodes 1134890 532723

edges 2987624 1004143

diameter 21 10

average degree 5.27 3.77

maximum degree 28754 198711

Table 7.: Statistics for the California roads graph and its star decom-
position

Original graph Star decomposition

nodes 1965206 784305

edges 2766607 1284533

diameter 850 444

average degree 2.81 3.28

maximum degree 12 17

amazon graph star decomposition This graph was build
by crawling the Amazon website (Section A.4. Statistics on the graph
and its star decomposition are contained in table 5.

youtube graph The Youtube graph (Section A.5) represents rela-
tions of friendship between Youtube users. Statistics abuot the graph
and its star decomposition can be found in table 6.

california roads graph This graph represents a road network
of California (Section A.6). Nodes represents intersections and end-
points, while the roads connecting these intersections or road end-
points are represented by undirected edges.

Statistics regarding this graph and is star decomposition can be
found in table 7.
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6
B A L L D E C O M P O S I T I O N

In chapter 5 we have introduced the star decomposition. This de-
composition leads to good results, however if one wants to achieve
even better cardinality reductions, he is forced to repeatedly apply
the decomposition. This leads to a degradation of the bound on the
diameter that gets quickly useless. Applying k times the decomposi-
tion in fact leads to an approximation factor of 3k.

We seek an approach to cardinality reduction that can lead to ar-
bitrary reductions by controlling a parameter r. Moreover, we want
this approach to have a bound on the diameter that is at most linear
in the parameter r.

This approach is the ball decomposition. This is a generalization of
the star decomposition: instead of grouping nodes by stars of radius
1, we group nodes by balls of radius r. If two nodes are connected by
an edge in the original graph, then the balls to which they pertain are
connected in the quotient graph.

By changing the parameter r we can get different reductions in the
graph cardinality. The bigger the value of r, the greater the reduction.
When r equals the graph’s diameter, we have a quotient graph with
only one node. In the case r = 1, the ball decomposition is equivalent
to the star decomposition.

In what follows we will formalize the notion of ball decomposition.

Definition 19 (Ball). Given a graph G = (V, E) and an integer r, a set
made up by c ∈ V and all the nodes that whose distance from c is at most r
is said to be a ball.

Definition 20 (Ball cardinality). The ball cardinality at r of a node v is
the number of nodes that are comprised in the ball of center v and radius r.

Definition 21 (Ball decomposition). Given a graph G = (V, E) and an
integer r, a ball decomposition of radius r of G is a graph Ĝ such that:

1. there is a bijective function ϕ : V̂ → B between the set of nodes V̂ of
Ĝ and a partition B of V. Each element B ∈ B is a subset of a ball in
G of radius r and center c, with c ∈ B.

2. given any two vertices u and v in Ĝ there is an edge between u and v
if there is an edge between any x ∈ ϕ(u) and y ∈ ϕ(v).

Finding the ball decomposition with the minimum number of nodes
is an instance of Set Cover and hence is NP-hard [CLRS09]. The uni-
verse set is the vertex set V of the original graph and the sets with
which we want to cover it are the balls of G with radius r.
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6.1 bounds on the diameter

As for the star decomposition, also the ball decomposition has well
defined bounds on the diameter. We shall see that the bound is linear
in the parameter r.

Lemma 6. Let G = (V, E) be a graph and B ⊂ B̄, where B̄ is a ball in G of
radius r and center c, with c ∈ B. Then, ∀u, v ∈ B, the distance between u
and v is at most 2r.

Proof. The paths < c, · · · , u > and < c, · · · , v > are at most of length
r. Hence the path < u, · · · , c, · · · , v > is at most of length 2r.

We can now state the following theorem.

Theorem 12. Let G = (V, E) be a graph and Ĝ = (V̂, Ê) a ball decompo-
sition with radius r of G. Then

d− 2r
2r + 1

≤ d̂ ≤ d (12)

where d is the diameter of G and d̂ is the diameter of Ĝ

Proof. Recall from definition 21 that ϕ(v) is the bijective function that
maps the nodes v ∈ V̂ to the sets B ∈ B.

Consider two nodes u, v ∈ V̂ at distance d̂ and the nodes x ∈ ϕ(u)
and y ∈ ϕ(v). Assume that there is a path σ between x and y whose
length is strictly less than d̂. If such a path exists, then we can build
a path between u and v in Ĝ made up by ϕ−1(w), ∀w ∈ σ. This path
will have a length l ≤ len(σ) < d̂ which is absurd, since u and v are
at distance d̂. Being d̂ ≤ len(σ) ≤ d, the upper bound holds.

As for the upper bound, consider two nodes x and y in V at dis-
tance d. Then, consider u = ϕ−1(u) and v = ϕ−1(y) and assume that
there is a path σ̂ between u and v such that

len(σ̂) <
d− 2r
2r + 1

If such a path exists, then we can build a path σ from x to y in G
by taking nodes from ϕ(w), for each w ∈ σ̂ (figure 11). Thanks to
lemma 6, we can state that each node w ∈ σ̂ corresponds to at most
2r arcs in σ. The length of σ is then

len(σ) ≤ 2r (len(σ̂) + 1) + len(σ̂) = (2r + 1) len(σ̂) + 2r < d

This is absurd, since the distance between x and y is d. Since d−2r
2r+1 ≤

len(σ̂) ≤ d̂, the lower bound holds.

Note that theorem 11 is a special case of this one. In fact, since the
star decomposition is a ball decomposition with r = 1, the bound of
theorem 12 becomes

d− 2
3
≤ d̂ ≤ d

which is exactly the bound stated in theorem 11.
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6.2 sequential algorithm

σ

σ̂

y y

u . . . v

Figure 11.: A path σ̂ in Ĝ is expanded to a path σ in G, with r = 2. To
each node in σ̂ correspond at most 2r arcs in σ.

6.2 sequential algorithm

In this section we study a sequential greedy algorithm to find the ball
decomposition of a graph. The algorithm is a generalization of the
one described in pseudocode 10.

The idea is the following. First we compute the ball of radius r
associated with each node. Then we sort all the nodes according to
their ball cardinality. For each uncolored node, starting with the one
with the highest ball cardinality, we color all the nodes within its
ball, if they are not already colored. The color assigned to a node is
the ID of the center of the ball to which it belongs. Once we have
colored all nodes, we can merge all the nodes within the same ball in
a single node. The whole algorithm is depicted in pseudocode 11. To
compute the ball associated to each node one can use, for instance, a
simple BFS.

6.3 mapreduce algorithm

The parallelization of the greedy algorithm described in the previous
section is non trivial. The main problem is that the algorithm relies
on the ordering of the nodes to assign them to the right ball, that is
the one with the greatest ball cardinality.

To solve this problem, we can look at it from a different perspective.
Instead of assign the node to the ball whose center has the biggest
ball cardinality, we make balls from nodes that are not dominated by
others. In this context a node v is dominated by another node c if
v can be in the ball with center c and c has a ball cardinality bigger
than that of v. Saying this is equivalent to impose a partial ordering
of the nodes based on their ball cardinality.

The algorithm is structured as follows:

1. Ball computation: the ball associated with each node is com-
puted.

2. Graph coloring: the nodes of the graph are colored with the ID
of the center of the ball they belong to.
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Algorithm 11: Serial algorithm to compute the ball decomposi-
tion of a graph G

Input: A graph G and an integer r
Output: The ball decomposition of G
begin

foreach node v in G do
balls(v)← the ball of radius r centered in v

end
nodes← list of nodes of G sorted by ball cardinality
foreach node c ∈ nodes do

if c is not colored then
foreach v ∈ balls(c), v not colored do

color v with the c’s color
end

end
end
foreach edge (u, v) of the graph do

cu ← the color of u
cv ← the color of v
Create nodes cu and cv in the quotient graph
Add edge (cu, cv) to the quotient graph

end
end

3. Graph contraction: the nodes in the same ball are contracted
into a single node that inherits all the edges.

In what follows we will describe the MapReduce algorithm for each
phase.

Ball computation The ball computation consists in r iterations, where
r is the radius of the balls. At iteration i, to each key v is associated
the ball of radius i centered in v. In the first iteration, this ball is equal
to the neighbourhood of the node.

At the beginning of each iteration the map function sends, for each
vertex v, the ball centered in v to each neighbour. The reduce function
will then perform the union of the balls. The resulting dataset is then
fed as input to the next iteration.

At the end of the r-th iteration each node has received the identi-
fiers of all the nodes it can reach in at most r hops, i.e. its ball of
radius r. The algorithm is depicted in pseudocode 12.

Graph coloring In this phase, each node is assigned to a ball. Fol-
lowing point 2 of definition 21, if a node can be part of more than
one ball, then we should consider it as belonging to only one of these
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6.3 mapreduce algorithm

Algorithm 12: MapReduce algorithm to compute the balls of
radius r associated with each vertex in a given graph.

Input: A graph G in the form (nodeId, neighbourhood) and an
integer r.

Output: The balls dataset in the form (nodeId, ball)

Map Function sendBalls (nodeId, (neighbourhood, ball)) is
foreach v in neighbourhood do

Output (v, ball) ;
end

end
Reduce Function mergeBalls (nodeId, balls) is

ball← ⋃
B∈balls B;

Output (nodeId, ball);
end

begin
The initial ball associated to each node is its
neighbourhood;
for i← 1 to r do

Use map function sendBalls;
Use reduce function mergeBalls;

end
end

balls. As we have done in the serial algorithm, we want the nodes
with the greatest ball cardinality to cover as many nodes as possible.
Since in a parallel setting we can’t rely on an explicit ordering of the
nodes by their ball cardinality, we have to adopt a different strategy,
an iterative one.

Before describing the algorithm, we define the concept of domina-
tion in the context of this algorithm. A node v is said to be dominated
by a node u if both u and v are uncolored and u has a ball cardinality
greater than v. In this case we say that u is a dominator of v.

The basic idea of the algorithm is to pick at each iteration the nodes
that have no dominators and to color the nodes in their balls that are
still uncolored.

Each node can be in one of three states: Uncolored, Candidate and
Colored. In the Uncolored state, the node is not assigned to any ball.
The Candidate state means that the node is uncolored and is meant
to become a ball center in the current iteration. Finally, the Colored
state means that the node has already been assigned to a ball, hence
it can’t be colored again.

Each iteration is divided in two steps:

1. Candidates identification: the nodes without dominators are
identified through a voting procedure.
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2. Covered nodes coloring: the nodes marked as candidates send
their color to all the nodes within their balls. The ones among
these that are still uncolored are colored.

Let’s analyze more in detail the candidate identification phase. Be-
fore selecting a node to become a ball center, we have to make sure
that it can’t included in another ball. Since in our greedy algorithm
a node v can be included only in balls whose center has a ball cardi-
nality greater than v, we have to make sure that v has no dominators.
This means that we have to check that either there are no nodes with
a ball cardinality greater than v or that all the nodes with a ball cardi-
nality greater than v are already colored. To do so, at the beginning
of each iteration all the nodes send their ball cardinality to the nodes
within their balls, along with a vote. This vote, sent by node v, is used
by the nodes in the ball centered in v to tell if they are dominated by
v. Thus, if a node is colored it sends a positive vote, otherwise it
sends a negative vote. A positive vote, for the node receiving it, has
the meaning of approval to become a center. The vote sending can be
done with a map function (function sendVotes in pseudocode 14).

Once a node has received all the votes, it can check if all the ones
coming from nodes with a higher ball cardinality are positive. In case
they are all positive, the node is marked as a candidate. Otherwise, it
means that the node has a dominator, hence it can’t become a ball cen-
ter in this iteration. This can be done with a reduce function (function
markCandidate in pseudocode 14).

After the candidate identification phase, we can color the nodes
covered by the new ball centers. With a map function (colorDominated,
pseudocode 14), the nodes marked as candidate send their ID and
ball cardinality to all the nodes within their balls. Then, with a re-
duce function, the nodes that are not yet colored and that received
one or more colors are colored with the color associated with the
biggest cardinality. Ties on the cardinality associated to a color are
broken by taking the one with the highest ID.

After all the nodes are colored, each node is assigned to exactly one
ball. Pseudocode 13 illustrates this algorithm.

Graph contraction The last step of the algorithm is a simple constant-
round algorithm. What we aim to do is to replace, for each edge, the
source and destination IDs with the color they were assigned. To ac-
complish this task, we should first represent the graph as a collection
of edges, that is a dataset made up by pairs of IDs: one for the source
node of an edge and one for its corresponding destination. Then, to
relabel the nodes, we proceed in two rounds.

In the first round the edges and the colors are paired on the source
ID of each edge. The source ID will then be replaced with its color.
The second round pairs the edges and the colors on the destination
ID of each edge, that will then be replaced by its color.
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Algorithm 13: MapReduce algorithm to color a graph given
the balls. Functions described in pseudocode 14 are used

begin
all nodes start with an Uncolored status;
the dataset of tagged nodes is called taggedGraph;
while there are uncolored nodes do

votes← Use the vote map function on taggedGraph;
groupdVotes← Cogroup(taggedGraph, votes);
taggedGraph← Use markCandidate on groupedVotes;
newColors← Map colorDominated on taggedGraph and
then reduce with max;
taggedGraph← Cogroup(taggedGraph, newColors) and
then map applyColors;

end
end

Figure 12.: A linear array. The number inside each node is its ID,
whereas the number below is the cardinality of the associ-
ated ball of radius 2.

3 4 5 5 5 5 4 3

0 1 2 3 4 5 6 7

At the end of this process we will have all the edges with sources
and destinations relabeled with their respective colors. By removing
all duplicates we obtain the quotient graph as a collection of edges.
Pseudocode 15 describes the algorithm.

6.3.1 Complexity

We will now analyze the number of rounds required by the algorithm
to complete, in the worst case. The ball computation in the first phase
of the algorithm takes up a number of rounds proportional to the
radius r. Hence, for a fixed value of r, it takes a constant number of
rounds.

The second part of the algorithm is more tricky. Each iteration
of the voting procedure can be performed in a constant number of
rounds. We shall thus determine the number of iterations performed
by the algorithm in the worst case. Consider a linear array, like the
one shown in figure 12.The numbers inside the vertices are the node
IDs, whereas the numbers below them are the ball cardinalities (in-
cluding the center).

At the first iteration of the algorithm, the only node that gets se-
lected is node 5: it has ball cardinality 5. The other nodes with car-
dinality 5 are not selected because ties are broken deterministically
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Algorithm 14: Map and Reduce functions used to compute the
ball decomposition

Map Function vote (nodeId, (status, ball)) is
cardinality← size of ball;
if status = Colored then

foreach n in ball do Output (n, (true, cardinality));
else

foreach n in ball do Output (n, (false, cardinality));
end

end

Reduce Function markCandidates (nodeId, ((status, ball) ,votes))
is

if status = Colored then
Output (n, (color, ball))

else
valid votes← votes from nodes with higher ball
cardinality;
if all valid votes are positive then

Output (n, (Candidate, ball));
else

Output (n, (Uncolored, ball));
end

end
end

Map Function colorDominated (nodeId, (status, ball)) is
if status = Candidate then

cardinality← ball size;
foreach n, in ball do Output (n, (nodeId, cardinality));

end
end

Reduce Function max (nodeId, colors) is
color← the color with the maximum associated ball
cardinality, breaking ties by id;
Output (nodeId, color);

end

Map Function applyColor (nodeId, ((status, ball), color)) is
if status = Colored then Output (nodeId, (old color, ball));
else Output (nodeId, (color, ball)) ;

end
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Algorithm 15: Algorithm to compute the quotient graph of the
ball decomposition, given the adjacency matrix representation
of the graph and the colors assigned to each node

Map Function relabel (nodeID, (color, edgeEndPoints)) is
foreach n in edgeEndPoints do

Output (n, color);
end

end

begin
groupedSources← Cogroup(colors, edges) ;
relabeledSources← apply relabel to groupedSources ;
groupedDestinations← Cogroup(colors, edges) ;
relabeledDestinations← apply relabel to
groupedDestinations ;

end

by ID. In this way they are all potentially dominated by the higher
ID nodes. Thus at the first iteration only node 5 is selected. It then
colors all the nodes in its ball: 3, 4, 5, 6 and 7. In the second iteration
only node 2 is selected and colors nodes 0, 1 and 2. At this point the
algorithm has colored all the nodes and ends. Consider now the case
of a linear array with n nodes and let r be the chosen ball radius. As
for the linear array with 8 nodes, the only node selected in the first
iteration is the one with ID n − r. In the second iteration the only
node selected will be the one with ID n− 2r. At the i-th iteration the
node n− ir will be selected. The number of iterations to complete the
algorithm in the case of the linear array is thus O(n).

The linear array however is a pathological case. Real world graphs
expose much more parallelism. We shall see that experiments shows
that the algorithm has good scalability for real world graphs.

6.3.2 Randomized algorithm

The algorithm analyzed in the last section has a bad theoretical com-
plexity. This is mainly due to its iterative nature and the fact that
ties are broken deterministically by ID. To achieve a better running
time we resort to a randomized algorithm. The idea is to select ball
centers at random and then to make them color all the nodes within
their balls.

First of all, balls are computed using algorithm 12. After balls have
been computed, we proceed to the coloring phase.

The first step consists in ball centers selection. Each node becomes
a ball center with probability p. This can be done with a single map
function: for each node the output of the map function will be the
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node marked with Candidate with probability p or Uncolored with
probability 1− p.

In the second step, with a map function, all the nodes that have
been marked as candidates send their own color, along with their
ball cardinality, to all the nodes within their balls. A reduce function
will then, for each node, apply the color with the highest cardinality
among the ones received. Ties are broken by ID.

In the reduce function it may happen that a node has received no
colors, because it isn’t included in any of the randomly chosen balls.
In this case the node is colored with its own ID.

This algorithm is depicted in pseudocode 16. After the nodes have
been colored, the graph is relabeled using algorithm 15.

Even if ties are still broken by ID, the randomization step at the
beginning of the algorithm ensures that a situation like the one of the
linear array for the deterministic algorithm is unlikely to happen.

This algorithm runs in a constant number of rounds, since no itera-
tion is involved. However the cardinality reduction is worse than the
one achieved with the deterministic algorithm.

6.4 experimental results

In this section we present some experimental results. The data was
obtained by running the algorithms described in this section against
the datasets described in appendix A. First we will present some re-
sults that show the cardinality and diameter reduction of the datasets
after applying the ball decomposition algorithm. Next, we compare
the cardinality reduction of the deterministic and randomized ver-
sions of the ball decomposition. Finally, we show some performance
and scalability measures, that shows that the algorithms achieve in
practice a good scalability for big datasets.

6.4.1 Cardinality and diameter reduction

In this section we present some experimental results related to the
application of the ball decomposition algorithm to various datasets
presented in appendix A. In general we can state that the ball decom-
position gives significant cardinality reductions even for small values
of the ball radius r. Moreover the experiments show that the diam-
eter reduction is often smaller than the theoretical bound. Thus the
ball decomposition appears to be a viable technique to approach the
diameter problem. In what follows we will analyze the experimen-
tal results for each dataset. Each figure shows in the left panel the
quotient graph cardinality versus the value of r, whereas the right
panel shows the diameter of the quotient graph (blue line) and the
theoretical bound (red line) versus the value of r.
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Algorithm 16: Randomized algorithm for the ball decomposi-
tion.

Input: A graph, with ball of radius r already associated to
each node.

Map Function colorDominated (nodeId, (status, ball)) is
if status = Candidate then

cardinality← ball size;
foreach n, in ball do Output (n, (nodeId, cardinality));

end
end

Reduce Function max (nodeId, colors) is
color← the color with the maximum associated ball
cardinality, breaking ties by id;
Output (nodeId, color);

end

Map Function applyColor (nodeId, ((status, ball), color)) is
if status = Candidate or no color received then

Output (nodeId, (nodeId, ball));
else

Output (nodeId, (color, ball));
end

end

begin
taggedGraph← Mark nodes as Candidate with probability p;
newColors← Map colorDominated on taggedGraph and
then reduce with max;
taggedGraph← Cogroup(taggedGraph, newColors) and then
map applyColors;

end

Amazon Applying the ball decomposition algorithm to the Amazon
dataset yields the results shown in figure 13. The cardinality reduc-
tion is sensible: with r = 2 the quotient graph has 28629 nodes, when
the original graph had 334863 nodes, a reduction of more than 11

times. The diameter of the reduced graph is 19, while the original
graph had a diameter of 44. The theoretical lower bound for r = 4
given by theorem 12 is 8. Thus in this case the diameter of the re-
duced graph is much better than the lower bound.

We can try to reduce the size of the graph even more: r = 4 yields
a quotient graph with 9084 nodes (37 times smaller than the original)
and a diameter of 16 (the theoretical bound is 7,2).

Autonomous systems The effects of the application of the ball de-
composition algorithm on the Autonomous Systems dataset are shown
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in figure 14. The original graph has 6474 nodes and a diameter of 9.
The quotient graph with r = 3 has only 106 nodes and a diameter
of 5. The number of nodes is reduced more than 60 times, while the
diameter of the quotient graph is bigger than the half of the original
diameter. This graph has an interesting behaviour, in that the diame-
ter of the quotient graph for r ∈ {1, 2, 3} does not change.

DBLP The quotient graph of the ball decomposition applied to the
DBLP dataset (fig. 15), with r = 2, has a 26099 nodes and a diameter
of 11. The cardinality of the original graph is 317080. Its diameter is
21. In this case the theoretical lower bound is 3.4. Thus, also in this
case, the diameter for the ball decomposition is much better than the
theoretical lower bound.

Like the Autonomous Systems case, the diameter of the graph for
r = 1 and 2 is the same: 11. If we wish to reduce the graph’s size even
more, by setting r = 3 we get a graph with 14945 nodes (21 times
smaller than the original) and with a diameter of 9 (the theoretical
bound is 3.75).

Californa Roads The cardinality reduction of the California roads
dataset (fig. 16) is surprisingly regular, for increasing values of r. Re-
call that the original graph had 1965206 nodes and a diameter of 849.
The ball decomposition graph with r = 2 has only 365512 nodes. The
diameter in this case is 323. The theoretical lower bound is 218.

Pyweb syntetic graphs Figures 17, 18, 19 and 20 show the cardinal-
ity and diameter reductions for the four synthetic power law graphs.
In all cases the cardinality reduction is more than 6 times, even with
a ball radius of 1. The diameter reduction, on the other hand, is less
than a half with r = 1, in every case.

Let’s analyze more in detail the results obtained in these experi-
ments. As expected, increasing the value of r results in smaller quo-
tient graphs. This can be used in practice to achieve arbitrary graph
size reductions. The drawback of using high values of r is that, to-
gether with the cardinality of the graph, also the diameter becomes
smaller. However the diameter of the quotient graph is always greater
than a well defined lower bound, as predicted by theorem 12. In many
cases, the diameter reduction is much less than the one predicted by
the theorem. This lets us hope that a more strict lower bound can be
found.

6.4.2 Cardinality reduction given by randomized algorithm

The randomized ball decomposition algorithm is expected to run
faster than the deterministic one, however it gives worse results on
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Figure 13.: Cardinality and diameter reduction for the Amazon
dataset after applying the ball decomposition with radius
r
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Figure 14.: Cardinality and diameter reduction for Autonomous Sys-
tems after applying the ball decomposition with radius r
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Figure 15.: Cardinality and diameter reduction for DBLP after apply-
ing the ball decomposition with radius r
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Figure 16.: Cardinality and diameter reduction for California Roads
after applying the ball decomposition with radius r
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Figure 17.: Cardinality and diameter reduction for pyweb 1 after ap-
plying the ball decomposition with radius r
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Figure 18.: Cardinality and diameter reduction for pyweb 2 after ap-
plying the ball decomposition with radius r
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Figure 19.: Cardinality and diameter reduction for pyweb 3 after ap-
plying the ball decomposition with radius r
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Figure 20.: Cardinality and diameter reduction for pyweb 4 after ap-
plying the ball decomposition with radius r
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Dataset Original Ball dec. p = 0.1 p = 0.2 p = 0.3

Aut. Systems 6474 2851 5535 4794 4039

DBLP 317080 89177 213182 184182 178453

Amazon 334863 82007 226069 190268 184385

Youtube 1134890 527871 909414 822292 794522

Roads CA 1965206 761897 1558428 1371384 1312539

Table 8.: Comparison between the cardinality reductions given by the
deterministic ball decomposition algorithm (third column)
and by the randomized one (last three columns), for p ∈
{0.1, 0.2, 0.3}

the side of cardinality reductions. Experimental results are shown in
table 8. The cardinality of the quotient graph given by the random-
ized ball decomposition algorithm is always greater than the cardinal-
ity of the one given by the deterministic algorithm, for each chosen
value of p. For each dataset the quotient graph with the smallest
cardinality given by the randomized algorithm is between 1.4 and
2.2 times bigger than the quotient graph given by the deterministic
algorithm.

6.4.3 Performance and scalability

As we saw in section 6.3.1, the theoretical performance of the algo-
rithm is quite bad. However the worst case for the algorithm (the
linear array), is a pathological case. Real world graphs expose more
parallel work for the algorithm to perform. Figures 21, 22, 23, 24 and
25 show performance measurements for these real world graphs, in
logarithmic scale. The blue line shows the performance of the de-
terministic ball decomposition algorithm. Magenta, green and red
lines show the performance of the randomized algorithm for p = 0.1,
p = 0.2 and p = 0.3 respectively, where p is the probability for a node
to become a center.

All tests have been performed with the software described in ap-
pendix B.2 on a Power 7 machine with 128 GB of RAM and 48 cores,
running SUSE Linux 11 SP2.

As the figures show, increasing the number of cores improves per-
formance up to a point where the overhead of managing many cores
and moving data between them overcomes the benefits of the paral-
lel processing. For small graphs this point is early on the number of
processors axis: as soon as we use more than 5 cores, the program is
actually slower (fig 21), due to the framework overhead. When deal-
ing with larger graphs, using up to 16 cores brings performance gains
before the overhead becomes dominant (fir 22, 23 and 24). Figure 25
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Figure 21.: Execution time versus number of processors for the Au-
tonomous Systems dataset.

shows how on the Youtube graph (1134890 nodes, 2987624 edges),
the algorithm scales up to 64 processors, at least for the deterministic
algorithm.

This trend in the relation between the dataset size and the scala-
bility of the algorithm suggests that when dealing with even larger
graphs, the algorithm can take full advantage of the processing power
of the computing infrastructure at our disposal.

We can compare the performance of the ball decomposition shown
in this section with the performance of our own implementation of
D-HANF, analyzed in section 3.3.5. For instance, the time taken by
D-HANF to compute the diameter of the DBLP dataset with 16 pro-
cessor is approximately 81 seconds. The time to compute the ball de-
composition of the same graph with the same number of processors
is approximately 52 seconds. This last time does not take into account
the time taken to compute the diameter of the quotient graph. How-
ever, being the quotient graph significantly smaller, the performance
advantage of the ball decomposition is clear. For the Amazon dataset,
D-HANF takes 148 seconds to complete whereas the ball decomposi-
tion takes 92 seconds.

Both implementations are still not optimized and there’s room for a
lot of improvement, however these first results motivate further work
on the path of the ball decomposition.
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Figure 22.: Execution time versus number of processors for the DBLP
dataset.
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Figure 23.: Execution time versus number of processors for the Ama-
zon dataset.
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Figure 24.: Execution time versus number of processors for the Roads
of California dataset.
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Figure 25.: Execution time versus number of processors for the
Youtube dataset.

70



7
C O N C L U S I O N S

The diameter is an important metric when studying graphs. Due to
the large size of graphs that are studied in a wide variety of contexts
(Web, social networks, citation networks, biological networks, etc.)
parallel algorithms that can leverage the power of distributed systems
are needed.

A computational paradigm that is gaining more and more pop-
ularity is MapReduce [DG08]. In this paradigm algorithms are ex-
pressed as a series of map and reduce functions, much like in func-
tional languages such as Lisp. Implementations of this paradigm
[Whi12, ZCF+

10] can then distribute the computation across clusters
of commodity machines, with the purpose of scalability and fault tol-
erance.

In this thesis we studied solutions to the diameter problem in a
MapReduce setting. A few approaches were already available, from
the classic textbook algorithm to probabilistic iterative algorithms.
Beside studying these approaches, we proposed a novel approach,
based on the size reduction of the graph. To test the scalability and
accuracy of our algorithms, we implemented a software, with the
Spark framework, to deal with large graphs. Using this software, we
tested our algorithms against several real world datasets.

In chapter 2 we adapted the classic textbook algorithm to the MapRe-
duce paradigm. This approach involves the solution of the All Pairs
Shortest Path problem: once we have the shortest paths between any
two nodes, it is trivial to get the longest one, i.e. the diameter. To
solve the APSP problem we resorted to the repeated squaring of the
incidence matrix of the graph in the (N, min,+) semiring. Since
the matrix multiplication can be performed in a constant number of
rounds [PPR+

12], the algorithm has a O(log d) complexity, where d is
the diameter of the graph. If one is interested in the effective diameter
dα, the complexity is O(logdα).

In chapter 3 we studied several iterative probabilistic approaches to
the diameter problem. All these algorithms [PGF02, BRV11, KTA+

08]
follow a common pattern. They all use probabilistic counters [FMM85,
FFGea07] to approximate the neighbourhood function of a graph.
Given the neighbourhood function of a graph, an approximation of
the diameter or the effective diameter is easily derived. We proposed
and implemented a parallelization of [BRV11], namely D-HANF. All
these algorithms run in O(d) time, where d is the diameter of the
graph.
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The rest of the thesis (chapters 4, 5 and 6) was devoted to the study
of the graph size reduction approach. The idea is to reduce the size
of the graph in parallel, while retaining guarantees on the diameter
of the quotient graph, to solve the diameter problem on the reduced
graph, possibly on a single machine.

The modular decomposition (chapter 4) is a promising technique
from a theoretical point of view, in that it guarantees that the di-
ameter in the quotient graph is the same as in the original graph.
However we experimentally found that the cardinality reductions
achieved with this approach are not significant. Thus, despite the ap-
pealing property of keeping the diameter unchanged, this approach
is not interesting from a practical point of view.

By accepting a degradation of the diameter we were able to achieve
much greater reductions in the graph’s size. Chapters 5 and 6 de-
scribed the approaches that enabled us to achieve this result. The idea
is to decompose the graph in stars (the star decomposition) or balls of
radius r (the ball decomposition). Each star or ball is replaced, in the
quotient graph, by a single node. We have proved, in the more gen-
eral case of the ball decomposition, that the diameter of the quotient
graph is subject to the following bound

diam(G)− 2r
2r + 1

≤ diam(Ĝ) ≤ diam(G)

where r is the radius of the balls (corollary 12). In the ball decom-
position, the parameter r allows to trade accuracy on the diameter
with greater graph’s size reductions. The worst case running time
of the MapReduce algorithms is O(n), however we have experimen-
tally shown that in practice these algorithms achieve a good scalabil-
ity, since real world graphs expose much more parallelism than the
pathological case of the linear array.

The graph decomposition approach leaves many open paths for
future research. There are mainly two directions to improve the ap-
proach: the bound on the diameter and the algorithms.

As for the bound on the diameter, the current one ignores the struc-
ture of single balls. To make it tighter we could relate it to the diam-
eter of single balls or some other structural properties of the balls.

The algorithms that compute the ball decomposition suffer from a
bad worst case complexity. An algorithm with stronger theoretical
guarantees on the running time is demanded. An algorithm with a
constant round running time would be ideal.

From the iterative probabilistic algorithms point of view, there is
room to experiment with different counters other than the ones de-
scribed in [FFGea07, FMM85]. For instance there are counters based
on order statistics [Gir09] or on a balls and bins approach [Nel11].

Finally, some argue [MAB+
10] that MapReduce is not ideal for

large scale graph processing. In particular, the functional heritage
of the paradigm imposes to explicitly pass the structure of the graph
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from one round to another. In [MAB+
10] a different paradigm, rem-

iniscent of the Bulk Synchronous Parallel model, is proposed. This
paradigm, called Pregel, structures the computation as a series of su-
persteps. In each superstep a user-defined function is run on each
vertex, yielding a set of messages to be delivered to other vertices
for the next superstep. An interesting research path is to express the
algorithms for the diameter computation in such a paradigm.
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A
D ATA S E T S

To conduct the experiments described in later chapters, several datasets
have been used. In this appendix we describe each dataset.

a.1 facebook dataset

The Facebook dataset is made up by ’friends lists’ from Facebook.
The dataset is taken from the Stanford Large Network Datasets col-
lection 1 All data has been collected on a voluntary basis using a
Facebook app 2. Table 9 shows the statistics of this dataset

a.2 autonomous systems dataset

The Autonomous Systems dataset represents the connections between
the autonomous systems that make up the Internet. Each Autonomous
System exchanges traffic flows with some neighbors. We can con-
struct a communication from the BGP (Border Gateway Protocol) logs.
The dataset is available at the Stanford Large Neworks Dataset collec-
tion3. Table 9 shows statistics about this graph.

a.3 dblp dataset

The DBLP database provides bibliographic information on major com-
puter science journals and proceedings4. This dataset is a co-authorship
network. Every node represents an author. Two authors are con-
nected together if they publish at least one paper together. Table 9

1 http://snap.stanford.edu/data/egonets-Facebook.html
2 https://www.facebook.com/apps/application.php?id=201704403232744

3 http://snap.stanford.edu/data/as.html
4 http://dblp.uni-trier.de/

Nodes Edges Diameter Diameter at 0.9

Facebook 4039 88234 8 4.7
Autonomous Systems 6474 13895 9 4.6
DBLP 317080 1049866 21 8

Amazon 334863 925872 44 15

Youtube 1134890 2987624 20 6.5
Roads of California 1965206 2766607 849 500

Table 9.: Statistics for real world datasets.
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Nodes Edges Diameter Diameter at 0.9

Power Law 1 9996 378035 5 2.85

Power Law 2 19985 391393 7 3.54

Power Law 3 39938 788736 7 3.72

Power Law 4 59974 1186032 7 3.75

Table 10.: Statistics for randomly generated power law datasets

shows statistics about this dataset. The source of the dataset is the
Stanford Large Network Dataset collection5.

a.4 amazon dataset

Amazon is an on-line store selling various goods all over the world.
This graph is taken from the Stanford Large Network Dataset collec-
tion6. Each node in this graph represents a product. Two products
are connected by an edge if they are frequently purchased together.
Statistics for this graph are shown in table 9.

a.5 youtube dataset

Youtube is a video sharing platform with social network features. In
the Youtube social network, people form friendship with each other.
In this graph each node represents a user. Two users are connected
if they are friends. The dataset is taken from the Stanford Large
Network Dataset collection7. Table 9 shows statistics for this graph.

a.6 california road network dataset

This graph represent the road network of California. Each node rep-
resents an intersection or endpoint. Each road is represented as an
undirected edge. The source of this dataset is the Stanford Large Net-
work Dataset collection8. Statistics for this graph are shown in table
9.

a.7 random power law datasets

Since many real world graphs seem to follow a power law distribu-
tion of degrees these datasets have been generated randomly using
pywebgraph9. This software allows to generate arbitrary sized power

5 http://snap.stanford.edu/data/com-DBLP.html
6 http://snap.stanford.edu/data/com-Amazon.html
7 http://snap.stanford.edu/data/com-Youtube.html
8 http://snap.stanford.edu/data/roadNet-CA.html
9 http://pywebgraph.sourceforge.net/
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law graphs. We have generated four datasets, with different sizes:
approximately 10000, 20000, 40000 and 60000 nodes each. These
datasets are available for download10. Table 10 shows statistics about
all the four datasets.

10 http://www.dei.unipd.it/∼ceccarel/datasets
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S O F T WA R E

In this appendix we will briefly describe the implementation of the
algorithms described in this thesis. We will first give details about the
implementation of the sequential version of the star and ball decom-
position and then we will describe the parallel implementation of the
ball decomposition.

b.1 implementation of sequential algorithms

The sequential algorithms have been implemented within the Sage
framework1. The sofware is available under the GPL-3 license at
Github2.

Sage [S+13] is a free and open source mathematics software. It pro-
vides, among its other features, a library to deal with graphs. Sage is
written in C and Python, with a Python API. We choose this software
both because it included many useful graph algorithms and because
of the ease of use of Python. These characteristics were ideal during
the prototyping phase, where performance is not an issue.

In Sage a graph is represented as a Graph object. This object al-
lows to access the the neighbourhood of a vertex with using a syntax
similar to array and list access: graph[id].

A vertex of a sage graph can be labeled with an arbitrary object,
using the function graph.set vertex(id, label). The label can be
later retrieved with graph.get vertex(id). In our implementation,
the label attached to each node is the color of the node. This color,
for a node v belonging to a ball or star of center c, corresponds to the
ID of the node c.

Once we have all nodes colored, the quotient graph is produced
by shrinking the original graph. Listing 1 shows the python code
performing this shrinking. The quotient graph is created by adding
edges between nodes with the color of each node of the input graph.
After this shrinking is performed, a relabeling is necessary, in order
to have all the node IDs into the range [0, n].

The star decomposition of a graph is computed by the function
described in Listing 2. First the vertices of the graph are sorted in
decreasing degree order. Then, for each vertex in this sorted list, if
the vertex is not already colored it colors all the nodes within its
star. Once the graph is completely colored, we call the shrink graph

function to get the quotient graph.

1 http://sagemath.org

2 https://github.com/Cecca/sage-graph-decompositions
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Listing 1: Function to shrink a colored graph.
1 def shrink_graph(graph):

2 quotient = Graph()

3 for v in graph.vertices ():

4 # The star containing ‘v‘

5 star_v = graph.get_vertex(v)

6 for neigh in graph[v]:

7 # The star containing the neighbour of ‘v‘

8 star_neigh = graph.get_vertex(neigh)

9 if star_v != star_neigh:

10 quotient.add_edge(star_v , star_neigh)

11

12 # now a relabeling is necessary

13 print ’Relabeling quotient graph’

14 quotient.relabel ()

15

16 return quotient

Listing 2: Sequential python implementation of the star decomposi-
tion algorithm.

1 @print_timing

2 def star_decomposition(graph):

3 print ’Sorting vertices ’

4 verts = sorted(graph.vertices(), key=graph.degree , reverse=True)

5 print ’Coloring graph’

6 for v in verts:

7 if graph.get_vertex(v) == None:

8 graph.set_vertex(v, v)

9 for neigh in graph[v]:

10 if graph.get_vertex(neigh) == None:

11 graph.set_vertex(neigh , v)

12 print ’Building stars’

13 quotient = shrink_graph(graph)

14 return quotient
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Listing 3: Sequential python implementation of the ball decomposi-
tion algorithm.

1 def get_ball(graph , vertex , radius ):

2 return graph.breadth_first_search(vertex , distance=radius)

3

4 @print_timing

5 def ball_decomposition(graph , radius ):

6 print ’Building balls’

7 ball_cardinalities = dict()

8 for v in graph.vertices ():

9 ball_cardinalities[v] = len(list(get_ball(graph ,v,radius )))

10 print ’Sorting vertices ’

11 # this sorting is to break ties in favor

12 # of the node with the highest ID

13 vertices = sorted(graph.vertices(), reverse=True)

14 vertices = sorted( vertices ,

15 key=lambda x: ball_cardinalities[x],

16 reverse=True)

17 print ’Coloring graph’

18 for v in vertices:

19 if graph.get_vertex(v) == None:

20 graph.set_vertex(v, v)

21 for u in get_ball(graph , v, radius ):

22 if graph.get_vertex(u) == None:

23 graph.set_vertex(u, v)

24 print ’Shrinking graph ’

25 return shrink_graph(graph), ball_cardinalities

Finally the ball decomposition implementation is given in Listing 3.
First, using the subroutine get ball, we populate a dictionary, where
the key is the vertex ID and the value is the cardinality of its associ-
ated ball. Then the vertices are sorted in decreasing ball cardinality
order, using the values stored in the dictionary. Then the nodes are
colored using the same procedure of the star decomposition, with the
only difference that a node that become center colors all the nodes
within its ball. At the end of the coloring phase the quotient graph is
built using the shrink graph function.

All these functions are compiled to C code by Sage at load time. In
this way they are much faster than standard, interpreted python. This
enabled us to leverage the expressiveness and ease of use of Python
without sacrificing too much performance.

For the bigger datasets it was impossible to compute the diameter
exactly using Sage, due to software limitations. In these cases we
resorted to the use of the WebGraph software [BV03]3. This software
implements the HyperANF algorithm described in [BRV11], enabling
us to deal with large graphs on a single machine.

3 http://webgraph.di.unimi.it/
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b.2 implementation of parallel algorithms

The parallel algorithms described in this thesis have been implemented
using the Spark framework4 [ZCF+

10]. We choose this framework
over the more popular Hadoop for the following reasons:

• It is explicitly tailored for iterative applications, like many algo-
rithms in this thesis. In fact, to support algorithms that work
repeatedly on the same dataset, it caches it in the distributed
memory, instead of dumping it to disk every time.

• It’s written in Scala. Being MapReduce a paradigm with a func-
tional flavor, a functional language is better suited to develop
MapReduce applications than an Object Oriented language like
Java. In particular Scala’s support for anonymous functions
(also called closures or lambda functions) and higher order func-
tions makes writing MapReduce programs considerably more
concise and rapid.

• Spark programs can be easily set up to run on a single multi-
core machine, like the Power7 on which the experiments were
performed.

The core abstraction for a dataset in Spark is the RDD, that stands
for Resilent Distributed Dataset. This object represents a dataset par-
titioned across all the nodes in the cluster. If multiple operations
have to be performed on the same dataset, it is cached in memory,
avoiding expensive writes and reads from the distributed filesystem.
To provide fault tolerance in absence of a disk backup of the data
the RDD stores some additional information: each partition stores the
sequence of operations that were performed to compute it. If the
machine that holds a partition fails, the framework is able to recom-
pute only that partition on another machine, starting from the initial
data. In some situations it may be preferable to have a copy of the
dataset on disk anyway. In this case Spark provides a way to dump
the dataset on the distributed filesystem. For further details on the
implementation of RDDs and fault tolerance, we refer the reader to
[ZCF+

10].
Our implementation of the algorithms described in this thesis is

available as free software under the GPL-3 license on Github5.
In our software, a graph is represented as a RDD[(NodeId, Neighbourhood)],

i.e. a distributed dataset of NodeId and Neighbourhood pairs. NodeId
is a type alias for Int, Scala’s 32 bit integer data type. Neighbourhood
is a type alias for Array[NodeId]. The use of type aliases makes the
software more readable and maintainable. In fact if we want to switch

4 http://spark.incubator.apache.org/

5 https://github.com/Cecca/spark-graph
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to 64 bit node IDs, to handle larger graphs, we only need to change
the NodeId’s definition.

Before describing the algorithm implementation, we describe a cou-
ple of helper traits. Traits in Scala can be thought as an hybrid be-
tween an interface (a class can implement multiple traits) and an ab-
stract class (a trait can have implementation of its methods).

b.2.1 The BallComputer trait

First, we will look at the BallComputer trait, in Listing 4. This trait
provides a computeBalls function that takes as input a graph and a
radius and returns an RDD of (NodeId, Ball) pairs. Ball is a type
synonym for Array[NodeId]. This function is the implementation
of algorithm 12. The map function used is sendBalls that takes a
NodeId and a pair (Neighbourhood, Ball) and outputs a set of pairs
(NodeId, Ball), where the node IDs are taken from the neighbour-
hood and the ball is the one in input to the function. The reduce
function is merge, that takes two balls and performs a set union on
them.

b.2.2 The ArcRelabeler trait

The second trait we look a is ArcRelabeler. This trait provides the
relabelArcs function, that is used to shrink the graph. The idea is
to replace each node ID with the color assigned to that node. In this
way we automatically have the shrank graph. The first step is to trans-
form the dataset from adjacency list format to edge list format: each
record of the dataset is a single edge, encoded as a pair (sourceId,

destinationId). This transformation is performed at line 18. Then
we cogroup, for two times, this edges dataset with the color dataset,
in order to replace the source and destination IDs with their respec-
tive colors. This is accomplished by lines 24 through 33. Finally the
graph is reverted back to its original adjacency list representation on
line 36.

b.2.3 The BallDecomposition implementation

Now we are ready to describe the implementation of the entire ball
decomposition algorithm. First of all, let’s take a look at the algorithm
skeleton:

183 def ballDecomposition( graph: RDD[(NodeId , Neighbourhood )],

184 radius: Int) = {

185

186 val balls = computeBalls(graph , radius)

187 val colors = colorGraph(balls)

188 val relabeled = relabelArcs(graph , colors)

189 val numNodes = relabeled.count ()

190 logger info ("Quotient cardinality: {}", numNodes)
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Listing 4: The BallComputer trait. Classes inheriting from this trait
can compute balls of radius r, given a graph represented as
an RDD of (NodeId, Neighbourhood) pairs.

1 package it.unipd.dei.graph.decompositions

2

3 import it.unipd.dei.graph._

4 import spark.RDD

5 import spark.SparkContext._

6

7 /**

8 * Trait for classes that can compute balls

9 */

10 trait BallComputer {

11

12 // -------------------------------------------------------------

13 // Map and reduce functions

14

15 def sendBalls(data: (NodeId , (Neighbourhood , Ball )))

16 : TraversableOnce [(NodeId , Ball)] = data match {

17 case (nodeId , (neigh , ball)) =>

18 neigh.map((_,ball)) :+ (nodeId , ball)

19 }

20

21 def merge(ballA: Ball , ballB: Ball) =

22 (ballA.distinct ++ ballB.distinct ). distinct

23

24 // -------------------------------------------------------------

25 // Function on RDDs

26

27 def computeBalls(graph: RDD[(NodeId ,Neighbourhood )], radius: Int)

28 : RDD[(NodeId , Ball)] = {

29

30 var balls = graph.map(data => data) // simply copy the graph

31

32 if ( radius == 1 ) {

33 balls = balls.map { case (nodeId , neigh) =>

34 (nodeId , neigh :+ nodeId)

35 }

36 } else {

37 for(i <- 1 until radius) {

38 val augmentedGraph = graph.join(balls)

39 balls = augmentedGraph.flatMap(sendBalls)

40 .reduceByKey(merge)

41 }

42 }

43

44 return balls

45 }

46

47

48 }

84



B.2 implementation of parallel algorithms

Listing 5: The ArcRelabeler trait. Classes inheriting from this trait
can relabel the nodes of a graph given the RDD of the colors
associated to each node.

1 package it.unipd.dei.graph.decompositions

2

3 import spark.RDD

4 import spark.SparkContext._

5 import it.unipd.dei.graph._

6

7 /**

8 * This trait adds the capability to relabel arcs.

9 *

10 * An arc is relabeled by changing the IDs of its

11 * endpoints with their respective colors.

12 */

13 trait ArcRelabeler {

14 def relabelArcs( graph: RDD[(NodeId ,Neighbourhood )],

15 colors: RDD[(NodeId , Color )])

16 : RDD[(NodeId ,Neighbourhood )] = {

17

18 var edges: RDD[(NodeId ,NodeId )] =

19 graph.flatMap { case (src , neighs) =>

20 neighs map { (src ,_) }

21 }

22

23 // replace sources with their color

24 edges = edges.join(colors)

25 .map{ case (src , (dst , srcColor )) =>

26 (dst , srcColor)

27 }

28

29 // replace destinations with their colors

30 edges = edges.join(colors)

31 .map{ case (dst , (srcColor , dstColor )) =>

32 (srcColor , dstColor)

33 }

34

35 // now revert to an adjacency list representation

36 edges.groupByKey ().map { case (node , neighs) =>

37 (node , neighs.distinct.toArray)

38 }

39 }

40 }
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191 relabeled

192 }

First of all the balls are computed. Then the dataset of the balls is
used to compute colors. Finally the graph is relabeled using the com-
puted colors. The functions computeBalls and relabelArcs come
from the traits we described in previous sections.

The colorGraph function looks like the following
150 def colorGraph( balls: RDD[(NodeId , Ball)] )

151 : RDD[(NodeId , Color )] = {

152

153 var taggedGraph: TaggedGraph =

154 balls.map { case (node ,ball) =>

155 (node , (Left(Uncolored), ball))

156 }

157

158 var uncolored = countUncolored(taggedGraph)

159 var iter = 0

160

161 while (uncolored > 0) {

162 logger debug ("Uncolored " + uncolored)

163

164 val rawVotes = taggedGraph.flatMap(vote)

165 val votes = rawVotes.groupByKey ()

166

167 taggedGraph = taggedGraph.leftOuterJoin(votes)

168 .map(markCandidate)

169

170 val newColors = taggedGraph.flatMap(colorDominated)

171 .reduceByKey(max)

172 taggedGraph = taggedGraph.leftOuterJoin(newColors)

173 .map(applyColors)

174

175 uncolored = countUncolored(taggedGraph)

176 iter += 1

177 }

178 logger info ("Number of iterations: {}", iter)

179

180 taggedGraph.map(extractColor)

181 }

The TaggedGraph data type is a graph representation that , along
with node ID and ball information, contains information about the
color of a node. Colors are represented using Scala data type Either.
This data type represents entities that can take values from two sets
of values. The type constructors are:

• Right: we use this constructor to indicate that the node is al-
ready colored and to hold the color

• Left: we use this constructor to indicate that the node is not yet
colored. The information carried by a Left value is the status of
the node: it can be simply Uncolored or it can be a Candidate,
meaning that it will become the center of a ball.

This function is an implementation of algorithm 13. Iteratively,
while there are uncolored nodes, the function first computes votes
(lines 164 and 165). Then candidates are marked (line 167) and the
new colors are computed (line 170) and applied to nodes (line 172).
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colorGraph uses several helper functions. The first one is the vote

function:
75 def vote(data: (NodeId , NodeTag ))

76 : TraversableOnce [(NodeId , Vote )]= data match {

77 case (node , (Right(_), ball)) => {

78 val card = ball.size

79 ball map { (_, (true , card)) }

80 }

81 case (node , (Left(Uncolored), ball)) => {

82 val card = ball.size

83 ball map { (_, (false , card)) }

84 }

85 case (_, (Left(Candidate), _)) =>

86 throw new IllegalArgumentException(

87 "Candidates can’t express a vote")

88 }

This function takes a tagged node and, if it is Uncolored it sends a
negative vote to all the nodes in the ball. Conversely, if the node is
already colored, it sends a positive vote to all its neighbours.

One a node has received all the votes, the markCandidates function
marks the nodes that can become node centers:

90 def markCandidate( data: ( NodeId ,

91 ( NodeTag ,

92 Option[Seq[(Boolean , Cardinality )]])))

93 : (NodeId , NodeTag) = data match {

94 case (node , ((color@Right(_), ball), _)) => (node , (color , ball))

95 case (node , ((Left(status), ball), Some(votes ))) => {

96 val card = ball.size

97 val validVotes =

98 votes. filter { case (v,c) =>

99 c > card

100 }.map { case (v,c) => v }

101 val vote = (true +: validVotes) reduce { _ && _ }

102 if (vote)

103 (node , (Left(Candidate), ball))

104 else

105 (node , (Left(status), ball))

106 }

107 case (node , (( status@Left(_), ball), None)) =>

108 (node , (status , ball))

109 }

This function marks as a Candidate a node that is not already col-
ored and that has received all positive votes from nodes whose ball
cardinality is higher than his.

Once the candidates have been marked, the colorDominated func-
tion propagates their color to all the nodes within their balls.

111 def colorDominated(data: (NodeId , NodeTag ))

112 : TraversableOnce [(NodeId ,(Color , Cardinality ))] = data match {

113 case (node , (Left(Candidate), ball)) => {

114 val card = ball.size

115 ball map { (_,(node , card)) }

116 }

117 case _ => Seq()

118 }

Then a reduce operation is performed for each key, assigning to
each node the color with the maximum associated cardinality and
by breaking ties by ID.
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Finally the newly created colors are assigned to their nodes, using
the function applyColors

120 def applyColors(data: (NodeId , (NodeTag , Option [(Color ,Cardinality )])))

121 : (NodeId , NodeTag) = data match {

122 case (node , ((status , ball), maybeNewColor )) =>

123 status match {

124 case Right(color) => (node , (Right(color), ball))

125 case _ =>

126 maybeNewColor map { case (color ,_) =>

127 (node , (Right(color), ball))

128 } getOrElse {

129 (node , (status , ball))

130 }

131 }

132 }

This function assigns the color to a node if this node is not already
colored and if the node actually received at least a color during the
current iteration.

b.2.4 Compiling the application

The software makes use of the sbt build tool to compile code and
manage dependencies on third party libraries. In order to build the
software, only the following steps are required

1 git clone https :// github.com/Cecca/spark -graph.git

2 cd spark -graph

3 sbt/sbt assembly

The last step fetches all the dependencies, compiles the software, runs
all tests and packages all the classes in a standalone, runnable jar file.

b.2.5 Running the application

Once the application has been packaged with sbt/sbt assembly, the
program help can be obtained using the following command

1 bin/spark -graph --help

The tool is organized in subcommands, each corresponding to an
algorithm

• ball-dec runs the ball decomposition

• rnd-ball-dec-simple runs the randomized version of the ball
decomposition, as described in section 6.3.2.

• hyper-anf runs the parallel version of the HyperANF, as de-
scribed in section 3.3.4.

All these subcommands accept a set of common options:

--master to set the Spark master node. For instance, to run the ap-
plication locally using 64 cores, use --master local[64]. Fur-
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ther details on Spark clusters can be found in the Spark docu-
mentation6

--input the input graph dataset

--output the output graph dataset

Finally, the ball decomposition algorithm accepts the --radius op-
tion to specify the radius of the balls in the graph. In addition, the
randomized ball decomposition algorithm accepts a --probabiliy

option to set the probability that a node becomes a ball center.

6 http://spark.incubator.apache.org/docs/latest/
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