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Chapter 1

Preface: The Physics of Living
Systems

Understanding a living system is a formidable many-body problem. One has an inter-
acting system, made up of different elements (species, neurons, genes...) with imperfectly
known interactions, operating in a wide range of spatial and temporal scales. Although such
great complexity, the large volume of recently available data made evident that, despite
their diversity, living systems exhibit characteristic patterns and regularities, that can be
found repeated from microscopic to global scales. For this reason, a considerable part of
the physics community has shifted their attention to the study of animate matter with the
aim of unraveling the interactions among their constituent elements and the mechanisms
responsible of such emergent behavior [57].

Very often, the observed phenomenology in biological systems exhibits similar patterns of
other “well-studied” physical systems, and scientist have tried to understand the connection
behind, using a combination of approaches inspired by, for instance, statistical mechanics
[53], stochastic processes [4] and network analysis [3, 5].

A key attribute of a living organism is its ability to transform its environment, and, in
spite of the variety of climate and habitat conditions, we can find robust trends. One of
such characteristic patterns corresponds to power-law distributed statistics [17]. Power laws
are ubiquitous in living systems, although they span 21 orders of magnitude in mass, with
examples ranging from gene and protein networks [59] to cell growth at individual level, and
from bacterial clustering [58] to flock dynamics [58] at community level.

One of the lessons taken from statistical mechanics is that power-laws are the fingerprint
of criticality at the edge of a continuous phase transition [62], which occurs by a fine tuning
of external conditions such as temperature, pressure, chemical potential, magnetic field, etc..
For this reason, the observed phenomenology has lead to conjecture that living systems might
be poised at the vicinity of a critical point [2], and it has been argued that this provides
robustness and adaptability to best cope with ever-changing environments [2, 52].

Living systems also exhibit long-range correlations between their constituents. For ex-
ample, in bird flocks, its can be observed that every individual movement is correlated with
the others, and that every change has a direct effect on the entire community [60]. Anyone
observing the evolution of a flock of starlings [60], a school of fish [17] or a swarm of insects
[61] can be fascinated by the synchronization and cohesion among thousands of individuals
moving ’in unison’.

In some cases, such behavior can be observed when individuals try to escape from a
particular danger, as for instance from a predator, and the group appears to move as macro-
scopic organism with life and intelligence, as an emergent collective entity. This is the idea
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8 CHAPTER 1. PREFACE: THE PHYSICS OF LIVING SYSTEMS

of the “more is different” [57]: a collection of individuals generates a collective behaviour
that can be very different from that of the individual itself, and it can be rationalized as
the result of simple (individual or local) rules. In the case of bird flocks, every individual
interacts with its neighbors trying to align its direction of motion without precise knowledge
of the global structure of the entire group [58]. This tendency is propagated by generating
a collective coordination without centralized control, i.e. without a leader. Decisions within
group such as a turn or a landing are made through an amplification of a local one. Such
decentralized coordination is known as self-organization and is widespread in the animal
kingdom [58]. Birds, fish and insects give rise to extraordinary developments mainly by their
ability to move freely in three dimensions, but there are also numerous examples of terrestrial
animals, which move in two dimensions, such as zebras and buffalo. Self-organized collective
behavior is also widespread in humans, as occur with the phenomenon of overcrowding –
in which a large numbers of people must be evacuated from a confined region (e.g., after a
concert or a football game)–, pedestrian traffic and automotive, or the applause at the end
of a show.

Physicists, economists, and biologists have developed individual-based models, i.e. that
specify the behaviour of each individual with a set of dynamical rules. Formally, each
individual is represented by an equation describing the dynamics on the basis of interactions
with peers according to some simple rules. From their analytical and numerical study we
have learn that from local and simple rules one can get a complex collective behaviour, thus
providing a qualitative evidence of one of the fundamental concepts of the theory of self-
organization. Quantitative aspects depend on the details of the model, by the way in which
the rules are implemented and the value of the various parameters (e.g. magnitude of the
interaction zone, importance of the neighbors according to their distance, etc.).

One important case of study is the brain: analyzing the properties properties of neuronal
networks, many power law distributions emerge [2]. In particular, the activity of the neuronal
networks is examined through what physicists call “neuronal avalanches”, which represent
the neuronal activity in a time interval and give informations about the quantity of neurons
activated in that time period.

Neuroscience is a scientific branch that studies the brain and also tries to understand the
behavior of neurons.

Reproducing neuronal activity is a hard task, both from the point of view of modeling
and simulation: the brain is a perfect example of a many-body system with interactions
between the constituents. Simulating such type of system is complicated and sometimes give
an analytical prediction is a great challenge.

In this master’s thesis we analyze the collective behavior in neuronal systems: neural
activity exhibits power law statistics and, recently, physicists hypothesized that the brain
may be posed at a critical state. The goal of this thesis is to provide an overview of recent
works on neuronal networks and investigate if they could really be poised at criticality,
possibly giving some contributions to this scope. In particular, we study a neuronal model
similar to the one described by Johnatan Touboul and Alain Destexhe [4], with which they
demonstrate that a neuronal network can exhibit power law statistics even if it is not poised
at a critical state. The aim of this work is to search an answer to the following question:
“are living systems poised at a critical state?”.

First, we will study a neuronal network where neurons are completely uncorrelated,
secondly we will study a network with correlated neurons. We will see how these correlations
are important in a network to obtain a power law statistics.

This model allows us to study the statistical properties of the neuronal activity: in partic-
ular its duration and the quantity of neurons activated in a determined time interval. Finally,
we search some clues of criticality following the method of “counting states” described by
Thierry Mora et Al. [53].



Chapter 2

Criticality

What is criticality in physics? What do we mean when we refer to critical phenomena?
It is useful to introduce formally the concept of criticality –to which we referred in the first
chapter– in the framework of statistical mechanics.

2.1 Criticality in Physics

We now see a brief presentation of some models that can undergo a continuous phase
transitions (i.e. that have a critical point) and that will be useful latter in our study of
biological systems.

2.1.1 The Unidimensional Ising Model

We now consider the one-dimensional Ising model [62] (at first neighbours), consisting of
a linear pattern of N nodes, and then with N spins. Suppose that the chain is “closed”, i.e.
is constituted by N + 1 spin with sN+1 = s1; the Hamiltonian is:

H({s}) = −
N∑
i=1

Jsisi+1 −
N∑
i=1

hisi (2.1)

Let’s just consider the case of uniform chain and field (Ji = J and hi = h) and rewrite
Eq.(2.1) as:

H({s}) = −
N∑
i=1

[
Jisisi+1 +

1
2
h(si + si+1)

]
(2.2)

With the method of “transfer matrix”, we observe that the partition function is

Z(T, h,N) =
∑
s1=±1

· · ·
∑

sN=±1

e−βH({s}) (2.3)

It can be written, using the condition of closing of the chain, such as:

Z(T, h,N) =
∑
s1=±1

· · ·
∑

sN=±1

Ts1s2Ts2s3 . . . TsNs1 (2.4)

where we have defined: a ≡ βJ and b ≡ βh and

Tsisi+1 = exp(asisi+1 +
b

2
(si + si+1)) i = 1, . . . , N (2.5)

9



10 CHAPTER 2. CRITICALITY

The numbers Tsi+1 (for si = ±1, si+1 = ±1) can be seen as elements of the 2× 2 matrix:

T =
(
T+1+1 T+1−1

T−1+1 T−1−1

)
=
(
ea+b e−a

e−a ea−b

)
(2.6)

The expression Eq.(2.4) is the sum of the diagonal elements of the matrix T N :

Z = Tr
[
T N
]

(2.7)

We observe that T is real and symmetric. The eigenvalues of this matrix are

λ± = ea
[
cosh b±

√
sinh2 b+ e−4a

]
(2.8)

It is evident that

λ+ > 0 λ− ≥ 0 (2.9)

and then in general it is proved that
λ+ > λ− (2.10)

The partition function is then:
Z = λN+ + λN− (2.11)

We limit ourselves to the region T > 0. The average value of a spin can be written as:

〈si〉 =
1
Z

N∑
i=1

sie
−βH({s}) =

1
β

1
Z

∂Z

∂hi
(2.12)

The first important result is the mean magnetization of the system:

〈s〉i =
sinh b+ sinh b cosh b√

sinh2 b+e−4a

cosh b±
√

sinh2 b+ e−4a
(2.13)

For a uniform chain M = N 〈s〉1. Consider then the ”magnetization”, that is the “magnetic
moment to spin”, in the thermodynamic limit N →∞ we obtain

m(T, h) = lim
N(Ω)→∞

M

N
= lim
N(Ω)→∞

〈s1〉 (2.14)

Consider an Ising model with any size, with uniform interaction (nearest neighbour), and
with non-uniform field. The Hamiltonian becomes:

H({s}) = −J
2

N∑
i 6=j=1

sisj −
N∑
i=1

hisi (2.15)

We call correlation functions the mean values 〈sisj〉. The functions 〈sisj〉 can be ex-
pressed by a formula analogous to

〈sisj〉 =
1
β2

1
Z

∂2Z

∂hi∂hj
(2.16)

For J = 0, the correlation functions assume a particular form

〈sisj〉 = 〈si〉 〈sj〉 i 6= j, J = 0 (2.17)
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For J = 0 the spins are ”independent” or “uncorrelated”. Consider then correlation
functions ”related” Gij , defined as:

Gij = 〈sisj〉 − 〈si〉 〈sj〉 (2.18)

The Gij are related to the local susceptibility χij :

χij =
∂

∂hj
〈si〉 =

1
β

∂

∂hj

(
1
Z

∂Z

∂hi

)
(2.19)

χij represents the variation of the mean value 〈si〉 as the result of a variation of the field at
the point j. In the absence of interaction χij = 0. The relationship between Gij and χij is

Gij = kBTχij (2.20)

Experimentally has been found that, for a system of ferromagnetic uniform, there are a
”critical temperature” Tc, and a length, ξ = ξ(T ), said correlation length, such that in the
critical region:

G(r) ' r−αe−r/ξ (2.21)

where α is a positive number. ξ characterizes the rapidity with which Grij tends to zero,
i.e. the rapidity with which 〈sisj〉 tends to 〈si〉 〈sj〉.
Of great importance is the dependence of ξ by T : experimentally, in the critical point,
(T, h) = (Tc, 0),

G(r) ∝ r−α. (2.22)

Then, for T = Tc we have ξ =∞.
In the same model, the finite size free energy is defined as:

FΩ(T, {hi}, {Jij}, . . . ) = −kBT ln(Tre−βHΩ) (2.23)

In the thermodynamic limit the free energy per site is:

fb(T, {hi}, {Jij}, . . . ) = lim
N(Ω)→∞

1
N(Ω)

FΩ(T, {hi}, {Jij}, . . . ) (2.24)

In the one-dimensional case, the free energy in the thermodynamic limit is

fb(T, {hi}, {Jij}, . . . ) = −kBT lim
N→∞

1
N

ln(λN+ + λN− ) ' −kBT lnλ+ (2.25)

The result for the correlation lenght is

ξ−1 = ln
λ+

λ−
(2.26)

What is essential is to compute the eigenvalues and then to obtain the precise value of these
quantities. For example,

ξ−1
H=0 =

1
ln(coth(a))

(2.27)

In the limit T → 0 (a→∞), as

coth(a) ' 1 + 2e−2a (2.28)

which provides
ξ ' eJ/kBT T → 0 (2.29)

for T → 0 the correlation length diverges exponentially (essential singularity in zero).
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2.2 Why is criticality so special?

Figure 2.1: Three snapshots of the spin configurations at one moment in time for three temper-
atures (subcritical, critical and supercritical) from numerical simulations of the two-
dimensional Ising model.[51]

In Fig.2.1 are represented three snapshots of the spin configurations at different temper-
atures.
Let us recall what is special about the critical state considering the case of an iron mag-
net. When it is heated, the magnetization decreases until it reaches zero beyond a critical
temperature Tc . Individual spin orientations are, at high temperatures, changing continu-
ously in small groups. As a consequence, the mean magnetization, expressing the collective
behaviour, vanishes. At low temperature the system will be very ordered, exhibiting large
domains of equally oriented spins, a state with negligible variability over time. In between
these two homogeneous states, at the critical temperature Tc , the system exhibits very
different properties in both time and space. The temporal fluctuations of the magnetiza-
tion are known to be scale invariant. Similarly, the spatial distribution of correlated spins
shows long-range (power-law) correlations. It is only close enough to Tc that large correlated
structures (up to the size of the system) emerge, even though interactions are with nearest
elements.
In addition, the largest fluctuations in the magnetization are observed at Tc . At this point
the system is at the highest susceptibility, a single spin perturbation has a small but finite
chance to start an avalanche that reshapes the entire system state, something unthinkable
in a non-critical state.

Many of these dynamical properties, once properly translated and adapted to neuronal
terms, exhibit striking analogies to brain dynamics. For instance, neuromodulators, which
are known to alter brain states acting globally over non-specific targets, could be thought of
as control parameters, as is temperature in this case. We will refer to this issue later.

2.2.1 Continuous Phase Transitions and Critical Exponents

The physics of continuous phase transitions is studied under the framework of statistical
mechanics. A phase transition involves a variation of the physical properties of the system
such as its density, electrical conductivity, magnetization, the crystalline structure and so
on. In the presence of a continuous phase transition there will be a singularity of the free
energy and / or its derivatives.

In a nutshell, to characterize a phase transition we refer to a physical quantity that
represents, with some exceptions, the major qualitative difference between one phase and
another. This concept, introduced by Landau in 1937, is called order parameter. Each phase
transition is characterized by an order parameter. The order parameter is a physical variable
that gives a measure of the level of order in a system. In most cases it describes many of the
rearrangements of the structure that take place due to the phase transition, and it allows
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to distinguish between the two phases involved in the transition. It can be a size scalar, a
vector, or in some cases, a magnitude tensor.

Critical exponents are defined at the critical point of the continuous phase transition.
We should first define the reduced temperature t of the system in such a way as to have a
dimensionless quantity that takes the form

t =
T − Tc
Tc

(2.30)

In particular, t is a measure of the deviation from the critical temperature Tc. If t → 0 it
means that the system is at a temperature very close to the critical temperature. Let suppose
that we have a thermodynamic function F (t) continuous and positive for sufficiently small
values of t. To ensure the positivity of the reduced temperature t take the amount in module.
It is assumed that the following limit exists and is finite:

λ = lim
t→0

lnF (t)
ln |t|

. (2.31)

λ is called the critical exponent of a thermodynamic function and features critical transitions.
In any critical transition each thermodynamic function is characterized by a well-determined
critical value of the exponent. It is easy to see that

F (t) ∼ |t|λ (2.32)

In correspondence of the critical point where we have that t→ 0 the thermodynamic function
presents alternatively two behaviors: if λ < 0 it diverges, if λ > 0 it resets. The divergence is
both right and left over at the critical point. The critical value of the exponent then expresses
the degree of departure or the instance seeking annulment of the thermodynamic function.
Examples of divergent behavior at the critical point can be the magnetic susceptibility at
constant temperature χT , the specific heat calculated to constant volume for a fluid (CV )
and constant magnetic field for a magnetic system (CH).

The critical exponents that characterize the behavior of the different functions in corre-
spondence of the thermodynamic critical point are typically different and are indicated with
the greek letters of the alphabet α, β, γ, δ and so on (see Table 2.1).

One of the most important thermodynamic functions is the susceptibility, which diverges

Figure 2.2: Free energy density f as function of order parameter for different T for isotropic-nematic
transition. The transition is first order. Note the limits of metastability for supercooling
(T ∗) and superheating (T ∗∗). [8]
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Quantity Behavior Region Exponent
Ch |T − Tc|−α h = 0 α = 0(discont.)
χr |T − Tc|−γ h = 0 γ = 1
m |T − Tc|β h = 0 β = 1/2

h1/δ T = Tc δ = 3
ξ |T − Tc|−ν h = 0 ν = 1/2

Table 2.1: Examples of critical exponents for some quantities for a thermodynamic system in the
Landau Theory (Fig.2.2).

at criticality for large systems. Let us apply a very small magnetic field to the system in the
critical point. A very small magnetic field is not able to magnetize a large coherent cluster,
but with these fractal clusters the picture changes. It affects easily the smallest size clusters,
since they have a nearly paramagnetic behaviour. But this change affects also the next-scale
clusters, and the perturbation climbs the ladder until the whole system changes radically.
Thus, critical systems are very sensitive to small perturbations.

In the case of Landau Theory (Fig.2.2), there exists an analytical function that describes
the behavior of the free energy density of a system posed near a critical point.

This function, called L, is of the following form:

L(η) ∼ a0 + a1η + a2η
2 + a3η

3 + a4η
4 + · · ·+O(ηn) (2.33)

where L is a function of η, a order parameter of the system. In the case of the Ising model,
η is the magnetization and it is scalar. The critical exponents in this model are reported in
Table 2.1.

2.2.2 Universality

Given the definition of critical exponents we have to justify why they are interesting from
a physical point of view. The critical temperature depends strongly on the type of interac-
tions that describe the system in which a phase transition occurs. Instead critical exponents
are universal, they only depend of a few basic parameters. For systems that can be studied
using models with short range interactions, they depend on the dimensionality of the space
and on the symmetry of the order parameter.
This means that the critical exponents of one-dimensional systems are different from those of
two-dimensional and three-dimensional systems, and so on. For example the two-dimensional
Ising model was solved analytically by Onsager for H = 0, β = 1/8, while for the model
of three-dimensional Ising numerical calculations provide exactly β = 0, 33. But they have
the same values of critical exponents at fixed dimensionality of the systems regardless of
the nature of the type of substance being studied. In addition, for a fixed dimensional-
ity, different systems in which the Hamiltonian has the same symmetry with respect the
order parameter have the same critical exponents. The symmetry of the order parameter de-
pends of what type of magnitude are we representing, i.e. if it is a scalar, a vector or a tensor.

We can introduce the concept of universality class, which is a group of systems that
present the same critical exponents. Universality is one of the most important predictions
of the renormalization group, thanks to which the thermodynamic properties of a system
near the critical phase transition expressed by the critical exponents (determinable exactly
by the renormalization group) depend only on a small number of characteristics. The most
important consequence of the universality is the one for which, in order to determine the
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critical exponents of a class of systems (phenomena), we can just consider the simplest
system. This much simpler system does not necessarily have a physical feedback.

2.3 Homogeneous functions of one or more variables

It is seen that when the system approaches a critical point ξ the distance along which
the fluctuations are related becomes comparable to the size of the entire system and the
microscopic effects as space lattice or the size of the fluid particles become irrelevant. We
can expect that in the vicinity of a critical point, if we move a bit from it (for example
by changing slightly the temperature) the free energy does not change in its form but only
its scale. The idea of scaling is the basis of calculation of all the critical exponents. To
understand the scaling is appropriate to introduce the concept of homogeneous function.

Definition 1. Taken A an open set of Rn and α a real number, a function f : A ⊆ Rn → R
is said to be homogeneous of α degree in A if

f(tx) = tαf(x) ∀x ∈ A,∀t > 0 (2.34)

More generally, if
f(tx) = g(t)f(x) ∀x ∈ A,∀t > 0 (2.35)

where g(t) is a general power-law function of degree α.

An example of homogeneous function with α = 2 in R is the parable f(x) = Bx2:

f(tx) = Bt2x2

An homogeneous functions with α = 0 in A = {(x, y, ) ∈ R2 : y 6= 0} is

f(x, y) =
x

y

It can be shown that the function g(t) must be only of the following form:

g(t) = tα

where α is said “degree of homogeneity”.

Proof. Suppose to do a change of scale before in µ and after in t, starting from the equation

f(tx) = g(t)f(x) (2.36)

it follows
f [t(µx)] = g(t)f(µx) = g(t)g(µ)f(x) (2.37)

but also
f [(tµ)x)] = g(tµ)f(x) (2.38)

Suppose now that g(t) is differentiable. Differentiating with respect to the µ is obtained

tg′(tµ) = g(t)g′(µ) (2.39)

We put µ = 1 and define α ≡ g(µ = 1). So we have

tg′(t) = g(t)α (2.40)

Integrating the differential equation and using the properties of the same equation, we obtain

g(t) = tα (2.41)
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The extension to the case of n variables is natural and leads to the definition of an
homogeneous function with n variables:

f(tx̄) = g(t)f(x̄). (2.42)

2.4 High variability: Heavy-Tailed or Scaling Distribu-
tions

Focusing on non-negative random variables X, let F (X) = P [X ≤ x], x ≥ 0, denote the
cumulative distribution function (CDF) of X and F̄ (x) = 1−F (x) the complementary CDF
(CCDF).
A typical feature of commonly-used distribution functions is that their (right) tails decrease
exponentially fast, implying that all moments, including exponentials moments, exist and are
finite. To describe in a mathematically convenient way high variability phenomena, we in-
troduce the class of subexponential distribution functions. Following Goldie and Kluppelberg
(1998), we call F (or X) subexponential if

lim
x→∞

F̄ (x)
e−εx

→∞ ∀ε > 0

that is, the (right) tail of a subexponential distribution decays more slowly than any expo-
nential, implying that all exponential moments of a subexponential are infinite.
Well-known examples of subexponential distributions include the Lognormal, Weibull, Pareto
of the first or second kind, and stable laws, while Gaussian, exponential and Gamma are
examples that are not in the class of subexponential.
To distinguish between subexponential distributions we consider the subclass of these kind
of distributions consisting of the heavy-tailed or scaling distributions. A subexponential dis-
tribution function F (x) or random variable X is called heavy-tailed or scaling if for some
α ∈ (0, 2)

P [X > x] ∼ cx−α as x→∞
where c ∈ R+. The parameter α is called tail index, for α ∈ [1, 2) F has infinite variance

but finite mean; for α ∈ (0, 1) F has not only infinite variance, but also infinite mean. In
general, all moments of order β > α are infinite:

< xβ >' c
∫ +∞

x

y−α+β dy =


+∞ if β ≥ α

< +∞ if β < α

Heavy-tailed distributions are called scaling distributions because the sole response to
conditioning is a change in scale; that is, if X is heavy-tailed with index α and x > ω, the
conditional distribution of X given that X > ω satisfies

P [X > x|X > ω] =
P [X > x]
P [X > ω]

' c1x−α

which is identical to the unconditional distribution P [X > x], except for a change in scale.
For example, the non-heavy tailed exponential distribution gives

P (X > x|X > ω) = e−λ(x−ω)

that is, the conditional distribution is also identical to the unconditional, except for a change
of location rather than scale.
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An important feature of scaling distributions that distinguishes them from their commonly-
considered non heavy-tailed counterparts concerns their mean residual lifetime defined as
E(X−x|X > x). For an exponential distribution with constant parameter λ (given x = eλω)

E(X − x|X > x) =
∫ +∞

x

e−λ(x−ω) =
1
λ

In stark constrast for scaling distributions the mean residual lifetime is linearly increasing:

E(X − x|X > x) =
∫ +∞

x

(X − x)x−α ' cx

2.5 Invariance properties

Scaling distributions enjoy a number of invariance properties that characterize them.
Following the presentation of Mandelbrot (1997), we are going to show that these types of
distributions are invariant under transformations as aggregation, mixture, maximization and
marginalization and discuss some practical implications of these properties.

2.5.1 Aggregation

The classical central limit theorem is often cited as the reason for which Gaussian distri-
butions occur in nature.

Theorem 2.5.1. Suppose that (Xn : n ≥ 1) is a sequence of IID random variables with
distribution function F , where F has finite mean m and finite variance σ2. Let Sn = X1 +
. . . Xn, n ≥ 1 denote the nth partial sum. Then, as n→∞,

n−1/2(Sn −mn) ∼ σN(0, 1)

where N(0, 1) is the standard Gaussian distribution having mean 0 and unitary variance.

For a somewhat less-konwn version of the Central Limit Theorem (CLT), we recall that
a random variable U is said to have a stable law (with index α ∈ (0, 2]) if for any n ≥ 2,
there is a real number dn such that

U1 + U2 + . . . Un = n1/αU + dn

where U1, U2, . . . Un are independent copies of U . Stable laws on the real line can be rep-
resented as a four-parameter family Sα(σ, β, µ), with the index α ∈ (0, 2], the scale pa-
rameter σ > 0, the skewness parameter β ∈ [−1,+1] and the location (shift) parameter
µ ∈ (−∞,+∞).
When α ∈ (1, 2) the shift parameter is the mean, but for α ≤ 1, the mean is infinite. While
for α < 2 all stable laws are heavy-tailed, the case α = 2 is special and represents a familiar,
not heavy-tailed distribution: the Gaussian (normal) distribution, S2(σ, 0, µ) = N(µ, 2σ2).

Theorem 2.5.2. Suppose that (Xn : n ≥ 1) is a sequence of non-negative, IID random
variables with scaling distribution function F with α ∈ (1, 2) (implying finite mean m but
infinite variance σ2). Let Sn = X1 + . . . Xn, n ≥ 1 denote the nth partial sum. Then, as
n→∞,

n−1/α(Sn −mn)⇒ Sα(1, β, 0)

Both Gaussian and scaling distributions are invariant under aggregation, as proved by
these theorems. In general terms, classical and non-classical CLTs state that the stable
distributions are the only fixed points of the renormalization group transformations (i.e.
aggregation) and that Gaussian distributions are, as a matter of fact, a very special case.
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2.5.2 Maximizing Choices

Consider n independent random variables denoted X1, X2, . . . Xn and assume that their
distribution functions are scaling distributions with the same index α, but possibly with
different scale coefficients ci > 0; that is,

P (Xi > x) ' cix−α for i ∈ [1, n]

For k ∈ [1, n], define the random variables Mk to be the k-th successive maximum given by

Mk = max(X1, X2, . . . , Xk)

Using that P (Mk ≤ x) =
∏
i∈[1,k] P (Xi ≤ x), it is easy to show that for large x,

P [Mk > x] ' cMk
x−α

where cMk
=
∑
i∈[1,k] ci. Thus, the k-th successive maxima of scaling distributions are also

scaling, with the same tail index α, but different scale coefficients than the individual Xi’s.
Scaling distributions are the only type that are invariant under the transformation of maxi-
mization.

2.5.3 Weighted Mixtures

Consider n independent random variables denoted X1, X2, . . . Xn with scaling distribu-
tion functions Fi, all with the same tail index α but different scale coefficients ci > 0.
Consider now the weighted mixture Wn of the Xi’s and denote with pi the probability that
Wn = Xi. It is easy to show that

P [Wn > x] =
∑

piP [Xi > x] ' cWnx
−α

where cWn
=
∑
pici is the weighted average of the separate scale coefficients ci. The dis-

tribution of the weighted mixture is also scaling. The converse (i.e. Wn is scaling only if
the Xi’s are scaling) holds only to a first approximation. In the limit n → ∞ the invariant
distributions for W are of the form P [W > x] = cx−α, x ≥ 0, which are improper distri-
bution functions because they yield an infinite total probability. However, for all practical
purposes, the Xi’s are typically restricted by some relation of the form 0 < a < x which
results in perfectly well-defined (conditional) distribution functions of the scaling type.

Marginalization

Recall that stable distributions are trivially scaling. The multivariate stable distributions
can be characterized as being those for which every linear combination of the coordinates
has a (scalar) stable distribution. We call this transformation marginalization.

2.6 Widom scaling theory

It was seen previously that when there is a phase transition in a system, a part of free
energy behaves so that some response functions of the system have a singularity often in the
form of divergences. If we assume that the non-analytical free energy does not change shape
but only scale, then it is possible to generalize the inequalities between critical exponents
found in thermodynamics with real relationships that agree with experiments.
Letting t = (T − Tc)/Tc and h = (H −Hc)/(kBT ), suppose to write the free energy density
in two parts

f(T,H) = fr(T,H) + fs(t, h) (2.43)
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where fr(T,H) is the regular part (does not change significantly as we approach the point
critic) and fs(t, h) is the singular part that contains the singular behavior of the system the
vicinity of the critical point, that is, for (t, h) ∼ (0, 0). The hypothesis of static scaling asserts
that the singular part of the free energy fs(t, h) is a homogeneous generalized function:

fs(λp1t, λp2h) = λfs(t, h) ∀λ ∈ R (2.44)

The assumption that the Gibbs free energy (for example) is a homogeneous generalized
function implies that all other thermodynamic potentials are homogeneous generalized func-
tions. With an appropriate choice of parameter λ, one of the arguments of the function can
be removed. For example in our case if we choose

λ = h−1/p2 (2.45)

we would have

fs(t, h) = h1/p2fs

(
t

hp1/p2
, 1
)

(2.46)

In literature the relationship p2/p1 ≡ ∆ is said gap exponent.

Now let’s see what are the implications of Eq. (2.44) on the performance of the ther-
modynamic quantities near the critical point and, ultimately, on relations between critical
exponents. Let’s start with the magnetization. Since the magnetization is the first deriva-
tive of the free energy with respect to the magnetic field, we derive both sides of Eq. (2.44)
with respect to h (would than H but the factor β is eliminated being common to the two
members). This provides

λp2
∂fs(λp1t, λp2h)

∂h
= λ

∂fs(t, h)
∂h

(2.47)

and so
λp2M(λp1t, λp2h) = λM(t, h) (2.48)

There are two critical exponents β and δ associated with the behavior of the magnetization
in the vicinity the critical point. Consider first the exponent β that corresponds to put h = 0
and t→ 0−. For h = 0 Eq. (2.48) becomes

M(t, 0) = λp2−1M(λp1t, 0) (2.49)

Since it is true for every value of the parameter λ, we eliminate the dependence on the second
function putting λ = t−1/p1 . Then

M(t, 0) = (−t)(1−p2)/p1M(−1, 0). (2.50)

Moreover, as t→ 0− we have M ∼ (−t)β , we get

β =
1− p2

p1
(2.51)

The exponent δ is had for T = Tc (t = 0) and h→ 0. We have

M(0, h) = h(1−p2)/p2M(0, 1). (2.52)

Moreover h→ 0 M ∼ h1/δ and comparing the two reports is obtained

δ =
p2

1− p2
(2.53)

We also see that the gap is the ratio exponent

∆ =
p2

p1
= βδ (2.54)
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2.7 Linear Relation between Energy and Entropy

The fundamental variables of thermodynamics are energy, temperature, and entropy. For
the states taken on by a network of neurons, energy and temperature are meaningless, so it is
difficult to see how we can construct a thermodynamics for these systems. But in statistical
mechanics, all thermodynamic quantities are derivable from the Boltzmann distribution, the
probability that the system will be found in any particular state.
We start by recalling that, for a system in thermal equilibrium at temperature T , the
probability of finding the system in state s is given by

Ps =
1
Z
e−Es/kBT (2.55)

where Es is the energy of the state, and Boltzmann’s constant kB converts between conven-
tional units of temperature and energy. The partition function Z serves to normalize the
distribution, which requires

Z =
∑
s

e−Es/kBT (2.56)

but in fact this normalization constant encodes many physical quantities.

The logarithm of the partition function is proportional to the free energy of the system,
the derivative of the free energy with respect to the volume occupied by the system is the
pressure, the derivative with respect to the strength of an applied magnetic field is the
magnetization, and so on.
Thermodynamics doesn’t make reference to all these details. Which aspects of the underlying
microscopic rules actually matter for predicting the free energy and its derivatives? We can
write the sum over all states as a sum first over states that have the same energy, and then a
sum over energies. We do this by introducing an integral over a delta function into the sum:

Z =
∑
s

e−Es/kBT = Z =
∑
s

e−Es/kBT
[∫

dEδ(E − Es)
]

= (2.57)

=
∫
dEe−Es/kBT

[∑
s

δ(E − Es)

]
(2.58)

where δ(x) is the Dirac delta function.
We see that the way in which the energy depends on each state appears only in the brackets,
a function n(E) that counts how many states have a particular energy.
Instead of counting the number of states that have energy E, we can count the number of
states with energy less than E:

N (E) =
∑
s

θ(E − Es) (2.59)

where the step function is the Heaviside’s Theta and is defined as

θ(x) =


1 x > 0

0 x < 0
(2.60)

But the step function is the integral of the delta function, which means that we can integrate
by parts in Eq.(2.58) to give

Z =
1

kBT

∫
dEe−Es/kBTN (E) (2.61)
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If we think about N variables, each of which can take on only two states, the total number
of states is 2N . More generally, we expect that the number of possible states in a system
with N variables is exponentially large, so it is natural to think not about the number of
states N (E) but about its logarithm,

S(E) = lnN (E) (2.62)

which is called the entropy.
As a technical aside, we can define the entropy either in terms of the number of states with
energy close to E, what we have called n(E) in the main text, or we can use the number of
states with energy less than E, what we have called N (E). In the limit that the number of
degrees of freedom in the system become large, there is no difference in the resulting estimate
of the entropy per degree of freedom, because the number of states is growing exponentially
fast with the energy, so that the vast majority of states with energy less than E also have
energy very close to E.
Using these results, we can define the partition function as a function of the energy and the
entropy:

Z =
1

kBT

∫
dEe[−E/kBT+S(E)] (2.63)

It is then natural to think about the energy per particle ε = E/N , and the entropy per
particle, S(E)/N = s(E). In the limit of large N , we expect s(E) to become a smooth
function. We can also write Z as

Z =
N

kBT

∫
dεe−Nf(ε)/kBT (2.64)

where f(ε) = −kBTs(ε).
We note that f(ε) is the difference between energy and entropy, scaled by the temperature,
and is called free energy.
Whenever we have an integral of the form in Eq.(2.64), at large N we expect that it will be
dominated by values of close to the minimum of f(ε). This minimum ε∗ is the solution to
the equation

df(ε
dε

= 0⇒ 1
kBT

=
ds(ε)
dε

(2.65)

which we can also think of as defining the temperature. Notice that T being positive requires
that the system have ds(ε)/dε > 0, which means there are more states with higher energies.
We can expand f(ε) in the neighborhood of ε∗

f(ε) = f(ε∗)−
kBT

2

(
d2s(ε)
dε2

)
ε∗

(ε− ε∗)2 (2.66)

With the interpretation of ε∗ as the mean energy per particle, we can calculate how this
energy changes when we change the temperature, and we find

dε∗
dT

=
1

kBT 2

[
−
(
d2s(ε)
dε2

)
ε∗

]−1

(2.67)

The change in energy with temperature is called the heat capacity C, and when we normalize
per particle it is referred to as the specific heat.
Combining equations,

〈(δε)2〉 = kBT
2 C

N
(2.68)
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Our discussion assumes that the second derivative of the entropy with respect to the energy
is not zero. If we take all our results at face value, then when d2s/d2ε→ 0, the specific heat
will become infinite, as will the variance of the energy per particle. This is a critical point.

There is much more to be said about the analysis of critical points using the entropy
versus energy. But our concern here is how these ideas connect to systems that are not in
thermal equilibrium, so that temperature and energy are not relevant concepts.
Rather than trying to compute the partition function, we can ask, for any distribution, how
the normalization condition is satisfied. We still imagine that there are states s, built of of
N different variables, as with the patterns of spiking and silence in a network of neurons.
Each state s has a probability Ps , and we must have

1 =
∑
s

Ps (2.69)

Using a thermodynamic approach, we can define

Es = − ln
(
Ps
P0

)
(2.70)

where P0 is the probability of the most likely state.
In the case of interest to us here, we can look at the states taken on by groups of N neurons,
and we can vary N over some range. The function N (E), and hence the entropy S(E), is a
property of a single system with a particular value of N , and to remind us of this fact we
can write SN (E).
It is an experimental question what happens as N become large. But, in many of the
examples we understand—from statistical physics, from information theory, and indeed from
more general examples in probability theory—we find that there is a well defined limiting
behavior at large N , which means that there is a function

s(ε) = lim
N→∞

1
N
SN (E = Nε) (2.71)

We can assign an “energy” to every state of the system, which is just the negative log
probability. It is convenient to normalize so that the most likely state has zero energy. The
“effective temperature” of the system is kBT = 1.
We can count the number of states below a given energy, and the log of this number is an
entropy. If there are N elements (e.g., neurons) in our system, it is natural to ask about the
entropy per element as a function of the energy per element. If this function has a smooth
limit as N becomes large, s(ε), then we can define a thermodynamics for the system.
The large variance in log probability is mathematically equivalent to a diverging specific heat
in the thermodynamic case. This is a signature of a critical point. In equilibrium systems
with interactions that extend only over short distances, correlations typically extend over
some longer but finite distance ξ; at the critical point this correlation diverges, so that there
is no characteristic length scale—all scales between the size of the constituent particles and
the size of the system as a whole are relevant [40].
Not only does the specific heat diverge at the critical point, but so does the susceptibility
to external fields. All of these diverging quantities have a power–law dependence on the
difference between the actual temperature and the critical temperature, and the exponents
of these power–laws are quantitatively universal: many different systems, with different
microscopic constituents, exhibit precisely the same exponents, and in a certain precise
sense these exponents give a complete description of the system in the neighborhood of the
critical point [41][42].



2.7. LINEAR RELATION BETWEEN ENERGY AND ENTROPY 23

In the study of complex, non–equilibrium systems, scale invariance and power–law behaviors
often are taken as signs of criticality, but seldom is it possible to exhibit these behaviors over
the wide range of scales that are the standard in studies of equilibrium critical phenomena,
so one must be cautious. Deterministic dynamical systems also exhibit critical phenomena,
often called bifurcations, where the system’s behavior changes qualitatively in response to
an infinitesimal change in parameters [43]. These phenomena are easiest to understand when
the number of degrees of freedom N is small, but then the sharp bifurcations are rounded
if there is noise in the system; the example of equilibrium statistical mechanics shows how
noisy dynamical systems can recover sharp transitions in the limit of large N.
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Chapter 3

Are Living Systems Poised at
Criticality?

Many of most fascinating phenomena in living organisms emerge from interactions among
many elements: amino acids determine the structure of a single protein, genes determine the
fate of a cell, neurons are involved in shaping our thoughts and memories... In the past
few years, new, larger scale experiments have made possible to develop accurate models of
biological systems directly from real data.
The stationary states of biological systems have a subtle structure, neither “frozen” into a
well ordered crystal, nor chaotic and disordered like a gas. These states are far from equi-
librium, maintained by a constant flow of energy and material through the system. For
example, it was suggested that the brain is in a self-organized critical state, at the edge
between being a nearly dead (frozen state) and being fully epileptic (fully disordered state)
[63].
In the last years physicists have developed different models to understand the collective be-
havior of living systems, with their power-law statistics and long-range correlations. One of
the most relevant framework in our context is the theory of self-organized criticality. [?]

The theory of self-organized criticality [64] has its origin in models of inanimate matter
(sandpiles, earthquakes, etc.), but its has been extended and adapted to encompass biolog-
ical systems through the analysis of simple toy models. As an example, simple models for
the evolution of interacting species can self-organize to a critical state in which periods of
quiescence are interrupted by “avalanches” of mutations, which reminds us of the idea of
punctuated equilibria in evolution [55].

However, several questions still remain open:

• What is the advantage of a living system of being poised at a critical state?

• From a biological point of view, what is the meaning of “being critical”?

• For many systems we know that if we would just pick model parameters at random, we
will not find anything that reproduces biological functions. Thus, biological systems
operate in special regions of the parameter space. What does define the special region
of parameters? And how can we identify the significative order parameters of the
system?

All these questions have not a definitive answer today.

25
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In many cases one can identify criticality in purely thermodynamic measurements, as a
singularity in the heat capacity as a function of temperature, or through the behavior of the
correlation function of fluctuations in some local variables, such as the magnetization in a
magnet. The difficulty in biological systems is that they are not really equilibrium statistical
mechanics problems, so there is no guarantee that we can find some relevant macroscopic
variables, and certainly it is not clear what is the meaning of ”temperature”, while the cor-
relation function can be defined also for a system out of equilibrium.

Now we review some models that support the hypothesis that living systems are poised
at a critical state and other models that are against it. We start now from the arguments in
favor of criticality.

3.1 Pro Criticality

3.1.1 Flocks of Birds

Groups of animals such as schooling fish, swarming insects or flocking birds move with
fascinating coordination. Rather than being dictated by a leader or responding to a common
stimulus, the collective patterns of flock dynamics tend to be self-organized, and arise from
local interactions between individuals, which propagate information through the whole group
[58].

Flocks, schools and swarms are also highly responsive and cohesive in the face of preda-
tory threat. This balance between order and chaos directly points to the idea of criticality.
A recent analysis has framed this idea in precise mathematical terms, culminating in the
first empirical evidence that flock behavior may indeed be critical in the sense of statistical
physics [61].

Figure 3.1: Two dimensional projection of a typical 3D reconstruction of the positions and velocities
of every bird in a flock of 1,246 starlings. Left: the absolute velocities v̄i show a high
degree of order in bird orientation. Right: the velocity fluctuations, ūi = v̄i− 1

N

PN
i=1 v̄i,

are long-ranged, and form only two coherent domains of opposite directions.[2]

Birds interact with their neighbors according to their topological distance (measured in
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units of average bird separation), rather than to their metric distance (measured in units of
length). The distribution of neighbors around an average bird is not uniform: birds tend to
have closer neighbors on their sides than behind or in front of them. There are biological
reasons for this. Birds have lateral vision, and can monitor their lateral neighbors with
better accuracy. In addition, keeping a larger distance with frontal neighbors may be a good
strategy for avoiding collisions. The main assumption is that this heterogeneity is a result of
interactions between individuals, and can be used to estimate the range of these interactions,
defined as the distance at which the neighborhood of an average bird becomes uniform.
How does global order emerge across the whole flock from local interactions? Clearly, if
each bird perfectly mimics its neighbors, then a preferred orientation will propagate without
errors through the flock, which will align along that direction. Alignment with neighbors is
not perfect, and noise could impede the emergence of global order.

Interestingly, a phase transition occurs in simple models of flock dynamics as in the case
of a uniform, fully connected Ising model [60].

Figure 3.2: Velocity fluctuations are scale free. A. The correlation length ξ scales linearly with
the system’s size L, indicating that no other scale than L is present in the system. B.
Correlation function C versus rescaled distance r/ξ . ξ is defined as the radius for which
C = 0. The slope at r = ξ (inset) seems to depend only weakly upon ξ . This suggests
that coherence can in principle be preserved over extremely long ranges.[2]

For this system, near a critical point, correlation functions are given by a universal
function [60],

C(r) =
1
rγ
f(r/ξ) (3.1)

where ξ is the correlation length which diverges as the critical point is approached.
Replacing ξ = αL into Eq.(3.1) and taking L → ∞ yields a power law decay for the corre-
lation function, C(r) = r−γ , characteristic of a critical point.
Flocks form a cohesive mass and long range order may appear as a natural consequence of
this cohesion. To see why long range correlations are in fact surprising, let us contrast flocks
with a well understood case: a solid. As a solid moves, the positions of its atoms evolve
in a highly coordinated and correlated manner. However, the thermal fluctuations of these
positions are only weakly correlated with each other across long distances. By contrast, in
flocks not only birds do fly in the same general direction, but their small variations from
that direction are strongly correlated over the entire extent of the flock. [60]

3.1.2 Emergence of Criticality in Living Systems

Evidence has been mounting that biological systems might operate at the borderline be-
tween order and disorder, i.e., near a critical point.
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Jorge Hidalgo et Al. [52], rationalize this apparently ubiquitous criticality in terms of adap-
tive and evolutionary functional advantages. They provide an analytical framework, which
demonstrates that the optimal response to broadly different changing environments occurs
in systems organizing spontaneously—through adaptation or evolution—to the vicinity of a
critical point.

Their goal of [52] was to exploit general ideas from statistical mechanics and information
theory to construct a quantitative framework showing that self-tuning to criticality is a con-
venient strategy adopted by living systems to effectively cope with the intrinsically complex
external world in an efficient manner, thereby providing an excellent compromise between
accuracy and flexibility. The main result is that criticality is an evolutionary/adaptive sta-

Figure 3.3: Coevolutionary model leads self-consistently to criticality: A community of M living
systems (or agents) evolves according to a genetic algorithm dynamics. Each agent i
(i = 1, . . . ,M) is characterized by a two-parameter (βi

1, β
1
2 ) internal state distribution

Pint(s|βi
1, β

1
2), and the rest of the community acts as the external environment it has

to cope with, i.e., the agents try to “understand” each other. At each simulation step,
two individuals are randomly chosen and their respective relative fitnesses are computed
in terms of the KL divergence from each other’s internal state probability distribution.
One of the two agents is removed from the community with a probability that is smaller
for the fitter agent; the winner produces an offspring, which (except for small varia-
tions/ mutations) inherits its parameters. (Left) These coevolutionary rules drive the
community very close to a unique localized steady state. As shown (Right), this is lo-
calized precisely at the critical point, i.e., where the generalized susceptibility or Fisher
information of the internal state distribution exhibits a sharp peak (as shown by the
contour plots and heat maps). [52]

ble solution reached by living systems in their striving to cope with complex heterogeneous
environments or when trying to efficiently coordinate themselves as an ensemble.
The external environment in which living systems operate is highly variable, largely unpre-
dictable, and describable in terms of probability distribution functions. Living systems need
to modify their internal state to cope with external conditions, and they do so in a proba-
bilistic manner.

Living systems need to modify their internal state to cope with external conditions, and
they do so in a probabilistic manner. In the presence of broadly different ever-changing het-
erogeneous environments, computational evolutionary and adaptive models vividly illustrate
how a collection of living systems eventually clusters near the critical state. A more accurate
convergence to criticality is found in a coevolutionary/coadaptive setup in which individuals
evolve/adapt to represent with fidelity other agents in the community, thereby creating a
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collective “language,” which turns out to be critical.
These ideas apply straightforwardly to genetic and neural networks—where they could con-
tribute to a better understanding of why neural activity seems to be tuned to criticality—but
have a broader range of implications for general complex adaptive systems.

3.1.3 Random Networks of Automata

Now we see a particular type of model for the neuronal networks, analyzed by Deridda
and Pomeau [5] in 1985. Kauffman’s model is a random complex automata where nodes
are randomly assembled. Each node o, receives K inputs from K randomly chosen nodes
and the values of σi at time t + 1 is a random Boolean function of the K inputs at time
t. Numerical simulations have shown that the behaviour of this model is very different for
K > 2 and K ≤ 2. It is the purpose of this work to give a simple annealed approximation
which predicts K = 2 as the critical value of K.
Networks of Boolean automata to study the behaviour of generic regulatory systems were
introduced by Kauffman in 1969. The subsequent studies have revealed surprisingly ordered
structures in randomly constructed networks. In particular the most highly organized be-
haviour (small attractors, smaller number of attractors, stable attractors, etc.) appeared to
occur in networks where each node receives inputs from two other nodes.

Let us first briefly describe Kauffman’s model. The model depends on a parameter K.
The system consists of N spins σi , which can take two possible values (σi = 0 or 1). The
time evolution of this system is given by N Boolean functions of K variables each

σt+1
i = fi(σti1 , σ

t
i2 . . . , σ

t
iK ) (3.2)

For each i, the spins σi1 , σi2 . . . , σiK are randomly chosen among the N spins. They need
not be different (i.e. i1 can be equal to i2 for example). So the system is defined once a
function fi and a set i1, i2, . . . , iK have been chosen for each site i.

Figure 3.4: An example for N = 4 and K = 2.[5]

There exist 2N possible Boolean functions of K variables. In Kauffman’s model, each
function fi is randomly chosen among these 22K possible functions. The system is random
because, for each i, the set i1, . . . , iK is randomly chosen and because the function fi is
random. This randomness is quenched because the functions f , and the sets i1, . . . , iK are
quenched (they do not change with time).
There are many questions one can ask about this model:

• What is the length of the limit cycles?

• What is the number of different limit cycles?

If one considers 2 different spin configurations at time t = 0, what is the probability that
they become the same at time t? If one starts with two randomly chosen configurations C1
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and C2 of the system at time t = 0, what will be the distance between these configurations
after time t and in the limit t→∞?
Let us consider 2 spin configurations C1 and C2 which are at distance n. By definition the
distance d(C1, C2) between two spin configurations is n, if the number of spins which are
different in the two configurations is n. If one considers two randomly chosen configuration
g and such that d(C1, C2) = n at time t = 0, one can calculate the probability P1(m,n)
that the distance d(C′1, C′2) between their images C′1 and C′1 at time t = 1 is d(C′1, C′2)m. To
calculate P1(m,n), let us call A the set of spins which are identical in C1 and C2 and B the
set of spins which are different. Set A contains N − n spins, whereas B contains n spins.
Let us call Q(No) the probability that N0 spins have all their K arrows coming from set A
. One has

Q(N0) =
(
N

N0

)[(
N − n
N

)K]N0
[

1−
(
N − n
N

)K]N−N0

(3.3)

These N0 spins will be of course identical in C1 and C2. For the remaining N − N0 spins,
since at least one of their inputs is different in C1 and C2, there is a probability 1/2 that they
are the same in C1 and C2 and 1/2 that they differ. Therefore, the probability P1(m,n) that
d(C′1, C2) = m is

P1(m,n) =
N∑

N0=0

Q(N0)
(

1
2

)N−N0
(
N −N0

N

)
(3.4)

One can easly compute the sum over N0 and find

P1(m,n) =
N !

2Nm!(N −m)!

[
1 +

(
1− n

N

)K]N−m [
1−

(
1− n

N

)k]m
(3.5)

If one neglects the correlations and studies the model where at each time the functions fi
and the sets 11 . . . , iK are changed, then Pt(m,n) in this annealed approximation is

P annealedt (m,n) =
N∑

q1=0

· · ·
N∑

qt−1=0

P1(m, qt−1)P1(qt−1, qt−2) . . . P1(q1, n) (3.6)

For large N , can be introduced x = n
N and y = m

N and it can be found that the annealed
solution becomes very peaked around a well-defined value of y.

In general yt is given by

yt =
1− (1− yt−1)K

2
(3.7)

where y1 is given by

y1 =
1− (1− x)k

2
(3.8)

We see that once the distance Nx between-C1 and C2 is given, then with probability 1 in
the limit N → ∞, the distance between their images at time t is Nyt. Then the principal
problem is reduced to study the Eq.(3.7).
The fixed point can be now found with simple computations:

lim
t→∞

lim
N→∞

d(Ct1, Ct2)
N

=


0 K ≤ 2

y∗ K > 2
(3.9)

Then this simple approximation gives a critical value Kc = 2.
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Figure 3.5: Comparison of the value of y∗ with measured distances in simulations of Kauffman’s
model.[5]

3.1.4 Boolean Networks

The same result was found by Alireza Goudarzi, Christof Teuscher, Natali Gulbahce and
Thimo Rohlf [3] in networks learning informations, in their model learning refers to correctly
solving the task for the training samples, while generalization refers to correctly solving the
task for novel inputs.
They used adaptation to refer to the phase where networks have to adapt to ongoing muta-
tions, but have already learned the input-output mapping. They studied adaptive informa-
tion processing in populations of Boolean networks with an evolving topology.
A Random Boolean Network (RBN) is a discrete dynamical system composed of N au-
tomata. Each automaton can have two possible states {0, 1}, and the dynamics is such that
F : {0, 1}N → {0, 1}N , where f = (f1, . . . , fi, . . . , fN ) and each fi is represented by a look-up
table of Ki inputs randomly chosen from the set of N automata.
They restricted the maximum Ki to 8, the time-evolving rule for a state σti ∈ {0, 1} is the
following:

σt+1
i = fi(σti1 , σ

t
i2 , . . . , σ

t
iK ) (3.10)

They evolved networks by means of a traditional GA to solve three computational tasks of
varying difficulty, each of which defined on a 3-bit input: full adder (FA), even-odd (EO)
and the cellulare automata rule 85 (R85).
They calculated a weighted sum of the vector of the information content of all possible
decomposition models of F and the weight wm of a model is proportional to its degrees of
freedom. The information content of a model os calculated by using log fm = 1− Hm−Hf

Hind−Hf ,
where Hm is the entropy of the model, Hf the entropy of F and Hind is the entropy of the
independence model.
It was used only a mutation-based genetic algorithm. For all the experiments it is ran a
population of 30 networks with initial connectivity 〈Kin〉 = 1 and a mutation rate of 0.8.
Each mutation is decomposed into 1 + α steps repeated with probability p(α) = 0.5α+1,
where α ≥ 1. Each step involves flipping a random location of the look-up table of a random
automaton combined with adding or deleting one link.
During each generation, the fitness of each individual is determined by f = 1− EM , where
EM is the average error over the T random training samples:

EM =
1
T

∑
i∈M

∑
j∈O

(aij − oij)2 (3.11)

where aij is the value of the output automata j for the input pattern i, and oij is the correct
value of the same bit for the corresponding task. Selection is applied to the population as
a deterministic tournament: two individuals are picked randomly from the old population,
and their fitness values are compared. The better individual is mutated and inserted into
the new population, the worse individual is discarded. They repeated this process until they
have 30 new individuals.
In this work they observed (Fig.3.6) a convergence of 〈K〉 close to the critical value Kc = 2
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Figure 3.6: Finite size scaling of 〈K〉 as a function of N for the three tasks, EO (black), FA (blue),
R85 (magenta), and the training sample size T = 4 A) and T = 8 B). Points represent
the data of the evolved networks; lines represent the fits. The finite size scaling for
〈K〉 shows that it scales with a power law as a function of the system size N . The
dashed lines represent the power-law fit of the form a axb + c. We favor the data for
larger N by weighting the data according to N/Nmax , where Nmax = 500. The insets
show Kc − c as a function of N on a log-log scale. In the Figure C) The conditional
probability that evolving populations, where the best mutant reaches maximum fitness
(i.e., fbest = fmax = 1), have average connectivity < K > shows a sharp peak near Kc

(black curve); the same is found for maximum generalization (light blue). Inset: The
diversity of evolving populations, quantified in terms of the standard deviation σ(f) of
fitness distributions, has a maximum near Kc = 2. All data were sampled over the best
22 out of 30 populations for the full-adder task with T = 4 and N = 100. [3]

for large system size N and training sample sizes larger than or equal to T = 4. For the
R85 task they don’t observe any convergence to Kc = 2, for the other tasks is observed a
convergence towards Kc with a power law as a function of the system size N . The pop-
ulation dynamics in this model follows Fisher’s fundamental theorem of natural selection,
which attributes the rate of increase in the mean fitness to the increased fitness variance in
the population. The standard deviation has a local maximum near Kc, with a sharp decay
toward larger 〈K〉, indication of maximum diversity near criticality. In this model is found
that the population where the best mutant has maximum fitness (f = 1) sharply peak ner
Kc, as well as populations where the best mutant reaches perfect generalization.

With this work it is showed that learning and generalization are optimized near critical-
ity, furthermore, critical RBN populations exhibit the largest diversity (variance) in fitness
values, which supports learning and robustness of solutions under continuous mutations.
Also, examination of the attractors of the final population confirms that the computation
happens as partitioning of the state space into disjoint attractors.
During the evolution, the attractor landscape changes so that there are enough attractors
to properlyprocess the inputs. (see Appendix A)
Learning of classification tasks and adaptation can drive RBNs to the edge of chaos, where
high-diversity populations are maintained and ongoing adaptation and robustness are opti-
mized.

3.1.5 Dynamical Versus Statistical Criticality in Neuronal Networks

Beggs and Plenz [54] were the first to report such power laws in the context of neuronal
networks.

Relatively recent work has reported that networks of neurons can produce avalanches of
activity whose sizes follow a power law distribution. This suggests that these networks may
be operating near a critical point, poised between a phase where activity rapidly dies out
and a phase where activity is amplified over time. The hypothesis that the electrical activ-
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Figure 3.7: Avalanche size distributions in local field potential data collected with a 60-channel
microelectrode array from rat cortical slice networks. (A) Subcritical regime; excitatory
antagonist applied. (B) Critical regime; normal network. (C) Supercritical regime;
inhibitory antagonist applied. [54]

ity of neural networks in the brain is critical is potentially important, as many simulations
suggest that information processing functions would be optimized at the critical point. This
hypothesis, however, is still controversial.

Consider a control parameter for neuronal excitability, which sets how much a spike in
one neuron excites its neighbors. If this parameter is too low, a spike in one neuron may
propagate to its direct neighbors, but the associated wave of activity will quickly go extinct.
Conversely, if the excitability parameter is too high, the wave will explode through the whole
population and cause something reminiscent of an epileptic seizure. To function efficiently,
a neuronal population must therefore pose itself near the critical point between these two
regimes.
The analogy with sandpiles and earthquakes is straightforward: when a grain falls, it dissi-

pates some its mechanical energy to its neighbors, which may fall in response, provoking an
avalanche of events.
The most striking feature of self-organized criticality is the distribution of the avalanche
sizes, which typically follows a power law. In their experiment, a 60-channel multielectrode
array was used to measure local field potentials (a coarse grained measure of neural activity)
in cortical cultures and acute slices.
Activity occurred in avalanches—bursts of activity lasted for tens of milliseconds and were
separated by seconds long silent episodes— that propagated across the array (Fig.3.8A). For
each event, the total number of electrodes involved was counted as a measure of avalanche
size. The distribution of this size s followed a power-law with an exponent close to −3/2
(Fig.3.8B). Although that exponent was first speculated to be universal, it was later shown
that it depends on the details of the measurement method.
The critical properties of neuronal avalanches can be explained by a simple branching process.
Assume that when a neuron fires at time t, each of its neighbors has a certain probability
of firing at time t+ 1, such that the average number of neighbors firing at t+ 1 is given by
the branching parameter β. That parameter is exactly what we called “excitability” earlier;
β < 1 leads to an exponential decay of the avalanche, β > 1 to its exponential and unlimited
growth, and β = 1 defines the critical point.
To summarize, in the space of avalanche configurations we have the same signature of critical-
ity that we have seen in the retina, although in different tissues, with different measurement
methods, and assuming different models of activity. This emphasizes the potential generality
of Zipf’s law and criticality for brain function.
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Figure 3.8: The distribution of avalanche sizes follows a power law. A. Sample avalanche propa-
gating on the 8× 8 multielectrode array. B. Probability distribution of avalanche sizes
(measured in number of electrode) in log-log space. The distribution follows a power-law
with a cutoff set by the size of the array. [2]

3.1.6 A Special Living System: The Brain

The brain may result as the most striking example of this universal tendency of liv-
ing systems. In fact, owing to a “plastic” architecture shaped by evolution towards self-
organized-criticality, brain may have gained its unmatched information processing capabili-
ties. Neurons are microscopic processing elements forming complex networks wired through
cellular processes (i.e. axons and dendrites) and specialized contacts transmitting informa-
tion: the synapses. Amazingly, neuronal connections undergo “birth” and “death” as well
as strengthening and weakening throughout a selection process, reconfiguring connectivity
in a self-organizing manner and allowing the networked population of neuronal processors to
adapt responses to the ever changing environment.

Throughout the nervous system of almost all animals, neurons communicate with one
another with discrete, stereotyped electrical pulses called action potentials or spikes. If we
look in a brief window of time ∆τ , the activity of a neuron is binary: a neuron either spikes
(σi = +1) or it does not (σi = −1, 0).
In this notation the binary string or “spike word” σ̄ = (σ1, σ2, . . . , σN ) entirely describes the
spiking activity of a network of N neurons, and the probability distribution P (σ̄) over all 2N

possible spiking states describes the correlation structure of the network, as well as defin-
ing the “vocabulary” that the network has at its disposal to use in representing sensations,
thoughts, memories or actions.
Neurons in the brain interact with each other in a heterogeneous and asymmetric way pro-
ducing complex neuronal activity. The dynamics is given by the equations of the network,
and it exhibits fixed-point behavior, limit cycles or high-dimensional chaos.
In these networks, connections between binary neurons are independently drawn from an
identical distribution, and the state of a network is updated simultaneously in discrete time
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steps without thermal noise. Every initial configuration must evolve into an attractor, which
is a fixed point or a limit cycle. The typical length of the cycles was observed to grow expo-
nentially with the number of neurons N (such kinds of cycles are called chaotic attractors),
and the total number of attractors increases linearly with N .
These quantities were also analytically evaluated based on an empirical assumption that the
dynamics of the system loses memory of its nonimmediate past.

Consider randomly connected neuronal networks of N neurons (units). Each unit in-
teracts with all the other units with an asymmetric coupling: we use Jij to represent the
coupling strength from unit j to i, it is independent of Jji and they follow the same Gaussian
distribution N(0, 1

N ).
The state of neuron i (i = 1, . . . , n) at time t+ 1 is determined by the following equation:

σi(t+ 1) = sgn [hi(t)] = sgn

 N∑
j=1

Jijσj(t)

 =


+1 (activate state)

−1 (silent state)

Sampling all the 2N words is of course impractical, an important observation is that correla-
tions between any two neurons typically are weak: the correlation coefficient between σi and
σj 6=i is on the order of 0.1 or less. It is tempting to conclude that neurons are approximately
independent, and there are no interesting collective effects. Larger groups of neurons spike
simultaneously much more frequently than would be expected if spiking were independent
in every cell.

It might be that there are specific sub-circuits in the network that link special groups of
many cells, alternatively, the network could be statistically homogeneous and simultaneous
spiking of many cells emerge as a collective effect.
An important hint is that the neuronal correlations are weak and widespread, so that any
two neurons that plausibly are involved in the same task are equally likely to have a signifi-
cant correlation.

3.1.7 The vertebrate retina

The retina is an ideal place in which to test ideas about correlated activity, because it
is possible to make long and stable recordings of many retinal ganglion cells—the output
cells of the retina, whose axons bundle together to form the optic nerve—as they respond to
natural visual stimuli.
Because the retina is approximately flat, one can record from the output layer of cells by
placing a piece of the retina on an array of electrodes that have been patterned onto to
a glass slide, using conventional methods of microfabrication. Such experiments routinely
allow measurements on ∼ 100 neurons.
The average rate at which neuron i generates spikes is given by

r̄i = 〈(1 + σ1)/2〉 /∆τ (3.12)

so that knowing the average rates is the same as knowing the local magnetizations σi. A
consistent model with these assumptions is a model of independently firing cells:

P1(σ̄) =
∏
i

pi(σi) =
exp [

∑
i hiσi]
Z

(3.13)
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where hi is the Lagrange multiplier associated to the average observable σi.
For example, in a retina stimulated by natural movies, the distribution of the total number
of spikes K =

∑N
i=1(1+σi)/2 is observed to be approximately exponential [P (K) ' e−K/K ],

while an independent model predicts Gaussian tails throughout the relevant range of K.
As the first step beyond an independent model, one can look for the maximum entropy
distribution that is consistent not only with σi , but also with pairwise correlation functions
between neurons 〈σiσj〉 . The distribution then takes a familiar form:

P2(σ̄) =
1
Z
e−E(σ̄) E(σ̄) = −

∑N
i=1 hiσi −

∑
i<j Jijσiσj (3.14)

where Jij is the Lagrange multiplier associated to 〈σiσj〉.

Figure 3.9: The Ising model greatly improves the prediction of retinal activity over the independent
model. A. Neuronal activity is summarized by a binary word σ̄ obtained by binning
spikes into 20 m windows. B. The frequencies of all spike words σ̄ of a subnetwork
of N = 10 neurons are compared between the experiment (x axis) and the prediction
(y axis) of the independent model (gray dots) and the maximum entropy model with
pairwise interactions (black dots). The straight line represents identity.[2]

Remarkably, this model is mathematically equivalent to a disordered Ising model, where hi
are external local fields, and Jij exchange couplings. Ising models were first introduced by
Hopfield in the context of neuronal networks to describe associative memory.
Armed with an explicit model for the whole network, one can explore its thermodynamics.
The introduction of a fictitious temperature T corresponds to a global rescaling of the fitting
parameters, hi → hi/(kBT ) , Jij → Jij/(kBT ).
The heat capacity versus temperature is found to be more and more sharply peaked around
the operating temperature kBT = 1 as one increases the network size N . Criticality could
be diagnosed directly from the distribution of pairwise correlations, rather than their precise
arrangement across cells. More concretely, it gives us a path to simulate what we expect
to see from larger networks, assuming that the cells that have been recorded from in this
experiment are typical of the larger population of cells in the neighborhood.

The result for N = 120 thus obtained (i.e. from fitting the Ising model to an artificial
network of random correlations with the same statistics as the experiment) is an even clearer
demonstration that the system is operating near a critical point in its parameter space, as
shown by the peak in specific heat getting closer to the natural temperature kBT = 1, shown
in the top curve of Fig.3.10. This diverging heat capacity is further evidence that the system
is near a critical point, but one might be worried that this is an artifact of the model or of
the fitting procedure.
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Figure 3.10: Divergence of the heat capacity is a classical signature of criticality. This plot rep-
resents the heat capacity versus temperature for Ising models of retinal activity for
increasing population sizes N . The “N = 20, rand,” and N = 120 curves were ob-
tained by inferring Ising models for fictitious networks whose correlations were ran-
domly drawn from real data. Error bars show the standard deviation when choosing
different subsets of N neurons among the 40 available. [2]

3.2 Against Criticality

In this section we view some articles that support the hypothesis that a particular type of
living system, the brain, is not poised at a critical state. We start with the work of Jonathan
Touboul and Alain Destexhe [4] which will inspire the model that we build in the second part
of the thesis. The principal argument is that, although a lot of living systems show power
law distribution, they are not critical systems and power law distributions are fictitious clues
of criticality.

3.2.1 Power-law statistics and universal scaling in the absence of
criticality

Now we consider the work of Jonathan Touboul and Alain Destexhe [4], where they
demonstrate that there can exist power-law distributions also in absence of criticality.
Criticality, whether self-organized (SOC) or the result of fine tuning is usually identified by a
typical scale invariance or power-law scaling. The relationship between power-laws in nature
and criticality became popular after the seminal work of Bak, Tang and Wiesenfeld on the
Abelian sandpile model [44]: there, it is proposed that systems can self-organize to remain
poised at their critical state and that this may be a universal explanation for the ubiquity
of power-law scalings in nature [45]. In neuroscience, the theory that neuronal networks
operate at a phase transition would not only be a mathematical curiosity, but could have
important consequences in neural coding: a scale-invariant neuronal spiking activity could
reveal the presence of long-range correlations in the system [46] and optimal encoding of
information [47].

The first empirical evidence that neuronal networks may operate at criticality was pro-
vided by analysis of the activity in neuronal cultures in vitro, which display bursts of activity
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separated by silences. These bursts were seen as “neuronal avalanches”, and were apparently
distributed as a power-law with a slope close to −3/2.

Figure 3.11: Neuronal activity in the independent Poisson model with Ornstein-Uhlenbeck firing
rate (α = σ = 1). [4]

These statistics were sometimes interpreted as the hallmark of criticality in analogy
with canonical statistical physics models. In this work, Jonathan Touboul and Alain Des-
texhe show that networks with inhibition do not need to be at criticality to have power-law
avalanche statistics as reported in experiments, but is rather a generic macroscopic feature of
such networks related to fundamental properties of large interacting systems with inhibition.
In this work they analyzed statistical distributions of neuronal avalanches. They proved

Figure 3.12: Avalanches statistics in the independent Poisson model with Ornstein-Uhlenbeck firing
rate (α = σ = 1). Apparent power-law scalings, together with scale invariance of
avalanches shapes.[4]

that, using a (non critical) Poisson model of neuronal network with Ornstein-Uhlenbeck fir-
ing rate (α = σ = 1, see Chapter 5) appear power-law scalings, together with scale invariance
of avalanches shapes.
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The model is better described in Chapter 5, they simulated a neuronal network of 2000 neu-
rons and investigated the collective statistics of independent realizations of Poisson processes
with that rate. While the firing is an inhomogeneous Poisson process, macroscopic statis-
tics show power-law distributions for the size (with exponent τ = 1.3) and for the duration
(α = 1.7).

At this point, they conclude that power-law statistics of avalanche duration and size,
as well as collapse of avalanche shape, may arise in non-critical systems, they even appear
in networks in which firing times are statistically independent. Therefore, they do not
necessarily reveal how neurons interact, but rather the presence of a hidden dependence of
all neurons on the same fluctuating function.
They conclude that networks of neurons within synchronous irregular (SI) regimes may
naturally display power-law statistics and universal scaling functions due to the combination
of (i) an emergent irregular collective activity in a large-scale system, and (ii) the power-law
statistics of such large-scale systems, due to molecular chaos.

3.2.2 Neural Net Model

One model analyzed by David A. Kessler and Herbert Levine [15] in August 2015 is
inspired by the dynamic competition between different species, used as the main nonlinear
ingredient of their ecology model. They were thus motivated to turn out a model with a
similar interaction in a different context, a set of neurons which are mutually inhibitory
and are driven by external sources. The inhibition matrix Ji,j is constructed from random
elements of average size unity (distributed uniformly between 0 and 2), with density ρ, with
all other elements set to zero. The voltage level on a given neuron decays exponentially
with time constant τ . The external input, V Ii is uniformly distributed at each time slice dt

Figure 3.13: Sample firing patterns from our neuronal net model with N = 80 neurons. Left:
Pattern with constant threshold Vc = 19.67. The time window was TW = Tp = 83.
Right: Pattern with dynamical thresholds, governed by the parameters fT = 0.85,
γT = 0.02. Due to the lower threshold of the adapted neurons, the time window was
taken as TW = 40. For both models, C = 1, σ = 0.7, σI = 0.02, τ = 20.[15]

between dt(1± 3σI). The threshold for a neuron firing is given initially by

Vc = τ
(

1− e−Tp/τ
)

(3.15)

so that in the absence of noise, every neuron would fire with period Tp. Thus, the update
rule for Vi is

Vi(t+ dt) = e−dt/τV + V Ii (3.16)
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At this point, suprathreshold neurons fire, and are reset to 0. The firing neurons then reduce
the voltage on the neurons they are connected to according to

Vi = Vi − C
∑
j∈fire

Ji,j (3.17)

A pictorial view of the dynamics is given in Fig.3.13a. Essentially, the strong inhibition
and the lack of any long-term memory that a neuron has been active serves to create an
extremely chaotic process; in the ecology model the role of memory is played by the size of
a species population which if large prevents the species from rapidly disappearing.

To mimic this effect, we added a feedback between firing and threshold. When a neuron
fires, its threshold for future firing is lowered, by a factor fT . The threshold then relaxes
exponentially back to its nominal value, Vc , with a relaxation rate of γT . One could imagine
accomplishing analogous changes by altering synapses, i.e. weakening the synaptic inhibition
for any neuron that fires. Once this change is implemented, the dynamics stabilizes to the
form seen in Fig.3.13b.
The period of firing of a neuron is exponentially sensitive to its threshold when the threshold
is close to its critical value of τ . David A. Kessler and Herbert Levine then tabulate the
statistics of firing patterns. Their first set of runs is with N = 80 neurons and parameters
ρ = 1, τ = 20, Tp = 83, C = 1, σI = 0.02. In Fig.3.14, is reported the complementary cumu-
lative distribution function. We can observe an almost perfect power law form, scaling with

Figure 3.14: Complementary cumulative distribution function for N = 80. Parameters are the same
as in the simulation shown on the right side of Fig.3.13.[15]

exponent close to −1. This would guarantee that any attempt to model the thermodynamics
of the system with an equilibrium Hamiltonian would “discover” that the system looks like
it had been tuned to be very close to a critical point. Again however, this state exists over
a broad range of parameters and does not require any fine-tuning. A similar tabulation for
the non-adaptive model shows that the system thermodynamics is completely dominated by
a huge number of very low occupancy states.

3.2.3 Linear regression and power laws

The most common approach for testing empirical data against a hypothesized power-law
distribution is to observe that the power law p(x) ∼ x−α implies the linear form

log p(x) = α log x+ c (3.18)

The probability density p(x) can be estimated by constructing a histogram of the data (or al-
ternatively one can construct the cumulative distribution function by a simple rank ordering
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of the data) and the resulting function can then be fitted to the linear form by least-squares
linear regression. The slope of the fit is interpreted as the estimate α̂ of the scaling param-
eter.
Although this procedure appears frequently in the literature there are several problems with
it. The estimates of the slope are subject to systematic and potentially large errors, but
there are a number of other serious problems as well. First, errors are hard to estimate
because they are not well-described by the usual regression formulas, which are based on
assumptions that do not apply in this case. For continuous distributions used for discrete
data, this problem can be exacerbated by the choice of binning scheme used to construct
the histogram, which introduces an additional set of free parameters. Second, a fit to a
power-law distribution can account for a large fraction of the variance even when the fitted
data do not follow a power law. Third, the fits extracted by regression methods usually do
not satisfy basic requirements on probability distributions, such as normalization, and hence
cannot be correct.

Many standard packages exist that can perform this kind of fitting, provide estimates
and standard errors for the slope, and calculate the fraction r2 of variance accounted for by
the fitted line, which is taken as an indicator of the quality of the fit.
A data set has n values marked y1 . . . yn (collectively known as yi), each associated with a
predicted (or modeled) value f1 . . . fn (known as fi, or sometimes ŷi). If ȳ is the mean of
the observed data:

r2 ≡ 1−
∑
i(yi − fi)2∑
i(yi − ȳ)2

(3.19)

If our data are truly drawn from a power-law distribution and n is large, then the prob-
ability of getting a low r2 in a straight-line fit is small, so a low value of r2 can be used to
reject the power-law hypothesis. Distributions that are nothing like a power law can appear
to follow a power law for small samples and some, like the log-normal, can approximate a
power law closely over many orders of magnitude, resulting in high values of r2. Though a
low r2 is informative, in practice we rarely see a low r2, regardless of the actual form of the
distribution, so that the value of r2 tells us little. In the terminology of statistical theory, the
value of r2 has very little power as a hypothesis test because the probability of successfully
detecting a violation of the power-law assumption is low.

Maximum likelihood estimators for the power law

In the case of continuous data the maximum likelihood estimator for the scaling pa-
rameter, first derived by Muniruzzaman in 1957 [18], is equivalent to the well-known Hill
estimator [19]. Consider the continuous power-law distribution,

p(x) =
α− 1
xmin

(
x

xmin

)−α
(3.20)

where α is the scaling parameter and xmin is the minimum value at which power-law behavior
holds. Given a data set containing n observations xi ≥ xmin, we would like to know the
value of α for the power-law model that is most likely to have generated our data. The
probability that the data were drawn from the model is proportional to

p(x|α) =
n∏
i=1

α− 1
xmin

(
xi
xmin

)−α
(3.21)

This probability is called the likelihood of the data given the model. The data are most
likely to have been generated by the model with scaling parameter α that maximizes this
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function. Commonly we actually work with the logarithm L of the likelihood, which has its
maximum in the same place:

L = log p(x|α) = log
n∏
i=1

α− 1
xmin

(
xi
xmin

)−α
= (3.22)

= n log(α− 1)− n log xmin − α
n∑
i=1

log
xi
xmin

(3.23)

Setting ∂L/∂α = 0 and solving for α, we obtain the maximum likelihood estimate or MLE
for the scaling parameter:

α̂ = 1 + n

[
n∑
i=1

log
xi
xmin

]−1

(3.24)

Formal results

There are a number of formal results in mechanical statistics that motivate and support
the use of the MLE:

Theorem 3.2.1. Under mild regularity conditions, if the data are independent, identically-
distributed draws from a distribution with parameter α, then as the sample size n → ∞,
α̂→ α almost surely.

Proposition 3.2.2. The maximum likelihood estimator α̂ of the continuous power law con-
verges almost surely on the true α.

Proof. It is easily verified that log(x/xmin) has an exponential distribution with rate α− 1.
By the strong law of large numbers, therefore, 1

n

∑n
i=1 log xi

xmin
converges almost surely on

the expectation value of log(x/xmin), which is (α− 1)−1 .



Chapter 4

A “Poisson Network”

In this chapter, following by the work of Johnatan Touboul and Alain Destexhe [4], we
analyze if a random non-interacting neuronal network model can generate emergent proper-
ties that are typical of critical systems (e.g., power law distributions). In this model, every
neuron spikes accordingly to a nonhomogeneous Poisson process with a firing rate that is
generated from an exponential distribution. The statistic of activity avalanches then com-
puted.

We first introduce some definitions and theorems that are used in the simulations of the
Poisson network model. Later, we describe the neural network model in detail.

4.1 The Exponential Distribution

Definition 2. A continuous random variable X is said to have an exponential distribution
with parameter λ, λ > 0, if its probability density function is given by

f(x) =


λe−λx x ≥ o

0 x < 0
(4.1)

or, equivalently, if its CDF is given by

F (x) =
∫ x

−∞
f(y) dy =


1− e−λx x ≥ o

0 x < 0
(4.2)

The mean of the exponential distribution, E[X], is given by

E[X] =
∫ +∞

−∞
xf(x) dx =

1
λ

(4.3)

In general, the moment generating function φ(t) of the exponential distribution is given by

φ(t) = E[etx] =
∫ +∞

0

etxλe−λx dx =
λ

λ− t
(4.4)

All the moments of X can now be obtained by differentiating Eq.(4.4). For example,

E[X2] =
(
d2

dt2
φ(t)

)
t=0

=
2
λ2

(4.5)

43
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Consequently, V ar(X) = 1/λ2.

Definition 3. A random variable X is said to be without memory, or memoryless, if

P{X > s+ t|X > t} = P{X > s} ∀ s, t ≥ 0 (4.6)

If we think of X as being the lifetime of some instrument, then Eq.(4.6) states that the
probability that the instrument lives for at least s + t hours given that it has survived t
hours is the same as the initial probability that it lives for at least s hours. In other words,
if the instrument is alive at time t, then the distribution of the remaining amount of time
that it survives is the same as the original lifetime distribution; that is, the instrument does
not remember that it has already been in use for a time t.
The condition in Eq.(4.6) is equivalent to

P{X > s+ t,X > t}
P{X > t}

= P{X > s} (4.7)

or
P{X > s+ t,X > t} = P{X > t}P{X > s} (4.8)

This result is satisfied when X is exponentially distributed (for e−λ(s+t) = e−λse−λt ), it
follows that exponentially distributed random variables are memoryless.

Let X1, . . . , Xn be independent and identically distributed exponential random variables
having mean 1/λ. It follows that X1, . . . , Xn has a gamma distribution with parameters n
and λ. Let us now give a second verification of this result by using mathematical induction.
Because there is nothing to prove when n = 1, let us start by assuming that X1, . . . , Xn−1

has density given by

fX1+···+Xn−1(t) = λe−λt
(λt)n−2

(n− 2)!
(4.9)

Hence,

fX1+···+Xn−1+Xn(t) =
∫ ∞

0

fXn(t− s)fX1,...,Xn−1(s) ds = (4.10)

=
∫ t

0

λe−λ(t−s)λe−λs
(λs)n−2

(n− 2)!
= λe−λt

(λt)n−1

(n− 1)!
(4.11)

which proves the result.
Another useful calculation is to determine the probability that one exponential random vari-
able is smaller than another. That is, suppose that X1 and X2 are independent exponential
random variables with respective means 1/λ1 and 1/λ2 ; what is P{X1 < X2}? This prob-
ability is easily calculated by conditioning on X1:

P{X1 < X2} =
∫ ∞

0

P{X1 < X2|X1 = x}λ1e
−λ1x dx = (4.12)

=
∫ ∞

0

P{X1 < X2}λ1e
−λ1x dx =

∫ ∞
0

e−λ2xλ1e
−λ1x dx =

λ1

λ1 + λ2
(4.13)

4.2 The Poisson Process

We define now the Poisson process, in its homogeneous and nonhomogeneous forms. This
type of process will be used to describe the firing of neurons of the neuronal network.
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4.2.1 Counting Processes

A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents the
total number of “events” that occur by time t. From its definition we see that for a counting
process N(t) must satisfy:

1. N(t) ≥ 0.

2. N(t) is integer valued.

3. If s < t, then N(s) < N(t).

4. For s < t, N(t)−N(s) equals the number of events that occur in the interval (s, t].

A counting process is said to possess independent increments if the numbers of events
that occur in disjoint time intervals are independent. A counting process is said to possess
stationary increments if the distribution of the number of events that occur in any interval
of time depends only on the length of the time interval. In other words, the process has
stationary increments if the number of events in the interval (s, s+t) has the same distribution
for all s.

4.2.2 Definition of the Poisson Process

One of the most important counting processes is the Poisson process, which is defined as
follows:

Definition 4. The counting process {N(t), t ≥ 0} is said to be a Poisson process having
rate λ, λ > 0, if

• N(0) = 0.

• The process has independent increments.

• The number of events in any interval of length t is Poisson distributed with mean λt.
That is, for all s, t ≥ 0

P{N(t+ s)−N(s) = n} = e−λt
(λt)n

n!
n = 0, 1 . . . (4.14)

Note that it follows that a Poisson process has stationary increments and also that

E[N(t)] = λt (4.15)

which explains why λ is called the rate of the process.

Definition 5. The counting process {N(t), t ≥ 0} is said to be a Poisson process having
rate λ, λ > 0, if

• N(0) = 0.

• The process has stationary and independent increments.

• P{N(h) = 1} = λh+ o(h).

• PN(h) ≥ 2 = o(h).

It can be shown that Definition 4 and Definition 5 are equivalent.
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4.3 Generalization of Poisson Process: Nonhomogeneous
Poisson Process

In this section we consider a generalization of the Poisson process: the nonhomogeneous,
also called the nonstationary Poisson process, which is obtained by allowing the arrival rate
at time t to be a function of t.

Definition 6. The counting process {N(t), t ≥ 0} is said to be a nonhomogeneous Poisson
process with intensity function λ(t), t ≥ 0, if

• N(0) = 0.

• {N(t), t ≥ 0} has independent increments.

• P{N(t+ h)−N(t) ≥ 2} = o(h).

• P{N(t+ h)−N(t) = 1} = λ(t)h+ o(h).

Time sampling an ordinary Poisson process generates a nonhomogeneous Poisson pro-
cess. That is, let {N(t), t ≥ 0} be a Poisson process with rate λ, and suppose that an event
occurring at time t is, independently of what has occurred prior to t, counted with probabil-
ity p(t). With Nc(t) denoting the number of counted events by time t, the counting process
{Nc(t), t ≥ 0} is a nonhomogeneous Poisson process with intensity function λ(t) = λp(t).
This is verified by noting that {Nc(t), t ≥ 0} satisfies the nonhomogeneous Poisson process
axioms.
Every nonhomogeneous Poisson process with a bounded intensity function can be thought
of as being a time sampling of a Poisson process. To show this, we start by showing that
the superposition of two independent nonhomogeneous Poisson processes remains a nonho-
mogeneous Poisson process.

Proposition 4.3.1. Let {N(t), t ≥ 0}, and {M(t), t ≥ 0}, be independent nonhomogeneous
Poisson processes, with respective intensity functions λ(t) and µ(t), and let N∗(t) = N(t) +
M(t). Then, the following are true.

1. {N∗(t), t ≥ 0} is a nonhomogeneous Poisson process with intensity function λ(t)+µ(t).

2. Given that an event of the {N∗(t)} process occurs at time t then, independent of what
occurred prior to t, the event at t was from the {N(t)} process with probability λ(t)

λ(t)+µ(t) .
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4.4 How to Generate Poisson Processes

A simple and relatively efficient method for simulating one-dimensional and two-dimensional
nonhomogeneous Poisson processes is presented.
The method is applicable for any rate function and is based on controlled deletion of points
in a Poisson process whose rate function dominates the given rate function. As seen in the
previous section, the one-dimensional nonhomogeneous Poisson process has the character-
istic properties that the numbers of points in any finite set of nonoverlapping intervals are
mutually independent random variables, and that the number of points in any interval has
a Poisson distribution.
Simulation of a nonhomogeneous Poisson process with general rate function λ(t) of a nonho-
mogeneous Poisson process with rate function λ∗(t) ≥ λ(t) . The basic result is the following
theorem.

Theorem 4.4.1. Consider a one-dimensional nonhomogeneous Poisson process {N∗(t) : t ≥
0} with rate function λ∗(t), so that the number of points, N∗(t0), in a fixed interval (o, t0]
has a poisson distribution with parameter µ∗0 = λ∗(t0) − λ∗(0). Let {t∗i , i = 1 . . . N∗(t0)}
be the points of the process in the interval (o, t0]. Suppose that for t ∈ [0, t0], λ(t) ≤ λ∗(t).
For i = 1, 2, . . . , n delete the point t∗i with probability 1 − λ∗(ti)/λ∗(t∗i ); then the remaining
points form a nonhomogeneous Poisson process {N(t) : t ≥ 0} with rate function λ(t) in the
interval (o, t0].

Algorithm

1. Generate points in the nonhomogeneous Poisson process {N∗(t)} with rate function
λ∗(t) in the fixed interval (o, t0]. If the number of points generated, n∗, is such that
n∗ = 0, exit; there are no points in the process {N(t)}.

2. Denote the (ordered) points by T ∗1 , T
∗
2 , . . . , T

∗
n . Set i = 1 and k = 0.

3. Generate Ui, uniformly distributed between 0 and 1. If Ui ≤ λ(T ∗i )/λ∗(T ∗i ), set k equal
to k + 1 and Xk = T ∗i .

4. Set i equal to i+ 1. If i ≤ n∗, go to 3.

5. Return T1, T2, . . . , Tn where n = k, and also n.

4.5 The Poisson Network Model

The first step of this master’s thesis is to analyze a neuronal network in the hypothesis
of independent neurons: every neuron spikes with exponential distribution and the rate λ(t)
is generated from an exponential distribution of rate γ.
To proceed we have to generate λ(t) directly from the following exponential distribution:

p(λ) = γe−γλ (4.16)

To draw λis from this type of distribution we have to calculate the cumulative distribution
P (λ):

P (λ) =
∫ λ

0

γe−γx dx = 1− e−γλ (4.17)

Using this result and drawing a set of random numbers {u, P>(λ) = u} directly from a
uniform distribution, the set of λs can be calculated as follows:

λ = − 1
γ

ln(1− u) u ∈ U [0, 1] (4.18)
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that is equivalent to

λ = − 1
γ

ln(u) u ∈ U [0, 1] (4.19)

because (1− u) is distributed exactly as u.
Every λ can be calculated after discretized the interval [0;T ] with dt such that N∗dt = T .
Using this method, the typical pattern obtained for λ(t), t ∈ [0; 1], is reported in Fig.4.1.

.

Figure 4.1: Tipical pattern λ(t) obtained from an exponential distribution with γ = 0.5. The
binning in the interval [0; 1] is done with dt = 0.001.

Using this rate λ(t) as the rate of spiking neurons as described in the next section, we
analyze the principal characteristics of the neuronal activity.

4.6 The Nonhomogeneous Spiking Process

After having generated the rate λ(t) that is universal for every neuron which we are going
to analyze, it is fundamental to define what type of process describes the activity of each
neuron.
This process is the nonhomogeneous Poisson process, that is already described in this chapter.
For our case, implementing of this process is simple. Following the general method of Poisson
process, every neuron spikes following an exponential distribution with rate λmax, where
λmax ≡ Max{λ(t), t ∈ [0;T ]}, so for every neuron of the network this Poisson process is
computed following an exponential distribution of rate λmax:

p(t) = λmaxe
−λmaxt (4.20)

that is, the probability that a spike occurs after a time interval t given the mean rate λmax.
Using Eq.(4.20), the process for every neuron is described as follows:

ti+1 = ti −
1

λmax
ln(u) u ∈ U [0, 1] i = 0, 1 . . . (4.21)
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with ti=0 = 0.
For every time step is applied the thinning method to generate the nonhomogeneous Poisson
process: for a generic tj , it is evaluated the quantity λ(tj)/λmax. After drawing u ∈ U [0; 1],
if λ(tj)/λmax ≥ u the spike event is accepted, otherwise is rejected.

How to evaluate the quantity λ(tj) for tj ∈ [ti; ti+1], i ∈ N?
The method is simple, after having discretized the interval [0;T ], every λ(ti), i = 0, 1, . . . , N ,
corresponds to the i-th bin such that ti = i∗dt. Then, after identified λi ≡ λ(ti), the
correspondent λ(tj) for j ∈ [ti; ti+1] is calculated using the straight line passing through two
points formula:

λ− λi
λi+1 − λi

=
t− ti

ti+1 − ti
(4.22)

So, equivalently,

λ = λi +
λi+1 − λi
ti+1 − ti

(t− ti) (4.23)

To find a generic λ(tj), remembering the system’s discretization:

λ(tj) = λi +
λi+1 − λi

dt
(tj − ti) (4.24)

Using this result, it can be estimated a generic λ(tj) for every tj ∈ [0;T ].

.

Figure 4.2: Tipical pattern for 1000 neurons spiking using a nonhomogeneous Poisson process with
γ = 0.5, dt = 0.001.

4.7 Avalanche Statistics in a Discrete Poisson Process

In the particular case of discrete Poisson process which we are going to analyze, the
thinning method can be replaced by a simpler method that uses the definition of the Poisson
process. Anyway, the thinning method will be used in the following chapters in the case of
a rate generated by a Ornstein-Uhlenbeck process.
In this work we have considered both the continuous and the discrete Poisson process. In
the first simulation we used the thinning algorithm previously described, and in the discrete
Poisson process for every bin i (or time step ti = i∗dt) the neuron is allowed to spike if and
only if λidt ≥ u, u ∈ U [0; 1]. The results of these two models were identical in both cases,
for this reason in this chapter we analyse the simpler process, that is the discrete Poisson
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process.
Given the pattern in Fig.4.3, one can project the neuronal activity on the time axis, and

.

Figure 4.3: Tipical pattern for 500 neurons spiking using a nonhomogeneous discrete Poisson process
with γ = 0.5, dt = 0.001.

obtaining the so-called neuronal activity and the neuronal avalanches.
One neuronal avalanche is defined when, starting from null neuronal activity, the neuronal
network admits an activity that grows and decades until the total activity returns to be null.
These avalanches can be analyzed: it can be analyzed the probability to have an avalanche
of time duration t and the probability to have an avalanche of size s. The time duration
t = tend − tinit is the time interval between the beginning of the avalanche tinit and the
ending tend of it, whereas the size s is defined as the total number of neurons activated
during the avalanche.
What type of statistics do we expect from the neuronal activity? It is surely a non critical
system for as we generate it. So, in principle we do not expect power law statistics, as it is
provided by analytical calculations which will be used in this chapter.
The fact that every neuronal spike is generated by an homogeneous Poisson and the rate is
generated from an exponential distribution makes that do not exist correlations between the
neurons. This model of uncorrelated neurons is useful to comprehend how neuronal networks
behave in general without correlations, we will see that correlations are the key ingredient
to generate a power law statistics in living systems.

4.7.1 Avalanche Duration

What is the probability P>(t) of having a neuronal avalanche of duration greater than
t? Analyzing the pattern in Fig.4.3, one founds that the cumulative probability depends
first on the ∆t of the analysis of neuronal activity. What is ∆t? It is the “window” with
which avalanches are analyzed. This window can change significantly the distribution that
we are going to analyze, obviously because bigger is the window, less it can identify smaller
avalanches. The analysis of the avalanches is simple: once obtained the pattern N(t) of the
neuronal activity that describes how many neurons are activated in a specific time interval
dt, identifying the regions where the total number of active neurons is zero it can be possible
to determine the size and the duration of the avalanches.
Once identified the neuronal avalanches, we calculate the cumulative probability that one

avalanche have time duration greater than t. To do this, once fixed t, we count how many
avalanches have time duration smaller or equal to t (nt) and divide this number with the
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.

Figure 4.4: The cumulative probability of having an avalanche duration greater than t = ndt for
different ∆t of analysis, using a nonhomogeneous discrete Poisson process with γ =
0.5, dt = 0.001 and 1000 neurons.

total number of avalanches N . Now we have obtained the cumulative probability that an
avalanche has time duration smaller than P<(t), so to have P>(t), we take the complementary
cumulative probability: P> = 1− nt/N .

As result, the cumulative probability P>(t) of having an avalanche duration greater than
t for this type of systems is reported in Fig.4.4.

The same plot in Log-y-scale is reported in Fig.4.5.

.

Figure 4.5: The cumulative probability of having an avalanche duration greater than t = ndt in
Log-y scale for γ = 0.5, dt = 0.001 and 1000 neurons.

We have seen that the cumulative distribution of the avalanche durations follows an
exponential relation of the form P>(t) ' a−mt. In Table 4.1 are reported the various
coefficients at the exponent of the distribution that depend on ∆t, fitted directly from the
distributions in Fig.4.4.

Note that the behavior of P>(t) depends on the ∆t with which is done the analysis. We
can see that m decreases when ∆t increases. Analyzing the system with ∆t = 1dt or with
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∆t 1dt 2dt 3dt 4dt 5dt 10dt
m 418.768± 14 65.7± 1 18.3± 0.3 4.66± 0.1 1.3± 0.1 0.09± 0.01

Table 4.1: Exponents of the exponential distribution fit P>(t) ' e−mt of avalanche durations in the
Poisson network reported in Fig.4.5.

∆t = 10dt in general results in different behaviors of P>(t). In this case we can see that the
cumulative probability is an exponential distribution and the it changes with the change of
∆t. Why does it happen? Let’s analyze this problem through an analytical computation.

4.7.2 Comparisons with Analytical Result

Let us consider a system composed by N neurons, each of them modeled by an indepen-
dent Cox Process1 with with intensity λ(t). We want λ(t) to be constant in each interval
[jdt, (j + 1)dt], j = 1, .... Thus, spikes of each neuron are a non homogeneous Poisson point
process with time dependent intensity λ(t) :=

∑
j=1 λjξ[jdt,(j+1)dt] where ξA is the indicator

function of the set A. We work under the hypothesis that λ1, λ2, ..., λn ∼ λ are IID random
variable with common distribution Q.
We now look to P > (t|λ1, λ2 . . . , λn) that is the probability of having an avalanche size of
duration longer than t = n× dt given the story of λ up to time t. In what following we set
dt = α/N and thus n = Nt/α.
The probability that at least one neuron spikes in small interval dt is 1 − (1 − λndt)N and
thus we can write

P>(t|λ1, λ2 . . . , λn) = [1− (1− λndt)N ]P>(t− 1|λ1, λ2 . . . , λn) (4.25)

that is a recursive equation for P>(t) (P>(0) = 1):

P>(t|λ1, λ2 . . . , λn) = [1− (1− λndt)N ][1− (1− λn−1dt)N ] . . . [1− (1− λ1dt)N ] (4.26)

Therefore, marginalizing over the λs we have

P>(t) =
∫ n∏

i=1

dQ(λi)[1− (1− λidt)N ], (4.27)

recalling that dt = α/N and n = Nt/α we have

P>(t) =
[∫

dQ(λ)[1− (1− λ× α/N)N ]
]Nt/α

(4.28)

The limit for N →∞ is an exponential in t.
In the case of the independent Poisson process Q(λ) = γe−γλ, for ∆t = 1dt the result is the
following:

P>(t) =
[∫

dQ(λ)[1− e−λα]
]Nt/α

=
[∫ ∞

0

γe−γλdλ(λ)[1− e−αλ]
]Nt/α

= (4.29)

=
[
1− γ

α+ γ

]Nt/α
=
[

α

α+ γ

]Nt/α
(4.30)

1Also known as a doubly stochastic Poisson process or mixed Poisson process, is a stochastic process
which is a generalization of a Poisson process where the time-dependent intensity λ(t) is itself a stochastic
process
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So for the Poisson process the probability is

P>(t) =
[

α

α+ γ

]Nt/α
(4.31)

That is an exponential in t with base α
α+γ .

The analytical result for γ = 0.5 is the following:

P>(t) =
[∫

dQ(λ)[1− (1− λ× α/N)N ]
]Nt/α

(4.32)

where 1000x = 1000t = n is the number of bin (time steps) of an avalanche.

Fig.4.6 shows the comparison of the analytical result f(x) with the computational one in
which was fixed ∆t = 1dt.

Figure 4.6: Comparison of the analytical result f(x) (green line) and the computational results
(blue points connected by the red line). γ = 0.5, dt = 0.001 and 1000 neurons.

The slope of the straight line analytically calculated m = 1000 × ln(2/3) = −405.47,
compatible with that of the fit of the simulation mc = −418.768± 13.68.
Note that the analytical result is very similar to the computational result. To calculate the
cumulative probabilities for ∆t = ndt with n > 1 we would have to consider the correlations
between the time intervals. By the way, this is not very easy to calculate, but we can deduce
from the general analytical result that the form is yet an exponential:

P>(t) =
∫ n∏

i=1

dQ(λi)[1− (1− λidt)N ], (4.33)

It can be seen that, although we use ∆t = ndt, n > 1, for the analysis of the avalanche
duration, we will obtain a different basis and exponent. Anyhow, in the exponent will
compare the number of the bins n of the avalanche.
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Figure 4.7: The same comparison of Fig.4.6 in Log-y-scale.

4.7.3 Mean Avalanche Duration

We want to calculate what is the mean duration 〈t〉 of an avalanche of fixed size s.
To find this relation, we calculated the mean duration 〈t〉 (s) of an avalanche, for a given s:

〈t〉 (s) =
1
n

n∑
i=1

ti(s) (4.34)

In Fig.4.8 we see the relationship between 〈t〉 (s) and s. The data seem to have the asymptotic
power law (almost linear) behavior 〈t〉 (s) ∼ sa for big sizes with exponent a = 0.97± 0.04.

Figure 4.8: Mean avalanche duration for 1dt, 2dt, 3dt and 4dt. γ = 0.5, dt = 0.001, 1000 neurons.
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4.7.4 Avalanche Size

In this section we report the results for the probability P>(s) of having an avalanche size
greater than s. The result is that for all the values of ∆t the cumulative probability is an
exponential.

Figure 4.9: The cumulative probability of having an avalanche duration graeter than t = ndt for
different ∆t of analysis, using a nonhomogeneous discrete Poisson process with γ =
0.5, dt = 0.001 and 1000 neurons.

Figure 4.10: The same results of Fig.4.9 in Log-y-scale.

Note that varying ∆t of analysis also the distribution varies, and it is obvious from Fig.4.9
that the behavior of the curve becomes less continuous increasing ∆t.
In Table 5.2 there are all the informations about the various cumulative probability expo-
nents for various ∆t. The form of the distribution is, as for the avalanche duration, of the
exponential type: P>(s) ' b−ks.
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∆t 1dt 2dt 3dt 4dt 5dt
k −0.1± 1% −3 · 10−2 ± 1% −9 · 10−3 ± 3% −2 · 10−3 ± 4% −5 · 10−5 ± 7%

Table 4.2: Exponents of the exponential distribution fit P>(s) ' e−ks of avalanche sizes in the
Poisson network reported in Fig.4.10.

4.8 Mean avalanche size

Now we want to know what is the mean size 〈s〉 of a neuronal avalanche with duration T .
To do this, given the neuronal activity N(t) we have to take all the avalanche with duration
T and mediate their sizes. For example, if N(t) admits k avalanches of duration T , then
〈s〉 = 1

k

∑k
i=1 si.

In this case the result is a power-law invariant under variations of ∆t, as reported in Fig.4.11.

Figure 4.11: Mean avalanche size reported in Log-Log scale plot, note that different curves found
with different ∆t collapse in the same curve. γ = 0.5, dt = 0.001, 1000 neurons.

The exponent b of the interpolating distribution function 〈s〉 (T ) = aT b is for every
distribution, varying ∆t, b = 1.08 ± 0.01. In this case it is evident that the power law
distribution of 〈s〉 is almost as a linear relation between 〈s〉 and t and, moreover, the exponent
b is the same for every distribution.
This is a curious case of scale invariance in absence of criticality in the system.

4.8.1 Average Shapes of the Avalanches

The last analysis that can be done in this model is to look inside the avalanches. How
many neurons are activated at the first time step? How many at the second step?
The main goal of this section is to analyze the average number of neurons activated at every
time step in a neuronal avalanche.

To do this, taken an avalanche of time duration T = ndt, we count how many neurons
are activated in each of the n time steps, and average them. After this procedure, we
obtained the average number of neurons active at every time step, we call it 〈n(ti, T )〉 where
ti = idt, i = 1, 2, 3 . . . , and we can observe the internal structure of every avalanche.

We can view from Fig.4.12 that the internal structure of the avalanche of duration 9dt,
10dt and 11dt has not much informations because of the random structure of the model:
every neuron is completely independent on the others and then the activation/deactivation
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Figure 4.12: Average shapes for different time duration of neuronal avalanches: 9dt (black), 10dt
(red) and 11dt (green). γ = 0.5, dt = 0.001, 1000 neurons.

of one neuron does not influence the activity of the other neurons
What is interesting is that all the curves in Fig.4.12 are collapsed in the same curve, as there
is not difference between an avalanche of time duration T and one other of duration T ′.
This is reasonable because the system is composed by N neurons completely random and
independent each other, and there is not reasons for which one avalanche might be different
from one other.
In the next chapter we will see how interactions between neurons modify this model, and
how will be generated different types of statistics.
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Chapter 5

The Ornstein-Uhlenbeck
Neuronal Network

5.1 Markov Processes

”History is a cyclic poem written by time
upon the memories of man.”

Percy Bysshe Shelley

Markov processes provide a powerful lens for viewing the world. Provided a small number of
assumptions (a fixed set of states, fixed transition probabilities, and the possibility of getting
from any state to another through a series of transitions) a Markov process always converges
to a unique distribution over states [?]. This means that what happens in the long run won’t
depend on where the process started or on what happened along the way. What happens in
the long run will be completely determined by the transition probabilities – the likelihoods
of moving between the various states.
If a system follows a Markov Process, then initial conditions, interventions, and history itself
have no bearing on the long run distribution over states.

Definition 7. (Markov process). A stochastic process X(t) ∈ R is called Markov process if
∀t1 < t2 < · · · < tn and ∀n, the conditional probability p(xn, tn|x1, t1;x2, t2; . . . ;xn−1, tn−1)
satisfies the property:

p(xn, tn|x1, t1;x2, t2; . . . ;xn−1, tn−1) = p(xn, tn|xn−1, tn−1). (5.1)

The above definition is equivalent to say that the event characterized by {xn ≤ X(tn) ≤
xn + dxn} depends only on the previous event {X(tn−1) = xn−1}. In other words a Markov
process does not depend on its whole history (stochastic process with no memory).

Lemma 5.1.1. A Markovian stochastic process is completely determined by the one-point
density probability p(x, t) and by the conditional probability p(x2, t2|x1, t1).

Proof. We know that for a generic stochastic process the n-point joint distribution is given
by

p(x1, t1;x2, t2; . . . ;xn, tn) = p(x1, t1)p(x2, t2|x1, t1)p(x3, t3|x2, t2;x1, t1) . . . (5.2)

. . . p(xn−1, tn−1|xn−2, tn−2; . . . ;x1, t1)p(xn, tn|xn−1, tn−1; . . . ;x1, t1).

59
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By applying the Markov property to the previous equation we then obtain the lemma:

p(x1, t1;x2, t2; . . . ;xn, tn) = p(x1, t1)p(x2, t2|x1, t1)p(x3, t3|x2, t2) . . . (5.3)

. . . p(xn−1, tn−1|xn−2, tn−2)p(xn, tn|xn−1, tn−1).

Definition 8. A stochastic Markov process is stationary if

1. p(x2, t2|x1, t1) = p(x2, t2 − t1|x1).

2. p(x, t) = p(x).

5.1.1 Processes with stationary and independent increments

Definition 9. (Process with independent increments). A stochastic process X(t) ∈ R has
independent increments if, ∀T = {t1, t2, . . . , tn}

X(0), X(t1)−X(0), X(t2)−X(t1), . . . , X(tn)−X(tn−1) (5.4)

are independent random variables.

Definition 10. (Process with stationary increments). A stochastic process X(t) ∈ R has
stationary increments if X(t)−X(s) has the same probability distribution than X(t+ τ)−
X(s+ τ), ∀s, t, τ ≥ 0, s < t.

If X(t) ∈ R is a stochastic process with stationary and independent increments the
following properties hold

E{X(t)} = η1t, (5.5)

V ar{X(t)} = σ1t (5.6)

and
E{X(t)X(s)} = σ1min(t, s) (5.7)

where η1 = E{X(1)}, σ1 = V ar{X(1)}.

5.2 The Ornstein-Uhlenbeck Process

Definition 11. (Gaussian process). A Gaussian, zero average, stochastic process X(t) ∈ R
is a stochastic process in which for any given time partition T = {t1, t2, . . . , tn} the joint
probability density function is given by

p(x1, t1; . . . , xn, tn) ≡ 1
(2π)n/2

(detA)1/2e−
1
2

Pn
i,j=1 xiAijxi (5.8)

where A ∈Mn(R) is a real (Aij ∈ R), symmetric (Aij = Aji ), invertible (detA 6= 0), strictly
positive defined (

∑n
i,j=1 xiAijxj > 0), n× n matrix.

Definition 12. (Continuous in probability). A stochastic process {X(t)}t≥0 is continuous
in probability at t if ∀ε > 0,

lim
s→t

P{ω ∈ Ω||X(s, ω)−X(t, ω)| ≥ ε} = 0. (5.9)
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Figure 5.1: An example of Ornstein-Uhlenbeck process, with θ = 0, σ = 0.1, θ = 1.5.

The stochastic process Ornstein-Uhlenbeck is the most famous example of Markov pro-
cess that admits a Gaussian distribution for t→∞ and that has in the limit a finite variance.

A stochastic process {X(t)}t≥0 is an Ornstein-Uhlenbeck process or Gauss-Markov
process if it is stationary, Gaussian, Markovian and continuous in probability. A fundamen-
tal theorem, due to Doob, ensures that {X(t)}t≥0 necessarily satisfies the following linear
stochastic differential equation (see Chapter on Langevin equation)

dX(t) = −µ(X(t)− θ)dt+ σdW (t) (5.10)

where dW (t) = W (t+∆t)−W (t) are the increments of a Wiener process {W (t)}t≥0 with
unit variance. An example of this type of process is reported in Fig. 5.2. The parameters
µ, θ and σ are constants. The moments of the Ornstein-Uhlenbeck process are

EX(t) = θ, EX(t)X(s) =
σ2

2µ
e−µ|s−t| (5.11)

in the unconditional (stationary) case and

E{X(t)|X(0) = x0} = θ + (x0 − E{X(t)})e−µt

E{X(t)X(s)|X(0) = x0} =
σ2

2µ

(
e−µ|s−t| − e−(s+t)

)
(5.12)

in the conditional (asymptotically stationary) case. Because of the form of E{X(t)X(s)},
the Ornstein-Uhlenbeck process is also known as coloured noise.
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5.3 The Neuronal network

Why is Ornstein-Uhlenbeck process useful for our analysis of neuronal networks? In the
model that we will now develop, the firing rate λ(t) of the neurons is given by the positive
part λ+(t) of this process, while the negative part is fixed to zero.
The goal of this section is to reproduce the results of Johnatan Touboul and Alain Destexhe
[4], using their same neuronal network model. We take the positive part of the following
Ornstein-Uhlenbeck process:

dλ(t) = −λ(t)dt+ dW (t) (5.13)

and, for generating this process we pose α = σ = 1, θ = 0.
In Fig.5.2a we represent a typical pattern of the neuronal activity, every neuron spikes fol-
lowing a Ornstein-Uhlenbeck spiking rate. In this case, differently from the Poisson network,
the Poisson process is continuous and then we have adopted the thinning algorithm described
in the previous chapter for generating nonhomogeneous Poisson processes. So in this case,

Figure 5.2: An example of Ornstein-Uhlenbeck neuronal activity for 200 neurons and µ = 1, σ =
1, θ = 0.1.

once generated λ(t), we have calculated λmax and for every neuron we have generated the
following Poisson process

ti+1 = ti −
1

λmax
ln(u) (5.14)
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at every time step tj ∈ [ti; ti+1] we evaluated the quantity λ(tj) by interpolation

λ(tj) = λj = λi +
λi+1 − λi
ti+1 − ti

(tj − ti) (5.15)

where, after discretized the time intervals, we have ti+1 − ti = dt.
The choice of ∆t = ndt for the analysis of the avalanches is very important, as we will see
computing the statistical distributions, and it must be fixed before doing the simulation.
In Fig.5.2b we can see the existence of the avalanches, in this case avalanches must exist
because of the definition of the model: where λ(t) is negative it is fixed to zero, in these
intervals there will not exist neuronal activity.
As in the Poisson network, we define avalanche time as that time that elapses between the
beginning of the neuronal activity and the ending of it. As neuronal activity is meant the
quantity of neurons activated in a certain time interval.
Following this procedure, we have defined the probability P>(t) of having an avalanche du-
ration greater than a time interval t. Note that this distribution is continue, but the time is
discretized: in general, we can think that t = ndt, because of the discretization of the time
through dt.

5.4 Avalanche Duration Statistics

Figure 5.3: Avalanches duration statistics for different values n of time ∆t = ndt of analysis. µ =
1, σ = 1, θ = 0, N = 2000 neurons.

In Fig. 5.3 we found the cumulative probability P>(t) of the avalanche duration, we first
see that is a power law distribution. Every distribution has different power law index, and
it can be seen in the plot: changing the ∆t of analysis the distribution changes its index.

This is the same result find by Johnatan Touboul and Alain Destexhe [4] that we already
considered previously while we analyzed the probes against the hypothesis of criticality in
living systems.
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∆t 1dt 2dt 4dt 6dt 8dt 10dt 16dt
m −0.5± 1% −0.4± 3% −0.5± 2% −0.5± 6% −0.5± 5% −0.4± 5% −0.4± 3%

Table 5.1: Exponents of the power law distribution fit P>(t) ∼ tm of avalanche duration of Fig.5.3.

We want to follow the same procedure, but searching a new contribute for a better com-
prehension. This result is a typical case in which a non critical system generates power law
distributions. This system, as we will see, generates a plethora of power laws, although it
has nothing that could lead it to criticality!

5.4.1 Analytical Calculations

Starting from the calculations done in the chapter of the Poisson network, we can define
an analytical function which describes the avalanche duration probability.
In the case of the Ornstein-Uhlenbeck process there is a correlation between Q(λi) and
Q(λi−1) because of its Markovian nature: each step of the process depends only by the

previous step, and so on. In this case Q(λi|λi−1) = 1√
2πσ

e−
(λi−λi−1)2

2σ2 , and the probability
takes the following form:

P>(t) =
(

1√
2πσ

)n ∫ n∏
i=2

e−
(xi−xi−1)2

2σ2
[
1− e−αxi

] n∏
j=1

dxj (5.16)

This is an integral that poses a lot of difficulties to be solved, because of the correlation
between λis typical of Markov processes. If it could be solved, it would give us the analytical
probability function to be compared with the computational solution. However, until today
we have not found a method to solve it.

The particular case λ = const

It is interesting to verify, in a very particular case, that the correlations are the key
ingredient for obtaining power laws: this is the case of completely correlated λs, i.e. when
λ = const.
The equation

P>(n) =
∫ n∏

i=1

dQ(λi)[1− (1− λidt)N ], (5.17)

becomes for λ = const

P>(n) =
∫

dλ(1− e−αλ)nQ(λ) (5.18)

Now, we can consider exponential Q(λ):

Q(λ) = γe−γλ (5.19)

For λ = const we have

P>(n) = γ

∫ ∞
0

dλe−γλ(1− e−αλ)n (5.20)

Where α = Nδt,

= γ

∫ ∞
0

dλ exp(−γλ+ n ln(1− e−αλ)) (5.21)
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The integral is of the following type:

P>(n) =
∫ ∞

0

e−f(x) dx (5.22)

The integral is dominated by the minimum of the function f(x):

λmin =
1
α

ln
(

1 +
αn

γ

)
(5.23)

So we have
P (n) ∼ exp

(
−γλmin + n ln

(
1− e−αλmin

))
= (5.24)

= exp

(
−γ
α

ln
(

1 +
αn

γ

)
+ n ln(1−

(
1 +

αn

γ

)−1

)

)
(5.25)

Where ln
(

1−
(

1 + αn
γ

)−1
)
' − γ

αn
. The result is

P (n) '
(

1 +
αn

γ

)−γ/α
∼n� γ

α
n−γ/α = n−γ/Ndt (5.26)

The result is that in this particular case we obtain a power law. For this reason we are
tempted to think that the difference from a completely random Poisson network in the
Ornstein-Uhlenbeck rate are the correlations, and they are the indispensable to have a power
law relation statistics.

5.4.2 Mean Avalanche Duration

Figure 5.4: Mean avalanche duration for ∆t = 1dt. µ = 1, σ = 1, θ = 0, N = 2000 neurons. In
green it can be seen the fit line.

It is interesting to find what is the behavior of the mean duration of an avalanche given a
certain size. To find this relation, as for the Poisson neuronal model we calculated the mean
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∆t 1dt 2dt 4dt 6dt 8dt 10dt 16dt
m −0.6± 4% −0.5± 5% −0.3± 8% −0.3± 6% −0.3± 7% −0.2± 13% −0.2± 25%

Table 5.2: Exponents of the power law distribution fit P>(s) ∼ sm of avalanche size of Fig.5.6.

duration 〈t〉 of an avalanche, for a given s:

〈t〉 (s) =
1
n

n∑
i=1

ti(s) (5.27)

In Fig.5.4 it is reported the case for ∆t = 1dt, we can see the linear relationship in the
logarithm plot: it is a good power law relation 〈t〉 (s) ' sm with m = 0.70 ± 0.02 given by
the fit of the data.

In Fig.5.5 we can view how the mean avalanche duration changes with the changing of
∆t, it is fascinating to observe how the data asymptotically collapse on the straight line
given in Fig.5.4, as they all tend to have this type of behavior for big avalanche sizes.

Figure 5.5: Mean avalanche duration for different values of ∆t. µ = 1, σ = 1, θ = 0, N = 2000
neurons. In red it can be seen the fit line.

5.5 Avalanche Size Probability

We want to view what is the behavior or the probability P>(s) of having avalanche sizes
bigger than s.
To obtain this probability we calculate how many avalanches have size smaller than a fixed
s, we calculate P<(s) an then we take the complementary probability: P>(s) + P<(s) = 1.
In Fig.5.6 it is reported P>(s), we can view the strong power law behavior with finite size
scaling of the system.
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Figure 5.6: Avalanche size statistics for different values n of time ∆t = ndt of analysis. µ = 1, σ =
1, θ = 0, N = 2000 neurons.

5.6 Mean Avalanche Size

As we have done for the avalanche mean duration, we calculate the mean avalanche size
〈s〉 for a given duration t:

〈s〉 (t) =
1
n

n∑
i=1

si(t) (5.28)

Figure 5.7: Mean Avalanche size statistics for different values n of time ∆t = ndt of analysis.
µ = 1, σ = 1, θ = 0, N = 2000 neurons.

Also in this case we obtained a power law relation 〈s〉 (t) ' tm, all the curves have
exponent m = 1.48 ± 0.02, it is as the distribution behavior does not depend on the choice
of ∆t.
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5.7 Average Shapes of the Avalanches

Figure 5.8: Average neuronal activity at each time step for avalanches of duration 15dt, 25dt and
35dt.

As we have done for the exponential distribution, we want now to view the internal
structure of the avalanches, in particular for avalanches of duration 15dt, 25dt and 35dt. In
Fig.5.8 are described the avalanches of time durations T at each time step t = ndt, it can be
seen that every avalanche has the form of a “cupola”, or rather in the first time steps there
is an incrementing mean neuronal activity 〈s(t, T )〉 that reaches its maximum in the center
of the avalanche and then decreases in the final steps.
This mirrors the behavior of the rate λ(t) generated by the Ornstein-Uhlenbeck process. The
Ornstein-Uhlenbeck rate λ(t) is the reason for what the average shapes are different from
the exponential distribution’s case, in which every time step in the avalanche is completely
random and uncorrelated from the previous.

After having obtained the average shapes of some avalanches, we want no to collapse one
other the other. To do this, we report in Fig.5.9 the average neuronal activity for every time
step rescaled with T γ−1 as a function of the rescaled time steps t/T and it is found γ = 1.6.

Figure 5.9: The collapse of the curves in Fig.5.8 with γ = 1.6.
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5.8 Entropy and Energy

Following the method illustrated by Thierry Mora [53], now we search a signature of
criticality in this neuronal model.
To do this, we used the pattern in Fig.5.2A for different numbers of neurons N searching
for a relationship between the entropy and the energy of the neuronal system. We defined
a neuronal state σ̄ = (σ1, σ2, . . . , σN ), σi = {0,+1}, where σi = 0 if the neuron is switched
off and σi = +1 if it is switched on. We do this at every time step dt, in particular every
component σi tells about the neuron’s activity in the interval [t, t+ dt].
First, we calculated the most frequent state σ̄0 in the system and, once calculated its prob-
ability p0, we assigned to every state a certain energy that depends on its probability:

E(σ̄) = − ln
(
pi
p0

)
(5.29)

where pi is the probability to find the state σ̄i. The correspondent entropy of a state with

Figure 5.10: Entropy for neuron in function of the energy for neuron for different numbers of neu-
rons.

energy E has been evaluated calculating the number of states N (E) that have energy less
than E

S(E(σ̄)) = lnN (E(σ̄)) (5.30)

where
N (E(σ̄)) =

∑
s

θ(E(σ̄)− Es) (5.31)

and θ(x) is the Heaveside theta function

θ(x) =


1 x > 0

0 x < 0
(5.32)
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In most systems, including the networks that we study here, there are relatively few states
that have high probability, and many more states with low probability; mathematically,
N (E) is an increasing function. At large number of neurons N , this competition between
decreasing probability and increasing numerosity picks out a special value of E = E∗ , which
is the energy of the “typical” states that we actually see; E∗ is the solution to the equation

dS(E)
dE

= 1 (5.33)

For most systems, the energy E(σ) has only small fluctuations around E∗ and in this sense
most of the states that we see have the same value of log probability per degree of free-
dom. But hidden in the function S(E) are all the parameters describing the interactions
among the N degrees of freedom in the system. At special values of these parameters,
[d2S(E)/dE2]E=E∗ → 0, and the variance of E diverges as N becomes large. This is a
critical point, and is mathematically equivalent to the divergence of the specific heat in an
equilibrium system.
In Fig.5.10 we can view the behavior of the entropy for neuron S/N as a function of the en-
ergy for neuron E/N . In Fig.5.11 is reported the comparison between the results of Thierry
Mora [53] and the results of this neuronal model. We can appreciate that, although varying
the number of neurons, S(E)/N has not the typical asymptotic trend to dS(E)/dE = 1.
Unfortunately due to the lack of additional data we can not appreciate the total behavior.
We can deduce from the Fig.5.11 and calculate the slope of S(E), and assume that this
system as reported in Fig.5.10 does not exhibit criticality. It can be seen because the slope
of S(E), when the curves approach to the asymptotic behavior, is never unitary and has
a minimum value of 1.70 ± 0.01 for 10 neurons. So, this is very different from that which
provides the theory for a critical system.
For a better comprehension of the model, we would need much more data to view the com-
plete behavior of the system. To do this, there would be some useful models that can be
applied to get much more data from this neuronal model.

Figure 5.11: Comparison between the results for S(E) for the neuronal model with Ornstein-
Uhlenbeck rate λ(t) and the results of Thierry Mora [53].
Fig.A: Computed from the data of the Ornstein-Uhlenbeck neuronal model, with vary-
ing number of neurons: 10, 15, 20, 30, 50, 70, 90, 100, 150 and 200 neurons. The
minimum slope of the curves is equivalent to 1.70± 0.01.
Fig.B: Computed directly from the data used by Thierry Mora. Different colors show
results for different numbers of neurons; in each case are chosen 1000 groups of size N
at random, and points are means with standard deviations over groups. Inset shows
extrapolations of the energy per neuron at fixed energy per neuron, summarized as
black points with error bars in the main figure. Dashed line is the best linear fit to the
extrapolated points, S/N = (0.974± 0.02)(E/N) + (−0.005± 0.003).[53]

With this thermodynamic analysis we have demonstrated that this neuronal model is not
posed at a critical state, in spite of everything it exhibits all power law statistics. With this
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example we have viewed that a simple neuronal model, as the model with rate generated
by a Ornstein-Uhlenbeck process, can show power law statistics in a lot of its facets but at
the same time it is not posed at a critical state. For this reason, it is very important to
know something more about the system, because some living systems could show power laws
although they are not poised at a critical state.
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Chapter 6

Conclusions

Criticality is a particularly relevant phenomenon in the context of statistical mechanics,
with its characteristic power law distributions and free scale behavior. For some living
systems, it seems that the critical state is the best state to be placed on, and scientists have
hypothesized that being poised at such special state optimizes several tasks [52, 2]. On the
other hand, it has been proved that some non critical systems exhibit power law distributions
[4]. In this scenario, the question has been place: ”are living systems poised at a critical
state?”

Living organisms constitute an amazingly complex physical system, where internal inter-
actions play a fundamental role.

In the context of neural networks, we have shown that a system with Poisson-like neurons
with rate generated from an exponential distribution does not exhibit power law statistics,
because of the absence of interactions between its units. On the other hand, introducing
such interactions immediately generates power law statistics. Such power law distributions
are very special from the point of view of statistical mechanics, being the characteristic
fingerprint of a system poised at a critical point. From this perspective, it seems that
systems with a particular interaction pattern may be poised at a critical state, with the
consequent emergence of power law statistics.

However we have seen that, implementing the framework of Mora et al. [53] in our
neuronal model with a firing rate generated from a special Markov process, although many
power law statistics are present, the system is not critical at all. In fact, the model used has
nothing of critical in its structure.

We have seen that being critical implies the emergence of power laws, but the opposite is
not true. In fact, it is known that many non-critical systems exhibit power-law behavior [4].
It could be useful to analyze these power-law generating mechanisms under the framework
of “maximum entropy models” (see Appendix 2) that can infer the values of the fundamen-
tal parameters behind the dynamics. These models could be useful to understand if the
parameters related to that models are typical of a critical system or not, associating these
parameters to an Ising model and studying the system in this way.

We could be tempted to think that living systems are poised at a critical state because of
the existence of a lot of power laws in the models that describe them. What we have found
is that the relation (criticality ↔ Power laws) is not bijective and some particular systems
can exhibit power laws even if they are not poised at a critical state.

Furthermore, it is possible to see how the choice of the temporal window in the data
analysis is so influential in the values of the exponents of the distribution, that change
significantly with the variation of such binning, thus weakening the possibility of identifying
universality classes in the dynamics.
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The possible question for the future is: “how can we distinguish a critical system from a
non critical system from its parameters?” To have an answer we need a more precise analysis
of these systems, and to do this we need further effective models to understand better the
type of interactions that characterizes a critical system. Not all the living systems are poised
at a critical state, but there might exist a parameter that regulates and characterizes them
when they are critical.
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Appendix A

Appendix 1: Attractors in
Randomly connected networks

Neurons in the brain interact with each other in a heterogeneous and asymmetric way
producing complex neuronal activity. The dynamics is given by the equations of the network,
and it exhibits fixed-point behavior, limit cycles or high-dimensional chaos.
In these networks, connections between binary neurons are independently drawn from an
identical distribution, and the state of a network is updated simultaneously in discrete time
steps without thermal noise. Every initial configuration must evolve into an attractor, which
is a fixed point or a limit cycle. The typical length of the cycles was observed to grow expo-
nentially with the number of neurons n (such kinds of cycles are called chaotic attractors),
and the total number of attractors increases linearly with n.
These quantities were also analytically evaluated based on an empirical assumption that the
dynamics of the system loses memory of its nonimmediate past. Now we are gonna char-
acterize the attractors through a mean-field theory of the asymmetric neuronal network by
extending the state concentration concept.

A.1 The Model

Consider randomly connected neuronal networks of n neurons (units). Each unit in-
teracts with all the other units with an asymmetric coupling: we use Jij to represent the
coupling strength from unit j to i, it is independent of Jji and they follow the same Gaussian
distribution N(0, 1

n ).
The state of neuron i (i = 1, . . . , n) at time t+ 1 is determined by the following equation:

σi(t+ 1) = sgn [hi(t)] = sgn

 n∑
j=1

Jijσj(t)

 =


+1 (activate state)

−1 (silent state)

In a mean-field analysis, consider now the dynamical evolution of the overlap between two
states along a trajectory, expecting that its distribution across different realizations of Jij
contains information about the structure of attractors. Let us define the overlap of two
states, say σ̄(t) = σi(t)/i = 1, . . . , n and σ̄(s) = σi(s)/i = 1, . . . , n along the same trajectory
at different times t > s,

qts ≡
1
n

n∑
i=1

σi(t)σi(s) (A.1)
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The overlap takes the values ±1 respectively if two states are the same or one is the sign flip of
the other. The overlap takes discrete values in finite-size networks, but can be approximated
as a continuous quantity in the large network size limit. The dynamics of this quantity is
described by the mean-field theory, consisting of the dynamics of the overlap parameter and
its fluctuations defined over the ensemble of random Jij .
The stochastic dynamics of the overlap is well approximated for large n by a Markovian
process

Pt+1,s+1(q) '
∫
W (q|q′)Pts(q′)dq′

where Pts(q) ≡ Prob(qts = q). The transition probability is approximated for large n by a
simple binomial distribution

W (q|q′) =
(

n

n(1 + q)/2

)[
1 + ϕ(q′)

2

]n(1+q)/2 [1− ϕ(q′)
2

]n(1−q)/2

' (A.2)

' exp
[
n

(
H(q) +

1 + q

2
ln

1 + ϕ(q′)
2

+
1− q

2
ln

1− ϕ(q′)
2

)]
,

where ϕ(q) = (2/π) arcsin q and H(q) ≡ − 1+q
2 ln 1+q

2 −
1−q

2 ln 1−q
2 .

Note that this equation summarizes the probability that n(1 + q)/2 out of n neurons take
the same sign in states σ(t+1) and σ(s+1), given that n(1+q′)/2 out of n neurons take the
same sign in the previous steps. The binomial distribution suggests that the state overlap
for each neuron is approximately independent, occurring with probability

[
1+ϕ(q′)

2

]
.

The dynamics of the overlap becomes deterministic in the limit of large n, according to
Central Limit Theorem.
The previous Markovian process provides sequentially Pt+l,t(q) for t = 1, 2, . . . for some
positive time difference l = t− s given an initial distribution at t = 0, Pl, 0(q) = Prob(ql,0 =
q). Since the initial state σ̄(0) is randomly selected and independently from Jij , we can set
σi = 1, ∀i. In this case,

ql,0 =
1
n

n∑
i=1

σi(l)σi(0) =
1
n

n∑
i=1

sgn[hi(l − 1)]

If l is small, Pl,0(q) reflects the memory of the initial state and is hard to evaluate exactly.
However, if l is large, the mean-field approximation indicates that hi(l − 1)/i = 1, 2, . . . , n
follows approximately a zero-centered Gaussian distribution with unit variance. Pl,0(q) tends
for large l to a binomial distribution

(
n

n(1+q)/2

)
2−n, where the probability of ql,0 = ±1 is

approximately 2−n in the large-network limit, according to numerical simulations.
Now we demonstrate why the choice of the initial state σ̄(o) is completely arbitrary, and it
is not important to study the dynamics of the state overlap. Without losing generality, we
can set σi = 1, ∀i. Consider then the following transformation:

σ̃i(t) = σi(t)σi(0)

The state overlap is also described in terms of these variables, and the transformed variables
follow the same update rule as the original one,

σ̃i(t+ 1) = sgn

∑
j

J̃ij σ̃j(t)


except that the coupling matrix is given by J̃ij = σ(0)Jijσj(0) instead of Jij . The distribu-
tion is the same as that of Jij as long as σ̄(0) is chosen independently of Jij . Then, to study
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the dynamics of the state overlap, we can study the dynamics of the transformed variables
with the condition σ̃i(0) = 1/1 = 1, 2, . . . , n.

Now consider how different states concentrate in time, so taking in account the Markovian
dynamics it is important to note that it is completely characterized by the eigenvalues and the
eigenvectors of W (q|q′). Ranking eigenvalues in descending order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λn+1

(the number of possible values for q is n+ 1), the distribution of the overlap is expressed by
a weighted sum of the eigenvectors as

Pt+l,t(q) =
n+1∑
a=1

(λa)tAafa(q) (A.3)

where Aa is a set of initial coefficients that satisfies Pl,0(q) =
∑
aAafa(q). As time increases,

Pt+l,t(q) becomes progressively dominated by the components with large eigenvalues.
It is trivial to find that W has two eigenvectors of the form f1(q) = δq,1 and f2(q) = δq,−1

with degenerate eigenvalues λ1 = λ2 = 1. The third eigenvector f3(q) is a nontrivial one
and its eigenvalue λ3 ' 1− exp(−0.41n) exponentially approaches to 1 with n. The fourth
eigenvalue converges to λ4 ' 0.67 in the limit of large n. The half-decay time of the a-th
component is given by (λa)ta = 1/2.
The difference between the third and the fourth component indicates that, for large n, the
distribution of the overlap must approach to the quasistationary state P∗(q) ≡

∑3
a=1Aafa(q)

at around t4 ' 1.73 and stay unchanged until t3 ' 0.69 exp(0.41n). In particularly, the qua-
sistationary state is characterized solely by f3(q) except at q = ±1. When the mean-field
theory breaks down, the theory is not applicable once the third eigencomponent significantly
decays around t3.

We want now to characterize more in detail the quasistationary state in large n limit,
from which we extract the structure of the attractors. Introducing the auxiliary notation

αt+l,t(q) ≡
1
n

lnPt+l,t(q),

where
∫

exp[nαt+l,t(q)]dq = 1, according to normalization constraint. With this notation,
we can express the dynamics of the Markovian process through the following equation:

αt+l+1,t+1(q) =
1
n

ln
∫
W (q|q′)Pt+l,t(q′)dq′ ' (A.4)

' H(q) + max
q′

[
1 + q

2
ln

1 + ϕ(q′)
2

+
1− q

2
ln

1− ϕ(q′)
2

+ αt+l,t(q′)
]
,

where, assumed large n, in the second line has been applied the Laplace Method. The
well-defined asymptotic solution is

α(q) = H(q) + max
q′

[
1 + q

2
ln

1 + ϕ(q′)
2

+
1− q

2
ln

1− ϕ(q′)
2

+ α(q′)
]
,

with finite α(q) self-consistently provides the quasistationary state. The last equation
permits an arbitrary discontinuity at q = ±1, reflecting that these values are the sink of the
Markovian process.
Next we define the probability that two states σ̄(t + l) and σ̄(t) have overlap qt+l,t before
converging in the next step (qt+l+1,t+1 = 1) as βt+l,t(qt+l,t) ≡ 1

n lnProb(qt+l,t|qt+l+1,t+1 =
1), this index is expressed using the Bayes theorem as

βt+l,t(q′) =
1
n

ln
W (1|q′)Pt+l,t(q′)
Pt+l+1,t+1(1)

= ln
1 + ϕ(q′)

2
+ αt+l,t(q′)− αt+l+1,t+1(1) (A.5)
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Figure A.1: (Color online) The Markovian dynamics of αt+l,t and βt+l,t in time. (a) The index
αt+l,t characterizes the dynamics of distribution P (qt+l,t). The line color changes from
the lowest curve (the orange curve at t = 0, i.e., αl,0 or βl,0 ) to the yellow, and finally
to the gray (the top curve at t = 10, i.e., αl+10,10 or βl+10,10). (b) The index βt+l,t

characterizes the dynamics of distribution P (qt+l,t|qt+l+1,t+1 = 1). The result indicates
that states concentrate mainly from q ' 0.5 at the beginning but concentrate equally
from q ' 0.75 and q ' 1at the quasistationary state. We used αl,0(q) = H(q)− ln 2 as
the initial condition assuming no correlations at starting points. The results hold for
any l ≥ 1. [6]

This means that, for large values of n, most of the trajectories that lead to state concentration
had an overlap specified by the peak location of βt+l,t(q); in the case of randomly connected
neuronal networks it has two peaks, one at q = 1 and the other at q < 1(' 0.75) and become
comparable around t4. These dynamics of the state overlap reflects the specific structure of
attractors.

A.2 Statistical Properties of attractors

In this section we are gonna analyze the statistical properties of the attractors for ran-
domly connected neuronal networks, using the state concentration probability. pt+1,s+1 also
describes the probability of σ̄(t+ 1) = −σ̄(s+ 1). Hence,

pt+1,s+1 ≡ Prob(qt+1,s+1 = ±1|{qt′,s′ 6= ±1|t′ ≤ t, s′ < t′}).

This state concentration is well approximated using the Markovian approximation and so
the definition af α

pt+1,s+1 '
∫
qts 6=±1

W (qt+1,s+1=1|qts)P (qts) dqts = exp[nαt+1,s+1(1)] (A.6)

In the second passage we used that the result is not sensitive to exclusion of q′ = ±1 from
the integral for large n. This is because maxq′ is insensitive to its argument at q′ = ±1
unless the initial distribution is sharply peaked around q = ±1, which is not the case here.

From Markovian processes, the probability that the dynamics starting from σ̄(0) comes
back for the first time to σ̄(0) after l steps without visiting any sign flip of previously visited
states is described for large n by

P̃ (l) ≡ Prob({q1,0 6= ±1}, {q2,s 6= ±1|s = 0, 1}, . . . , {ql−1,s 6= ±1|s = 0, 1, . . . , l−2}, ql,0 = 1) =
(A.7)
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= (1− 2p1,0)
1∏
s=0

(1− 2p2,s) · · ·
l−2∏
s=0

(1− 2pl−1,s)pl,0 =

= pl,0 exp

(
l−1∑
t=1

t−1∑
s=0

ln(1− 2pt,s)

)
note that the factor

∏t−1
s=0(1−2pt,s) describes the probability that the state makes a transition

at time t to a state distinct from {±σ̄(s)|s = 0, 1, . . . , t − 1}. pl,0 describes the probability
of coming back to the initial state σ̄(0) after l steps.
Then, the probability that a certain state, say σ̄(0), belongs to a cycle of length l is given
for large n by

P (l) =


P̃ (l) (odd l)

P̃ (l) + P̃ (l/2) (even l)

In the case of odd l the result is found, in the other case of even l there are different

Figure A.2: There are two kinds of limit cycles if the cycle length l is even. (a) In the first kind
of cycles, the cycle closes without ever visiting the sign flip of previously visited states.
(b) In the second kind of cycles, the state first makes a transition to the sign flip of the
initial state after l/2 steps, i.e., σ(l/2) = −σ(0). If this happens, the cycle must close
after l steps. [6]

contributions. The first contribution is from cycles that close without ever visiting the sign
flip of their history, the second contribution is from from cycles that involves a transition
at l/2 to the sign flip of their initial state, and this guarantees that the cycles closes in l steps.

The next (and the final) step is to evaluate the state concentration probability pt,s. The
initial state concentration probabilities are simply given by

pl,0 ' 2−n ≡ pinit

in the large n and l limit. On the other hand, the quasistationary value for pt+l,t is

p∞ ≡ lim
t→∞

pt+l,t = exp[nα(1)]

for any l ≥ 1, where α(1) = −0.46. The state concentration quickly converges to the initial
value pinit ' exp(−0.69n) to the asymptotic value p∞ ' exp(−0.46n). We can then do the
following approximation

P̃ (l) = pinit exp

[
l−1∑
t=1

t−1∑
s=0

ln(1− 2p∞) +O

(
2tcl

p∞ − pinit
1− 2p∞

)]
'
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' pinit exp
[
l2

2
ln(1− 2p∞)

]
= pinit exp

(
− l

2

τ2

)
where tc ' 5 and τ ≡

√
−2/ ln(1− 2p∞) is the characteristic cycle length that grows expo-

nentially with the system size. The approximation used assumes

4tc
p∞ − pinit

−(1− 2p∞) ln(1− 2p∞)
� l

and l� 1− 2p∞
2tc(p∞ − pinit)

defines the range of l, that is roughly 10� l � exp(0.46n)/(2tc) at n > 10. Then, is a well
definition τ ' exp(0.23n) in this range.

The probability of observing a cycle of length l is given by P (l)/(lZ) with a normalization
factor Z =

∑2n

l=1 P (l)/l, where the probability is divided by l to provide the cycle length
probability since all states within a cycle share the same cycle length, so Z is the probability
of a state belonging to a cycle. The cumulative distribution of cycle length is similarly
obtained by

F (l) ≡ 1
Z

l∑
l′=1

P (l′)
l′
' 1
Z

[∫ l

1

P̃ (l′)
l′

dl′ +
∫ l/2

1

P̃ (l′)
2l′

dl′

]
The comparison of F (l) with the numerical results is shown in Fig.A.5(b), the discrepancy

Figure A.3: (Color online) (a) Probability distribution of cycle lengths. (b) Cumulative distribution
of cycle lengths. The numerical data is obtained from 1000 samples for n = 10, 500
samples for n = 15, and 200 samples for n = 17. The inset shows an enlarged view at
small cycle length. [6]

tends to become small for larger n.
The first moment and the second moment of the distribution can be computed analytically
as

< l >=
4
√
πτ [1− erf(1/τ)]
3
∫∞

1/τ2
e−t

t dt

< l2 >=
2τ2e−1/τ2∫∞
1/τ2

e−t

t dt

where erf(x) = 2√
π

∫ x
0
e−t

2
dt and

∫∞
1/τ2

e−t

t dt ' −γE − α(1)n in the large n limit, where
γE = 0.5772 is the Euler constant.
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Figure A.4: (Color online) The first (mean) and second moment of the cycle length distribution.
Theoretical predictions and numerical simulations are compared. The results are aver-
aged over many random realizations of the networks (from 1000 samples for n = 10 to
100 samples for n = 18). [6]

At last, another interesting quantity is the number of the attractive states Natt belonging
to all cycles (i.e. a cycle of length l has l attractive states), which is expected to grow
exponentially with the network size n. Theoretically this quantity is

Natt = 2n
2n∑
l=1

P (l)

and can be quantified as the grow rate (entropy density) s = limn→∞
1
n lnNatt In the large

n limit, we obtain s = −α(1)/2 which is compared with numerical results and as n increases,
s decreases approaching the asymptotic limit 0.2277.

Figure A.5: (Color online) (a) Linear dependence of the number of cycles on network size n. (b)
Entropy density of the attractive states defined by s = 1

n
lnNatt . As n increases, the

numerical data approach the theoretical prediction. [6]
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Appendix B

Appendix 2: Maximum Entropy
Models

Systems with many degrees of freedom have a dauntingly large number of states, which
grows exponentially with the system’s size, a phenomenon called curse of dimensionality.
For this reason, getting a good estimate of P (σ̄) from data can be impractical. The principle
of maximum entropy is a technique for dealing with this problem by assuming a model that
is as random as possible, but that agrees with some average observable of the data.
The real distribution Pr(σ̄) is approximated by a model distribution Pm(σ̄) that maximizes
the Gibbs formula for the entropy:

S[Pm(σ̄)] = −
∑
σ̄

Pm(σ̄) lnPm(σ̄) (B.1)

that satisfies
〈Oa(σ̄)〉m = 〈Oa(σ̄)〉r (B.2)

where Oa are a set of observables of the system and the brackets are the average taken with
the correspondent distribution (model or real).
The key point is that often average observables 〈Oa(σ̄)〉r can be estimated accurately from
the data, even when the whole distribution Pr(σ̄) cannot. Using the technique of Lagrange
multipliers, one can write the explicit form of the model distribution:

Pm(σ̄) =
1
Z
e

P
a βaOa(σ̄)

where βa are the Lagrange multipliers associated to the constraints and constitute the
fitting parameters of the model. For example, when the maximum entropy model (MEM) in
constrained only by the mean value of the energy, O(σ̄) = −E(σ̄), we recover the Boltzmann
distribution, Pm(σ̄) = Z−1e−βE(σ̄), where β = (kBT )−1.
More generally, the exponential form of the distribution to find suggests to define the energy
as

E(σ̄) = −
∑
a

βaOa(σ̄)

There exists a unique set of Lagrange multipliers that satisfies all the constraints, but finding
them is a computationally difficult inverse problem. Solving the inverse problem is equivalent
to minimizing the Kulballack-Leibler divergence between the real and the model distribution,
defined as

DKL(Pr‖Pm) =
∑
σ̄

Pr(σ̄) ln
Pr(σ̄)
Pm(σ̄)

(B.3)
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or qeuivalently, to maximizing the log-likelihood L that the experimental data was produced
by the model:

L = ln
M∏
a=1

Pm(σ̄a) = M
∑
σ̄

Pr(σ̄) lnPm(σ̄) = M{S[Pr]−DKL(Pr‖Pm)}

where, by definition, Pr(σ̄) = (1/M)
∑M
a=1 δσ̄,σ̄a . In fact one has:

∂DKL(Pr‖Pm)
∂βa

= 〈Oa〉m − 〈Oa〉r

This explicit expression of the derivatives suggests to use a gradient descent algorithm, with
the following update rules for the model parameters:

βa ← βa + η(〈Oa〉r − 〈Oa〉m)

where η is a small constant, the learning rate. The inverse problem is in fact broken down
into two tasks: estimating the mean observables within the model distribution for a given
set of parameters βa and then implementing an update rule that will converge to the right
parameter.



Appendix C

Appendix 3: Linear Relation
between Energy and Entropy
(using Zipf’s Law)

Let us denote by σ̄ the state of the system. Generally, σ̄ is a multi-dimensional variable
σ̄ = (σ1, σ2, . . . , σN ) in a M -dimensional space (M ≥ N) and σi can be a spin, a letter in
a word, the spiking activity of a neuron, an amino acid in a peptide chain, or the vector
velocity of bird in a flock.
Denoted P (σ̄) the probability of find the system in the state σ̄, formally we can define this
probability as a Boltzmann distribution:

P (σ̄) =
1
Z
e−E(σ̄)/kBT (C.1)

where kB is Boltzmann’s constant and Z the partition function. Without loss of generality
we can set the temperature kBT = 1, and Z to 1, which leads to the following definition for
the energy:

E(σ̄) = − logP (σ̄) (C.2)

With the availability of large datasets, it now seems possible to construct P (σ̄) directly
from the data, and to take the corresponding energy function E(σ̄) seriously as a statistical
mechanics problem. In this section we explore the consequences of that idea, by showing
the equivalence between Zipf’s law of language and the critical properties of the associated
statistical mechanics model.
There is a very old observation of a power law in a biological system, and this is Zipf’s law,
first observed by Auerbach in 1913. Zipf’s law refers to the distribution over states of the
system, in the same way that the Boltzmann distribution describes the distribution over
states of an equilibrium system. We can think of the state of the system as being a single
word σ̄ , and as texts or conversations proceed they sample many such states. If one orders
(ranks) words σ̄ by their decreasing frequency P (σ̄), Zipf’s law states that the frequency of
words P (σ̄) decays as the inverse of their rank r(σ̄):

P (σ̄) ∝ 1
r(σ̄)

(C.3)

This can be corrected either by introducing a cutoff corresponding to a finite vocabulary,
or by slightly modifying the law to P = r−α

ζ(α) , with α > 1 and ζ(α) is Riemann’s zeta
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function. Since its introduction in the context of language, Zipf’s law has been observed
in all branches of science, but has also attracted a lot of criticism, essentially for the same
reasons as other power laws, but also because of the controversial claim by Zipf himself that
his law was characteristic of human language.
Despite all our concerns, Zipf’s law is, in a certain precise sense, a signature of criticality.
Consider the density of states, obtained just by counting the number of states in a small
window δE. The density of states is defined as follows:

ρδE(E) =
1
δE

∑
σ̄

I[E < E(σ̄) < E + δE] (C.4)

where I is the indicator function. In the thermodynamic limit the density of states is the
exponential of the entropy, so

S(E) ≡ log ρδE(E) = Ns+ s1 (C.5)

where s1 is sub-extensive, that is limN→∞ s1/N = 0. For real data and finite N , the choice
of the bin size δE can be problematic, and it is useful to consider instead the cumulative
density of states:

N (E) =
∑
σ̄

I[E(σ̄) < E] =
∫ E

−∞
ρδE=0(E) dE′ (C.6)

In the case of large systems, the integral is dominated by the maximum of the integrand:

N (E) = N

∫ E/N

−∞
dε′ exp[N(s(ε′) + s1/N ] ∼ eNs(ε) (C.7)

so we got
logN (E) ∼ Ns(E/N) = S(E) (C.8)

The rank r(σ̄) previously defined is the cumulative density of states at the energy E(σ̄):

r(σ̄) = N [E = E(σ̄)] (C.9)

For large systems then in general we expect that

S(E(σ̄)) ∼ log r(σ̄) (C.10)

Using Zipf’s law
− logP (σ̄) = α log r(σ̄) + log ξ(α) (C.11)

S(E) =
E

α
+ . . . (C.12)

In words, Zipf’s law for a very large system is equivalent to the statement that the entropy
is exactly a linear function of the energy.

We will use this result further analyzing the activity of a neuronal network, searching
some clues of criticality behind the pattern of time activity. A perfect linear relation between
energy and entropy is very unusual, to see why let’s recall the canonical partition function:

Z(T ) =
∑
σ̄

e−E(σ̄)/kBT (C.13)

Where is introduced a fictitious temperature T (that can be posed as kBT ) = 1. We have

Z(T ) =
∫
ρ(E)e−E/kBT dE ∼

∫
exp[N(s(ε)− ε/kBT )] dε (C.14)
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For large N , the integral is dominated by the largest term of the integrand f(E) = N(s(ε))−
ε/kBT which is the following point:

0 =
df(E)
dE

= N(ds(E)− dε/kBT ) (C.15)

from which we obtain
ds

dε
=

1
kBT

(C.16)

In the special case of Zipf’s law, it is found that ds/dε = 1/α ∀E. This means that kBT = α
is a critical point, for any kBT < α the system freezes into a ground state of zero energy
and zero entropy, while for kBT > α the systems explores higher energies with ever higher
probabilities.
It is found that for Zipf’s law d2S/dE2 = 0 ∀E, making this law a strong signature of crit-
icality. A consequence of this is that the entropy is sub-extensive below the critical point,
S/N → 0.
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Appendix D

Examples of power-law
distributions

The ubiquity of power-law behaviour in the natural world has led many scientists to
wonder whether there is a single, simple, underlying mechanism linking all these different
systems together. Several candidates for such mechanisms have been proposed, going by-
names like “self-organized criticality” and “highly opti- mized tolerance”. However, the
conventional wisdom is that there are actually many different mechanisms for producing
power laws and that different ones are applicable to different cases. Now we see various
examples of power-laws in real systems [20]:

Word frequency:

Estoup [21] observed that the frequency with which words are used appears to follow a
power law, and this observation was famously examined in depth and confirmed by Zipf [22].
Panel (a) of Fig.D.1 shows the cumulative distribution of the number of times that words
occur in a typical piece of English text, in this case the text of the novel Moby Dick by
Herman Melville. Similar distributions are seen for words in other languages

Citations of scientific papers:

As first observed by Price [23], the numbers of citations received by scientific papers
appear to have a power-law distribution. The data in panel (b) are taken from the Science
Citation Index, as collated by Redner [24], and are for papers published in 1981. The plot
shows the cumulative distribution of the number of citations received by a paper between
publication and June 1997.

Web hits:

The cumulative distribution of the number of “hits” received by web sites (i.e., servers,
not pages) during a single day from a subset of the users of the AOL Internet service.

Copies of books sold:

The cumulative distribution of the total number of copies sold in America of the 633
bestselling books that sold 2 million or more copies between 1895 and 1965.
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Telephone calls:

The cumulative distribution of the number of calls received on a single day by 51 million
users of AT&T long distance telephone service in the United States. After Aiello et al. [25].
The largest number of calls received by a customer in that day was 375 746, or about 260
calls a minute (obviously to a telephone number that has many people manning the phones).
Similar distributions are seen for the number of calls placed by users and also for the numbers
of email messages that people send and receive [26, 27].

Magnitude of earthquakes:

The cumulative distribution of the Richter (local) magnitude of earthquakes occurring
in California between January 1910 and May 1992, as recorded in the Berkeley Earthquake
Catalog. The Richter magnitude is defined as the logarithm, base 10, of the maximum
amplitude of motion detected in the earthquake, and hence the horizontal scale in the plot,
which is drawn as linear, is in effect a logarithmic scale of amplitude. The power law
relationship in the earthquake distribution is thus a relationship between amplitude and
frequency of occurrence.

Diameter of moon craters:

The cumulative distribution of the diameter of moon craters. Rather than measuring the
(integer) number of craters of a given size on the whole surface of the moon, the vertical axis
is normalized to measure number of craters per square kilometer, which is why the axis goes
below 1, unlike the rest of the plots, since it is entirely possible for there to be less than one
crater of a given size per square kilometer. After Neukum and Ivanov [28].

Intensity of solar flares:

The cumulative distribution of the peak gamma-ray intensity of solar flares. The ob-
servations were made between 1980 and 1989 by the instrument known as the Hard X-Ray
Burst Spectrometer aboard the Solar Maximum Mission satellite launched in 1980. The
spectrometer used a CsI scintillation detector to measure gamma-rays from solar flares and
the horizontal axis in the figure is calibrated in terms of scintillation counts per second from
this detector.

Intensity of wars:

The cumulative distribution of the intensity of 119 wars from 1816 to 1980. Intensity
is defined by taking the number of battle deaths among all participant countries in a war,
dividing by the total combined populations of the countries and multiplying by 10 000. For
instance, the intensities of the First and Second World Wars were 141.5 and 106.3 battle
deaths per 10 000 respectively. The worst war of the period covered was the small but
horrifically destructive Paraguay-Bolivia war of 1932–1935 with an intensity of 382.4.

Wealth of the richest people:

The cumulative distribution of the total wealth of the richest people in the United States.

Frequencies of family names:

Cumulative distribution of the frequency of occurrence in the US of the 89 000 most
common family names, as recorded by the US Census Bureau in 1990. Similar distributions
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are observed for names in some other cultures as well but not in all cases. Korean family
names for instance appear to have an exponential distribution [29].

Populations of cities:

Cumulative distribution of the size of the human populations of US cities as recorded by
the US Census Bureau in 2000.
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Figure D.1: Cumulative distributions or “rank/frequency plots” of twelve quantities reputed to
follow power laws. (a) Numbers of occurrences of words in the novel Moby Dick by
Hermann Melville. (b) Numbers of citations to scientific papers published in 1981, from
time of publication until June 1997. (c) Numbers of hits on web sites by 60 000 users
of the America Online Internet service for the day of 1 December 1997. (d) Numbers of
copies of bestselling books sold in the US between 1895 and 1965. (e) Number of calls
received by AT&T telephone customers in the US for a single day. (f) Magnitude of
earthquakes in California between January 1910 and May 1992. Magnitude is propor-
tional to the logarithm of the maximum amplitude of the earthquake, and hence the
distribution obeys a (g) Diameter of craters on the moon. Vertical axis is measured per
square kilometer. (h) Peak gamma-ray intensity of solar flares in counts per second,
measured from Earth orbit between February 1980 and November 1989. (i) Intensity
of wars from 1816 to 1980, measured as battle deaths per 10 000 of the population of
the participating countries. (j) Aggregate net worth in dollars of the richest individuals
in the US in October 2003. (k) Frequency of occurrence of family names in the US in
the year 1990. (l) Populations of US cities in the year 2000.power law even though the
horizontal axis is linear.
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