
University of Padua

Department of Mathematics "Tullio Levi-Civita"

Bachelor’s Degree in Computer Science

Owning your data through Self-Sovereign Identity:
agents implementation for Verifiable

Credentials interaction

Bachelor thesis

Supervisor
Prof. Alessandro Brighente

Co-Supervisors
Prof. Mauro Conti
Dott. Mattia Zago

Graduating

Matteo Casonato

Academic Year 2021-2022



Matteo Casonato: Owning your data through Self-Sovereign Identity: agents imple-
mentation for Verifiable
Credentials interaction, Bachelor thesis, © September 2022.



Abstract

Nowadays, most of our data is owned by private companies, and everyone knows
everything about us because privacy online is not well preserved. Imagining a world
different from this is difficult, but things can change thanks to Self-Sovereign Identity
(SSI). SSI approach aims to bring credentials back to the actual owners, the people.
This is possible through cryptography and secure authentication layers (e.g., OAuth,
OpenIDConnect). The developed product embraces this philosophy and offers a so-
lution where the users are the holders, issuers, or verifiers of Verifiable Credentials
(VCs). Specifically, will be developed software agents who create, issue, verify, modify
or even revoke the credentials, leveraging an SSI Kit.

In this thesis, we propose a methodology to merge SSI off-chain (i.e., outside the
blockchain) operations with on-chain smart contracts. In particular, the job has been
divided into three macro stages: firstly, has been done a deep dive into the SSI tech-
nology, studying all of its primitives and analyzing the problem; secondly, has been
developed a Software Development Kit (SDK), which enabled us to dialog with an
SSI Kit (off-chain logic); in the meantime, my friend and co-worker Matteo Midena
developed the smart contracts (on-chain logic); finally, off-chain and on-chain solutions
has been merged in a proof of concept web application. One of the final features is
that the verifier (who inspects the validity of the credentials) can reflect on-chain the
off-chain verification results, saving time for the following examinations. Improvements
and additional features are needed to complete the software, but this constitutes a
good baseline for future works.

ii



“If you always do what you’ve always done,
you’ll always get what you’ve always got.”

— Henry Ford

Acknowledgments

First of all, I would like to thank the people who helped me during the writing of this
paper: my supervisor Prof. Alessandro Brighente and my co-supervisors Prof. Mauro
Conti and Dott. Mattia Zago.

Also, I want to thank my parents, who have always supported me, and never stopped
me from doing anything I truly wanted.

Finally, I thank my friends, who have eased these sometimes intense but very satisfying
years.

Padova, September 2022 Matteo Casonato

iii



Contents

1 Introduction 1
1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Internship description . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 The company . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Internship objectives and planning . . . . . . . . . . . . . . . . 6

2 State of the art and technology background 8
2.1 Technology concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Self-Sovereign Identity concepts . . . . . . . . . . . . . . . . . . 8
2.1.2 Blockchain concepts . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Libraries and Stack involved . . . . . . . . . . . . . . . . . . . . 15

2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Complete solution . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 SSI Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Smart contract suites . . . . . . . . . . . . . . . . . . . . . . . 18

3 Solution 20
3.1 Solution proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Solution development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Technologies and Tools . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 SSI Kit SDK development . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Web Application Proof of Concept . . . . . . . . . . . . . . . . 33

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Future developments . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Personal evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix 45

Acronyms 46

Bibliography 48

iv



List of Figures

1.1 University canteen use case . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Athesys logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Monokee logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Internship schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The triangle of trust: Prover (or Holder), Issuer, and Verifier (by Tykn[10]) 9
2.2 Example of Verifiable Credential (VC) . . . . . . . . . . . . . . . . . . 9
2.3 Example of Verifiable Presentation (VP) . . . . . . . . . . . . . . . . . 10
2.4 Example of a DID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 DID architecture overview and basic components relationship . . . . . 11
2.6 Example of DID document . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Simple blockchain visualization . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Only allowed users can participate in the network . . . . . . . . . . . . 14
2.9 Mary cannot see the private transaction sent from Alice to Bob . . . . 14
2.10 Restricted visibility of two Privacy Groups (light blue and blue) . . . . 14
2.11 Besu and Tessera pair nodes administrator can give access to other

Tenants, i.e., users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.12 EBSI interaction flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Monokee ideal scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Solution visual representation . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Snippet of the callAPI function. . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Revocation tokens functions snippet . . . . . . . . . . . . . . . . . . . 27
3.5 EBSI transaction timestamp example . . . . . . . . . . . . . . . . . . . 31
3.6 All files’ tests coverage percentages . . . . . . . . . . . . . . . . . . . . 32
3.7 Visual representation and statemets coverage . . . . . . . . . . . . . . 32
3.8 Branches, functions, and lines coverage details . . . . . . . . . . . . . . 32
3.9 The Holder page (Keys section) . . . . . . . . . . . . . . . . . . . . . . 34
3.10 The Issuer page (Issue section) . . . . . . . . . . . . . . . . . . . . . 36
3.11 The Verifier page (Verifications section) . . . . . . . . . . . . . . 37
3.12 The Contracts page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.13 The Diploma page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.14 The EBSI page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15 Monokee SDK could wrap other SDKs to enhance interoperability with

different blockchains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



Chapter 1

Introduction

This chapter introduces the problem: what we are analyzing, why this problem exists,
how it is defined, and how it can be resolved. Also we present the company, the
internship, and the work methodology.

1.1 The problem
As stated in the abstract, the main problem is preserving the ownership of people’s
data. In order to achieve this objective, we pass through problems like interoperability,
privacy safeguarding, law compliance, security, and others.

First, let us very quickly present Self-Sovereign Identity (we analyze it more thoroughly
in the following chapters): this concept digitalizes people’s credentials (e.g., their
identity card), introducing Verifiable Credentials. These, as the physical correspondings,
are held by the people, issued by some authorized entity, and verified by other bodies.

Assuming we can create a system where people hold their digital credentials:

1. Interoperability: how can these credentials be shown to and verified in the
same manner by different actors?

2. Privacy: can we demonstrate something without revealing it, preserving our
privacy this way?

3. Law compliance: is it possible to save on blockchain people’s data, or are we
going against specific privacy laws?

4. Security: are credentials susceptible to attacks from hackers trying to steal our
data?

Thanks to Self-Sovereign Identity, we can give a positive answer to all of these questions,
but as is often the case, we have to deal with compromises.

Worldwide scenario. The current situation is clear. Every time we find a new
website, we may want to interact with it, and to do so, we have to register to create
a profile. In this phase, we have to give our data to the company, and they will be
stored in their databases.

Problem identification. Let us now try to answer the previous questions to check
how the present context is managed:

1



CHAPTER 1. INTRODUCTION 2

1. Interoperability: we could have two cases. In the first one, we use a technology
that enables us to use our existing account on multiple websites, which integrates
this solution, for example, "Sign-Up with Google". Here our data is owned by
Google, which shares them (if we grant permission) with third parties, and no
one prohibits third parties from keeping our shared data saved. In the second
case, we must register each time if the third party does not integrate other
"Sign-Up with *" solutions. In both cases, third parties can collect our data
(in the first case, Google explicitly knows our interests, but there is a minimum
degree of interoperability). Also, in most cases, companies will let us create
multiple accounts without verifying our data (one exception to this is the use of
KYC).

2. Privacy: in some cases, we must show our data with complete transparency: for
example, the police stop us on the street and ask for our details. Nevertheless, let
us suppose we want to demonstrate something without revealing the details. For
example, someone has graduated and wants to demonstrate it without revealing
his final grade. We can do this thanks to a cryptography method called Zero-
Knowledge Proof [1]. However, this has not yet been implemented in most current
systems.

3. Law compliance: if we consider saving users’ data in blockchains, this problem
does not exist as we examine centralized systems which do not use them. By the
way, of course, there are privacy laws companies must follow (like GDPR).

4. Security: our information is stored in databases. With a data breach, considering
a centralized system, a malicious actor can access all users’ data at once. Sadly,
this happens often. So often that someone has made a website where anyone can
check if his data has been stolen online at least once[2].

Problem statement. With the above considerations, it is clear that the existing
systems work but could be significantly improved. In fact, interoperability enhancement
would mean privacy and security penalization. Compromises exist, but if the system is
well designed, they can be significantly reduced or at least moved to less dangerous
areas. Here, the need for a more secure way to store user data arises. A way that
intersects the analyzed points, bringing new power to people and reducing that of
companies. This is the Self-Sovereign Identity principle, which the developed solution
leverages.

Approaches. SSI concept[3] is pretty simple, as opposed to its (in development)
implementation. Everyone has different relationships or unique sets of identifying
information. This information could include birth date, citizenship, university degrees,
or business licenses. In the physical world, these are represented as cards and certificates
that the citizen holds in their wallet or a secure place like a safety deposit box. They
are presented when the person needs to prove their identity or something about it. Self-
sovereign identity (SSI) brings the same freedom and personal autonomy to the internet
in a safe and trustworthy identity management system. SSI means the individual
(or organization) manages the elements that make up their identity, and he digitally
controls access to those credentials, called Verifiable Credentials (or VCs). They are
digital representations of information that can be verified by a third party.



CHAPTER 1. INTRODUCTION 3

This is achievable by involving three participants:

1. Holder: the holder is an individual in the scenario, although it can also be an
organization/company. The holder is the entity that holds the credential1.

2. Issuer: the issuer is the institution, be it a company, certifier body, or govern-
mental organization, that has been awarded a level of trust to provide information
(i.e., a public body that issued a passport)

3. Verifier: the verifier is the individual, organization, company, or government
with whom the holder must prove information’s legitimacy and trustworthiness.

The Verifiable Data Registry (VDR) grants the trust: here are stored schemas and
identifiers (linked to the credentials) that the verifiers use to check data validity without
the issuer’s intervention.

To make a preliminary check of this solution’s viability, let us try to answer the previous
four questions, considering the new scenario:

1. Interoperability: with standards definition, credentials can be presented to
verifiers by holders, in the same manner each time. Examples of standards could
be credentials schemas (e.g., defining which fields are mandatory) and verification
policies (i.e., how the credentials are verified).

2. Privacy: as already stated, we can demonstrate something without revealing
its details with Zero-Knowledge Proofs. This technology has already found
applications and implementations in blockchains (e.g., mixers[4], zk-rollups[5], or
zk-games like Dark Forest[6]), so a decentralized system that leverages ZKPs is
buildable.

3. Law compliance: as can be read later in the paper, this is one of the most
challenging points of the full SSI integration with blockchains because of its
transparency nature. Everything is registered and immutable, so we must choose
what to register and what not. Again, compromises are needed.

4. Security: as users hold credentials, as long as they are not saved in centralized
servers, significant data breaches (targeting databases) would happen way less
often. The user is responsible for his information security, and secure communi-
cation protocols enhances it.

After quickly drafting these reflections, it can be said that SSI principles fit our problem
requests, so a solution that aims to solve them can be tried to be developed.
These analyzed points are well discussed in an article by Christopher Allen called "The
path to Self-Sovereign Identity", where he defines the "Ten Principles of Self-Sovereign
Identity"[7].

1.2 Basic use cases
After addressing the problem and trying to provide answers to the initial questions,
it is possible to start thinking about the first use cases. Obviously, the minimum

1Not always the holder and credential’s subject coincide: for example, someone could hold a
verifiable credential of his dog.



CHAPTER 1. INTRODUCTION 4

requirement is credentials involvement: each time a user has to demonstrate some
information, SSI could theoretically be leveraged.

In the first part of the internship, the focus has been (after the SSI primitives study)
on use cases. They can be grouped into these two macro-categories:

Academics. Here we can include all the uses about, for instance, university. A lot
of them can be thought about and analyzed, but the most interesting which have been
examined are these:

1. Exams and Diplomas emission: students can present their credentials (badge)
to the university to register for exams. Each exam result would be another
credential, and in order to access the diploma, he should present all the credentials
related to passed exams (possibly wrapping them in a "presentation"). The final
diploma would be another Verifiable Credential emitted by the university.

2. Scholarships requests: students can demonstrate they are eligible for facili-
tations by presenting their credentials to the university. This way, information
pieces are easily checkable and verifiable, and procedures would be faster and
less susceptible to errors. A "permit" credentials could be emitted, which would
grant the student access to facilitations (e.g., canteen, money, discounts...)

3. Discounts and university canteen: it is evident that comfortable functions
come into effect by processing the previous use case. Instead of creating accounts
with university e-mail, students should present their credentials to services that
offer facilitations, bringing interoperability and trust to each part. Figure 1.1
shows a possible scenario.

Figure 1.1: University canteen use case

Institutionals. Here we can place all use cases involving the participation of national,
European (or other unions), or global entities. Noteworthy examples are:

1. National ID: this new system would replace physical identity cards with Veri-
fiable Credentials. The municipality would issue them to the citizens, and the
latter would use them to access all the national services or other services which
request IDs.

2. European SSI system: this use case is currently in development and is called
European Blockchain Services Infrastructure (EBSI). The final aim is to introduce
the use of Verifiable Credentials in Europe and introduce new types of services
to European citizens or improve the current ones[8].



CHAPTER 1. INTRODUCTION 5

These are just some examples of the possible use cases that can be developed, considering
the model SSI offers. With the final product built during the internship (obviously,
this would need additional integrations but gives a solid base), those listed are all
viable scenarios.

1.3 Internship description
The previous sub-chapters clearly defined the problems and use-cases the product
aims to involve and realize. This one will describe the structure of the internship, the
company where it took place, and how the work was done.

1.3.1 The company
Officially, the company where the internship took place is called Athesys (from the
Latin version of "Adige", i.e., "Athesis"), but actually, the job was about their startup,
called Monokee.

Athesys

Athesys is a XaaS (Anything as a Service) integrator founded in 2010; they provide
services such as database management, business intelligence, software development,
security, and cloud.
In 2012 they began thinking about Identity and Access Management (IAM) solutions,
delivering a product that, among many things, provides a Single Sign-On functionality
across different domains. Figure 1.2 shows Athesys logo.

Figure 1.2: Athesys logo

Monokee

Monokee is born in 2017, and it is an innovative product-oriented startup that serves
as an IAM for centralized and decentralized digital identities. In fact, its solution is
hybrid: to the classic method (which involves using databases to store information), it
intends to add SSI techniques, and this is where the internship comes in. Figure 1.3
shows Monokee logo.

Figure 1.3: Monokee logo



CHAPTER 1. INTRODUCTION 6

1.3.2 Internship objectives and planning
It is dutiful to specify that, at least initially, the objectives were not crystal clear. The
overall concept of the internship itself was well defined, but the path to developing the
whole solution was not.
The main objective was to develop a software that enables the user to interact
with Verifiable Credentials. This type of software is named Agent, and users are
intended as holders, issuers, and verifiers.
Before the internship, the Monokee team searched for some existing solutions (un-
fortunately, not numerous) and found an SSI Kit developed by walt.id, a European
company focused on SSI.

So, in the beginning, the steps to follow were:

1. Deep dive into SSI technology and its primitives;

2. Analysis of the problem and understanding of what is needed and how to use it
for the final product;

3. Study of SSI Kit, provided by walt.id;

4. If it fits the needs, leverage it to develop the Agent (if not, develop a similar
software);

5. If possible, integration into a web application Proof of Concept (POC) with
blockchain’s smart contracts.

The path to pursue became more apparent during the first two steps (technology study
and problem analysis), so the final internship structure became this:

1. Requirements analysis: in this phase, we intensely studied and comprehended
SSI to understand the next steps. It has been divided into:

(a) Technologies study: understanding of the existing standards;
(b) Solution conception: definition of the following steps;

2. SDK Development: development of the library that serves as an abstraction
of the existent SSI Kit, allows it to be used on a web application. Divided into:

(a) Software development: code development of main entities;
(b) SSI Kit source code study: needed mostly because of documentation

lack;
(c) Testing: unit testing of the library main components;

3. POC Development: final part of the internship, where we developed a web
application that merges the SSI Kit SDK with smart contracts with SSI features.
Separated into:

(a) Software development: development of the web application (back-end
and front-end);

(b) SDK improvement for integration: improvement of the SDK to better
fit the web application needs;

(c) Debug/UI-UX improvement: final arrangements of the proof of concept.



CHAPTER 1. INTRODUCTION 7

In the following Gantt chart (Figure 1.4), we outline the timings of each step:

Figure 1.4: Internship schedule



Chapter 2

State of the art and technology
background

This chapter presents the pre-concepts needed to comprehend this paper’s content fully.
As is understandable from the introduction, they are about Self-Sovereign Identity and
blockchains. In addition, we analyze the state of the art to see what has already been
done and what can be improved.

2.1 Technology concepts
This section explains in detail SSI and blockchain technologies.

2.1.1 Self-Sovereign Identity concepts
Here we introduce the concepts of Self-Sovereign Identity (SSI) and its main components:
Verifiable Credentials, Verifiable Presentations and Decentralized Identifiers.

Self-Sovereign Identity

Self-Sovereign Identity is an approach to digital identity that gives individuals control
over their data. SSI addresses the difficulty of establishing trust in interaction and
allows people to interact in the digital world with the same freedom and ability to
trust as they have in the offline world.

To be trusted, a party in an interaction will present credentials to other parties, and
those parties can verify that the credentials come from an issuer they trust. This way,
the verifier’s trust in the issuer is transferred to the credential holder (or prover).
This basic structure of SSI with three participants is sometimes called the "triangle of
trust"[9] (shown in Figure 2.1), simply because you need an element of trust among
these entities for them to work together.

While this does not mean that there is a legal partnership or understanding between
the entities involved, it does mean that each of the entities is willing to examine the
credibility of the other, and this implicit trust is what constitutes this term.

8



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 9

Figure 2.1: The triangle of trust: Prover (or Holder), Issuer, and Verifier (by Tykn[10])

Verifiable Credential (VC)

A Verifiable Credential[11] can represent all of the same information that a physical
credential represents. The addition of technologies, such as digital signatures, makes
Verifiable Credentials more tamper-evident and more trustworthy than their physical
counterparts. Figure 2.2 shows a VC example.

Figure 2.2: Example of Verifiable Credential (VC)



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 10

Holders of Verifiable Credentials can generate Verifiable Presentations and then share
these Verifiable Presentations with verifiers to prove they possess verifiable credentials
with certain characteristics.
Both Verifiable Credentials and Verifiable Presentations can be transmitted rapidly,
making them more convenient than their physical counterparts when trying to establish
trust at a distance. The three main components of a VC are:

1. Metadata: cryptographically signed by the issuer. It describes the credential
properties, such as the issuer, the subject, the expiry date and time, a public key
to use for verification purposes, the revocation mechanism, and other information;

2. Claims: a statement made about a subject. Example: “Janice‘s date of birth is
01/01/1990.”

3. Proofs: a proof is data about the identity holder that allows others to verify
the source of the data (i.e., the issuer), check that the data belongs to (only) the
holder, that the data has not been tampered with, and finally, that the issuer
has not revoked the data.

Verifiable Presentation (VP)

A Verifiable Presentation[11] expresses data from one or more Verifiable Credentials
and is packaged in such a way that the authorship of the data is verifiable. If verifiable
credentials are presented directly, they become VPs. Data formats derived from
Verifiable Credentials that are cryptographically verifiable but do not themselves
contain Verifiable Credentials might also be Verifiable Presentations. Figure 2.3 shows
a VP example.

Figure 2.3: Example of Verifiable Presentation (VP)



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 11

The data in a presentation is often about the same subject but might have been issued
by multiple issuers. The aggregation of this information typically expresses an aspect
of a person, organization, or entity.

Decentralized Identifier (DID)

Decentralized identifiers[12] are a new type of identifier that guarantees a verifiable,
decentralized digital identity. A DID refers to any subject (e.g., a person, an organiza-
tion, a data model, an abstract entity...).
DIDs are decoupled from centralized registries, identity providers, and certification
authorities. Specifically, while other parties can be used to retrieve information about
a DID, the design allows the controller of a DID to demonstrate control over it without
requiring permission from other parties. Figure 2.4 shows a DID example. Figure 2.5
shows the structure of a DID document. Figure 2.6 shows a DID document example.

Figure 2.4: Example of a DID Figure 2.5: DID architecture overview and
basic components relationship

Figure 2.6: Example of DID document

DIDs are Uniform Resource Identifiers (URIs) that associate a DID subject with a DID
document that enables trusted interactions associated with that subject. Each DID
document may contain encrypted material, verification methods, or services, which
provide a set of mechanisms that allow a DID controller to demonstrate control of the
DID. Services enable trusted interactions associated with the subject of the DID. A
DID may provide the means to return the DID subject itself if the DID subject is an
information resource such as a data model.
A DID is a simple text string consisting of three parts: 1) the DID URI scheme



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 12

identifier1, 2) the identifier for the DID method2, and 3) the DID method-specific
identifier.

JavaScript Object Notation (JSON)

The VC, VP and DID document code examples showed above are all in JSON.
The JSON[13] is a lightweight data-interchange format. It is easy for humans to read
and write, and for machines to parse and generate. It is based on a subset of the
JavaScript Programming Language Standard ECMA-262 3rd Edition - December 1999.
JSON is built on two structures:

∗ A collection of name/value pairs. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

∗ An ordered list of values. In most languages, this is realized as an array, vector,
list, or sequence.

These are universal data structures. Virtually all modern programming languages
support them in one form or another. It makes sense that a data format that is
interchangeable with programming languages also be based on these structures.

2.1.2 Blockchain concepts
Here we introduce the main concepts of blockchain technology, essentials to understand
the POC development phase and some SDK features.

Blockchain

The blockchain is a shared, immutable database structured in the form of a chain of
blocks, each of which contains a set of information. In essence, blockchains represent
digital ledgers and perform different functions. Figure 2.7 shows a simple blockchain
visual representation.

Figure 2.7: Simple blockchain visualization

Physically it is composed of multiple nodes, i.e., computers that run the software
(Client) of the blockchain. When a user wants to interact with the blockchain, he

1The formal syntax of a decentralized identifier. The generic DID scheme begins with the prefix
did:.

2A definition of how a specific DID method scheme is implemented.



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 13

sends a transaction to one of the nodes. This transaction will then reach a pool
with all the transactions in the pending state, and the nodes that are dealing with
the consensus part will take care of updating the state of the blockchain by inserting
several transactions (meeting certain conditions) within the new block that will be
added to the chain.
Its main features are data digitalization, decentralization, disintermediation, transfer
traceability and programmability, transparency/verifiability, and immutability.

Permissionless and permissioned blockchains

We can divide blockchains into two main categories: permissionless and permissioned.
This division is based on the access to the network.

∗ Permissionless blockchains are the most popular model. As its name implies,
these networks allow access to anyone and are decentralized and public. Conse-
quently, everyone can run a node or connect to the blockchain.
This accessibility implies a trade-off on speed; these networks are often slower
than their permissioned counterparts, with fewer members, and transactions
are validated by everyone running a connected node. The primary consensus
mechanisms are Proof-of-Work (PoW) and Proof-of-Stake (PoS)3.
What is of most interest in this scenario is that in a permissionless blockchain,
everyone can interact, and data is public, so preserving privacy becomes
difficult.

∗ Permissioned blockchains are private networks that require permission to join.
They are usually run by a single organization or a consortium of organizations.
The main advantage of permissioned blockchains is speed. They are faster than
permissionless blockchains because they have fewer members and transactions
are validated by a smaller number of nodes. The main consensus mechanisms
are Raft and Practical Byzantine Fault Tolerance (PBFT).
The main peculiarity of permissioned blockchains is that they are not decentralized
and are not public. This means that only a limited number of people can interact
with the blockchain, and data is not public, so privacy can be preserved.

Ethereum

Ethereum[14] is a permissionless blockchain, i.e., open to anyone who wants to interact
with it: the trade-off is the introduction of fees, to be paid every time anyone wants to
change the state of the Ethereum Virtual Machine (EVM), to mitigate the problems
that the permissionless factor introduces (e.g., transaction spam). In the read-only case,
no fee needs to be paid. Anyone can then view what is happening in the blockchain and,
more importantly, use it. To do so, a user has to generate a wallet (i.e., an address
in the blockchain), transfer some funds to it from outside4 so that fees can be paid,
and start interacting with the decentralized applications that are already developed
or transfer funds to other wallets. In fact, one of the main features of Ethereum is
smart contracts: they are programs that run on the Ethereum blockchain. They are
a collection of code (functions) and data (state) that resides at a specific address on
the Ethereum blockchain.

3PoW involves hashing (mining) power, PoS voting (using blockchain coins) power, through
validator nodes.

4Usually from a centralized exchange, where cryptoc-urrencies can be traded for fiat currencies
like EUR or USD, or from another blockchain.



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 14

Hyperledger

Hyperledger Foundation[15] is a nonprofit organization that combines all the resources
and infrastructure needed to ensure thriving and stable ecosystems around open-source
software blockchain projects.
Hyperledger Foundation staff are part of the larger Linux Foundation team with years
of experience providing management services for programs for open-source projects.

Hyperledger Besu

Hyperledger Besu[16] is an Ethereum client designed to be enterprise-friendly for use
cases of public and private permissioned networks, which require secure transaction
processing and high performance.
The Besu blockchain, therefore, is EVM compatible: from the perspective of developers
and users, interaction with it will be very similar to interaction with Ethereum. It
places particular emphasis, however, on privacy and permissioning features; in fact,
only those who are authorized (i.e., those who own a connected node) can interact
with the system, which is the primary difference from Ethereum.

Figure 2.8: Only allowed users can partici-
pate in the network

Figure 2.9: Mary cannot see the private
transaction sent from Alice to
Bob

Figure 2.10: Restricted visibility of two Pri-
vacy Groups (light blue and
blue)

Figure 2.11: Besu and Tessera pair nodes
administrator can give access
to other Tenants, i.e., users.



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 15

Privacy is enabled both externally to the network and internally: through private
transactions, not all nodes can access certain information, and nodes that want to take
advantage of private transactions must have an associated Tessera node, which will
take care of the cryptographic part.
Even Privacy Groups can be created: those who do not belong to the group cannot
access particular data. In addition, another interesting feature is that of Multi-Tenant
management: multiple participants can use the same Besu and Tessera node through
a dedicated user system[17].
Figure 2.8 shows the blockchain access restriction, Figure 2.9 shows how Tessera nodes
work, as we analyze further, Figure 2.10 visually represents Privacy Groups and Figure
2.11 shows how Tenants are managed.

Hyperledger Fabric

Hyperledger Fabric[18] is an enterprise-grade, proven, and open Distributed Ledger
Technology (DLT) platform. It provides advanced privacy controls so that only the
shareable data is transmitted among network participants, known as "authorized".
It offers a modular architecture that makes available components (mechanism for
consensus, services for joining and managing blockchain members) that can be activated
within a blockchain with plug-and-play logic. It can be said to be very similar to Besu
(also a permissioned and privacy-oriented), with the big difference being that it is not
EVM compatible so the smart contracts will be written in languages such as Java and
Go instead of Solidity.

2.1.3 Libraries and Stack involved
After analyzing all the necessary pre-concepts, we can now introduce the last ones:
EBSI, which we use as VDR, and walt.id, the software suite that includes the SSI Kit,
which we leverage to develop the solution.

EBSI

European Blockchain Services Infrastructure (EBSI)[8] is a service infrastructure for
managing European citizens’ identity and education credentials. These use cases aim
to facilitate the mobility of students, young professionals, and entrepreneurs, as well
as ensure and verify the authenticity of digital information in different sectors. Figure
2.12 shows the EBSI interaction flow.

Figure 2.12: EBSI interaction flow



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 16

Its structure is rather complex, consisting of two essential layers: the bottom layer is
made up of EBSI blockchain, which holds all the credentials and smart contracts with
which one can interact with them, while the upper layer by a microservices architecture
and Application Programming Interface (API), which interface with the blockchain. In
practice, to talk to the EBSI blockchain (if you do not have a node), you must interface
through the microservices architecture and API. The blockchains used by EBSI are
Hyperledger Fabric and Hyperledger Besu.
Finally, in the blockchain are already deployed a series of smart contracts, serving as a
registry for DIDs (and DID documents) and for trusted applications, issuers, ledgers,
and policies.

walt.id SSI Kit

The walt.id[19] software suite, an open-source project developed by a European team,
consists of a set of kits that allows us to add SSI functionalities to our product.
Specifically, by leveraging the SSI Kit[20], it is possible to generate encrypted keys,
register and resolve DIDs, create, issue, submit and verify VCs, and much more. This
kit can be used via Command Line Interface (CLI) or REST API. Currently, the kit
supports did:key, did:web, and did:ebsi methods (the latter allows us to talk to the
EBSI blockchain). Since, by default, it dialogues with other APIs (e.g., EBSI API), if
we wanted to register, for example, a DID in a mainnet that has not yet been registered,
such as Sovrin, we would need to add the did:sov method to the list of supported
methods, also implementing the dialogue with Sovrin API. Doing this would require a
new module development, integrating it with the SSI Kit, and developing something
similar to what has been done for EBSI, although the complexity is unknown.

2.2 State of the art
Taking back the purpose of this paper, we want to build a hybrid solution, merging
SSI with blockchain smart contracts. Currently, within SSI, most blockchains are used
only as VDR (so to store DIDs, VC verification policies, schemas...).
The final software (POC) has to leverage a kit to offer SSI functionalities (SDK) and
combine these with blockchain features to automate verifications and possibly facilitate
certain issuing cases (smart contract suite).
That said, we can now illustrate what already exists and what has to be crafted.

2.2.1 Complete solution
"Complete solution" means a software that already merges an SSI SDK with a smart
contract suite. Unfortunately, during the first two weeks of research and situation
study, we did not find anything already built, probably because of the technologies
involved novelty.
As a result, we must find existent SDKs and smart contract standards to build the
desired solution and, if not, build everything from scratch.

2.2.2 SSI Kits
As already stated and introduced, SSI Kit by walt.id is a Swiss Army knife for SSI
primitives. However, it has been chosen after analyzing other existing solutions.
Initially, we were looking for a kit that provides multichain support (i.e., the possibility



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 17

to interact with more DIDs across multiple blockchains). Unfortunately, an equivalent
of the SSI Kit with multiple chains support does not exist, and every other found kit
supports at most one blockchain.
We now describe all the solutions we found and specify why we choose the SSI Kit by
walt.id.

Firstly, all the existing kits support the two main DID methods:

∗ did:key: a non-registry based method that generates a DID from a cryptographic
key. It is the simplest method;

∗ did:web: a method that generates a DID that enables the use of an existing web
domain as identifier.

Other than SSI Kit by walt.id, we found two SDKs developed by MATTR[21] and
Veramo Labs[22]. In Table 2.1, we outline the kit, which DID method is supported
other than the two discussed, the documentation status, and whether the kit is free to
use.

SSI Kit DID method Documentation Free to use Support

walt.id did:ebsi Improvable5 Yes Team, Slack

MATTR did:ion6 Good No E-mail

Veramo did:ethr7 Improvable Yes Discord

Table 2.1: Analyzed kits

To summarize:

∗ MATTR SDK adds support for did:ion method. Its biggest flaw is the lack of
support from the team: the only method to reach them is by sending an e-mail.
In addition, the kit is not free to use.

∗ Veramo SDK supports the did:eth method. We need to join the Discord server
(not so active) to ask for support, the SDK is free, but the documentation could
be improved.

∗ walt.id SSI Kit adds support for the EBSI blockchain. It is free to use, and the
documentation is improvable, but as the kit is in development, the team is very
active in the Slack channel (also, Monokee had direct contact with the walt.id
team).

After the research, we choose walt.id SSI Kit, mainly because the kit offered more
functionalities and was more customizable. Additionally, it supported EBSI, which
was a good "nice-to-have" for Monokee, as in contact with the University of Naples
Federico II to build a project interacting with the European blockchain.

5Improvable: not everything is documented so we must read the source code or contact the team
6DID method to interact with ION, a Bitcoin sidechain
7DID method to interact with Ethereum



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 18

Finally, the team was very active and chose to support us in developing the SDK for
walt.id SSI Kit.
Other than the listed resources, we found another two tools developed by The Decen-
tralized Identity Foundation (DIF)[23]: Universal Resolver and Universal Registrar.
Universal Resolver[24] is a tool that resolves DIDs to DID Documents. As the SSI
Kit can resolve one on-chain DID method (did:ebsi), we decided with Monokee to
integrate this in the SDK to enhance its functionalities, as the tool supports numerous
DID methods.
Universal Registrar[25] is a tool that allows on-chain DIDs registration and supports
multiple DID methods. However, after a short analysis, we decided not to integrate it
in the SDK, as a wrapper would not have simplified the interaction with the tool (that
is not very easy to use, as different methods require different and specific parameters).
This can always be done in future development if needed.

2.2.3 Smart contract suites
Regarding the use of smart contracts in the SSI environment, we first need to know
how they can be used.
The roles they can assume, following the SSI model, are two: issuer and verifier (holder
would not make much sense). The role we already know they can assume is a register
of DID and events like verification or revocation.

Let us now try to think about what should a smart contract need in order to be an
issuer or a verifier:

∗ Issuer: he has to be able to produce a signature that confirms who is issuing
owns the DID (to certify his identity), other than to generate a VC. This has to
be made with the private key of that DID, and everyone can verify the signer’s
identity with the public key. After a discussion with the Monokee team, we
decided to avoid implementing this unless we find something already done.

∗ Verifier: he has to be able to verify a VC, which means he has to take it in
input and verify it using the verification method described in the appropriate
field. Also, to enhance trust, it should sign the verification result with the private
key of its DID. Again, these functions could be hard to implement inside a smart
contract, so we came to the same conclusion.

Our research uncovered two libraries: one for the leading and most used patterns and
one for the SSI features.
The first one is an extensive collection of patterns and security standards developed by
OpenZeppelin[26]. It ranges from the simplest things, such as a counter standard
contract, to the most complex, such as Ethereum Request for Comments (ERC)
implementations (ERC-20 is one of the most famous, and it is the standard for
Ethereum fungible tokens) For example, we use the ERC-721 implementation (Non-
Fungible Token (NFT)) to implement one of the use cases.
The second one is a suite of smart contracts that aims to bring SSI on-chain. It is
called Verite[27] and is being developed by Centre (to give a background, Centre is the
company that developed USDC, one of the leading stablecoins in the cryptocurrency
market). As it stands, the library only contains a smart contract that serves as a
verification results registry, and we decided to take it and adapt it to our purposes.



CHAPTER 2. STATE OF THE ART AND TECHNOLOGY BACKGROUND 19

Since, during our research, we did not find on-chain issuer or verifier agents imple-
mentations, we decided to re-use already existing smart contract libraries and build
some auxiliary smart contracts we needed in order to implement on-chain registries to
at least make some actions more immediate (like verifications and revocations).



Chapter 3

Solution

Now we discuss the path we decided to take, how we developed the software, and the
technologies we leveraged. Then, we outline the final achievements and what can be
done to enhance the POC potential.

3.1 Solution proposal
After the conducted analysis in the first two weeks, we concluded that building a new
system from zero would have needed too much time and effort, and especially would
have required specific advanced skills we did not have.
First, we recall that we are building agents for Verifiable Credentials interaction.
In a full stack product, our solution is placed between the users, who use secure
communication protocols1, and VDRs2, which store the DIDs, credentials schema,
verification policies, and more.

Figure 3.1: Monokee ideal scenario

Figure 3.1 shows the ideal scenario, where Monokee will have its own DID method

1For example, OAuth or OIDC, as can be seen in the Figure 3.1
2For example EBSI, Sovrin or IBSI, blockchains used for SSI purposes

20



CHAPTER 3. SOLUTION 21

(did:monokee), through which will be generated identifiers that will hide (at least, as
far as the user is concerned) the blockchain where it is located.

The final software structure has three main components:

∗ Frontend: it allows the user to interact with the system’s core functionalities
and serves as an interface for every SSI Kit SDK function.

∗ Backend: it is needed for security, as we analyze further, and for cryptographic
functions that the frontend could not execute.

∗ SSI Kit SDK: it exposes all the SSI functionalities, and enables the user to
create keys and DIDs, issue VC, present them as VPs, and more.

∗ Smart Contracts: for what concerns SSI Kit integration, the contracts serve as
trusted verifiers and verification results register. Some contracts emit ERC-721
tokens, which let the user request the diploma, but they are not discussed here.

Figure 3.2 shows the system final architecture visualization.

Figure 3.2: Solution visual representation



CHAPTER 3. SOLUTION 22

3.2 Solution development
In the following sections, we discuss the technologies we used to build the solution,
and we explain the main functionalities of the system.

3.2.1 Technologies and Tools
Before explaining the solution, we list the languages and tools we leveraged to develop
it, for both SSI Kit SDK and POC.

Common tools and languages

∗ Typescript: a strongly typed programming language that builds on JavaScript.
It was chosen because the other Monokee modules were in Typescript, so it would
have been easier for the team to integrate. Also, it is very convenient for its
strongly typed nature;

∗ JSON: as already covered in Chapter 2, JSON is a lightweight data-interchange
format. It has been extensively used, mainly for credentials representation and
API calls;

∗ Node.js: a JavaScript runtime built on Chrome V8 JavaScript engine. It has
been used for code execution;

∗ npm: a package manager for the JavaScript programming language. It has been
used to manage the dependencies of the projects;

∗ Git: a free and open-source distributed version control system used for tracking
and collaboration purposes;

∗ Visual Studio Code: the Integrated Development Environment (IDE) we have
used for the solution development.

SSI Kit SDK3

∗ jest: a JavaScript testing framework. It has been used to test the SSI Kit SDK
components;

∗ waltid-ssikit: the library written in Kotlin/Java that provides the SSI func-
tionalities set. The developed SDK is a Typescript wrapper of this library;

∗ axios: a promise-based HTTP client for the browser and node.js, used to make
API calls to waltid-ssikit;

∗ uuid: a library used to generate RFC-compliant Universally Unique Identifiers
(UUIDs);

∗ rfc4648: a library used to encode and decode data in Base32 format;
∗ sha256: a library used to generate SHA-256 hashes;
∗ nacl: a library used to decode UTF8 strings;

3uuid, rfc4648, sha256, and nacl have been used just to generate tokens used for credentials
revocation, as can be reed here



CHAPTER 3. SOLUTION 23

Frontend

∗ React.js: a JavaScript library for building user interfaces. It has been used to
build the frontend;

∗ Chakra-UI: a simple, modular and accessible components library, used with
React.js to build the frontend.

∗ ethers: a library used to interact with Ethereum Virtual Machine compatible
blockchains;

∗ wagmi: a collection of React Hooks containing everything needed to start working
with Ethereum; it has been used to interact with the smart contracts;

∗ RainbowKit: RainbowKit is a React library that makes it easy to add the wallet
connection, e.g., for Metamask integration.

∗ GraphQL: the query language used by The Graph;
∗ ssikit-sdk: the developed Typescript SDK used to interact with the SSI Kit

library.
∗ The Graph: a decentralized protocol for indexing and querying data from

blockchains, starting with Ethereum. It makes it possible to query data that
is difficult to query directly. It has been used to query The deployed smart
contracts.

∗ smart contracts suite: a collection of smart contracts used to register the
verifications and the verification results on-chain.

Backend

∗ Express.js: a web application framework for Node.js. It has been used to build
the backend, where the cryptographic functions are executed; the frontend calls
them through API calls;

∗ ssikit-sdk: the developed Typescript SDK used to interact with the SSI Kit
library.

∗ jose: a library used to encode and decode JSON Web Tokens (JWTs), which
have been used to represent private and public keys;

∗ nodemon: a tool that automatically restarts the node application when file changes
in the directory are detected.

3.2.2 SSI Kit SDK development
In this section we describe the SSI Kit SDK development, which is the core of the
solution. The SDK is a Typescript wrapper of the waltid-ssikit library, which is written
in Kotlin/Java. The SDK exposes all the functionalities of the library, and it is used
by the frontend and the backend to interact with the SSI Kit.

walt.id SSI Kit

First, we need to know how to interact with it to understand how to build the SDK.
The kit gives us three options:

∗ CLI Tool: it offers a rich set of commands to run the entire functionality the
SSI Kit provides. The CLI tool can be used by running the Docker container or
the executable by the local build.



CHAPTER 3. SOLUTION 24

∗ Dependency (JVM): it can be used directly as JVM-dependency via Maven
or Gradle.

∗ REST API: it can be run as a service, so an application can access its function-
alities via REST API.

As we decided to build a Typescript SDK, the REST API is the most convenient
way to access the kit’s functionalities: if we chose CLI, every time we call an SDK
method, we should have fired a shell command translating the method execution, and
it would be the most uncomfortable option. The Dependency option, in addition, is
immediately discardable as we do not use Maven or Gradle (the application is not
Java/Kotlin based).
The REST API service, instead, is very immediate to integrate into an SDK. In fact,
we previously defined the SDK as a "wrapper" because the SDK methods (at least,
the great majority) forward their execution as an API call to the underlying kit. This
makes the interaction with the kit a lot easier for Javascript/Typescript application
based.

Let us now describe how the SSI Kit API is structured to explain later the choices
made for the SDK development.

Structure. The API is divided in five main components:

∗ Signatory: the component that manages the issuing and revocation of Verifiable
Credentials. Also, it can list the credential templates used to issue them;

∗ Custodian: gives a CRUD interface for keys, DIDs and credentials. Here also
can be generated VPs;

∗ Auditor: enables the user to manage verification policies, and verify any Verifi-
able Credential or presentation;

∗ ESSIF: enables the user to interact with EBSI blockchain (e.g., register a DID);

∗ Bonus: Core API: It is a set of functionalities chosen from the above com-
ponents. However, the team writes in the documentation that it will not be
maintained. For this reason we decided to not build a class for this component.

Assuming this, we can say it could be a good idea to build a class for each component
to organize the SDK better and separate the code.

SSI Kit Typescript SDK

After analyzing the SSI Kit structure, we can describe how we developed the SDK. As
stated above, we decided to build a class for each SSI Kit component to modularize
the SDK. In every class, we put a method corresponding to an API call.
For API calls, we use Axios, through which we perform a call in each SDK method. So
a good thing to do is to create a generalized function, called in every method, without
writing the same code where possible.

Figure 3.3 shows a snippet of the callAPI function, which is used to perform the API
calls.



CHAPTER 3. SOLUTION 25

Figure 3.3: Snippet of the callAPI function.

As input, it takes four parameters:

∗ type: the HTTP method to use; it can be "GET", "POST", "PUT" or "DELETE";

∗ port: the SSI Kit service needs to be run to use the SDK. It then makes available
four ports, which are used to access the different components of the SSI Kit. The
port parameter is used to specify which port to use; it can be

– 7001 (Signatory);

– 7002 (Custodian);

– 7003 (Auditor);

– 7004 (ESSIF);

– 8080 (Universal Resolver);

∗ url: the URL of the API call (e.g., "/v1/verify" to call the credentials verifi-
cation method of the SSI Kit);

∗ params: this is an optional parameter, which is used to pass additional info to
the call if needed.

The return type is generic, as there are many types of results (keys, DIDs, VCs,
booleans, and more). Also, it can be seen that the two parameters type and port
have user defined types. These types and the apiCall function can be found inside
the file utils.ts, which is a collection of types, functions and interfaces used by the
SDK, as we analyze in the next section.

For the most input/output object parameters of the API calls, we created interfaces to



CHAPTER 3. SOLUTION 26

type them. This is useful to have a better understanding of the parameters, to avoid
errors and to facilitate the use of the SDK.
For Verifiable Credentials, we did not, as their structure may change from istance to
istance. We simply treat them as JSON objects.
We could leave everything as a JSON object, but we decided to create interfaces for the
most important objects. Leaving them as JSON objects would have been a bad idea, as
it would have been difficult to understand what the parameters are and what they do.
The only pro would have been to avoid the creation of interfaces, but we think that
the cons are more important.

Structure. The SDK is composed of five main classes. Four are the classes corre-
sponding to the four previously described components of the SSI Kit, and the fifth
is the one dedicated to the Universal Resolver. Other than this, the SDK offers a
utils.ts file.

The SSI Kit SDK splits into three main folders:

∗ core: it contains the main classes of the SDK, which are the ones that interact
with the SSI Kit API; it also contains the utils.ts file, which is a collection
of types, functions, and interfaces used by the SDK, and the lib.ts file, which
contains two functions that perform multiple SDK calls (e.g., registerDIDOnEBSI
which performs the entire onboarding procedure of a DID in the EBSI blockchain);

∗ interfaces: it contains the interfaces used by the four SSI Kit class implemen-
tations;

∗ tests: it contains the tests of the SDK.

Everything (function, type, interface) with the export declaration gets exported by
the index.ts file, which is the entry point of the SDK.

Functionalities. After examining the SDK structure, the choices we made, and
some technical detail, we can now fully explain its functionalities.

∗ Signatory: this class serves as the issuer component in our SSI model. It
implements five methods:

issueCredential : issues a Verifiable Credential;
∗ Params: IssueCredentialRequest, which is an object where it is

specified the template ID (chosen by those provided by the SSI Kit),
the credential data and the proof configuration;

∗ Returns: a W3C Verifiable Credential in JSON format.

getVCTemplateIDs : returns the IDs of all the SDK templates;

∗ Returns: an array of strings, where each string is a template
ID (e.g., "UniversityDegree"); these templates are usable in the
issueCredential method.

getVCTemplate : it returns a specific template;

∗ Params: the templateId string;
∗ Returns: a Verifiable Credential template in JSON format.



CHAPTER 3. SOLUTION 27

isRevoked : checks if a Verifiable Credential is revoked;

∗ Params: the corresponding publicRevocationToken;
∗ Returns: the result of the check, which is an object with the fields
revoked (boolean) and token (string);

∗ Notes: the publicRevocationToken is findable inside the credent
ialStatus field of the VC. When an issuer issues a VC, the SDK
generates a private and a public revocation token. The private
has to be saved by the issuer, and can be used to revoke the creden-
tial. The public one is included in the VC, and everyone can use
it to check if the VC has been revoked or not. Figure 3.4 shows the
functions used to generate the revocation tokens (in utils.ts). The
baseToken is the private one, and is a concatenation of two random
UUIDs. The publicToken is the derived by the baseToken in this
manner: base32(sha256(baseToken)).replaceAll("=", "").

Figure 3.4: Revocation tokens functions snippet

revokeCredential : revokes a Verifiable Credential;

∗ Params: the privateRevocationToken, owned only by the issuer of
that VC;

∗ Returns: the revocation result, which is a boolean (if false, some-
thing went wrong during the process).

∗ Custodian: this class serves as the holder component in our SSI model. It
implements eighteen methods, and manages keys, DIDs and credentials:

getKeys : gets the keys in the holders’s wallet;

∗ Returns: an array of Key objects, which are the keys owned by the
holder.

getKey : gets a specific key in the holder’s wallet;



CHAPTER 3. SOLUTION 28

∗ Params: the keyId string, which is the key identifier;
∗ Returns: the corresponding Key object.

generateKey : generates a new key;

∗ Params: the keyAlgorithm string, that specifies the algorithm used
to generate the key; the supported algorithms are RSA, EdDSA_Ed25519
and ECDSA_Secp256k1;

∗ Returns: the generated Key object.

deleteKey : deletes a key from the holder’s wallet;

∗ Params: the key parameter, which can be the keyId string or the
Key object;

∗ Returns: the result of the deletion, which is a boolean.

exportKey : exports a key (private or public) in the desired format;

∗ Params: the key parameter (id string or Key object), the format,
which can be JWK or PEM, and exportPrivate (if true, the private key
is exported, otherwise the public one);

∗ Returns: the exported key in JSON format.

importKey : imports a key in the holder’s wallet;

∗ Params: the formattedKey parameter (JWK or PEM format),
∗ Returns: the keyId of the imported key.

getDIDs : gets the DIDs owned by the holder;

∗ Returns: an array of DID strings.

getDID : gets a specific DID owned by the holder, from local storage;

∗ Params: the did string;
∗ Returns: the corresponding DID JSON with related metadata (e.g.,
verificationMethod, used to verify the DID signature).

createDID : creates a new DID;
∗ Params: the method (key, web or ebsi), the key (object or id
string) used to generate the DID, and two optionals (for web method):
didWebDomain and didWebPath;

∗ Returns: the created DID string;
∗ Notes: the DID is in local, so in case of ebsi method is needed the
ESSIF class to register it on the blockchain.

deleteDID : deletes a DID from the holder’s wallet;
∗ Params: the DID (string or object);
∗ Returns: the result of the deletion, which is a boolean.

resolveDID : resolves a DID (in case of ebsi method, it is searched on-
chain);



CHAPTER 3. SOLUTION 29

∗ Params: the DID string;
∗ Returns: the resolved DID JSON with related metadata.

importDID : resolves and then imports a DID in the holder’s wallet;

∗ Params: the DID string;
∗ Returns: the import result, which is a boolean.

getCredentials : gets the credentials owned by the holder;

∗ Returns: an array of credentials in JSON format.

getCredential : gets a specific credential owned by the holder;

∗ Params: the alias of the credential (e.g., passport);
∗ Returns: the credential in JSON format.

getCredentialIDs : gets the credential IDs (aliases) owned by the holder;

∗ Returns: an array of credential IDs (strings).

storeCredential : stores a credential in the holder’s wallet;
∗ Params: the the credential’s desired alias and the credential
object;

∗ Returns: the storage result, which is a boolean.

deleteCredential : deletes a credential from the holder’s wallet;
∗ Params: the alias of the credential;
∗ Returns: the deletion result, which is a boolean.

presentCredentials : returns the presentation of one or more VCs;

∗ Params: the PresentationRequest object;
∗ Returns: the Presentation in JSON format;
∗ Notes: the PresentationRequest object is a union of two types,
PresentCredentialsRequest and PresentCredentialIDsRequest; in
this way, a user can choose to pass the credentials or their IDs; other
object fields are the holderDID, the verifierDID, and more.

∗ Auditor: this class serves as the verifier component in our SSI model. It
implements four methods:

getVerificationPolicies : gets the verification policies, usable to verify
the credentials;

∗ Returns: an array of JSON objects.

verifyCredential : verifies one or more VCs/VPs;

∗ Params: the VerificationRequest object, composed by two fields:
credentials and policies;



CHAPTER 3. SOLUTION 30

∗ Returns: the VerificationResponse object in JSON format (fields:
valid, results).

createDynamicVerificationPolicy : creates a verification policy usable
to verify the credentials;

∗ Params: the desired name, the DynamicPolicyArg object, and two
optionals: update (to make it updatable) and downloadPolicy (this
depends by DynamicPolicyArg);

∗ Returns: the creation result, which is a boolean.

deleteDynamicVerificationPolicy : deletes a verification policy (just if
it has been created by the user);

∗ Params: the name of the policy;
∗ Returns: the deletion result, which is a boolean.

∗ ESSIF: it enables the user to interact with EBSI blockchain (e.g., register a
DID);

onboard : first step required for a DID registration on EBSI;

∗ Params: the bearerToken, obtainable from the ebsi website, and the
DID (string or object) to onboard;

∗ Returns: the VC of the onboarding, or false if the onboarding fails.

auth : second step required for a DID registration on EBSI;

∗ Params: the DID (string or object) to auth;
∗ Returns: the authentication result, which is a boolean.

registerDID : last step required for a DID registration on EBSI;

∗ Params: the DID (string or object) to register;
∗ Returns: the registration result, which is a boolean.

getTimestampByID : gets the timestamp of a specific transaction;

∗ Params: the transactionID (string);
∗ Returns: the timestamp in JSON format;
∗ Notes: Figure 3.5 shows a timestamp example.



CHAPTER 3. SOLUTION 31

Figure 3.5: EBSI transaction timestamp example

getTimestampByTXHash : gets the timestamp of a specific transaction;

∗ Params: the txHash (string);
∗ Returns: the timestamp in JSON format.

∗ Universal Resolver: enables the resolution of DID registered in other blockchains
than EBSI;

resolveDID : resolves a DID;
∗ Params: the DID (string);
∗ Returns: the resolved DID in JSON format;
∗ Notes: to see the complete list of supported blockchains, refer to the

official repository.

∗ utils.ts: in these files can be found utilities used in the SDK, but that can also
be used by the users, such as:

– types, used to enhance the readability of the code, to avoid errors and to
make the SDK easier to use;

– consts, expecially for the API ports;
– interfaces, to define the structure of the objects used as input or output of

the API calls, this way the user can easily understand the structure of the
objects, and does not need to refer to the documentation each time;

– functions, such as callAPI (already explained) or getId, used by the SDK
to get the ID of a key or DID.

∗ lib.ts: here are placed functions that use multiple SDK methods also from
different classes. Only two functions have been written so far, and almost only
for testing purposes, but they can be used by the user as well, and there can be
added more in the future if needed.

https://github.com/decentralized-identity/universal-resolver


CHAPTER 3. SOLUTION 32

Problems and difficulties found. The most challenging thing about building
the SDK was understanding everything about the SSI Kit. The developer needed to
learn everything involved in the kit: the W3C standards for credentials issuing and
verification, the basics of cryptography, API interaction, and more.
Frequently, the API calls’ input or output parameters were not specified in the doc-
umentation (at least, the schema was specified but not the true meaning of specific
fields). This way, the only manner to go on was to analyze the SSI Kit source code
(this meant knowing a minimum of Kotlin) or contact the team on Slack.
Finally, a minor bug in the Custodian component was found during the SDK develop-
ment. It has been reported, and the team fixed it in a week.

Tests. The SDK’s main components have been tested, focusing on the SSI Kit four
classes (Custodian, Signatory, Auditor, and ESSIF).
The final coverage is decent but is not 100%, so it could be slightly improved by testing
untested branches.t could be slightly improved by testing untested branches.
In the underlying images, it can be seen (in this order) all files’ final coverage, the
statements coverage, and finally branches, functions, and lines coverage details.

Figure 3.6: All files’ tests coverage percentages

Figure 3.7: Visual representation and statemets coverage

Figure 3.8: Branches, functions, and lines coverage details

Documentation. The SDK documentation can be found at the link https://matteo
casonato.gitbook.io/ssikit-sdk/. Here can be seen the specifications of the SDK classes
and methods and some use examples.

https://matteocasonato.gitbook.io/ssikit-sdk/
https://matteocasonato.gitbook.io/ssikit-sdk/


CHAPTER 3. SOLUTION 33

3.2.3 Web Application Proof of Concept
After the SDK and smart contracts development, we merged the two macro components
into a basic web application as a proof of concept of the final solution.
The application serves as an interface for smart contract and SDK interaction, enabling
users to interact with Verifiable Credentials.

Structure

The whole application can be divided into two main components: the frontend, which
contains the central part of the logic, thanks to React.js, and the backend, used just
because some operations would not have been secure if done in the frontend, and
something could not be done here because of compatibility issues (browser do not
support all the cryptographic functions, as we explain later).

Frontend. The frontend breaks down into six main pages:

∗ Holder: provides a complete interface for the SDK Custodian class; this com-
ponent is divided into three sub-components:

Keys: here the user can manage the keys used to generate the DIDs. The
user can create a new key, export it, delete it and more;

DIDs: here the user can manage their DIDs. The user can create a new
DID, load it, delete it;

Credentials: here the user can manage their credentials. The user can
import a new credential, present it and delete it.

∗ Issuer: provides a complete interface for the SDK Signatory class; this compo-
nent is divided into two sub-components:

Issue: in this component, the user can issue a credential.

Revocations: in this component, the user can revoke a credential or check
if a credential is revoked.

∗ Verifier: provides a complete interface for the SDK Auditor class, and adds the
on-chain functionalities for the verifiers; it is divided into two sub-components:

Verifications: here is possible to verify credentials and put the result
on-chain as a verification record; also, verification records are searchable;

Verifiers: here the smart contracts owner can add new verifiers and search
them on-chain;

∗ Contracts: on this page, the smart contracts owner can register a new contract
as trusted or untrusted, and search them on-chain;

∗ Diploma: on this page, an hypothetical student can request a diploma request
NFT, and then consume it to gain access to the final diploma certificate (VC);

∗ EBSI: here an user can register a DID (generated with (ebsi) method) on the
EBSI network; serves as an interface for the SDK ESSIF class.

Finally, the application provides the user a web3[28] wallet connector, so he can interact
with the smart contracts where needed.



CHAPTER 3. SOLUTION 34

Backend. We needed to add a backend to our application for two important reasons:

1. Security: the frontend is not secure enough to handle cryptographic operations,
so we needed to move them to the backend; Specifically, when a verifier wants to
add a new verification record, he must create a signature with the private key of
its DID. The signature certificates that the real verifier is adding that record. As
the application must interact with the user’s private key, this must be done at
the backend level: if the private key reaches the frontend, it is no longer secure.
We avoided this by using the server as a REST API: when it has to sign, the user
passes its private key’s (public) ID. The backend creates the signature, and it is
passed to the frontend. The signature can also be verified with another method.

2. Compatibility: the browser does not support all the cryptographic functions we
need. In particular, we needed the elliptic curve Secp256k1, used for Ethereum
accounts generation. The DID generated with the ebsi method must be cre-
ated with a Secp256k1 key pair because when there is an interaction with the
blockchain, the EBSI API signs a message using the corresponding private key
(which has to be compatible with an Ethereum account).
Assuming this, if we use cryptographic functions from the frontend (using Re-
act.js), the application will interact with the W3C Web Cryptography API[29].
Unfortunately, this API does not support the Secp256k1 curve, so we have been
forced to move this logic to the backend.

Functionalities

We now examine what the two main components of the web application, frontend, and
backend, offer (obviously, the frontend offers functionalities to users, and the backend
serves only the frontend).

Frontend. Now we show all the functionalities provided by each previously explained
frontend’s page.

Holder. This page is divided into three sections: Keys, DIDs and Credentials;
Figure 3.9 shows the page screenshot.

Figure 3.9: The Holder page (Keys section)



CHAPTER 3. SOLUTION 35

In the Keys section inside the Holder page, a user can:

∗ Generate a key using a supported algorithm, by pressing the green button
Generate Key;

∗ Import a key in JWK format, yellow button;

∗ Export a key (public or private) in the desired format, by pressing the blue
button;

∗ Delete a key, by pressing the red button;

∗ Delete all the keys, by pressing the red button Delete All Keys;

In the DIDs section, a user can:

∗ Create a DID using a supported method and a previously generated key, by
pressing the button Create DID;

∗ Import a DID inserting its string, by pressing the button Import DID;

∗ Resolve a DID by pressing the button Resolve DID (remembering that did:key
are in local, and did:ebsi are resolved from the blockchain);

∗ View a DID loading it from the local storage by pressing the button in the table;

∗ Delete a DID (from local storage) by pressing the button in the table;

∗ Delete all the DIDs, by pressing the button Delete All DIDs;

In the Credentials section, a user can:

∗ Import a credential, giving it an alias, by pressing the button Import Credential;

∗ Present one or more credentials, selecting them in the credentials table and by
pressing the button Present Credential;

∗ View a credential loading it from the local storage by pressing the button in the
table;

∗ Delete a credential by pressing the button in the table;

∗ Delete all the credentials, by pressing the button Delete All Credentials;



CHAPTER 3. SOLUTION 36

Issuer. This page is divided into two sections: Issue and Revocations; Figure
3.10 shows the page screenshot.

Figure 3.10: The Issuer page (Issue section)

In the Issue section, an issuer can issue a credential by filling out the form and by
pressing the button Issue Credential. First, he must select a template, used for the
generation. Then, he must configure the credential, with the possibility of adding op-
tional fields. The credential is then generated and inserted in the Issued credential
field, and we can copy that and import locally the issued VC in the Holder page. In a
real use case, the credential would be sent to the holder using secure communication
protocols such as OIDC.

In the Revocations section, an issuer can revoke a credential by inserting the corre-
sponding private revocation token he generated when he issued the credential. The
revocation is off-chain, and we have not yet implemented the on-chain call (from the
frontend) that would change the verification record (however, the function is imple-
mented in the smart contract). Also, anyone can check if the credential has been
revoked by inserting the corresponding public revocation token.



CHAPTER 3. SOLUTION 37

Verifier. This page is divided into two sections: Verifications and Verifiers;
Figure 3.11 shows the page screenshot.

Figure 3.11: The Verifier page (Verifications section)

In the Verifications section, a verifier can:

∗ Create a verification policy by pressing the green button;

∗ Verify a credential and register the result on-chain as a verification record. To
do so, he must select at least a verification policy from the list. Before adding
the result on-chain, the verifier creates a signature with the private key of its
DID. This way, anyone can resolve their DID and use the public key (findable in
the credential’s verificationMethod field) to verify the signature;

∗ Search for an on-chain verification record.

In the Verifiers section, the contract owner can register on-chain a new verifier,
adding it to the trusted verifiers’ list. Anyone here can see the list of trusted verifiers
and search for a specific one. Here is where we manage to merge the off-chain and
on-chain solutions in the POC. Other functionalities can be added (e.g., on-chain
revocation after off-chain happened), but for time reasons, we have only implemented
the verification record registration.



CHAPTER 3. SOLUTION 38

Contracts. Figure 3.12 shows the page screenshot.

Figure 3.12: The Contracts page

On this page, the contract owner can register a contract as trusted or untrusted in the
on-chain list. Anyone can see the list of contracts and search for a specific one.

Diploma. Figure 3.13 shows the page screenshot.

Figure 3.13: The Diploma page



CHAPTER 3. SOLUTION 39

On this page4:

∗ A student can request an NFT usable by the user to officially request the diploma;

∗ The university sees all the NFT requests and can accept them by minting the
Request NFT to the student’s wallet;

∗ A student can approve the university to burn the Request NFT; after that, the
university can consume (or burn) the Request NFT and issue the VC diploma to
the student (issuing procedure is not implemented).

EBSI. Figure 3.14 shows the page screenshot.

Figure 3.14: The EBSI page

A user can register a DID on the EBSI network on this page. The user must insert
the bearerToken, obtainable on the EBSI official website. The interface simplifies the
registration process: as explained in the SDK section, the process needs three steps,
but the user sees only one.

4The details of this whole operation are not explained in this paper, as they are examination
subjects of another student’s thesis.



CHAPTER 3. SOLUTION 40

Backend. The backend is designed as a REST API. We used it to implement the
creation and verification of the signatures made by the verifiers when they register
on-chain a verification record.

The functions made available to the frontend are two:

∗ /createSignature : the verifier signs the verification record with its DID private
key. In the request body, the verifier must insert the JSON signatureRequest
object, which has two fields: keyId, where is specified the private key (public)
ID, and message, which is the message to sign (in this case, the verification
record); the call response is the signature in JWS format;

∗ /verifySignature : any user (from the frontend, if the interface is implemented)
can verify a signature. In the request body, the verifier must insert the JSON
verificationRequest object, which has three fields: verifierDid, where
specified the DID of the verifier who signed the message, and message, which is
the message to verify (also in this case, the verification record: if the verification
record data coincides with the decoded signature payload, then the signature
is valid and the verification record is valid too); if the signature is valid, the
call response is the signature payload (which should be equal to the verification
record), otherwise the function will throw an error.

Problems and difficulties found

Generally, we have not found crucial problems during the POC development. The only
difficulty was the signature creation; it took a while to find the real problem (i.e., the
Secp256k1 curve incompatibility with the W3C Web Cryptography API). Also, we
had to compromise: verifiers, to generate the signature, can only use DID created with
the ebsi method (so also with Secp256k1 curve). The /verifySignature has to be
revisited to enhance interoperability with other methods and encryption algorithms.

3.3 Discussion
In this last section, we discuss the last considerations about the final result, what can
be done to improve the solution, and some personal thoughts.

3.3.1 Achievements
We partially merged the off-chain and on-chain solutions. The verifier integration
works well, also from a security point of view, thanks to the signatures implementation.
Thanks to the existing standards (which are in development), we created a system where
users can own their credentials. We created an SDK that simplifies the interaction
with SSI primitives, a smart contract suite that reflects on-chain the off-chain events,
and the proof of concept web application gives an idea of what a user can do with the
final solution. So objectively, we reached a satisfying grade of requirements fulfillment,
as initially we were not sure about the possibilities.

3.3.2 Future developments
It is obvious to remark that we are only at the beginning of SSI solutions development.
Standards are being defined now, and developers do not know the right path to pursue



CHAPTER 3. SOLUTION 41

since it is an exploration. There can be many future developments for these solutions
and the SSI model, especially for seamless integration with permissionless blockchains.
Let us divide them into two categories: POC improvements and SSI next challenges.

POC improvements

Some of the possible POC improvements are:

∗ Revocations: they could be forced to be instantly reflected on-chain with a
smart contract call after the revocation is made on the off-chain side, as is already
done for verifications;

∗ Diploma issuance: when a user consumes the Request NFT, the university
should be able to see it from the frontend and issue the diploma in a guided and
easier way provided by the Issuer page;

∗ Issuer: the Issue section could be significantly improved from a UX perspective,
as it is now a basic form, easy to use just for a developer who knows what he is
doing;

∗ Secure communication protocols: a thing that we did not implement is the
secure Verifiable Credential exchange. Fortunately, walt.id kits provide API to
implement this feature, so it is possible to add it in the future also using those
kits;

∗ On-chain DID signature check: it could be helpful to move the signature
verification (now provided by the frontend through /verifySignature ) to the
smart contract level when a verification record is being created; in this way, the
transaction could be reverted if the signature is not valid (i.e., the verifier is not
signing with the DID private key), and no one should check if the signature is
valid as if it is on-chain it is valid;

∗ Sign with new DID methods: currently, the only DID method supported for
the signature creation, and so for the verifiers’ functions, is ebsi; at least should
be added the key method, to enhance the product usability.

∗ New DID methods: New DID methods should be added to widen the entire
product’s interoperability. An easy way to do this should be searching for already
existing SDKs (if not in Typescript/Javascript, then they should be wrapped
as the SSI Kit SDK) that support different blockchains (e.g., MATTR and
Veramo, explained in Chapter 2) and integrating them in the POC. Also could be
interesting to add a new wrapper level that includes all the wrappers, as Figure
3.15 shows.



CHAPTER 3. SOLUTION 42

Figure 3.15: Monokee SDK could wrap other SDKs to enhance interoperability with different
blockchains.

SSI next challenges

Developing the whole product, we studied the SSI model and its primitives. By the
way, Self-Sovereign Identity is far from ready for actual adoption. Standards are under
development, but this technology has enormous potential for sure.
In Chapter 2, we made a comparison between permissionless and permissioned
blockchains. For the time being, a significant part of SSI technologies works with
permissioned blockchains because it is easier to preserve privacy, as here transactions
are encrypted, and networks are accessible to trusted members. In permissioned
blockchains, the model seems can work. They fit well in federated and private en-
vironments where trust is needed and welcome (for example, in a private company).
However, what when we talk about public environments? Trust is also needed here,
but let us consider this scenario: EBSI is a federated blockchain with public purposes.
What happens if the majority of the nodes ally to attack the network? Or if it gets
hacked? Is this considered impossible? Why should people trust the authorities when
the network works by design, and people do not need to trust it? Attacking a network
of few nodes[30] (about thirty[31]) is more effortless than attacking, for example,
Ethereum (a permissionless blockchain), which has more than 420.000 validators[32].
So, if Self-Sovereign Identity wants to give back users their data, it should not force
them to trust other entities.
One of the main problems with bringing SSI on-chain is privacy preservation. Ev-
erything is public (unless encrypted) on permissionless blockchains, making moving
every SSI primitive on-chain challenging. A VC is off-chain because it is easier to keep
private, and moving it on-chain without proper encryption mechanisms would destroy
privacy. This is not a trivial problem, and researchers are trying to solve it. The latest
proposals are ERC-725 standard[33], zkKYC[34] and soulbound tokens[35].

ERC-725. It is a proposed standard for blockchain-based identity authored by Fabian
Vogelsteller, creator of ERC-20 and Web3.js. ERC-725 describes proxy smart contracts
that can be controlled by multiple keys and other smart contracts. ERC-735 is an
associated standard to add and remove claims to an ERC-725 identity smart contract.



CHAPTER 3. SOLUTION 43

These identity smart contracts can describe humans, groups, objects, and machines.
ERC-725 lives on the Ethereum blockchain.

zkKYC. Know Your Customer (KYC) is a process that is used to verify the identity
of a user. It is a crucial step in the onboarding process of a user in a financial institution,
for example in a bank or a crypto exchange. The problem is that KYC is a centralized
process, and the user has to trust the institution that is asking for his data. zkKYC
is a proposal that uses zero-knowledge proofs to verify the identity of a user without
revealing all of his data.

Soulbound tokens. They essentially are non-transferable NFTs (this is the name
reason). In this way, a municipality could mint for a citizen his ID as a soulbound NFT,
and the citizen could use it to prove his identity. The token is non-transferable, so it
cannot be stolen or used by someone else. The problem is that the token is on-chain,
and so it is public. To preserve privacy, Vitalik Buterin propose some solutions in his
blog post "Soulbound"[36]. One of them, is using ZK-SNARKs5 to prove something
related to the soulbound token.

As is understandable, zero-knowledge proofs will play an essential role in SSI progress,
and we are just at the beginning of the development. These are just some examples
that try to solve the biggest SSI problems, and as it is understandable, there is still
much work to be done.

3.3.3 Personal evaluation
On the technical side, I think we have done a great job. Initially, it was tough to
understand what we had to do, as we were helping the team understand it. The path
became evident when we completely understood SSI and what the team wanted to do
with the product. I am proud of the job we have done and the achievement we have
reached.
I am glad I chose such a project to develop because it seeks to solve current fundamental
problems. I am deeply interested in web3[28], and before this project, I had read about
Self-Sovereign Identity but never studied and understood its concepts and components
so in-depth.
Now I firmly believe this needs to be part of our future, and fortunately, many re-
searchers and developers are building the foundations. The Monokee team is part of
them, and I believe that their product could play a key role in the SSI landscape as, in
many circumstances, a hybrid solution is the best solution.

5Non-interactive zero-knowledge proofs are zero-knowledge proofs where the interaction between a
prover and a verifier can be simulated by the prover, making direct communication to the verifier
unnecessary and making proof generation possible to do off-line.



Conclusion

Taking up what was said in the abstract, we can confirm that the final product embraces
SSI concepts and tries to take it to the next level with the help of smart contracts.
The developed SDK enables the issuers to release Verifiable Credentials to holders who
own them and present them to verifiers who can confirm their validity. Thanks to
smart contracts, we can register on-chain verification results to make them public and
speed up the following verifications. The final proof of concept proves that off-chain
SSI primitives can be reflected on-chain. To do so, compromises are needed to preserve
privacy (e.g., using a permissioned blockchain as VDR simplifies things).

Our final product leaves room for numerous additional features, meaning that this was
not thought of as definitive software but as a beginning for the following implemen-
tations. We are confident that Self-Sovereign Identity will catch on sooner or later,
and the conclusive result of this thesis offers just a taste of what these innovative and
promising technologies could bring.

44



Appendix

∗ walt.id SSI Kit SDK repository: https://github.com/0xCaso/waltid-ssikit-sdk

∗ walt.id SSI Kit SDK documentation: https://matteocasonato.gitbook.io/ssikit-s
dk/

∗ Smart contract suite repository: https://github.com/mmatteo23/monokee_sma
rt_contracts_suite

∗ Proof of Concept repository: https://github.com/monokee-dev/stage-unipd-caso
nato-midena

45

https://github.com/0xCaso/waltid-ssikit-sdk
https://matteocasonato.gitbook.io/ssikit-sdk/
https://matteocasonato.gitbook.io/ssikit-sdk/
https://github.com/mmatteo23/monokee_smart_contracts_suite
https://github.com/mmatteo23/monokee_smart_contracts_suite
https://github.com/monokee-dev/stage-unipd-casonato-midena
https://github.com/monokee-dev/stage-unipd-casonato-midena


Acronyms

API Application Programming Interface. 16

CLI Command Line Interface. 16

CRUD Create-Read-Update-Delete. 24

DID Decentralized Identifier. 11

EBSI European Blockchain Services Infrastructure. 4, 15

ERC Ethereum Request for Comments. 18

EVM Ethereum Virtual Machine. 13

GDPR General Data Protection Regulation. 2

JSON JavaScript Object Notation. 12

JVM Java Virtual Machine. 24

JWK JSON Web Key. 28

JWS JSON Web Signature. 40

JWT JSON Web Token. 23

KYC Know Your Customer. 2, 43

NFT Non-Fungible Token. 18

OIDC OpenID Connect. 20

PEM Privacy Enhanced Mail. 28

POC Proof of Concept. 6

REST Representational State Transfer. 16

RFC Request for Comments. 22

SDK Software Development Kit. ii

46



Acronyms 47

SSI Self-Sovereign Identity. ii, 8

UI User Interface. 6

URI Uniform Resource Identifier. 11

UUID Universally Unique IDentifier. 22

UX User Experience. 6

VC Verifiable Credential. 2

VDR Verifiable Data Registry. 3

VP Verifiable Presentation. 10

W3C World Wide Web Consortium. 26

ZK-SNARK Zero-Knowledge Succinct Non-interactive ARguments of Knowledge.
43

ZKP Zero-Knowledge Proof. 3



Bibliography

Bibliographical references
[1] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of In-

teractive Proof Systems,” 1989. [Online]. Available: https://people.csail.
mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20Systems/The_
Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf (cit. on p. 2).

[34] P. Pauwels, “zkKYC: A solution concept for KYC without knowing your customer,
leveraging self-sovereign identity and zero-knowledge proofs,” 2021. [Online]. Avail-
able: https://bafybeie5ixj4dkim3lgivkw56us6aakh6bc3dhlsx5zzohrkzgo3ywqqha.
ipfs.dweb.link/zkKYC-v1.0.pdf (cit. on p. 42).

[35] E. G. Weyl, P. Ohlhaver, and V. Buterin, “Decentralized Society: Finding Web3’s
Soul,” 2022. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=4105763 (cit. on p. 42).

[36] V. Buterin, “Soulbound,” 2022. [Online]. Available: https://vitalik.ca/
general/2022/01/26/soulbound.html (cit. on p. 43).

Websites consulted
[2] “Have I been pwned?” [Online]. Available: https://haveibeenpwned.com/

(cit. on p. 2).

[3] “What is self-sovereign Identity?” [Online]. Available: https://sovrin.org/
faq/what-is-self-sovereign-identity/ (cit. on p. 2).

[4] “What Are Coin Mixers and How Do They Work?” [Online]. Available: https:
//decrypt.co/resources/what-are-coin-mixers-tornado-cash-how-do-
they-work (cit. on p. 3).

[5] “Zero-Knowledge Rollups,” [Online]. Available: https://ethereum.org/en/
developers/docs/scaling/zk-rollups/ (cit. on p. 3).

[6] “Announcing Dark Forest,” [Online]. Available: https://blog.zkga.me/
announcing-darkforest (cit. on p. 3).

[7] “The Path to Self-Sovereign Identity,” [Online]. Available: https://github.com/
WebOfTrustInfo/self-sovereign-identity/blob/master/ThePathToSelf-
SovereignIdentity.md (cit. on p. 3).

48

https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf
https://bafybeie5ixj4dkim3lgivkw56us6aakh6bc3dhlsx5zzohrkzgo3ywqqha.ipfs.dweb.link/zkKYC-v1.0.pdf
https://bafybeie5ixj4dkim3lgivkw56us6aakh6bc3dhlsx5zzohrkzgo3ywqqha.ipfs.dweb.link/zkKYC-v1.0.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4105763
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4105763
https://vitalik.ca/general/2022/01/26/soulbound.html
https://vitalik.ca/general/2022/01/26/soulbound.html
https://haveibeenpwned.com/
https://sovrin.org/faq/what-is-self-sovereign-identity/
https://sovrin.org/faq/what-is-self-sovereign-identity/
https://decrypt.co/resources/what-are-coin-mixers-tornado-cash-how-do-they-work
https://decrypt.co/resources/what-are-coin-mixers-tornado-cash-how-do-they-work
https://decrypt.co/resources/what-are-coin-mixers-tornado-cash-how-do-they-work
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://blog.zkga.me/announcing-darkforest
https://blog.zkga.me/announcing-darkforest
https://github.com/WebOfTrustInfo/self-sovereign-identity/blob/master/ThePathToSelf-SovereignIdentity.md
https://github.com/WebOfTrustInfo/self-sovereign-identity/blob/master/ThePathToSelf-SovereignIdentity.md
https://github.com/WebOfTrustInfo/self-sovereign-identity/blob/master/ThePathToSelf-SovereignIdentity.md


BIBLIOGRAPHY 49

[8] “EBSI,” [Online]. Available: https://ec.europa.eu/digital- building-
blocks/wikis/display/EBSI/Home (cit. on pp. 4, 15).

[9] “What is the Trust Triangle?” [Online]. Available: https://academy.affinidi.
com/what-is-the-trust-triangle-9a9caf36b321 (cit. on p. 8).

[10] “Verifiable Credentials,” [Online]. Available: https://tykn.tech/verifiable-
credentials/ (cit. on p. 9).

[11] “Verifiable Credentials Data Model v1.1 - W3C,” [Online]. Available: https:
//www.w3.org/TR/vc-data-model/ (cit. on pp. 9, 10).

[12] “Decentralized Identifiers (DIDs) v1.0 - W3C,” [Online]. Available: https:
//w3c.github.io/did-core/ (cit. on p. 11).

[13] “Introducing JSON,” [Online]. Available: https://www.json.org/json-
en.html (cit. on p. 12).

[14] “Ethereum,” [Online]. Available: https://ethereum.org/ (cit. on p. 13).

[15] “Hyperledger Foundation,” [Online]. Available: https://www.hyperledger.org/
(cit. on p. 14).

[16] “Hyperledger Besu,” [Online]. Available: https://www.hyperledger.org/use/
besu (cit. on p. 14).

[17] “Hyperledger Besu Docs,” [Online]. Available: https://besu.hyperledger.
org/en/stable/private-networks/tutorials/quickstart/ (cit. on p. 15).

[18] “Hyperledger Fabric,” [Online]. Available: https://www.hyperledger.org/
use/fabric (cit. on p. 15).

[19] “walt.id,” [Online]. Available: https://walt.id/ (cit. on p. 16).

[20] “walt.id SSI Kit Docs,” [Online]. Available: https://docs.walt.id/v/ssikit/
ssi-kit/readme (cit. on p. 16).

[21] “MATTR,” [Online]. Available: https://mattr.global/ (cit. on p. 17).

[22] “Veramo,” [Online]. Available: https://veramo.io/ (cit. on p. 17).

[23] “Decentralized Identity Foundation,” [Online]. Available: https://identity.
foundation/ (cit. on p. 18).

[24] “Universal Resolver repository,” [Online]. Available: https://github.com/
decentralized-identity/universal-resolver (cit. on p. 18).

[25] “Universal Registrar repository,” [Online]. Available: https://github.com/
decentralized-identity/universal-registrar (cit. on p. 18).

[26] “OpenZeppelin Contracts,” [Online]. Available: https://www.openzeppelin.
com/contracts (cit. on p. 18).

[27] “Verite,” [Online]. Available: https://www.centre.io/verite (cit. on p. 18).

[28] “Web3 Wikipedia Page,” [Online]. Available: https://en.wikipedia.org/
wiki/Web3 (cit. on pp. 33, 43).

[29] “Web Cryptography API - W3C,” [Online]. Available: https://www.w3.org/
TR/WebCryptoAPI/ (cit. on p. 34).

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://academy.affinidi.com/what-is-the-trust-triangle-9a9caf36b321
https://academy.affinidi.com/what-is-the-trust-triangle-9a9caf36b321
https://tykn.tech/verifiable-credentials/
https://tykn.tech/verifiable-credentials/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://w3c.github.io/did-core/
https://w3c.github.io/did-core/
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://ethereum.org/
https://www.hyperledger.org/
https://www.hyperledger.org/use/besu
https://www.hyperledger.org/use/besu
https://besu.hyperledger.org/en/stable/private-networks/tutorials/quickstart/
https://besu.hyperledger.org/en/stable/private-networks/tutorials/quickstart/
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/fabric
https://walt.id/
https://docs.walt.id/v/ssikit/ssi-kit/readme
https://docs.walt.id/v/ssikit/ssi-kit/readme
https://mattr.global/
https://veramo.io/
https://identity.foundation/
https://identity.foundation/
https://github.com/decentralized-identity/universal-resolver
https://github.com/decentralized-identity/universal-resolver
https://github.com/decentralized-identity/universal-registrar
https://github.com/decentralized-identity/universal-registrar
https://www.openzeppelin.com/contracts
https://www.openzeppelin.com/contracts
https://www.centre.io/verite
https://en.wikipedia.org/wiki/Web3
https://en.wikipedia.org/wiki/Web3
https://www.w3.org/TR/WebCryptoAPI/
https://www.w3.org/TR/WebCryptoAPI/


BIBLIOGRAPHY 50

[30] “EBSI - Terms and conditions,” [Online]. Available: https://api.preprod.
ebsi.eu/docs/terms (cit. on p. 42).

[31] “EBSI Presentation,” [Online]. Available: https://www.itu.int/en/ITU-
T/webinars/20201104/Documents/Emilio%20Davila-EBSI%20presentation%
20ITU%20ED%2004112020.pdf (cit. on p. 42).

[32] “Etheruem Staking Page,” [Online]. Available: https://ethereum.org/en/
staking/ (cit. on p. 42).

[33] “ERC-725 Ethereum Identity Standard,” [Online]. Available: https://erc725alliance.
org/ (cit. on p. 42).

https://api.preprod.ebsi.eu/docs/terms
https://api.preprod.ebsi.eu/docs/terms
https://www.itu.int/en/ITU-T/webinars/20201104/Documents/Emilio%20Davila-EBSI%20presentation%20ITU%20ED%2004112020.pdf
https://www.itu.int/en/ITU-T/webinars/20201104/Documents/Emilio%20Davila-EBSI%20presentation%20ITU%20ED%2004112020.pdf
https://www.itu.int/en/ITU-T/webinars/20201104/Documents/Emilio%20Davila-EBSI%20presentation%20ITU%20ED%2004112020.pdf
https://ethereum.org/en/staking/
https://ethereum.org/en/staking/
https://erc725alliance.org/
https://erc725alliance.org/

	Summary
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 The problem
	1.2 Basic use cases
	1.3 Internship description
	1.3.1 The company
	1.3.2 Internship objectives and planning


	2 State of the art and technology background
	2.1 Technology concepts
	2.1.1 Self-Sovereign Identity concepts
	2.1.2 Blockchain concepts
	2.1.3 Libraries and Stack involved

	2.2 State of the art
	2.2.1 Complete solution
	2.2.2 SSI Kits
	2.2.3 Smart contract suites


	3 Solution
	3.1 Solution proposal
	3.2 Solution development
	3.2.1 Technologies and Tools
	3.2.2 SSI Kit SDK development
	3.2.3 Web Application Proof of Concept

	3.3 Discussion
	3.3.1 Achievements
	3.3.2 Future developments
	3.3.3 Personal evaluation


	Appendix
	Acronyms
	Bibliography

