
DEPARTMENT OF INFORMATION ENGINEERING

MASTER THESIS IN COMPUTER ENGINEERING

Design and Evaluation of Joint Information
Retrieval and Recommender Systems

MASTER CANDIDATE SUPERVISOR

Simone Merlo Prof. Nicola Ferro
Student ID 2076747 University of Padua

CO-SUPERVISOR

Dott. Guglielmo Faggioli
University of Padua

ACADEMIC YEAR
2023/2024

DATE: 03/09/2024

Abstract

Information Retrieval (IR) and Recommender Systems (RecSys) represent two
fields of research that are constantly growing since the necessity to satisfy user’s
information needs in large collections of documents and resources is becoming
more and more important. IR and RecSys traditionally are two separate fields
and two distinct kind of systems. In this thesis, we explore how IR and Rec-
Sys can be joint together in order to better address users’ information needs. In
particular, we studied the literature of this innovative field, with a major focus
on the current state-of-the-art framework that is the Unified Information Access
(UIA) framework and we understood the major issues related to this domain.
To do this, we reproduced the work related to the UIA framework, we tested
UIA to seek for potential problems in terms of architecture and/or dataset pre-
processing and we performed several experiments, adapting andmodifying the
system, to give a proof of the found issues or to understand if we could improve
its performance.

Sommario

L’Information Retrieval (IR) e i Recommender Systems (RecSys) rappresentano
due ambiti di ricerca in costante crescita in quanto la necessità di soddisfare il
bisogno degli utenti di trovare informazioni in grandi collezioni di documenti e
risorse sta diventando sempre più importante. Tradizionalmente, l’IR e i RecSys
corrispondono a due ambiti separati e a due tipi di sistemi distinti. In questa tesi,
si esplora come l’IR e i RecSys possono essere combinati in modo da soddisfare
più efficacemente i bisogni dell’utente. In particolare, abbiamo studiato la letter-
atura riguardante questo ambito innovativo, focalizzandoci principalmente sul
sistema che attualmente è considerato essere lo stato dell’arte, ovvero lo Uni-
fied Information Access (UIA) framework e abbiamo capito i problemi e le man-
canze principali di questo dominio. Per fare tutto questo abbiamo riprodotto
il lavoro riguardante l’UIA framework, abbiamo testato il sistema per trovare
eventuali problemi in termini di architettura e/o di manipolazione dei dataset e
abbiamo svolto vari esperimenti, adattando emodificando il sistema, per fornire
una dimostrazione dei problemi trovati o per capire se potevamo migliorare le
sue prestazioni.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1

2 Related Work 3
2.1 Information Retrieval . 3

2.1.1 Information Retrieval Systems Purpose & architecture . . 3
2.1.2 Information Retrieval Methodologies 4

2.2 Recommender Systems . 6
2.2.1 Recommender Systems Purpose & Architecture 6
2.2.2 Recommender Systems Methodologies 8

2.3 Matching Models . 8
2.3.1 Term Weighting . 9
2.3.2 Vector Based Matching . 10
2.3.3 Probabilistic Matching . 11

2.4 Neural Approaches & Dense Retrieval 14
2.4.1 Neural Networks . 14
2.4.2 Neural Networks Training 16
2.4.3 Negative Sampling . 18
2.4.4 Cross Entropy Loss . 19
2.4.5 Dense Retrieval & Recommender Systems 20

vii

CONTENTS

2.4.6 Neural Models, Architectures and Attention 21
2.5 Joint Information Retrieval and Recommender Systems 28
2.6 Evaluation Measures . 29

3 UIA Framework 35
3.1 Functionalities . 36
3.2 Information Access . 36
3.3 Framework Architecture . 38

3.3.1 Request Encoding . 39
3.3.2 Item Encoding . 39
3.3.3 User History Selection & Encoding 40
3.3.4 Attentive Personalization Network 40

3.4 Framework Optimization . 42
3.4.1 Non-Personalized Pre-Training 43
3.4.2 Personalized Fine-Tuning 44

3.5 Datasets . 45
3.5.1 Original Dataset . 45
3.5.2 Keyword Search Dataset . 46
3.5.3 Query By Example Dataset 47
3.5.4 Complementary Item Recommendation Dataset 47
3.5.5 Training, Validation & Testing 48

3.6 Implementation Details . 49
3.7 Framework Evaluation . 50

4 Reproducing UIA 55
4.1 Experimental Setup . 56

4.1.1 Hyper-parameters Settings 56
4.2 Dataset Preprocessing Discrepancies 57
4.3 Reproducing Baselines . 58
4.4 Reproducing UIA . 59

4.4.1 Dataset Management . 59
4.4.2 Reproducibility Results . 60

5 Potential Issues of UIA and Experiments 63
5.1 Random Sampling . 64
5.2 Data Leakage . 65

5.2.1 New Queries . 68

viii

CONTENTS

5.2.2 Early Split . 71
5.3 No Functionality . 74
5.4 Isolated Tasks . 76
5.5 Merged Tasks . 79

5.5.1 Merged KS and QBE . 80
5.5.2 Merged QBE and CIR . 82
5.5.3 Merged KS and CIR . 83

5.6 Final Considerations . 85

6 Conclusions and Future Work 87

References 89

ix

List of Figures

2.1 Base structure of Information Retrieval (IR) systems. 4
2.2 IR example. 5
2.3 Base structure of Recommender Systems (RecSys). 6
2.4 RecSys example. 7
2.5 Neural Network. [19] . 15
2.6 Single neuron. [19] . 16
2.7 General transformer architecture. [18] 21
2.8 BERT use example. [2] . 22
2.9 Input tokens pre-process. [2] . 23
2.10 Attention structure. [18] . 24
2.11 Example of attention mask. 26
2.12 Multi-Head attention structure. [18] 27

3.1 UIA framework architecture with user history. [26] 38
3.2 UIA framework architecture without user history. 39
3.3 Attentive Personalization Network architecture. [26] 41

5.1 Amazon ESCI dataset processing. 72
5.2 UIA without the functionality ℱ 76
5.3 UIA framework for KS in isolation. 77
5.4 UIA framework for QBE in isolation. 77
5.5 UIA framework for CIR in isolation. 77
5.6 UIA framework when KS and QBE are merged. 81
5.7 UIA framework when QBE and CIR are merged. 82
5.8 UIA framework when KS and CIR are merged. 84

xi

List of Tables

3.1 Experimental results on the Lowe’s dataset. 53
3.2 Experimental results on the Amazon ESCI dataset. 53

4.1 Original and reproduced BM25 performance. 59
4.2 Original and reproduced UIA performance. 60
4.3 Original and reproduced UIA (with half of the data for QBE) per-

formance. 61
4.4 Original and reproduced UIA (without Phase 2) performance. . . 61

5.1 Size of the base datasets and of the new queries. 70
5.2 Performance of UIA (without Phase 2) on the new queries. 71
5.3 Performance of UIA (with Phase 2) on the new queries. 71
5.4 Performance of UIA (without Phase 2) on the new datasets. 74
5.5 Size of the training and test sets for all the tasks. 75
5.6 Performance of UIA (without Phase 2) with and without the func-

tionality. 76
5.7 Original performance of UIA when jointly and not jointly trained

on the Lowe’s dataset. 78
5.8 Reproduced performance of UIA (without Phase 2) when jointly

and not jointly trained on the Amazon ESCI dataset. 79
5.9 Size of the training sets for all the tasks. 80
5.10 Performance of UIA (without Phase 2) when the KS andQBE tasks

are merged. 81
5.11 Performance of UIA (without Phase 2) when the QBE and CIR

tasks are merged. 83
5.12 Performance of UIA (without Phase 2) when the KS and CIR tasks

are merged. 84

xiii

List of Algorithms

1 Build not seen QBE queries . 69
2 Build not seen CIR queries . 69

xvii

List of Code Snippets

5.1 Phase 1 sampling example. 64
5.2 Phase 2 sampling example. 65

xix

List of Acronyms

IR Information Retrieval

RecSys Recommender Systems

UIA Unified Information Access

KS Keyword Search

QBE Query By Example

CIR Complementary Item Recommendation

ANN Approximate Nearest Neighbor

APN Attentive Personalization Network

SE Search Engine

ML Machine Learning

DL Deep Learning

NNs Neural Networks

BERT Bidirectional Encoder Representations from Transformer

GPTs Generative Pre-Trained Transformers

nDCG Normalized Discounted Cumulative Gain

MRR Mean Reciprocal Rank

xix

1
Introduction

Every people has some information need that can be related to work tasks,
personal interests, entertainment or other reasons. Up to two decades ago the
way in which humans shared and had access to information was based on li-
braries and on word of mouth. However, when computers and the internet
started to become popular everything changed because these new technologies
allowed to share large amount of documents. In order to be able to look for some
specific piece of information inside the huge collection of documents (whichwas
constantly growing), some systems started to be created and used: Search En-
gines (SE). Later, people began to use the web also for commercial purposes and
this favored the development of Recommender Systems (RecSys).

Search Engines are mainly focused on obtaining the most suitable piece of
information from a collection of documents, based on the information need of
the user. Historically, these systems were though to work with text, thus, the
information needwas a short textual string, while the documents composing the
collection corresponded to textual documents. Nonetheless, nowadays SEs are
used everywhere and they are able to work also with images, videos and other
types of information. Google, Bing, DuckDuckGo are some classical example of
SEs but also when search for something inside some website (e.g. a product on
amazon) we are using a Search Engine. The research field that is concernedwith
studying how to effectively retrieve information is Information Retrieval (IR).

Recommender Systems, instead, are strongly based on the users, in fact, they
aim to suggest the most relevant documents from a collection based on the user
previous interaction. Nowadays, we use RecSys very frequently, in fact, when

1

we enter a website and perform some operations we are suggested with other
actions thatwe could do orwith other pages thatwe can visit. For example if you
watch a video on YouTube then the site recommends to you some other related
videos or if you buy a product on Amazon or eBay than the page shows to you
other similar products.

Today it is quite common that the results of IR systems and RecSys are com-
bined together, in fact, when you search for something on Google, in addition
to the standard IR results you obtain also some sections/boxes that contain the
output of RecSys. The results of these two types of systems are starting to be
displayed together in order to be able to provide the user with a more com-
plete answer to their information needs. Nonetheless, historically IR and RecSys
have been developed independently but since the nineties some researchers ar-
gued that there were several common aspects between these two research fields.
Based on these considerations, in this thesis we analysed the novel and promis-
ing topic of ”joint retrieval and recommendation” and in particular we focused
on the system/model that is the current state-of-the-art that is the Unified Infor-
mation Access (UIA) framework.

The aim of this thesis was to reproduce and deeply analyse the UIA frame-
work in order to discover its strengths and weaknesses so that it is possible to
fix/adapt it to use it as a starting point to develop working systems or some new
”joint IR and RecSys” models. In Chapter 2, we first focus on describing what
IR, RecSys and ”joint IR and RecSys” models are, how they work and how they
are evaluated. Furthermore, since the current state-of-the art models for both IR
and RecSys are based on neural networks and, in particular, on the architecture
of the transformer, in Chapter 2 we also introduce all these aspects and how they
can be applied to IR and RecSys. In Chapter 3 we deeply explain the architecture
and the optimization process of the UIA framework. In addition to that, in this
chapter we focus also on the dataset that we used and on how we processed it
in order to be able to use it to train the framework. In Chapter 4 we talk about
how we were able to reproduce the work of UIA paper and about the main dis-
crepancies between what was explained in the paper that introduced UIA and
what we were able to discover from the code shared by the authors. Eventually,
in Chapter 5 we explain the potential issues that we found in the architecture of
the framework and/or in the datasets used and we reported some of the tests
and the experiments that we performed.

2

2
Related Work

Nowadays everyone has some kind of information need that can be related
to some work task, entertainment or other fields. In the vast majority of cases to
address these necessities everyone relies on the web technologies and, in partic-
ular, the core components that are used are IR systems and RecSys.

In this chapter, in Sections 2.1 and 2.2 we will explain how IR and RecSys
work, respectively. In Section 2.3 we will present the most common matching
models for IR/RecSys. In Section 2.4 we will introduce the fundamental con-
cepts of dense retrieval and the related neural network concepts. In Section 2.5
we will provide an overview about the history, the motivations and the struc-
ture of joint IR and RecSys models. Eventually, in Section 2.6 we will report and
explain the main measures used to evaluate IR and/or RecSys.

2.1 INFORMATION RETRIEVAL

IR systems are widely diffused and are used everyday by millions of peo-
ple to find answers to their information needs. In Section 2.1.1 we describe the
main structure and purpose of such systems while in Section 2.1.2 we provide
an overview of the methodologies that are used in IR.

2.1.1 INFORMATION RETRIEVAL SYSTEMS PURPOSE & ARCHITECTURE

IR is mainly concerned with retrieving the most relevant documents given
some user input. In particular, as can be seen from Figure 2.1 an IR system takes

3

2.1. INFORMATION RETRIEVAL

Figure 2.1: Base structure of IR systems.

as input a query and a document collection. The query is usually a short tex-
tual string (sequence of keywords) which represents the information need of the
end-user while the document collection is a set of textual documents and cor-
responds to the set of all possible pieces of information available and in which
the user might be interested. In real applications the documents could be some
websites, some products or some other elements depending on the domain of
the application. The IR system provides in output a list of ranked relevant doc-
uments that contains the most relevant documents in the collection with respect
to the query provided in input, ordered from the most to the least relevant. A
classic example of IR is reported in Figure 2.2 which represents the everyday use
that we do of a Search Engine (SE) like Google, Bing etc.

2.1.2 INFORMATION RETRIEVAL METHODOLOGIES

IR systems need to retrieve the most relevant document in a collection ac-
cording to a user query (see Section 2.1.1 for more details). To do this, those sys-
tem apply some pre-processing to the document collection in order to be faster
and more accurate. In particular, this pre-processing transforms the document
collection into an index which represents a way of storing data that uses specific
data structures, allowing to reduce the time needed to perform search opera-
tions. When a user provides a query in input to the system, the query is also
processed in order to be able to use it to access the index and retrieve the most
relevant documents according to it.

4

CHAPTER 2. RELATED WORK

Figure 2.2: IR example.

To preform all these operations, there are several techniques that IR systems
can use. The main approaches adopted by IR systems are:

• Keyword based search.

• Vector based search.

In keyword based search the textual documents are split into tokens (that
could be single words or even sub-words), these tokens are processed, filtered
and then the index is created on the basis of those. The queries, when submitted
to the system, are processed in a similar way to the documents and to compute
the relevance of the documents to the queries some statistical metrics are used
like term frequency (tf) and inverse document frequency (idf) (see Section 2.3).

In vector based search the documents in the collection are processed and
turned into some vector representations, usually exploiting neural networks (see
Section 2.4). The index is then created on the basis of those vectors. The queries
are also mapped to some vector representations and to compute the relevance
of the documents to the queries, usually, metrics based on the spatial distance
between vectors are used (e.g. dot product, cosine similarity). Normally, the doc-
uments corresponding to the closest vectors to the one representing the query
are the most relevant (see Section 2.3).

5

2.2. RECOMMENDER SYSTEMS

2.2 RECOMMENDER SYSTEMS

RecSys are frequently used by every user but usually people do not perceive
that they are making use of those systems because, in the wast majority of cases,
RecSys don’t require an explicit user input. In Section 2.2.1 we describe the
main structure and purpose of such systems while in Section 2.2.2 we provide
an overview of the methodologies that are used by RecSys.

2.2.1 RECOMMENDER SYSTEMS PURPOSE & ARCHITECTURE

RecSys are mainly concerned with retrieving the most relevant products
given some input. In particular, as can be seen from Figure 2.3, RecSys take as

Figure 2.3: Base structure of RecSys.

input a product/item, some user history and a collection of products/items.
The product/item usually represents an element that has been clicked/bought
by the user and it is the item on the basis of which the system performs
the recommendation. The user history represents a list of items/products
with which the user had some interactions in the past (clicked or purchased
items). This element plays an important role since it is used to personalize the
recommendation based on the user previous interactions and this allows to
improve the performance. The products/items collection represents a set of
items available and in which the user might be interested. Furthermore, the
product/item can be both an element with which the user had the interaction

6

CHAPTER 2. RELATED WORK

that triggered the use of the recommender system or one of the products/items
present in the user history, thus, in most of the cases, the recommendation
is not performed because of an explicit user request but it is executed as a
consequence of some user action. RecSys provide in output a list of ranked
relevant products/items that contains the most relevant products/items in the
collection with respect to the product/item and user history provided in input,
ordered from the most to the least relevant.

Recommendation could have different purposes, in fact, for example, the rel-
evant products provided as output by RecSys could be product similar to the
item provided input (e.g. if we click on the product ”Iphone 15” the system rec-
ommends also ”Iphone 15 Pro”) or complementary to the item provided input
(e.g. if we click on the product ”Iphone 15” the system recommends also ”Iphone
15 charging cable”), thus RecSys should be designed considering these different
aspects of recommendation.

Figure 2.4: RecSys example.

An example of the output provided by RecSys is reported in Figure 2.4
which shows the results of the recommendation computed after we clicked
on a ”iPhone usb-c cable” product on Amazon. As can be seen from Figure
2.4, there are both similar (other cables) and complementary (power adapter)
recommended products.

The products/items used in recommendation could be very heterogeneous
depending in the domain of the application, for example, they can be films,
songs, physical products, web sites, etc..

7

2.3. MATCHING MODELS

2.2.2 RECOMMENDER SYSTEMS METHODOLOGIES

RecSys retrieve the most relevant products/items according to a produc-
t/item and the user history (see Section 2.2.1 for more details). To do this, those
system usually exploit neural networks to map the products into some vector
representations. The vectors representing the products in the collection are nor-
mally stored using specifics data structures in order to create an index that al-
lows to improve the accuracy and the performance. The products represent-
ing the user history are also converted into some vectors and stored in this for-
mat. When a product/item is provided in input to a recommender system it
is mapped into the corresponding vector representation and the vector is then
modified according to the user history. The most innovative techniques used for
personalization (tuning the vector representing the input product according to
the user history) make use of concepts like attention (see Section 2.4.6 for more
details). To compute the relevance of the products/items in the collection with
respect to the product/item provided in input, RecSys exploit the index con-
taining the vector representations of the entire collection and the personalized
version of the vector representation of the input item and, in particular, they
usually compare vectors using metrics based on the spatial distance (e.g. dot
product, cosine similarity). Usually, the products corresponding to the closest
vectors to the one representing the input item are the most relevant.

2.3 MATCHING MODELS

As we explained in Sections 2.1 and 2.2 in the pipeline of IR and RecSys the
requests (queries, items or products, queries in the following) representations
need to be compared with the representations of each of the documents/prod-
ucts (documents in the following) in the collection, in order to compute the rel-
evance scores (𝑅), which are then used to order the documents by relevance.
This process is called matching and can be done in several ways depending on
the application and/or on the way in which we represent the requests and the
elements in the collection. In Section 2.3.1 we report a traditional term weight-
ing technique while in Sections 2.3.2 and 2.3.3 we report two types of matching
procedures.

8

CHAPTER 2. RELATED WORK

2.3.1 TERM WEIGHTING

Term frequency (𝑡 𝑓) and inverse document frequency (𝑖𝑑𝑓) are twomeasures
that are widely used to compute some weights for each term in a collection.
These measures play a fundamental role because they are somehow related to
the matching techniques that have been developed, especially for the keyword
based approaches. The formulas used to compute 𝑡 𝑓 and 𝑖𝑑𝑓 are reported in
equations 2.1 and 2.2, respectively, where with 𝑖 we denote the 𝑖− 𝑡ℎ term in the
vocabulary containing all possible terms in the collection, with 𝑘 we refer to the
𝑘− 𝑡ℎ item in the collection, with 𝑡 we indicate the total number of unique terms
in the collection, with 𝑓𝑖 ,𝑘 we represent the frequency of term 𝑖 in document 𝑘,
with 𝑁 we denote the total number of documents in the collection and with 𝑛𝑖
we refer to the number of documents containing term 𝑖.

𝑡 𝑓𝑖,𝑘 =
count of term 𝑖 in document 𝑘
number of terms in document 𝑘 =

𝑓𝑖,𝑘∑𝑡
𝑗=1 𝑓𝑗 ,𝑘

(2.1)

𝑖𝑑𝑓𝑖 = log2
𝑁
𝑛𝑖

(2.2)

As can be seen from equations 2.3 and 2.2 the term frequency represents
the probability of finding term 𝑖 in document 𝑘 while inverse document fre-
quency represents the inverse of the fraction of documents that contain at least
one occurrence of term 𝑖. The equation used to compute the term weights is:
𝑤𝑖,𝑘 = 𝑡 𝑓𝑖 ,𝑘 · 𝑖𝑑𝑓𝑖 and since by using Equation 2.1 to compute 𝑡 𝑓 a term appearing
twice in the same document would be given twice the weight we define a new
way of computing 𝑡 𝑓 that is reported in Equation 2.3.

𝑡 𝑓𝑖 ,𝑘 =


1 + log2(𝑓𝑖 ,𝑘) if 𝑓𝑖,𝑘 > 0

0 otherwise
(2.3)

Thus, the final formula that will be used to compute the actual weight for term
𝑖 in document 𝑘 is reported in Equation 2.4.

𝑤𝑖,𝑘 =


(1 + log2(𝑓𝑖,𝑘)) × log2(𝑁𝑛𝑖) if 𝑓𝑖,𝑘 > 0

0 otherwise
(2.4)

9

2.3. MATCHING MODELS

2.3.2 VECTOR BASED MATCHING

When we represent the requests (queries) and the elements in the collection
by means of vectors (ordered sequences of numbers), there are several tech-
niques that can be used to compute the relevance score of a document in the
collection for a certain queries. Independently from the matching method that
is used, the requests representationsmust have the same size of the collection el-
ements representations. For example, we can use vectors having size (𝑉) equal to
the number of possible terms in the vocabulary (V), which contains all the terms
that a system can encounter, so that each element of the vector corresponds to
the number of times that each term appears in the query/document (normalized
by the total number of terms in the query/document).

In vector based matching the cosine similarity is frequently used to match
the vectors and Equation 2.5 shows how it can be computed. In the equation
we denote with 𝑞 the query (request), with 𝑑𝑘 the 𝑘 − 𝑡ℎ document (item) of the
collection, with ®𝑞 and ®𝑑𝑘 the corresponding vector representation, with 𝑞 𝑗 the
𝑗 − 𝑡ℎ element of the query vector and with 𝑑 𝑗 ,𝑘 the 𝑗 − 𝑡ℎ element of the vector
of the 𝑘 − 𝑡ℎ document in the collection.

𝑅(𝑞, 𝑑𝑘) = cos(𝜃(®𝑞, ®𝑑𝑘)) = ®𝑞 · ®𝑑𝑘
|| ®𝑞|| || ®𝑑𝑘 ||

=

∑𝑉
𝑗=1 𝑞 𝑗𝑑 𝑗 ,𝑘

(
√∑𝑉

𝑗=1 𝑞
2
𝑗)(

√∑𝑉
𝑗=1 𝑑

2
𝑗,𝑘)

(2.5)

Note that the cosine similarity can be used to compare vector of any size𝑉 , thus
also if the vector representations of the requests and of the elements of the col-
lection are obtained by using neural approaches or other methods. The cosine is
used because vectors close in space form a smaller angle than vectors that are far
away from each other and the cosine of a smaller angle is closer to 1 than the co-
sine of a larger angle.Therefore, a higher value of cosine similarity corresponds
to a higher relevance.

The standard dot product represents another method that is widely used to
match vectors andEquation 2.6 reports the formula that is used to compute it. As
it can be noticed, if the two vectors are normalized (meaning that their 2-norm
is equal to 1) then the equation corresponds to the one of the cosine similarity

10

CHAPTER 2. RELATED WORK

and, in that case, it inherits all the properties of the cosine similarity.

®𝑞 · ®𝑑𝑘 =
𝑉∑
𝑗=1

𝑞 𝑗𝑑 𝑗,𝑘 (2.6)

Another measure that is used to perform the matching is the squared dis-
tance (𝑑2) between the vectors, that is reported in Equation 2.7. Note that in this
case, differently from cosine similarity, the smaller the distance, the higher the
relevance.

𝑑(𝑞, 𝑑𝑘)2 = || ®𝑞 − ®𝑑𝑘 || 2 =
𝑉∑
𝑗=1

(𝑞 𝑗 − 𝑑 𝑗,𝑘)2 (2.7)

2.3.3 PROBABILISTIC MATCHING

Since IR and RecSys aim to retrieve the most relevant items (documents) in a
collection according to some request (query) provided in input, it is quite natural
to think that such systems should provide as answer to a request the ranking of
the items in the collection in order of decreasing probability of relevance, where
the probabilities are estimated on the basis of the data available to the system for
this purpose (training data). This approach is the one that is used by themajority
of the keyword based approaches in retrieval (see Section 2.1.2). In particular,
if we define with 𝑞 a query, with 𝑑 a document from the collection, with 𝑄 a
random variable which can have as values the set of all possible request, with
𝐷 a random variable which can have as values the set of documents (items) in
the collection and with 𝑅 a random variable with values 1 or 0 that expresses
relevance if it is set to 1 or irrelevance if it is set to 0, then we can denote with
P(𝑅 = 1|𝐷 = 𝑑, 𝑄 = 𝑞) the probability that a document is relevant for a certain
query and with P(𝑅 = 0|𝐷 = 𝑑, 𝑄 = 𝑞) the probability that a document is
irrelevant for a certain query. This way, the relevance of a document to a query
can be computed as reported in Equation 2.8 since the most relevant document
should be the ones that are more likely to be relevant.

𝑅(𝑑, 𝑞) = P(𝑅 = 1|𝐷 = 𝑑, 𝑄 = 𝑞)
P(𝑅 = 0|𝐷 = 𝑑, 𝑄 = 𝑞) (2.8)

If we define P(𝑟|𝐷, 𝑄) = P(𝑅 = 1|𝐷 = 𝑑, 𝑄 = 𝑞) and P(𝑟|𝐷, 𝑄) = P(𝑅 = 0|𝐷 =

𝑑, 𝑄 = 𝑞) and we consider a document as relevant for the query if and only if

11

2.3. MATCHING MODELS

P(𝑟|𝐷, 𝑄) > P(𝑟|𝐷, 𝑄) then applying the Bayes rule we can obtain the equations
2.9 and 2.10 and the rule to consider a document as relevant is the one reported
in Equation 2.11.

P(𝑟|𝐷, 𝑄) = P(𝐷|𝑟, 𝑄)P(𝑟, 𝑄)
P(𝐷) (2.9)

P(𝑟|𝐷, 𝑄) = P(𝐷|𝑟, 𝑄)P(𝑟, 𝑄)
P(𝐷) (2.10)

P(𝐷|𝑟, 𝑄)
P(𝐷|𝑟, 𝑄) >

P(𝑟, 𝑄)
P(𝑟, 𝑄) (2.11)

Since the right part of Equation 2.11 does not depend on the documentwe define
the relevance as: 𝑅(𝑑, 𝑞) = P(𝐷|𝑟,𝑄)

P(𝐷|𝑟,𝑄) . To estimate the probabilities P(𝐷|𝑟, 𝑄) and
P(𝐷|𝑟, 𝑄) there are several techniques that can be used and we report two of
them.

BINARY INDEPENDENCE MODEL

To estimate the probabilities according to the binary independence model
we introduce the following simplifications:

1. Documents (items) are represented by a vector of binary random variables
indicating the term occurrence .

2. Given relevance, terms are statistically independent.

3. The presence of a term in a document depends on relevance only if that
term is present also in the query.

Given those simplifications we can estimate the probabilities as reported in
equations 2.12 and 2.13 where 𝐷𝑖 represents the 𝑖 − 𝑡ℎ random variable in the
vector representing each document.

P(𝐷|𝑟, 𝑄) 1,2
=

∏
𝑖

P(𝐷𝑖 |𝑟, 𝑄) 3
=
∏
𝑖∈𝑄

P(𝐷𝑖 |𝑟) (2.12)

P(𝐷|𝑟, 𝑄) 1,2
=

∏
𝑖

P(𝐷𝑖 |𝑟, 𝑄) 3
=
∏
𝑖∈𝑄

P(𝐷𝑖 |𝑟) (2.13)

Then if we define 𝑝𝑖 = P(𝐷𝑖 = 1|𝑟) and 𝑠𝑖 = P(𝐷𝑖 = 1|𝑟) we can obtain Equation
2.14.

P(𝐷|𝑟, 𝑄)
P(𝐷|𝑟, 𝑄) =

∏
𝑖∈𝑄∩𝐷

𝑝𝑖
𝑠𝑖

∏
𝑖∈𝑄\𝐷

1 − 𝑝𝑖
1 − 𝑠𝑖 (2.14)

12

CHAPTER 2. RELATED WORK

With some manipulation from Equation 2.14 we can obtain Equation 2.15.

P(𝐷|𝑟, 𝑄)
P(𝐷|𝑟, 𝑄) =

∏
𝑖∈𝑄∩𝐷

𝑝𝑖(1 − 𝑠𝑖)
𝑠𝑖(1 − 𝑝𝑖)

∏
𝑖∈𝑄

1 − 𝑝𝑖
1 − 𝑠𝑖 . (2.15)

Since the last product in the Equation 2.15 does not depend on the document
we can ignore it and we can apply the logarithm. Therefore, we obtain Equation
2.16 that is used to compute the relevance scores.

𝑅(𝑞, 𝑑) ∼
∑

𝑖∈𝑄∩𝐷
log2

𝑝𝑖(1 − 𝑆𝑖)
𝑠𝑖(1 − 𝑝𝑖) =

∑
𝑖∈𝑄∩𝐷

log2
𝑝𝑖

(1 − 𝑝𝑖) −
∑

𝑖∈𝑄∩𝐷
log2

𝑠𝑖
(1 − 𝑠𝑖) . (2.16)

In the expanded version of Equation 2.16 the first sum represents the contri-
bution of terms appearing in relevant documents while the second sum repre-
sents the contribution of terms appearing in non relevant documents. Further-
more, we define with 𝑛𝑖 the number of documents containing the 𝑖 − 𝑡ℎ term,
with 𝑟𝑖 the number of relevant documents containing the 𝑖 − 𝑡ℎ term, with 𝑁
the total number of documents and with 𝑅 the total number of relevant docu-
ments, then 𝑝𝑖 and 𝑠𝑖 can be computed as reported in Equation 2.17 where 0.5
and 1 represent some smoothing factors and Equation 2.16 can be rewritten as
Equation 2.18 

𝑝𝑖 =
𝑟𝑖+0.5
𝑅+1

𝑠𝑖 =
𝑛𝑖−𝑟𝑖+0.5
𝑁−𝑅+1

(2.17)

𝑅(𝑞, 𝑑) ∼
∑

𝑖∈𝑄∩𝐷
log2

(𝑟𝑖 + 0.5)(𝑁 − 𝑛𝑖 − 𝑅 + 𝑟𝑖 + 0.5)
(𝑛𝑖 − 𝑟𝑖 + 0.5)(𝑅 − 𝑟𝑖 + 0.5) (2.18)

BM25

Okapi Best Match attempt 25 (BM25) [13] represents a well known and
widely used baseline in IR systems to compute the relevance score of a doc-
ument with respect to a query (performing the matching). BM25 is a more
sophisticated version of the binary independence model described above and
the relevance is computed according to Equation 2.19.

𝑅(𝑞, 𝑑) ∼ ∑
𝑖∈𝑄∩𝐷 log2

(𝑟𝑖+0.5)(𝑁−𝑛𝑖−𝑅+𝑟𝑖+0.5)
(𝑛𝑖−𝑟𝑖+0.5)(𝑅−𝑟𝑖+0.5) · (𝑘1) 𝑓𝑖

𝑘1((1−𝑏)+𝑏 𝑑𝑙
𝑎𝑣𝑑𝑙)+ 𝑓𝑖

· (𝑘2+1)𝑞 𝑓𝑖
𝑘2+𝑞 𝑓𝑖 (2.19)

13

2.4. NEURAL APPROACHES & DENSE RETRIEVAL

In Equation 2.19 the first fraction in the sum corresponds to the same weight
computed by the binary independence model and it represents a 𝑖𝑑𝑓 -like com-
ponent (see Section 2.3.1), the second fraction is a component that consider the
term frequency and is a 𝑡 𝑓 -like component (see Section 2.3.1), the third fraction
considers the query term frequency (𝑞 𝑓𝑖) and represents a 𝑡 𝑓 -like component
but for query terms. More in detail, the second component introduces two nor-
malization factors (𝑘1 which is typically set to 1.2 and b that is typically set to
0.75) and the variable 𝑑𝑙

𝑎𝑣𝑑𝑙 that represent the ratio between the length of the con-
sidered document (𝑑𝑙) and the average length of the document in the collection
(𝑎𝑣𝑑𝑙). The third component also introduces a normalization variable (𝑘2 that
typically has values in the range [0, 1000]) and a new variable 𝑞 𝑓𝑖 that represents
the number of times that term 𝑖 appears in the query.

2.4 NEURAL APPROACHES & DENSE RETRIEVAL

Machine Learning (ML) and Deep Learning (DL) represent constantly grow-
ing fields of research and, in particular, Neural Networks (NNs) are the core
element of these fields. Nowadays NNs are starting to be used for many appli-
cations and between those they are being applied also to IR and RecSys. For
this reason, in Section 2.4.1 we will provide a brief overview of the neural net-
works, in Section 2.4.2 we will explain how neural networks are trained, in Sec-
tion 2.4.3 wewill talk about negative sampling, in Section 2.4.4 wewill introduce
the cross entropy loss, in Section 2.4.5 we will describe how NNs are applied to
IR and RecSys and in Section 2.4.6 we will illustrate how the most modern DL
approaches work and can be used in the fields of IR and RecSys.

2.4.1 NEURAL NETWORKS

Neural Networks have been created trying to emulate the structure of the
human brain [14]. In particular, NNs are composed by a set of interconnected
neurons, in Figure 2.5 we report an example of neural network in which the
circles represent the neurons and the lines correspond to the connections (links).
Note that the links are oriented. Each neuron has some inputs, some weights
and some outputs (as reported in Figure 2.6) and it is responsible for computing
a value (corresponding to the output, also known as activation) based on the
input data that is weighted according to the Equation 2.20 where j is an index

14

CHAPTER 2. RELATED WORK

Figure 2.5: Neural Network. [19]

identifying the 𝑗− 𝑡ℎ neuron in the network, 𝑤𝑖 𝑗 represent the weight that the 𝑗−
𝑡ℎ neuron gives to the input coming from the 𝑖−𝑡ℎ neuron, 𝑛 is the total number
of neurons providing their output as input to the neuron 𝑗, 𝜑 corresponds to the
activation function (the most common activation functions are ReLu, tanh and
Sigmoid) and 𝑜 𝑗 is the output of the neuron. The output is then forwarded to
the other neurons in the network.

𝑜 𝑗 = 𝜑(
𝑛∑
𝑖=1

𝑥𝑖𝑤𝑖 𝑗) (2.20)

Note that the weights (𝑤𝑖 𝑗) are usually considered as labels of the links con-
necting the 𝑖 − 𝑡ℎ and the 𝑗 − 𝑡ℎ neuron. Furthermore, the weights of a neural
network can be stored in a single matrix where the element having coordinates
(𝑖, 𝑗) corresponds to the weight of the link that goes from neuron 𝑖 to neuron 𝑗.

Thanks to its interconnected structure if we provide some input (i.e. we set
the value of the input neurons) to a neural network, it performs all the needed
computations and provides some output (i.e. the value of the output neurons).
The weights of NNs, usually, are initially set to random values, thus to use the
network for a specific purpose some training is needed, otherwise the results

15

2.4. NEURAL APPROACHES & DENSE RETRIEVAL

Figure 2.6: Single neuron. [19]

would bemeaningless. The procedure used to train a neural network is reported
in Section 2.4.2.

NNsmay have different topologies, depending on the way in which the neu-
rons are interconnected. As can be seen from Figure 2.5 the neurons can be
organized in layers and, in particular, there is always one input, one output and
at least one hidden layer. If the there is only one hidden layer the network is de-
fined as ”neural network” while if the hidden layers are more than one we talk
about ”deep neural network”. Furthermore, if the connections between neu-
rons go only from neurons of one layer to neurons of the next layer (there are no
backward connections, cycles or loops) the network can be called feed-forward
neural network.

2.4.2 NEURAL NETWORKS TRAINING

Training a NN corresponds to update all the weights so that given a certain
input the network produces an output that is close to the desired one. Usually
when performing the training of a neural network three sets of data are available:
the training set, the validation set, and the test set. The training set is the one
that is actually used to optimize the weights of the network, the validation set
is the one that is used to perform a first evaluation (in the training phase) of the
model in order to understand how to set external parameters (e.g. the number
of neurons, the number of layers, activation functions etc.) that are normally
called hyper-parameters, the test set is the one that is used to evaluate the final
performance of the system when the training is ended.

To train a neural network it is common to use datasets in which for each

16

CHAPTER 2. RELATED WORK

input example the desired output is also available (supervised learning). The
actual training is performed feeding each example in the training set to the net-
work, obtaining the corresponding output and comparing the obtained output
with the desired output. The weights of the network are then updated based on
the difference between the obtained and the desired output which is processed
by using some function, usually called loss function, that is applied to turn the
weight optimization problem into a minimization problem. The cross entropy
function (described in Section 2.4.4) represents a very common loss function.
To perform the actual weights update some backpropagation techniques, which
make use of the derivatives in order to minimize the loss, are used. Well known
backpropagation approaches are Stochastic Gradient Descent (SGD) [12, 7] and
adaptive moment estimation (Adam) [8]. Thus, the end goal of a neural network
is to minimize the loss.

If needed, to appropriately choose the hyper-parameters, it is common that
multiple NNs are trained (also in parallel) using the same training set but a dif-
ferent hyper-parameters configuration. The trained NNs are then evaluated us-
ing the validation set and the best performing one is chosen. Eventually, the
chosen NN is evaluated exploiting the test set to estimate its real performance.

Since neural networks need a huge amount of data to be trained, to avoid to
update the weights (perform the backpropagation) for every training sample, it
is possible to accumulate the loss for groups of samples that are commonly called
batches. This is done because the backpropagation represents a time demanding
operation, thus doing it less frequently allows to reduce the training time, and
also because it helps to reduce overfitting, which is a phenomenon that happens
when the networks learns too much from the training data and becomes too
specific, losing the capability of generalizing.

Furthermore, when backpropagating the loss, an hyper-parameter called
learning rate is exploited to control the impact of the weight update. In particu-
lar, a large learning rate allows the update to be more impactful and can fasten
the training process of the network but it may lead to divergent behaviours due
to the drastic updates. A small learning rate, instead, makes the updates less
significant, avoiding divergent behaviours, but it can slow down the training
process.

Eventually, it is possible to repeat the training of a NN multiple times using
the same training set to try to increase its performance. We define as epoch each
one of the times in which the training is repeated using the entire training set,

17

2.4. NEURAL APPROACHES & DENSE RETRIEVAL

therefore in an epoch each sample in the training data is seen by the network
once and only once. The number of epochs for which the training is repeated
represents an hyper-parameter. This type of training procedure is useful when
some hyper-parameters are changed across the epochs, for example the learning
rate.

2.4.3 NEGATIVE SAMPLING

In Sections 2.4.1 and 2.4.2 we introduced how neural networks work and, in
particular, we focused on the fact that for each training sample provided in input
they try to learn to replicate the corresponding output. Nonetheless, it is impor-
tant that NNs not only learn to produce outputs close to the correct ones but
also acquire knowledge about how to produce outputs as different as possible
from the incorrect ones. If we think of the outputs of NNs as multidimensional
vectors we would like the NNs prediction to be close in space to the vectors rep-
resenting the desired output and far away from the vectors representing wrong
outputs. To favor this kind of behaviour negative sampling is used. Negative
sampling consist in adding for each input sample in the training set one or more
outputs that are wrong. Thus, the training set will be composed of both input-
correct and input-wrong output pairs. By using appropriate loss functions, such
as cross entropy (see Section 2.4.4) is then possible to properly train NNs in the
same way as explained in Sections 2.4.1 and 2.4.2.

There are several techniques that can be used to sample negatives, some ex-
amples are: hard-negative sampling [17] and in-batch negative sampling. Hard
negative sampling consists of selecting the negatives directly from a set of re-
sults. Think, for example, of a retrieval system: after a first training passage for
each request we will obtain in output a list of ranked documents, then for each
request we take one or more of the retrieved documents that are not actually
relevant, we add them to the training dataset as negative samples and we repeat
the training with this new dataset. The negatives can be sampled also from the
results of some other system/network and not only from the output of the same
system/network that we are trying to train. For the retrieval case, for example,
we can select the negatives from the results obtained with traditional retrieval
methods (e.g. BM25) and use the data to trainedmore sophisticatedmodels. The
in-batch negatives technique, instead, can be exploited when batches are used
during the training and, according to it, for each sample in the batch the nega-

18

CHAPTER 2. RELATED WORK

tives are sampled from the batch itself. More in detail, if we think of a batch as
a set of input-correct output pairs this technique requires to select for each in-
put one or more outputs that are present in pairs in the same batch of the input,
creating new input-wrong output pairs that are then added to the batch itself.

2.4.4 CROSS ENTROPY LOSS

Suppose to have a binary classification problem inwhich one class represents
the correct samples and another class represents the incorrect samples (similarly
to what happens when we use negative sampling, explained in Section 2.4.3)
and let 𝑦 be a label that can take only values in {0, 1} which will indicate if the
i-th sample in a training set is correct (𝑦𝑖 = 1) or if it is incorrect (𝑦𝑖 = 0). The
cross entropy loss (𝐿𝐶𝐸) function for binary classification is defined as reported
in Equation 2.21 where with 𝑦𝑖 we denote the true label of the i-th sample and
with P(𝑦𝑖) we refer to the probability that the sample belongs to the class 𝑦𝑖
which is computed by the neural network (normally, in this case, the neural net-
work has one neuron in the output layer and the probability that the sample is
correct corresponds to its output value).

𝐿𝐶𝐸 = −(𝑦𝑖 log(P(𝑦𝑖)) + (1 − 𝑦𝑖) log(P(1 − 𝑦𝑖))) (2.21)

Since we would like to have a model with a loss that is as small as possible,
the goal of the neural network would be to minimize the it. As can be seen from
the equation, because of the minus sign, if the label indicates that the sample is
”correct” thenwewill keep only the first term andwewould like the probability
that the sample belongs to the correct class to be high, while if the label indicated
that the sample is ”incorrect” then we will keep only the second term and we
would like the probability that the sample does not belong to the incorrect class
to be high.

The cross entropy loss can be defined also for multiple classes (normally, the
network has one neuron for each class in the output layer) and can be accumu-
lated over multiple samples. Equation 2.22 reports this version of the loss where
with 𝐶 we indicate the total number of classes, with 𝑗 we denote the 𝑗 − 𝑡ℎ class,
with𝑁 we represent the total number of samples andwith 𝑖 we refer to the 𝑖− 𝑡ℎ
sample. Note that in this case the labels 𝑦𝑖 𝑗 take values in [0, 1] and indicate the

19

2.4. NEURAL APPROACHES & DENSE RETRIEVAL

true probability that the 𝑖 − 𝑡ℎ sample belongs to the 𝑗 − 𝑡ℎ class.

𝐿𝐶𝐸 = − 1
𝑁

𝑁∑
𝑖=1

𝐶∑
𝑗=1

𝑦𝑖 𝑗 log(P(𝑦𝑖 𝑗)) (2.22)

The cross entropy loss can be used also for tasks different from classification,
for example in the case of negative sampling (see Section 2.4.3) the label 𝑦𝑖 will
be used to specify if the corresponding sample is negative or positive, while
the probability of belonging to the class (P(𝑦𝑖)) can be replaced with some error
measure (for example the inverse of the distance between the obtained and the
desired output, the dot product between the obtained and desired output etc.).

2.4.5 DENSE RETRIEVAL & RECOMMENDER SYSTEMS

Dense retrieval is the branch of IR that exploits NNs to represent the input
data in form of vectors, called text embeddings, which are then used to perform
the needed operations (vector based search presented in Section 2.1.2 is a clear
and general example of dense retrieval). More specifically, IR is concerned with
retrieving themost relevant documents according to some query provided in in-
put (see Section 2.1). To do this, each document and the query are processed to
be transformed into sequences of tokens (which can be singlewords or even sub-
parts of words) and, after that, the tokens are provided as input to some neural
network (usually the transformer architecture or other models that are based on
the transformer architecture are used, see Section 2.4.6) that is able to convert the
sequence of tokens into text embeddings (which are also able to capture contex-
tual information). The main goal is to map the queries to some vectors that are
close in space to the vectors representing the most relevant document for that
query, so the neural network is trained accordingly.

RecSys, which aim to recommend the most relevant products/items in the
collection according to some product/item and to the user history provided in
input, exploit the NNs in a similarly to IR. RecSys use the NNs to encode the in-
put product/itemand eachproduct/item in the collection into some text embed-
ding and try to train the networks so that the input items and the corresponding
relevant products are mapped to some vectors that are close in space. Differ-
ently from IR usually the embeddings of the input items are modified according
to the user history (this process is normally called personalization, see Section

20

CHAPTER 2. RELATED WORK

2.2 for more details). Frequently the personalization is performed exploiting the
concept of attention (see Section 2.4.6).

2.4.6 NEURAL MODELS, ARCHITECTURES AND ATTENTION

Most of the models related to IR and/or RecSys adopt architectures that are
based on the transformer architecture (or part of it)which has been introduced in
2017 [18]. In Figure 2.7 we report the complete architecture of the transformer.

Figure 2.7: General transformer architecture. [18]

As can be seen, the transformer can be splitted into two sub-components that
are the encoder (left box in the figure) and the decoder (right box in the fig-
ure). Frequently, the models used for IR and/or RecSys are based only on one
of the two components, for example Bidirectional Encoder Representations from
Transformer (BERT) exploits only the transformer encoderwhileGenerative Pre-
Trained Transformers (GPTs) usually use only the transformer decoder. Nor-
mally, transformers and in particular BERT are used in IR and RecSys to map
the input tokens into some textual embeddings (see Section 2.4.5 for more de-
tails). BERT represents a model which is pre-trained to be able to perform sev-

21

2.4. NEURAL APPROACHES & DENSE RETRIEVAL

Figure 2.8: BERT use example. [2]

eral tasks that are reported in Figure 2.8 and it is widely used in dense retrieval
and RecSys. As can be seen from the figure, BERT takes in input a sequence of
tokens and it carries out the desired task using an architecture that corresponds
to the transformer encoder. This model is frequently used to perform different
tasks than the ones for which it has been pre-trained and, for doing this, usually
the architecture is extended with some additional layers at the end and then the
model is fine-tuned with appropriate data. As explained in Section 2.4.5, when
we use NNs for IR and RecSys, the products, documents and queries are first
turned into sequences of tokens and then the tokens are given as input to the
neural network to obtain some text embeddings, thus BERT represents an ideal
neural component to be used. In particular, for IR and RecSys, since it is not
necessary to perform an end-to-end task (e.g. classification) but it is needed to
transform some tokens into an embedding (i.e. a vector), in themajority of cases,
the tokens are provided in input to BERT (or another appropriate model) which
performs its computation and, after that, the value of the neurons of the last
hidden layer of the BERT network are taken to form the embedding.

Normally, themodels based on transformers take as input some tokenswhich

22

CHAPTER 2. RELATED WORK

usually are pre-processed before performing other operations. In Figure 2.9 we

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

Figure 2.9: Input tokens pre-process. [2]

report an example representing the pre-processing that is done to the tokens
by BERT. In particular, the tokens are transformed in some initial embedding
(random or fixed) that are combined with a segment embedding (since BERT
can take as input up to two sentences, these segment embeddings are used to
allow themodel to recognize towhich sentence each token belongs) and then the
obtained embeddings are further integrated with some positional embeddings
(which are used so that the model is able to consider the order of the tokens in
the sentence). The way in which BERT pre-process the input tokens is the same
as the ones that nowadays is used by the majority of models/approaches.

Models based on transformers require an enormous amount of time and
computational power to be trained from scratch, thus these models are usually
pre-trained by large companies/institutions with some generic data and then
the pre-trained models are provided to the developers that will perform a fine-
tuning phase. Fine-tuning corresponds to re-train part of the model (starting
from the pre-trained one), that commonly corresponds to the final layers, with
data that is highly specific for the application for which the model is used. For
some applications the models are also completely re-trained (always starting
from the pre-trained version). Furthermore, before being fine-tuned the models
can be slightly modified adding some layers (usually at the end of the network),
if it is needed.

As can be seen from the structure of the transformer reported in Figure 2.7,
the encoder, after obtaining some initial embedding of the inputs, modifies them
with somepositional encoding (these initial steps are performed in the sameway
as we described for BERT). The modified input embeddings are then handled in
parallel using𝑁 identical encoder blocks. Each encoder block first processes the
input token using a concept that is called attention (which is described below),
then it combines the results of the attention block with the original input using a

23

2.4. NEURAL APPROACHES & DENSE RETRIEVAL

residual connection and, after that, it normalizes the output (to achieve stability
and avoid problems like exploding gradients). The normalized results are then
fed to a feed-forward neural network (see Section 2.4.1) and eventually a residual
connection and a normalization component are used in the same way as before.
The transformer decoderworks in the samemanner as the encoder but it has two
attention steps. While the first attention block is identical to the encoder’s one,
the second takes as input also the output of the encoder (which is used as keys
and values). The output of the decoder, differently to the one of the encoder, is
processed applying some functions to obtain some probabilities in output.

The most important element that was introduced with transformers is the
concept of attention [18]. The aspect that led attention to be widely used is its
ability to capture correlations and contextual information, since this is funda-
mental especially in natural language and text based applications. Attention has
been deeply studied andmodified and several variations of it have been defined
like self-attention or multi-head attention. In the following we first introduce
the general version of attention (also known as ”ScaledDot-Product Attention”),
then we explain the self-attention and eventually we describe the multi-head at-
tention which is also used in the transformer architecture.

SCALED DOT-PRODUCT ATTENTION

Figure 2.10: Attention structure. [18]

Figure 2.10 reports a scheme that represents the way in which attention is
computed. In particular, 𝑄 is the query and corresponds to the current focus
(what we are looking for), 𝐾 stands for keys which represent the importance
given to the query (what we can offer) and 𝑉 means values which refer to the

24

CHAPTER 2. RELATED WORK

contribution given to the query (what we actually offer). Informally, the query
is ”compared” with the keys to determine the query-keys correlation that is ex-
pressed in form of weights, then these parameters are used to weight the values,
which are eventually combined to build a new representation. The understand-
ing of the correlation between queries and keys is what allows to determine
the context and how to extract information from it. Formally, the mathemati-
cal equation that is used to perform this computation is reported in Equation
2.23 where 𝑑𝑘 is a normalization factor that depends on the dimensionality of
the keys and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 represents a function that is used to normalize the values
of vectors/matrices in order to obtain some probabilities (values in the range
[0,1]).

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉 (2.23)

The mask component present in Figure 2.10 is not reported in Equation 2.23 be-
cause it is optional and it is used to compute the correlation of the query with
only part of the keys. The mask is very useful when the attention is used with
tokens (representing words or sub-words), in fact, imagine a situation in which
attention is exploited in an application which aims to predict the next word in a
sentence, in this case the candidate word is correlated only with the past words
in the sentence and not with the future words so the mask can be used to mask
the latter in order to avoid to compute some correlations that could be wrong or
impossible to consider in a real word scenario. The masking operation consists
of summing (before applying the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function) to the matrix 𝑄𝐾𝑇√

𝑑𝑘
another

matrix (the mask) which contains only zeros and −∞ and, therefore, allows ei-
ther to keep unchanged or set to −∞ some values according to the desired be-
haviour (since 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 is used, the values −∞will correspond to 0 after apply-
ing it, allowing to mask some tokens). Figure 2.11 reports a common mask that
is used so that each token is correlated only with the tokens appearing before
it in the sentence and not with the ones appearing after (note that each row of
the mask corresponds to the mask of a single input token). Since the value −∞
cannot to be represented in a computer, some implementations replace −∞with
the smallest negative value possible while others, instead of the performing the
sum, multiply the matrix 𝑄𝐾𝑇√

𝑑𝑘
with a matrix (the mask) that contains ones (in-

stead of zeros, in correspondence the values that must be kept) or zeros (instead
of −∞, in correspondence the values that must not be considered).

25

2.4. NEURAL APPROACHES & DENSE RETRIEVAL

Figure 2.11: Example of attention mask.

SELF-ATTENTION

Self-attention is based on the scaled dot-product attention but the queries,
the keys and the values are all generated from the data provided in input. Let
𝑋 be the matrix representing the input and suppose that it contains in each row
the initial embedding of the input tokens (already modified according to the
token position, the sentence towhich they belong etc.), then the queries, the keys
and the values are obtained from the input by means of three linear projections:
𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 and 𝑉 = 𝑋𝑊𝑉 , where 𝑊𝑄 , 𝑊𝐾 and 𝑊𝑉 are learnable
parameter matrices. The queries, the keys and the values are then processed in
the same of the scaled dot-product attention.

This version of attention is very useful because it allows to find correlations
between the words of a sentence and, thus, to consider the syntactic and contex-
tual structure of the sentence. This is important when the transformers are used
to compute a vector representation (embedding) of a textual string.

MULTI-HEAD ATTENTION

Figure 2.12 reports a scheme that represents how multi-head attention is
computed. In particular, instead of applying a single attention function to keys,
values and queries which have the same dimensionality 𝑑𝑚𝑜𝑑𝑒𝑙 , it has been dis-
covered [18] that it is convenient to linearly project the queries, keys and values.
The queries, keys and values are projected ℎ times with separate, learned linear
projections to 𝑑𝑘 , 𝑑𝑘 and 𝑑𝑣 dimensions, respectively. The standard attention

26

CHAPTER 2. RELATED WORK

Figure 2.12: Multi-Head attention structure. [18]

function (reported in Equation 2.23) is then applied in parallel to each of the pro-
jected versions of the queries, keys and values. The attention function produces
in output 𝑑𝑣 dimensional values which are then concatenated and projected to
obtain the final values.

Equation 2.24 reports the formula that is used to compute multi-head atten-
tion where the matrices 𝑊𝑄

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝐾
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑉

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 and
𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 are the learnable parameter matrices that are used to perform
the linear projections and Attention is the same function as the one reported in
Equation 2.23.

MultiHead(𝑄, 𝐾,𝑉) = Concat(head1, · · · , headℎ)𝑊𝑂

where head𝑖 = Attention(𝑄𝑊𝑄
𝑖 , 𝐾𝑊

𝐾
𝑖 , 𝑉𝑊

𝑉
𝑖)

(2.24)

This version of attention is quite useful because it allows (differently to the
standard one) to distill knowledge at different positions also from different sub-
spaces. Note that multi-head attention has been introduced as an extended ver-
sion of the self-attention.

27

2.5. JOINT INFORMATION RETRIEVAL AND RECOMMENDER SYSTEMS

2.5 JOINT INFORMATION RETRIEVAL AND RECOMMENDER
SYSTEMS

Since the nineties it has been clear that there were common aspects between
IR and RecSys, in fact, they are considered as two sides of the same coin [1]. IR
and RecSys can be thought as joint tasks because they both are concerned with
retrieving the best documents/products given some data in input (textual query
and/or user history, see Section 2.1 and 2.2) that represents the information need
and, even though under the hood there are some variations, the end user does
not perceive differences between those two technologies, also because the output
of the two tasks is usually mixed in the same interface. Furthermore, in the case
of e-commerce the queries usually represent short, keyword based descriptions
of a product/item that someone is looking for, so the gap between IR and Rec-
Sys becomes even smaller. Additionally, normally a user seeks for information
(by providing queries) that are related to its previous interactions. Nonethe-
less, for historical and industrial reasons these two fields have been developed
independently but it would be more convenient to consider them jointly.

Recently the research community started to develop systems performing
both the IR and the RecSys jointly, noticing promising results. In particular,
Zamani and Croft [24, 25] have shown that developing such models allows
to improve the performance thanks to the sharing of knowledge between IR
and RecSys. However, most of the developed systems focus on refining RecSys
capabilities by exploiting the search data [15] or on gaining the knowledge to
carry out one of the two tasks based on the data of the other [25]. Only a few
relevant results addressed the issue of joint IR and RecSys: a first proposed
model based on Graph Neural Networks (GNNs) was SRJGraph [27] and the
Unified Information Access (UIA) framework [26] recently outperformed it.

Themain advantage of developingmodels performing both the retrieval and
recommendation tasks jointly is derived from the fact that is possible to create
a shared knowledge base between the two tasks. This allows to improve the
performance of both tasks and also gives them the ability to support each other
(imagine a situation in which we have a low amount of data for one task and a
large amount of data for the other, in this case the task for which there is limited
data can still exploit the knowledge coming from the other task).

28

CHAPTER 2. RELATED WORK

2.6 EVALUATION MEASURES

Models after being trained should also be properly evaluated. The evaluation
is performed at the end of the testing phase and must use appropriate measures
to define the performance of the models and make them comparable. When
evaluating a model the ground truth corresponding to the test data must be
available; in particular this ground truth contains for each of the request in the
test data the corresponding relevant documents/products of the collection. In
the majority of cases the ground truths are created by humans that manually
mark as relevant or not relevant the documents/products of a sampled subset
of the collection; this procedure is called relevance assessment.

Evaluation measures are categorized into two main families that are: set
based evaluationmeasures and rank based evaluationmeasures. Set based eval-
uation measures are indicators related to the number of documents marked as
relevant in the ground truth that have been retrieved/recommended by the sys-
tem. Precision, recall and F-measure are some examples ofmetrics that belong to
this family. Rank based measures instead consider also the rank of the relevant
documents retrieved, where with rank we mean the position of the documents
in the list that is provided in output by IR systems or RecSys. Normalized Dis-
counted Cumulative Gain (nDCG) and Mean Reciprocal Rank (MRR) are some
examples ofmetrics that belong to this family. Especially for set basedmeasures,
we definewith TP the True Positives that represent the retrieved documents that
are also relevant (based on the ground truth), with FP the False Positives that cor-
respond to the documents that are retrieved but are not relevant, with TN the
True Negatives that are the documents that are not retrieved and also not rele-
vant and eventuallywith FN the False Negatives that refer to documents that are
not retrieved but are relevant. Furthermore, with 𝑅𝐵 we define the total num-
ber of relevant documents (according to the ground truth) and with ℛ the set of
the positions in the output list (produced by some retrieval or recommendation
model) of the retrieved documents that are also relevant.

Usually, to test the systems several queries are performed, thus it is common
to compute the performance of the systems by considering all the queries in the
test set. Themost common technique to compute performances considering sets
of queries is to perform the mean of the value of the measures computed for sin-
gle queries. Somemeasure have an explicit definition for the case in which mul-
tiple queries are considered (this is the case of precision and the corresponding

29

2.6. EVALUATION MEASURES

mean average precision), others do not have an explicit definition for this specific
situation thus the arithmetic mean is used.

Note that we always considered binary relevance, in which the documents
are either relevant or not relevant with respect to some input. Nonetheless, in
real scenarios that could also be multiple level of relevance (e.g. highly rele-
vant, relevant, not relevant) and usually in this cases the level of relevance is
expressed with an integer number (whose value ranges from 0 up to the num-
ber of relevance degrees); this is called multi-graded relevance. Normally, the
relevance label for the 𝑖 − 𝑡ℎ document in the list provided in output by IR or
RecSys models is denoted with 𝑟𝑖 .

Precision (P) represents a significant measure for both IR and RecSys and
reports the fraction of retrieved documents that are actually relevant (according
to the ground truth). The equation used to compute precision is reported in
Equation 2.25.

𝑃 =
|𝑇𝑃|

|𝑇𝑃| + | 𝐹𝑃| =
|relevant retrieved documents|

|retrieved documents| (2.25)

Precision at k (P@k) represents a variation of precision that is used when
it is needed to consider only the first 𝑘 positions in the output list of retrieved
documents. The equation used to compute precision at 𝑘 is reported in Equation
2.26.

𝑃@𝑘 = 𝑃(𝑘) = 1
𝑘

𝑘∑
𝑛=1

𝑟𝑛 (2.26)

Average Precision (AP) represents the average of the precision at the posi-
tion of the relevant retrieved documents and its one of the most used metrics
to summarize the performances of the system. The equation used to compute
average precision is reported in Equation 2.27.

𝐴𝑃 =
1
𝑅𝐵

∑
𝑘∈ℛ

𝑃(𝑘) (2.27)

Mean Average Precision (MAP) represents the mean of AP across several
queries (also called topics). It is quite frequent, in fact, that to test a system sev-
eral queries are preformed and the mean average precision in used to evaluate
the overall performance. The equation used to compute average precision is
reported in Equation 2.28 where 𝑖 refers to the 𝑖 − 𝑡ℎ query performed and 𝑄

30

CHAPTER 2. RELATED WORK

represents the total number of queries executed.

𝑀𝐴𝑃 =
1
𝑄

𝑄∑
𝑖=1

𝐴𝑃𝑖 (2.28)

Recall (R) represents a significant measure for both IR and RecSys and re-
ports the fraction of relevant documents (according to the ground truth) that are
actually retrieved. The equation used to compute recall is reported in Equation
2.29.

𝑅 =
|𝑇𝑃|

|𝑇𝑃| + | 𝐹𝑁 | =
|relevant retrieved documents|

|relevant documents| (2.29)

Recall at k (R@k) represents a variation of recall that is used when it is
needed to consider only the first 𝑘 positions in the output list of retrieved docu-
ments. The equation used to compute recall at 𝑘 is reported in Equation 2.30.

𝑅@𝑘 = 1
𝑅𝐵

𝑘∑
𝑛=1

𝑟𝑛 (2.30)

F-measure (F) represents the harmonic mean between precision and recall
and it is used to evaluate the trade-off between the two. The equation used to
compute f-measure is reported in Equation 2.31.

𝐹 =
2

1
𝑃 + 1

𝑅

= 2 · 𝑃 · 𝑅
𝑃 + 𝑅 (2.31)

Discounted Cumulative Gain (DCG) represents a significant measure for
both IR and RecSys and is used to evaluate the performance in terms of the rank
of the relevant retrieved documents/items considering also a normalization fac-
tor that is related to the user behavior. The equation used to compute discounted
cumulative gain is reported in Equation 2.32. In particular , as can be seen from
the second part of the equation, DCG sums the rank of the relevant retrieved
document, thus systems that are able to retrieve the relevant documents placing
them in the top positions of the output list are preferred to systems that put the
same documents in lower positions. Furthermore, each element of the sum is
normalized according to a logarithmic factor. Since the logarithm is a mono-
tonic non-decreasing function and the operand of the logarithm is the position
of the retrieved document in the output list, this factor allows to give more im-
portance to the relevant retrieved documents that are in the top positions. The

31

2.6. EVALUATION MEASURES

base 𝑏 of the logarithm represents the user patience, in fact, a smaller 𝑏 reflects
an impatient user (since the logarithm grows more rapidly) while a larger 𝑏 de-
notes a patient user. The max function is used to avoid having a negative value
as denominator, since if some relevant documents are placed in a position with
index lower than the base 𝑏 of the logarithm we end up in this situation. Thus,
DCG represents a fundamental measure because is able also to capture the user
behavior. Furthermore, other advantages of DCG are that it does not depend
on the recall base (𝑅𝐵) and that it is also able to handle multi-graded relevance.
Note that with DCG@k (or DCG(k)) we denote the DCG that is computed con-
sidering only the top 𝑘 documents retrieved by the system.

𝐷𝐶𝐺(𝑘) =

∑𝑘
𝑛=1 𝑟𝑛 𝑖 𝑓 𝑘 < 𝑏

𝐷𝐶𝐺(𝑘 − 1) + 𝑟𝑘
log𝑏(𝑘) 𝑖 𝑓 𝑘 >= 𝑏

=
𝑘∑
𝑛=1

𝑟𝑛
max(1, log𝑏(𝑛)) (2.32)

Normalized Discounted Cumulative Gain (nDCG) represents the normal-
ized version of DCG, which allows to restrict the value of DCG between 0 and 1
(because since DCG is a sum of independent elements it can grow above one).
The equation used to compute discounted cumulative gain is reported in Equa-
tion 2.33, where iDCG represents the ”ideal DCG” that corresponds to the DCG
that the systemwould have if it worked perfectly (ranking themost relevant doc-
uments all at the top of the list, ordered by relevance).Note that with nDCG@k
(or nDCG(k)) we denote the nDCG that is computed considering only the top 𝑘
documents retrieved by the system.

𝑛𝐷𝐶𝐺@𝑘 = 𝑛𝐷𝐶𝐺(𝑘) = 𝐷𝐶𝐺(𝑘)
𝑖𝐷𝐶𝐺(𝑘) (2.33)

Mean Reciprocal Rank (MRR) represents a measure that is mostly used for
RecSys but it can bemeaningful also for IR. Thismeasure is useful to understand
the position of the first relevant retrieveddocument for each query. The equation
used to compute MRR is reported in Equation 2.34 where 𝑖 refers to the 𝑖 − 𝑡ℎ
query performed and 𝑄 represents the total number of queries executed. MRR,
in fact, is computed by summing the reciprocal of the rank of the first relevant
retrieved document (𝑟𝑎𝑛𝑘𝑖) of a set of queries, providing an indication of how
good is the systems in terms of ranking. Note that with MRR@k we denote the
MRR that is computed considering only the top 𝑘 documents retrieved by the

32

CHAPTER 2. RELATED WORK

system. If there is no relevant document in the output list or between the top 𝑘
documents the reciprocal rank for that query will be considered zero.

𝑀𝑅𝑅 =
1
𝑄

𝑄∑
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(2.34)

33

3
UIA Framework

SE and RecSys nowadays are used more and more by everyone. Frequently,
the results of these two systems must be combined in order to provide to the
user a complete and satisfying answer to its needs. This is quite common, for
example, in e-commerce platforms. As we discussed in Section 2.5 systems per-
forming retrieval and recommendation have been developed independently but
creating models able to carry out both IR and RecSys related tasks jointly can
have a promising impact in terms of performances. The Unified Information
Access (UIA) framework [26] represents a novel and extensible framework that
can handle several (personalized) information access requests, exploiting the
flexibility of dense retrieval models. It was presented by Hansi Zeng, Surya
Kallumadi, Zaid Alibadi, Rodrigo Nogueira and Hamed Zamani at SIGIR 2023
(the major conference in the field of IR) and it is the current state-of-the-art in
the field of joint IR and RecSys.

In this chapter we will delineate the main functionalities that the UIA frame-
work supports, we will introduce the adopted notation, we will describe the
general architecture of the framework, we will explain how the model is opti-
mized (trained), we will present the datasets used in the original paper to train
and evaluate the framework, we will delineate some practical details regarding
the settings of the parameters of the model and, eventually, we will evaluate the
performance of the model as proposed by the original authors. In the following
we will refer to the paper [26] that introduced UIA as ”original paper”.

35

3.1. FUNCTIONALITIES

3.1 FUNCTIONALITIES

The UIA framework implements both IR and RecSys tasks, supporting vari-
ous functionalities:

1. Keyword Search (KS): it corresponds to the traditional IR task that re-
trieves documents/items in response to a short textual query, e.g. retriev-
ing ’Nike Air Force 1’ for query ’Nike shoes’.

2. Query By Example (QBE): it corresponds to the similar item search RecSys
task that retrieves items similar to another item provided in input, e.g. re-
trieving ’Nike Air Jordan 1’ for a user interested in ’Nike Air Force 1’.

3. Complementary Item Recommendation (CIR): it corresponds to the com-
plementary item search RecSys task that retrieves items complementary to
another item provided in input, e.g. retrieving ’Nike shoes laces’ for a user
interested in ’Nike Air Force 1’.

As can be noticed the QBE and CIR functionalities have identical inputs but pro-
duce different outputs. Furthermore while QBE and CIR have the same type
of inputs and outputs (both items) the KS functionality has a different type of
inputs (queries instead of items). Therefore, developing a framework support-
ing those three functionalities allows to demonstrate that the framework has the
ability to learn how to treat various types of information access functionalities.

3.2 INFORMATION ACCESS

Users can access information in many different ways, for example in tradi-
tional IR the user provides a query to the system and expects an ordered list of
documents (or products) as a result, while in RecSys the user uses the output
of the system (a set of items/products) to explore and fulfill their necessities
instead of formulating a textual representation of their information need (see
Sections 2.1 and 2.2). The UIA framework aims to support the user in all the
different information access modalities.

We define the following element that will be considered when treating an
information access request:

36

CHAPTER 3. UIA FRAMEWORK

1. Information Access Request (ℛ): it represents the actual request, such as a
textual query and the related context (time, location, session data, etc.).
This request can also be empty in the case of zero-query retrieval.

2. User History (ℋ): it represents information related to the previous user
behaviour (e.g. previous clicks, purchased items, etc.), also long-term.

3. Candidate Item Information (ℐ): it represents the candidate item to be re-
trieved (it may include some side information such as the item content,
the author and the source).

4. Access Functionality (ℱ): it represents the required functionality (needed
to distinguish the IR and RecSys tasks, see section 3.1 for more details).

The UIA framework focuses on the three information access functionalities (ℱ)
reported in Section 3.1 but it can be extended to support also other function-
alities, for example including multi-modal retrieval (e.g. textual queries and
image items), contextual requests (exploiting session data) and/or zero-query
retrieval/recommendation (retrieving/recommending items based only on the
user history or session data).

Definingwith 𝑡 the index of the considered request (usually the last) of a user
𝑢 for which the framework is expected to provide some output and given the
variables that we just introduced, we can formulate a unified information access
model, parameterized by 𝜃 for user 𝑢, as 𝑓 (ℱ 𝑢

𝑡 ,ℛ𝑢
𝑡 ,ℋ𝑢

𝑡 ,ℐ𝑖;𝜃), where ℱ 𝑢
𝑡 repre-

sents a textual description of the functionality relate to the request, ℛ𝑢
𝑡 refers to

the information access request performed (a textual query or the textual content
of an item in the case recommendation), ℋ𝑢

𝑡 denotes the set of interactions that
the user 𝑢 had prior to triggering the t-th request and ℐ𝑖 represents the textual
content of the i-th candidate item.

The history of user 𝑢 prior to the t-th request is a set containing all the inter-
actions that the user 𝑢 had prior to performing the t-th request, ordered by time
(the smaller index, the earlier the instant in which the interaction happened):
ℋ𝑢
𝑡 = {(ℱ 𝑢

1 ,ℛ𝑢
1 ,ℐ𝑢

1), (ℱ 𝑢
2 ,ℛ𝑢

2 ,ℐ𝑢
2), · · · , (ℱ 𝑢

𝑡−1,ℛ𝑢
𝑡−1,ℐ𝑢

𝑡−1)}. Each interaction is
represented by a triplet composed by the past user’s request, the information
access functionality that has been used, and the item that the user interacted
with (e.g. bought or clicked items).

Note that in the original paper they used two different datasets but since one
of them is not publicly available, we limited ourselves to the use of the Amazon

37

3.3. FRAMEWORK ARCHITECTURE

ESCI dataset which does not have user history related data (see Chapter 3.5 for
more details). Thus, we can reformulate the previously defined unified infor-
mation access model, parameterized by 𝜃 for the interaction 𝑡, as 𝑓 (ℱ𝑡 ,ℛ𝑡 ,ℐ𝑖;𝜃),
where ℱ𝑡 represents a textual description of the functionality, ℛ𝑡 represents a
textual query or the textual content of an item (for recommendation) and ℐ𝑖 rep-
resents the textual content of the i-th candidate item.

3.3 FRAMEWORK ARCHITECTURE

The UIA framework follows a bi-encoder architecture in which the first en-
coder is intended to be used to encode the requests, while the second encoder
should encode the items. An Attentive Personalization Network (APN) is then
used to enhance the representation of the request (provided by the first encoder)
using the user historical interaction data in order to be able to personalize the
results. The item encodings (produced by the second encoder) instead are fed
to a feed-forward neural network in order to adjust the items representations
based on the personalized request vectors. This way, the final representation of
the requests and of the items should have the same dimensionality.

Figure 3.1: UIA framework architecture with user history. [26]

Figure 3.1 represent the actual structure of the system as depicted in the orig-
inal paper [26]. The four major components of the architecture are the:

1. Request Encoding (Eℛ).

2. Item Encoding (Eℐ).

3. User History Selection & Encoding.

38

CHAPTER 3. UIA FRAMEWORK

Figure 3.2: UIA framework architecture without user history.

4. Attentive Personalization Network.

The components are described in Sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4 respectively.
Since we use the Amazon ESCI dataset that has no user information (see

Section 3.5), we can reduce the structure of the framework to the one reported
in Figure 3.2. In this case, the major components of the system are only two: the
Request Encoding (Eℛ) and the Item Encoding (Eℐ).

3.3.1 REQUEST ENCODING

To implement the request encoder we exploit a pre-trained language model
(E) to obtain a dense vector representation of the requests (the queries, which
are turned into sequences of tokens in order to be fed to the encoder) . In partic-
ular, we use the BERT-base [2] model to encode each requestℛ𝑢

𝑡 and information
access functionality ℱ 𝑢

𝑡 into ®𝑅𝑢𝑡 as reported in Equation 3.1 (see Section 2.4.6 to
understand how BERT works).

®𝑅𝑢𝑡 = Eℛ([CLS] ℛ𝑢
𝑡 [SEP] ℱ 𝑢

𝑡 [SEP]) (3.1)

If we do not consider the user history, as it happens when the Amazon ESCI
dataset is used (see Chapter 3.5), the equation can be simplified as reported in
Equation 3.2.

®𝑅𝑡 = Eℛ([CLS] ℛ𝑡 [SEP] ℱ𝑡 [SEP]) (3.2)

3.3.2 ITEM ENCODING

To realize the item encoder we start form a pre-trained languagemodel (E) to
obtain a dense vector representation of the collection items (the products which

39

3.3. FRAMEWORK ARCHITECTURE

are turned into sequences of tokens in order to be fed to the encoder). In par-
ticular, we use the BERT-base [2] model to encode each item ℐ𝑖 as reported in
Equation 3.3 (see Section 2.4.6 to understand how BERT works).

®𝐼𝑖 = Eℐ([CLS] ℐ𝑖 [SEP]) (3.3)

3.3.3 USER HISTORY SELECTION & ENCODING

To personalize the request encoding ®𝑅𝑢𝑡 the original paper considers only the
last 𝑁 interactions of the user, i.e. {(ℱ 𝑢

𝑡−𝑁 ,ℛ𝑢
𝑡−𝑁 ,ℐ𝑢

𝑡−𝑁), · · · , (ℱ 𝑢
𝑡−1,ℛ𝑢

𝑡−1,ℐ𝑢
𝑡−1)}.

For each user past interaction we obtain two encodings: one for the request and
the related information access functionality (Eℛ([CLS] ℛ𝑢

𝑡′ [SEP] ℱ 𝑢
𝑡′ [SEP]) :

∀𝑡 − 𝑁 ≤ 𝑡′ ≤ 𝑡 − 1) and the other for the item with which the user interacted
after submitting the request (Eℐ([CLS] ℐ𝑢

𝑡′ [SEP]) : ∀𝑡 − 𝑁 ≤ 𝑡′ ≤ 𝑡 − 1). We are
sure that all the elements of the user history are represented in the same space
as the one of the requests and the items since the encoding of the user history is
performed using the same encoders Eℛ and Eℐ as the ones used for the requests
and items encoding. Furthermore, since all the parameters of the framework
are trained end-to-end (see Section 3.4), the parameters of the encoders are also
updated during training. The encoded version of the user history is a set of 2×𝑁
vectors: {(®𝑅𝑢𝑡−𝑁 , ®𝐼𝑢𝑡−𝑁), (®𝑅𝑢𝑡−𝑁+1,

®𝐼𝑢𝑡−𝑁+1), · · · , (®𝑅𝑢𝑡−1, ®𝐼𝑢𝑡−1)}.

3.3.4 ATTENTIVE PERSONALIZATION NETWORK

The personalization of the request encoding ®𝑅𝑢𝑡 is performed exploiting a
novel Attentive Personalization Network (APN) that allows to carry out both
content-based and collaborative personalization. The APN is based on the con-
cept of attention (see Section 2.4.6 for more details) and in particular it exploits
the multi-head attention. The content-based personalization is done learning
the attention weights from the encodings of the user’s past 𝑁 interactions to the
current request. Note that for each information access functionality, UIA is able
to use the user’s past interactions with all functionalities (independently from
the required one). Collaborative personalization, instead, is done by learning a
latent representation for each user and information access functionality based
on all the past interactions.

Figure 3.3 reports an overview of the architecture of APN. For content-based

40

CHAPTER 3. UIA FRAMEWORK

Figure 3.3: Attentive Personalization Network architecture. [26]

personalization, given the request encoding ®𝑅𝑢𝑡 of the t-th request performed
by user 𝑢, APN considers the last 𝑁 user history encodings {(®𝑅𝑢𝑡−𝑁 , ®𝐼𝑢𝑡−𝑁),
· · · , (®𝑅𝑢𝑡−1, ®𝐼𝑢𝑡−1)} and it splits them into to twomatrices: 𝐻𝑢

𝑡 ∈ R𝑁×𝑑, whose rows
are equal to the past requests encodings, and 𝐶𝑢𝑡 ∈ R𝑁×𝑑, whose rows are equal
to the past interacted items (clicked) encodings.

APN, following the definition of multi-head attention, exploits 𝑁ℎ attention
heads, where the j-th attention function contains three parameter matrices 𝜃𝑄𝑗 ∈
R𝑑×𝑙 , 𝜃𝐾𝑗 ∈ R𝑑×𝑙 , and 𝜃𝑉𝑗 ∈ R𝑑×𝑙𝑣 , and it learns attention weights from the user’s
interaction history (which represents the keys and the values) to their current
request (which represents the query). Therefore, each APN layer obtains the
query 𝑄 𝑗 ∈ R1×𝑙 (request), the keys 𝐾 𝑗 ∈ R𝑁×𝑙 (past requests) and the values
𝑉𝑗 ∈ R𝑁×𝑙𝑣 (past interacted items) matrices performing the following operations:

𝑄 𝑗 = ®𝑅𝑢𝑡 .𝜃𝑄𝑗 , 𝐾 𝑗 = 𝐻𝑢
𝑡 .𝜃

𝐾
𝑗 , 𝑉𝑗 = 𝐶𝑢𝑡 .𝜃

𝑉
𝑗 .

APN exploits the computed matrices as reported in Equation 3.4 following
the concept of attention (see Section 2.4.6).

Attn(𝑄 𝑗 , 𝐾 𝑗 , 𝑉𝑗) = softmax(
𝑄 𝑗𝐾𝑇𝑗√

𝑙
)𝑉𝑗 (3.4)

41

3.4. FRAMEWORK OPTIMIZATION

The results of all the attention functions are then concatenated (as reported
in Equation 3.5) and the concatenation is fed to an ”Add & Norm” layer which
exploits a residual connection and works in the same way as the corresponding
layers in the transformer architecture (see Section 2.4.6).

concat({Attn(𝑄 𝑗 , 𝐾 𝑗 , 𝑉𝑗)}𝑁ℎ
𝑗=1) ∈ R1×𝑁ℎ 𝑙𝑣 (3.5)

For collaborative personalization, instead, some user and functionality em-
beddings are needed. Let us define with |U | the number of users, with 𝑙𝑢 the
dimensionality of the user embedding, with |ℱ | the number of functionalities
(three in our case) and with 𝑙 𝑓 the dimensionality of the functionality embed-
ding. APN, to be able to perform the collaborative personalization, learns a
user embedding matrix EU ∈ R|U |× 𝑙𝑢 , where each row represents the embed-
ding of a user. Furthermore, to be able to distinguish between the different be-
haviours that a user can have when dealing with different information access
functionalities, APN learns also an embedding matrix for the information ac-
cess functionalities Eℱ ∈ R|ℱ |× 𝑙 𝑓 , where each row represents the embedding of
one functionality. To perform the collaborative personalization, APN selects the
user embedding vector ®𝑢 for user 𝑢 (that performed the request) from EU (i.e.,
user embedding lookup) and the functionality embedding ®𝑓 for the function-
ality 𝑓 (associated with the request) from Eℱ . The two embeddings are then
concatenated to the output of the ”Add & Norm” layer and, eventually, the con-
catenation is fed to a feed-forward neural network layer which uses a non-linear
activation function (ReLU). The output of APN is a personalized version of the
request embedding, which is denoted by ®𝑅𝑢∗𝑡 .

The item representations, instead, are fed to a feed-forward neural network
to be adjusted, since APN is used only for the request personalization and not
for the items. The output of the feed-forward neural network is denoted by ®𝐼∗𝑖 .

3.4 FRAMEWORK OPTIMIZATION

The optimization (training) of the UIA framework follows a two stage pro-
cess:

1. Non-personalized pre-training

2. Personalized fine-tuning

42

CHAPTER 3. UIA FRAMEWORK

As we already mentioned, the original paper trained some models on a private
dataset which contained also user information and some other on the publicly
available Amazon ESCI dataset (see Chapter 3.5) which does not contain user
information. The second stage of the optimization process is used to optimize
the personalization components of the framework, thus this stage is not needed
in the cases in which the Amazon ESCI dataset is used since these components
are removed (see Section 3.3).

In Section 3.4.1 and 3.4.2 we describe the first and second stage of the opti-
mization process, respectively.

3.4.1 NON-PERSONALIZED PRE-TRAINING

To perform the non-personalized pre-training, if a dataset with user infor-
mation is used, we construct a non-personalized training set by aggregating
the training data across all users. Therefore, in any case, the UIA framework
is trained starting from a dataset in which the k-th training instance has the form
(ℱ𝑘 ,ℛ𝑘 ,ℐ𝑘 ,Y𝑘), whereY𝑘 represents the ground truth label. We denote with ®𝑅𝑘
and ®𝐼𝑘 the output of the request and item encoders respectively, that are com-
puted for the k-th instance of the training data.

Since the training data contains only positive instances (i.e. user interactions)
we define the following two-phase negative sampling and training strategy (see
Section 2.4.3 for more details about negative sampling):

• Phase 1: For each training instance 𝑘 a negative item is sampled from the
top 200 items retrieved for the request ℛ𝑘 by BM25 (that is a keyword
based, traditional retrieval method, see Sections 2.1.2 and 2.3.3) and it is
used to create a new,negative training instance (that has the same func-
tionality and request as the one in the generating instance but the sampled
negative item as item and zero as ground truth label) which is added to the
dataset. After that, the model is trained using a cross entropy loss func-
tion (see Section 2.4.4). Note that, in addition to BM25 negatives, in-batch
negatives (see Section 2.4.3) are also used.

• Phase 2: After the model has been trained a first time with the data pro-
cessed according to Phase 1 the negatives are removed from the dataset
and new negatives are sampled according to the following procedure. The
Item Encoder Eℐ (that has been trained) is used to encode all the items in

43

3.4. FRAMEWORK OPTIMIZATION

the collection and then an Approximate Nearest Neighbor (ANN) index
is created using the Faiss library [4]. After that, the index is exploited to
retrieve items for each request in the training data. To add the negative
instances to the dataset, Phase 2 follows the same path as Phase 1 but the
negative sample for each training instance 𝑘 is randomly sampled from
the top 200 items retrieved for the request ℛ𝑘 by using the ANN index, in-
stead of BM25. Eventually, the model is re-trained, starting from the one
trained in Phase 1 (which has already been partially optimized), using a
cross-entropy loss function (see Section 2.4.4) and in-batch negatives.

The actual training phases use batches and happen as follows: firstwe provide to
the request encoder Eℛ the request ℛ𝑘 obtaining the vector ®𝑅𝑘 , then we provide
to the Item Encoder Eℐ the item ℐ𝑘 (that could be positive or negative) obtain-
ing the vector ®𝐼𝑘 , after that we compute the dot product between the two dense
vectors produced by the encoders (®𝑅𝑘 · ®𝐼𝑘) obtaining the matching score (rele-
vance value) and, eventually, (at the end of each batch) we backpropagate the
loss based on cross entropy loss function, which is created to handle both posi-
tive and negative samples (see Section 2.4.4). Note that in all the phases the ratio
between positive and negative samples for each training instance is set to one.

Since the non-personalized pre-training considers only the encoders Eℛ and
Eℐ and backpropagates the error only to those two components, then the only
parameters that are optimized are the ones of Eℛ and Eℐ .

3.4.2 PERSONALIZED FINE-TUNING

Personalized fine-tuning is performed to optimize also the personalization
part of the network, when the dataset used contains user related information,
since the non-personalized pre-training stage optimizes only Eℛ and Eℐ . In per-
sonalized fine-tuning, we re-create the training data to include the user informa-
tion and their past interactions (because in non-personalized pre-training the
dataset does not contain them) . For negative sampling, in this case, we use
BM25 results in addition to in-batch negatives (analogously to Phase 1 in non-
personalized pre-training). To train the framework we provide each training
instance to the model and, this time, exploiting also the personalization compo-
nents, we obtain the personalized representation of each request and candidate
item in the training data, i.e., ®𝑅∗

𝑘 and ®𝐼∗𝑘 respectively (see Figure 3.1). The dot
product is then used to compute the matching score (relevance value): ®𝑅∗

𝑘 · ®𝐼∗𝑘 .

44

CHAPTER 3. UIA FRAMEWORK

As for the non-personalized pre-training the framework is trained using batches
and the cross entropy loss function (see Section 2.4.4), therefore the loss is accu-
mulated over all the samples in a batch before the backpropagation takes place.

3.5 DATASETS

In the original paper [26], the UIA framework has been optimized and eval-
uated using two different datasets:

1. Lowe’s dataset.

2. Amazon ESCI dataset [11].

Lowe’s dataset represents a large scale e-commerce dataset containing over 5.3
million user interactions obtained from more than 890K unique users. The item
collection in this dataset includes over 2.2 million products. Unfortunately, this
dataset is private, thus only the authors of the paper were able to use it. The
Amazon ESCI dataset, instead, is publicly available and it corresponds to the
datasets that we used to reproduce the work of the paper and to perform all the
needed analyses. In the following sections we first provide an overview of the
original Amazon ESCI dataset and then we describe how we obtained several
datasets (one for each of the tasks: KS, QBE, CIR, see Section 3.1 for the task
definition) from it. Eventually, in Section 3.5.5 we focus on the splitting of the
datasets obtained from the original Amazon ESCI dataset into training, valida-
tion and test sets, on how these are used to train and test the model and on the
potential problem derived from the splitting process.

3.5.1 ORIGINAL DATASET

The Amazon ESCI dataset [11] has been originally published by the organiz-
ers of the KDD Cup 20221 Amazon ESCI challenge and it is a large, multilingual
dataset of difficult Amazon search queries and results, containing around 130
thousand unique queries and 2.6 million manually labeled (query, product) rel-
evance judgements. Following thework of the original paper, we considered the
dataset related to the Task 2 of the Amazon ESCI challenge and, in particular,

1KDD Cup 2022: https://amazonkddcup.github.io/

45

https://amazonkddcup.github.io/

3.5. DATASETS

we exploited the product catalogue and the training data made available. Note
that in the product catalogue each line correspond to a product and contains
the product id, the product title and some other product information (such as
the description, bullet list etc.) that were not used, while the training data con-
tains, for each line, a query identifier, the query text, the query language, the
id of a product and the ESCI label (which represents the relevance judgement)
that states if the product is an exact (E), similar (S), complementary (C) or ir-
relevant (I) match for the query. From these two sources of data we created 3
separated datasets, one for the IR task (KS) and the other two for the RecSys
tasks (QBE, CIR) (see Sections 3.5.2, 3.5.3, 3.5.4) considering only queries and
products in English language. We defined as relevant products for a query the
products marked as exact (E) in the dataset, as similar products the onesmarked
as similar (S) and as complementary products the ones marked as complemen-
tary (C). Furthermore, because of the nature of the dataset, we considered the
products as the documents to retrieve and the product title as the document
body. Therefore, when using the Amazon ESCI dataset, if we talk about encod-
ing a query we mean encoding the string that represents the query itself, while
if we talk about encoding a product/item we refer to encoding the title of the
product/item, which is also represented by a textual string.

3.5.2 KEYWORD SEARCH DATASET

To create the elements (samples) for the KS dataset, that are pairs of the type
[query, relevant item], we took the queries of the original dataset (see Section
3.5.1) for which there was at least one relevant item and (one at the time) the
corresponding items marked as exact (E). At this point, to obtain the queries for
the KS task we simply get the unique queries of the KS dataset. Furthermore,
to produce the ground truth corresponding to those information needs we con-
sider for each query the items appearing in the corresponding pairs.

The KS dataset is then split in training, validation and test sub-datasets. To
produce these three sets we randomly select queries in order to create three sep-
arate groups, the first containing 80 percent of them, the second holding 10 per-
cent of them and the third including the remaining 10 percent of them. The pairs
related to the queries in the first group are then used to create the KS training
set, the ones related to the second group are used to generate the KS validation
set and the ones related to the third group are used to form the KS test set.

46

CHAPTER 3. UIA FRAMEWORK

3.5.3 QUERY BY EXAMPLE DATASET

The elements (samples) of the QBE dataset are pairs of the type [relevant
item, similar item]. To obtain these pairs we consider only the queries of the
original dataset (see Section 3.5.1) for which there are both exact (E) and similar
(S) matches. For each of these queries we combine each of the relevant prod-
ucts with all of the similar products (one at the time), creating the desired pairs.
At this point, to obtain the queries for the QBE task we simply get the unique
relevant items of the QBE dataset. Furthermore, to produce the ground truth
corresponding to those information needs we consider for each relevant item
the similar items appearing in the corresponding pairs.

The QBE dataset is then split in training,validation and test sub-datasets. To
produce these three sets we randomly select relevant items in order to create
three separate groups, the first containing 80 percent of them, the second hold-
ing 10 percent of them and the third including the remaining 10 percent of them.
The pairs related to the relevant items in the first group are then used to create
the QBE training set, the ones related to the second group are used to generate
the QBE validation set and the ones related to the third group are used to form
the QBE test set.

3.5.4 COMPLEMENTARY ITEM RECOMMENDATION DATASET

The elements (samples) of the CIR dataset are pairs of the type [relevant item,
complementary item]. To obtain these pairs we consider only the queries of the
original dataset (see Section 3.5.1) for which there are both exact (E) and comple-
mentary (C) matches. For each of these queries we combine each of the relevant
products with all of the complementary products (one at the time), creating the
desired pairs. At this point, to obtain the queries for the CIR task we simply
get the unique relevant items of the CIR dataset. Furthermore, to produce the
ground truth corresponding to those information needs we consider for each
relevant item the complementary items appearing in the corresponding pairs.

The CIR dataset is then split in training,validation and test sub-datasets. To
produce these three sets we randomly select relevant items in order to create
three separate groups, the first containing 80 percent of them, the second hold-
ing 10 percent of them and the third including the remaining 10 percent of them.
The pairs related to the relevant items in the first group are then used to create
the CIR training set, the ones related to the second group are used to generate

47

3.5. DATASETS

the CIR validation set and the ones related to the third group are used to form
the CIR test set.

3.5.5 TRAINING, VALIDATION & TESTING

As explained in Sections 3.5.2,3.5.3 and 3.5.4, the original dataset is processed
to generate three separate datasets (one for KS, one for QBE and one for CIR) and
each of them is then splitted into training, validation and test sets. The splitting
is performed independently for each one of the new datasets and at the end of
this operation 80% of the samples of each dataset end up in the corresponding
training set, 10% of them end up in the corresponding validation set and 10% of
them end up in the test set.

The framework is trained following the procedure described in Section 3.4
and by providing in input the training set of each of the tasks (KS,QBE and
CIR) one at the time, allowing to consider the tasks jointly. Since the datasets
are all composed by samples that have the form of pairs, according to the nota-
tion defined in Section 3.4.1 the functionality ℱ𝑘 takes one of the values among
”is_relevant_to”, ”is_similar_to” and ”is_complementary_to” based on which of the
three dataset the sample comes from (KS dataset, QBE dataset or CIR dataset,
respectively), the request ℛ𝑘 corresponds to the first element of the pair (query
text or item title) and the item ℐ𝑘 corresponds to the second item in the pair (title
of an item). Furthermore, since in this case we use binary relevance, Y𝑘 is set to
one (indicating relevance) for all the samples provided in input with the three
datasets and it is set to zero (indicating irrelevance) for all the samples produced
by the negative sampling procedures (see Section 3.4.1). The evaluation is then
performed separately for each task exploiting the corresponding test set.

Since the framework is jointly trained, the generation and splitting opera-
tions can be the cause of some issues that we address as ”data leakage”. In par-
ticular, since the three datasets for the three tasks (KS,QBE and CIR) are gen-
erated starting from the same original Amazon ESCI dataset and splitted into
training, testing and validation only later it is possible that the same entry in the
original dataset is used to generate a sample that ends up in the training set for
one task and another sample that ends up in the test data of another task.

48

CHAPTER 3. UIA FRAMEWORK

3.6 IMPLEMENTATION DETAILS

The architecture of the framework exploits some encoders that, as we
explained in Section 3.3, are based on a pre-trained language model. The model
that is used in the original paper is BERT-base [2] (an overview of BERT is
provided in Section 2.4.6) available on HuggingFace [20], and, specifically,
in the case in which the Lowe’s dataset is exploited the pre-trained weights
are loaded from the checkpoint ”bert-base-uncased”2, while for the Amazon
ESCI dataset (which is smaller) the pre-trained weights are loaded from the
checkpoint ”msmarco-bert-base-dot-v5”3.

The hyper-parameters are set based on the framework performance in terms
of nDCG on the validation set. The number of training epochs is chosen from
[8, 12, 16, 24, 48], the number of the considered user’s historical interactions (𝑁)
is set to 5, the batch size is empirically set to 384 and the learning rate for non-
personalized pre-training and personalized fine-tuning is empirically set to 7𝑒−6

and 7𝑒−5. For the case in which the model is trained on the Lowe’s dataset, for
personalized fine-tuning, only users with at least 10 interactions in the KS and
QBE tasks and at least 5 interactions in the CIR task are kept. Furthermore, in the
Attentive Personalization Network the hidden dimension 𝑑 is 768, the number
of heads 𝑁ℎ is 12, the hidden dimension of key and value in each head are 𝑙 =
𝑙𝑣 = 64, the dimension of the user embeddings is 𝑙𝑢 = 128 and the dimension of
the functionality embeddings is 𝑙 𝑓 = 64. For all the neural components Adam
[8] is used as the optimizer.

The learning rate used to train the BERT based encoders is not static but it is
modified each time a batch is completed. In particular, if we define as the total
number of steps the number of epochs multiplied by the number of batches for
each epoch, the learning rate is updated a number of times that corresponds to
the total number of steps. The learning rate starts from 0 and in a certain number
of warmup steps (4000) reaches the specified value (7𝑒−6), after that the learning
rate is reduced at each step reaching zero at the end.

2https://huggingface.co/bert-base-uncased
3https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5

49

https://huggingface.co/bert-base-uncased
https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5

3.7. FRAMEWORK EVALUATION

3.7 FRAMEWORK EVALUATION

UIA represents a framework used for joint IR and RecSys and (as explained
in Sections 2.1 and 2.2) IR and RecSys must produce in output a list of relevant
items ordered by relevance. In order to do this, when a request is performed by
a user (both implicitly or explicitly) all the items in the collection and the request
itself are encoded into some vector representation exploiting the trained version
of UIA. After that, the request vector is compared with the items vectors, using
the Faiss library, in order to create an ordered list of items which contains the
best matches (the items corresponding to the closest vectors to the one of the
request) at the top positions.

To evaluate the performances of UIA several requests (belonging to a test set)
are submitted to the frameworkwhich produces for each of them a list of ranked
items. For each request the obtained list is then comparedwith the ground truth
and some metrics are used to obtain a numerical representation of the perfor-
mance. Note that for UIA only the top most 1000 items of the ranked items list
of each request have been considered.

The evaluation of the framework is performed exploiting three metrics:
MRR@10 which is used to understand how good is the framework in ranking
the most relevant retrieved document, nDCG@10 which is used to understand
the overall performance of UIA and Recall@50 which is used to understand how
good is the system in retrieving the relevant documents (the specific definition
of these evaluation metrics is reported in Section 2.6).

The authors of the original paper, together with the framework, evaluated
also several baselines on the same datasets in order to be able to compare UIA
with some other traditional and/or modern approaches. The baselines used
range from term matching models to dense retrieval models and correspond to:

• BM25 [13]: This is a traditional and effective bag-of-word retrieval model
which has been described in Section 2.3.3.

• NCF [3]: This is a recommendation (collaborative filtering) model, which
combines generalized matrix factorization and a multi-layer perceptron
approach for recommendation. It only learns from item-item interactions
and cannot be applied to KS task.

• DPR [6]: This is a dense retrieval model that performs negative sampling

50

CHAPTER 3. UIA FRAMEWORK

exploiting BM25 results. In addition to that it employs also in-batch neg-
ative sampling. DPR only uses the last request (query text or query item)
and does not perform personalization.

• Context-Aware DPR: This model extends DPR to include personalization
based on the user history. In order to perform the personalization, the
requests are concatenated with the past interactions of the corresponding
user (separated by a [SEP] token) and the concatenation is then fed to the
query encoder.

• ANCE [21]: This is an effective dense retrieval model that uses the model
itself to mine hard negative samples. Analogously to DPR, ANCE is not
capable performing the personalization, therefore to consider also the user
history the authors defined Context-Aware ANCE which uses a similar
approach to the one exploited by Context-Aware DPR.

• RocketQA [10]: This is a state-of-the-art dense retrieval model which ex-
ploits large batch sizes and denoised negative samples to achieve more
robust contrastive learning. RocketQA, similarly to ANCE and DPR, is
not capable of performing the personalization, thus the authors followed a
path similar to DPR andANCE to define Context-Aware RocketQA which
is able to handle the user history.

• BERT4Rec++: BERT4Rec [16] is a sequential recommendation model
which uses BERT to represent the user history for predicting the next item
that should be recommended to the user. The original BERT4Rec model
exploits only the item IDs (it takes in input item IDs and predict the next
item ID in the sequence) but the authors improved BERT4Rec by encoding
also the content of the items. BERT is used for content embedding. This
approach is called BERT4Rec++.

• SASRec++: SASRec [5] is a sequential recommendationmodel which uses
the self-attention mechanism (see Section 2.4.6) to identify the items that
are “relevant” to the user interaction history for the next item prediction.
This approach cannot be used for the IR tasks (KS task). Analogously to
BERT4Rec++, SASRec is modified in order to be able to exploit also the
content of the items, using BERT for content embedding. This new model
is called SASRec++.

51

3.7. FRAMEWORK EVALUATION

• JSR [24]: This is a neural framework that jointly learns the search and rec-
ommendation tasks. In this model, each task has a task-specific layer over
the base shared network.

• JSR + BERT4Rec++: The original version of JSR uses the user ID to encode
user information. The authors of the paper improved the JSR performance
by using the representation from BERT4Rec++ to encode the user content.

• SRJGraph [27]: This is a recent framework based on neural graph convo-
lution that jointly models the search and recommendation tasks.

While for BM25, NCF, DPR, ANCE, RocketQA, SASRec++ and BERT4Rec the
code is publicly available, for JSR and SRJGraph it is not, therefore the authors
of the paper implemented them.

The training of models is classified into two categories (task-specific train-
ing and joint training) based on whether the model is optimized on a single
task (one between KS, QBE, CIR) or on all the tasks jointly (like UIA). Further-
more, the authors used the same initial pre-trained weights for BERT to train all
dense retrieval baselines which exploit it (DPR, ANCE, RocketQA, JSR+BERT).
All the approaches that are able to handle the user history consume the histor-
ical data provided in input in reverse chronological order. For SASRec++ and
BERT4Rec++, the number of additional transformer layers is chosen from [1, 2,
4], each transformer layer contains 12 heads and each head’s hidden dimension
is 64. The task-specific layer for JSR and SRJGraph is a single dense layer with
hidden dimension 768 and their networks have been initiated based on the same
BERT model as the dense retrieval baselines. The learning rate for all baselines
is chosen from [1e-4, 7e-5, 1e-5, 7e-6] considering the value of the performances
on the validation sets used.

Table 3.1 reports the performance of the UIA framework and the baselines
on the Lowe’s dataset while Table 3.2 reports the performance when the Ama-
zon ESCI dataset is used. Since the Amazon ESCI dataset does not contain user
information the baselines requiring user data have not been used. Note that for
the systems that support only task-specific training different instances have been
optimized (one for each task) even if the results for all the tasks have been re-
ported on the same line. From both Table 3.1 and 3.2 it is possible to notice that
jointly trained systems and, in particular, UIA, perform better that the ones op-
timized for single tasks. Furthermore, from Table 3.2 we can notice that when

52

CHAPTER 3. UIA FRAMEWORK

Table 3.1: Experimental results on the Lowe’s dataset.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

BM25 0.089 0.095 0.367 0.153 0.167 0.584 0.016 0.014 0.111

Task-Specific Training
NCF - - - 0.132 0.147 0.351 0.117 0.118 0.236
DPR 0.188 0.192 0.578 0.171 0.180 0.598 0.153 0.156 0.487
ANCE 0.193 0.199 0.582 0.176 0.188 0.601 0.159 0.158 0.494
RocketQA 0.201 0.207 0.595 0.189 0.204 0.613 0.174 0.176 0.507
Context-Aware DPR 0.324 0.377 0.848 0.311 0.356 0.860 0.278 0.283 0.707
Context-Aware ANCE 0.332 0.385 0.856 0.317 0.361 0.866 0.289 0.292 0.714
Context-Aware RocketQA 0.335 0.389 0.861 0.326 0.369 0.874 0.300 0.304 0.723
SASRec++ - - - 0.305 0.347 0.836 0.271 0.264 0.695
BERT4Rec++ - - - 0.314 0.354 0.851 0.283 0.279 0.703

Joint Training
JSR 0.324 0.379 0.853 0.349 0.380 0.878 0.325 0.317 0.760
JSR+BERT4Rec++ 0.337 0.394 0.871 0.415 0.479 0.919 0.421 0.419 0.820
SRJGraph 0.336 0.392 0.874 0.416 0.478 0.921 0.423 0.420 0.822
UIA 0.340 0.399 0.880 0.433 0.495 0.945 0.438 0.432 0.836

Table 3.2: Experimental results on the Amazon ESCI dataset.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

BM25 0.513 0.351 0.494 0.017 0.011 0.084 0.030 0.032 0.165

Task-Specific Training
DPR 0.505 0.347 0.511 0.235 0.174 0.527 0.434 0.450 0.838
ANCE 0.522 0.354 0.519 0.237 0.178 0.531 0.431 0.443 0.825
RocketQA 0.526 0.357 0.525 0.244 0.185 0.538 0.445 0.458 0.847

Joint Training
JSR 0.528 0.355 0.527 0.243 0.192 0.536 0.477 0.484 0.853
SRJGraph 0.526 0.351 0.522 0.241 0.187 0.540 0.479 0.488 0.855
UIA 0.532 0.360 0.533 0.251 0.199 0.543 0.490 0.493 0.868

the Amazon ESCI dataset is used, the task that gains the most in terms of per-
formance when the systems are jointly trained is the CIR task. This may occur
because the CIR dataset is the smallest one and thus it benefits the most from
the shared knowledge between the different tasks.

53

4
Reproducing UIA

In this chapterwewill explain howwewere able to reproduce thework of the
original paper that introduced UIA [26] by exploiting the code that was made
available by the authors1, we will highlight some problems and differences with
respect to what is stated in the publication and we will discuss the achieved
results.

In Section 4.1 we will delineate the experimental the values of the hyper-
parameters that we used in the experiments, in Section 4.2 we will report some
discrepancies between the paper and the actual operations performed on the
datasets, in Section 4.3 wewill explain howwe tried to emulate the performance
results of some basic retrieval/recommendation methods and, eventually, in
Section 4.4 we will describe how we reproduced the performance of UIA pre-
sented in the original paper and the problems that we encountered in doing
that.

We recall that, as explained in Section 3.5, in all our reproducibility work
and experiments we only used the Amazon ESCI dataset, therefore all the con-
siderations of this chapter will be based on that dataset (as well as on the ones
derived from it) and on the portion of the code dedicated to the training and test-
ing of the UIA framework when that dataset is used. Moreover, as introduced in
Chapter 3, no user information is available in the Amazon ESCI dataset and the
personalization component are removed from the architecture, thus the training
is carried out by performing only the non-personalized pre-training stage.

1https://github.com/HansiZeng/UIA

55

https://github.com/HansiZeng/UIA

4.1. EXPERIMENTAL SETUP

4.1 EXPERIMENTAL SETUP

All the experiments and tests were carried out by using the datasets derived
from the Amazon ESCI dataset as explained in Section 3.5, modified according
to what reported in Section 4.2.

The training of the framework requires the use of multiple GPUs (Graphics
Processing Units) due to the high demand of memory. In our experiments we
used three different setups:

• Setup 1: three NVIDIA GeForce GTX 1080 Ti (11 GB of memory each).

• Setup 2: two NVIDIA GeForce RTX 3090 (24 GB of memory each).

• Setup 3: two NVIDIA A40 (48 GB of memory each).

Using the first setup a single phase of the training of UIA lasts approximately 6
days, while using the second or third setup it takes about 4 days. Furthermore,
because of the limited amount of resources available, we needed to change the
value of some hyper-parameters as reported in Section 4.1.1.

The measures used to evaluate the performance of the framework are
MRR@10, nDCG@10 and recall@50 (see Section 3.7 for more details). For all
the experiments/tests for which we reported the value of these metrics we
expressed them as percentages (values between 0 and 1), thus, the higher the
value the better the framework performs.

4.1.1 HYPER-PARAMETERS SETTINGS

As explained in Section 3.6 the number of epochs is chosen from a set of
numbers based on the performance of the system on a validation set. From the
code shared by the authors of the papers we were able to understand that the
better performing number of epochs would have been 48 but, due to our limited
computational resources, performing 48 epochs resulted too time demanding,
thus we carried out all the tests by using 24 as number of epochs. Furthermore,
due to the limited memory of our GPUs we were not able to handle batches of
384 samples, therefore in all our experiments we used batches containing only
48 samples. These changes can have an impact on the performance of the frame-
work.

56

CHAPTER 4. REPRODUCING UIA

4.2 DATASET PREPROCESSING DISCREPANCIES

The first thing that is not stated in the paper [26] but is actually performed by
the code is that, after the generating the datasets for the KS, QBE, CIR tasks from
theAmazon ESCI dataset (see Section 3.5) and splitting them independently into
training, validation and test sets, the training sets are further processed. In fact,
for each unique relevant item in the training set of the QBE task which is paired
with more than 5 similar items, only 5, randomly sampled, similar items are
kept. The same happens for the unique relevant items in the training set of the
CIR task, in which, at the end of this process, each relevant item appears in at
most 5 pairs. For the training set of the KS task there is a slight difference, in fact,
for each unique query in this dataset which is paired with more than 10 relevant
items, only 10, randomly sampled, relevant items are kept. Actually, several
version of the training set for the KS task are produced, keeping each time a dif-
ferent number of relevant items for each query, but the version that we reported
is the one that has been used. In our experiments we used the just introduced
versions of the training sets since from the original code of the framework we
understood that these were the ones that also the authors exploited.

Other discrepancies that we discovered are related to the negative sampling
procedure performed in the Phase 1 of the optimization process (see Section
3.4.1). In particular, while for the training set of the CIR task the negatives are
correctly sampled from the BM25 results, for the training set of the QBE task
the negatives were sampled randomly between the items in the collection. We
solved this problem by sampling the negatives also for the QBE task from the
BM25 results. Furthermore, the negative samples of the training set of the KS
task are not directly sampled from BM25, in fact, for each sample in the set,
which has the form [query, relevant_item], a negative sample is created by tak-
ing the relevant item and, if it has some similar items (based on the QBE task
dataset), the negative is sampled from those, else if it has some complementary
items (based on the CIR task dataset) the negative is sampled from those, else
the negative is sampled exploiting the results of BM25. We decided to keep this
negative sampling procedure for the KS dataset because in this case, differently
from the one regarding the QBE dataset, the differences seemed to be intention-
ally introduced by the authors.

57

4.3. REPRODUCING BASELINES

4.3 REPRODUCING BASELINES

Before replicating the UIA framework itself we tried to reproduce the perfor-
mance obtained with the baseline models and, specifically, we decided to focus
on BM25 since it is used in the Phase 1 of the UIA framework optimization and
also because it is a traditional, well known andwidely used information retrieval
model (see Section 2.3). Following thework of the original paper [26]we decided
to exploit Pyserini2 [9] which is a Python toolkit for reproducible information
retrieval research with traditional models and models based on sparse/dense
representations. To provide this features Pyserini makes use of the Faiss library
[4] and of Anserini3 [22, 23], which is another IR toolkit that is built on Lucene4

(an open source library for IR).
In order to replicate the BM25 results it is needed to first exploit Pyserini to

create an index of all the items in the collection and then it is possible to perform
the search and the evalutation (see Section 2.1). To execute the indexing of all
the items it is sufficient to provide in input to Pyserini the item collection and
the model to be used (BM25 in our case). To perform the search we provided in
input to Pyserini the created index, the model to be used (BM25), the list of the
queries (a file that contains the queries/items that represent the requests) and
the number of documents to be retrieved for each request (200 in our case). The
evaluation is eventually performedwith Pyserini which exploits trec_eval (a tool
for the evaluation of retrieval results originally developed for the Text REtrieval
Conference) and the results of the search. We recall that BM25 does not consider
KS, QBE and CIR tasks jointly, therefore to perform the search it is necessary to
provide to Pyserini the files corresponding to the training, validation and test
sets (depending on the goal) of each task one at the time.

Table 4.1 reports the performance of BM25 appearing in the original paper
and results that we obtained trying to reproduce it. As can be noticed for the KS
and CIR tasks we were able to reproduce the behaviour almost perfectly while
for the QBE task this is not the case. In particular, for QBE our results are quite
better than the original ones, in fact our MRR and nDCG are almost four times
larger than the original ones while our recall is more than twice the original

2Pyserini: https://github.com/castorini/pyserini
3Anserini: https://github.com/castorini/anserini
4Lucene: https://lucene.apache.org/

58

https://github.com/castorini/pyserini
https://github.com/castorini/anserini
https://lucene.apache.org/

CHAPTER 4. REPRODUCING UIA

recall. Considering that the QBE datasets happens to be the largest one (it is
almost twice as big as the KS dataset and five times larger than the CIR), a pos-
sible explanation of this strange behavior (considering also the results obtained
reproducing UIA, see Section 4.4) can be the fact that the authors of the origi-
nal paper might not have used the complete ground truth for the QBE task (the
entire QBE dataset) but only a sampled version of it, without highlighting this
fact.

Table 4.1: Original and reproduced BM25 performance.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

original BM25 0.513 0.351 0.494 0.017 0.011 0.084 0.030 0.032 0.165
our BM25 0.511 0.351 0.490 0.066 0.042 0.203 0.038 0.032 0.193

4.4 REPRODUCING UIA

The UIA framework was implemented by the original authors exploiting
Python and the most common Python libraries, including PyTorch. In partic-
ular, since the BERT models used to implement the encoders of the framework
require a large amount of computational resources (especially of memory), the
framework has been trained on multiple NVIDIA GPUs in a distributed way,
therefore the PyTorch version that we used is the one that provides support
also for CUDA (Compute Unified Device Architecture, the architecture of the
NVIDIA GPUs).

The UIA framework considers the KS, QBE and CIR tasks jointly and the
Amazon ESCI dataset needs to be properly handled for this purpose. Therefore,
in Section 4.4.1 we explain how we used the dataset to train the model and in
Section 4.4.2 we discussed the achieved results.

4.4.1 DATASET MANAGEMENT

The Amazon ESCI dataset, as explained in Section 3.5, is processed in order
to create three separate datasets (one for each task: KS, QBE, CIR) and then each
of these new datasets is splitted into training, validation and test sets indepen-
dently. Since the UIA framework considers the three tasks jointly it must be
trained exploiting the training sets of both KS, QBE an CIR tasks together and to
do this the three training sets are provided in input sequentially to the model.

59

4.4. REPRODUCING UIA

As explained in Section 3.4, the framework is optimized following a two stage
approach and each of them requires to perform some negative sampling. While
for the Phase 2 the negative sampling procedure employs the UIA item encoder,
the Phase 1 makes use of some results obtained with BM25. In our case to carry
out the negative sampling required by Phase 1 we exploited the output of the
search that we obtained using Pyserini while reproducing the performance of
the paper on the BM25 baseline (see Section 4.3).

Note that the all this processing and, consequently, the training of the frame-
work is executed starting from the datasets modified according to what is ex-
plained in Section 4.2.

4.4.2 REPRODUCIBILITY RESULTS

The results thatwewere able to achieve in terms of performance of the frame-
work are reported in Table 4.2. As can be seen from the table, analogously to

Table 4.2: Original and reproduced UIA performance.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

original UIA 0.532 0.360 0.533 0.251 0.199 0.543 0.490 0.493 0.868
our UIA 0.491 0.327 0.484 0.442 0.374 0.673 0.463 0.459 0.833

what happened with the baselines (see Section 4.3), we were able to replicate
the performance of the framework for the KS and CIR tasks while we performed
better on the QBE task. Noticing that in the code of UIA made available by the
authors two different versions of the training set for theQBE taskwere generated
and used, the first corresponding to the complete set and the second containing
only half of the training data, we decided to try to train the framework using
the second version to understand if this was the origin of the strange behaviour.
The performance obtained using half of the data for the QBE training set are
reported in Table 4.3 and, based on those, we can conclude that probably the
second version of the dataset has been used only for testing purposes by the
authors. Therefore, even in this case (as for BM25, see Section 4.3), the possible
explanation of this strange behaviour can be the fact that the authors might have
used a sampled version of the ground truth for the QBE task, given also the fact
that the QBE dataset is the largest.

There are several reasons that might be the cause of the difference in per-
formance that obtained: we trained the framework only for 24 epochs (instead

60

CHAPTER 4. REPRODUCING UIA

Table 4.3: Original and reproduced UIA (with half of the data for QBE) perfor-
mance.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

original UIA 0.532 0.360 0.533 0.251 0.199 0.543 0.490 0.493 0.868
our UIA (half QBE) 0.510 0.341 0.504 0.316 0.250 0.561 0.455 0.452 0.838

of 48), we used smaller batches (48 samples for each batch instead of 384), the
authors of the paper may have applied some further processing to the datasets
without reporting it.

Table 4.4 shows the performance of the framework (with complete training
set for QBE) after the Phase 1. We report also these results because Phase 2 repre-
sents a step that is carried out just to increase the performance of UIA and does
not have an impact on the data flow or on the structure of the framework, there-
fore the majority of our experiments were done training UIA just with Phase 1
in order to save time (since each stage of training requires several days).

Table 4.4: Original and reproduced UIA (without Phase 2) performance.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

original UIA 0.532 0.360 0.533 0.251 0.199 0.543 0.490 0.493 0.868
our UIA (Phase 1) 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760

61

5
Potential Issues of UIA and

Experiments

In this chapter we describe some potential issues that we found in the origi-
nal paper [26] as well as some experiments that we performed to study and/or
analyse UIA and its components. The problems found are both related to the
datasets and to the architecture of the framework. Furthermore, for each issue/-
experiment wewill explain howwemodified the framework and/or the dataset
in order to perform further studies and eventually understand the magnitude of
the problem.

In Sections 5.1 and we 5.2 describe two potential issues concerning how the
dataset is processed; in Section 5.3we report an experiment thatweperformed to
better understand if the framework was actually learning how to distinguishing
the three tasks; in Section 5.4 we depict the tests that we carried out to verify if
UIA performed better when jointly trained on the Amazon ESCI dataset; even-
tually, in Section 5.5 we explain how we investigated whether combining the
datasets of the different tasks allows to improve the performance.

For all the experiments reported in this chapter we used the same datasets
(the Amazon ESCI dataset and the ones derived from it) and the same setup as
those used to reproduce UIA, which are reported in Section 4.1. Furthermore,
as explained in Sections 4.1 and 4.4 a single phase of the trainingwith our exper-
imental setups can take from 4 to 6 days, therefore given that the Phase 2 of the
optimization does not change the data flow or the structure of the framework
but is used only to further improve the performance and considered that the ex-

63

5.1. RANDOM SAMPLING

periment that we executed are used only to perform comparisons, in all the tests
reported in this chapter we trained the framework terminating after Phase 1 to
save time.

5.1 RANDOM SAMPLING

The UIA framework is trained following a two stage approach, as explained
in Section 3.4. In particular, by looking at the code made available by the au-
thors, after the Phase 1 is performed and prior to starting the Phase 2 the datasets
for the KS, QBE and CIR datasets are re-created and re-splitted into training,
validation and test sets starting from the original Amazon ESCI dataset and fol-
lowing the same procedure described in Section 3.5. During the generation of
the datasets the method sample of the random python module is called several
times and to guarantee a deterministic behaviour across several executions, the
random seed is properly set. Setting the random seed, however, does not ensure
that the method sample returns always the same results at every call but it guar-
antees that the method returns the same results for the same call across multiple
executions. Considering our case, the problem is that the Python scripts files
used to generate the datasets before Phase 1 are different from the ones used be-
fore Phase 2 and, even if the algorithm implemented is identical, the number of
times that the method sample is called before the calls used for the actual gener-
ation of the dataset is not the same, therefore the datasets created before Phase 1
are slightly different from the ones produced before Phase 2. The code snippets
5.1 and 5.2 represent a simplified example of the problem. As can be seen, in
both the snippets we declare a vector x that represents the dataset and contains
the numbers 1, 2, 3, 4, 5, 6 which can be thought as the ids of some samples.
Furthermore, we set the random seed and, tanks to that, in both the snippets the
different calls of the method sample return always the same results in the same
order. Anyway, in the snippet 5.1 we store the output of the method sample,
which contains the ids of the samples selected to form a potential training set,
after two calls while in snippet 5.2 we do the same thing but after three calls and
this leads to have different training sets.

1 import random
2

3 x=[1,2,3,4,5]
4

64

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

5 random.seed(10)
6

7 y=random.sample(x,3) #sampling 3 items from array x
8 print(y) #Output: [3,1,5]
9

10 y=random.sample(x,3) #sampling 3 items from array x
11 print(y) #Output: [2,1,3]
12

13 training_set=random.sample(x,3) #sampling 3 items from array x
14 print(training_set) #Output: [4,2,5]

Code 5.1: Phase 1 sampling example.

1 import random
2

3 x=[1,2,3,4,5]
4

5 random.seed(10)
6

7 y=random.sample(x,3) #sampling 3 items from array x
8 print(y) #Output: [3,1,5]
9

10 training_set=random.sample(x,3) #sampling 3 items from array x
11 print(training_set) #Output: [2,1,3]
12

13 y=random.sample(x,3) #sampling 3 items from array x
14 print(y) #Output: [4,2,5]

Code 5.2: Phase 2 sampling example.

We decided keep this error and to not correct it because our main goal was
to reproduce the work of the paper [26] and to find potential problems based on
the reproduced version of the framework. Furthermore, since in all the tests we
used the version of UIA trained only according to Phase 1 (skipping Phase 2), in
our case, the just introduced issue can be ignored.

5.2 DATA LEAKAGE

The way in which the training, validation and test sets for the KS, QBE and
CIR tasks are derived from the Amazon ESCI dataset may be the cause of a phe-
nomenon called ”data leakage”, as introduced in Section 3.5.5. In particular, we
recall that the original dataset (Amazon ESCI) ismade of queries and each query

65

5.2. DATA LEAKAGE

is paired to a set of products which are marked as exact, substitute, complemen-
tary or irrelevant matches for it. Furthermore, these queries are used to generate
the KS dataset which is composed of pairs of the type [query, relevant item], the
QBE dataset which is composed of pairs of the type [relevant item, similar item]
and the CIR dataset which is composed of pairs of the type [relevant item, com-
plementary item]. The key is the way in which the training, validation and test
sets for each task are derived, given the fact that the framework is jointly trained
on all the tasks. Specifically, the three obtained datasets are splitted indepen-
dently and this may lead to have the same pairs (or very similar pairs) in the
training set of one task and on the test set of another one. Imagine a situation in
which there are two different queries that have a common item marked as exact
match (relevant item) but for one of them a second item is marked as substitute
(similar item) while for the other the same second item is marked as comple-
mentary (complementary item); in this case, we end up having the same pair
in both the datasets for the QBE and CIR tasks and since the splitting into train-
ing, validation and test sets is performed independently, this may cause the pair
to appear in the training set of the QBE task and in the test set of the CIR task
(or the other way around). Since the system is jointly trained (thus all the sam-
ples of the training set of each task are provided in input during training) and
considered that the only thing that differentiates the data coming from differ-
ent training sets is the functionality ℱ , it is clear that by creating the datasets
according to this procedure we can introduce some biases. We now report a
real case in which this occurs: both the queries ”1/4” retractable air hose reel with-
out hose” and ”100’ air hose retractable reel without hose” share the same relevant
item ”Primefit HRM38100 Manual Air Hose Reel with 100ft Capacity using 3/8” ID
Air Hose” but the item ”GARDENA Retractable Hose Reel 82-Feet With Convenient
Hose Guide” is marked as complementary for the first query and as similar for
the second one. Note that this may lead to some leakage only between the QBE
and CIR datasets, because the pairs of the QBE and CIR datasets are made of
two items, while in the pairs of the KS dataset the first element is a query of the
original dataset (and it is quite unlikely that the text of a query is equal to the
title of an item) . Furthermore, if we consider pairs that are not affected by the
problem described above, because of the nature of the original dataset and for
the way in which it is processed, some pairs belonging to the test set of one task
can result to be very similar to pairs in the training set of another task, leading,
also in this case, to some biases (for the same reasons as the ones of the previous

66

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

problem). For example, the relevant item ”Emraw Pre Sharpened No 2 HB Wood
Cased Premium Pencils with Eraser Top, Bulk Pack of 24 Pencil - For Professionals,
Artists, Designers, Teachers”, the complementary item ”Arteza HB Pencils #2, Pack
of 48, Wood-Cased Graphite Pencils in Bulk, Pre-Sharpened, with Latex-Free Erasers,
Office & School Supplies for Exams and Classrooms” and the similar item ”Grading
Checking Erasable Pencils, Pre-Sharpened #2 HB Red Pencils, With Eraser Tops - 12-
Pack” generate pairs leading to the issue just described. In particular, the items
reported produce the pair [relevant item, similar item] that ends in the training
set for the QBE task and the pair [relevant item, complementary item] that ends
in the test set for the CIR task. In this case, we referred to the datasets of the
QBE and CIR tasks that are composed by pairs made of two items. Nonetheless,
even if in the dataset of the KS task the first element of each pair is a query of
the original dataset, since the queries performed by the users are usually very
close to the title of the product that they are looking for, this second problem
may occur between all the datasets. Note that in the two cases that we just de-
scribed the fact that the dataset of each task is splitted into training, validation
and test sets independently represents the main issue. In fact, because of this,
the same queries may be used to generate data that end up both in a training set
of one task and on the test set of another task and this may lead to make wrong
estimations of the performances of the framework (since the data in the training
sets and in the test sets is strongly related).

We now report some further insights of the datasets to better understand
that the way in which the splitting is performed may have a large impact on the
performance. From our analyses we were able to understand that only 32.7% of
the query items (relevant items, used as requests/queries to perform the recom-
mendation) of the test set of the QBE task are never seen in the training sets of
the CIR and KS tasks and only 15% of the query items of the test set of the CIR
do not appear in the training sets of the QBE and KS tasks. Moreover, 83.43%
of the relevant items in the test set of the QBE task are not seen in the training
set of the CIR task, while only 38.83% of the relevant items in the test set of the
CIR task are not seen in the training set of the QBE task. In addition to the fact
that the dataset for the CIR task is the smallest one (as explained in Section 3.7),
this last consideration and, specifically, the fact that the majority of the relevant
items in the test set of the CIR task are already seen in training, may be a further
reason why the increase in performance for CIR is grater than the increase in
performance for QBE and KS when we compare the UIA framework with the

67

5.2. DATA LEAKAGE

baselines.
In Sections 5.2.1 and 5.2.2 we first introduce a methodology to produce new,

unseen pairs to test the performance of the framework without requiring a re-
training and then we introduce an alternative way to derive the needed datasets
from the Amazon ESCI dataset that avoids the majority of the leakage issues but
requires to re-train UIA.

5.2.1 NEW QUERIES

We developed a new algorithm to derive, from the available datasets, some
new unseen pairs that can be used to evaluate the framework and, thus, to ob-
tain a better estimation of the performance. Since the queries for the KS dataset
correspond to the queries of the original Amazon ESCI dataset, it is impossi-
ble to generate new pairs for the KS task because we cannot create new queries.
Therefore, we produced new pairs only for the QBE and CIR tasks.

To create the new pairs for the QBE task we first select from the original
dataset all the queries having only exact or irrelevant matches but not substi-
tute or complementary matches. This is done to be sure that those queries were
not already used to generate pairs for the QBE or CIR datasets. After that, for
each of the selected queries we get all the relevant items (exact matches) which
have some similar products (based on the QBE dataset) and we add the prod-
ucts similar to the these items to a unique list. Therefore, after this step, for each
query we obtain a list of the items similar to at least one of the items that are
relevant for that query. Eventually, for each of the selected queries, for each of
the relevant items for that query, if the item is not appearing in pairs of the QBE
or CIR datasets then it is paired with each of the similar items in the list of the
corresponding query (creating the pairs). The procedure used to create the new
pairs for the QBE task is summarized in Algorithm 1. The consideration that
led to the definition of this algorithm is the following: if a given item is an exact
match for a certain request and a second item is a substitute match for that re-
quest, then if the same given item is an exact match for another request we can
conclude that it is very likely that the second item would be a substitute match
also for the second request (even if not explicitly marked in the original dataset).
An empirical check of the generated pairs demonstrated that this consideration
is correct.

The procedure to create the newpairs for the CIR task is symmetric to the one

68

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

Algorithm 1 Build not seen QBE queries
for each query without similar/complementary products do

get all the relevant products that have at least 1 similar product (obtained from
other queries)

add to a list all the products similar to at least one of the products selected at the
previous step

for each product relevant for the query but not seen in the QBE or CIR task do
create pairs pairing the relevant product with each of the similar products in

the generated list
end for

end for

used for the QBE task. We first select from the original dataset all the queries
having only exact or irrelevant matches but not substitute or complementary
matches. This is done to be sure that those queries were not already used to
generate pairs for the QBE or CIR datasets. After that, for each of the selected
queries we get all the relevant items (exact matches) which have some comple-
mentary products (based on the CIR dataset) and we add the products comple-
mentary to these items to a unique list. Therefore, after this step, for each query
we obtain a list of the products complementary to at least one of the items that
are relevant for that query. Eventually, for each of the selected queries, for each
of the relevant items for that query, if the item is not appearing in pairs of the
QBE or CIR datasets then it is paired with each of the complementary items in
the list of the corresponding query (creating the pairs). The procedure used to
create the new pairs for the CIR task is resumed in Algorithm 2.

Algorithm 2 Build not seen CIR queries
for each query without similar/complementary products do

get all the relevant products that have at least 1 complementary product (obtained
from other queries)

add to a list all the product complementary to at least one of the products selected
at the previous step

for each product relevant for the query but not seen in the QBE or CIR task do
create pairs pairing the relevant product with each of the complementary

products in the generated list
end for

end for

Similarly to what happened for the datasets of the three tasks, as explained
in Sections 3.5.2, 3.5.3, 3.5.4, also in this case, for both QBE and CIR, to obtain the
queries from the new generated pairs we simply get the unique relevant items

69

5.2. DATA LEAKAGE

(first elements of the pairs) and to produce the ground truth corresponding to
those information needs we consider for each relevant item the similar/comple-
mentary items appearing in the corresponding pairs. Note that the new sets of
pairs are only used as test sets to evaluate the performance of the framework.

In Table 5.1 we report the number of requests and the total number of pairs
(which corresponds to the ground truth size) for the training and test sets of each
task and for the new sets generated. As can be seen from the table if we compare
the number of requests and the number of pairs of the test sets that were used
before with the ones of the new generated data we can notice that, given the
number of request, there are way more pairs in the new generated data. In fact,
if we consider the QBE task, in the new generated data for each request there
are 20.7 pairs on average while in the base QBE test set for each request there
are 5.7 pairs on average. The same happens for the CIR task since in the new
generated data there are 6.3 pairs (on average) for each request while in the base
CIR test set there are 2.9 pairs (on average) for each request. This difference leads
to having a larger ground truth for the new test sets (since it is created based
on the pairs) and, therefore, for each request there are more items considered
as correct matches. Since when evaluating the performance of the framework
this may have an impact, we decided to perform the evaluation using both the
new test sets and some rescaled versions of them, which have been obtained by
randomly sampling for each request a certain number of pairs, to reduce the size
of the new test sets to the one of the base test sets. In our case for QBE we kept
up to 7 pairs for each request while for CIR we kept up to 5 pairs (these numbers
have been chosen empirically).

Table 5.1: Size of the base datasets and of the new queries.

Dataset Set Task # Requests # Pairs

Base Dataset

Training set
KS 54511 452081
QBE 315575 1067739
CIR 82580 184361

Test set
KS 6814 88767
QBE 39447 223998
CIR 10323 30259

New Queries Test set QBE 167293 3457531
CIR 90379 571962

Exploiting the generated datasets and their rescaled versions we evaluated

70

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

the performance of the UIA framework, which are reported in Table 5.2 (we re-
call that we used the version of the framework which has been trained only ac-
cording to Phase 1). As can be seen, when using the new data, the performance

Table 5.2: Performance of UIA (without Phase 2) on the new queries.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

our UIA (Phase 1) 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760
new queries (Phase 1) - - - 0.291 0.170 0.273 0.259 0.195 0.465
new queries rescaled (Phase 1) - - - 0.159 0.095 0.273 0.203 0.168 0.465

decreases significantly, especially with the rescaled version. Looking at these
results it is clear that the data leakage actually represents a problem and that
the framework does not only take advantage of the shared knowledge derived
from the joint training of the system but it also benefits from the leakage.

Since this approach does not require to re-train the framework, we decided
to carry out the evaluation also on the version of UIA which has been trained
performing both the two phases. The performance of this version of the frame-
work is reported in Table 5.3 and reflects the one obtained training UIA only
according to Phase 1, avoiding Phase 2.

Table 5.3: Performance of UIA (with Phase 2) on the new queries.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

original UIA 0.532 0.360 0.533 0.251 0.199 0.543 0.490 0.493 0.868
our UIA 0.491 0.327 0.484 0.442 0.374 0.673 0.463 0.459 0.833
new queries - - - 0.404 0.262 0.357 0.317 0.247 0.522
new queries rescaled - - - 0.238 0.153 0.357 0.255 0.216 0.522

5.2.2 EARLY SPLIT

The main cause of the problem that we defined as data leakage is the way in
which the original Amazon ESCI dataset is processed, for this reasonwedecided
to start from the original dataset and manipulate it in a different way to avoid
the leakage problem and simulate as much as possible the reality. Differently
to the other approach (see Section 5.2.1), since we modify all the datasets, the
previously trained framework cannot be used, therefore UIAmust be re-trained.

The original processing procedures of the Amazon ESCI dataset required
to first generate the datasets for each task and then split them independently

71

5.2. DATA LEAKAGE

to obtain the corresponding training, validation and test sets. Our idea was to
split the Amazon ESCI dataset queries into three sub-sets and then apply the
procedure to generate the datasets for the tasks to each sub-set independently,
to try to limit the problems deriving from the fact that before the same queries
were used to generate data that could end up in the training set of one task and
in the test set of another tasks. The three sub-sets in which the original dataset
is splitted are: a training sub-set (training queries) which contains the 80% of
the queries, a validation sub-set (validation queries) which contains 10% of the
queries and a test sub-set (test queries) which contains the remaining 10% of the
queries. Each of these three sub-sets is then considered independently and the
same procedures described in Section 3.5 are applied to each of them to generate
the pairs (without performing the splitting into training,validation and test set
thatwas executed at the end of these algorithms). Using thismethod the training
sets for the KS, QBE and CIR tasks are generated from the training sub-set, the
validation sets for the tasks are created from the validation sub-set and the test
sets for the tasks are derived from the test sub-set. This way we are sure that
all the data ending up in the training set of a task cannot be generated from
queries that contributed also to the generation of data for the test/validation set
of another. Figure 5.1a reports a scheme representing the original processing
pipeline while Figure 5.1b depicts the new pipeline.

(a) Original Split. (b) Early Split.

Figure 5.1: Amazon ESCI dataset processing.

Despite the fact that also if we exploit this new algorithm it may still happen
that the same pair appear in the training set of one task and in the test set of
another (fortunately in our case this problem can be ignored since a it happens

72

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

a very small number of times), an empirical analysis of the generated data re-
vealed that the magnitude of the problem related to having similar pairs in the
training set of one task and in the test set of the other is drastically reduced. Fur-
thermore, another advantage derived from this processing procedure is that the
performance of the framework can be estimated more accurately. This is possi-
ble because this way of manipulating the dataset is closer to the reality since it is
more likely that both the retrieval and recommendation requests related to one
topic (query of the original Amazon ESCI dataset) are carried out close in time
and, given the fact that usually the training and test sets are built considering
the temporal distribution of the requests (that in our case is not available), in a
real scenario it is quite rare that the retrieval data related to one topic ends up in
a training set while the recommendation data for the same topic ends up in a test
set. Furthermore, a real user may repeat a (search) query over time expecting
the same results or it may interact with the same item at different times consid-
ering as relevant the same recommendation output, for this reason we decided
to keep the pairs that are shared among the training set of one task and the test
set of another task.

Table 5.4 reports the performance of the framework, after the Phase 1 of train-
ing, both using the original procedure (”our UIA” in the table) and the new pro-
cedure (”early split UIA” in the table) to generate the datasets. As can be seen,
the performance with the new datasets drastically drops for the recommenda-
tion tasks but not for the retrieval task; this happens because, as explained be-
fore, the QBE and CIR datasets takemore advantage from the leakage since they
are actually generated from scratch exploiting the Amazon ESCI dataset while
the KS dataset is obtained with minor modifications from the Amazon ESCI
dataset and it results to be more realistic, since the original dataset has been cre-
ated for retrieval purposes on the basis of real data. In Table 5.4 the last row
(”mixed UIA”) reports the performance of the version of UIA that is trained us-
ing the training set generated according to the just introduced procedure but
is evaluated using the test sets created exploiting the original procedure. This
way we are sure that there is some leakage between the training and the test sets
used. We can notice how in this last case the framework performs better than
the our reproduced version of the original UIA (”our UIA”) but, especially for
the recommendation tasks, the results are quite close to the ones of ”our UIA”,
confirming that the leakage has a large impact. Based on all the considerations
made above, we can conclude that the way in which we manipulate the dataset

73

5.3. NO FUNCTIONALITY

plays a key role and, in this case, either or the leakage represents a real problem
that cannot be neglected or the dataset is not appropriate for this framework.

Table 5.4: Performance of UIA (without Phase 2) on the new datasets.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

our UIA (Phase 1) 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760
early split UIA (Phase 1) 0.467 0.306 0.451 0.053 0.034 0.129 0.041 0.037 0.147
mixed UIA (Phase 1) 0.577 0.401 0.585 0.356 0.283 0.594 0.400 0.391 0.740

5.3 NO FUNCTIONALITY

The UIA frameworkmakes use of only two encoders (as described in Section
3.3): the encoder Eℐ which is used to map the items in the collection to some
vector representation and the encoder Eℛ which is used to map the requests
to some vector representation. We recall that, since we use the Amazon ESCI
dataset which has no user information, the t-th request submitted is encoded as
®𝑅𝑡 = Eℛ([CLS] ℛ𝑡 [SEP] ℱ𝑡 [SEP])while the i-th item in the collection is encoded
as ®𝐼𝑖 = Eℐ([CLS] ℐ𝑖 [SEP]). All the requests, independently from the task, are
provided in input to the same encoder Eℛ , therefore the only thing that allows
the framework to identify the task related to the requests is the functionality ℱ .

While studying the framework we realized that the amount of data compos-
ing the training set of each task was quite large and considering also the fact that
the functionality ℱ provided in input to the encoder the Eℛ is the only thing al-
lowing to distinguish among the different tasks, a doubt started growing: was
UIA actually capable of learning from all the tasks jointly and then share the
knowledge between them or was it only taking advantage from the fact that it
was trained on a huge amount of data related to different tasks? In particular,
the functionality ℱ is simply a short textual string (in our case chosen between
”is_relevant_to”, ”is_similar_to” and ”is_complementary_to” based on the task) that
is concatenated to the request bymeans of a separator ”[SEP]” and then the con-
catenation is provided in input to the encoder Eℛ which is a BERT model. BERT
is pre-trained to be able to recognize the separator and also to consider both the
first and the second sentences (in our case the request and the functionality, re-
spectively). Therefore, the functionality should be the element that guides BERT
into turning the request in the best vector to match the most appropriate items
based on the task. Nonetheless, since the amount of training data is very large

74

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

and considered that the training sets of the tasks have very different sizes (see
Table 5.5, we recall that in the training phases the pairs are considered one at
the time, so the size of the training set corresponds to the number of pairs in
the set) and several similarities (see also the data leakage problem that we have
reported in Section 5.2), there is the risk that BERT starts learning how to encode
the request to match certain items without caring about the functionality. If this
was the case, maybe it would not make sense to develop such a complex frame-
work or it would be better to change its architecture (for example using different
request encoders, one for each task and keeping a common item encoder to be
able to share some knowledge).

Table 5.5: Size of the training and test sets for all the tasks.

Set Task # Requests # Pairs

Training set
KS 54511 452081
QBE 315575 1067739
CIR 82580 184361

Test set
KS 6814 88767
QBE 39447 223998
CIR 10323 30259

To answer to the question we decided to modify the framework by removing
the functionality ℱ and to re-train it considering all the data of the training sets
of the different task as data belonging to a unique, large training set. In order to
remove the impact of the functionality ℱ wemodified the input provided to the
request encoder Eℛ so that the t-th request is encoded as reported in Equation
5.1.

®𝑅𝑡 = Eℛ([CLS] ℛ𝑡 [SEP]). (5.1)

In Figure 5.2 we first show the original structure of the framework highlighting
the portions that are removed (Figure 5.2a) and then we report the new archi-
tecture without the functionalities (Figure 5.2b).

The framework without the functionality ℱ has been trained and evaluated
using the same training and test sets used to reproduce the work of the paper
[26]. As explained before, the training sets of the tasks have been joined together
into a single training set while the test sets have been kept separated in order to
be able to obtain the performance results for each tasks. Also in this case, as for
the vast majority of the experiments that we carried out, the framework was re-
trained only according to Phase 1 (skipping Phase 2). The results of the evaluation

75

5.4. ISOLATED TASKS

(a) Removing functionality from UIA
architecure.

(b) UIA architecture without function-
ality.

Figure 5.2: UIA without the functionality ℱ .

are reported in Table 5.6. As can be seen from the table, in general, the perfor-

Table 5.6: Performance of UIA (without Phase 2) with and without the function-
ality.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

our UIA (Phase 1) 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760
UIA w/o ℱ (Phase 1) 0.441 0.280 0.419 0.247 0.185 0.472 0.181 0.175 0.524

mance of the framework without the functionality decrease but, while for the
KS and QBE tasks the results are quite close to the ones of the framework with
the complete architecture, for the CIR task the gap is bigger. From our studies
we concluded that this could be happening because the KS and QBE tasks have
larger training sets than CIR (see Table 5.5) and because end goal of the KS and
QBE tasks are quite close if compared to the one of CIR . In general, in fact, KS
and QBE try to retrieve the most similar things to some input provided, the first
aiming to find the most relevant items to a user request and the second trying to
recommend the most similar products to an item, while CIR attempts to retrieve
items that are complementary to other items. Therefore, removing the function-
ality from UIA may affect more the CIR task because it has the smallest training
set and it presents least commonalities with the other tasks. We can conclude
that the functionalityℱ actually plays a role in the framework, especially for the
CIR task.

5.4 ISOLATED TASKS

Joint IR and RecSys, as explained in Section 2.5 of Chapter 2, is a promising
research field and the UIA framework represents the currrent state-of-the-art. In
particular, it seems that creating models that carry out both the IR and RecSys

76

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

tasks jointly allows to improve the performance by sharing knowledge between
them.

Training and evaluating the UIA framework on the tasks in isolation corre-
sponds to optimize and evaluate three separate instances of UIA, the first trained
using only the training set of the KS task and evaluated using only the test set
of the KS task , the second trained using only the training set of the QBE task
and evaluated using only the test set of the QBE task and the third trained using
only the training set of the CIR task and evaluated using only the test set of the
CIR task. In Figures 5.3, 5.4, 5.5 we report the architecture of the three instances
of the framework, each optimized on a specific task in isolation.

Figure 5.3: UIA framework for KS in isolation.

Figure 5.4: UIA framework for QBE in isolation.

Figure 5.5: UIA framework for CIR in isolation.

77

5.4. ISOLATED TASKS

The authors of the paper [26] that introducedUIA provided the performance
of the framework on Lowe’s dataset bothwhen it is trained on all the tasks jointly
and when is optimized on the different tasks one by one in isolation. We re-
ported those results in Table 5.7 and, as can be seen, it seems that UIA performs
better when jointly trained. Note that in the table ”Lowe’s UIA” refers to the
version of UIA that is jointly optimized on the three tasks while ”Lowe’s UIA
isolated tasks” encloses the three instances of the framework each trained on a
single task. Furthermore, all the instances/versions of UIA whose results are
reported in the table correspond to instances/versions of UIA that have been
optimized performing both Phase 1 and Phase 2. The authors of the paper, be-
cause of the limited amount of space available, for the instances of the framework
trained on the tasks in isolation, reported only the value of nDCG.

Table 5.7: Original performance of UIA when jointly and not jointly trained on
the Lowe’s dataset.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

Lowe’s UIA 0.340 0.399 0.880 0.433 0.495 0.945 0.438 0.432 0.836
Lowe’s UIA isolated tasks - 0.391 - - 0.369 - - 0.298 -

The potential issues that we discovered in the Amazon ESCI dataset, the way
in which it is processed and used (discussed also in Section 5.2) and the fact that
the authors of the paper only reported the value of nDCG on the Lowe’s dataset
for the framework trained on the tasks in isolation, without considering also
the Amazon ESCI dataset, brought us to verify the performance of UIA when is
optimized on the tasks one by one also for the Amazon ESCI dataset. Table 5.8,
in fact, reports the results of the evaluation of both the reproduced version of
the framework that is jointly trained on all the tasks (”our UIA (Phase 1)”) and
the three versions of UIAwhich are optimized on a single task (grouped as ”our
UIA isolated tasks (Phase 1)”). Note that also in this case, our experiments have
been performed training the all the versions of the framework only according to
Phase 1 (skipping Phase 2).

As can be seen from Table 5.8, when the datasets derived from the Amazon
ESCI dataset are used, the performance of the framework that is jointly opti-
mized on all the tasks are from 3% to 5% lower than the ones of the versions of
UIA trained on a single task. This behaviour is not consistent with the previous
studies about joint IR and RecSys [24, 25, 27] and with the UIA results reported
in the paper by the authors when the Lowe’s dataset is used. We think that this

78

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

Table 5.8: Reproduced performance of UIA (without Phase 2) when jointly and
not jointly trained on the Amazon ESCI dataset.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

our UIA (Phase 1) 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760
our UIA isolated tasks (Phase 1) 0.506 0.340 0.493 0.324 0.257 0.561 0.414 0.412 0.779

may happen because in the architecture of the UIA framework the Attentive
Personalization Network (APN) plays a fundamental role. When the Lowe’s
dataset is used and the framework is jointly trained, in fact, the personaliza-
tion of a request related to a specific task is performed by using all the infor-
mation contained in the user history, independently from the task. Therefore
when UIA is trained on the tasks in isolation not only the knowledge sharing at
the encoders level is missing but also the personalization is affected, since the
user history contains only data from the same task on which the framework is
optimized. For this reason, the jointly trained UIA is able to better exploit the
shared knowledge between the tasks and, thus, perform better. When the Ama-
zon ESCI dataset is used, instead, the APN is removed, reducing the complexity
of the architecture of the framework but this eliminates one of the components
that allows to take advantage from the knowledge sharing. We can conclude
that the Amazon ESCI dataset does not seem to be the most appropriate dataset
for UIA because additionally to the potential issues found performing other the
experiments reported in Section 5.2, it also requires an oversimplification of the
architecture. Note that the fact that on the Amazon ESCI dataset UIA performs
better when not jointly trained does not affect the experiments, the studies and
the potential issues discussed in this chapter.

5.5 MERGED TASKS

While studying the UIA framework and performing some tests we notice
some similarities and some differences between the various tasks, for this reason
we decided to train multiple instances of the framework, each time merging two
of the datasets of the KS, QBE and CIR tasks , in order to try to understand if
some combination would have affected the performance in a positive way.

To merge the datasets of two tasks we need to combine their two training
sets into a single training set, the two validation sets into a single validation set

79

5.5. MERGED TASKS

and their two test sets into a single test set. Consider that a request ℛ𝑡 is en-
coded by the request encoder as ®𝑅𝑡 = Eℛ([CLS] ℛ𝑡 [SEP] ℱ𝑡 [SEP]) and, thus,
the only thing that allows to determine the task to which the request is related is
the functionality ℱ , since, when the Amazon ESCI dataset is used, according to
the training procedure defined in Section 3.5.5, for each task we use a different
functionality ℱ . Therefore, to merge two training/validation/test sets belong-
ing to different tasks, it is sufficient to modify training procedure such that for
the data coming from the datasets of the two tasks that must be combined the
same functionality ℱ is used.

In Table 5.9 we report the size of the training sets for all the tasks since it rep-
resents a key aspect to consider to understand the behaviour of the framework
when it is trained after merging some tasks.

Table 5.9: Size of the training sets for all the tasks.

Task # Requests # Pairs
KS 54511 452081
QBE 315575 1067739
CIR 82580 184361

In Sections 5.5.1, 5.5.2 and 5.5.3 we report all the experiments that we carried
out to test all the possible combinations of the datasets.

5.5.1 MERGED KS AND QBE

The first test that we performed is merging the datasets of the KS and QBE
tasks. Both the KS and QBE tasks, in our case, are focused with retrieving the
most similar items in a collection given a request. In text based retrieval (this
is the case of the KS task), in fact, the request is represented by a short textual
string that is provided by the user and it is used to retrieve the most relevant
textual documents/items in a collection, which usually are the ”most similar”
documents/items to the given request. In QBE, instead, the main goal is still to
retrieve the most similar items in the collection with respect to a request, which,
this time, is represented by an item provided in input. Furthermore, since the
CIR task focuses on retrieving the best complementary product to an item pro-
vided in input (which represents the request) combining KS and QBE could al-
low to better separate the tasks based on their goal. Considering all these as-
pects, merging the tasks this way could potentially increase the performance of

80

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

the framework.
Figure 5.6 reports the architecture of the framework when the KS and QBE

tasks are combined. As explained before, to merge the tasks it is necessary to
define the functionalities and use the same one for the tasks that must be com-
bined, for this reasonwe decided to keep the functionality ”is_complementary_to”
for CIR while we used the functionality ”is_relevant_to” for KS and QBE, since it
seemed the most generic and appropriate for both.

Figure 5.6: UIA framework when KS and QBE are merged.

Table 5.10 contains the results of the evaluation of the framework trained
by considering the KS and QBE tasks as a single one. In the table we reported

Table 5.10: Performance of UIA (without Phase 2) when the KS and QBE tasks
are merged.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

our UIA (Phase 1) 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760
merged KS & QBE UIA (Phase 1) 0.466 0.303 0.447 0.272 0.208 0.510 0.347 0.338 0.740

both the performance of the version of UIA that we obtained reproducing the
work of the paper [26] and the ones of the version of UIA for which the KS and
QBE tasks have been merged. As can be seen, when the tasks are combined,
for all the evaluation measures of all the tasks we obtain values that are from
1% to 2% lower than the case in which the tasks are not merged. This may be
happening because even though the goal of the KS and QBE task is very similar,
the type of the request that they expect in input is quite different: KS requests are
humanwritten querieswhile QBE requests are textual strings that correspond to
the titles of some products. Furthermore, also CIR is negatively affected by the
changes and this could be due to the fact that KS and QBE are the tasks with the
largest training sets (see Table 5.9) . Their combination, in fact, leads to having

81

5.5. MERGED TASKS

a single task that has an enormous training set if compared to the one of CIR,
driving the system to give less importance to the CIR task.

5.5.2 MERGED QBE AND CIR

The second test that we performed is merging the datasets of the QBE and
CIR tasks. Both the QBE and CIR tasks, in fact, represent recommendation tasks
and take in input a request that is represented by an item, differently to KSwhich
is a retrieval task and in which the requests are represented by short, human
written textual strings. Despite that, QBE and CIR present also some differ-
ences, in fact, the first is concerned with selecting the items in the collection
that are most similar to the item representing the request while the second one
focuses on retrieving the items in the collection that are complementary to the
item representing the request. Therefore, based on those considerations, merg-
ing the tasks this way makes it possible to better split the IR related tasks and
the RecSys related tasks, still allowing to share knowledge between them and
this could potentially increase the performance of the framework.

Figure 5.7 reports the architecture of the framework when the QBE and CIR
tasks are combined. As explained before, to merge the tasks it is necessary to
define the functionalities and use the same one for the tasks that must be com-
bined, for this reasonwe decided to keep the functionality ”is_relevant_to” for KS
while we used the functionality ”is_similar_to” for QBE and CIR, since it seemed
the most generic and appropriate for both.

Figure 5.7: UIA framework when QBE and CIR are merged.

Table 5.11 contains the results of the evaluation of the framework trained by
considering the QBE and CIR tasks as a single one. In the table we reported
both the performance of the version of UIA that we obtained reproducing the
work of the paper [26] and the ones of the version of UIA for which the QBE

82

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

Table 5.11: Performance of UIA (without Phase 2) when the QBE and CIR tasks
are merged.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

our UIA (Phase 1) 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760
merged QBE & CIR UIA (Phase 1) 0.471 0.308 0.455 0.268 0.207 0.522 0.248 0.239 0.633

and CIR tasks have been merged. As can be seen, when the tasks are combined,
the framework does not perform better. In particular, if we compare the val-
ues of the evaluation metrics when the tasks are merged with the case in which
they are not, we discover that for the QBE tasks the results are from 0.5% to
2.5% lower while for the CIR task the results are from 11% to 13% lower. This
may be happening, because, as explained above, even though QBE and CIR are
both recommendation tasks, their end goal is quite different and therefore in the
merged training set, the data coming from one task may represent noise for the
data coming from the other . Furthermore, we can notice that the performance
of CIR are more affected than the ones of QBE and this may be due to the fact
that the training set for QBE is almost six times larger than the one of CIR (see
Table 5.9), meaning that the noise introduced by QBE towards CIR probably has
a larger magnitude than the one introduced by CIR towards QBE. The results
for the KS task, instead, are almost unaltered. In this case, it is possible that the
slight decrease in the value of the measures derives from the fact that merging
the QBE and CIR may also have an impact on the sharing of knowledge (since
the framework learns less and/or wrong things).

5.5.3 MERGED KS AND CIR

The last test that we performed is merging the datasets of the KS and CIR
tasks. This experiment was done for completeness and to verify that the frame-
work was behaving properly. The KS and the CIR tasks, in fact, are the ones that
have the least common aspects among all, since the requests for the KS tasks are
represented by short, human written textual strings, while the requests for the
CIR tasks correspond to the title of a product. Furthermore, while KS aims to
retrieve the most relevant items in the collection according to a human written
request, CIR tries to retrieve the items in the collection that are complementary
to an item provided in input. Therefore, based on those considerations, merging
the tasks this way should decrease the performance of the framework.

83

5.5. MERGED TASKS

Figure 5.8 reports the architecture of the framework when the KS and CIR
tasks are combined. As explained before, to merge the tasks it is necessary to
define the functionalities and use the same one for the tasks that must be com-
bined, for this reason we decided to keep the functionality ”is_similar_to” for
QBE while we used the functionality ”is_relevant_to” for KS and CIR, since it
seemed the most generic and appropriate for both (in this case we could have
defined a new functionality for the KS and CIR tasks but we preferred to not do
it to be more consistent with the other experiments discussed in Sections 5.5.1
and 5.5.2).

Figure 5.8: UIA framework when KS and CIR are merged.

Table 5.12 contains the results of the evaluation of the framework trained
by considering the KS and CIR tasks as a single one. In the table we reported

Table 5.12: Performance of UIA (without Phase 2) when the KS and CIR tasks
are merged.

Keyword Search Query By Example Complementary Item Rec.
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

our UIA (Phase 1) 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760
merged KS & CIR UIA (Phase 1) 0.466 0.305 0.455 0.283 0.217 0.520 0.341 0.331 0.728

both the performance of the version of UIA that we obtained reproducing the
work of the paper [26] and the ones of the version of UIA for which the KS and
CIR tasks have been merged. As can be seen, when the tasks are combined,
the behaviour of UIA confirms the expectations since the framework performs
worse. In particular, if we compare the values of the evaluation metrics when
the tasks are merged with the case in which they are not, we discover that for
the KS tasks the results are about 1% lower while for the CIR task the results are
from 2% to 3.5% lower. Thismay be happening, because, as explained above, the
KS and CIR tasks are quite different from each other, therefore in the merged
training set, the data coming from one task may represent noise for the data

84

CHAPTER 5. POTENTIAL ISSUES OF UIA AND EXPERIMENTS

coming from the other. Furthermore, we can notice that the performance of CIR
are more affected than the ones of KS and this may be due to the fact that the
training set for KS is larger than the one of CIR (see Table 5.9), meaning that the
noise introduced by KS towards CIR probably has a larger magnitude than the
one introduced by CIR towards KS. The results for the QBE task are also affected
but, in this case, it is possible that the decrease in the value of the metrics (about
1%) derives from the fact that merging the KS and CIR may also have an impact
on the sharing of knowledge (since the framework learns less and/or wrong
things).

5.6 FINAL CONSIDERATIONS

Based on the experiments executed and on the potential issues found, which
have been discussed in Sections 5.1, 5.2, 5.3, 5.4 and 5.5, we canmake several con-
siderations. The first thing that can be noticed is that there are various issues
that are related to the way in which the Amazon ESCI dataset is processed to
obtain the training, validation and test stets for the various tasks. In addition to
that, when the Amazon ESCI dataset is used, the architecture of the framework
must be simplified removing the personalization component, which seems to be
a core part of UIA . All these things combined lead to think that the Amazon
ESCI dataset is not appropriate to be used to test the performance of the frame-
work and, thus, there is no known publicly available dataset that can be used
for this purpose. Furthermore, the authors of the paper [26] performed some
ablation studies, which are important to understand the behaviour of UIA (for
example to evaluate if the framework works better when jointly trained), only
using the Lowe’s dataset which is a private dataset and, therefore, those tests
cannot be reproduced. Eventually, the results that we obtained by training the
framework after merging two of the tasks together (see Section 5.5) are consis-
tent throughout all the experiments and, thanks to that, wewere able to discover
that, when the Amazon ESCI dataset is used, merging the tasks to try to exploit
the similarities between them does not seem to improve the performance.

85

6
Conclusions and Future Work

In this work we analysed the field of joint Information Retrieval and Recom-
mender Systems also highlighting the common and different aspects between
IR and RecSys. We studied the architecture of the UIA framework and how the
publicly available Amazon ESCI dataset has been processed and used to opti-
mize the system. Furthermore, we discussed about the potential issue that there
could be when using the Amazon ESCI dataset, which are related both to the
processing of the dataset itself and to the architecture of the framework. We
discovered, in fact, that the way in which the dataset is processed may lead to
a major issue that we addressed as ”data leakage”. The ”data leakage” causes
to have the same/similar samples both in the training and in the test sets of
the dataset and this alters the value of the metrics that are used to evaluate the
performance of the framework. In addition, since the Amazon ESCI dataset, un-
fortunately, does not contain user information, the personalization component
which is present in the architecture of UIA and strongly relies on users must be
removed. This removal corresponds to erasing a core part of the framework and,
thus, it makes the architecture too simple.

While analysing UIA and describing the experiments that we performed we
gave also some hints on how the potentials issues found can be solved and how
the framework can be enhanced in order to perform better.

Based on this work we will continue to study the field of joint IR and RecSys,
trying to solve the potential issues found in UIA and developing new models.
While doing this we will consider that:

87

1. Most of existing models are jointly optimized by simply aggregating data
from retrieval and recommendation, without considering that user intents
in IR and RecSys sometimes may be different.

2. Current models deeply focus on user history without considering that the
search task (IR) could be performed by ”fresh” users or by external peo-
ple/agents.

3. There are no appropriate, public datasets suitable for training and evalu-
ating models performing both IR and RecSys tasks jointly.

For this reasons, we define our following future goals:

• Develop new models to carry out IR and RecSys tasks jointly that are also
able to capture the differences (and not only the similarities) between the
user intents. Moreover, aim at improving the current systems user man-
agement, in order to effectively exploit the user history while allowing
fresh/external users to take advantage of the benefits of joint IR and Rec-
Sys. Focus also on realizing all the models in such a way that they can
be implemented and used without requiring excessive computational re-
sources.

• Create and make publicly available some new datasets necessary for an
appropriate evaluation of the models.

Eventually, we hope also that the research community will start to increase
its effort in this promising field in order to favor the development of newmodels
and the sharing of knowledge between the researchers.

88

References

[1] Nicholas J. Belkin and W. Bruce Croft. “Information filtering and infor-
mation retrieval: two sides of the same coin?” In: Commun. ACM 35.12
(Dec. 1992), pp. 29–38. ISSN: 0001-0782. DOI: 10.1145/138859.138861. URL:
https://doi.org/10.1145/138859.138861.

[2] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[3] Xiangnan He et al. “Neural Collaborative Filtering”. In: Proceedings of the
26th International Conference on World Wide Web (2017).

[4] Jeff Johnson,MatthĳsDouze, andHervé Jégou.Billion-scale similarity search
with GPUs. 2017. arXiv: 1702.08734 [cs.CV].

[5] Wang-Cheng Kang and Julian McAuley. “Self-Attentive Sequential
Recommendation”. In: 2018 IEEE International Conference on Data Mining
(ICDM) (2018), pp. 197–206.

[6] Vladimir Karpukhin et al. “Dense Passage Retrieval for Open-Domain
Question Answering”. In: ArXiv abs/2004.04906 (2020).

[7] J. Kiefer and Jacob Wolfowitz. “Stochastic Estimation of the Maximum
of a Regression Function”. In: Annals of Mathematical Statistics 23 (1952),
pp. 462–466.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. 2017. arXiv: 1412.6980 [cs.LG]. URL: https://arxiv.org/abs/1412.
6980.

[9] Jimmy Lin et al. “Pyserini: A Python Toolkit for Reproducible Information
Retrieval Research with Sparse and Dense Representations”. In: Proceed-
ings of the 44th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. SIGIR ’21. , Virtual Event, Canada, Associa-
tion for Computing Machinery, 2021, pp. 2356–2362. ISBN: 9781450380379.

89

https://doi.org/10.1145/138859.138861
https://doi.org/10.1145/138859.138861
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

REFERENCES

DOI: 10 . 1145 / 3404835 . 3463238. URL: https : / / doi . org / 10 . 1145 /
3404835.3463238.

[10] Yingqi Qu et al. “RocketQA: An Optimized Training Approach to Dense
Passage Retrieval for Open Domain Question Answering”. In: NAACL.
2021.

[11] Chandan K. Reddy et al. Shopping Queries Dataset: A Large-Scale ESCI
Benchmark for Improving Product Search. 2022. arXiv: 2206.06588.

[12] Herbert E. Robbins. “A Stochastic Approximation Method”. In: Annals of
Mathematical Statistics 22 (1951), pp. 400–407.

[13] Stephen E. Robertson and Hugo Zaragoza. “The Probabilistic Relevance
Framework: BM25 and Beyond”. In: Found. Trends Inf. Retr. 3 (2009),
pp. 333–389.

[14] Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65 6 (1958),
pp. 386–408.

[15] Zihua Si et al. “When Search Meets Recommendation: Learning Disen-
tangled Search Representation for Recommendation”. In: Proceedings of the
46th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval. SIGIR ’23. ACM, July 2023. DOI: 10 . 1145 / 3539618 .
3591786. URL: http://dx.doi.org/10.1145/3539618.3591786.

[16] Fei Sun et al. “BERT4Rec: Sequential Recommendation with Bidirectional
Encoder Representations from Transformer”. In: Proceedings of the 28th
ACM International Conference on Information and Knowledge Management
(2019).

[17] Afrina Tabassum et al. Hard Negative Sampling Strategies for Contrastive
Representation Learning. 2022. arXiv: 2206 . 01197 [cs.LG]. URL: https :
//arxiv.org/abs/2206.01197.

[18] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL].

[19] Wikibooks. Artificial Neural Networks/Print Version — Wikibooks, The Free
Textbook Project. [Online]. 2013. URL: https : / / en . wikibooks . org / w /
index . php ? title = Artificial _ Neural _ Networks / Print _ Version &
oldid=2501560.

90

https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://arxiv.org/abs/2206.06588
https://doi.org/10.1145/3539618.3591786
https://doi.org/10.1145/3539618.3591786
http://dx.doi.org/10.1145/3539618.3591786
https://arxiv.org/abs/2206.01197
https://arxiv.org/abs/2206.01197
https://arxiv.org/abs/2206.01197
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://en.wikibooks.org/w/index.php?title=Artificial_Neural_Networks/Print_Version&oldid=2501560
https://en.wikibooks.org/w/index.php?title=Artificial_Neural_Networks/Print_Version&oldid=2501560
https://en.wikibooks.org/w/index.php?title=Artificial_Neural_Networks/Print_Version&oldid=2501560

REFERENCES

[20] ThomasWolf et al. “HuggingFace’s Transformers: State-of-the-art Natural
Language Processing”. In: ArXiv abs/1910.03771 (2019).

[21] Lee Xiong et al. “Approximate Nearest Neighbor Negative Contrastive
Learning for Dense Text Retrieval”. In: ArXiv abs/2007.00808 (2021).

[22] Peilin Yang, Hui Fang, and Jimmy Lin. “Anserini: Enabling the Use of
Lucene for Information Retrieval Research”. In: Proceedings of the 40th In-
ternational ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. SIGIR ’17. Shinjuku, Tokyo, Japan: Association for Comput-
ing Machinery, 2017, pp. 1253–1256. ISBN: 9781450350228. DOI: 10.1145/
3077136.3080721. URL: https://doi.org/10.1145/3077136.3080721.

[23] Peilin Yang, Hui Fang, and Jimmy Lin. “Anserini: Reproducible Ranking
BaselinesUsingLucene”. In: J. Data and Information Quality 10.4 (Oct. 2018).
ISSN: 1936-1955. DOI: 10.1145/3239571. URL: https://doi.org/10.1145/
3239571.

[24] Hamed Zamani and W. Bruce Croft. Joint Modeling and Optimization of
Search and Recommendation. 2018. arXiv: 1807.05631 [cs.IR].

[25] Hamed Zamani and W. Bruce Croft. “Learning a Joint Search and Rec-
ommendation Model from User-Item Interactions”. In: Proceedings of the
13th International Conference on Web Search and Data Mining. WSDM ’20.
Houston, TX, USA: Association for Computing Machinery, 2020, pp. 717–
725. ISBN: 9781450368223. DOI: 10.1145/3336191.3371818. URL: https:
//doi.org/10.1145/3336191.3371818.

[26] Hansi Zeng et al. A Personalized Dense Retrieval Framework for Unified Infor-
mation Access. 2023. arXiv: 2304.13654 [cs.IR].

[27] Kai Zhao et al. “Joint Learning of E-commerce Search and Recommen-
dation with a Unified Graph Neural Network”. In: Proceedings of the Fif-
teenth ACM International Conference on Web Search and Data Mining. WSDM
’22. Virtual Event, AZ, USA: Association for Computing Machinery, 2022,
pp. 1461–1469. ISBN: 9781450391320. DOI: 10.1145/3488560.3498414. URL:
https://doi.org/10.1145/3488560.3498414.

91

https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3239571
https://doi.org/10.1145/3239571
https://doi.org/10.1145/3239571
https://arxiv.org/abs/1807.05631
https://doi.org/10.1145/3336191.3371818
https://doi.org/10.1145/3336191.3371818
https://doi.org/10.1145/3336191.3371818
https://arxiv.org/abs/2304.13654
https://doi.org/10.1145/3488560.3498414
https://doi.org/10.1145/3488560.3498414

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	Related Work
	Information Retrieval
	Information Retrieval Systems Purpose & architecture
	Information Retrieval Methodologies

	Recommender Systems
	Recommender Systems Purpose & Architecture
	Recommender Systems Methodologies

	Matching Models
	Term Weighting
	Vector Based Matching
	Probabilistic Matching

	Neural Approaches & Dense Retrieval
	Neural Networks
	Neural Networks Training
	Negative Sampling
	Cross Entropy Loss
	Dense Retrieval & Recommender Systems
	Neural Models, Architectures and Attention

	Joint Information Retrieval and Recommender Systems
	Evaluation Measures

	UIA Framework
	Functionalities
	Information Access
	Framework Architecture
	Request Encoding
	Item Encoding
	User History Selection & Encoding
	Attentive Personalization Network

	Framework Optimization
	Non-Personalized Pre-Training
	Personalized Fine-Tuning

	Datasets
	Original Dataset
	Keyword Search Dataset
	Query By Example Dataset
	Complementary Item Recommendation Dataset
	Training, Validation & Testing

	Implementation Details
	Framework Evaluation

	Reproducing UIA
	Experimental Setup
	Hyper-parameters Settings

	Dataset Preprocessing Discrepancies
	Reproducing Baselines
	Reproducing UIA
	Dataset Management
	Reproducibility Results

	Potential Issues of UIA and Experiments
	Random Sampling
	Data Leakage
	New Queries
	Early Split

	No Functionality
	Isolated Tasks
	Merged Tasks
	Merged KS and QBE
	Merged QBE and CIR
	Merged KS and CIR

	Final Considerations

	Conclusions and Future Work
	References

