
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in
Ingegneria Informatica

Secure Authentication Methods in Edge
Computing Architectures using AWS

and Open-Source Prototypes

Relatore: Laureando:
Prof. Carlo Ferrari Michele Libralato

1206604

ANNO ACCADEMICO 2023-2024

Data di laurea 05 Marzo 2024

Abstract

This document proposes an analysis of authentication methods in the

context of edge computing architectures. As edge architectures be-

come more widespread, it becomes increasingly important to create

efficient infrastructures to enable the secure exchange of information

between the cloud and IoT devices. Typically, edge nodes are used to

record and preprocess information from IoT devices, in order to later

share it with the cloud infrastructure. Despite the numerous efficiency

advantages, implementing a stable and secure infrastructure poses sig-

nificant challenges. In terms of security, one of the important points to

explore is the management of authentication between different types

of devices, seeking an authentication process that requires limited re-

sources that can be executed on IoT devices and edge nodes. This

study focuses on exploring authentication mechanisms and presents

two prototypes: the first one based on AWS systems and the second

based on an Open Source approach that uses Mosquitto to achieve

authentication with the MQTT protocol.

ii

Contents

1 Introduction 1

2 Fog Computing and Edge Computing 3

3 Authentication methods 7

3.1 Security Principles . 7

3.2 Authentication Methods . 8

3.2.1 Client-Server . 8

3.2.2 Microservices . 9

3.3 Example for Secure Authentication - Blockchain 14

3.4 Authentication between IoT devices 16

3.4.1 IoT Protocols . 16

3.4.2 MQTT . 17

3.4.3 IoT Device Authentication 18

3.4.4 X.509 Certificates . 19

4 Prototypes 21

4.1 Introduction to Prototypes . 21

4.2 Prototype using Amazon Web Services (AWS) 22

4.2.1 AWS IoT Core . 23

4.2.2 AWS IoT Greengrass . 24

4.2.3 Amazon Dynamo DB . 24

4.2.4 AWS Prototype Development 25

4.2.5 Comments and Considerations 31

4.3 Open-Source Prototype . 32

4.3.1 Redis . 33

4.3.2 Mosquitto Test Server . 33

4.3.3 Mosquitto Broker with Docker 35

4.4 Improvements and Vulnerabilities 38

iii

iv CONTENTS

5 Conclusions 41

Appendices 43

.1 Code sample . 45

.1.1 com.example.clientdevices.MyHelloWorldSubscriber-1.1.0.json 45

.1.2 hello world subscriber.py 47

.1.3 basic discovery.py . 49

.1.4 mqtt-wind-publisher.js . 53

.1.5 mqtt-wind-subscriber.js . 57

.1.6 mosquitto.conf with pwfile 62

.1.7 mosquitto.conf with certificates 62

.1.8 docker-compose.yml . 63

List of Figures

2.1 Fog and Edge computing infrastructure 5

3.1 HTTP authentication scheme from MDN documentation [27] . . . 9

3.2 Implement Authentication Through the API Gateway [49] 10

3.3 Implement Authentication on Each Microservice [49] 11

3.4 Implement Authentication Through an Authentication Service [49] 11

3.5 Request-response schema using JWT tokens [44] 13

3.6 Steps to add a transition request to a blockchain in ITS 14

3.7 BPPAU system model from the article ”Blockchain-Based Privacy-

Preserving Authentication Model Intelligent Transportation Sys-

tems” [30] . 15

3.8 Example of communication via MQTT protocol 18

4.1 AWS Logo . 22

4.2 Example of fog infrastructure using AWS services 22

4.3 AWS IoT Core overview . 23

4.4 AWS Greengrass sample connection overview 24

4.5 EC2 Instances . 25

4.6 Client device components . 26

4.7 Core device components . 28

4.8 Component structure . 29

4.9 Open-source prototype components 33

4.10 Mosquitto Broker running with Docker container 35

v

vi

Chapter 1

Introduction

Edge and Fog computing are two paradigms that have been rapidly evolving

in recent years, enabling data processing near the source, reducing latency, and

improving real-time decision-making capabilities. These infrastructures find ap-

plications in various domains, ranging from autonomous vehicles to Industrial

Internet of Things (IIoT) systems.

However, after analyzing numerous academic articles on the development of Edge

computing and Fog computing infrastructures, one recurring issue that needs fur-

ther exploration is data security within these networks, particularly the develop-

ment of a secure authentication system.

Based on the principles outlined in ISO/IEC 7498-2 concerning ”Security Archi-

tecture,” data transmitted between various devices must remain intact through-

out the network. Access, modification, and reading of data should only be per-

formed by authorized agents, through control mechanisms to restrict data access

and sender authenticity verification.

As the complexity of the infrastructure increases, so do the vulnerabilities of

the network and its corresponding security threats. The distributed and often

resource-constrained nature of edge devices makes them susceptible to a range

of threats, including unauthorized access, data breaches, and cyberattacks. It

is imperative to ensure data security while conserving energy, maintaining low

latency, and using limited device memory [43].

Several works propose complex authentication systems to guarantee correct ac-

cess to data [31], through the use of the HTTPS protocol [19] to the Blockchain.

1

2 Chapter 1. Introduction

Specifically, this work delves into authentication methods applicable between the

various components of an edge infrastructure. It presents two prototypes: one

using Amazon Web Services (AWS) and another leveraging Mosquitto, an open-

source message broker for the Internet of Things. These proposals serve as exam-

ples to demonstrate how to implement a simple yet secure authentication method

within the realm of Edge and Fog computing.

Chapter 2

Fog Computing and Edge

Computing

Fog computing is a type of distributed architecture that enables the seamless

provision of resources (including data storage, computing power, etc.) to connect

the Cloud with IoT devices. There isn’t a precise definition of Fog computing,

but the National Institute of Standards and Technology defined it in 2018 as

”a horizontal, physical or virtual resource paradigm that resides between smart

end-devices and traditional cloud computing or data center.” [24].

From this definition, Fog computing can be seen as an extension of the Cloud

paradigm aimed at improving latency, the available bandwidth for connections

between the Cloud and IoT devices, and the Quality of Service (QoS) offered by

applications developed within this infrastructure.

A key characteristic of Fog computing, being a horizontal architecture, is its need

for a widespread geographical distribution of nodes to ensure almost immediate

processing of data sent by edge nodes and subsequent analysis at the Cloud level.

The concept of Fog networking or fogging arises from the necessity to extend

Cloud computing to accommodate the vast number of IoT devices connected to

the Cloud and consequently manage the large volume of real-time data generated

by these devices.

Edge computing, although somewhat similar, is different. In this case, it refers

to a distributed system where some data processing or storage occurs directly at

the edge node, which can be either the IoT device itself or a server very close to

3

4 Chapter 2. Fog Computing and Edge Computing

the edge node [23]. This requires the edge node to have significant computational

capacity and resource availability to process data in real-time, which can then be

used directly by the device itself and/or shared with the Cloud. In this scenario,

there may not be an intermediate layer for load-balancing data processing; edge

nodes are connected directly to Cloud servers and among themselves.

An example of this infrastructure is an autonomous vehicle. In this case, sensor

data needs to be processed as quickly as possible to provide an immediate response

and make real-time decisions. If the data is sent to the Cloud for processing, the

latency could be too high, posing risks for driving decisions. However, the system

can communicate with the Cloud to share statistical data [45].

Both Fog and Edge computing concepts can be applied in various domains and

offer benefits such as reduced latency, reduced bandwidth usage, and less storage

space consumption, ultimately improving service quality. However, they also

present new challenges, including communication security among different nodes.

Security in these systems can be complex to address. There are multiple data

exchanges between various nodes, not just between clients and servers. Therefore,

to ensure secure communication it is necessary to consider numerous aspects, such

as sharing intact data from verified sources.

Additionally, the speed of authentication and authorization between different

levels (IoT nodes with Fog nodes or Fog nodes to the Cloud) must be taken into

consideration to avoid creating a slow connection as well as guaranteeing a secure

connection.

This study will delve into the aspect of authentication between different nodes,

which can be edge or fog nodes, starting from a simple architecture that involves

the exchange of publicly available information.

5

Figure 2.1: Fog and Edge computing infrastructure

6

Chapter 3

Authentication methods

3.1 Security Principles

Saltzer and Schroeder compiled a list of principles as mechanisms for securing

operating systems. These principles remain relevant today as guidelines for Edge,

Fog, and Cloud approaches. The original principles are as follows [32]:

• Least Privilege: Each user and/or process should employ the minimum

privileges necessary to perform its task.

• Separation of Privilege: The security mechanism should satisfy more

than one condition.

• Least Common Mechanism: Minimize the use of mechanisms shared by

multiple users.

• Economy of Mechanism: Implement a mechanism that is simple, easy

to test, and validate.

• Complete Mediation: Every access must be checked for authorization.

• Fail-Safe Default: Access rights should only be acquired through explicit

request, and access decisions are based on permissions.

• Open Design: The security mechanism should not be secret. This allows

for the use of encryption systems where algorithms are known but protection

keys are kept secret.

• User Acceptability: The security mechanism should be user-friendly.

7

8 Chapter 3. Authentication methods

In addition, two additional principles are introduced:

• Work Factor: Implement robust security measures that are challenging to

breach, discouraging hacking efforts.

• Compromise Recording: Record attacks to detect unauthorized usage.

In networks where nodes vary in nature, and communication is not solely between

a user and a machine, these principles retain their validity. It is, therefore, crucial

to establish a system that adheres to (most of) these principles.

3.2 Authentication Methods

It can be interesting to analyze methods commonly and widely used in other

situations, such as User-Machine or Machine-Machine systems. The Edge or Fog

architecture is made up of connections between different types of nodes, from

IoT devices to Cloud microservices. From this analysis, we can understand which

approach to use as an authentication method in an Edge or Fog computing infras-

tructure. In particular, we can examine client-server systems and communication

between clients and Cloud microservices.

3.2.1 Client-Server

Regarding the classic client-server infrastructure, a practical example is the com-

munication between a web application (client) and a server hosting the applica-

tion’s backend (with a database). In this scenario, the user logs in to use the

application. The authentication, in this case, is typically referred to as monolith

authentication. Monolith authentication refers to a traditional and centralized

authentication system, where all user management and authentication mecha-

nisms are handled by a single server [33].

While this system can centralize authentication functionalities (user registration,

login, password management, etc.) in one place, making it easier to manage user

data and policies, it also comes with limitations and challenges in terms of main-

tenance, scalability, and vulnerability to security risks [40].

The protocol commonly used in this context is the HTTP protocol [27] (defined

by RFC 7235), which allows the client to send authentication information to the

3.2 Authentication Methods 9

server. Here’s a basic outline of the requests and responses between the client

and server:

1. The client contacts the server and receives a 401 Unauthorized response

from the server, requesting the client to send credentials.

2. The client sends the credentials in the message header after prompting the

user to enter them.

3. Finally, the server responds with a 200 OK message if the credentials are

correct, or a 401 Unauthorized message if they are not.

Figure 3.1 is a basic schema illustrating the requests and responses between the

client and server.

Figure 3.1: HTTP authentication scheme from MDN documentation [27]

3.2.2 Microservices

In a Cloud infrastructure composed of microservices, the authentication process

differs because the system consists of various independent components (databases,

serverless applications, storage) where a service must authenticate when commu-

nicating with another service within the same infrastructure or when the end user

needs to query a cloud service [18].

Among the various approaches used in this case [49]:

10 Chapter 3. Authentication methods

Edge-level authentication

Through the use of an API Gateway. This centralizes authentication, allowing

access control for each microservice. The API gateway provides the flexibility

of a central interface for service utilization. If a service or user needs to access

a microservice, it sends the request to the API gateway, which routes it to the

requested service, as shown in figure 3.2.

Figure 3.2: Implement Authentication Through the API Gateway [49]

Service-level authorization

Authentication and authorization are managed independently in each service.

This approach allows each service to develop its own authentication, creating

systems that can be highly independent of each other. However, this leads to

duplicated code, the need to manage user data not owned by the service, and can

be challenging to maintain (figure 3.3).

External entity identity propagation

A system that decides how to ensure authentication based on the user’s context.

A service is developed with the sole purpose of controlling network access, leading

to a single point of failure and increased latency for authentication requests (figure

3.4).

3.2 Authentication Methods 11

Figure 3.3: Implement Authentication on Each Microservice [49]

Figure 3.4: Implement Authentication Through an Authentication Service [49]

12 Chapter 3. Authentication methods

Also, in this case, communications between the parties generally take place us-

ing the HTTP protocol. There are various authentication mechanisms used to

securely transmit information between the two parties. These include:

Username and Password

The basic standard where the user provides a personal ID and a secret code to

access the resource.

Multi-factor Authentication (MFA)

Involves combining at least two user-provided factors for authentication:

• Knowledge: An element known by the user (username and password).

• Possession: An element the user possesses (one-time password OTP).

• Biometrics: An intrinsic element of the user (fingerprint).

• Location: The user’s location.

Certificates

Digital documents used to identify a user or device and to associate that identity

with a public key. Certificates are issued by a Certificate Authority (CA). The

certificate issued by the CA binds a specific public key to the name of the entity

the certificate identifies. Hence, only the public key certified by the certificate

will work with the corresponding private key owned by the entity identified by

the certificate.

Biometric

Involves authenticating using physical characteristics of the user (fingerprints,

facial recognition).

JSON Web Token (JWT)

JWT is an open standard (defined by RFC 7519) consisting of a JSON-formatted

signed token containing a set of claims that identify the sender’s identity. The

token comprises the header to describe the signature algorithm, the payload con-

taining claim data, and the signature created by concatenating and encoding the

header and payload in Base64 and then signing it with a private key using the

3.2 Authentication Methods 13

algorithm specified in the header. Figure 3.5 shows the request-response schema

using JWT tokens.

Figure 3.5: Request-response schema using JWT tokens [44]

14 Chapter 3. Authentication methods

3.3 Example for Secure Authentication - Blockchain

Several articles have been published to analyze and find a solution to ensure the

security and privacy of data in Intelligent Transportation Systems (ITS) using

blockchain technology. ITS systems can leverage edge or fog architectures based

on where the data is processed. A specific example is presented in the article

”Blockchain-Based Privacy-Preserving Authentication Model Intelligent Trans-

portation Systems” [30] which elaborates on a model to ensure user privacy and

communication security in the transportation network.

In this case, the blockchain, based on a distributed database, creates blocks that

record data transactions, timestamps, and the hash value of the previously linked

block. Using the blockchain system in ITS, allows the elimination of a single se-

curity authorization center in the network. For vehicle authentication, the public

key is used, and applications like Ethereum provide a transparent and secure data

storage environment.

In a generic ITS, a transaction block is created when there is a new ITS trans-

action request. The created blocks are broadcasted to all Vehicle Nodes and

validated. Upon validation, the blocks are added to the chain to conclude the

transaction. See the transaction diagram in Figure 3.6.

Figure 3.6: Steps to add a transition request to a blockchain in ITS

3.3 Example for Secure Authentication - Blockchain 15

This article explains the BPPAU (Blockchain-based Privacy-Preserving Authenti-

cation) model, ensuring user privacy and security using blockchain technology. It

employs mechanisms for data storage, access, and processing via a smartcontract

system, access control policy and on demand based functions. The blockchain

network provides a peer-to-peer platform to support decentralized applications in

ITS networks, including executing smart contracts and storage on Ethereum. The

Transaction Phase is illustrated in the figure 3.7, including steps such as smart

contract publication by vehicle nodes, data storage, updating the data identifier

for the blockchain network, data access request, validation process by retrieving

information from Trusted Execution, Service Provider, and Distributor Storage.

In these blockchain models, it is essential to consider the high processing require-

ments and the overall costs incurred for processing. Moreover, it emphasizes that

these systems might not be very efficient in other types of networks where fast

information processing is required while ensuring network security. This high-

lights that while blockchain utilization as an authentication system can be highly

secure, it may not be suitable for all types of architectures.

Figure 3.7: BPPAU system model from the article ”Blockchain-Based Privacy-Preserving Authen-
tication Model Intelligent Transportation Systems” [30]

16 Chapter 3. Authentication methods

3.4 Authentication between IoT devices

In the majority of Edge and Fog computing infrastructures, a substantial set of

nodes is represented by IoT devices. Unlike nodes at the Fog and Cloud levels,

authentication mechanisms between devices at the Edge level and other nodes

can vary. In these networks, it is essential to decide on both the type of protocol

to employ [1] for data transmission and the authentication method to be applied

[47].

3.4.1 IoT Protocols

IoT protocols are standards that enable the exchange and sharing of data across

the Internet among various devices. These protocols can be categorized into net-

work protocols and data protocols.

Network protocols are responsible for connecting IoT devices and correspond to

the Physical and Data Link layers of the ISO/OSI model. Common examples

include Wi-Fi, LTE CAT 1, LTE CAT M1, NB-IoT, Bluetooth, ZigBee, and Lo-

RaWAN.

On the other hand, data protocols, which operate at the Presentation and Appli-

cation layers of the ISO/OSI model, are crucial for formatting data in a way that

is usable by the end application. The choice of data protocol is fundamental when

designing a system for a particular infrastructure, taking into account available

resources and the computational capabilities of individual devices. Among the

various data protocols, the most common ones include:

• AMQP

• MQTT

• HTTP

• CoAP

• DDS

• LwM2M

In this analysis, we delve deeper into the MQTT protocol, which, unlike the

HTTP protocol, is the most commonly used for communication among edge de-

vices.

3.4 Authentication between IoT devices 17

3.4.2 MQTT

MQTT, which stands for Message Queuing Telemetry Transport, is a lightweight

publish-subscribe messaging protocol situated at the application layer of the

ISO/OSI model [25]. It was primarily developed for M2M telemetry, catering

to small and low-power devices, and has found widespread use in IoT devices.

The MQTT protocol comprises two main components: the client and the bro-

ker. Communication originates from the client, which can function as either a

publisher or a subscriber, initiating the interaction with the MQTT broker. The

broker acts as an intermediary between the clients, managing communication and

efficiently routing messages between publishers and subscribers. It takes respon-

sibility for client connection management, authentication, and authorization.

Messages in MQTT are organized into topics, which the protocol uses for routing

messages. The publisher can send messages to specific topics, while subscribers

can subscribe to a topic to receive messages sent to it. The broker receives the

messages and routes them to the clients subscribed to the respective topic. The

figure below 3.8 illustrates the steps in communication using this protocol.

Some advantages of MQTT include [39]:

• Providing flexible and efficient communication.

• Enabling bidirectional communication.

• Scalability to support millions of devices.

• Implementation of secure communications using TLS (Transport Layer Se-

curity).

• Usability in less stable networks.

Regarding security, MQTT brokers offer various authentication methods, allow-

ing clients to choose how they authenticate with the broker [29]. The selection

of authentication methods should take into account the capabilities of both the

broker and the client. Common authentication methods include Client ID, User-

name and Password, and X.509 Client Certificates.

In addition to authentication, MQTT data security can be protected through TLS

or payload encryption. TLS security is a part of the most widely used TCP/IP

18 Chapter 3. Authentication methods

Figure 3.8: Example of communication via MQTT protocol

protocol and mainly creates an encrypted channel through which MQTT mes-

sages can be transmitted. TLS security requires the use of certificates.

One of the most popular and widely used open-source MQTT brokers is the

Mosquitto broker, which will also be utilized in the prototype.

3.4.3 IoT Device Authentication

The issue of authentication in IoT devices revolves around establishing a trust

model for secure communication between these devices and other nodes. Its

primary purpose is to prevent unauthorized access to data. There are mainly

3.4 Authentication between IoT devices 19

three authentication methods:

1. Password: The device uses a password for authentication with another

device.

2. Symmetric Keys: The two devices, or the device and the cloud, require

the establishment of a shared symmetric key.

3. Certificates: A digital certificate is employed to identify the IoT device.

The certificate is a signed data structure that associates the identity of the

IoT device with a public key. It relies on asymmetric encryption to create

a public-private key pair for the device.

Among these methods, certificates, and specifically X.509 certificates, are the

most widely used and secure for authentication.

3.4.4 X.509 Certificates

To establish secure communication between an IoT device and an edge node and

to identify the IoT device (IoT Identity Management [20]), an X.509 certificate

will be used.

The X.509 certificate is an International Telecommunication Union (ITU) stan-

dard described in RFC 5280 [28] and is a digital document used to represent

a device, user, or service. This document is primarily used in the context of a

Public Key Infrastructure (PKI).

The digital document contains, in addition to the name of the entity and other

identifying data, the public key, used to encrypt the certificate together with the

corresponding private key, which must be kept secret. The Certificate Authority

(CA) is responsible for issuing the certificate and signing it using the private key

to ensure its authenticity.

Below is an overview of the structure of an X.509 v3 certificate [48]:

• Version Number

• Serial Number

• Signature Algorithm ID

• Issuer Name

20 Chapter 3. Authentication methods

• Validity Period

– Not Before

– Not After

• Subject Name

• Subject Public Key Info

– Public Key Algorithm

– Subject Public Key

• Issuer Unique Identifier (optional)

• Subject Unique Identifier (optional)

• Extensions (optional)

• Certificate Signature Algorithm

• Certificate Signature

In the prototypes described in this work the certificates will have the .pem format,

therefore formatted in Base64 enclosed between ”—–BEGIN CERTIFICATE—–

” and ”—–END CERTIFICATE—–”. The SHA-256 algorithm is commonly used

for encrypting the certificate.

Chapter 4

Prototypes

4.1 Introduction to Prototypes

Considering a general scenario where the edge infrastructure is relatively simple

and consists of IoT devices as peripherals with limited computational capabilities,

one can contemplate constructing a simple and easy-to-implement authentication

system.

Practical examples could include weather parameter sensors installed in different

cities that share collected data with a potential intermediate node and subse-

quently with the cloud. Another possible infrastructure is the simulation of a

network of traffic surveillance cameras. The objective is to establish communi-

cation between a camera acting as an IoT device and a fog node responsible for

collecting the data and transmitting it to a cloud database (such as an AWS

database). In these examples, reference is made to cases where the processed

data is not personal but in the public domain.

When working with IoT devices and edge nodes, using the MQTT protocol for

data sharing is the most convenient and simple solution to implement. To under-

stand how an authentication process using the MQTT protocol can function, two

simple prototypes were developed. Initially, the AWS environment was utilized,

which offers services for managing IoT and Edge infrastructures. Contemplating

if it was possible to implement the same infrastructure using open-source frame-

works, the second prototype uses NodeJS, Mosquitto an open-source MQTT bro-

ker, and Redis a non-relational database. The primary aim of these prototypes is

to comprehend how authentication is managed within this type of infrastructure

and to identify potential improvements compared to the current state-of-the-art

21

22 Chapter 4. Prototypes

practices.

4.2 Prototype using AmazonWeb Services (AWS)

Figure 4.1: AWS Logo

Amazon Web Services (AWS) is a company that provides a wide range of cloud

computing services and is the most globally widespread Cloud Service Provider

[46]. For this reason, an initial solution was developed using several AWS services.

To create a Fog architecture, it’s essential to interconnect IoT devices, Fog nodes,

and the Cloud. The AWS IoT Core service serves as the first step to create and

manage IoT devices, while AWS Greengrass is used for the Fog nodes. In the

prototype, these devices are simulated through EC2 instances, but a local PC

or a Raspberry Pi can also be employed. Subsequently, the data generated and

managed by the Edge and Fog nodes are stored in a table within a NoSQL

database called DynamoDB, a Cloud service provided by AWS. The graph 4.2

represents the services used for this prototype.

Figure 4.2: Example of fog infrastructure using AWS services

4.2 Prototype using Amazon Web Services (AWS) 23

4.2.1 AWS IoT Core

AWS provides services for managing an Edge infrastructure, with AWS IoT Core

being the primary service for this purpose. It allows for the creation and man-

agement of IoT devices, establishing connections between devices and other cloud

services [14], figure 4.3.

Among the various supported communication technologies for devices, the MQTT

protocol is included. Devices can be configured using the AWS SDK to create

applications and send/receive messages. The entire configuration process can also

be managed through the GUI in the AWS console.

Regarding authentication, the identity of IoT devices is verified through X.509

certificates. Generally, these certificates are created during the device registration

process with AWS IoT Core, and they can be signed either by AWS IoT itself or by

a Certificate Authority (CA) registered with AWS IoT. This approach allows for

the management of certificate rotation and replacement when they approach ex-

piration. Edge devices use the same certificate to find, connect, and authenticate

to a Greengrass node via AWS IoT Greengrass cloud discovery. The certificate

is then used to connect to both the AWS IoT Core service and the Greengrass

device [2].

From here on, the IoT device created using AWS IoT Core can be referred to as

a “client”.

Figure 4.3: AWS IoT Core overview

24 Chapter 4. Prototypes

4.2.2 AWS IoT Greengrass

An essential service for setting up a fog node is AWS Greengrass, which enables

the configuration of an intermediate device to facilitate communication between

client devices and other cloud services [13], as shown in figure 4.4.

In an edge device configured with Greengrass, there is the capability to develop

software on the device to manipulate or analyze the generated or received data.

Greengrass devices can securely communicate with AWS IoT Core clients and the

Cloud. You can run applications called Components to manage various forms of

communication between client devices and Cloud services. The Greengrass device

can henceforth be referred to as “core”.

For authentication, similar to the clients, X.509 certificates are employed. As

demonstrated in the prototype, these certificates serve core devices to connect

with client devices in AWS IoT Core and to upload components and configurations

to the core device [5]. The core device establishes and communicates with the

client device using the MQTT protocol [10].

Figure 4.4: AWS Greengrass sample connection overview

4.2.3 Amazon Dynamo DB

DynamoDB is used to save data in the Cloud, which is a fully managed NoSQL

or non-relational database service provided by AWS, known for its fast perfor-

mance and auto-scalability. Even though the example provided may not involve

4.2 Prototype using Amazon Web Services (AWS) 25

substantial data, DynamoDB can be used to create tables for storing and re-

trieving any volume of data, with automatic resource scaling based on traffic.

Being a database tailored to handle vast data streams, all data is stored on SSDs

and automatically replicated across multiple Availability Zones within an AWS

region, ensuring immediate availability and data durability [12]. Access to the

DynamoDB table occurs using the AWS SDK and authenticating through the

use of the Secret Access Key and the Access Key connected to a specific user.

4.2.4 AWS Prototype Development

The creation and simulation of this prototype was done mainly following the

official AWS documentation. Below are the main steps to simulate a generic

infrastructure:

1. Creation of virtual devices

Two Linux instances were created in EC2 to simulate an IoT device (referred

to as the client device) and a Greengrass device (referred to as the core

device). Both instances were t2.micro with 1 GB RAM and 8 GB storage.

Figure 4.5: EC2 Instances

2. Configuration of the client device [4]

After installing and updating Git, Python, and AWS CLI 2, the virtual

device can be registered in AWS IoT using AWS CLI:

aws iot create-thing --thing-name "device1"

Device registration is necessary to create an endpoint representing the de-

vice’s internet-connected address:

26 Chapter 4. Prototypes

a3luyee6pcu06d-ats.iot.eu-west-1.amazonaws.com

After registering the client device, the necessary certificate for authentica-

tion can be created. This involves:

• Downloading a copy of the Amazon Certificate Authority (CA) certifi-

cate to identify the virtual device

• Generating a private key, public key, and X.509 certificate using AWS

CLI

• Associating the newly created certificate with the IoT object in AWS

IoT

To set up permissions, a policy can be created listing the actions the device

can perform. The policy file can be associated with the registered device

using AWS CLI. Finally, the necessary SDK can be installed to use it in

an application. In this case, a sample application basic discovery.py (see

appendix 1.3) can be launched to publish an MQTT message to a specific

topic, which is present in the Python SDK. The Python SDK for AWS IoT

devices can be installed as follows:

git clone \

https://github.com/aws/aws-iot-device-sdk-python-v2.git

The previously created parameters will be used to launch the sample code:

• CA certificate

• Device’s X.509 certificate

• Private key

• Device endpoint

Figure 4.6: Client device components

4.2 Prototype using Amazon Web Services (AWS) 27

3. Configuration of the core device [7]

To configure the core device, it’s necessary to install the AWS IoT Green-

grass Core software. This can be done via the AWS console by following

the steps for device configuration. [9]

After installing or updating Java (the environment required by the AWS IoT

Greengrass Core software) and configuring the AWS credentials to download

the necessary AWS resources (Access Key and Secret Access Key), it is

possible to download the installer using the following command:

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/\

greengrass-nucleus-latest.zip > \

greengrass-nucleus-latest.zip && \

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller

Then, the installer can be run with Java:

sudo -E java -Droot="/greengrass/v2" \

-Dlog.store=FILE \

-jar ./GreengrassInstaller/lib/Greengrass.jar \

--aws-region eu-west-1 \

--thing-name GreengrassQuickStartCore-18b9c6e9bd5 \

--thing-group-name GreengrassQuickStartGroup \

--component-default-user ggc_user:ggc_group \

--provision true \

--setup-system-service true \

--deploy-dev-tools true

This package allows you to:

• Install and configure the Greengrass Core software as a system service

(Nucleus).

• Set up the Greengrass CLI component, a command-line tool for devel-

oping Greengrass components.

• Configure the user created earlier (ggc user) as a system user for

running applications.

• Connect the device to AWS IoT and the group where all edge network

devices will be grouped (GreengrassQuickStartGroup).

28 Chapter 4. Prototypes

• Download the X.509 certificate and default permissions to identify the

core device from the client device during authentication and connection

via Cloud Discovery.

Figure 4.7: Core device components

4. Creation of a component in the core device [8]

Using the Greengrass CLI, components in the core device can be managed.

A component is a software module executed within the device. It allows the

creation and management of application blocks for use within the instance

or other edge nodes. A component consists of:

• Recipes: a metadata file with parameters for executing the code

• Artifacts: files containing the code to be executed (scripts, compiled

code, etc.)

A new component is created in the core device, including:

• The recipe file

com.example.clientdevices.MyHelloWorldSubscriber-1.1.0.json

(see appendix 1.1)

• The artifact hello_world_subscriber.py (see appendix 1.2)

The artifact hello_world_subscriber.py of the core device uses the IPC

service to subscribe to the clients/device1/hello/world topic and read

messages that it receives. The AWS IoT Greengrass Core interprocess com-

munication (IPC) library in the AWS IoT Device SDK (in this case, AWS

IoT SDK for Python) is useful for communicating with the AWS IoT Green-

grass nucleus and other Greengrass components. Additionally, besides read-

ing messages sent to a specific topic, the component saves the read mes-

sages in DynamoDB, the AWS Cloud service for managing non-relational

4.2 Prototype using Amazon Web Services (AWS) 29

databases. Using the Greengrass CLI, the component can be deployed in

AWS IoT Greengrass:

sudo /greengrass/v2/bin/greengrass-cli deployment create \

--recipeDir ~/greengrass-2-pubsub/recipes \

--artifactDir ~/greengrass-2-pubsub/artifacts \

--merge "com.example.clientdevices.MyHelloWorldSubscriber=1.1.0"

By deploying the component, it becomes active in the core device.

Figure 4.8: Component structure

5. Communication between devices [11]

As a final step, communication between the core device and the client device

can be established via MQTT. In this specific scenario, the configuration of

AWS IoT Cloud Discovery (a service within the Greengrass group) can be

implemented, allowing the client device to search and connect to the core

device by sending a request to the AWS IoT Greengrass Cloud service to

find the recipient core device. This service shares the IP and certificates

that the client can use for the connection.

An additional step to do before activating communication between devices

is to upload some components on the core device to use Cloud Discovery

and associate the client device with the core device:

• aws.greengrass.clientdevices.Auth: used for authenticating and

authorizing the client device

• aws.greengrass.clientdevices.mqtt.Moquette: represents the MQTT

Moquette broker

• aws.greengrass.clientdevices.mqtt.Bridge: used for relaying mes-

sages from the client device to AWS IoT Core and for reading messages

from the console

30 Chapter 4. Prototypes

• aws.greengrass.clientdevices.IPDetector: shares the MQTT bro-

ker’s endpoints with AWS IoT Greengrass.

The Core Discovery configuration can be done through the AWS console,

setting policies for the components aws.greengrass.clientdevices.Auth

and aws.greengrass.clientdevices.mqtt.Bridge.

Through the AWS console you can therefore associate the client and the

core device. This allows the client device to use cloud discovery to obtain

connection information and the certificates of the core device.

At this point, still on the core device, the component can be created to

communicate via MQTT with the client device. The component’s MQTT

bridge configuration is set to read messages received on a specific topic (e.g.,

clients/+/hello/world).

Deploying the previously created component with the AWS Greengrass CLI

makes it active, and the component logs can be checked using the following

command:

sudo tail -f /greengrass/v2/logs \

/com.example.clientdevices.MyHelloWorldSubscriber.log

Now using the client device, with the Python SDK previously installed, the

basic discovery.py (see appendix 1.3) sample code can be executed on

the client device to initiate Cloud Discovery:

python3 basic_discovery.py \

--thing_name device1 \

--topic 'clients/device1/hello/world' \

--message 'Hello World!' \

--ca_file ~/certs/Amazon-root-CA-1.pem \

--cert ~/certs/device.pem.crt \

--key ~/certs/private.pem.key \

--region eu-west-1 \

--verbosity Warn \

This way, the client device performs Cloud Discovery and sends messages

to the clients/device1/hello/world topic via MQTT, which are then

read by the core device.

4.2 Prototype using Amazon Web Services (AWS) 31

4.2.5 Comments and Considerations

The client device, when executing the script basic discovery.py, uses the

mqtt connection builder method, which allows it to manage the session dura-

tion. Among the parameters of this method defined in the AWS SDK, there is

keep alive secs, which establishes the maximum period of inactivity in seconds

(1.5 x seconds) after which the connection is terminated. However, the session in

AWS IoT Core cannot have a duration of more than 30 days.

Exploring authentication between the various components using the MQTT pro-

tocol, all devices use an X.509 certificate [15] and cryptographic keys. The cer-

tificates that ensure the authenticity of the device’s identity are issued by the

AWS IoT Certificate Authority (CA), in this particular case, the Amazon Trust

Services (ATS) root CA certificate.

The certificates and public keys, besides authenticating a device, are also used

to establish a Transport Layer Security (TLS) connection. The certificates are

created and stored in the Cloud during device configuration. Like all certifi-

cates, these certificates have a validity period, meaning they expire after a certain

amount of time.

In AWS, there is a certificate rotation method to be performed before they expire.

In AWS Greengrass, the core device certificate expires every 5 years. Additionally,

during the connection to the MQTT broker, a local server certificate is created,

which can last for 7 days (a parameter that can be changed). This certificate is

used by the client device for mutual authentication. The limited duration serves

to prevent attacks that can steal the certificate and private key to impersonate

the core device. The rotation occurs automatically 24 hours before the expira-

tion, during which all devices connected to the MQTT broker are temporarily

disconnected, and the broker is restarted to allow client devices to reconnect [6].

Data updating with the DynamoDB service is done using the Python SDK

(boto3). In this case, authentication is performed using AWS credentials: the

Access Key and Secret Access Key created through the IAM (Identity and Access

Management) service by creating a dedicated user in AWS [3]. The connection

between AWS services and the device occurs through HTTPS. The SDK creates

an API POST request to the AWS service using the set keys for authentication.

Analyzing the connection management in AWS, it can be deduced that several

conditions are considered for authentication refresh:

32 Chapter 4. Prototypes

• After a certain period of inactivity, through the keep alive parameter

• As a best practice, periodic authentication refresh after a long connection

period

• Certificate expiration and automatic renewal

• Updates to the IoT device or the edge node requiring disconnection

• Connection interruption due to various network errors

The authentication process employing X.509 certificates and AWS credentials

(Access Key and Secret Access Key) enables secure connections for various devices

across different levels, ranging from the edge to the Cloud.

4.3 Open-Source Prototype

To have an open-source alternative to using AWS services, it is possible to develop

a prototype using the Node.js module MQTT.js [17], the open-source MQTT

broker Mosquitto [34] and Redis [41]. With a Node.js script, it is possible to

simulate communication between two devices. In this scenario, there is a publisher

script representing a weather station that sends parameters to the broker to share

the current wind situation (see appendix 1.4). A subscriber script receives the

message and stores it in Redis, a NoSQL database (see appendix 1.5). Therefore,

the subscriber acts as an intermediate node between the edge device (publisher)

and the Cloud. In the subsequent paragraphs, the two devices will simply be

referred to as the publisher and the subscriber.

For connecting to the Mosquitto brokers, both Node.js scripts can accept an

argument to set the authentication options to use:

• option 1: authentication to the test Mosquitto broker using username and

password.

• option 2: authentication to the test Mosquitto broker using X.509 certifi-

cates.

• option 3: authentication to the Mosquitto broker running in a Docker con-

tainer using username and password

• option 4: authentication to the Mosquitto broker running in a Docker con-

tainer using X.509 certificates.

4.3 Open-Source Prototype 33

Figure 4.9: Open-source prototype components

4.3.1 Redis

Redis (short for REmote DIctionary Server) is an open-source database where

various key-value data structures can be stored in memory rapidly [41]. Its use

cases vary from caching, session management, pub/sub services, to leaderboards.

In this prototype, the Redis database runs within a Docker container (see ap-

pendix 1.8). The redis service is started by setting a password through the Redis

configuration that must be used when connecting the devices (redis-password).

This Redis Docker container represents a Cloud database service, thus forming

the Cloud layer in the edge architecture.

Within the Node.js script, which simulates the intermediate device, the connec-

tion to the Redis server occurs through the npm package ’redis’ [42]. Specifically,

the subscriber connects to the Redis server via the default port 6379, passing the

REDIS PASSWORD as a parameter, stored as an environment variable in the

device.

4.3.2 Mosquitto Test Server

For the initial test, both devices connect to the test server provided by Mosquitto:

test.mosquitto.org. The publisher sends a message containing wind parame-

ters under the topic ’wind’. The subscriber subscribes to a topic (in this case,

’wind’) and listens for incoming messages. Once the broker shares and forwards

the message to the subscriber, the device prints the published message under the

’wind’ topic and connects to the Redis container to store it in the database.

To establish an authenticated and secure connection with the test server, ports

34 Chapter 4. Prototypes

8885 and 8884 can be used [38]. In the Node.js script, an MQTT client is initial-

ized using the npm async-mqtt package [17], where the methods are the same as

in MQTT.js [71.1], except that the functions return promises instead of accept-

ing callbacks. Both of these ports create an encrypted connection. To establish

it, the mosquitto.org.crt certificate authority file can be downloaded to verify

the server’s connection.

With port 8885, an encrypted and authenticated MQTT connection can be cre-

ated using a username and password. To test a connection, rw can be used as

the username and readwrite as the password. This allows writing and reading

messages on a topic. Below are the options used to connect with port 8885:

const options = {

port: 8885, // Port for encrypted connection

host: 'test.mosquitto.org', // Mosquitto broker URL

clientId: '1234', // Unique client ID

username: 'rw', // MQTT broker username

password: 'readwrite', // MQTT broker password

protocol: 'mqtts', // Encrypted connection protocol

ca: [ca], // Root CA cert. for encryption

};

With port 8884, an encrypted and certified MQTT connection can be created

using the client’s certificate. To create the certificate, OpenSSL can be used from

the command line [35]. Here are the steps for generating the private key and the

certificate signing request (CSR):

openssl genrsa -out client.key // Generating a private key

openssl req -out client.csr -key client.key -new // Generating a CSR

Once the CSR has been generated, it is possible to send the content to the test

server via the https://test.mosquitto.org/ssl/ page and receive the content

of the certificate to be used in connection requests.

Below are the connections used with port 8884:

const options = {

port: 8884, // Port for encrypted connection

host: 'test.mosquitto.org', // Mosquitto broker URL

clientId: '1234', // Unique client ID

https://test.mosquitto.org/ssl/

4.3 Open-Source Prototype 35

protocol: 'mqtts', // Encrypted connection protocol

ca: [ca], // Root CA cert. for encryption

cert: [cert], // Client certificate

key: [key], // Client key

};

The MQTT broker test.mosquitto.org provided by Mosquitto can be used

solely for testing purposes and to understand the behavior of this protocol.

4.3.3 Mosquitto Broker with Docker

To create a production infrastructure, the Mosquitto broker can be installed via

Docker on a server [21]. The figure 4.10 represents the complete infrastructure

using open-source components. Two containers were created in a Docker envi-

ronment: a container for the Mosquitto MQTT Broker and a container for Redis.

The two Node.js scripts connect to the containers through different ports.

Figure 4.10: Mosquitto Broker running with Docker container

To execute the container, a Mosquitto configuration file named mosquitto.conf

needs to be created, wherein the access ports to the server and the authentication

type are defined [26] [37]. Subsequently, to create and execute the container,

a docker-compose.yml file is required. This file defines various parameters to

start the container, including port mapping to make the service accessible outside

Docker [22]. To set the different authentication methods, both the container and

36 Chapter 4. Prototypes

broker configuration files will need to be modified. The docker-compose.yml

file also contains the information to start a redis container, in which messages

received from the subscriber will be saved.

Using the following command, the container can be created and executed:

sudo docker-compose -p mqtt5 up -d

As tested with the test broker, the first authentication method is via username and

password, setting port 1883. Credential management in this case occurs through

the creation of a pwfile to save usernames and passwords. For this purpose, in

the Mosquitto configuration (see appendix 1.6), the path to the password file is

added using the parameter password file:

password_file /mosquitto/config/pwfile

The pwfile can be modified by accessing the container when it is running and

using the mosquitto passwd command to create a user (e.g., demo) and prompt

for the password (e.g., demo) [36]:

mosquitto_passwd -c /mosquitto/config/pwfile demo

The port 1883 is also specified both in the configuration and in the docker-compose.yml

file.

It is necessary to restart the container to apply the changes made. Using the

same script to access the test broker, it’s possible to modify the authentication

options for both the publisher and the subscriber to access the running broker

via Docker.

In this case, the container is executed with Docker Desktop using a Windows

environment, and the address to connect to the service is localhost:

const options = {

port: 1883,

host: 'localhost',

protocol: 'mqtt',

username: 'demo', // MQTT broker username

password: 'demo', // MQTT broker password

}

The second authentication method is through the use of certificates to identify

the client, thereby creating a TLS connection [16]. Port 8883 is used in this case.

Unlike the certificates used with the test server, in this case, they need to be

created:

4.3 Open-Source Prototype 37

1. As a first step, the local Authority certificate is created:

openssl req -new -x509 -days 365 \

-extensions v3_ca \

-keyout ca.key \

-out ca.crt

2. Next, a private key used by the MQTT server is generated:

openssl genrsa -out server.key 2048

3. A certificate signing request (.csr) is created using the newly generated key,

and then it is signed with the CA created in the first step:

openssl req -out server.csr -key server.key -new

4. Finally, the request is signed to create the certificate used during authenti-

cation:

openssl x509 -req -in server.csr \

-CA ca.crt \

-CAkey ca.key \

-CAcreateserial \

-out server.crt -days 180

The certificate just created is used to identify the Mosquitto server. To subse-

quently connect to the broker, it’s necessary to create certificates for the clients

by repeating the described steps, always using the same CA. Each client will

require a specific certificate. All certificates are in PEM format.

In this case, the port used to connect is 8883, and it is important to specify the

protocol for each port used in the Mosquitto conf file:

listener 8883

protocol mqtt

When the certificates are available, the Mosquitto config file is modified by adding

the certificate paths (see appendix 1.7):

38 Chapter 4. Prototypes

cafile my-ca.crt

certfile server.crt

keyfile server.key

The docker-compose.yml file (see appendix 1.8) is also modified by adding port

8883. The connection options are similar to the previous ones but with the

addition of the specific client certificates:

const ca = await fsp.readFile('./mosquitto.org.crt');

const cert = await fsp.readFile('./mosquitto-cert/client.crt');

const key = await fsp.readFile('./mosquitto-cert/client.key');

const options = {

port: 8883, // Port for encrypted connection

host: 'localhost', // Mosquitto broker URL

protocol: 'mqtts', // Encrypted connection protocol

ca: [ca], // Root CA certificate for encryption

cert: [cert], // client certificate

key: [key], // client key

};

In all the previous cases, when the subscriber receives a message, it writes the

message in Redis. The Redis client is initialized at the start of the script using

a password for authentication. Using the ”redis” npm package, it is possible

to create a client that connects to the Redis container via REDIS PASSWORD

(default port 6379):

const clientRedis = await createClient({ password: REDIS_PASSWORD })

The received message is added to a queue with the same name as the topic

(”wind”) via the ”lPush” method:

const redisResp = await clientRedis.lPush(topic, message);

By using these approaches, it is possible to implement an Edge infrastructure

that communicates securely using open-source frameworks.

4.4 Improvements and Vulnerabilities

In both prototypes, X.509 certificates were used to securely authenticate various

devices using the MQTT protocol, representing the currently safest method of

4.4 Improvements and Vulnerabilities 39

authentication. However, this type of certificate can have weak points that may

relate to certificate management:

• Failure to revoke and replace compromised or expired certificates

• Compromised Certificate Authorities (CAs) in case of which attackers can

issue fraudulent certificates leading to man-in-the-middle attacks

• Insecure management of private keys, especially when they are inadequately

protected

Especially for the prototype using Mosquitto, it is advisable to implement an

adequate certificate revocation mechanism. In AWS, certificate management is

well-managed.

For both solutions, it is necessary to devise a way to adequately protect the pri-

vate keys of the certificates as well as the AWS access keys and Redis password.

Keeping the installed software on the devices up-to-date is also important to ad-

dress breaches and vulnerabilities, and, in many cases, to improve software per-

formance. For example, in the AWS prototype, Greengrass Version 2 was used,

adding various features such as modular software components and continuous de-

ployments compared to Version 1, simplifying the development and management

of edge applications.

40

Chapter 5

Conclusions

In the continually evolving realm of edge and fog networks, security remains a

paramount concern, particularly when it comes to developing a reliable authen-

tication process that can be implemented on resource-constrained IoT devices.

Throughout this paper, two solutions for implementing authentication methods

in edge and fog infrastructures have been presented. By mainly delving into the

MQTT protocol with authentication methods based on X.509 certificate, an au-

thentication system characterized by robustness and ease of implementation has

been designed. It retains this quality even in the presence of resource-limited

devices.

Prototypes have been built using widely accepted technologies and programming

languages. The first prototype was constructed with assistance from AmazonWeb

Services (AWS), specifically AWS IoT Core, AWS Greengrass and DynamoDB.

These services enable the intuitive creation and management of fog infrastruc-

tures while simultaneously ensuring network security. The second prototype was

implemented using a fully open-source solution, operating the MQTT broker

Mosquitto and Redis database within a Docker environment and simulating IoT

devices using Node.js in conjunction with the MQTT.js package.

Testing and verification of the effectiveness and efficiency of these methods, as

well as consideration of the vulnerabilities to be addressed, have demonstrated

that these proposals can be successfully applied in real-edge systems. These solu-

tions provide a secure and easy-to-implement infrastructure for securely sharing

information among the various devices within the network.

41

42

Appendices

43

.1 Code sample 45

.1 Code sample

.1.1 com.example.clientdevices.MyHelloWorldSubscriber-

1.1.0.json

1 {

2 "RecipeFormatVersion": "2020-01-25",

3 "ComponentName":

"com.example.clientdevices.MyHelloWorldSubscriber",↪→

4 "ComponentVersion": "1.0.0",

5 "ComponentDescription": "A component that subscribes to Hello

World messages from client devices.",↪→

6 "ComponentPublisher": "Amazon",

7 "ComponentConfiguration": {

8 "DefaultConfiguration": {

9 "accessControl": {

10 "aws.greengrass.ipc.pubsub": {

11

"com.example.clientdevices.MyHelloWorldSubscriber:pubsub:1":

{

↪→

↪→

12 "policyDescription": "Allows access to subscribe to

all topics.",↪→

13 "operations": [

14 "aws.greengrass#SubscribeToTopic"

15],

16 "resources": [

17 "*"

18]

19 }

20 }

21 }

22 }

23 },

24 "Manifests": [

25 {

26 "Platform": {

27 "os": "linux"

46

28 },

29 "Lifecycle": {

30 "install": "python3 -m pip install --user awsiotsdk

boto3",↪→

31 "run": "python3 -u

{artifacts:path}/hello_world_subscriber.py",↪→

32 "Setenv": {

33 "aws_access_key_id": "***",

34 "aws_secret_access_key": "***"

35 }

36 }

37 },

38 {

39 "Platform": {

40 "os": "windows"

41 },

42 "Lifecycle": {

43 "install": "py -3 -m pip install --user awsiotsdk",

44 "run": "py -3 -u

{artifacts:path}/hello_world_subscriber.py"↪→

45 }

46 }

47]

48 }

.1 Code sample 47

.1.2 hello world subscriber.py

1 import sys

2 import time

3 import traceback

4 import boto3

5 import datetime

6 import os

7 import json

8

9 from awsiot.greengrasscoreipc.clientv2 import

GreengrassCoreIPCClientV2↪→

10 from datetime import datetime

11

12 CLIENT_DEVICE_HELLO_WORLD_TOPIC = 'clients/+/hello/world'

13 TIMEOUT = 10

14

15 dynamodb = boto3.resource('dynamodb')

16 client = boto3.client('dynamodb',

17 aws_access_key_id=os.environ['aws_access_key_id'],

18 aws_secret_access_key=os.environ['aws_secret_access_key'],

19)

20

21

22 def on_hello_world_message(event):

23 try:

24 message = str(event.binary_message.message, 'utf-8')

25 time = str(datetime.now())

26

27 # update dynamodb table

28 client.put_item(TableName='hello-world-table',

29 Item={

30 'message': {'S':

str(json.loads(message)['message'])},↪→

31 'timestamp': {'S': time},

32 'topic': {'S': CLIENT_DEVICE_HELLO_WORLD_TOPIC},

48

33 'sequence' : { 'S':

str(json.loads(message)['sequence'])}↪→

34 }

35)

36 print('Received new message: %s' % message)

37 except:

38 traceback.print_exc()

39

40

41 try:

42 ipc_client = GreengrassCoreIPCClientV2()

43

44 # SubscribeToTopic returns a tuple with the response and the

operation.↪→

45 _, operation = ipc_client.subscribe_to_topic(

46 topic=CLIENT_DEVICE_HELLO_WORLD_TOPIC,

on_stream_event=on_hello_world_message)↪→

47 print('Successfully subscribed to topic: %s' %

48 CLIENT_DEVICE_HELLO_WORLD_TOPIC)

49

50 # Keep the main thread alive, or the process will exit.

51 try:

52 while True:

53 time.sleep(10)

54 except InterruptedError:

55 print('Subscribe interrupted.')

56

57 operation.close()

58 except Exception:

59 print('Exception occurred when using IPC.', file=sys.stderr)

60 traceback.print_exc()

61 exit(1)

.1 Code sample 49

.1.3 basic discovery.py

1 # Copyright Amazon.com, Inc. or its affiliates. All Rights

Reserved.↪→

2 # SPDX-License-Identifier: Apache-2.0.

3

4 import time

5 import json

6 from awscrt import io, http

7 from awscrt.mqtt import QoS

8 from awsiot.greengrass_discovery import DiscoveryClient

9 from awsiot import mqtt_connection_builder

10

11 from utils.command_line_utils import CommandLineUtils

12

13 allowed_actions = ['both', 'publish', 'subscribe']

14

15 # cmdData is the arguments/input from the command line placed

into a single struct for↪→

16 # use in this sample. This handles all of the command line

parsing, validating, etc.↪→

17 # See the Utils/CommandLineUtils for more information.

18 cmdData = CommandLineUtils.parse_sample_input_basic_discovery()

19

20 tls_options = io.TlsContextOptions

21 .create_client_with_mtls_from_path(

22 cmdData.input_cert,

23 cmdData.input_key

24)

25

26 if (cmdData.input_ca is not None):

27 tls_options.override_default_trust_store_from_path(None,

cmdData.input_ca)↪→

28 tls_context = io.ClientTlsContext(tls_options)

29

30 socket_options = io.SocketOptions()

31

50

32 proxy_options = None

33 if cmdData.input_proxy_host is not None and

cmdData.input_proxy_port != 0:↪→

34 proxy_options =

http.HttpProxyOptions(cmdData.input_proxy_host,

cmdData.input_proxy_port)

↪→

↪→

35

36 print('Performing greengrass discovery...')

37 discovery_client = DiscoveryClient(

38 io.ClientBootstrap.get_or_create_static_default(),

39 socket_options,

40 tls_context,

41 cmdData.input_signing_region, None, proxy_options)

42 resp_future = discovery_client.discover(cmdData.input_thing_name)

43 discover_response = resp_future.result()

44

45 if (cmdData.input_is_ci):

46 print("Received a greengrass discovery result! Not showing

result in CI for possible data sensitivity.")↪→

47 else:

48 print(discover_response)

49

50 if (cmdData.input_print_discovery_resp_only):

51 exit(0)

52

53

54 def on_connection_interupted(connection, error, **kwargs):

55 print('connection interrupted with error {}'.format(error))

56

57

58 def on_connection_resumed(connection, return_code,

session_present, **kwargs):↪→

59 print('connection resumed with return code {}, session present

{}'.format(return_code, session_present))↪→

60

61

.1 Code sample 51

62 # Try IoT endpoints until we find one that works

63 def try_iot_endpoints():

64 for gg_group in discover_response.gg_groups:

65 for gg_core in gg_group.cores:

66 for connectivity_info in gg_core.connectivity:

67 try:

68 print(

69 f"Trying core {gg_core.thing_arn} at host

{connectivity_info.host_address} port

{connectivity_info.port}")

↪→

↪→

70 mqtt_connection = mqtt_connection_builder

71 .mtls_from_path(

72 endpoint=connectivity_info.host_address,

73 port=connectivity_info.port,

74 cert_filepath=cmdData.input_cert,

75 pri_key_filepath=cmdData.input_key,

76 ca_bytes=

77 gg_group.certificate_authorities[0]

78 .encode('utf-8'),

79 on_connection_interrupted=

80 on_connection_interupted,

81 on_connection_resumed=

82 on_connection_resumed,

83 client_id=cmdData.input_thing_name,

84 clean_session=False,

85 keep_alive_secs=30)

86

87 connect_future = mqtt_connection.connect()

88 connect_future.result()

89 print('Connected!')

90 return mqtt_connection

91

92 except Exception as e:

93 print('Connection failed with exception

{}'.format(e))↪→

94 continue

52

95

96 exit('All connection attempts failed')

97

98

99 mqtt_connection = try_iot_endpoints()

100

101 if cmdData.input_mode == 'both' or cmdData.input_mode ==

'subscribe':↪→

102 def on_publish(topic, payload, dup, qos, retain, **kwargs):

103 print('Publish received on topic {}'.format(topic))

104 print(payload)

105 subscribe_future, _ =

mqtt_connection.subscribe(cmdData.input_topic,

QoS.AT_MOST_ONCE, on_publish)

↪→

↪→

106 subscribe_result = subscribe_future.result()

107

108 loop_count = 0

109 while loop_count < cmdData.input_max_pub_ops:

110 if cmdData.input_mode == 'both' or cmdData.input_mode ==

'publish':↪→

111 message = {}

112 message['message'] = cmdData.input_message

113 message['sequence'] = loop_count

114 messageJson = json.dumps(message)

115 pub_future, _ =

mqtt_connection.publish(cmdData.input_topic,

messageJson, QoS.AT_MOST_ONCE)

↪→

↪→

116 pub_future.result()

117 print('Published topic {}:

{}\n'.format(cmdData.input_topic, messageJson))↪→

118

119 loop_count += 1

120 time.sleep(1)

.1 Code sample 53

.1.4 mqtt-wind-publisher.js

1 /**

2 * The mqtt-wind-publisher script connects to the mqtt broker and

publishes messages to the "wind" topic.↪→

3 *

4 * Usage: Run the script within a Node.js environment passing the

connection option for the MQTT broker as an argument:↪→

5 * - option_1 --> Mosquitto test broker using username and

password↪→

6 * - option_2 --> Mosquitto test broker using X.509 certificates

7 * - option_3 --> Mosquitto broker running on localhost (Docker

container) using username and password↪→

8 * - option_4 --> Mosquitto broker running on localhost (Docker

container) using X.509 certificates↪→

9 */

10

11 const mqtt = require('async-mqtt');

12 const fsp = require('fs').promises;

13

14 (async () => {

15 try {

16 // sample wind parameter

17 const sampleData = [

18 {

19 ID_stazione: '012345',

20 stazione: 'Location_1',

21 data: '2023-12-03 12:00:00',

22 valore: '32 Gradi, 3.5 m/s, 4.1 m/s'

23 },

24]

25

26 // read connection option argument

27 const inputOption = process.argv[2];

28

29 // define connection option variable

30 let options = undefined;

54

31

32 // read certificates

33 const caTest = await fsp.readFile('./mosquitto.org.crt');

34 const ca = await fsp.readFile('./mosquitto-cert/ca.crt');

35 const cert = await

fsp.readFile('./mosquitto-cert/client.crt');↪→

36 const key = await

fsp.readFile('./mosquitto-cert/client.key');↪→

37

38 // ------ test.mosquitto.org ------

39 // Define the connection options

40 // 8885 : MQTT, encrypted, authenticated

41 if (inputOption === 'option_1') {

42 options = {

43 port: 8885, // Port for encrypted connection

44 host: 'test.mosquitto.org', // Mosquitto broker

URL↪→

45 clientId: '1234', // Unique client ID

46 username: 'rw', // MQTT broker username

47 password: 'readwrite', // MQTT broker password

48 protocol: 'mqtts', // Encrypted connection

protocol↪→

49 ca: [caTest], // Root CA certificate for

encryption↪→

50 };

51 }

52

53 // 8884 : MQTT, encrypted, client certificate required

54 if (inputOption === 'option_2') {

55 options = {

56 port: 8884, // Port for encrypted connection

57 host: 'test.mosquitto.org', // Mosquitto broker

URL↪→

58 clientId: '1234', // Unique client ID

59 protocol: 'mqtts', // Encrypted connection

protocol↪→

.1 Code sample 55

60 ca: [caTest], // Root CA certificate for

encryption↪→

61 cert: [cert], // client certificate

62 key: [key], // client key

63 };

64 }

65

66 // Create test client

67 // const client = await

mqtt.connectAsync('mqtt://test.mosquitto.org');↪→

68

69 // ------ Container Mosquitto ------

70 // 1883: username demo, password demo

71 if (inputOption === 'option_3') {

72 options = {

73 port: 1883,

74 host: 'localhost',

75 protocol: 'mqtt',

76 username: 'demo', // MQTT broker username

77 password: 'demo', // MQTT broker password

78 }

79 }

80

81 // 8883: certificates

82 if (inputOption === 'option_4') {

83 options = {

84 port: 8883, // Port for encrypted connection

85 host: 'localhost', // Mosquitto broker URL

86 protocol: 'mqtts', // Encrypted connection protocol

87 ca: [ca], // Root CA certificate for encryption

88 cert: [cert], // client certificate

89 key: [key], // client key

90 keepalive: 1,

91 connectTimeout: 3 * 1000,

92 };

93 }

56

94

95 if(options){

96 // Create the MQTT client

97 const client = await mqtt.connectAsync(options);

98

99 // 1. publish the message

100 for (let i = 0; i < sampleData.length; i++) {

101 const obj = sampleData[i];

102 await client.publish('wind', JSON.stringify(obj), {

retain: true });↪→

103 }

104

105 // disconnect from the broker

106 client.on('disconnect', (message) => {

107 console.log('disconnect', message);

108 })

109

110 // close the connection

111 client.on('close', () => {

112 console.log('done');

113 return;

114 })

115 } else {

116 console.log('Invalid connection option entered');

117 return;

118 }

119 } catch (e) {

120 console.log(e);

121 process.exit(1);

122 }

123 })();

.1 Code sample 57

.1.5 mqtt-wind-subscriber.js

1 /**

2 * The mqtt-wind-subscriber script connects to the mqtt broker

and receives messages published in the "wind" topic.↪→

3 * The received messages are then saved in the Redis database.

4 *

5 * Usage: Run the script within a Node.js environment passing the

connection option for the MQTT broker as an argument:↪→

6 * - option_1 --> Mosquitto test broker using username and

password↪→

7 * - option_2 --> Mosquitto test broker using X.509 certificates

8 * - option_3 --> Mosquitto broker running on localhost (Docker

container) using username and password↪→

9 * - option_4 --> Mosquitto broker running on localhost (Docker

container) using X.509 certificates↪→

10 */

11

12 require('dotenv').config();

13 // retrieve environment variables

14 const REDIS_PASSWORD = process.env.REDIS_PASSWORD;

15

16 const mqtt = require('async-mqtt');

17 const fsp = require('fs').promises;

18

19 // init Redis client

20 const { createClient } = require('redis');

21

22 (async () => {

23 try {

24 // read connection option argument

25 const inputOption = process.argv[2];

26

27 // define connection option variable

28 let options = undefined;

29

30 // read certificates

58

31 const caTest = await fsp.readFile('./mosquitto.org.crt');

32 const ca = await fsp.readFile('./mosquitto-cert/ca.crt');

33 const cert = await

fsp.readFile('./mosquitto-cert/client.crt');↪→

34 const key = await

fsp.readFile('./mosquitto-cert/client.key');↪→

35

36 // connection redis in localhost:6379

37 const clientRedis = await createClient({ password:

REDIS_PASSWORD })↪→

38 .on('error', err => console.log('Redis Client Error',

err))↪→

39 .connect();

40

41 // ------ test.mosquitto.org ------

42 // Define the connection options

43 // 8885 : MQTT, encrypted, authenticated

44 if (inputOption === 'option_1') {

45 options = {

46 port: 8885, // Port for encrypted connection

47 host: 'test.mosquitto.org', // Mosquitto broker

URL↪→

48 clientId: '1234', // Unique client ID

49 username: 'rw', // MQTT broker username

50 password: 'readwrite', // MQTT broker password

51 protocol: 'mqtts', // Encrypted connection

protocol↪→

52 ca: [caTest], // Root CA certificate for

encryption↪→

53 };

54 }

55

56 // 8884 : MQTT, encrypted, client certificate required

57 if (inputOption === 'option_2') {

58 options = {

59 port: 8884, // Port for encrypted connection

.1 Code sample 59

60 host: 'test.mosquitto.org', // Mosquitto broker

URL↪→

61 clientId: '1234', // Unique client ID

62 protocol: 'mqtts', // Encrypted connection

protocol↪→

63 ca: [caTest], // Root CA certificate for

encryption↪→

64 cert: [cert], // client certificate

65 key: [key], // client key

66 };

67 }

68

69 // Create test client

70 // const client = await

mqtt.connectAsync('mqtt://test.mosquitto.org');↪→

71

72 // ------ Container Mosquitto ------

73 // 1883: username demo, password demo

74 if (inputOption === 'option_3') {

75 options = {

76 port: 1883,

77 host: 'localhost',

78 protocol: 'mqtt',

79 username: 'demo', // MQTT broker username

80 password: 'demo', // MQTT broker password

81 }

82 }

83

84 // 8883: certificates

85 if (inputOption === 'option_4') {

86 const options = {

87 port: 8883, // Port for encrypted connection

88 host: 'localhost', // Mosquitto broker URL

89 protocol: 'mqtts', // Encrypted connection protocol

90 ca: [ca], // Root CA certificate for encryption

91 cert: [cert], // client certificate

60

92 key: [key], // client key

93 keepalive: 1,

94 connectTimeout: 3 * 1000,

95 };

96 }

97

98 if(options){

99 // Create the MQTT client

100 const client = await mqtt.connectAsync(options);

101

102 // 1. subscribe to a topic

103 await client.subscribe('wind');

104

105 // 3. read message

106 client.on('message', async (topic, message) => {

107 console.log('topic "' + topic + '": ' +

message.toString());↪→

108

109 // write message in Redis

110 const redisResp = await clientRedis.lPush(topic,

message);↪→

111 console.log("add key to redis", redisResp);

112 // get current element in key topic

113 const currentMessages = await

clientRedis.lRange(topic, 0, -1);↪→

114 console.log("current elements: ", currentMessages);

115 });

116

117 // disconnect from the broker

118 client.on('disconnect', async (message) => {

119 console.log('disconnect', message);

120

121 // disconnect redis

122 await clientRedis.disconnect();

123 })

124

.1 Code sample 61

125 // close the connection

126 client.on('close', () => {

127 console.log('done');

128 return;

129 })

130 } else {

131 console.log('Invalid connection option entered');

132

133 // disconnect redis

134 await clientRedis.disconnect();

135

136 return;

137 }

138 } catch (e) {

139 console.log(e);

140 process.exit();

141 }

142 })();

62

.1.6 mosquitto.conf with pwfile

1 listener 1883

2 protocol mqtt

3

4 allow_anonymous false

5 persistence true

6 password_file /mosquitto/config/pwfile

7 persistence_file mosquitto.db

8 persistence_location /mosquitto/data/

.1.7 mosquitto.conf with certificates

1 listener 8883

2 protocol mqtt

3

4 cafile /mosquitto/config/ca.crt

5 certfile /mosquitto/config/server.crt

6 keyfile /mosquitto/config/server.key

7

8 require_certificate true

9 use_identity_as_username true

10 use_subject_as_username true

11 persistence true

12 allow_anonymous false

13

14 persistence_file mosquitto.db

15 persistence_location /mosquitto/data/

.1 Code sample 63

.1.8 docker-compose.yml

1 version: "3.7"

2 services:

3 # mqtt5 eclipse-mosquitto

4 mqtt5:

5 image: eclipse-mosquitto

6 container_name: mosquitto

7 ports:

8 # - "1883:1883" #default mqtt port for username-password

9 - "8883:8883" #default mqtt port for certificates

10 - "9001:9001" #default mqtt port for websockets

11 volumes:

12 - ./config:/mosquitto/config:rw

13 - ./data:/mosquitto/data:rw

14 - ./log:/mosquitto/log:rw

15 # redis

16 redis:

17 image: redis

18 container_name: redis

19 ports:

20 - "6379:6379"

21 volumes:

22 - ./redis/redis.conf:/usr/local/etc/redis/redis.conf

23 command: ["redis-server", "/usr/local/etc/redis/redis.conf"]

24 # volumes for mapping data,config and log

25 volumes:

26 config:

27 data:

28 log:

29 networks:

30 default:

31 name: mqtt5-network

64

Bibliography

[1] A 2022 Guide to IoT Protocols and Standards. url: https://www.particle.

io/iot-guides-and-resources/iot-protocols-and-standards/.

[2] AWS Amazon. Authentication. url: https://docs.aws.amazon.com/

iot/latest/developerguide/authentication.html.

[3] AWS Amazon. Boto3 1.28.9 Documentation - Credentials. url: https:

/ / boto3 . amazonaws . com / v1 / documentation / api / latest / guide /

credentials.html.

[4] AWS Amazon. Create a virtual device with Amazon EC2. url: https:

//docs.aws.amazon.com/iot/latest/developerguide/creating-a-

virtual-thing.html.

[5] AWS Amazon.Device authentication and authorization for AWS IoT Green-

grass. url: https://docs.aws.amazon.com/greengrass/v2/developerguide/

device-auth.html.

[6] AWS Amazon.Device authentication and authorization for AWS IoT Green-

grass. url: https://docs.aws.amazon.com/greengrass/v2/developerguide/

device-auth.html.

[7] AWS Amazon. Getting started - Step 2: Set up your environment. url:

https://docs.aws.amazon.com/greengrass/v2/developerguide/

getting-started-set-up-environment.html.

[8] AWS Amazon. Getting started - Step 4: Develop and test a component on

your device. url: https://docs.aws.amazon.com/greengrass/v2/

developerguide/create-first-component.html.

[9] AWS Amazon. Install the AWS IoT Greengrass Core software (console).

url: https://docs.aws.amazon.com/greengrass/v2/developerguide/

install-greengrass-v2-console.html.

65

https://www.particle.io/iot-guides-and-resources/iot-protocols-and-standards/
https://www.particle.io/iot-guides-and-resources/iot-protocols-and-standards/
https://docs.aws.amazon.com/iot/latest/developerguide/authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/authentication.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://docs.aws.amazon.com/iot/latest/developerguide/creating-a-virtual-thing.html
https://docs.aws.amazon.com/iot/latest/developerguide/creating-a-virtual-thing.html
https://docs.aws.amazon.com/iot/latest/developerguide/creating-a-virtual-thing.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-auth.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-auth.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-auth.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-auth.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started-set-up-environment.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started-set-up-environment.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-first-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-first-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/install-greengrass-v2-console.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/install-greengrass-v2-console.html

66 BIBLIOGRAPHY

[10] AWS Amazon. Interact with local IoT devices. url: https://docs.aws.

amazon.com/greengrass/v2/developerguide/interact-with-local-

iot-devices.html.

[11] AWS Amazon. Tutorial: Interact with local IoT devices over MQTT. url:

https://docs.aws.amazon.com/greengrass/v2/developerguide/

client-devices-tutorial.html.

[12] AWS Amazon. What is Amazon DynamoDB? url: https://docs.aws.

amazon.com/amazondynamodb/latest/developerguide/Introduction.

html.

[13] AWS Amazon. What is AWS IoT Greengrass? url: https : / / docs .

aws . amazon . com / greengrass / v2 / developerguide / what - is - iot -

greengrass.html.

[14] AWS Amazon. What is AWS IoT? url: https://docs.aws.amazon.com/

iot/latest/developerguide/what-is-aws-iot.html.

[15] AWS Amazon. X.509 client certificates. url: https://docs.aws.amazon.

com/iot/latest/developerguide/x509-client-certs.html.

[16] Ralight on asciinema. Generating a TLS certificate for mosquitto. url:

https://asciinema.org/a/201826.

[17] async-mqtt. url: https://www.npmjs.com/package/async-mqtt.

[18] Authentication in Microservices: Approaches and Techniques. 2022. url:

https://frontegg.com/blog/authentication-in-microservices.

[19] John M. Acken; Naresh K. Sehgal; Divya Bansal; Robert B. Bass. Security

and Trust Metrics for Edge Computing. 2023. url: https://ieeexplore.

ieee.org/abstract/document/10102745.

[20] Ellen Boehm. The Top IoT Authentication Methods and Options. 2020. url:

https://www.keyfactor.com/blog/the-top-iot-authentication-

methods-and-options/.

[21] Docker. eclipse-mosquitto. url: https://hub.docker.com/_/eclipse-

mosquitto.

[22] Docker. Networking overview. url: https://docs.docker.com/network/.

[23] Edge computing. url: https://en.wikipedia.org/wiki/Edge_computing.

[24] Fog computing. url: https://en.wikipedia.org/wiki/Fog_computing.

https://docs.aws.amazon.com/greengrass/v2/developerguide/interact-with-local-iot-devices.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interact-with-local-iot-devices.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interact-with-local-iot-devices.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-devices-tutorial.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-devices-tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html
https://asciinema.org/a/201826
https://www.npmjs.com/package/async-mqtt
https://frontegg.com/blog/authentication-in-microservices
https://ieeexplore.ieee.org/abstract/document/10102745
https://ieeexplore.ieee.org/abstract/document/10102745
https://www.keyfactor.com/blog/the-top-iot-authentication-methods-and-options/
https://www.keyfactor.com/blog/the-top-iot-authentication-methods-and-options/
https://hub.docker.com/_/eclipse-mosquitto
https://hub.docker.com/_/eclipse-mosquitto
https://docs.docker.com/network/
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Fog_computing

BIBLIOGRAPHY 67

[25] FromWikipediathefreeencyclopedia.MQTT. url: https://en.wikipedia.

org/wiki/MQTT.

[26] How to setup Mosquitto MQTT Broker using docker. url: https://github.

com/sukesh-ak/setup-mosquitto-with-docker.

[27] HTTP authentication. url: https://developer.mozilla.org/en-US/

docs/Web/HTTP/Authentication.

[28] Internet X.509 Public Key Infrastructure Certificate and Certificate Revo-

cation List (CRL) Profile. url: https://datatracker.ietf.org/doc/

html/rfc5280.

[29] Introduction to MQTT Security Mechanisms. url: http://www.steves-

internet-guide.com/mqtt-security-mechanisms/.

[30] Kashif Naseer Qureshi; Gwanggil Jeon; MohammadMehedi Hassan; Md. Rafiul

Hassan; Kuljeet Kaur. Blockchain-Based Privacy-Preserving Authentication

Model Intelligent Transportation Systems. 2023. url: https://ieeexplore.

ieee.org/document/9745465.

[31] Esther Villar-Rodriguez; Maŕıa Arostegi Pérez; Ana I. Torre-Bastida; Cristina

Regueiro Senderos; Juan López-de-Armentias. Edge intelligence secure frame-

works: Current state and future challenges. 2023. url: https : / / www .

sciencedirect.com/science/article/pii/S0167404823001888.

[32] Milan Milenkovic. Internet of things: concepts and system design. 2020.

[33] Monolithic application. url: https://en.wikipedia.org/wiki/Monolithic_

application.

[34] Eclipse Mosquitto™. Eclipse Mosquitto. url: https://mosquitto.org/.

[35] Eclipse Mosquitto™.Generate a TLS client certificate for test.mosquitto.org.

url: https://test.mosquitto.org/ssl/.

[36] Eclipse Mosquitto™.mosquittopasswdmanpage. url: https://mosquitto.

org/man/mosquitto_passwd-1.html.

[37] Eclipse Mosquitto™. mosquitto.conf man page. url: https://mosquitto.

org/man/mosquitto-conf-5.html.

[38] Eclipse Mosquitto™. test.mosquitto.org. url: https://test.mosquitto.

org/.

[39] MQTT. MQTT: The Standard for IoT Messaging. url: https://mqtt.

org/.

https://en.wikipedia.org/wiki/MQTT
https://en.wikipedia.org/wiki/MQTT
https://github.com/sukesh-ak/setup-mosquitto-with-docker
https://github.com/sukesh-ak/setup-mosquitto-with-docker
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
http://www.steves-internet-guide.com/mqtt-security-mechanisms/
http://www.steves-internet-guide.com/mqtt-security-mechanisms/
https://ieeexplore.ieee.org/document/9745465
https://ieeexplore.ieee.org/document/9745465
https://www.sciencedirect.com/science/article/pii/S0167404823001888
https://www.sciencedirect.com/science/article/pii/S0167404823001888
https://en.wikipedia.org/wiki/Monolithic_application
https://en.wikipedia.org/wiki/Monolithic_application
https://mosquitto.org/
https://test.mosquitto.org/ssl/
https://mosquitto.org/man/mosquitto_passwd-1.html
https://mosquitto.org/man/mosquitto_passwd-1.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://test.mosquitto.org/
https://test.mosquitto.org/
https://mqtt.org/
https://mqtt.org/

68 BIBLIOGRAPHY

[40] Anuj Pundalik. From legacy systems to microservices: Transforming auth

architecture. 2023. url: https://www.contentstack.com/blog/tech-

talk/from-legacy-systems-to-microservices-transforming-auth-

architecture.

[41] Redis. url: https://redis.io/.

[42] redis - npm. url: https://www.npmjs.com/package/redis.

[43] Talal Halabi Saud Al Harbi and Martine Bellaiche. Fog Computing Secu-

rity Assessment for Device Authentication in the Internet of Things. 2020.

url: https://www.researchgate.net/publication/346884900_Fog_

Computing_Security_Assessment_for_Device_Authentication_in_

the_Internet_of_Things.

[44] Tzachi Strugo. Authentication & Authorization in Microservices Architec-

ture - Part I. 2021. url: https://dev.to/behalf/authentication-

authorization-in-microservices-architecture-part-i-2cn0.

[45] The Future of Autonomous Cars with Edge Computing. url: https://

www . analyticssteps . com / blogs / future - autonomous - cars - edge -

computing.

[46] Top 10 Cloud Service Providers Globally in 2023. 2023. url: https://

dgtlinfra.com/top-cloud-service-providers.

[47] Understanding IoT device authentication. 2021. url: https://mateenfaisal.

medium.com/understanding-iot-authentication-bbad5fe83271.

[48] X.509. url: https://en.wikipedia.org/wiki/X.509.

[49] Zexuan Luo; Shirui Zhao. Deep Dive into Authentication in Microservices.

2022. url: https://api7.ai/blog/understanding- microservices-

authentication-services.

https://www.contentstack.com/blog/tech-talk/from-legacy-systems-to-microservices-transforming-auth-architecture
https://www.contentstack.com/blog/tech-talk/from-legacy-systems-to-microservices-transforming-auth-architecture
https://www.contentstack.com/blog/tech-talk/from-legacy-systems-to-microservices-transforming-auth-architecture
https://redis.io/
https://www.npmjs.com/package/redis
https://www.researchgate.net/publication/346884900_Fog_Computing_Security_Assessment_for_Device_Authentication_in_the_Internet_of_Things
https://www.researchgate.net/publication/346884900_Fog_Computing_Security_Assessment_for_Device_Authentication_in_the_Internet_of_Things
https://www.researchgate.net/publication/346884900_Fog_Computing_Security_Assessment_for_Device_Authentication_in_the_Internet_of_Things
https://dev.to/behalf/authentication-authorization-in-microservices-architecture-part-i-2cn0
https://dev.to/behalf/authentication-authorization-in-microservices-architecture-part-i-2cn0
https://www.analyticssteps.com/blogs/future-autonomous-cars-edge-computing
https://www.analyticssteps.com/blogs/future-autonomous-cars-edge-computing
https://www.analyticssteps.com/blogs/future-autonomous-cars-edge-computing
https://dgtlinfra.com/top-cloud-service-providers
https://dgtlinfra.com/top-cloud-service-providers
https://mateenfaisal.medium.com/understanding-iot-authentication-bbad5fe83271
https://mateenfaisal.medium.com/understanding-iot-authentication-bbad5fe83271
https://en.wikipedia.org/wiki/X.509
https://api7.ai/blog/understanding-microservices-authentication-services
https://api7.ai/blog/understanding-microservices-authentication-services

	Introduction
	Fog Computing and Edge Computing
	Authentication methods
	Security Principles
	Authentication Methods
	Client-Server
	Microservices

	Example for Secure Authentication - Blockchain
	Authentication between IoT devices
	IoT Protocols
	MQTT
	IoT Device Authentication
	X.509 Certificates

	Prototypes
	Introduction to Prototypes
	Prototype using Amazon Web Services (AWS)
	AWS IoT Core
	AWS IoT Greengrass
	Amazon Dynamo DB
	AWS Prototype Development
	Comments and Considerations

	Open-Source Prototype
	Redis
	Mosquitto Test Server
	Mosquitto Broker with Docker

	Improvements and Vulnerabilities

	Conclusions
	Appendices
	Code sample
	com.example.clientdevices.MyHelloWorldSubscriber-1.1.0.json
	hello_world_subscriber.py
	basic_discovery.py
	mqtt-wind-publisher.js
	mqtt-wind-subscriber.js
	mosquitto.conf with pwfile
	mosquitto.conf with certificates
	docker-compose.yml

