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Abstract

Scene Graphs (SGs) are Knowledge Graphs representing the contents of an image in
terms of its elements, e.g., people, objects, and attributes, as well as their relationships.
Hence, they can capture the scene’s structural and semantic organization and express
it in a machine-readable model. Thanks to their expressive power, SGs have been
applied in important Image Processing tasks such as Image Captioning, Visual Question
Answering, and Image Search. In this work, we focus on Image Search, which, given a
query, is the task of retrieving the images that best match the text given as input. The task
of determining which images are the best matches for a given query becomes more and
more challenging as the details and the complexity of the query increase. While several
approaches have been proposed to tackle the Image-Search task by adopting pre-trained
language models, the opportunity to use both a Scene Graph and a language model has
not been studied yet. In this work, we employ an SG representation and a pre-trained
language model with the purpose of improving the Image Search performance when
dealing with complex textual queries.





Sommario

I grafi di scena (Scene Graphs, SGs) sono grafi di conoscenza (Knowledge Graphs,
KGs) che rappresentano il contenuto dell’immagine attraverso i suoi elementi, come
per esempio persone, oggetti, attributi, assieme anche alle rispettive relazioni. Per
questo, essi riescono a catturare l’organizzazione semantica e strutturale della scena e ad
esprimerla in un formato adatto per una macchina. Grazie alla loro abilità espressiva, gli
SG sono stati applicati in importanti ambiti di ricerca dell’elaborazione delle immagini,
come la descrizione didascalica automatica delle immagini, risposta a domande che
comprendono una componente visuale, e ricerca di immagini. In questo lavoro, ci
concentriamo sulla ricerca di immagini, che data una richiesta testuale, è il compito
di trovare le immagini che meglio si associano a quel testo. Questo problema diventa
più difficile se la richiesta contiene più dettagli ed è quindi più complessa. Mentre
diversi approcci sono stati proposti per risolvere il problema della ricerca delle immagini
utilizzando modelli di linguaggi pre-allenati, l’opportunità di utilizzare entrambi SG e
un modello di linguaggio non è ancora stata studiata. In questo lavoro, implementiamo
entrambi questi elementi con il fine di migliorare le prestazioni nell’ambito della ricerca
di immagini quando si utilizzato richieste testuali complesse.
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1
Introduction

In the last years, Deep-Learning (DL) for Image Processing has attracted considerable
attention [3, 19, 15, 48, 7, 36]. Among these approaches, Convolutional Neural Networks
(CNNs) have been offering the possibility to process pictures to capture meaningful
patterns inside them. CNNs paved the way to more complex Deep Learning architectures
capable of improving image understanding, thus enabling different forms of image
reasoning [7, 12, 36]. Thanks to these technologies, we have witnessed substantial
advancements in the performance of models for Visual Question Answering [1], Image
Retrieval [42], Image Captioning [16], and Image Generation [33]. Among these, in the
literature, Image Retrieval refers to the general task of retrieving an image, no matter
what input is used [3, 18, 42, 32]. In this work, we will refer to Image Search as
text-based Image Retrieval, i.e., the task of using a text query (e.g., a keywords query)
to retrieve a set of images matching its intent (Figure 1.1). We are going to discuss this
formally in Section 2.2.

On the other hand, we have also witnessed an increasing adoption of the Knowledge
Graph (KG) model [10] when in need of a data model able to represent data with a rich
semantic structure. A KG is a semantic network, i.e., a graph, composed of entities,
relationships, and attributes. In its most common form, it represents data as subject-
predicate-object triples. Entities can be both real-world objects as well as abstract
concepts.

Scene Graphs (SGs) are Knowledge Graphs representations of the content of an
image describing both the entities present in the image as well as the interactions between
them [3]. In Figure 1.1.b we see 2 examples of Scene Graphs created from 2 images. Due
to their semantic ability to describe images, SGs are becoming more and more popular.
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Text Query
A person is pointing a gun 
at another person as he 

moves closer to him

Person1
GunHolds

Person2

Directed towards

Floor
Lies on

Person1

Person2
Turns to look at

Image Search system

Outputa)

b)

Figure 1.1: Example of Image Search by text comparing also Scene Graphs. Text query
and images taken from VisualCOMET dataset [29]. a) depicts just the general Image
Search flow. b) shows 2 examples of Scene Graphs associated with a collection of 2
images and their connection with the Image Search task.

Researchers have implemented them for several tasks, such as Scene Graphs-based Image
Retrieval [18], Image Captioning [15], and Visual Question Answering [3].

In this work, we implement SGs in the context of Image Search. As we will see
better in Section 2.4, researchers have already obtained good results on the Image Search
task. However, the performance can still be improved, in particular when complex and
richer-in-details queries are used. At the same time, there is no work involving both SGs
and language models to solve Image Search. Hence, we hypothesize that by integrating
these image representations into the framework, we can improve the performance of an
Image Search system. In particular, we delve into one of the techniques developed very
recently, that is, Contrastive Language-Image Pre-train [32]: the targeted neural network
is firstly pre-trained on a dataset composed of images and associated text to shape a
multi-modal embedding space comprising both images and text; the more the images
and the text are related, the higher their similarity [32].
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2
Background

In this section we briefly describe the fundamental concepts of our research, that
is: Neural Networks (NNs), Image Search (IS), Scene Graphs (SGs) and the evaluation
metrics we use in this work. We are also mentioning the state of the art.

2.1 Neural Networks

The history of the Neural Networks is quite recent, as it dates back just a few decades.
It actually started with a neuroscience discover, the one by Hodgkin and Huxley, who
developed a biophysical model to describe neurons’ action potential, in 1952 [14].

Then, Frank Rosenblatt, in 1958, proposed the first algorithm to train a single neuron,
called the Perceptron model [38]. We are going to see this in detail in a bit.

From that time on, both neuroscientists and computer scientists worked on the
NNs development, reaching several milestones along the decades: from fundamental
discovers such as the backpropagation algorithm [39], the first Recurrent NN [4], the
concept of the Convolutional NN [20] to more recent and complex findings such as
Generative Adversarial Networks [8] and Transformers [45].

In this section we describe the concept of Neural Network in a general setup. This is
meant to be a very brief overview and to help us show the basic idea behind a complex
neural network, we start from the basic piece, that is, the Rosenblatt’s Perceptron model.
Then, we delve a bit deeper on the Feed-Forward Neural Network, the model we will
implement in our context .
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2.1. NEURAL NETWORKS

Figure 2.1: Rosenblatt Perceptron model

2.1.1 Perceptron Model

In Figure 2.1 the Rosenblatt’s Perceptron model is depicted. At time 𝑡 a series
of 𝑛 inputs 𝑥1, 𝑥2, ..., 𝑥𝑛 are fed into the neuron depicted with a circle containing the
sigma sign, meaning the sum operation. The inputs are weighed according to the values
𝑤1, 𝑤2, ..., 𝑤𝑛 and biased with 𝑤0(𝑡). The output of the sum is fed into a so-called
non-linear Activation Function, here denoted as g(), to produce the final output 𝑜𝑢𝑡 (𝑡).

Hence, 𝑜𝑢𝑡 (𝑡) depends on 𝑤1, 𝑤2, ..., 𝑤𝑛 and on the input 𝑖𝑛(𝑡) = (𝑥1, 𝑥2, ..., 𝑥𝑛)
according to the following rule:

𝑜𝑢𝑡 (𝑡) = 𝑔(
𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑤0). (2.1)

According to Rosenblatt, the learning consists in changing the bias 𝑤0 and the
weights 𝑤𝑖, 𝑖 = 1, ..., 𝑛 so that the overall function returns the wanted result.

In particular, the update rule is the following one:

Δ𝑤 = 𝜂(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡)𝑥, (2.2)

where 𝑡𝑎𝑟𝑔𝑒𝑡 is the ideal value, and 𝑜𝑢𝑡 is the value computed by the perceptron as seen
in the Equation 2.1.

2.1.2 Feed-Forward Neural Networks

Roughly speaking, a Feed-Forward Neural Network (FFNN) is the scaled version of
a Perceptron, that is why this type of network is also called multi-layer Perceptron.

In Figure 2.2 we see an example of FFNN. The input depicted here is the same of

4



CHAPTER 2. BACKGROUND

Figure 2.2: Example of Feed-Forward Neural Network

the one depicted in Figure 2.1 as 𝑖𝑛(𝑡). However, in this model, more other nodes are
present, and in particular we identify the so-called hidden layers, the two intermediate
ones, and the output layer, the latter formed just by one neuron in the case of the figure.

The hidden layers’ task is to learn intermediate characteristics, also called features
or patterns, that may be useful in computing the output.

A complete overview of an FFNN train is out of scope of this work. Anyway, we
just mention that the train of such a network is way more complex that the one of the
perceptron, and in this context the already mentioned Backpropagation algorithm comes
handy in propagating the error to all the weights of the network. Together with this,
the concept of optimizer appears, which is the algorithm utilized to actually update the
weights once the error has been back-propagated.

2.2 Image Search

In this work, we tackle the problem of Image Search (IS), i.e., text-based Image
Retrieval. It refers to an interdisciplinary task that involves both Natural Language Pro-
cessing (NLP) and Image Processing, in that it involves textual queries and a collection
of images. In Figure 1.1.a we see an example of IS flow. In the case of the figure, the
collection of images is made of 𝑖1 and 𝑖2 and the query is A person is pointing a gun at
another person as he moves closer to him.

Formally, given a word dictionaryD,D∗ denotes sequences of any length that can be
built with words belonging toD. Hence, a query is a text sequence 𝑞 = (𝑤1, 𝑤2, 𝑤3, ...) ∈
D∗. The collection of images is denoted as I, and, in the IS task, the goal is to find the

5
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so-called relevant images I𝑟,𝑞⊆I, i.e., the ones that best match the query 𝑞. An Image
Search system (ISS) is a system that solves an Image Search task. When determining the
expected results of an ISS, we may look at the IS task from 2 different point of views:
either we consider it a binary classification problem or a relevance prediction problem.

In the former, we just wonder whether the images recommended by the ISS are
relevant or not, whereas in the latter, we consider the image-relevance degree, i.e.,
how much an image is relevant. Given this, we are going to first define the binary-
classification IS problem, which we call simply Binary Image Search; then we define
the Ranked Image Search.

Problem 2.2.1 (Binary Image Search) Given a set of images I, a vocabulary D and
a query 𝑞 = (𝑤1, 𝑤2, ...𝑤𝑙)∈D∗, where D∗ is the set of sequences of any length built
from words 𝑤∈D, the Binary Image Search problem is the classification problem that
requires to determine a function 𝑓 : I×D∗→{⊥,⊤}, such that ∀𝑖∈I𝑟,𝑞⊆I, 𝑓 (𝑖, 𝑞)=⊤ if
image i is a relevant match for the query q, and 𝑓 (𝑖, 𝑞)=⊥ otherwise.

Following what we mentioned earlier, in this definition we are just interested on
whether the relevant images are actually classified as relevant or not according to the
function 𝑓 . The set {⊥,⊤} is indeed composed by only two elements, which forces the
classification to be binary. Moreover, I𝑟,𝑞 can be of any size, which means that there
may be many pictures that can be judged somewhat relevant to a query 𝑞. We will come
back to this aspect later, when we define the evaluation metrics in use in this work.

To study the Ranked Image Search problem, the codomain of the previous function
𝑓 must express the degree of relevance of the images with respect to the query, i.e.,
a relevance score, usually in [0, 1]⊂R. In some cases, this can also be seen as the
probability 𝑃𝑞 (𝑖) that 𝑖 is a relevant image for 𝑞. Hence, the definition of the Ranked
Image Search problem is the following:

Problem 2.2.2 (Ranked Image Search) Given a set of images I, a vocabulary D and
a query 𝑞 = (𝑤1, 𝑤2, ...𝑤𝑙)∈D∗, where D∗ is the set of sequences of any length built
from words𝑤∈D, the Ranked Image Search Problem is the relevance prediction problem
that requires to determine a function �̂� : I×D∗→[0, 1], such that the output of �̂� (𝑖, 𝑞)
is 0 if 𝑖 is irrelevant for the query 𝑞 and given 𝑖1, 𝑖2, �̂� (𝑖1, 𝑞) ≥ �̂� (𝑖2, 𝑞) if and only if 𝑖1
is a better match than 𝑖2 for the query 𝑞.

6
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2.3 Scene Graphs

We presume that by integrating the SGs in the process, the overall performance of
the system can be improved. To define the Scene Graphs, we take inspiration from the
definition given in the SG Survey by Chang et al. [3]:

Definition 2.3.1 (Scene Graph) A Scene Graph is a directed graph, defined as 𝐺 =

(𝑂, 𝑅, 𝐸) where:

• 𝑂 = {𝑜1, 𝑜2, ..., 𝑜𝑁 } is the set of objects detected in the images; each object has
the form 𝑜𝑖 = (𝑐𝑖, 𝐴𝑖) where 𝑐𝑖 and 𝐴𝑖 represent the category and the attribute of
the object respectively;

• 𝑅 is the set of relations;

• 𝐸 ⊆ 𝑂 × 𝑅 × 𝑂 set of directed edges that expresses the relationship between
objects.

2.4 State of The Art

In this work we advance the state-of-the-art by studying how to improve the per-
formance of a text-image matching model by incorporating the information of a scene
graph representation for an image.

2.4.1 Text-Image Matching

Recently, there has been an increased interest in cross-modal retrieval, which takes
one type of data as the query and retrieves relevant data from another type. Text and
image matching is an example of cross-modal retrieval model where a query in text
format retrieves a set of images relevant to that query. One of the early approaches
for such a model relied on projecting the images and text models representations into a
shared, embedded space for similarity computation or learning a matching score [6, 21,
34]. Another line of research adopts pre-training techniques applied in Computer Vision
(CV) and NLP. These proposed approaches have achieved promising performance on
different tasks, including text-image matching [46, 43, 22]. Contrastive Language-Image
Pre-training (CLIP) [32] is among the most known example of multi-modal models for
joint learning representations of images and text. CLIP achieves superior retrieval results
in open-domain image-text matching tasks [41]. Text-to-image matching using the CLIP

7
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model can be conducted by calculating the similarities in the embedding space. The
main challenge of these matching approaches is extracting semantic information from
the images and mapping it to the textual query. Most of the current approaches rely
on detecting certain regions from the images. For instance, Faghri et al. [5] employed
a CNN-based image encoder to extract visual features of images and an RNN-based
textual module to extract those from captions. These features are then projected into
the same vector space to perform the matching comparison. Although multi-modal
models achieved good accuracy, previous work ignored the vital information of objects
interactions within images and sentences, that led the researchers to direct their focus
on extracting non-obvious information from the images. As an example, researchers
showed that the relative position of detected objects within an image could be useful
when matching with the caption [47]. In our research, we incorporate the semantic
knowledge about the objects and their interactions in the images using generated scene
graphs from the images and incorporate this scene graph information in the representation
of the images in the CLIP framework.

2.4.2 Scene Graph

The scene graph was first proposed by Johnson, Justin, et al. for image caption and
retrieval [18]. A scene graph describes objects, their attributes, and relationships in
images with a graph. In follow-on work, Johnson, Justin, et al. used the ground-truth
scene graph as the query for image retrieval [18]. However, this approach relied on
human-generated scene graphs. On other direction, other attempts to use the graph
structure generally to represent both the textual and visual data, such as [44]. Unlike
our approach, the employed graphs in this work include no semantic relations and are
not scene graphs. With the developments of scene graph generations [51, 49], the
performance of many visual cross model tasks are improved, such as Visual Question
Answering [13] and Image Captioning [50]. Most of these approaches benefit from the
scene graph to retrieve images. For example, Yao et al. [50] designed a GCN-based
captioning model that employs scene graph generators to propose possible connections
between objects. Other methods are proposed to parse text into a scene graph [40].
These approaches discard the representations of visual relations generated from the
scene graph generators, and instead implicitly infer relationships from caption data.
Directly incorporating both the scene graph objects and relationships in the multi-modal
(text and image) representation distinguishes our approach from this line of work.

8
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Dataset Descriptions # Images Year
VisualCOMET 1 [29] Large-scale dataset of Visual Commonsense

Graphs for reasoning about the dynamic context
of static images for visual scene understanding

59,356 2020

CUHK-PEDES [23] Images of pedestrians accompanied by textual
descriptions

40,206 2017

Flowers [34] Images of flowers with 10 descriptions for each
image

8189 2016

Caltech-UCSD Birds
(CUB) [34]

Images of birds with 10 descriptions for each
image of them

11,788 2015

Flicker30K [30] A wide variety of images (humans, animals, ob-
jects, scenes) in addition to 5 different descrip-
tions for each image

31,783 2015

MSCOCO [25] Contains 123,287 images, and each image is an-
notated with five text descriptions

123,287 2014

Table 2.1: Dataset for Text-Image Matching Evaluation.

Model Descriptions Year
CLIP [32] Joint learning representations of image and text 2021
Data efficient CLIP
(DeCLIP) [24]

An efficient CLIP with less training time and training data.
Similar to CLIP, evaluated on (text, image) pair. Mostly
classification accuracy

2021

GXN [9] Generative models 2018
SCO [17] Multi-regional multi-label CNN 2018
HM-LSTM [28] Hierarchical multimodal LSTM embedding model 2017
VSE++ [5] Visual-Semantic Embeddings 2017
DVSA [6] Deep Visual-Semantic Alignments 2013

Table 2.2: Models used for Text-Image Matching Tasks.

Table 2.1 shows the most known public datasets used in the literature to evaluate the
text to image matching and retrieval. Table 2.2 summarizes different models developed
to improve different visual downstream tasks, including text to image matching.

2.5 Evaluation Metrics

To perform the evaluation, similarities between images and texts must be computed,
and then, on these values, the metrics of interest are computed, i.e., Hits and Recall

19https://visualcomet.xyz

9

9https://visualcomet.xyz


2.5. EVALUATION METRICS

(R). Both these metrics are often used on binary classification problems. In the case of
Image Search, they are then used when just one image is relevant. However, we will also
see that with our dataset they are enough to evaluate our models, even though multiple
images could be relevant in principle. Before going on, we report briefly what we mean
by recommended images following the notation of Problem Definition 2.2.1:

{ 𝑓 (𝑖, 𝑞) = ⊤; 𝑖 ∈ I}, (2.3)

that is, the images classified as relevant by the ISS. Given this, in the next sections, we
define Hits and Recall.

2.5.1 Hits

Hits is a binary measure, so it has been mainly used for binary classification problems.
Looking at Figure 2.3, we see the possible outcomes of a binary classification. Hits
counts the number of True positives.

We define it formally in our context, i.e., Image Search, and given the fact that it is a
binary measure, we will use the notation in Problem Definition 2.2.1 and in [31].

Definition 2.5.1 (Hits) Given a Binary Image Search task defined as in Problem Defini-
tion 2.2.1 we define the Hits measure as the number of True Positives 𝑇𝑃 = |{ 𝑓 (𝑖, 𝑞) =
⊤; 𝑖 ∈ I𝑟,𝑞}|, i.e., the number of relevant images recommended by the system.

2.5.2 Recall

Recall is a binary classification measure as well. Roughly speaking, it expresses the
fraction of relevant elements that were indeed "selected" by the system. It builds upon
Hits measure.

Looking again at Figure 2.3. Recall expresses the fraction of True Positives with
respect to all the Real Positives.

We again define it formally in our context and we will use the notation in Problem
Definition 2.2.1 and in [31].

The Recall definition follows:

Definition 2.5.2 (Recall) Given a Binary Image Search task defined as in Problem
Definition 2.2.1 we define the Recall measure at that ratio 𝑅 such that:

𝑅 =
𝑇𝑃

𝑅𝑃
, (2.4)

10
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True Positive False Negative

False Positive True Negative

Real
Predicted

Positive Negative

Positive

Negative

Figure 2.3: Table reporting the possible outcomes of a binary classification. We use Hits
and Recall metrics, which deals with the row indicated by the dashed rectangle. Hits in
particular deals with just the green square of True Positives.

where 𝑇𝑃 are the True Positives, and 𝑅𝑃, Real Positives, is the cardinality |I𝑟,𝑞 | of
relevant images associated to query 𝑞.
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3
Architectures

In this chapter we show the initial architecture together with the model considered
and the proposed architecture, the latter integrating the Scene Graphs into the input data.

3.1 CLIP

In this section, we delve deeper into both the approach and the model we consider,
named in the same way, that is, CLIP: Contrastive Language-Image Pre-train.

In Figure 3.1, we have an idea of how CLIP works. The motivation behind the
Language-Image part in the acronym is because the architecture entails an image encoder
and a text encoder, which receive as input respectively an image and a text and produce
in the output the associated features vector [32].

Concerning the image encoders, CLIP authors work with different model architec-
tures [32]: they train 5 slightly modified ResNets and 3 Vision Transformers. The
text encoder is a modified Transformer. According to the authors’ results, the image
encoder that performs better is the one reported with the code ViT-L/14@336px, which
corresponds to the architecture ViT-L/14 pre-trained one epoch more at a higher pixel
resolution. Hence, this is the model that we are also going to use.

The encoders are jointly pre-trained so that the associated image and text features
maximize the cosine similarity, and the non-associated pairs have their similarity min-
imized [32]. More formally, using the notation of Figure 3.1, given a batch of 𝑁
(𝑖𝑚𝑎𝑔𝑒, 𝑡𝑒𝑥𝑡) positive pairs such that 𝐼𝑠 = (𝑖𝑠,1, 𝑖𝑠,2, ..., 𝑖𝑠,𝑀) is the s-th image feature
vector and 𝑇𝑠 = (𝑡𝑠,1, 𝑡𝑠,2, ..., 𝑡𝑠,𝑀) is the associated text feature vector, the encoders are

13



3.2. PROPOSED ARCHITECTURE - CLIGT

CLIP Text
Encoder

CLIP 
Image

Encoder

A person is pointing a gun at 
another person as he moves 

closer to him

𝐼𝐼1 � 𝑇𝑇1 𝐼𝐼1 � 𝑇𝑇2 𝐼𝐼1 � 𝑇𝑇3 … 𝐼𝐼1 � 𝑇𝑇𝑁𝑁

𝐼𝐼2 � 𝑇𝑇1 𝐼𝐼2 � 𝑇𝑇2 𝐼𝐼2 � 𝑇𝑇3 … 𝐼𝐼2 � 𝑇𝑇𝑁𝑁

𝐼𝐼3 � 𝑇𝑇1 𝐼𝐼3 � 𝑇𝑇2 𝐼𝐼3 � 𝑇𝑇3 … 𝐼𝐼3 � 𝑇𝑇𝑁𝑁

… … … … …

𝐼𝐼𝑁𝑁 � 𝑇𝑇1 𝐼𝐼𝑁𝑁 � 𝑇𝑇2 𝐼𝐼𝑁𝑁 � 𝑇𝑇3 … 𝐼𝐼1 � 𝑇𝑇𝑁𝑁

𝐼𝐼1

𝐼𝐼2

𝐼𝐼3

…

𝐼𝐼𝑁𝑁

…

Figure 3.1: Image depicting CLIP workflow.

jointly trained to maximize the following:

𝐶𝑆(𝑇𝑠, 𝐼𝑠) =
∑𝑀
𝑗=1 𝑡𝑠, 𝑗 𝑖𝑠, 𝑗√∑𝑀

𝑗=1(𝑡𝑠, 𝑗 )2
∑𝑀
𝑗=1(𝑖𝑠, 𝑗 )2

, (3.1)

for 𝑠 = 1, ..., 𝑁 , and also to minimize the cosine similarity between all the other possible
pairs of the batch, i.e.,

𝐶𝑆(𝑇𝑠, 𝐼𝑘 ) =
∑𝑀
𝑗=1 𝑡𝑠, 𝑗 𝑖𝑘, 𝑗√∑𝑀

𝑗=1(𝑡𝑠, 𝑗 )2
∑𝑀
𝑗=1(𝑖𝑘, 𝑗 )2

, (3.2)

for 𝑠, 𝑘 = 1, ..., 𝑁 , 𝑠 ≠ 𝑘 . This is how Contrastive training works: in general the measure
considered for associated samples is contrasted with the non-associated ones.

In Figure 3.1, the similarity values are represented by the matrix 𝑁 × 𝑁 , in which
the value in row 𝑠 and column 𝑘 correspond to the similarity value between text features
𝑇𝑠 and image features 𝐼𝑘 , with 𝑠, 𝑘 = 1, ..., 𝑁 . In the figure, the contrastive learning is
represented by the different colours of the matrix cells: on the diagonal, that is, with
𝑠 = 𝑘 , the value are maximized, whereas all the others lying outside the diagonal are
minimized.

3.2 Proposed Architecture - CLIGT

The proposed architecture comprising both CLIP encoders and the SGs is depicted
in Figure 3.2. Given a text and an image, they are encoded through CLIP’s blocks. At

14



CHAPTER 3. ARCHITECTURES
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Figure 3.2: Proposed model integrating Scene Graphs.

the same time, SGB (Scene Graph Benckmark) is a code that is used to produce SGs.
The obtained Scene Graphs are then put as input to a Scene Graph Embedding block,
which outputs the associated embedding vector. Then, the image feature and the SG
embedding are joined in a so-called visual vector and put as input to a FFNN, which
outputs the visual features. Also the text feature is put as input to a FFNN.

The goal is to integrate the information coming from the SGs into the vector which
also comprises the image information, thus making the associated image-text vectors
closer.

We called the architecture CLIGT: Contrastive Language-Image-Graph Train. We
refer to it even if, as we will se in Section 5.3.3, we also follow an approach that is not
contrastive.

3.2.1 Scene Graph Embedding Block

The yellow block in Figure 3.2 is the Scene Graph Embedding block, which takes an
SG as input and produces as output an embedding vector, thus projecting all the scene
graphs into a vector space. In this section, we delve deeper on the internal structure of
this block, which is depicted in Figure 3.3.

Given an SG, a Ristoski’s RDF2Vec-like Graph Walk [37] is performed, to obtain
sentence-like sequences from the SG nodes and relationships. Then, every sentence is
encoded through BERT [35] model. Finally, all the sentence features are aggregated
through an aggregator function, which, in our case, we chose to be the average function.
The result is an SG embedding vector. Notice that not a single part of the aforementioned
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.
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Graph Walk 
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Figure 3.3: The SG Embedding Block functioning.

block needs to be trained. In fact, BERT, which is the only DL model in this block, is
already trained [35]. In the next paragraph we present the Graph Walk we implemented
in detail, with an example.

Graph Walk To generate the graph walks, we followed closely the related paragraph in
Ristoski’s RDF2Vec work [37]. We think it is then meaningful to report the paragraph:

In this approach, for a given graph 𝐺 = (𝑉 ; 𝐸), for each vertex 𝑣 ∈ 𝑉 we
generate all graph walks 𝑃𝑣 of depth 𝑑 rooted in the vertex 𝑣. To generate
the walks, we use the breadth-first algorithm. In the first iteration, the
algorithm generates paths by exploring the direct outgoing edges of the root
node 𝑣𝑟 . The paths generated after the first iteration will have the following
pattern 𝑣𝑟 → 𝑒1𝑖, where 𝑖 ∈ 𝐸 (𝑣𝑟). In the second iteration, for each of the
previously explored edges the algorithm visits the connected vertices. The
paths generated after the second iteration will follow the following patter
𝑣𝑟 → 𝑒1𝑖 → 𝑣1𝑖. The algorithm continues until 𝑑 iterations are reached.
The final set of sequences for the given graph𝐺 is the union of the sequences
of all the vertices

∪
𝑣∈𝑉 𝑃𝑣 .

We report in Algorithm 1 the recursive algorithm utilized to generate all the graph
walks starting from a root node 𝑣𝑟 . Notice that the output returned by the algorithm does
not include the source node class, which must be prepended to every output element.

Once the algorithm is executed for every node in the graph, we obtain all the graph
walks, i.e., all the sentences.
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Algorithm 1 Single graph walk performed on a node.
Input:

- starting node 𝑠𝑡𝑎𝑟𝑡
- visited nodes set 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
- current depth 𝑐_𝑑𝑒𝑝𝑡ℎ
- maximum depth 𝑚_𝑑𝑒𝑝𝑡ℎ

1: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑡𝑎𝑟𝑡)
2: 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛_𝑝𝑎𝑡ℎ𝑠← []
3: for 𝑒𝑑𝑔𝑒 ∈ 𝑠𝑡𝑎𝑟𝑡.𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔() do
4: 𝑑𝑒𝑠𝑡 ← 𝑒𝑑𝑔𝑒.𝑑𝑒𝑠𝑡
5: if 𝑐_𝑑𝑒𝑝𝑡ℎ + 2 = 𝑚_𝑑𝑒𝑝𝑡ℎ then
6: 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛_𝑝𝑎𝑡ℎ𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑒𝑑𝑔𝑒.𝑙𝑎𝑏𝑒𝑙 (), 𝑑𝑒𝑠𝑡.𝑙𝑎𝑏𝑒𝑙 ()))
7: else
8: if 𝑐_𝑑𝑒𝑝𝑡ℎ + 1 < 𝑚_𝑑𝑒𝑝𝑡ℎ then
9: if 𝑑𝑒𝑠𝑡 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then

10: 𝑑𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠← 𝑔𝑟𝑎𝑝ℎ_𝑤𝑎𝑙𝑘 (𝑑𝑒𝑠𝑡, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝑐_𝑑𝑒𝑝𝑡ℎ + 2, 𝑚_𝑑𝑒𝑝𝑡ℎ)
11: 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛_𝑝𝑎𝑡ℎ𝑠.𝑎𝑑𝑑_𝑎𝑙𝑙 (𝑚𝑒𝑟𝑔𝑒(𝑒𝑑𝑔𝑒.𝑙𝑎𝑏𝑒𝑙 (), 𝑑𝑒𝑠𝑡.𝑙𝑎𝑏𝑒𝑙 (), 𝑑𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠))
12: end if
13: else
14: 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛_𝑝𝑎𝑡ℎ𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑑𝑔𝑒.𝑙𝑎𝑏𝑒𝑙 ())
15: end if
16: end if
17: end for
18: return 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛_𝑝𝑎𝑡ℎ𝑠
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Figure 3.4: Artificial example of SG to present the output of the graph walks

As an example of the output produced, Figure 3.4 shows an artificially-built SG
on which all the graph walks are retrieved. We consider here 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 6, which
then comprises at most a path containing seven elements: the starting node plus the six
consecutive elements, i.e., 3 nodes and 3 relantions, as Ristoski’s paragraph states. The
output list of sentences in this case is the following:

• ’window on building has door has handle’

• ’building has door has handle’

• ’door has handle’
• ’SG contains window on building has window’

• ’SG contains window on building has door’

• ’SG contains building has door has handle’

• ’SG contains door has handle’
• ’SG contains handle’

3.2.2 FFNN Structure

The architecture of the FFNNs depicted in Figure 3.2 comprises some hidden layers.
The number of layers and the number of nodes per layer are hyperparameters, of which
we talk in Section 5.3.5. Here we just report in Tables 3.1 and 3.2 the structure per
approach.
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textual net visual net
input 768 1536

hidden layer 1 576 512
hidden layer 2 384 960

output 192 192

Table 3.1: FFNNs architecture for the classification approach

textual net visual net
input 768 1536

hidden layer 1 448 384
hidden layer 2 - 960

output 512 512

Table 3.2: FFNNs architecture for the energy-based approach
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4
Data

The purpose of this chapter is to present the ground-truth that we have chosen. From
the previous chapter we have seen that we work with 3 types of data: images, texts and
Scene Graphs. VisualCOMET dataset [29] provides the first two types, and the latters
are computed through the code developed by Han et al. [11]. In the next sections, we first
present VisualCOMET and the modifications done on it, supported by some statistics.
Then we present the Scene Graphs retrieved and some of their characteristics observed.

4.1 VisualCOMET Dataset

We decided to use VisualCOMET[29] perform our experiments. The reason behind
this choice is that this dataset contains more than fifty thousand images, and every
image content is described by at least a couple of sentences [29]. The descriptions are
indeed more than a hundred thousand. Beyond that, every image is also provided with
some annotations about the intents of the people in the image and what events might
have happened before and after [29]. However, we focus on the description itself, as it
provides a semantic textual representation of the content.

We recall we are working on the Image Search context, so we consider every de-
scription as the query to retrieve the image it is paired with. Following the Problem
2.2.1 defined previously, given a description 𝑑 𝑗 of an image 𝑖 𝑗 , 𝑑 𝑗 can be seen as the
query 𝑞 and 𝑖 𝑗 can be considered as being part of the relevant images of 𝑞, i.e., 𝑖 𝑗 ∈ I𝑟,𝑞.
In this way, we obtain a ground-truth dataset for our task. As a side note, we stress
that what makes VisualCOMET even more suitable for our study case is that the image
descriptions are enough complex to require a deeper understanding of the scene.
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In studying the structure of the dataset descriptions, we discovered an important
characteristic: every description contains the so-called person-groundings, which are
references contained in the description to the persons in the images [29]; these references
are in particular numbers.

In the example of Figure 1.1, the image 𝑖1 description in the VisualCOMET dataset
is the following one [29]:

"1 is pointing a gun at 8 as he moves closer to him".

While useful to identify the persons in the image, this is not a Natural Language query,
i.e., we would never insert a sentence like this to search for image 𝑖1. Hence, we opt for
the substitution of the numbers with the simple expression a person.

However, this introduces another issue. First of all, if we substituted a person every
time we found a number, the example above would become this:

"A person is pointing a gun at

a person as he moves closer to him",

which is now in natural language, but can still be improved. To do it, instead of using
a person for the second number, we can substitute another person. The aforementioned
example thus becomes the following sentence:

"A person is pointing a gun at

another person as he moves closer to him".

This can actually be done for every sentence that contains exactly 2 numbers associated
with persons.

However, the cases in which there are 3 or more people must still be considered.
These can not be modified in a suitable automatic way. To understand why, take the
following clarifying example:

"1 sits on the couch with 2 and 4 on her lap".

Clearly, as we have seen for the case of 2 persons, it is not elegant to simply substitute
a person, even more, because in this example there are 3 persons. If we substituted a
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Train Dev Test Total
# Images/Places 47,595 5,973 5,968 59,356
# Events at Present 111,796 13,768 13,813 139,377

Table 4.1: Part of Table 1 taken from VisualCOMET paper, reporting statistics about
the Visual Commonsense Reasoning dataset, whose images are utilized in the Visual-
COMET dataset.

person and another person it would not be elegant no longer as well:

"A person sits on the couch with

another person and another person on her lap".

If we used this approach for all the sentences with more than 3 persons in general, the
resulting structure would introduce a non-negligible bias over the distribution of the
names in the sentences, which in turn will affect the performance of the model.

In conclusion, what we opt for, is to remove all the sentences that involve 3 or more
people. In analysing the dataset, we also discovered that there are some pairs repeated
which are also removed after the filtering. We wondered how the filtering and the
modification operations affected the dataset. In particular, we wondered whether we
could still utilize the data after the change. To answer this, we computed some statistics
before and after the operations, which we are going to show in the following section.

As a side note, the remaining descriptions, as well as the associated pairs, are
addressed as valid.

4.1.1 Statistics

The dataset comes split into 3 subsets: training, validation and test. For the rest of
this work, they are kept divided as they are, for convenience. Hence, in this section, 3
statistics are retrieved, one for each split.

In Table 4.1 we see the part we care about Table 1 of the VisualCOMET paper. We
see the number of images and event descriptions per dataset split and their total.

As we said, the operations will affect the descriptions, but we can not avoid studying
other quantities that regard the (𝑖𝑚𝑎𝑔𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) pairs. Different quantities are
computed before and after the filtering.

The precise list of quantities retrieved follows:
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Before Filtering

1. Number of duplicate (𝑖𝑚𝑎𝑔𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) pairs

2. Number of unique event descriptions that appear in more than one pair and relative
percentage w.r.t. the unique number of descriptions

3. Average number of times that a duplicate event appears (with standard deviation)

4. Average number of persons per event (with standard deviation)

5. Median number of persons per event

6. Max number of persons per event

After Filtering

1. Number of valid (𝑖𝑚𝑎𝑔𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) pairs and relative percentage w.r.t. the
initial pairs number

2. Number of images without description and relative percentage w.r.t. the total
number of images

3. Average number of persons per event (with standard deviation)

4. Median number of persons per event

After substituting the strings a person and another person

1. Number of unique event descriptions appearing in more than one pair at least once
and relative percentage w.r.t. the unique number of descriptions

2. Average number of times that a duplicate events appears (with standard deviation)

Statistics Results and Considerations

Following the order in the lists of the previous section, we report here the results for
each split.

Looking at Table 4.3, maybe the most important value is the number of valid pairs,
i.e., the number of remaining pairs after the filtering process: we have similar percentages
across the splits, which float around 92% and 93% of the initial pairs. Also, we notice
that the number of repeated pairs in Table 4.2, which are also filtered out, is pretty low.

What we deduce, then, is the following: firstly, the major part of the whole dataset
contains at maximum 2 persons per description, and in considering just these descrip-
tions, we do not affect the dataset in an important way; secondly, the descriptions were
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Split Training Validation Test
Duplicate pairs 28 3 1
Duplicate events (and %) 966 (0.88%) 37 (0.27%) 29 (0.21%)
Average appearance (and stdev) 2.66 (2.01) 2.05 (0.23) 2.10 (0.30)
Average persons x sentence (and stdev) 1.53 (0.78) 1.59 (1.09) 1.55 (1.04)
Median persons x sentence 1 1 1
Max persons x sentence 25 30 27

Table 4.2: Statistics before filtering

Split Training Validation Test
Valid pairs (and %) 103677 (92.74%) 12688 (92.16%) 12861 (93.11%)
Images w/o descriptions (and %) 570 (1.20%) 74 (1.24%) 68 (1.14%)
Average persons x sentence (and stdev) 1.39 (0.53) 1.40 (0.50) 1.38 (0.51)
Median persons x sentence 1 1 1

Table 4.3: Statistics after filtering

distributed in a weighted way among the splits, which means that removing the events
we do not care does not make any split too small to be utilized.

Both these considerations can be also confirmed by looking at the mean and at the
related standard deviation before and after the filtering, which, in all the splits, are
respectively around 1.5 and no more than 1.10 before the filtering, and 1.40 and 0.5
after the filtering. We notice also that the median is always 1, both before and after the
filtering. This indeed tells us that on average before the filtering we may find 1 or 2
persons in the sentence and also that this statistic is not affected in an important way
after the filtering, as the values do not change a lot.

Another effect of the filtering can be seen in accessing the values that refer to
the images without descriptions in Table 4.3. Indeed, in applying the aforementioned
filtering, it may be that all the pairs (𝑖𝑚𝑎𝑔𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) referring to an image that
contains more than 3 persons have been removed. In this way, some images are not
considered at all. Again, looking at the percentages in the same table, which are all a bit
more than 1%, we do not think this can be a major problem.

One interesting filtering effect is observable by looking at the duplicated events

Split Training Validation Test
Duplicate events (and %) 2152 (2.17%) 146 (1.17%) 124 (0.98%)
Average appearance (and stdev) 3.05 (3.86) 2.37 (0.99) 2.24 (0.71)

Table 4.4: Values retrieved after the substitution of the strings a person and another
person in the descriptions
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change after the filtering and the substitution of the strings a person and another person,
Tables 4.2 and 4.4. As we already mentioned, this replacement is also guided by the will
to generalize the concept of "person", without referring to specific instances. The loss
of information due to this generalization of the person’s identities causes descriptions
that were initially different to be now the same. Considering the training split, we notice
indeed that from the 0.88% before the filtering, the number of unique events that are
present in more than one pair increases to 2.17% after the substitution of the strings,
even if we had removed descriptions. To understand better why this happens, take the
following description examples:

"1 is playing the piano",

"2 is playing the piano";

both of them appear just once in the validation set, but when we replace the number with
a person, they end up being the same description.

In conclusion, we can state safely that the filtering process has not corrupted the
dataset in such a way to make it no more usable for our purpose, in that we are still
provided with more than 92% of (𝑖𝑚𝑎𝑔𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) pairs, 98% of the initial images
are still associated with at least one description. Moreover, after the substitution of the
numbers with the strings, it is true that we experience an increase in the events appearing
more than once, thus having a certain redundancy, but we still have the reasonable
amount of unique descriptions of more than ninety-five thousand.

4.2 Scene Graphs

VisualCOMET provides us with text and images, but we also need Scene Graphs
associated to those images. We thus compute them through the code based on the work
of Han et al. [11].

The Scene Graph Generation (SGG) methods available are several, but we utilize
the RelDN one [11, 52]. The object detector is Mask R-CNN [11, 26]. The dataset on
which the SGG is trained is Visual Genome [11, 19].

In using the code provided by Han et al., we first discover that the attributes are not
considered in the resulting SGs, and also, that one can choose an entity threshold and
a relationship threshold, which sets a minimum so-called confidence for the respective
graph elements, that is, they express how likely is that a certain element, node or
relationship, is right according to the algorithm.
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Graph element List of classes
Entity airplane, animal, arm, bag, banana, basket, beach, bear, bed, bench,

bike, bird, board, boat, book, boot, bottle, bowl, box, boy, branch,
building, bus, cabinet, cap, car, cat, chair, child, clock, coat, counter,
cow, cup, curtain, desk, dog, door, drawer, ear, elephant, engine,
eye, face, fence, finger, flag, flower, food, fork, fruit, giraffe, girl,
glass, glove, hair, hand, handle, hat, head, helmet, hill, horse, house,
jacket, jean, kite, lamp, laptop, leaf, leg, letter, light, logo, man,
men, motorcycle, mountain, mouth, neck, nose, number, orange,
pant, paper, paw, people, person, phone, pillow, pizza, plane, plant,
plate, player, pole, post, pot, racket, railing, rock, roof, room, screen,
seat, sheep, shelf, shirt, shoe, short, sidewalk, sign, sink, skateboard,
ski, snow, sock, stand, street, surfboard, table, tail, tie, tile, tire,
toilet, towel, tower, track, train, tree, truck, trunk, umbrella, vase,
vegetable, vehicle, wave, wheel, window, windshield, wing, wire,
woman, zebra

Relationship at, behind, carrying, eating, hanging from, has, holding, in, in front
of, near, of, on, riding, sitting on, under, using, wearing

Table 4.5: List of entity and relationship classes in the SGs.

As we will see in the SGs-statistics section, even though we tried to balance during
the choice of the thresholds, there is a considerable number of edgeless graphs. To make
these graphs a bit more useful, we decided to add to all the graphs a node called "SG",
which connects to all the nodes through a relationship of type "contains". In this way
there is no edgeless graph.

In Table 4.5 we present the lists of entity and relationship classes that we encountered
in the SGs.

After delving a bit deeper on the choice of the thresholds, we present some statistics
we observe by retrieving the SGs on the VisualCOMET images. The statistics concern
the graphs before the insertion of the node "SG" and the relations "contain". They will
be useful when we analyze the results.

4.2.1 Nodes and Relationships Thresholds

The minimum-confidence thresholds values range from 0.0 to 1.0 for both nodes
and relations. In our case, we choose empirically 0.7 for the nodes and 0.5 for the
relationships by inspecting the SGG output. In fact, an exhaustive evaluation of the
thresholds is orthogonal to this work. We chose those values because they seemed a
reasonable trade-off between quality and quantity of information. In fact, as shown in
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Thresholds

More data, but noisy
or redundant

Reliable data, but few
elements

Node th. = 0.4
Relationship th. = 0.2

Node th. = 0.9
Relationship th. = 0.7

1.00.0

Node th. = 0.4
Relationship th. = 0.2

Node th. = 0.9
Relationship th. = 0.7

Node th. = 0.7
Relationship th. = 0.5

Figure 4.1: Han et al. [11]-SGG threshold-effect dimostration on a VisualCOMET
image. The images’ rectangles represent the entities detected, and the straight lines
represent the connections between the nodes. Notice the big amount of boxes in the left
image, and the nearly-total absence in the right image. The center image is obtained
through the thresholds we utilized for all the images.

Figure 4.1, by putting the thresholds lower, we noticed that the graph could count a
bigger number of nodes and relationships, thus having also tens more connections, but
that they were not necessarily right or they could be redundant. On the other hand,
by putting the thresholds higher, we noticed that the SGs were formed by just a small
number of disconnected nodes, transforming what should have been a graph into a list of
objects detected inside the image. From now on, one must keep in mind that the values
that depend on the SGs can change according to these two parameters: for example,
the embeddings computed through the SG Embedding system (Section 3.2.1) can vary
according to the number of sentences that can be retrieved from the SG through the Graph
Walk algorithm that we presented earlier in Section 3.2.1; so, smaller threshold values
than the ones we chose implies more sentences and higher threshold values implies less
sentences

4.2.2 Statistics

In this section we report some statistics about the SGs retrieved, which will help us
in Chapter 6 to understand better the results. The purpose of these statistics is to explore
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Figure 4.2: Graph-diameters distribution along the train split excluding the edgeless
graphs.

how much useful the SGs can be in adding their information to the other data.
The values reported here concern the SGs before the insertion of the "SG" node and

the relation "contains" and they are computed just on the VisualCOMET train split, since
we have seen that they do not change in a meaningful way in the other splits.

In Figures 4.2, 4.3 and 4.4 we report the graphs diameter, the number of nodes
distribution compared with the isolated nodes and the relations number distribution
along the graphs, respectively. All the figures refer to the graphs that present at least
one relation; the edgeless graphs are 15841, i.e., nearly 1 third of the initial number of
graphs.

Looking at Figure 4.2, we notice that 86% of that considered graphs present a
diameter of 1, i.e., the longest shortest path can be just a triple of type "subject -
predicate - object". This means that once we insert the node "SG" and the relations,
for these 86% of the graphs the diameter becomes 2. Hence, in walking the graph as
described in 3.2.1, in these 86% of the cases, we will be able to produce paths that
consider at most 3 nodes and 2 relations, no matter what higher length we choose, and,
every path of these, will consist of initial part of type "SG contains".

Looking then at Figure 4.3, we see that the most frequent number of nodes in the
considered graphs ranges from 6 to 11. The white dots correspond to the half of the
value of those bins, and thanks to this we see that for the most frequent bins, at least
half of the graphs have at least half of their nodes that are isolated. The consequence
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Figure 4.3: Number of nodes occurrence compared with the isolated nodes along the
train split excluding the edgeless graphs.

Figure 4.4: Graph relation numbers along the train split excluding the edgeless graphs.
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of this is that the graph are submerged by the isolated nodes, and, without replacing
the elements aforementioned, few meaningful relations are present in the graphs with
respect to the number of detected nodes. This is also confirmed by Figure 4.4 concerning
the relations-number distribution: in more than a half of the cases, the graphs comprise
at most 3 relations, despite the higher number of nodes.
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5
Experimental Part

In this chapter we first evaluate the original CLIP and then the architecture depicted
in Figure 3.2, comprising both CLIP and SGs.

To evaluate the performance of both the models in the context of the Image Search
task, we need to compare every text 𝑡 considered with all the images in the collection,
and then look at the most recommended ones (Equation 2.3) by the system.

We work on the VisualCOMET test split and we consider 2000 queries, picked
randomly over all the split texts. For comparison reasons, the queries are kept the same
for the models evaluation. Some of the queries utilized are reported in Table 5.1 together
with their ids.

From the ground-truth, over these 2000 queries, 1986, more than 99%, have asso-
ciated just one image, 13 have 2 images associated and just 1 has 3 images associated,
increasing the total number of relevant images to 2015. Hence, we are safe in considering
as if every query has associated just one image. This assumption will be exploited when
presenting the results in the next sections. We sum up these values in Table 5.2.

Furthermore, when presenting the results, we consider just a portion of the most
recommended images. This amount is indicated with 𝐾 . Therefore, we will present
Hits@K and Recall@K.

5.1 Evaluation Preprocessing

The first step in the evaluation is to retrieve the data, that is, both the annotations
and the images. Since the images are split in a random way across the splits, to retrieve
the (𝑖𝑚𝑎𝑔𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) pairs we must start from the annotation document and from
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Id Query
5 A bunch of boys are in a motel room having fun and making a mess of it
47 A group of cyclists ride down the hill
113 A group of soldiers stands behind a person and watches him
425 a person & another person argue on the rooftop of the bulding
560 a person a robber is crouching among the customers in a grocery store aisle
746 a person and another person are arguing
3092 a person comes out of a room
13178 a person is handing another person a hand towel
17486 a person is looking up at another person as he risks his life to fix something

Table 5.1: Examples of the 2000 queries picked randomly to evaluate the models

Number of relevant Images Number of queries
1 1986 (99.3%)
2 13 (0.65%)
3 1 (0.05%)

Total number of relevant images = 2015.

Table 5.2: Number of relevant images of the 2,000 queries utilized for the evaluation.

that gather the paths to the test-split images. Moreover, as we have seen in Section 4.1,
the annotation texts require some modifications, which involve a filtering and some
substitutions. After modifying the texts and loading all the images, we need to encode
all of them, which means to calculate the features through the neural networks. Finally,
the evaluation could take place, computing the similarities between the features and
retrieving the metrics.

Directly performing all the steps just described during the evaluation software devel-
opment is a computationally expensive process, both in time and memory terms. Hence,
we used some pre-processing techniques, which are depicted in Figure 5.1.

The steps are as follows:

1. First, after having accessed VisualCOMET annotations, map the images’ paths
into ids, to avoid using strings;

2. Use both image ids and the annotations to assign the images’ ids to the related
description; in this step both the filtering of the annotations and indexing of the
descriptions take place; hence, two documents are produced: a table of text-id
relations and a map text id→ images’ ids;

3. Encode all the descriptions into feature tensors and store a dictionary in which the
key is the text id and the value is the associated feature tensor;

4. Use image ids and the image database to encode the images and assign to every
image id the associated tensor. Since working on all the images is too expensive
in terms of memory, batches of images are preprocessed time by time;
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VisualCOMET
annotations Image Indexing

Annotations 
Preprocessing

Images 
Encoding

Evaluation
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2. 4.

5.Descriptions
Encoding
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Text id
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Model 
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Model 
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Figure 5.1: Pre-processing on images and annotations.

5. Use the produced text id→ images’ ids map, the description feature tensors and
the image feature tensors to perform the evaluation.

As we can notice, steps 1. and 2. do not depend on the architecture utilized. On
the other hand, steps 3. and 4. depend on the architecture considered, because it is in
these two in which we retrieve the model features. Hence, we utilize the data produced
through steps 1. and 2. in both CLIP and CLIGT evaluation. In the next section, we
describe the evaluation performed on CLIP, and we report the test-split results.

5.2 CLIP Evaluation - Results

Recalling briefly what we have seen in Section 3.1, CLIP encodes images and texts
and returns features of both of them, belonging to the same multi-modal vector space.
Once the features are retrieved, we need to compare them using the Cosine Similarity
function seen in Equations 3.1 and 3.2. OpenAI GitHub repository permits us to make
use of the model1.

1https://github.com/openai/CLIP
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Hits sum Recall avg Hits sum Recall avg
k=10 k=100

448 0.2223 985 0.4900
Table 5.3: CLIP-evaluation results

The Hits@K sum and Recall@K average of all the 2,000 queries are presented in
Table 5.3 for 𝐾 = 10 and 𝐾 = 100.

Figure 5.2: Recall Trend clipped at 𝑘 = 10

Following the assumption done previously, the table values mean that those 448
images represent the nearly 22.2% of the cases in which the ISS is able to return the
relevant image within the first 10 recommended ones. For the other 77% of the queries,
the ISS is not able to return the relevant image in that range of recommended ones.
Concerning 𝐾 = 100, the Recall@100 is nearly 0.5, which means that on average in
almost half of the cases, the ISS is able to rank the relevant image within the first 100
recommended images, i.e., given a query, its relevant image can be found in one of the
first 100 positions. We have just talked about ISS, and in our case it means that CLIP
computed features that, when compared through the Cosine Similarity function, provide
those evaluation metrics. In this way, we have just given an answer to the Binary Image
Search Problem defined in Problem 2.2.1.

Concerning the Ranked Image Search problem, we report Figures 5.2 and 5.3. For
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Figure 5.3: Recall Trend clipped at 𝑘 = 100

every image, the red horizontal line corresponds to the maximum recall reachable by the
function. If the blue line reaches the red one for a value 𝑘0 < 𝐾 , it means that all the
recommended relevant images lie in the first 𝑘0 most recommended images. Looking at
the figures, we can understand how the relevant images are ranked by the ISS, i.e., how
far away they are placed with respect to the first position, in those cases in which they
are present in the most 𝐾 recommended ones.

In particular, from Figure 5.2, which stops at the maximum of 𝐾 = 10, we notice
that the recall increases more or less linearly up to that value of 𝐾 . This means that
the relevant images are distributed in a nearly uniform way in the first 10 positions.
Figure 5.3 instead depicts the recall trend up to 𝐾 = 100 and we see that the distribution
is not uniform, and in particular it we see that the relevant images are found in more than
half of the cases in the first twenty images.

5.3 CLIGT Train

The purpose of the FFNN blocks is to project the incoming vectors into a new vector
space. In this way visual vectors and textual vectors lie on the same multi-modal space.
In this section we present the work done on the FFNNs.
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5.3.1 Data Preprocessing

Before inputting the data into the networks, we wondered whether we needed to
rescale the components or not. To answer this question, we observed the distribution of
the feature components values, which we report in Figure 5.4.

First of all, notice that the y-scale of the 3 plots is logarithmic. We observe a big
difference in the occurrence of values close to zero and other relatively far from 0: for all
the 3 types of data, we have more then 107 values ranging from -0.5 to 0.5 down to less
than 10 in the cases of text and SG features for values around -16 and -5 respectively.
This shows the presence of outliers in the values and makes the distribution resemble
the bell shape of a Gaussian one, even though we are kind of far from a real Gaussian
curve.

We thought to choose between the normalization and the standardization operation
and since the normalization is not suitable when there are the conditions just mentioned,
because it squeezes the values between a specific range[27], and also we do not care
about forcing the range to be a specific one, we adopted the standardization, which means
to substract all the data by its mean and divide it by its standard deviation.

The next step is deciding whether grouping the data during the standardization, and
if yes, how. Due to the features nature, we decided to standardize together the outputs
of CLIP and to standardize the SG ones on their own. The data thus pre-processed is
utilized as input to the FFNNs.

We trained the FF layers in 2 different ways, which are presented in the next two
sections.

5.3.2 Binary Classification

In considering the networks’ train as a binary classification task, we identify 2 classes
(labels): one that corresponds to maximum similarity, i.e., when the cosine similarity
returns the value 1, and one that corresponds to the similarity due to orthogonal feature
vectors, i.e., when the cosine similarity returns 0.

Building on this, we present the pseudocode of a train iteration in Algorithm 2.
In the first part of the train iteration, the ground-truth labels are computed. Indeed, in

our case, we cannot consider that just the diagonal contains 1s, i.e., maximum similarity
elements, because, as we have seen in Section 4.1.1, dedicated to the VisualCOMET
statistics, on average every image is associated with at least 2 descriptions, and some
descriptions are associated to more than one image. Therefore, we must assume that
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(a) Text feature components distribution

(b) Image feature components distribution

(c) SG embedding components distribution

Figure 5.4: Feature-components distribution. Notice the logarithmic scale along the y
axis
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Algorithm 2 FF networks 𝑇𝑡𝑥𝑁𝑁 (Text NN) and 𝑉𝑖𝑠𝑁𝑁 (Visual NN) train-loop single
iteration
Input:

- 𝑁 text ids 𝑖𝑑𝑡 and 𝑁 visual ids 𝑖𝑑𝑣, such that (𝑖𝑑𝑖,𝑡 ,𝑖𝑑𝑖,𝑣) is a positive pair, for
𝑖 = 1, ..., 𝑁

- text-features data-structure 𝐷𝑆𝑡 with text id→ text feature mapping
- visual-features data-structure 𝐷𝑆𝑣 with visual id→ visual feature mapping
- text-images mapping 𝐴𝑛𝑛 (annotations)

Output: batch loss
1: initialize 𝑔𝑡𝑀𝑎𝑡𝑥 as 𝑁 ×𝑁 zero matrix{Matrix containing the ground-truth labels}
2: replace 𝑔𝑡𝑀𝑎𝑡𝑥(𝑖, 𝑗) = 1 if 𝑖𝑑 𝑗 ,𝑣 is in 𝐴𝑛𝑛(𝑖𝑑𝑖,𝑡), for 𝑖, 𝑗 = 0, ..., 𝑁 − 1
3: retrieve 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 for the positive and negative examples
4: 𝑓𝑡 ← 𝐷𝑆𝑡 (𝑖𝑑𝑡){Dimension 𝑁 × 𝑀}
5: 𝑓𝑣 ← 𝐷𝑆𝑣 (𝑖𝑑𝑣) {Dimension 𝑁 × (𝑀 + 𝑆)}
6: 𝑓 ′𝑡 ← 𝑇𝑡𝑥𝑁𝑁 ( 𝑓𝑡) {Dimension 𝑁 × 𝐹}
7: 𝑓 ′𝑣 ← 𝑉𝑖𝑠𝑁𝑁 ( 𝑓𝑣) {Dimension 𝑁 × 𝐹}
8: 𝑆𝑖𝑚𝑀𝑎𝑡𝑥 ← 𝐶𝑆( 𝑓 ′𝑡 , 𝑓 ′𝑣) {Dimension 𝑁 × 𝑁}
9: 𝑙𝑜𝑠𝑠← 𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑖𝑚𝑀𝑎𝑡𝑥, 𝑔𝑡𝑀𝑎𝑡𝑥, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

10: return 𝑙𝑜𝑠𝑠

some elements outside the main diagonal are one as well.
In the third line of the algorithm we retrieve the weights for positive and negative

samples. In fact, we tried first with an unweighted train and we discovered that the
network simply learnt to build feature vectors such that their cosine similarity is always
near to 0. This is due to the high number of negative samples that is created by computing
all the possible pairs in a 𝑁-sized batch. In this case, indeed, the positive samples are
almost 𝑁 , 𝑃 ≈ 𝑁 , and the negative samples are 𝑁2−𝑃 ≈ 𝑁2−𝑁 . This is called normally
a class imbalance.

The algorithm then proceeds by retrieving all the features from the relative data
structures and by computing the similarity values through the application of the Cosine
Similarity function to all the possible feature vectors pairs.

The loss returned is the binary cross entropy2 between the ground-truth label matrix
𝑔𝑡𝑀𝑎𝑡𝑥 and the similarity matrix 𝑆𝑖𝑚𝑀𝑎𝑡𝑥, weighed by the parameters found before.

2https://pytorch.org/docs/stable/generated/torch.nn.functional.binary_cross_entropy.html
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5.3.3 Alternative approach - Energy-based Train

As we will see in Section 5.4, the results concerning the binary classification model
are worse than the original CLIP. The idea presented in this section is an attempt to train
the network with a different approach, to study the problem from a different perspective,
thus hoping to understand better the issues.

The approach builds up on the idea of Bordes et al. TransE [2] and consists in
the minimization of a loss function called energy function. In this context, given one
positive pair we always select just a negative one: more formally, given a positive pair
(𝑖𝑑𝑖,𝑡 , 𝑖𝑑𝑖,𝑣), we select 𝑖𝑑𝑖′,𝑣 such that it is not associable with 𝑖𝑑𝑖,𝑡 , which means that
the similarity of 𝑖𝑑𝑖,𝑡 and 𝑖𝑑𝑖′,𝑣 should be minimized, or alternatively, their dis-similarity
should be maximized. From now on, following the notation used in Algorithm 2, 𝑓 is a
feature vector retrieved from the respective data structure 𝐷𝑆𝑡 or 𝐷𝑆𝑣.

The loss function on a batch of 𝑁 pairs is the following:

𝑙𝑜𝑠𝑠 =
1
𝑁

𝑁∑
𝑖=0
[𝛾 + 𝑑 ( 𝑓𝑖,𝑡 , 𝑓𝑖,𝑣) − 𝑑 ( 𝑓𝑖,𝑡 , 𝑓𝑖′,𝑣)]+, (5.1)

where 𝛾 > 0 is the so-called margin parameter [2], [𝑥]+ is the positive part of 𝑥 and
𝑑 (𝑥, 𝑦) is the distance between 𝑥 and 𝑦, computed as the Squared Euclidean Distance:

𝑑 (𝑥, 𝑦) = (𝑥 − 𝑦)2 = | |𝑥 | |22 + ||𝑦 | |22 − 2𝑥𝑇 𝑦 (5.2)

As explained in the work of Bordes et al. [2], putting the additional constraint of
| |𝑥 | |22 = | |𝑦 | |22 = 1 is preferable.

Hence, in the case of 5.2, we can rewrite the equation in the following way:

1
𝑁

𝑁∑
𝑖=0
[𝛾 − 2 𝑓 𝑇𝑖,𝑡 ( 𝑓𝑖,𝑣 − 𝑓𝑖′,𝑣)]+, (5.3)

which is the loss function minimized.

5.3.4 Ablation Study

We will see that also the alternative approach does not even reach CLIP performance.
For this reason, we decide to delve deeper on the problems of the designed architectures:
we propose an ablation study based on the removal of the standardization effect described
in Section 5.3.1 and additionally, on top of the standardization removal, we experiment

41



5.4. CLIGT EVALUATION RESULTS

replacing the SGs embeddings with 0 vectors. The results concerning the ablation study
are presented in the dedicated part in Section 5.4.

5.3.5 Finding FFNNs Best Architecture - Hypertparameter Op-
timization

The hyperparameters present in these trains are a lot: the number of epochs for which
we train the networks, the batch size, the number of layers per NN, the number of nodes
per layer, the learning rate, the regularization factor.

In order to find the best FFNN architecture, we conducted an optimization through
Optuna module, but we fixed a couple of parameters to decrease the dimension of the
search space: following what CLIP researchers did, for the classification train we fixed
a big batch size of 𝑁 = 20, 000 and we utilized the small number of epochs of 8 [32].
Notice that in this way the resulting similarity matrix is made of 𝑁2 = 4 · 108 values.
This has the effect of reducing the overfitting risk [32]. For the energy-based case we
optimized fixing the batch size to 64 and the same epochs number of 8.

5.4 CLIGT Evaluation Results

In this section we present the results concerning both the approaches and also the
results retrieved through the ablation study.

In Table 5.4 we present the results of the evaluations carried on the same 2000 queries
used for the CLIP evaluation in Section 5.2.

Approach Variation Hits sum Recall avg Hits sum Recall avg
k=10 k=100

Classification
WS 113 0.0563 523 0.2597
WoS 164 0.0820 628 0.3127

WoS & Zeros 174 0.0870 664 0.3295

Energy based
WS 184 0.0917 674 0.3350
WoS 206 0.1030 746 0.3708

WoS & Zeros 206 0.1030 794 0.3950

Table 5.4: Summary of the results of the evaluations carried on the different models. In
the Table, WS means With Standardization and WoS means Without Standardization.

In Figure 5.5 we show the Recall trends graphs corresponding to the two approaches
applied. For every image, the red horizontal line corresponds to the Recall@100, and
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the blue line corresponds to the trend of the Recall@𝐾 , with 𝐾 = 1, ..., 100. Just
the recall trends corresponding to the approaches adopting classification are depicted,
without those referring to the ablation study: this is because the curves do not show a
substantial difference. Indeed, we do see by looking at Figure 5.5 that already the curve
shape of the two approaches are very similar. Referring to the Ranked Image Search
problem, we cannot infer anything but the fact that there is no meaningful difference in
the distribution of the recommended relevant images.

(a) Recall trend for the Classification case.

(b) Recall trend for the energy-based case.

Figure 5.5: Recall trends for the evaluations carried on the different models.

All the recall trends are reported in Figure 5.6 in a comparison graph with respect
to CLIP. Thanks to it, we can appreciate how the recalls evolve with respect to 𝐾 . In
particular, notice that CLIP model outperformes the others already when considering
𝐾 = 1. CLIGT metric values are always worse than CLIP, but there are some models that
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5.4. CLIGT EVALUATION RESULTS

Figure 5.6: Comparison graph of the recall trends

perform worse than others. For instance, notice how the classification model adopting
the standardization always performs worse. On the other hand, the energy-based model
retrieved through the ablation study that eliminates both the standardization and the SGs,
replacing them with 0s vectors, is the best one after CLIP from 𝐾 = 20. Furthermore,
we discover that all the metric values retrieved on the energy-based models are always
nearly better than those of the classification models.

We discuss some hypothesis of the outcome of these results in the next chapter,
where we delve on the different parts of the architecture.
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6
Failure Analysis and Future Works

In this chapter, we give an explanation of the results and we investigate the possible
failure reasons. In fact, by looking at Figure 5.6 we understand that the evaluation metric
values are worse than the original CLIP. Yet, some of them allow us to infer interesting
features, which in turn permits to hypothesize something on the possible failure causes.

We identified some possible problems, so we divide this chapter in sections according
to the cause: we first analyze the effect of the standardization; then, just the loss utilized
in the two approaches is examined; afterwards, we consider the information carried by
the SGs; the Scene Graph Embedding block and finally the FFNN architecture are then
taken into consideration.

What we propose in this chapter are hypothesis built on the results and on some
exploratory statistics analysis we performed on the data we utilized. They should be
confirmed by further analysis, which could highlight what are the real source of the
unsatisfactory performance of these models.

6.1 Standardization Effect

From the results, we can infer that the standardization we performed has not got the
desired effect. Instead, it worsened the performance. This comes by looking at Table 5.4
in the rows "WS" and "Wos" in both the approaches: for example, in the classification
case with 𝐾 = 10, we pass from a 113 hits sum adopting standardization to a 164 without
standardization; also looking at all the other cases we confirm an increase in the metric
values without standardization.

We speculate that the main problem in this context is the fact that when we performed
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the standardization on the data, we kept CLIP descriptions and images features together,
computing the mean and standard deviation taking into account all of them, even though
the two types of features were used as input to two different blocks.

Removing the standardization we performed increases the performance, but we
wonder whether there can be a more appropriate standardization for which we can
instead improve the performance. Since grouping the data has not led to an improve,
we suppose that by executing the standardization on the single data-type features, the
evaluation metrics could be higher. This can be part of a future work.

6.2 Approach Effects

6.2.1 Classification Approach

In Table 5.4 the results concerning the WoS + Zeros classification case, i.e., the
classification ablation study in which also the SGs data is replaced with 0s, are the best
with respect to the other classification variations. Since the only difference with respect
to the classification WoS is the substitution of the 0s to the SG embeddings, we infer
that the cause of the improvement is the removal of the embeddings.

Furthermore, notice that in this way, we are just using VisualCOMET data without
variation, which resembles the original CLIP evaluation. Why then don’t we obtain the
original metric values retrieved in Section 5.2?

The only difference with CLIP is the insertion of the FFNN blocks, trained with
the classification approach. This means that the classification loss, paired with the
architecture, are detrimental for the performance, since we get nearly one third of the
original metric values.

We suppose the problem here is the label discretization: we impose the Cosine
Similarity to be either 0 or 1, forcing the associated-content features to be "similar",
i.e., to have 𝐶𝑆 = 1, and all the other non-associated contents to be completely non-
correlated. The problem relies on this last category. In fact, given two feature vectors
𝑥 and 𝑦, forcing 𝐶𝑆(𝑥, 𝑦) = 0 means forcing 𝑥 and 𝑦 to be orthogonal, which in turns
implies that they must not share any information at all. This is not possible in our case,
since, for example, given two descriptions, they may share an object word and they may
not refer to the same image in VisualCOMET.

As a specific example, we take the following description:
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Figure 6.1: VisualCOMET image from the movie "Robin Hood" depicting, among the
other things, a horse in the foreground.

"A person is leaving quickly after he sells the horse to another person in secret."

This description refers to a frame depicted in Figure 6.1 taken from the movie "Robin
Hood". However, the entity "horse" appears also in many other VisualCOMET images
and descriptions. For instance, the image taken from "The Lord Of The Rings - The
Return Of The King" depicted in Figure 6.2 also contains a horse and the associated
description also contains the word "horse":

"A person is leading the horse in back of him"

In the dataset, the description of the Robin Hood image is not associated with the
image of The Lord of The Rings, and neither the opposite happens.

Several other examples could be made directly from the dataset. This means that
there is several information that is shared among the descriptions and the images, and one
can’t simply force two non-associate feature vectors to be orthogonal, because they may
share some concepts and their ideal Cosine Similarity could have a value −1 < 𝐶𝑆 < 1,
𝐶𝑆 ≠ 0.

Then, this kind of approach is not suitable for this specific task.

6.2.2 Energy-based Approach

The results concerning the energy-based train WS and WoS lead to a better perform-
ing model than the classification one. Yet, we are far from even reaching the performance
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Figure 6.2: VisualCOMET image from the movie "The Lord Of The Rings - The Return
Of The King" also depicting a horse.

of CLIP. We think that the main reason why the model still performs this poorly is the
removal of the contrastive feature in the train loss: as we said in the previous chapter,
given a positive pair we select just a single negative pair, collecting just two values of dis-
similarity. Instead, CLIP authors selects 𝑁 = 32, 768 negatives given one positive [32],
and also in our classification approach we considered 𝑁 = 20, 000 negative pairs per
positive one, resulting respectively in 32, 768 and 20, 000 similarity values per positive
in the case of CLIP.

To confirm this aspect, one could perform an analysis in which instead of using
just one negative pair per positive one, more negative pairs could be taken and multiple
losses could be computed keeping always the same positive pair. If what we have just
hypothesized is right, the performance of the model thus trained should be better.

Despite the less solid train per description, the loss utilized comprises two interesting
characteristics which are, in our opinion, what really make the difference with respect to
the classification case:

1. the energy-based loss is built upon differences of dis-similarities, rather than
similarities;

2. the single distance is not forced to take a specific value, but rather, it suffices that
the positive-pair distance and the negative-pair distance differ for a value 𝛾.

In the case for example of a positive pair, this is important because we are not forcing
the feature vectors to be parallel (which corresponds to CS=1), we are simply requiring
their distance to be smaller of a value 𝛾 than the distance between a negative pair. This
allows for a bit more flexibility when training the network.
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6.3 Scene Graph Benchmark

The point of this work was to show that by introducing the Scene Graphs semantic
information, we are able to improve the performance of CLIP in the context of Image
Search.

Apparently, our model does not seem to be able to appropriately explore the infor-
mation of the SGs to produce a better ranking, but it does not mean that the problem
is the original idea. At this point, we wonder whether the SGs contained low-quality
information. From the analysis we show below, we speculate that this is actually the
main reason.

Before going on, we recall the fact that the results can vary also with respect to
the minimum-confindence thresholds used for the entity and for the relation during the
SGG. In fact, as we have described in Section 4.2.1, we chose empirically one specific
value for each threshold based on the SGs output. However, by changing them, the SG
embeddings vary, influencing also the train on the FFNN.

Looking back at Section 4.2.2, we can understand that the information brought by
the SGs is quite noisy for different aspects that we are going to describe below.

First of all, the length of the possible paths does not permit a meaningful description
of the image, in that in most of the cases, we can just create paths that comprise
two relations, one of which is "contains" that starts from the node "SG". The useful
description of the image derives from longer paths, so that the elements are put more in
relation one another. On top of this, we have seen from the pie chart in Section 4.2.2
that most of the SGs comprise a low number of relations. One third of the SGs don’t
even entail any relation. Beyond losing the interaction between the entities, having
few relations makes also the nodes-class appearance crucial, in that to differentiate the
images we need more objects or more-specific labels of the objects detected. We take
as an example some of the images whose SGs are edgeless and contain at least once
the three nodes "man", "horse" and "tree", depicted in Figure 6.3. A part from the fact
that the second image does not even contain horse but dromedaries, wrongly detected
during the SGG, in the scenes we can see very different contents that can’t be simply
differentiated by the words "man", "horse" and "tree". What could help in this is the
use of different relations from "man" to "horse" such as "spurring" for the first image,
"calming" or more generally "next to" for the third image, and "on" in the fourth. By
using just a set of isolated nodes, we are categorizing the images just by those elements,
without further specifying how these images are different.

Keeping the focus on the entities, we show Figure 6.4, where we depict the number
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"man wearing shirt" 13566
"man has hair" 10358

both 6412

Table 6.1: Table showing the correlation between the triples "man wearing shirt" and
"man has hair".

of graphs in which the relative entity appears at least once. The first thing we see in
this graph is that the distribution is peaked, so there some words that appear a lot more
than others. It follows from the information theory that the most frequent words are
less informative than other less frequent words. In this context, it means that the most
frequent words are less discriminative, i.e., they do not help in differentiating the content
of the image. Paradoxically, the two most-frequent categories, "hair" and "man", are
more informative when they are not present in the graph, since in nearly two thirds of
the SGs those categories are present.

Moreover, we discover also some correlations: we computed the number of times
that the triple "man wearing shirt" appears, the number of times that "man has hair"
appears, and the number of times in which both of them appears in the same SG. The
results are depicted in Table 6.1. We understand that in more than half of the cases
in which appear "man has hair", also "man wearing shirt" is present. The information
theory comes again handy in saying that the information brought by "man wearing shirt"
includes a good part of the information brought by "man has hair", which is thus less
useful. Notice that we already said that we have few relations and small diameter. If, on
top of these characteristics, we add also the fact that some relations are not useful, the
SGs become even less effective.

We think that a cause of the peaked distribution and of the correlation is due to the
generality of labels such as "man", "woman", "building" and "shirt". That is why they
appear in a lot of SGs. One future work could focus on a SG generation model able to
compute more descriptive and specific SGs.

The source of the noise is then due to all these aspects, since a lot of data is shared
among the SGs without making a real difference. This is valid in general, but the results
on this context differ slightly for the two approaches, so we are going to comment in the
next two small sections our idea of why the results differ.

Classification Case

We have seen that the classification loss requires the use of two labels, which shape a
stricter training process, which in turn does not perform well when dealing with shared
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content among the data. In this case, in fact, the architecture is more sensible to noisy
data, making the SGs we utilize more a source of noise than a source of information.

Energy-based case

In considering 𝐾 = 10, the energy-based metric values for the ablation study don’t
change in Table 5.4. However, when looking at the recall trend in Figure 5.6, we see
that the ablation study comprising also 0s vectors for this approach is the best overall.
Hence, also in this case the SGs worsen the results, but they have less impact than in the
classification approach. In fact, the metric results for 𝐾 = 10 are more important than
those with 𝐾 = 100. We speculate that the less negative impact of the SGs is due to the
more flexibility by the energy-based loss, which is apparently enough to deal with the
noise inside the SGs, so that they happen to effectively bring some positive contribute
to the system.

6.4 Scene Graph Embedding System

The designed embedding system also has some faulty features that we are going to
discuss in this section.

As we said, given an SG, we first retrieve all the possible walks of a certain length in
the SG, we then code them through BERT, and then we average all the feature vectors.
However, we recall also that the sentences we create through the graph walk we described
in Section 3.2.1 are not really natural language sentences. We then wonder whether a
more appropriate encoder could be utilized in this context.

An evaluation of the embedding system could be carried out, thus examining the SG
embeddings produced. One future study could be thus performed to explore the SGs
embeddings information, evaluating at this point the similarity between SGs embeddings
that refer to more related images with respect to other non related.

Furthermore, we suppose that the utilized aggregator function, a simple average, is
a not appropriate for this case, since it takes all the sentence embeddings computed and
aggregates them in a lossy way. In fact, in principle, different combinations of feature
vectors could also result in the same average feature vector. We wonder if there is more
effective way of encoding an entire SG, and this is part of the future work.
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6.5 Feed-Forward Blocks

Once we obtained all the data, we trained the simplest possible DL architecture, i.e.,
the Feed-Forward neural network.

We wonder whether there are more appropriate neural networks for this task. Indeed,
for example, CLIP researchers utilized encoders such as transformers [32].

On top of this, we need to count that the optimization of the network always requires
time since we work with several hyperparameters, and, in our case, we decided to fix
some of them to decrease the search space dimension. Hence, there is still the possibility
of exploring more extensively the full search space of hyperparameters, with the purpose
of designing a better performing network.

A deeper study on this aspect is thus part of the future work.
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(a) Image from "Gandhi".

(b) Image from "Gandhi".

(c) Image from "The Lord of the Rings the Return of the
King".

(d) Image from "The Lord of the Rings the Return of the
King".

Figure 6.3: Images taken from VisualCOMET from different movies, whose SGs are
edgeless and contain "man" "horse" and "tree".
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Figure 6.4: Number of graphs in which the relative entity appears at least once.
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7
Conclusions

In this work, we have hypothesized that the introduction of the Scene Graphs in an
Image Search solution could improve its performance. In particular, we worked with
Contrastive Language-Image Pre-train [32], with the dataset VisualCOMET [29]. We
have seen that what we envisioned does not happen, but we have also thought about
different problem sources. The original idea, then, should not be discarded completely
before performing some further analysis that may help in discovering the real problems
and may give an idea of what one could do to try to improve the results present in this
work.

To sum up, we hypothesize that the major problems reside in the train approaches,
in the SGs structure and in the SG embedding system. In particular, we have seen
that among the two approaches utilized, i.e., classification and energy-based, the less
detrimental is the latter. Future works could also be conducted to understand what
standardization should be carried out, if any, and what different NN, if any, could be
implemented in this context to better project the 3 kind of features into a single vector
space.
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