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Abstract

The manipulation of deformable objects, such as ropes, fabrics, and flexible
cables, presents unique challenges due to their high degrees of freedom and
complex dynamics. This thesis addresses these challenges by providing a com-
prehensive review and comparative analysis of existing modeling and control
strategies. The primary objectives are to identify and categorize various meth-
ods used for modeling deformable objects, including analytical, numerical, and
data-driven approaches, and to investigate control strategies, emphasizing both
model-based and model-free techniques.

For linear objects, methods such as kinematic modeling, elastic mechan-
ics, and energy-based approaches are discussed. Planar objects, like fabrics
and clothes, are examined using numerical methods and mass-spring mod-
els, while three-dimensional objects are approached with advanced simulation
frameworks.

Simulation tools and frameworks, such as MuJoCo, Gazebo, SOFA, Pybullet,
and Nvidia Isaac Sim, are reviewed for their capabilities and limitations in
replicating real-world scenarios.

Through this comprehensive review, the thesis highlights the strengths, lim-
itations, and suitable applications of various modeling and control techniques,
providing insights into the most effective methods for specific types of de-
formable objects and scenarios.
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1
Introduction

The manipulation of deformable objects is a rapidly growing area in robotics
and automation, driven by the need for more advanced and adaptable robotic
systems. Deformable objects, such as ropes, fabrics, and flexible cables, have
unique challenges due to their high degrees of freedom and complex dynamics.
Unlike rigid objects, which maintain their shape regardless of manipulation, de-
formable objects can bend, twist, stretch, and compress, making their behavior
highly unpredictable and difficult to model accurately. This unpredictability
poses significant challenges for robotic systems designed to manipulate these
objects, as traditional rigid-body models and control strategies are inadequate.

Figure 1.1: A robot laparoscopic surgery on the soft tissue of a pig
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The increasing demand for robots capable of handling deformable objects
spans various industries and applications. In the medical field, robots that can
manipulate surgical sutures or soft tissues are becoming essential. In manufac-
turing, the ability to handle flexible materials like wires, cables, and textiles is
crucial for tasks such as assembly and packaging. Additionally, in the service
industry, robots that can fold laundry or handle soft materials are increasingly
in demand for domestic and hospitality applications.

Figure 1.2: Robots increase efficiency and productivity in the ware-
house

The applications extend to agriculture, where robots designed to pick fruits
and vegetables must handle soft and delicate produce without causing damage.
In the textile industry, robots are used for tasks such as cutting, sewing, and
ironing, which require precise handling of flexible fabrics.

Manipulating deformable objects needs advanced methods to handle their
unpredictable behavior. This thesis delves into these challenges by analyzing a
broad spectrum of research papers, existing literature to identify and categorize
the various methods used for modeling and controlling of deformable objects.
and they categorized based on the geometric complexity of the objects
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CHAPTER 1. INTRODUCTION

Figure 1.3: Robots designed to Pick Fruits and Vegetables

1.1 O���������

The primary objectives of this thesis are to provide a comprehensive review
of existing literature to identify and categorize the various methods used for
modeling deformable objects, which includes analytical, numerical, and data-
driven approaches tailored to different shapes and complexities of deformable
objects. Additionally, it aims to investigate the control strategies implemented
for manipulating deformable objects, emphasizing model-based, model-free ap-
proaches. This analysis aims to understand how these strategies are applied to
linear, planar, and three-dimensional deformable objects. Furthermore, the
thesis aims to provide a comparative evaluation of the different modeling and
control techniques, highlighting their strengths, limitations, and suitable appli-
cations, and ultimately identify the most effective methods for specific types of
deformable objects and scenarios.

1.2 T����� O������

• Chapter 2: Deformable Object Modeling
This chapter categorizes and details various modeling techniques for
deformable objects, including linear, planar, and three-dimensional models.

3



1.2. THESIS OUTLINE

Each category is further divided into analytical, numerical, and data-driven
methods, providing a comprehensive overview of the state-of-the-art modeling
approaches.
• Chapter 3: Simulation
This chapter discusses the simulation tools and frameworks used to test and
validate the models of deformable objects. Emphasis is placed on the
capabilities and limitations of these tools in replicating real-world scenarios.
• Chapter 4: Control Strategies
This chapter focuses on shifts to the control mechanisms designed for
manipulating deformable objects. The chapter explores different strategies
such as model-based control, model-free control approaches, applied to
various shapes of deformable objects.
• Chapter 5: Conclusion
In this chapter the identified challenges and suggested improvements for the
manipulation of deformable objects are discussed.

4



2
Deformable Object Modeling

Modeling of deformable objects involves understanding and creating math-
ematical representations that capture their behavior under external forces and
manipulation actions. We categorized the study of modeling based on their
shape to linear, planar and three dimensional as different shapes have different
levels of geometric complexity and it allows for choosing appropriate modeling
techniques that can efficiently capture the geometry of the object it provides the
foundation for understanding and predicting how the object will respond to
external forces.

2.1 L�����

Deformable linear objects (DLOs) are one-dimensional flexible entities like
ropes, elastic rods, wires, and cables. There’s a growing need to manipulate
these objects across various applications, like surgical suturing, leading to con-
siderable research dedicated to robotic solutions for handling them. DLOs in
particular are a category of deformable objects with complex dynamics in 3D
space due to their twisting and bending behavior. They can move in all three
directions in space and deform by bending and twisting due to external forces
[28] [26].
This section focuses on the linear category, where the modeling techniques are
further subdivided into three main approaches: analytical, numerical, and data-
driven methods. Each of these methodologies offers distinct advantages and is

5



2.1. LINEAR

suitable for different types of applications and analysis precision. First we dive
deeper into analytical method:

2.1.1 A���������

These methods involve deriving explicit equations that describe the behav-
ior of deformable objects. They often provide exact solutions k, making them
highly valuable for theoretical analyses and cases where high precision is re-
quired. Analytical methods are typically used when the physical properties
and boundary conditions of the system are well-defined and can be accurately
modeled by linear or non-linear differential equations.

Modeling the behavior of deformable linear objects (DLOs) such as cables,
wires, and ropes is critical for effective control and automation. The complexi-
ties inherent in these materials—primarily their flexibility and high degrees of
freedom—pose significant challenges for traditional rigid-body modeling tech-
niques.

Kinematic Model
To address these challenges, one approach that is assumed is kinematic ap-
proach, by focusing on the critical roles of feature points along the DLO.

The kinematic model constructs a mathematical framework that directly cor-
relates the movement of a robot’s end effector with the positional and velocity
changes of these feature points, using Jacobian matrices to capture this relation-
ship.

In paper [13], the shape of the DLO is represented as a series of feature points,
and the positions of feature points are measured with a camera, Fig 2.1.

In general, the velocity of a specific feature point can be related with the
velocity of the robot end effector as:

G8 = �8(G8 , A)A§ (2.1)

where

G8 = [G81, G82, . . . , G8:]) 2 R: (2.2)

is the position of i-th feature in sensory space (e.g. k=2 for image space,
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CHAPTER 2. DEFORMABLE OBJECT MODELING

Figure 2.1: DLO representation as a Multiple Feature Points

where i = 1,2...,m, m is the number of multiple features)

A = [A1, A2, . . . , A=]) 2 R= (2.3)

is the position and orientation of the robot end effector in Cartesian space.

The model allows for real-time control adjustments based on observed changes
in feature point positions. While the kinematic model is straightforward and
quick to compute that makes it computationally efficient framework for real-time
control, it has a significant limitation. It does not take into account the physical
properties of the object, such as flexibility, elasticity, stiffness, and weight. It
works best when those material characteristics don’t really change the way the
object needs to be handled. Where the feature points can be accurately tracked.
The accuracy of the model is heavily dependent on the visibility and correct
identification of feature points along the DLO.

Elastic Mechanics
Another approach for modeling of deformable linear object primarily considers
flexural deformations. Modeling in the paper is based on the principles of elastic
mechanics and the specific assumptions that the object is elastic yet inextensible.
Therefore, the object can bend and flex but its length remains constant, this
introduced in the paper [9].
The modeling approach focuses on capturing the behavior of the object as it

7



2.1. LINEAR

deforms, particularly under the influence of external forces applied by robotic
manipulation. The model assumes that all deformations occur in a plane, simpli-
fying the dynamics involved and focusing on the two-dimensional interactions
between the object and the robotic manipulator.

A key aspect of the model is the quantification of the object’s internal energy
as it deforms. The paper specifically discusses the increase in internal energy due
to flexural deformation when the object is manipulated. This flexural energy
is central to understanding how the object behaves during the flex-and-flip
manipulation process.

The model provides a strong foundation for controlling and understanding
of elastic, inextensible linear objects in two-dimensional manipulation tasks,
but there are materials that might have some amount of stretch under tension
and also the limitation to planar deformations ignores out-of-plane forces and
deformations. It might not be appropriate to apply to materials with different
properties or in scenarios where three-dimensional forces are there.

Catenary-based Model
For estimation of deformation state without any contact of strip-like de-

formable objects in manipulating process, information for tension in the object
is required to be able to fit strip-like deformable object in 3D space. And this is
done in introduces catenary-based model in the paper [4], this model effectively
captures the physical behavior of such objects under their own weight.

A catenary is defined as the curve an idealized hanging chain or cable as-
sumes under its own weight when supported only at its ends. This physical
principle is applied to model the deformable strip-like object.

The shape of the catenary is mathematically described by the equation:

I = Ilow + 2
⇣
cosh

⇣
G � Glow

2

⌘
� 1

⌘
(2.4)

Where: I represents the vertical position of a point on the curve. G is the hori-
zontal position of that point. Ilow is the vertical position of the lowest point of the
catenary curve. Glow is the horizontal position of the lowest point of the catenary
curve. 2 is the catenary constant, related to the horizontal component of the ten-
sion ()� ,8) at any point 8 on the catenary, by the relationship 2 = )� ,8/(⇠6), where
⇠ is the mass per unit length of the object, and 6 is the acceleration due to gravity.
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CHAPTER 2. DEFORMABLE OBJECT MODELING

Figure 2.2: Representation of a catenary in the 2D space.

The catenary model is a straightforward way for representing behaviour of
strip-like objects under tension, it has real-time estimation that is crucial for ap-
plications where immediate feedback and adjustments are necessary. Moreover
it is cost effective. But this model is designed for strip-like objects that might
not be appropriate for object with other shape and properties. And also the
model assumes that the primary mode of deformation is bending under gravity,
without significant twisting or compression. Objects that require consideration
of other types of deformations (like elastic deformation beyond simple bending,
torsional twisting, or volumetric compression) would not be accurately modeled
by this model.

Multiple Interlinked Objects With Mass Points
Due to the motion characteristics of DLOs, vibration is inevitable at the end of a
DLO. Therefore, for reducing the oscillation at the end of DLO, a dynamic model
of DLO is represented in the paper [2] as 2nd order underacutated system with
n equations and local linearization near equiblirium.
The modeling of the deformable linear object (DLO) is achieved through a
detailed process that incorporates the dynamics of interlinked mass points to
represent the DLO.

Multiple interlinked objects with mass points, denoted as %8 , where each
segment of the DLO is modeled with a corresponding mass point. The total
length of the DLO is !, and the length of each segment is given as ⌘ = !

=
, where

= is the number of segments. Each segment is defined by an angle 8 , which is

9



2.1. LINEAR

the angle between the 8-th segment and the vertical direction.
The dynamic model of the DLO is formulated using the Euler-Lagrange

method in a two-dimensional (2D) plane, considering only manipulator motion
within this plane. The equation of motion is expressed as:

"• = � �   � ⌧⌘(�⇠�)
�(̃§ + ()�⇠̃ + G•0⇠

)
� + H•0(

)
� + 6⌘(

)
#) (2.5)

where " = ⌧⌘(⇠�)
⇠+()�() is the mass matrix.  is the vector of segment

angles. � is the torque from the manipulator.  is the stiffness matrix. ⌧ is the
linear density of the DLO. ⇠ and ( are matrices composed of the cosine and sine
of segment angles, respectively. (̃ and ⇠̃ are the derivative matrices related to (
and ⇠. G•0 and H•0 are the accelerations in the - and . directions. � is a vector of
ones, and # is a matrix representing the cumulative length contribution of each
segment.

Figure 2.3: The description of a DLO in plane

The paper then discusses the local linearization of the dynamic model near
the equilibrium point, assuming small oscillations. This simplifies the model by
considering the linear density, the stiffness of the DLO, and gravitational effects,
leading to a more manageable form for analysis and control design.

This modeling has detailed representation of the DLO’s physical properties
along its length. Using the Euler-Lagrange provides capturing the true physical
behavior of the DLO. And Linearizing the system near equilibrium simplifies

10



CHAPTER 2. DEFORMABLE OBJECT MODELING

the complex nonlinear dynamics into a more manageable form. It has stiffness
matrix K, damping C and S (segment angels) that gives a complete dynamic
representation of the DLO. Although it provides detailed modeling, it increases
the computational load. The model assumes small oscillations,the downside of
this assumption is that if the DLO experiences large movements or swings, the
model might not accurately predict or handle these situations.

DLO Energy Model (Using Mass-Spring Model)
In the manipulation of Deformable Linear Objects (DLOs) it is crucial to address
the challenges presented by their flexibility and complex dynamics. To achieve
precise and stable configurations in constrained environments, a DLO energy
model introduced in the paper [19].

This model quantifies the potential energy of a DLO based on its configura-
tion. By ensuring that the DLO reaches a stable equilibrium—where it is at a
local minimum of energy—the model guarantees stability and minimal struc-
tural stress. And also the DLO energy model enables the projection of randomly
sampled or initial configurations into stable ones, essential for planning feasible,
safe, and stable paths.

Figure 2.4: Illustration of mass-spring model

This approach uses a mass-spring model to represent the DLO. The mass-

11



2.1. LINEAR

spring model captures the elastic properties and potential energy of the de-
formable object.
The potential energy of the DLO, indicates as ⇢, is a function of the configura-
tion of the object, represented by the positions of the mass points. The paper
provides a specific formulation of this energy for a DLO modeled with two types
of springs:
Type 1 springs connect adjacent mass points.
Type 2 springs connect every other mass point, adding rigidity and capturing
bending energy.

The total energy ⇢ of the system is defined as the sum of the energies stored
in these springs, formulated as:

⇢ =
1
2

<�1’
:=1

⌫1

 
kG:+1 � G: k2 �

✓
!

< � 1

◆2
!2

+ 1
2

<�2’
:=1

⌫2

 
kG:+2 � G: k2 �

✓
2!

< � 1

◆2
!2

(2.6)
G: represents the position of the :C⌘ mass point. ! is the total length of the

DLO. < is the number of mass points modeling the DLO. ⌫1 and ⌫2 are the
stiffness coefficients for Type 1 and Type 2 springs, respectively. The first sum
captures the energy of Type 1 springs and the second sum captures the energy
of Type 2 springs.

The stable shapes of the Deformable Linear Object (DLO) are the ones that
minimize an energy function while keeping specific mass points (usually the
ends of the DLO) fixed. This modeling allows the planning and control of the
DLO’s shape by manipulating the positions of the mass points to minimize the
energy function, which corresponds to moving the DLO towards a desired con-
figuration while taking its elastic properties into account.

The mass-spring model accurately represents its flexible and dynamic nature.
It has stability assurance. By ensuring the DLO reaches a stable equilibrium,
where the potential energy is at a local minimum, the model make sure the
stability. The energy model provides a quantitative way to measure the con-
figuration energy, enabling energy-efficient manipulations. But the calculations
required for the energy model, especially in real-time applications, can be com-
putationally intensive due to the need to solve for the minimum energy states
repeatedly. Moreover, the basic mass-spring model might not adequately handle

12



CHAPTER 2. DEFORMABLE OBJECT MODELING

very complex deformations or interactions with multiple obstacles,

2.1.2 D���-D�����

Another way to model deformable objects is through a data-driven approach,
using computational models that learn from data. This method is especially use-
ful when the physics involved is not well understood, or when traditional mod-
eling is impractical due to the object’s extreme complexity or variable material
properties. Machine learning models, like neural networks, can be trained on
experimental or simulation data to predict the behavior of deformable objects.
These models can adapt to new data and manage nonlinearities and complex
interactions that are challenging for other modeling techniques.

Interaction Networks (INs)
Due to the high number of degrees of freedom and complex behaviors of linear
deformable objects like bending and twisting, a technique based on Interaction
Networks (IN) is introduced in paper [27] to capture the complex dynamics and
interactions between different segments of a DLO as it offers a framework for
learning the dynamics of systems composed of multiple interacting components,
allows to leverage machine learning techniques to approximate the dynamics of
DLOs directly from data.

DLO described as a series of connected segments based on an explicitly dis-
cretized Cosserat rod. A neural network structure and a function approximator
is proposed 5 .
The function approximator can predict the future state, BC+1 by giving current
state BC and current action 0C . i.e.

BC+1 = ̂
5 (BC , 0C) (2.7)

BC contains position and orientation of the segment in DLO.
The IN method assumes that the overall dynamics of the particle-based

system are made up of local interactions between related particles. Therefore, it
is a generic dynamics model for particle-based systems represented by a directed
graph, G =(V, E).
The graph for a DLO is a chain with vertices representing different segments of

13



2.1. LINEAR

the DLO connected by edges. The vertices, E 2 V, represent the particles. The
edges 4 2 E represent their relations encoded by

489 = (E8 , 08 , E9 , 09) (2.8)

a8 is the external force applied on vertex i. A simple formulation of is directly
concatenating vi, ai, vj , and aj. A directed edge, 489 , represents a relation where
E8 is the receiver and E9 the sender. Therefore the dynamics model 5  based on
the IN method maps a state:

BC =
�{E8 ,C | E8 2 +}, {48 , 9 ,C | 489 2 ⇢}

�
(2.9)

The structure of the model is represent in Fig 2.5.

Figure 2.5: Neural network structure for modeling a DLO

The vertices E8 ,C correspond intersections between neighbor Cosserat rod seg-
ments. 08 ,C represents the action applied on the vertices. 54 is the relation-centric
network and 5E is the object-centric network.
By using Interaction Networks, the model can get the complex behaviors and
interactions among the segments of a DLO, such as bending and twisting. The
model use machine learning techniques to learn the dynamics directly from
data, rather than relying only on pre-defined physical models. This can improve
the model’s accuracy and adaptability to new situations. However it can be
computationally expensive especially the neural networks that handling com-
plex interactions like those in INs. Quality and quantity of training data can
effect the effectiveness of the model.
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CHAPTER 2. DEFORMABLE OBJECT MODELING

Attention-Based Global Deformation Model
Another way for modeling of linear deformable object is based on attention
mechanism in GDM (Global Deformation Model) learning that is represented in
the paper [24], by capturing the spatial relationship between the feature points.
The DLOs are represented through a set of = feature points along the object,
where the position of each feature point G8 contributes to the overall state rep-
resentation of the DLO. The state of the DLO is represented by a stacked vector
G 2 R3= , encapsulating the positions of all feature points in three-dimensional
space. This representation facilitates the modeling of the DLO’s deformation
dynamics.

The attention-based global deformation model (GDM), described by the
equation:

G = �(@ , D) (2.10)

Figure 2.6: Attention-based model architecture for global DLO
deformation model learning.

Here, G represents the velocity of the DLO’s feature points, �(·, ·) is the
learned global deformation model, @ is the system configuration combining the
DLO’s state and the manipulators’ configurations, and D is the control input,
i.e., the velocities of the end-effectors (EEs) manipulating the DLO. This model
leverages an attention mechanism to capture the complex spatial relationships
among the DLO’s feature points, which significantly enhances the model’s abil-
ity to predict the DLO’s behavior accurately.
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2.1. LINEAR

It has precise modeling by focusing on crucial spatial relationships among
feature points, increasing prediction accuracy. However, it requires significant
computational resources, relies heavily on extensive, high-quality training data.

2.1.3 N��������

The numerical method in the context of modeling deformable objects in-
volves using computational techniques to approximate the physical laws that
control how these objects deform. This approach is particularly useful when an-
alytical solutions are too complex or impossible to derive due to the complicated
geometries, nonlinear material properties, or complicated boundary conditions
involved.
Numerical methods are essential for handling real-world applications where
precision and adaptability to diverse modeling conditions are required. They
enable detailed investigations of how deformable objects will perform under
various loads and conditions, providing crucial insights that are not readily ob-
tainable through purely analytical methods.

Location-Based Point Chain (LBPC) Model
One technique used for modeling deformable linear objects (DLOs) is within
the context of reinforcement learning, particularly using PILCO (Probabilistic
Inference for Learning Control). This approach focuses on the Location-Based
Point Chain (LBPC) model, as detailed in the paper [5]. By assuming a sequence
of control points to represent the rope’s shape and configuration, this model fa-
cilitates a precise understanding and manipulation of DLOs in two-dimensional
space.

In this paper, the rope is modeled using the Location-Based Point Chain
(LBPC) approach that simplifies the complex geometry of DLOs to manageable
data for the model. This means that the configuration of the rope, is described
and represented by a sequence of control points in the XY-plane. These control
points effectively capture the shape and configuration of the rope.
Each control point corresponds to a specific location along the rope’s length. At
step t, the DLO configuration is specified by the absolute location of the first
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control point ?0,C and the relative location between first control point to others
as

E8 ,C , 8 = 1, 2, . . . , = (2.11)

The action is the movement from ?0,C to ?0,C+1. The shape of DLO is approxi-
mated by n sequesnce control points {?0, ?1, ..., ?=} in the XY-plane as shown in
Fig 2.5.

Figure 2.7: Location-Based Point Chain Model for DLO

The Cartesian coordinate for ?8 at step t is

?8 ,C = [G8 ,C , H8 ,C]) , 8 2 {0, 1, 2, . . . , =} (2.12)

that ?0 is the control point that represents a DLO end. Initially, the DLO is
defined as a straight line, such that all control points are evenly distributed, i.e.

?8 � ?8�1 = ?9 � ?9�1, ?8 � ?9 = (8 � 9)(?8 � ?8�1), 8 , 9 2 {1, 2, . . . , =} (2.13)
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Thus, the state at step t is defined by control points as:

st =
h⇣
?
)

0 , E
)

1 , E
)

2 , . . . , E
)

=�1, E
)

= ,C

⌘i
)

(2.14)

where
E8 ,C = ?8 ,C � ?0,C , 8 = 1, 2..., = (2.15)

The LBPC modeling approach for deformable linear objects (DLOs) has sev-
eral advantages. It simplifies the complex geometry of DLO to a sequence of
control points that make it easier to handle the manipulation. It had flexibility.
By using specific points (control points) to represent these objects, the model
can easily change and adjust to different shapes and positions. The approach
is limited to two-dimensional space. Although this simplifies computations, it
may not get the full complexity of DLO manipulation in three-dimensional envi-
ronments, which are common in practical applications. Moreover, The behavior
of DLOs under external forces is often non-linear, like small changes in force
can result in large, unpredictable changes in shape. This linear and simplified
approach can not manage these non-linearities well.

Discrete Differential Geometry
In the research paper [11], the authors propose a novel approach to model the
deformation of elastoplastic Deformable Linear Objects (DLOs) by employing
numerical methods rooted in discrete differential geometry. This modeling
framework is particularly focused on capturing the intrinsic geometrical proper-
ties of DLOs, such as curvature and torsion, which are essential for understand-
ing and manipulating the complex behaviors of these materials.
The curvature (�) is calculated using the formula:

�8 =
2 tan(8/2)

;

⇡ 8
;

(2.16)

where ; is the length of a segment, and 8 is the angle between the tangent
vectors of two consecutive segments.
Torsion (�), which measures the rate of twist along the DLO, is approximated by
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�8 =
2 tan()8/2)

;

⇡ )8
;

(2.17)

with )8 being the angle between two consecutive binormal vectors.

Proposed approach here is offering precision in modeling, using intrinsic
geometrical properties such as curvature and torsion allows for a detailed and
precise representation of the DLOs’ shape. This can help accurately capturing
the bending and twisting behaviors of the objects. It also provides a solid math-
ematical foundation, therefore it is ensuring the robustness and accuracy of the
modeling process. By considering both curvature and torsion it can also cov-
ers both bending and twisting behaviors of the DLO. It has challenges related
to computational complexity. The detailed calculations of curvature, torsion,
and related geometrical properties can be computationally intensive, and make
slowing down the real-time applications.

Compliant Position-Based Dynamics (XPBD)
In manipulation of deformable objects the ability to accurately model the dy-
namic behavior of materials such as ropes presents unique challenges. Tradi-
tional models often struggle with computational efficiency and real-time inter-
action, which are crucial for applications ranging from automated suturing to
cable manipulation in industrial settings. To address these challenges, in the
paper [14] the compliant position-based dynamics (XPBD) framework offers a
robust solution. The following description outlines how XPBD is applied to
model rope-like objects effectively, providing a detailed look at the specific con-
straints and methodologies utilized to replicate the physical properties of these
objects.

This approach discretizes the object into a sequence of particles connected by
constraints that model the physical behavior of the rope, including stretching,
bending, and twisting.

The rope-like object is represented as a series of discrete particles with Carte-
sian coordinates G 2 R3. The orientations between adjacent particles are de-
scribed using quaternions

@ = [@F , @E] 2 ($(3) (2.18)

19



2.1. LINEAR

facilitating the handling of bending and twisting deformations. This discretiza-
tion allows for the modeling of the rope’s physical properties using geometric
constraints within the XPBD framework.

Figure 2.8: Proposed geometric model of rope-like objects

Shear and Stretch Constraint ensure that the stretch or compression of the
rope segments relative to their rest state is accounted for, maintaining the in-
extensibility property. This is expressed as:

⇠((G , @) = {2(8 (G8 , G8+1, @8) | 8 2 [1, 2, ...,# � 1]} (2.19)

where 2(8 integrates shear and stretch deformations for each pair of neighboring
particles, G8 and G8+1, and @8 represents the orientation affecting shear strain.

Bend and Twist Constraint evaluate the rod’s bending and twisting by com-
paring the orientation of adjacent segments against their rest configuration. It’s
formulated as:

⇠⌫(@) = {2⌫8 (@8 , @8+1) | 8 2 [1, 2, ...,# � 1]} (2.20)

where 2⌫8 calculates the difference in orientation between neighboring segments
to represent bending and twisting.

Using geometric constraint gives a a highly accurate representation of the
rope’s physical properties, including stretching, bending, and twisting. This
method is computationally efficient. The iterative solver within XPBD allows
for stable and quick convergence, enabling robots to interact with deformable
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objects in real time without significant delays. But very long or detailed simu-
lations it can increase computational complexity (i.e.high-detail requirements.)
And Proper tuning of constraint parameters is important for maintaining accu-
racy and stability. Then finding the optimal parameters involves many trial and
error, that can be time-consuming. Therefore, XPBD strikes a balance between
computational efficiency and accuracy.

Position-Based Dynamics (PBD)
Position-Based Dynamics (PBD) is utilized as a method for modeling deformable
objects in the paper [1], such as 1D ropes and 2D cloths. This approach is
highlighted for its efficiency in simulating the flexible dynamics of these objects,
which is crucial for real-time applications in robotic manipulation.

The core of the deformable object modeling involves representing these ob-
jects as a collection of discrete particles. In the case of 1D objects, like ropes, an
object of length ! is discretized into # line segments, each of length

;8 =
!

#

(2.21)

where 8 ranges over the set {1, 2, . . . ,#}.

The state of a deformable object is denoted as G 2 R3# , encapsulating the 3D
locations of the particles or the center positions of the line segments. This state
representation facilitates the correlation between agent interactions and particle
positions, thereby directly influencing the simulation of the object’s deformable
behavior.

The implementation of PBD within the paper incorporates advanced tech-
niques to accurately simulate the physical properties of deformable objects:

Each particle’s velocity is updated based on external forces and mass, fol-
lowed by an update of the particle’s position based on the new velocity.

A comprehensive constraint that includes stretch, bending, and twisting is
applied to model the object’s deformable properties accurately.

Post-constraint solving, velocity is adjusted to reflect the constraints’ effects,
ensuring the simulation remains consistent with physical behaviors.

Parameters such as Young’s modulus, torsion modulus, and zero-stretch
stiffness are critical for modeling the object’s behavior.
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PBD is computationally efficient by simplifying the complex dynamics of de-
formable objects into discrete particles and also it is suitable for real-time task.
While PBD is efficient, it involves approximations that may not capture all the
details of a deformable object’s behavior. Then high-accurate simulations may
require more detailed methods.

Discretizing the DLO Into A Chain of Connected Nodes
In the modeling of the deformable objects, by breaking down the continuous
form of a DLO into a chain of uniformly spaced nodes, this method simplifies
the infinite-dimensional problem into a tractable, finite-dimensional space. And
discretization serves as a foundational technique for addressing the complexities
of robotic manipulation. It allows for efficient computation while handling the
dynamic and flexible nature of DLOs during robotic interactions. This model is
chosen to facilitate the application of the Coherent Point Drift (CPD) method in
the paper[23].
The DLO is modeled through a process of discretization, transforming the con-
tinuous entity into a series of discrete elements that can be more easily managed
and manipulated by computational algorithms. This model is essential for en-
abling the subsequent steps of state estimation, task planning, and trajectory
planning within the proposed framework.
The modeling process begins by discretizing the deformable linear object into
a chain of connected nodes, spaced at uniform intervals. This approach trans-
forms the DLO, which naturally exists as a continuous entity with an infinite-
dimensional configuration space, into a finite set of discrete points. Each node
in the chain represents a segment of the DLO and is defined by its position in a
three-dimensional Cartesian space.
By representing the DLO as a series of nodes, the model simplifies the complex
geometry of the object into a manageable form for computational processing.
This discretization is a crucial step that allows for the real-time tracking of the
object’s state as it undergoes various manipulations.
Each node in the discretized model is represented by its coordinates in a three-
dimensional space, effectively capturing the configuration of the DLO at any
given moment. The position of each node, denoted as G= 2 R3, where = is the
node index, is subject to change as the object is manipulated. The series of nodes,
collectively representing the state of the DLO, is denoted as- = {G1, G2, . . . , G# },
where # is the total number of nodes. This representation captures the spatial
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configuration of the DLO and serves as the basis for the state estimation process,
where the goal is to track the position of each node over time accurately.

Handling Real-Time Dynamics
The dynamic nature of DLOs, which can change shape in complex ways due to
their high degrees of freedom, poses significant challenges for real-time tracking
and manipulation. The discretized model of the DLO, with its series of nodes,
enables the application of the Coherent Point Drift (CPD) method for state esti-
mation. CPD is a non-rigid point set registration technique that aligns two sets
of points (the model and the observed point cloud data) in a way that accounts
for the deformable nature of the object. By applying CPD, the framework can
robustly estimate the real-time state of the DLO, even in the presence of noise,
outliers, and occlusions in the observed point cloud data.

Energy Based Model
A model represents the DLO as a series of interconnected rigid segments, known
as kinematic chain model that each segment is joined by ball joints that allow
for rotational degrees of freedom, then approximating the flexible nature of the
object. Inside each ball joint, friction and damping forces are modeled to more
accurately reflect the physical behavior of real DLOs. This includes considera-
tions for how the segments of the DLO resist motion relative to each other.
This kinematic chain model introduced in the paper [29].

The position and orientation of any target point along the DLO are deter-
mined by the transformation from the world coordinate system to that point,
represented as )0 ! )%(@). This transformation is calculated using forward
kinematics, which involves multiplying the transformations between each joint’s
coordinate system (COS):

)0 ! )%(@) =
E�1÷
8=0

)8 ! 8 + 1(@) · )E ! )%(@) (2.22)

where E is the joint number of the target point, and)E ! )%(@) is an arbitrary
affine transformation from the joint to the point of interest on the body.

The model’s accuracy in representing the DLO’s curvature is determined by
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Figure 2.9: 2D schematic representation of the kinematics of the
DLO with COSs being located in the joints of the multibody system.

the number of segments used. A balance is sought between a sufficient number
of segments to accurately represent the DLO’s shape and the computational
complexity of the model.

This approach has a balanced between physical accuracy and computational
feasibility, making it practical for real-time use. It provides flexibility through
rotational degrees of freedom and realistic physical behavior with friction and
damping forces. However, as you add more segments to make the model more
accurate, it becomes more computationally demanding, which can slow things
down in real-time applications.

Discrete Elastic Rod Model
For proving a detailed and robust representation of the DLO’s behavior under
various manipulative forces, which is essential for developing precise control
strategies in robotics, a model is chosen. The discrete elastic rod model, a so-
phisticated framework that integrates the fundamental physical properties of
DLOs—stretching, bending, and twisting deformations that is represented in
the paper [16].
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The DLO is conceptualized as a series of connected cylindrical segments (or
an elastic rod), where each segment’s dynamics can be modeled in terms of
stretching, bending, and twisting forces. This discrete representation allows for
capturing the complex behaviors of DLOs under manipulations.

Figure 2.10: Discrete elastic rod model.

The total elastic potential energy ⇧ of the rod is expressed as the sum of
stretching ⇧B , bending ⇧1 , and twisting ⇧C potential energies:

⇧ = ⇧B +⇧1 +⇧C (2.23)

Stretching energy ⇧B accounts for the elongation or compression of the rod
and is defined as:

⇧B =
1
2

=’
8=0

⇢�

✓ |B8 | � |B8 |
|B8 |

◆2
(2.24)

Where ⇢� is the stretching stiffness, |B8 | is the current length of segment 8,
and |B8 | is its initial length.

Bending energy ⇧1 is related to the rod’s bending deformation and is ex-
pressed as:

⇧1 =
1
2

=’
8=1

⇢1�

;8

(�8 � �8)2 (2.25)

Here, ⇢1� is the bending stiffness, �8 is the curvature of segment 8, and ;8 is
the average length of the segments around point 8.

25



2.1. LINEAR

Twisting energy ⇧C reflects the rod’s resistance to torsional deformation:

⇧C =
1
2

=’
8=0

⌧�

;8

(8 � 8)2 (2.26)

Where ⌧� represents the twisting stiffness, and 8 denotes the twist angle
between adjacent segments.

The discrete elastic rod model used for modeling deformable linear objects
(DLOs) offers a comprehensive representation of physical properties such as
stretching, bending, and twisting deformations, which is crucial for precise
control strategies. It accurately reflects real-world behaviors and includes in-
teractions with the environment, like collisions and friction, validated through
experiments and simulations. However, it can be quite complex and compu-
tationally demanding. The model also relies heavily on accurately determined
parameters and can be challenging to scale up for larger systems or more com-
plex tasks.

Cosserat Rod Model
Discretization method that cable is devided into multiple articulated rigid
cylindrical-link segments is another modeling approach for long flexible ca-
bles. It enables the simulation of complex behaviors such as winding, knot
tying, and lifting, which are pivotal in both industrial and surgical robotics, it is
introduced in the paper [12].
The modeling of the deformable object leverages the Cosserat rod theory, which
provides a framework for representing the deformation and dynamics of slen-
der, rod-like objects. The theory allows for the consideration of extension, shear,
bending, and torsion effects between linked segments.

The Cosserat rod model is employed to calculate the strains along the cable’s
centerline using the equations:

• Extension and Shear Strain:
�(B) = ⇣A(B) � 33(B) (2.27)

• Bending and Torsion Strain:

⌦(B) = 2@̄⇤(B) %
%B
@̄(B) (2.28)
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Figure 2.11: Discretization structure of the cable

where A(B) represents the centerline of the rod, 38 are the local directors
(frame vectors), �(B) and ⌦(B) are the strains representing extension/shear and
bending/torsion respectively, and @̄(B) is the orientation of the segment repre-
sented in quaternion form.

Segmentation and Dynamics Formulation:
The discrete strain energy (denoting the deformation energy within each

segment and between adjacent segments) is formulated to capture all possible
motions of the cable. The strain energies due to extension/shear and bend-
ing/torsion are captured and represented as follows:

#4 =
1
2 4

)

1 [ 1]41 +
1
2 4

)

2 [ 2]42 =
1
2 4

)[ 4]4 (2.29)

This formula encapsulates the strain energy where 41, 42 are the constraint
errors for extension/shear and bending/torsion, respectively, and [ 1], [ 2] are
the gain matrices derived from the Cosserat model, influencing the stiffness of
the cable segments in response to deformation.

This modeling approach includes real-time performance, physical accuracy,
and the ability of complex behaviors such as winding, knot tying, and lifting.
The use of Cosserat rod theory and Passive Midpoint Integration (PMI) ensures
stability and accurate representation of extension, shear, bending, and torsion
effects. However, this method also has challenges, such as high computational
complexity, the need for careful initialization and parameter tuning, and reliance
on certain simplifications. Handling complex contact scenarios can be difficult.
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Multivariate Dynamic Splines
For modeling of DLOs a strategy to approximate the complex, dynamic behavior
of DLOs is based on Multivariate Dynamic Splines, introduced in the paper [21].
The DLO is represented through spline basis, which is a function of a free
coordinate D running along the cable’s length from one end (D = 0) to the
other (D = !), where ! is the total length of the cable. This representation is
chosen for its effectiveness in computing the shape and spatial derivatives of the
DLO straightforwardly, and for its property of minimizing the model curvature,
reflecting the physical behavior of DLOs.

The configuration of the DLO at any point along its length is given by the
function @(D), which includes both linear coordinates G(D), H(D), I(D) and the
axial DLO twisting (D):

@(D) =
=D’
8=1

18(D)@8 (2.30)

where @8 are the control points that interpolate the DLO shape through the
spline polynomial basis functions 18(D), and =D is the number of control points.

The dynamic behavior of the DLO is described by applying the Lagrange
equations to the system, which involve the calculation of kinetic and potential
energies as well as the external forces acting on the DLO.

Using a spline basis to model the DLO allows for efficient computation of the
shape and its spatial derivatives that is crucial for real-time applications. The
spline model minimizes the curvature, this ensures that the model behaves re-
alistically under various manipulations. Moreover, the iterative solution frame-
work ensures quick convergence and robustness to different initial conditions
and external forces.

2.2 P�����

Planar deformable objects are two-dimensional surfaces that can undergo
continuous deformations such as bending, stretching, and twisting without
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losing their essential properties or structure. The problem of manipulating
highly deformable materials such as clothes and fabrics frequently arises in
different applications. These include laundry folding, robot-assisted dressing
or household chores, ironing, coat checking, sewing, and transporting large
materials like cloth, leather, and composite materials

2.2.1 N��������

For modeling the behavior of cloth-like materials during manipulation an
approach is presented in the paper [10] a discrete model used to simulate the
dynamics and interaction of cloth with both human and robot’s end effectors.
This model allows for a detailed representation of the cloth’s behavior under
manipulation.
The cloth is discretized into a set of nodes, denoted as ⇠, where each node 8 2 ⇠
has a position ?8 and is connected to a surrounding neighborhood of nodes #8 ,
forming a network that represents the cloth.
The set of all nodes ⇠ is partitioned into a subset of free nodes � that are not
directly grasped but are influenced by the overall cloth dynamics and external
forces like gravity and a subset of grasped nodes ⌧ = {⌧'; ,⌧'A ,⌧�; ,⌧�A}.

Figure 2.12: The model representation for the discretized cloth

The grasped nodes are attached to either the robot’s end effectors (⌧'; and
⌧'A for the left and right, respectively) or the human’s hands (⌧�; and ⌧�A for
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the left and right, respectively).

These grasped nodes are considered rigidly connected to the entity (robot
or human) manipulating them, forming boundary conditions for the movement
of the free nodes �. These free nodes move according to the forces exerted on
them, which include external forces such as gravity or drag, and internal forces
arising from the inter-node connections.

Figure 2.13: Examples of cloth model in different configurations,
colored by individual node costs. Note that V(p) = 0 is unattainable
due to gravity.

The cloth’s behavior is governed by the interactions between these nodes.
The forces between the nodes are modeled using a spring-like behavior, where
the potential energy +(?) due to deformation from the rest state is calculated
using the following spring energy equation:

+(?) =
’
82⇠

’
92#8

�k?8 � ?9 k � ✓89 �2 (2.31)

Where: ? is a vector representing the positions of all nodes in set ⇠, #8 is the
set of neighboring nodes connected to node 8, k?8 � ?9 k is the current distance
between nodes 8 and 9, ✓89 is the natural (rest) length of the edge connecting
nodes 8 and 9.
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This formulation helps in understanding how the cloth will react to being
manipulated, by calculating the potential energy which in turn is minimized
during the simulation to ensure that the cloth remains as close to its natural
state as possible while being manipulated.

The discrete node-based model, gives a detailed and realistic way to simulate
how cloth behaves, by providing a detailed and realistic simulation, this mod-
eling approach allows for precise control and adjustment during manipulation
tasks, making it highly suitable for collaborative scenarios where human intu-
ition and robotic precision need to work together seamlessly. making it good for
human-robot collaboration. It uses a network of nodes to represent the cloth,
allowing the robot to move accurately based on human input. However, this
method can be very complex and computationally expensive. It needs careful
setup and fine-tuning, and the robot’s movement limitations can make control
tricky. The model reacts to human actions rather than predicting them, which
can sometimes lead to less efficient handling.

Mass-Spring Model
In human-robot co-manipulation, precise modeling of deformable objects such
as fabrics is critical for achieving effective and realistic interaction dynamics.
A mass-spring model to represent the complex behaviors of fabric materials is
utilized in Dynamic Fabric Simulator (DFS) that is introduced in the paper [18].
This model features a grid of interconnected point masses, linked by various
types of non-linear, massless springs designed to capture the unique mechani-
cal properties of fabric, including tensile strength, shear deformity, and bending
resistance.

The core of the DFS is a mass-spring model, where the fabric is represented
as a network of point masses. These masses are interconnected through three
types of non-linear, massless springs, which simulate the fabric’s inherent me-
chanical properties. The springs are categorized based on their function: to
provide structural integrity, simulate shear deformation, and mimic bending
resistance.

Structural Springs: Connect each mass to its immediate neighbors in the grid,
providing the primary mechanism for simulating the fabric’s tensile strength and
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elasticity. Shear Springs: Link masses diagonally across the grid squares. These
springs allow the model to simulate the shear behavior of the fabric, which is
crucial for representing how the material deforms under angular forces. Bending
Springs: Extend beyond immediate neighbors to include second or third nearest
masses. Bending springs are crucial for modeling how the fabric bends and folds,
contributing to a more realistic simulation of complex deformations.

Figure 2.14: Modelling

The forces exerted by the springs are governed by polynomial equations to
reflect mechanical properties. Verlet integration is employed to compute the
movement of each mass in the grid, providing stability and simplicity by focus-
ing on energy conservation. The model parameters, including spring constants,
mass values, and damping coefficients, are adjustable to match various fabric
types, with initial values derived from empirical data or experimentation to
ensure realistic simulation under different external forces such as gravity and
manipulation.

The mass-spring model-based approach for human-robot co-manipulation
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of deformable objects provides a realistic simulation of fabric behavior by accu-
rately capturing mechanical properties such as tensile strength, shear deformity,
and bending resistance. Moreover, the approach minimizes physical damage
to fabrics and is widely applicable due to its compatibility with various human
tracking systems and robot brands. However, this method also has some draw-
backs. It requires precise and sometimes complex calibration of parameters,
which can be time-consuming. The computational load, despite being man-
aged by parallelization, may still be significant, and the high parametrization
and applicability, real-time performance through parallelization, and seamless
integration with human actions and system reconfiguration makes the this ap-
proach more suitable for industrial applications.

Mass-Spring Model
Mass spring model that is used in the paper [7], essential for simulating the
physical properties and behaviors of textiles and similar materials. It is able
to to represent complex deformable objects as two-dimensional meshes within
a three-dimensional simulation environment, facilitating a detailed analysis of
material behavior under various manipulative forces.
The choice of the mass-spring model is advantageous because it allows for the
adjustment of mechanical properties such as mass, elasticity, and damping,
which are critical for capturing the dynamic responses of flexible objects to ex-
ternal forces like gravity and robotic handling.

The mass-spring model is central to this approach, abstracting the deformable
object into a network of interconnected particles or nodes. These nodes possess
inherent mechanical properties, including mass, position, velocity, and acceler-
ation, which are crucial for simulating physical behaviors.

The movement and interaction of each particle within the mesh are governed
by Newton’s second law of motion, formalized as:

5= = <=0= (2.32)

where 5= , <= , and 0= represent the force, mass, and acceleration of the =C⌘

particle, respectively.
The force acting on each particle ( 5=) comprises both external forces (such as

gravity and wind) and internal forces emanating from the springs connecting
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Figure 2.15: Structure of mass-spring model

the particle to its neighbors. These internal forces are summed up as follows:

58=C4A=0; = 5BCAD2CDA0; + 5B⌘40A + 514=38=6 (2.33)

where each component represents the force contributions from structural, shear,
and bending springs.

Utilizing Hooke’s law, the force exerted by each spring is described by:

5= = �:B(|;= | � ;0) + :3
E=

|;= |
(2.34)

Here, ;0 and |;= | denote the original and post-deformation lengths of the spring,
:B is the spring’s stiffness coefficient, :3 signifies the damping ratio, and E= is
the velocity difference between the spring’s endpoints.

To simulate the deformation over time, the explicit Euler integration method
is applied, yielding the following relations for updating velocity and position:

E8 ,C+1 = E8 ,C +
58 ,C

<

�C (2.35)

G8 ,C+1 = G8 ,C + E8 ,C+1�C (2.36)

where G8 ,C and E8 ,C are the position and velocity of particle 8 at time C, respectively,
and �C represents the integration time step.
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It has several important aspects of using the mass-spring model for simulating
deformable objects, such as simplicity and computational efficiency, flexibility in
adjusting mechanical properties, and integration with robotic systems for tasks
like hanging and folding. However, it has some downsides. It needs careful
tuning of parameters to work correctly, and it can become unstable with the
wrong settings. The model simplifies the real object’s physical characteristics,
ignoring things like thickness, and handling collisions accurately is difficult. It
might not capture all the complex behaviors of real materials.

2.2.2 D��� D�����

Graph Dynamics Modeling
Modeling deformable objects like cloths poses a challenge due to their complex,
high-dimensional dynamics.An approach for a sophisticated understanding and
modeling of the complex behavior of cloth deformable objects represented in the
paper [15], facilitating their manipulation in robotic applications. It uses graphs
and latent representations to understand and predict the behavior of such ob-
jects in 3D. By learning from interaction data, this method provides a flexible,
generalizable solution for navigating the complicated dynamics of deformable
materials.

Graph-Based Representation of Deformable Objects:
The deformable object is modeled as a graph ⌧8 = (+8 , ⇢8), where +8 rep-

resents the nodes, and ⇢8 denotes the edges of the graph. Each node in +8

corresponds to a discrete point on the object, capturing its 3D Cartesian po-
sition. The edges in ⇢8 reflect the interaction properties among these points,
effectively modeling the structural and elastic relationships that dictate how the
object deforms under various forces.

Latent Representation of Physical Properties:
To capture the physical properties of the deformable object, particularly its

elasticity, the paper introduces an adaptation module designed to extract a latent
representation I8 from observations $8 . These observations are derived from
interactions with the object, such as pulling, which induce deformations that are
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indicative of its physical properties. The latent representation I8 is formulated
as:

I8 = 5)($8 , I0) (2.37)

In this equation, 5) is a function that processes the sequence of observations
$8 , alongside an initial representation I0, to produce the latent representation
I8 . This latent representation serves as a compact encoding of the object’s elastic
properties, abstracted from the direct observation of its response to manipula-
tions.

The modeling of deformable objects in this paper through graph dynamics
and latent representations enables the prediction of future states of such objects
under different interactions, relying on the inherent properties encoded within
I8 .

The EDO-Net method for modeling flexible objects like cloth has several
benefits. It can work with unknown physical properties without needing exact
labels, creates a simpler internal representation of the object’s properties, and
uses graphs to model complex interactions. However, it also has some draw-
backs. It needs a lot of computing power, high-quality interaction data, and
building accurate graph representations can be complicated and error-prone
due to noisy data. The need for sequential observations limits real-time use,
and getting complete observations in messy environments can be hard.

Convolutional Neural Networks (CNNs)
An adopted method for modeling of the fabric-like object, a carbon fiber ply, re-
lies on a data-driven approach utilizing depth map feedback from a 3D camera,
and not rely on traditional physics-based models of material behavior. It is The
integration of a RGB-D camera for depth map feedback and the application of
Convolutional Neural Networks (CNNs) that enables precise and dynamic ma-
nipulation of deformable materials. This technique is introduced in the paper
[20]

The material is approximated as a membrane, meaning it’s considered to
lack flexural rigidity and incapable of sustaining compressive loads. This is a
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crucial assumption since it simplifies the material’s behavior to primarily being
affected by traction forces and displacements.

A RGB-D camera captures the depth map of the material, which is used
to observe the shape and deflections of the material under manipulation. This
visual feedback serves as the basis for understanding the material’s deformation
without a physical model.

The CNNs processes the depth images to estimate the deformation of the
material. The networks learn the relationship between the visual deformation
observed in the depth images and the mechanical status (displacements and
deformations) of the material.

It allows for real-time performance and computational efficiency, simplifying
modeling by focusing on traction forces and displacements without requiring
complex physics-based models. This method is flexible, adaptable, and gener-
alizable to various materials, providing accurate deformation estimation. How-
ever, it has some drawbacks, including dependency on high-quality training
data and limited physical insights due to its black-box nature. The approach
currently handles only deformations in principal directions and is sensitive to
visual noise and environmental conditions, such as lighting and material sur-
face properties. Despite these limitations, it remains an efficient and practical
solution for dynamic material manipulation scenarios.

G-DOOM (Graph dynamics for Deformable Object Manipulation)
A model that uses a graph-based framework to abstract deformable objects as
interacting sets of keypoints, allows for a detailed and abstract modeling of ob-
ject dynamics, introduced in the paper [17]. G-DOOM (Graph dynamics for
Deformable Object Manipulation). This framework captures the complex dy-
namics of deformable objects using a combination of unsupervised learning for
keypoint extraction and graph neural networks (GNNs) to model the interac-
tions between these keypoints.

Keypoints are extracted from depth images using unsupervised learning,
which identifies visually prominent features critical for understanding the ob-
ject’s dynamics.

Feature extraction and keypoint detection process involves a feature extractor
5enc and a keypoint detector 5kp, which produce image features )src, )tgt and
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keypoint heatmaps �src,�tgt respectively. For reconstruction loss the system
optimizes the keypoint detection by minimizing the reconstruction loss !rec,
which is defined as the error between the target image �tgt and its reconstruction
�̂tgt.

The interactions between keypoints are modeled using a graph neural net-
work, where keypoints are nodes in the graph.

For graph construction, a graph ⌧C at time C is defined with nodes +C repre-
senting the keypoint features EC

8
and edges ⇢C denoting the interactions among

keypoints. Then for node features, each node feature EC
8

integrates depth and
geometric information pertinent to the keypoint’s position.

Figure 2.16: keypoint detection, extracts the corresponding key-
point features

The dynamic behavior of deformable objects is modeled over time using re-
current graph dynamics, adapting to changes and handling partial observability.

The features of each node are updated by a GNN based on the current
features EC

8
, the previous hidden state ⌘C , and the current action 0C :

E
0C
8
= ⌧##([EC

8
, ⌘C , 0C],#1(EC

8
)) (2.38)

where #1(EC
8
) are the neighboring nodes of EC

8
in the graph. In hidden state

update, the global state or belief about the object ⌘C+1 is updated using an RNN:

⌘C+1 = '##(⌘C , %>>;({E0C
8
})) (2.39)
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The G-DOOM framework uses keypoints to represent objects, making the
model detailed efficient. Unsupervised keypoint extraction make robustness
and adaptability allowing the model to adapt to different shapes and configura-
tions. Graph neural networks (GNNs) help to model the interactions between
these keypoints accurately. The model also uses recurrent neural networks
(RNNs) to keep track of changes over time, making it good at handling dynamic
objects. Additionally, it works well both in simulations and real-world tasks like
rope straightening and cloth manipulation. However, the model’s performance
depends on correctly identifying keypoints, and it may struggle with more com-
plex tasks that require a detailed understanding of 3D shapes. Training the
model is complex and requires a lot of data.

2.3 T����-D����������

2.3.1 N��������

Combining mesh and volumetric grid structures
This model includes a mesh structure for immediate reference and a volumet-
ric grid for ongoing reconstruction, which allows for parallel processing and
efficient shape adaptation. This method leverages the strengths of traditional
model-based methods while enhancing adaptability and speed in real-time ap-
plications that is represented in the paper [6].

Encoding the surface geometry and texture into a 3D volumetric grid structure
is more feasible since the shape reconstruction progress can be implemented ef-
ficiently via parallel operation on the grids. To combine the advantages of both
representation, by projecting multiple image frames data back into the space
of a reference frame �0 (which is usually set as the initial frame) according to
the estimated interframe deformations and then integrating these frames into
a reference mesh "

0. For efficient image integration, the reference mesh "
0

is maintained via a discrete truncated signed distance function (TSDF) volume,
(as illustrated in Figure 2.18).

which we denote as the reference volume + . In this reference volume + , the
surface geometry is voxelized as 5 ⇡(G0) 5 ⇡(⌦0), where
⇡(G0) 2 [�1,+1] encodes the truncated signed distance value for each voxel G0,
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Figure 2.17: Reference volume V in 2D case.

and ⌦ (G0) 2 [0, 1] is the associated weight. The content of each voxel will be
updated independently for image integration. To obtain a high-quality mesh
with texture, we also maintain the RGB information ⇠(G0) 2 [0, 255]3 in each
voxel. As a summary, our reference volume can be represented as

+(G0) = {⇡(G0), ⇠(G0),⌦(G0)} (2.40)

From the reference volume+ , we extract the reference mesh "0 with March-
ing Cubes algorithm. The reference mesh "0 can be further deformed accord-
ing to the estimated inter-frame deformation model to obtain the live mesh "C ,
which indicates the object shape in the live frame �C . For the convenience of dis-
cussion, we define the mesh vertices and corresponding normals as (E< , =<)"

<=1
in this work, where " is the number of vertices in the mesh.

This way of modeling of deformable object includes real-time processing
crucial for dynamic environments, a model-free design increasing adaptability
to various materials and shapes, and robustness to noise and occlusion ensuring
reliable operation in real-world conditions. Combining mesh and volumetric
grid structures used the strengths of both for efficient shape adaptation and
high-quality surface reconstruction. However, the model faces limitations such
as error accumulation in deformation estimation, challenges in handling large
deformations and topological changes (e.g.tearing, folding in complex ways),
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and high computational demands requiring powerful hardware.

FEM (Finite Element Method)
A model-based approach using the Finite Element Method (FEM) that intro-
duced in the paper [3] to enable the dexterous handling of such objects by
robotic systems. With using a volumetric linear FEM. It represent how FEM
is utilized to create a detailed and responsive model that adjusts to dynamic
manipulative forces.
The deformable object is modeled using a volumetric linear Finite Element
Method (FEM), which is well-suited for representing continuous isotropic ma-
terials. This modeling approach involves tessellating the object’s volume into a
mesh of elements, specifically tetrahedrons, that connect a set of 3D vertices. The
manipulation of the object is then formulated as a quasi-static equilibrium be-
tween the internal forces within the deformable structure, 5 (G), and the external
forces, such as those exerted by the robot hand at the contact points.

Mathematically, the internal forces 5 in the object are balanced by the external
forces, with a focus on the forces applied at the fingertips of the robotic hand,
assuming these are the primary points of interaction. The relationship between
the internal forces 5 and the displacements D̂ of the mesh vertices is governed
by Hooke’s law and the infinitesimal strain theory, and can be expressed as:

5 =  D̂ (2.41)

where  is the stiffness matrix, which depends on the material’s elastic prop-
erties, specifically the Young’s modulus ⇢ and Poisson’s ratio ⇡. This linear rela-
tion is adapted for rotational transformations through a corotational approach,
allowing the model to accommodate for rotations by warping the stiffness ma-
trix with respect to a rotation matrix that represents the rotational component
of the element deformations.

To estimate the material’s elasticity parameters ⇢ and ⇡, the paper outlines
a minimization strategy based on fitting the simulated deformations—obtained
from the FEM model under applied forces—to the observed deformations cap-
tured with an RGB-D sensor. In the simulation setup, a force measured by a force
sensor on a robotic arm is applied to the object, and the resulting deformation is
captured. The fitting error between these simulated and observed deformations
is then minimized to effectively estimate the elasticity parameters.
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This FEM-based method provides high precision and accuracy by using
detailed modeling and real-time adjustments, making it suitable for handling
deformable objects. It has consistency with physical laws and flexibility, allow-
ing for precise control of deformations through accurate elasticity parameters
and dynamic responses to forces. However, it faces challenges such as high
computational demands for real-time FEM calculations, reliance on precise pa-
rameter estimation.

Growing Neural Gas (GNG) and Particle Graph Networks (PGN)
The manipulation of non-rigid or deformable objects presents a unique set of
challenges, specially when it comes to the real-time tracking and modeling
necessary for effective interaction. Two sophisticated graph-based architectures,
Growing Neural Gas (GNG) and Particle Graph Networks (PGN), which are
pivotal for understanding and predicting the behavior of deformable objects
during manipulation introduced in the paper [25].

GNG is a type of unsupervised learning algorithm that learns a topological
representation of a data distribution as a dynamic undirected graph⌧ = h�,#i,
where � = {08} is the set of nodes (or neurons) and # = {=:} is the set of edges.
Each node 08 = {F8} in the graph has an associated weight vector F8 2 R= ,
which is of the same dimension as the input space =. The network adapts over
time by incrementally adding nodes and modifying edges based on criteria like
threshold distances, effectively capturing the structure of complex changing data
distributions.
The paper it is said that while GNG can represent changing structures efficiently
and robustly against noisy data, it struggles with the real-time processing de-
mands required for robotic manipulation due to computational limitations.

PGN is a representation inspired by physics simulation models, where enti-
ties are represented as graph neural networks, enabling the prediction of system
dynamics by learning parameters from data. PGN is defined as a directed graph
⌧ = h$ , 'i, with $ = {>8} representing the nodes (or objects) and ' = {A:} rep-
resenting the edges (or relations).

Each node >8 is described by >8 = {G8 , 0>8 }, where G8 = {@8 , @§ 8} represents the
state (position, velocity) and 0>8 represents features (stiffness, radius). Relations
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A: are described by
A: = hD: , E: , 0A:i (2.42)

capturing the features of the relation between nodes.
The model predicts the next state of each object

>8 ,C+1 = 5$(>8 ,C , 4: ,C) (2.43)

and the effect of each relation

4: ,C+1 = 5'(>D: ,C , >E: ,C , 0A: ) (2.44)

with 5$ and 5' being functions approximated using neural networks.
GNG could provide a robust structure representation by efficiently capturing

and representing the shape and deformation of objects from sensor data. This
structured representation could then be input into PGN, which would predict
how the object’s shape changes over time, facilitating real-time manipulation.

The approach using Growing Neural Gas (GNG) and Particle Graph Net-
works (PGN) to model deformable objects is strong in several ways. GNG is
good at capturing the shapes and changes of objects, even when the data is
noisy, and PGN predicts how these shapes will change over time, helping robots
manipulate objects more accurately. However, GNG needs a lot of computing
power, making it hard to use in real-time, combining these models is also tech-
nically challenging and requires fine-tuning.

Corotational FEM
A corotational FEM variant, the method enhances its ability to handle signif-
icant rotational distortions without sacrificing accuracy, a sophisticated com-
putational technique renowned for its precision in simulating and analyzing
complex deformations for realistic modeling of objects subjected to diverse and
unpredictable interactions that is discussed in the Paper [22], introduced.

The deformable object is represented through tetrahedral meshes. The rela-
tionship between stress and strain in the object, due to deformation, is described
using Hooke’s law. This law is applicable for small deformations of linear elastic
objects and relates stress to strain through a linear equation dependent on the
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object’s elasticity parameters, namely the Young’s modulus and the Poisson’s
ratio.

The linear algebraic equation of motion for the deformable object is given by:

"

3
2

3C
2 (G(C) � GD) + ⇡

3

3C

(G(C) � GD) +  (G(C) � GD) = 5ext + 5int (2.45)

= is the number of vertices of the mesh, " 2 R3=⇥3= is the mass matrix,
⇡ 2 R3=⇥3= is the damping matrix,  2 R3=⇥3= is the stiffness matrix (depending
on the Young’s modulus and Poisson ratio), G(C) 2 R3= (resp. GD 2 R3=) is the
position of each vertex of the mesh at time C (resp. in the undeformed state),
5ext 2 R3= is the external forces applied, 5int 2 R3= is the internal forces resulting
from the deformation.

It handles rotational deformations accurately due to the corotational FEM,
simulates complex deformations precisely with FEM, and works well with var-
ious unpredictable forces. Using Hooke’s law makes calculations simpler. It
does not require external fiducial markers, making setup easier. However, it
only works well for small deformations because Hooke’s law is for linear elastic
objects. It’s also computationally demanding and relies on accurate initial mod-
els.

2.3.2 A���������

A Set of Discrete Points
A modeling that provides a structured way to understand and predict how
manipulations of certain points on the object will result in overall deformation,
enabling the development of effective control strategies for deformable object
manipulation introduced in the paper [8].
A set of discrete points, consisting of manipulated points (pm), feedback points
(pf), and uninformative points (pu). The relationship between the feedback
points and the manipulated points is modeled mathematically as follows:

⇣?< = �(⇣? 5 ) (2.46)

where ⇣? 5 = ? 5 � ? 5
⇤ and ⇣?< = ?< � ?<

⇤ represent the displacements
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relative to the equilibrium for feedback points and manipulated points, respec-
tively.

To abstract the deformation behavior further and facilitate the learning pro-
cess, a low-dimensional feature vector G is extracted from the feedback points
? 5 , transforming the model into:

⇣?< = �(&�1(? 5 ⇤)⇣G) = /(⇣G) (2.47)

where &(·) is the feature extraction function, and /(·) is termed the defor-
mation function that the controller aims to learn.

For better illustration, Figure 2 models a soft object using these three classes
of points. The manipulated points are those directly controlled by the robot, the
feedback points are used for monitoring deformation, and uninformative points
do not significantly contribute to the model or control process.

Figure 2.18: soft object modeling.

The modeling approach for deformable objects as a set of discrete points sim-
plifies the application of deep neural networks, facilitating real-time prediction
and manipulation by breaking down complex deformations into manageable
components. This method benefits from efficient feature extraction, a clear
mathematical relationship between feedback and manipulated points. How-
ever, it relies heavily on accurate feature extraction, requires initial training
data, assumes an equilibrium state, and may oversimplify highly complex de-
formations. Additionally, scalability issues can arise as the number of discrete
points increases, and it can impact the real-time performance.
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3
Simulation

3.0.1 I�����������

Simulations play a crucial role in the field of robotics, particularly in the
manipulation of deformable objects like fabrics, cables, and soft tissues. These
objects exhibit complex behaviors that are influenced by numerous factors, mak-
ing their modeling and prediction challenging. Simulations provide a way to
understand these behaviors accurately without relying on extensive physical
trials. They are invaluable during the design and development stages, allowing
engineers to optimize mechanical components and control algorithms efficiently.
Additionally, simulations offer a safe, risk-free environment to test and refine
robotic operations, ensuring safety and effectiveness when applied in real-world
scenarios. This approach is also cost-effective, significantly reducing the ex-
penses and time associated with building physical prototypes and conducting
multiple experiments.

Furthermore, simulations are essential for testing and validating models
before their real-world implementation. They enable precise control over ex-
perimental variables, ensuring accuracy and consistency in results. By allowing
repeated experiments under identical conditions, simulations verify the relia-
bility of models. They also facilitate comprehensive scenario testing, including
extreme conditions that are difficult to replicate physically, ensuring robustness
and versatility of the models. Parameter sensitivity analysis, integration checks,
and iterative feedback further refine these models, making them more reliable
and effective. Additionally, simulations aid in benchmarking different models
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to select the best-performing ones and ensure compliance with regulatory stan-
dards in fields such as healthcare and automotive.

3.0.2 S��������� F��������� ��� T���������

Simulating deformable objects involves using computational frameworks
that can accurately model the complex behaviors of these objects under vari-
ous conditions. These frameworks are essential for developing and validating
robotic systems designed to manipulate deformable objects, providing insights
into their mechanical properties and dynamic responses. Several key simulation
frameworks are used in this domain, including Finite Element Method (FEM),
Mass-Spring Models, Particle-Based Simulations, and other relevant techniques.

Finite Element Method (FEM)
FEM is a powerful computational technique used to approximate the behav-
ior of deformable objects. It works by breaking down a complex object into
smaller, manageable finite elements, such as tetrahedra or hexahedra. Each el-
ement is governed by equations derived from the object’s material properties
and external forces. The process involves discretizing the object into a mesh of
finite elements, applying boundary conditions and external forces, and solving
the equations iteratively to predict the object’s deformation and stress distribu-
tion. FEM offers high accuracy and is applicable to a wide range of materials
and loading conditions, providing detailed insights into stress, strain, and de-
formation patterns. However, it is computationally intensive, often requiring
high-performance computing resources, and can be time-consuming, making
real-time applications challenging.

Mass-Spring Models
simplify the representation of deformable objects by modeling them as a net-
work of masses connected by springs. This approach is particularly useful for
simulating objects like cloth, ropes, and flexible sheets. In this process, the ob-
ject is represented as a collection of point masses connected by springs, which
represent tensile and shear forces. The behavior of each spring is governed by
Hooke’s Law, and damping factors are included to model energy dissipation.
Mass-Spring Models are relatively simple and computationally efficient, making
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them suitable for real-time applications. However, they have limited accuracy
compared to more detailed methods like FEM and may not capture complex
material behaviors and interactions. They require careful tuning of spring con-
stants and damping factors to match physical properties accurately.

Particle-Based Simulations
It models deformable objects as collections of interacting particles. Each particle
represents a small volume of the material, and interactions between particles
are defined by physical laws governing forces such as attraction, repulsion, and
damping. Two common types of particle-based simulations are Smoothed Par-
ticle Hydrodynamics (SPH), primarily used for fluids but adaptable for soft
bodies, and Position-Based Dynamics (PBD), which focuses on maintaining po-
sitional constraints suitable for real-time simulations. This process involves
distributing particles within the object’s volume, calculating forces between
particles based on their positions and velocities, and updating particle posi-
tions iteratively to simulate deformation. Particle-Based Simulations are flexible
and can model a wide range of behaviors, making them suitable for real-time
applications with the right optimizations. However, they are computationally
demanding for large numbers of particles and require extensive calibration to
match physical properties accurately.

Gazebo Simulator
It is an open-source multi-robot simulator provides a robust and accurate en-
vironment for testing and developing robots in complex indoor and outdoor
settings. Gazebo is generally used for simulating rigid body dynamics rather
than deformable objects. While there have been some efforts to extend Gazebo’s
capabilities to handle soft-body or deformable object simulation, it is not its
primary strength. While its great features, community support, and integration
with ROS make it a powerful tool for many robotics simulation tasks. It is not the
best choice for simulating deformable objects requiring high-speed simulation,
extreme accuracy, due to its focus on rigid body dynamics.

Pybullet
PyBullet is a Python module built on the Bullet Physics Library, designed for
real-time simulations with GPU acceleration for better performance in large-
scale tasks. This makes it great for robotics, machine learning, and computer
graphics. It supports both rigid and soft body dynamics but it is not be the
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Figure 3.1: Gazebo Simulator

best choice for highly detailed deformable object simulations as its accuracy for
complex deformable object simulations is limited due to simplifications in its
physics models.

Figure 3.2: Pybullet Simulator

Unity 3D
It is a powerful and widely-used game development platform that allows de-
velopers to create interactive 2D and 3D content. It has user-friendly interface
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making it easy to create and manipulate 3D models. It had a library of pre-made
assets and plugins that can speed up the development. Moreover, it is real-time
and has an extensive documentation finding resources easily. While Unity is
developed for real-time applications, simulations that require highly detailed
physics calculations for deformable objects can be computationally intensive
and might suffer in performance. It primarily designed for real-time applica-
tions and may not provide the high level of accuracy needed for simulating of
complex deformable objects.
Unity 3D is best suited for applications that require real-time interactivity and
visually engaging simulations, such as games, virtual and augmented reality,
prototyping and visualization.

Isaac Gym(DefGraspSim)
Isaac Gym, developed by NVIDIA, is a physics simulation environment that
integrates GPU-accelerated computation for various robotics and reinforcement
learning tasks. Within Isaac Gym, DefGraspSim is a specific component de-
signed to handle simulations involving deformable objects. It is based on FEM.
It has good advantages for simulating deformable objects, including high-speed
performance and scalability due to GPU acceleration, and advanced physics
modeling for accurate simulations of complex interactions. However, its re-
liance on powerful NVIDIA GPUs and high computational demand can is a
limitation.

NVIDIA Isaac Sim
NVIDIA Isaac Sim is a powerful simulation platform designed for the develop-
ment, testing, and deployment of autonomous machines and robots. NVIDIA
Isaac Sim is a part of the NVIDIA Isaac SDK, offering a wide range of tools for
building robots. Isaac Sim is built on NVIDIA Omniverse, a powerful platform
that uses multiple GPUs to run realistic and real-time simulations of robots and
their surroundings.
Although it creates very realistic physics and detailed graphics, which are im-
portant for building and testing robots that can work on their own, it focuses on
rigid body dynamics and its capabilities for simulating deformable objects (soft
body physics) are limited.
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Figure 3.3: Nvidia Issac Sim Simulator

VegaFEM
VegaFEM (Vega Finite Element Method) is a computational framework designed
for the simulation of deformable objects. It is known for its efficient and accu-
rate finite element method (FEM) simulations. It is open sourc and free that can
be customized according to specific needs. It supports different types of sim-
ulations including linear and nonlinear elasticity, cloth simulation, and other
deformable body dynamics.
Vega is a library for simulation of 3D solids, as well as cloth. The input to Vega
is a 3D volumetric mesh with material properties. Vega computes the displace-
ments of mesh vertices at each timestep.
it does not support one-dimensional deformable objects (strands). Vega focuses
on basic 3D solid and cloth simulations but lacks support for more complex and
dynamic interactions and objects.

ARCSim: Adaptive Refining and Coarsening Simulator
ARCSim is a physics-based simulation software specifically designed for sim-
ulating the behavior of deformable objects, such as cloth and strands. It has
realistic and accurate simulation, it support wide range of deformable object
like cloth, hair, soft tissue and other flexible materials, and it is open-source.
however, it is computationally expensive and it does not support GPU and it has
limited documentation.

ArtDefo (Accurate Real Time Deformable Objects)
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Figure 3.4: VegaFEM Simulator

It is a simulation tool designed for the quick and precise real-time animation
of flexible objects. It uses the Boundary Element Method (BEM) to address
the computational difficulties associated with simulating deformable materials,
making it ideal for use in virtual environments and interactive simulations.
ArtDefo is suitable for simulating flexible objects like cloth and strands. ArtDefo
is designed for real-time applications, providing quick updates and low latency
that is useful in situations that require quick updates and real-time interactions,
such as virtual reality and interactive animations. It has accuracy and it is
capturing the necessary details of material behavior. However, demand signifi-
cant computational power and it does not run on GPU and it is restricts the class
of materials which it can handle to those with homogeneous material properties.

Houdini
Houdini is a 3D animation software developed by SideFX, widely used in the
visual effects, animation, and game industries. Houdini utilizes a node-based
procedural approach for creating complex simulations and effects. It offers a
variety of solvers and simulation tools for different types of physical phenom-
ena, including: fluid simulations (water, smoke, fire), rigid body dynamics, soft
body dynamics, cloth simulations, interactive simulations for real-time effects
like games.
Houdini run on GPU. However it Requires significant computational power and
the full version of Houdini is quite exppenive.

53



SOFA
SOFA is an open source framework based on the Finite Element Method (FEM),
with an emphasis on medical simulation and robotics.
SOFA is real-time and has good documentation. It can run on GPU. However
its performance is vary depends om the complexity of the simulation. And for
simulation of deformable objects like cloth and also linear deformable objects
is not working well. Getting high accuracy in cloth simulation needs detailed
models and complex calculations, which can make the simulation slower. Sim-
plifying the models to make the simulation run faster can make it less realistic.
Moreover, linear deformation models might not accurately represent how cer-
tain materials behave, especially those that show significant non-linear elastic
or plastic properties.

Figure 3.5: Sofa Simulator

MuJoCo
MuJoCo is a free and open source physics engine that aims to facilitate research
and development in robotics, biomechanics, graphics and animation, and other
areas where fast and accurate simulation is needed.
MuJoCo uses a physics-based approach to simulate the motion and interaction
of bodies in a three-dimensional space. As MuJoCo has efficient simulation of
complex dynamics, high accuracy, run on GPU, and also has a very good docu-
mentation, is a good choice for simulation of deformable objects.
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Figure 3.6: MuJoCo Simulator
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4
Control Strategies

Manipulation of deformable objects is a complex area in robotics that in-
volves handling materials that can change shape, such as fabrics, cables. This
presents unique challenges compared to the manipulation of rigid objects, be-
cause of high degrees of freedom (DOFs). A control strategy in this context is a
set of planned actions and algorithms designed to dynamically manipulate de-
formable materials to achieve a specific goal, like folding clothes or tying knots.
Control strategies are discussed in different kind of deformable objects; linear,
planar, and 3D.

4.1 L�����

Manipulating linear deformable objects, such as ropes, cables, and wires,
is a challenging problem in robotics due to their infinite degrees of freedom
and complex dynamics. The control strategies typically focus on shaping these
objects into desired configurations while handling their deformable nature.

4.1.1 M����-B���� C������

Model-based uses mathematical models to predict, analyze, and control sys-
tem behavior effectively. It mathematically describe the behavior and dynamics
of the system under various conditions, forming the basis for designing control
laws that can effectively manipulate the system towards desired states.
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Dynamic Regions
Paper [13] utilized this method to overcome the challenges posed by the high
degrees of freedom and coupled interactions along the length of DLOs such as
cables or ropes in this paper. Now we are going to look at the specific model-
based control strategy in this paper.

Figure 4.1: An illustration of “Insert-into-Hole”

The strategy utilizes a sequence of dynamic regions for each feature point
on the DLO. Each point is allowed to move within a specified region, which
adapts dynamically as the manipulation progresses, allowing for flexibility in
the control strategy while still guiding the DLO towards the desired shape.
The dynamic region for each feature point is defined mathematically as:
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is the transformed positional error of the ith feature point from
its desired position, and '8 is a positive constant defining the initial size of the
dynamic region. The control input, adjusting the velocity of the robot’s end
effector, is given by:
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where �8(G8 , A) is the Jacobian matrix, )8 is a transformation matrix, and �8 are
positive constants. �&8 is the gradient of the potential energy function, driving
the feature point back into its region if it exits.

And the potential energy associated with each dynamic region, which in-
fluences the control input, is defined to ensure that the feature points remain
within their designated dynamic regions:
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And the stability of the closed-loop system, which includes the dynamics of
the robotic manipulator and the DLO, is proven using Lyapunov methods. A
Lyapunov-like function is constructed from the potential energy functions of all
dynamic regions, ensuring that the system’s overall energy decreases over time,
leading to a stable equilibrium state.

This control strategy has several benefits, such as flexibility and adaptability
through dynamic regions, reducing conflicts by controlling movements in se-
quence, and accurate control. It can also predict how deformable objects will
behave during manipulation and is robust in handling coupled movements. Its
effectiveness has been proven through experiments. However, there are some
challenges, like the complexity and computational demands of mathematical
modeling, the need for accurate calibration of the Jacobian matrix, and careful
tuning of dynamic region parameters. Although this method avoids conflicts
and ensures smoother control, it can be slower and less efficient due to sequen-
tial processing.

Dynamic Surface Control (DSC)
Dynamic Surface Control (DSC) that is introduced in the paper [2] that is a
control strategy for manipulation of deformable linear objects in such a way
to suppress the oscillation at the end of the DLO. After modeling of DLO, the
first step is decoupling strategy that transforms the system into a form where
the actuated and underactuated parts are separated, allowing for the control
strategies that specifically target the underactuated dynamics.
After modeling of DLO, the model is transformed into a special cascaded form.
This transformation facilitates the separation of the dynamics into actuated and
underactuated parts, which is beneficial for applying control laws more effec-
tively (by specifically targeting the underactuated dynamics).

Dynamic Suface Controller (DSC) is designed to suppress oscillations at the
end of the DLO. This is designed to ensure that the manipulator brings the DLO
back to its origin with minimized vibration, which is critical for ensuring preci-
sion in handling deformable objects, ensuring stability and robust performance.
This includes two steps:
The first dynamic surface virtual control laws that is based on a combination
of state errors and manipulator positioning errors and the actual control law
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using these surfaces which integrates the dynamics of the underactuated parts
and adjusts them in response to the manipulator’s movement and the virtual
controls.
DSC strategy is guaranteed through the Lyapunov stability. That is ensuring
that all states of the system remain bounded and converge to desired trajectories,
indicating that the control strategy is effective in suppressing unwanted swings.

This control strategy for handling deformable linear objects (DLOs) is ef-
fective in reducing oscillations, ensuring smooth and precise operations. By
strategy separates the system into actuated and underactuated parts, and uses
Lyapunov stability criteria to make sure all states remain bounded and converge
to desired trajectories. However, the strategy is complex to implement due to
the need for accurate mathematical modeling and transformation processes. It
relies on accurate models and requires careful selection of control parameters.

Integration of Online Model Learning with Model Predictive Control
A control strategy that bridge the gap between model-based and model-free
methods an efficient way to handle the high degrees of freedom and complex
dynamics associated with DLOs. Paper [27] propose a framework that integrates
online model learning with model predictive control (MPC) for manipulating
deformable linear objects (DLOs) like cables and ropes.
This approach requires fewer interaction samples than model-free RL alterna-
tives as it builds a dynamic model of the environment not directly from the
data without modeling. It does not rely on pre-collected and it can continually
update and refine the model based on ongoing interactions that helps to adapt
the changes in object’s properties.
Initial training data are collected through random trajectories by executing ran-
dom actions.
In this control framework, a neural network model is initialized and continually
updated based on the collected data. This model predicts the next state of the
DLO based on its current state and the action taken. At each time step, MPC is
used to optimize the control actions over a finite horizon based on the predic-
tions from the learned model. Only the first action from the optimized sequence
is executed, in the next time step the optimization problem is then solved again
with the latest state.
The MPC process involves bringing predictions of future states of the DLO us-
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ing the learned dynamics model and optimizing control inputs to maximize the
cumulative reward over the specified horizon. The reward function is typically
based on the difference between the current and desired states, often formulated
as the negative Euclidean distance between the achieved and target shapes of
the DLO. The optimization is performed using gradient-based methods, using
the differentiable nature of the neural network model. This allows the MPC to
iteratively adjust the control inputs to steer the DLO towards the desired con-
figuration.
This combination of online model learning and MPC allows efficiently handle
complex of DLOs by learning from experience and continually adapting to new
data, leading to better performance and adaptability.

This strategy is sample-efficient because it needs fewer interaction samples,
and it adapts well by continually updating the model. It is learning directly
from interactions and it can handle various tasks. The integration of online
model learning with model predictive control (MPC) allows for effective con-
trol. However, there are some challenges. Initial data collection requires random
actions, which can be inefficient and unsafe (as executing random trajectories to
gather initial training data, can cause the movements are not intended) and also
might make it slow learning. It’s computationally complex due to real-time op-
timization. It depends on the quality of the learned model to capture dynamics
accurately. And MPC’s finite horizon might not be enough for long-term plan-
ning, the limited number of future steps it considers when optimizing control
actions can lead to situations where the controller makes decisions that seem
optimal in the short term but are not the best for achieving long-term goals,
especially in complex tasks that need planning for a longer period.

Model-based Reinforcement Learning Approach
For controlling and planning the manipulation of deformable linear objects
(DLOs) a model-based reinforcement learning (RL) framework called PILCO
(Probabilistic Inference for Learning Control) is utilized in the paper [5]. pre-
dicts the next state of the DLO based on current state and actions taken by the
robot.
Actions are defined as the movements (translation and rotation) of the robot’s
end-effector, which interacts with the DLO at a specific control point (referred
to as ?0, the first control point).
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The change in position from one point to another in the is like (?0,C+1 � ?0,C),
indicating the movement from the current position ?0,C to a new position ?0,C+1.
The manipulation includes moving this control point through the defined ac-
tions, therefore changing the overall configuration of the DLO.

Figure 4.2: The rope manipulation system consists of a Control
Point Detector, a Rope Manipulator and a Central PC.

As the robot executes actions and observes the resulting changes in the DLO con-
figuration, these observations feed back into the reinforcement learning model.
The model uses this new data to refine its understanding of the DLO dynamics
and improve its predictions and its decisions for future actions.

The control strtegy here is very efficient, needing fewer interactions to learn
effective control policies. This is important for handling complex tasks like ma-
nipulating ropes and cables. It is flexible and does not depend on a fixed model
of the object, allowing it to adapt to different objects and environments by learn-
ing from observed data. Its model-based approach helps predict future states
based on current actions, improving planning and policy quality. The iterative
learning process ensures continuous improvement as more data is collected.
However, the computational demands of Gaussian Process regression can limit
its use with larger datasets and higher-dimensional spaces. The initial phase
of random actions can be inefficient or unsafe, which is a concern in sensitive
environments. PILCO’s reliance on Gaussian assumptions may not always accu-
rately capture complex object dynamics. It has been tested mainly in 2D space,
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so moving to 3D can have more challenges.

Differentiable Compliant Position-Based Dynamics
The control and planning strategy for the manipulation of deformable objects
in the paper [14] involves a detailed process of parameter identification and
iterative adjustment of control points to achieve a desired rope shape. Initially,
the physical parameters of the rope, such as stiffness, are identified through
a real-to-sim transfer process. This involves optimizing these parameters by
minimizing the difference between the simulated rope and real-world obser-
vations, using automatic differentiation techniques. The XPBD framework is
used to accurately model the rope’s behavior, ensuring the constraints such as
shear/stretch, bend/twist, and distance are satisfied.

Once the parameters are identified, the control strategy focuses on achiev-
ing a target shape for the rope. This target shape is defined by key points or
segments that the rope should conform to. The optimization problem is then for-
mulated with a loss function that measures the discrepancy between the current
simulated shape of the rope and the target shape. An iterative control loop is
employed, where the XPBD solver simulates the current state of the rope, the loss
function is computed, gradients are calculated using automatic differentiation,
and control points are updated using gradient descent. This iterative process
continues until the rope’s shape closely matches the target shape. Experimen-
tal validation on the Baxter and dVRK robots demonstrates the effectiveness of
this strategy, with the Thomas XPBD solver used for inextensible ropes and the
Jacobi XPBD solver for extensible ropes, achieving accurate manipulation and
control of the deformable objects.

It utilizing a differentiable framework for effective parameter identification
and optimization, which is crucial for fine-tuning simulations to match real-
world behavior. It has flexibility and robustness in various applications, in-
cluding robotic platforms like Baxter and the da Vinci research kit, making it
adaptable for different scenarios. However, the strategy involves significant
computational complexity due to the need for detailed modeling and iterative
solver processes, and implementation complexity requiring a deep understand-
ing of physical modeling and automatic differentiation. Moreover, the accuracy
of the model is highly dependent on precise parameter tuning.
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Integrating Control Barrier Function and Quadratic Programming Frame-
work
In the paper [1] PBD is used to model the object that involves discretizing the
objects into particles connected in a mesh or sequence, allowing the predic-
tion of the object’s behavior under various forces and movements. The control
framework includes a nominal controller for each assistant robot, which aims
to minimize the error between its current and target positions relative to a lead
robot. This error minimization is critical for maintaining the desired configura-
tion during manipulation tasks.

To ensure safety, the strategy incorporates CBFs that enforce constraints to
avoid collisions, prevent overstretching of the object, and maintain safe distances
between robots. These functions modify the control inputs dynamically to en-
sure the system operates within safe parameters. A quadratic programming
(QP) based controller integrates the nominal control inputs with the CBF con-
straints, ensuring that the robot actions remain safe while effectively following
the lead robot. The entire approach is implemented in ROS, having real-time
control and coordination among multiple robots. The system’s architecture sup-
ports efficient and safe manipulation of deformable objects in various scenarios,
as demonstrated by the successful simulation results presented in the paper.

It uses Position-Based Dynamics (PBD) for real-time motion prediction, help-
ing to avoid obstacles effectively. Control Barrier Functions (CBFs) ensure safety
by preventing collisions, overstretching, and keeping agents at safe distances.
The Quadratic Programming (QP) framework provides safety with precise con-
trol, making it adaptable for different deformable objects, as shown in simula-
tions. Real-time feedback from PBD simulations allows for quick adjustments.
However, there are some downsides. The method is computationally heavy. The
testing has been in simulations, not real-world settings. It assumes obstacles are
static, which is a limitation.

A framework including state estimation, task planning and trajectory plan-
ning
Complex tasks such as knotting ropes in manipulation of deformable objects is
addressed by in the paper[23].
The core of this framework relies on the Coherent Point Drift (CPD) algorithm,
which aligns the object’s estimated positions from the previous time step with
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current point cloud measurements from 3D cameras. This method allows for
robust real-time state estimation, even in the presence of noise and occlusions.
By discretizing the DLO into a set of nodes and using CPD to register these
nodes with the point cloud data, the system can effectively track the object’s
state.

Task planning is achieved by comparing the current state of the DLO with
a set of pre-recorded states using CPD. The system calculates a log-likelihood
value for each comparison to measure similarity and identify the current step
in the manipulation process. If the similarity is below a certain threshold, indi-
cating a failure, the system can prompt human intervention to correct the state,
which is then added to the set of known states for future recovery. For trajectory
planning, the framework uses a learning-from-demonstration approach, where
human operators demonstrate manipulation trajectories for specific initial states.
During execution, these trajectories are adapted to the current state using the
transformation function generated by CPD, ensuring accurate and feasible ma-
nipulation paths for the robot’s end-effectors. This closed-loop control strategy
allows for efficient and robust manipulation of DLOs, addressing challenges like
variability in object shapes and environmental conditions.

This control strategy has robust state estimation, effectively handling occlu-
sions and noisy sensor data, and integrates state estimation, task planning, and
trajectory planning into a coherent framework, simplifying implementation and
increasing efficiency. It adapts to real-time changes, and make sure flexible
manipulation, and benefits from human demonstrations, ensuring intuitive and
effective robot movements, while including mechanisms for failure detection
and recovery to improve reliability. However, it faces challenges such as compu-
tational complexity due to the intensive nature of CPD, dependence on sensor
data quality for accurate state estimation, the need for initial manual demonstra-
tions which can be time-consuming, potential difficulties in handling extremely
complex deformations which might reduce accuracy, and limited generalization
to new types of deformable objects, requiring additional training for different
objects.

Kinematic Chain
Kinematic chain model that is used for modeling, simplifies the complex dy-
namic of deformable object into manageable model for control in the paper [29].
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A camera as an observer to generate point cloud data of the DLO in real-time is
used. This data provides a direct observation of the DLO’s shape and position.
With the point cloud data, the observer estimates the state of the DLO by aligning
the observed shape with the simulated model. This process involves calculating
the deviation between the actual DLO and its simulated one and adjusting the
simulation to reduce this deviation. The observer calculates corrective forces
based on the deviations detected in the point cloud, updating the multibody
simulation to align it more closely with the observed state of the DLO.
The controller operates based on the kinematic model of the DLO, utilizing the
Jacobian matrix that relates joint velocities to changes in the position and orien-
tation of the DLO.
The controller is tasked with following a predefined trajectory. It calculates the
required joint velocities to minimize the positional error between the current
state of the DLO (as updated by the observer) and the desired trajectory.
Then it uses a feedback loop where the positional error influences the velocity
inputs, ensuring that the controller adapts to any deviations observed by the
point cloud data.
It does not need prior knowledge about the DLO’s physical properties, making
it easier to use with different DLOs. It is highly accurate, and uses point cloud
data effectively to keep track of the DLO’s state. The system also allows for dif-
ferent processing speeds for the camera and simulation, making it more flexible.
However, there are some drawbacks. The system requires a lot of computational
power. It is complex to implement because of the need for detailed simulations
and point cloud processing.

Dynamic Control Schemes for Single-Arm and Dual-Arm
The paper [16] presents control and planning strategies for manipulating de-
formable linear objects (DLOs) using robotic arms, focusing on both single-arm
and dual-arm control schemes. In the single-arm control strategy, one end of
the DLO is fixed, and the other end is controlled by a robotic arm to conform to
a predefined target curve on a plane. The target curve is divided into discrete
points, and the arm’s movement is adjusted dynamically based on the errors
between the current position of the DLO points and the target points. This
dynamic adjustment ensures the DLO progressively matches the target curve
as the arm moves, with control parameters fine-tuned through simulations and

66



CHAPTER 4. CONTROL STRATEGIES

validated in real robotic experiments.
The dual-arm control strategy involves manipulating both ends of the DLO

with two robotic arms. Initially, the DLO is positioned above the target plane,
and the arms move vertically in sync to bring the DLO into contact with the
plane. Once a starting point on the DLO aligns with the corresponding point on
the target curve, the arms move to shape the DLO according to the target curve.
The strategy ensures synchronized movements of both arms, preventing any
undesired stretching or distortion of the DLO. Errors between the DLO points
and the target points are calculated, and the horizontal velocities of the arms
are adjusted dynamically. A nontime perceptive reference-based coordination
method ensures both arms maintain synchronized movement, even if one arm’s
movement is interrupted.

Both strategies emphasize preprocessing the target curve, calculating posi-
tional errors, and dynamically adjusting the robot arm velocities based on these
errors. Control points for the arm movements are generated through simula-
tions and validated through real robotic experiments. The single-arm control
focuses on dynamic adjustments of one end, while the dual-arm control ensures
coordinated manipulation of both ends for precise and synchronized shaping
of the DLO.

This includes a detailed model that accurately captures stretching, bending,
and twisting of the DLO, effective single-arm control for simple tasks by adjust-
ing the robot’s motion based on errors, and precise dual-arm control for complex
shapes through coordinated movements. However, there are challenges such as
the difficulty and higher computational demands of coordinating two robotic
arms, the limited ability of single-arm control for complex shapes since it only
moves one end.

Real-time Physically-accurate Simulator for Long Flexible Cable Manipu-
lation
The paper [12] focuses on developing a simulation framework that supports
the control and planning of manipulating deformable objects, specifically long
flexible cables. The proposed method discretizes the cable into multiple rigid
cylindrical-link segments, each modeled with a complementarity-based con-
tact model and compliant coupling based on Cosserat rod theory. To enhance
computational efficiency, the cable is divided into subsystems of consecutive
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segments, allowing parallel solving of each subsystem’s dynamics. This paral-
lelized subsystem approach, combined with passive midpoint integration (PMI),
ensures stable and accurate simulation.
The framework includes a novel Gauss-Seidel based iterative solver that main-
tains inter-subsystem consistency through iterative enforcement of coupling
and contact impulses. To further improve convergence and simulation speed,
a projected Gauss-Seidel (PGS) post-regulation scheme is implemented. The
simulation accurately handles collision detection and self-collisions using an
adaptive subsystem division scheme and a generalized contact model that bet-
ter represents interactions for materials like polymers.

By integrating manipulator dynamics as additional subsystems, the frame-
work facilitates coordinated control of both the manipulator and the cable. The
simulation’s real-time performance is validated through experiments, ensuring
its accuracy and reliability.
The system is fine-tuned in real-time to match experimental data and ensure the
simulation remains accurate and stable. The simulation results are continuously
compared against experimental data to ensure they are realistic. Adjustments
are made to the solver’s parameters to improve convergence and stability, ensur-
ing the simulation runs efficiently without sacrificing accuracy.

Multivariate Dynamic Splines
Another approach of control strategy for manipulation of deformable linear ob-
jects (DLOs) such as cables and wires is utilizing advanced technology in the
form of multivariate dynamic splines that is represented in the paper [21]. The
model represents the DLO as a series of control points connected by spline func-
tions. This approach employs the flexibility and adaptability of spline-based
models to accurately predict and control the shape changes of DLOs during
robotic manipulation. The dynamic splines are utilized to do the DLO’s con-
figuration in real-time, enabling precise adjustments in response to dynamic
manipulation scenarios.
After constructing a dynamic model of the DLO using multivariate dynamic
splines, a manipulation primitive is defined as a specific action performed by
the robot on the DLO, such as moving one end to a new location. This step in-
volves defining how these primitives affect the control points of the DLO model.
Time-based spline interpolation is used to model how the control points evolve
during the execution of a manipulation primitive. This approach simplifies the
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continuous dynamic model into a discrete set of control points that can be effi-
ciently computed.
Before manipulation begins, the initial configuration of the DLO is detected and
estimated, typically using vision systems. This information initializes the con-
trol points for the dynamic model.
During manipulation, the model iteratively updates based on the robot’s ac-
tions and the resulting DLO behavior. This simulation involves recalculating
the positions of control points as the DLO moves, based on the dynamic spline
equations. The system uses a feedback loop to compare the predicted shape of
the DLO with its actual shape (as observed by sensors). Adjustments are made
to the robot’s actions based on this feedback to correct any deviations from the
desired trajectory.
The trajectory of the manipulation primitives is optimized in real-time to achieve
the desired end shape of the DLO. This involves minimizing a cost function that
can include factors like the energy used, time taken, and accuracy of the DLO
configuration. Using an iterative approach, the control strategy adjusts the ma-
nipulation primitives to handle dynamic changes in the DLO’s behavior and
external disturbances.

It has real-time prediction and control due to dynamic splines enabling
precise adjustments during manipulation, flexibility and adaptability through
spline-based models that works for various shapes and configurations, integra-
tion of a feedback loop that allows continuous error correction by comparing
predicted and actual shapes, and computational efficiency by reducing the dy-
namic model to discrete control points. However, it also has drawbacks such as
dependency on approximate solutions (simplified model) that may not capture
all physical behaviors, sensitivity to parameter selection requiring fine-tuning,
dependency on vision systems for initial configuration detection that can be
error-prone, potential convergence issues with the iterative algorithm especially
in complex tasks, and the need for robust computational hardware to meet real-
time requirements.

Global Planning and Local Control
The paper [19] presents a comprehensive strategy for dual-arm manipulation
of deformable linear objects (DLOs) by combining a global planning approach
with local control. The global planner uses a Constrained Bi-directional Rapidly-
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Exploring Random Tree (CBiRRT) framework, which efficiently explores the
configuration space and finds a collision-free path from start to goal configu-
rations. This method uses a simple mass-spring DLO energy model to project
random configurations onto stable ones, ensuring the feasibility of the path.
The planner grows two trees, one from the start and one from the goal, and
iteratively extends them towards each other until they connect, forming a coarse
path that avoids obstacles.

The local control strategy employs Model Predictive Control (MPC) to re-
fine the execution of the coarse path, compensating for modeling errors and
ensuring precise manipulation. The controller uses real-time feedback to adjust
the robot’s movements, employing artificial potentials to drive the DLO and
robot arms towards desired configurations while avoiding obstacles. The DLO’s
configuration is continuously updated using a learned Jacobian matrix, and the
control input is optimized to minimize deviations from the planned path. This
integrated approach ensures robust and accurate manipulation of DLOs in con-
strained environments, effectively combining the strengths of global planning
and local control.
The control strategy here has high precision in manipulation because it uses
both global planning and local control. It effectively avoids obstacles through
both planning and real-time adjustments. The strategy is robust to modeling
errors thanks to real-time feedback, and it is flexible enough to handle differ-
ent tasks and environments. The global planning phase is efficient because it
uses a simple mass-spring model. Combining global planning and local control
ensures strong overall performance. However, The local control phase can be
computationally demanding because it uses model predictive control (MPC).
It relies on accurate real-time feedback, which can be a problem if the data is
incorrect. Tuning the necessary parameters can be time-consuming.

Learning-Based Model Predictive Control (MPC)
In manipulation of linear objects in environment with obstacles, a control strat-
egy approach can be a effectively utilize of the predictive power of a learning-
based MPC with the robust safety that it is provided by a CBF-based filter. This
approach allows for precise and safe manipulation of deformable objects in clut-
tered or unpredictable environments that is introduced in the paper [24].
The control and planning strategy for manipulating deformable linear objects
(DLOs) in this paper combines learning-based Model Predictive Control (MPC)
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with a Control Barrier Function (CBF) safety filter. The MPC component utilizes
a global deformation model (GDM) that incorporates a self-attention mecha-
nism within a Transformer encoder to accurately predict the DLO’s deformation
behavior. This model is trained offline with data from unconstrained environ-
ments and fine-tuned online. The MPC formulates an optimization problem
over a receding horizon, generating reference actions that minimize deviation
from the desired configuration, avoid obstacles, and penalize large end-effector
velocities. These reference actions guide the DLO towards the target configura-
tion while considering the constraints of the environment.

To ensure safety and address potential inaccuracies in the global model pre-
dictions, the CBF safety filter refines the MPC-generated actions. It uses a local
linear deformation Jacobian model, updated online, to represent the DLO’s lo-
cal behavior more accurately. The safety filter solves a quadratic programming
problem to find the safest feasible actions close to the reference actions, ensuring
obstacle avoidance and adherence to control input constraints. This integrated
approach combines the predictive capabilities of learning-based MPC with the
safety assurances of the CBF filter, enabling robust and effective manipulation
of DLOs in complex, constrained environments.
It has good prediction accuracy because it uses a detailed model of how the
DLO changes with control inputs. The CBF-based filter adds a strong safety to
avoid collisions. This approach is adaptable to different DLO setups and has
been proven effective through many tests and real-world experiments. However,
there are some challenges. The method can be computationally heavy because
the MPC and safety filter need a lot of calculations. It relies on the accuracy of
the learned model, which might not work well if the training data isn’t good
enough. The need for continuous model updates adds extra computational load,
which can be challenging to manage in real-time.

4.1.2 M����-F��� C������

Deep Deterministic Policy Gradient (DDPG)
The main focus of a research that is done in paper [11] is using reinforcement
learning (RL) methods.
The problem is complex because it involves controlling not just the position but
also the shape of the object, which can change in non-linear ways due to its
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elastoplastic properties.
Deep Deterministic Policy Gradient (DDPG) method that is a model-free rein-
forcement learning approach is chosen to allows the system to learn effective
control strategies directly from interactions with the environment, without need-
ing a physical model of the DLO.
The DDPG learns a policy that maps the observed state of the DLO and the
gripper to actions that aim to achieve the desired shape.
The state space that includes the physical and geometric properties of the ob-
ject, such as its curvature and torsion, as well as the state of the robotic gripper
handling it, which includes positions and velocities. The action space is defined
by the velocity commands to the Cartesian gripper, that directly affect the ma-
nipulation of the DLO. The actor network in DDPG learns a deterministic policy
mapping these states to the actions that aim to achieve a desired shape of the
DLO, optimized by continuous adjustment of the network parameters.

The reward function is necessary in this approach as it guides the learning
process. It is designed to penalize the difference between the current shape of
the DLO and the desired shape. The function can include terms for the accuracy
of the shape achieved. There is actor and critic. The actor network proposes
actions (manipulations by the gripper) based on the current state, and the critic
network evaluates these actions by estimating the reward outcomes. Through
training, the actor’s policy is continuously adjusted to maximize the expected
rewards.
This method is flexible because it doesn’t need a physical model of the object,
making it suitable for various types of DLOs. It can handle the complex behav-
iors of materials that change shape both elastically (reversible) and plastically
(permanent). The method uses a detailed state space that includes the shape
and motion properties of the object, and the continuous action space allows
for precise control. The reward function is designed to help the system learn
by penalizing deviations from the desired shape. However, there are some
drawbacks. The method requires a lot of data to learn effectively, which can be
time-consuming and expensive. The method also needs significant computa-
tional resources for training and relies on accurate state estimation.

72



CHAPTER 4. CONTROL STRATEGIES

4.2 P�����

Manipulation of highly deformable materials like cloth is a very challenging
problem due to their high dimensionality and also needs for multiple grasp
points to fully manipulate the material.

4.2.1 M����-B���� C������

Task-level Optimization and Feedback Control
For manipulation of cloth-like materials that is a complex task that paper [10]
shows an approach with human-robot interaction can effectively used to handle
tasks. The collaborative approach ensures that the manipulation is performed
efficiently and safely, with the human providing oversight and the robot han-
dling precise, repetitive movements.
After system description and modeling the object, the next step of the manipu-
lation is task-level optimization.
It involves determining optimal position and velocity setpoints for the robot
based on human pose information. With using the position of the human, the
system computes an optimal pose for the robot that minimizes the internal force
of the cloth, promoting efficient and damage-free handling.
In the next step, a feedback control law that adjusts the robot’s motion in real
time to align with the human’s changes in position is used. This real-time ad-
justment is crucial for handling the unpredictable dynamics of cloth.
A quadratic program is formulated to solve for control signals that ensure the
robot achieves the desired end-effector velocities, adhering to both dynamic and
kinematic constraints.

It makes handling efficient by combining human decision-making with robot
precision, it adjusts in real-time to changes in the material using a feedback con-
trol law, it finds the best robot positions to avoid damaging the material, and it
follows rules to keep the robot’s movements safe and effective using a quadratic
program. However, there are some drawbacks. It depends a lot on human input,
which limits robot independence, it’s complex and requires a lot of computing
power due to sophisticated modeling and optimization, the robot’s base can’t
handle tight turns well because of nonholonomic constraints, and it can fail with
complicated movements.
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Model-Based Motion Planning Control
Dynamic Fabric Simulator (DFS), a particle-based model that is used in the Paper
[18] simulates the real-time behavior of deformable materials through intercon-
nected mass-spring systems. Complementing DFS, the Multi-Agent Handling
Planner (MAPL) uses inverse planning techniques to orchestrate the movements
of robotic agents based on the actions observed from human operators via the
Operator Tracking for Co-manipulation (OTC) module.
The outputs from the DFS and OTC into the MAPL, which then calculates how
robots should move to assist the human operator. This includes determining
optimal grasping points on the fabric and adjusting robot positions to prevent
fabric damage or inefficiency in handling.
Parameters of the model (like spring stiffness and damping in DFS) can be dy-
namically adjusted based on real-time feedback and empirical data, allowing
the system to adapt to different fabrics and manipulation requirements.

It can simulate fabric behavior in real-time, plans robot movements based on
human actions, adapts to different fabrics by adjusting settings, and prevents
fabric damage. It helps humans and robots work well together in factories by
tracking human actions with the Operator Tracking for Co-manipulation mod-
ule. However, it also has some downsides. Setting it up is complex because it
involves integrating different parts, it needs a lot of computing power for real-
time performance.

Model-Based Iterative Control Strategy
In the paper [7] the control strategy for manipulating deformable objects involves
a methodical process of simulation and iterative refinement. The procedure
starts by placing the target object on a working platform and aligning it with
the corresponding simulation model. Initial configuration properties, such as
key interest points, are determined to ensure a consistent relationship between
the simulated model and the real-world object. Velocity is then applied to the
model’s particles at positions corresponding to where the robotic manipulator
will grasp the object, simulating the expected deformation and manipulation
outcome. This process is iterative, involving continuous adjustments to the
grasping points and re-simulations until the handling process is successful in
the simulation. Once a satisfactory manipulation strategy is identified in the
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simulation, it is applied in real-world experiments to observe and verify the
handling task. These real-world experiments help in validating the simulation
results, ensuring the model’s predictions are accurate and the robotic manipu-
lation system can effectively handle flexible deformable objects. This strategy
ensures that the model is robust and effective for tasks such as hanging, spread-
ing, and folding.
It has versatility, accurate prediction, and robust calibration, allowing for fine-
tuned planning and execution. However, the approach has challenges such as
computational complexity, reliance on approximations, sensitivity to initial con-
ditions, and limited handling of multiple manipulators and collision detection.

Adaptive Control and Planning, Using Latent Representation and Graph
Dynamics
The control strategy in the paper [15] is using a latent representation of the
object’s physical properties. This representation is extracted by an adaptation
module from exploratory actions, such as a pulling interaction. The adaptation
module processes these observations to generate a latent representation that
encapsulates the elastic properties of the object. This representation is then
utilized by a forward dynamics module, which predicts the future states of
the deformable object based on this latent information. The forward dynamics
module employs a Graph Neural Network (GNN) to model the object’s state as
a graph, enabling accurate predictions of how the object will respond to various
control actions.

For control and planning, there is a training an inverse dynamics model,
which calculates the control actions needed to achieve specific state transitions.
By providing an initial and a desired state of the deformable object, this model
determines the necessary actions to manipulate the object effectively. More-
over, the learned latent representations can be transferred to different tasks and
environments, enhancing the model’s generalizability. This allows for the ap-
plication of the model to various manipulation tasks, such as lifting or bandag-
ing, both in simulation and real-world scenarios. The approach shows robust
adaptability, as the models are able to generalize to new deformable objects
with different physical properties, enabling effective and flexible manipulation
strategies in robotic systems.

G-DOOM (Graph dynamics for DefOrmable Object Manipulation)
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Another approach for manipulation of deformable object is G-DOOM (Graph
dynamics for DefOrmable Object Manipulation) that performs visual manipu-
lation that is introduced in the paper [17].
After graph-based dynamics modeling of these objects that is keypoints detec-
tion and graph construction, the G-DOOM framework incorporates a recurrent
neural network (RNN) with the GNN. As it’s important to consider not only
where the keypoints are located on the object but also how they move and in-
teract as the object is manipulated over a period of time and this combination
tracks the changes of keypoint interactions over time, thus maintaining a state
about the object’s configuration across frames.

Figure 4.3: compose keypoint features into a graph, learning re-
current graph dynamics

The next step is applying model-predictive control (MPC) to predict and
plan the necessary robot actions to manipulate the object towards a desired
state. This includes computing the future states of the object under different
possible actions and selecting the action such as folding a cloth.

And there is a real-time adjustment that as actions are executed, new visual
data are collected and processed to update the keypoints and their dynamics.
The MPC loop uses this updated information to refine future actions continually.

The G-DOOM control strategy has many strengths. It uses a graph of key-
points with graph neural networks (GNN) and recurrent neural networks (RNN)
to effectively model the complex movements of deformable objects. This method
makes it easier to understand and predict how objects change shape over time,
even when parts of the object are hidden. Model-predictive control (MPC) helps
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plan and adjust actions in real-time, making the system robust and adaptable
in both simulated and real-world tests. However, there are some downsides.
Building and processing these graphs takes a lot of computing power, and rely-
ing on a few keypoints might miss some details. Training the system requires a
lot of data.

4.2.2 M����-F��� C������

Model-free control strategy instead of relying on a predefined physical model
of the material (model-based), this approach uses learned behaviors from data.
The CNN acts as a black-box predictor that estimates deformations based on
visual inputs, which the control system then uses to adjust the robot’s actions.

Convolutional Neural Networks (CNNs)
Paper[20] involves data-driven approach using an ensemble of Convolutional
Neural Networks (CNNs) and a 3D camera for depth mapping.

Figure 4.4: Control scheme.

The first step for manipulation of soft material in this paper is data collection
that it collects depth images of the deformable material (carbon fiber ply) under
various configurations using a 3D camera. These images represent different
states of deformation caused by relative human-robot displacement.
In the preprocessing step these images are preprocessed to segment the material
and filter out unnecessary background information, enhancing the accuracy of
deformation detection.
In neural network training step multiple CNNs are trained on the preprocessed
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images to predict the deformation of the material based on the visual data. The
network outputs an estimated displacement of the material relative to its nomi-
nal position.
In control implementation part, the estimated displacement information is used
to calculate a control command for the robot. A proportional controller converts
the displacement error (difference between current and desired positions) into
velocity commands for the robot’s tool.

The control strategy in the paper has several benefits, including efficiency
and adaptability because it uses a data-driven approach that avoids complex
simulations and learns from visual data. The method is accurate and robust.
It’s easy to implement with a simple proportional controller that converts dis-
placement errors into velocity commands (as the proportional controller takes
the estimated displacement error and it is straight forward method), and CNNs
automatically extract useful visual features. However, there are some draw-
backs. It doesn’t handle rotational movements. It can be sensitive to noise and
inaccuracies at high speeds due to averaging depth images, which can blur the
input. (there is trade-off between noise reduction and accuracy at higher speed).

4.3 T����-D����������

The objects with three dimensional shape, they can include anything from
soft materials to complex structures. Managing and controlling these de-
formable objects involves understanding their physical properties and devel-
oping strategies to manipulate them effectively.

4.3.1 M����-B���� C������

FEM-based Deformation Control for Dexterous Manipulation of 3D Soft
Objects
In the paper [3] after modeling the deformable object using the Finite Element
Method (FEM), the control strategy for manipulation focuses on computing the
necessary contact forces to achieve a desired deformation. This is framed as
an inverse simulation problem where Lagrange multipliers represent the force
intensities applied at the contact points by the robotic fingertips. The optimiza-
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tion problem aims to minimize the displacement difference between actual and
desired positions of end-effector points, projected into the constraint space us-
ing the Schur complement for computational feasibility. This process involves a
multi-rate control loop, with a low-frequency loop for FEM computations and a
high-frequency loop for solving the Quadratic Programming (QP) problem and
controlling the actuators in real-time.

For the dexterous manipulation of the object, the SCHUNK 5-Finger Hand
(S5FH) is used, with its kinematics modeled to compute joint displacements
required for desired fingertip positions. The closed-loop inverse kinematic al-
gorithm (CLIK) controls the hand, addressing errors due to underactuation
and sensor inaccuracies. The desired deformation can be specified via a GUI
or predefined trajectories. While the initial approach is open-loop, estimating
elasticity parameters beforehand helps minimize errors. Future improvements
aim to incorporate vision feedback to enhance accuracy and reduce errors from
model approximations and mechanical limitations.

The initial control strategy is open-loop, which means there is no feedback
mechanism to correct errors in real-time during the manipulation process. This
can lead to inaccuracies.

Using Real-Time Visual Tracking and Elasticity Parameter Estimation
The control strategy in the paper [22] centers on real-time deformation tracking
using an RGB-D camera that captures the object’s deformation. The initial pose
of the object relative to the camera is determined using pre-trained markers.
The visual tracking data drives a physics-based simulation to update the object’s
state, minimizing the point-to-plane error between observed deformations and
the simulated model. This iterative process employs a Jacobian matrix and an
Iteratively Reweighted Least Squares (IRLS) scheme to continually refine the
tracking accuracy.

The planning strategy involves an adaptive process where the robot manip-
ulates the object while continuously capturing its deformation with the RGB-D
camera. The visual data updates the FEM simulation in real-time, reflecting
the actual deformations. During manipulation, the system estimates the elas-
ticity parameters, such as the Young’s modulus, using measured external forces
applied to the object by the robot’s end-effector. This estimation is achieved
through the Levenberg-Marquardt optimization, which iteratively adjusts the
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parameters to minimize the error between tracked and simulated deformations.
Once the elasticity parameters are accurately estimated, the system can per-

form remote force estimation using visual data alone, eliminating the need for
a force sensor. This enables the robot to predict and apply precise forces for
desired deformations, enhancing control strategies. The method handles occlu-
sions and errors robustly.

Figure 4.5: The STEPE and Remote Force Estimation architecture.

The control strategy here has real-time adaptability, it works with various soft
objects without needing to know their properties beforehand, combines visual
and force data for accurate tracking, and improves precision by continuously
updating its model. It can also predict forces without direct measurements and
works with different shapes and complexities of objects. However, there are
some downsides. The method requires a lot of computational power, relies on
accurate sensors, can be affected by lighting and occlusions, only works well for
small deformations.

4.3.2 M����-F��� C������

Robust Shape Estimation for Deformable Object Control
In the paper [6] the control and planning strategy for manipulating deformable
objects is centered around a robust, real-time shape estimation approach. This
method uses an RGB-D camera to capture depth images of the object and em-
ploys a joint tracking and reconstruction framework to continuously update and
refine the object’s shape model. The tracking component estimates the defor-
mation model by aligning a reference shape model with the live input from the
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camera, while the reconstruction component integrates multiple RGB-D frames
into the reference shape model to enhance its accuracy and detail.

Figure 4.6: Shape Estimation Pipeline

The system operates in a shape control framework, where the robot iteratively
estimates the current shape of the deformable object and uses the difference be-
tween the current and desired shapes to generate control signals. The deforma-
tion model, crucial for this process, combines a global rigid transformation and
local non-rigid deformations represented by a sparse deformation graph. This
model allows the system to handle complex deformations in real-time, ensuring
that the shape estimation remains accurate even under challenging conditions
like noise and occlusions.

The control strategy here includes real-time performance due to efficient
parallel processing, model-free flexibility allowing adaptability to various de-
formable objects without prior knowledge, robustness to noise by integrating
multiple frames, and robustness to occlusion through joint tracking and recon-
struction. Additionally, it provides high-quality shape reconstruction by main-
taining a continuously updated high-resolution reference model. However, it
has some limitations, such as dependency on precise deformation estimation,
challenges in handling large deformations and complex topological changes due
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to limitations of the ARAP regularization term, It requires significant computa-
tional power, especially for the GPU-based solver. Lastly, errors can accumulate
over time, reducing accuracy.

Deep Neural Networks (DNNs)
An approach that is learning-based, model-free is presented in paper [8] , utiliz-
ing deep neural networks (DNNs), the strategy avoids the need for pre-defined
physical models, learning directly from sensory data captured during manipu-
lation tasks. And it is not only robust but also adaptive, continuously refining
its performance through an online learning process.

The core of the control strategy involves a 5-layer deep neural network (DNN)
designed to approximate the deformation function. This network maps the fea-
ture velocities (changes in the feature vector) to control velocities for the robotic
end-effector. The DNN is trained online, meaning it continually updates its pa-
rameters using real-time data collected during the manipulation process. This
online learning approach ensures the model becomes increasingly accurate and
robust over time.

The control process is executed by computing the difference between the
current feature vector and a target feature vector, which represents the desired
state of the object. The DNN uses this difference to predict the necessary control
velocities to minimize the gap, guiding the robotic end-effector to achieve the
desired deformation. Additionally, an occlusion recovery algorithm is employed
to maintain a complete point cloud representation, even when parts of the
object are occluded during manipulation. This involves real-time tracking and
reconstruction to fill in any missing data.

The output of the deep neural network (DNN) is the control velocity for
the robotic end-effector. This control velocity is a six-dimensional vector repre-
senting the required movements along the x, y, and z axes, to manipulate the
deformable object towards its desired state.

The DNN takes the feature velocities (which are the changes in the feature
vector derived from the 3-D point cloud data) as input. It then processes this
input through its layers to predict the control velocities that will minimize the
difference between the current state of the deformable object and the target state.
These predicted control velocities guide the robotic end-effector’s movements to
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Figure 4.7: The Online Learning Process

achieve the desired deformation of the object.
This control strategy doesn’t need predefined physical models, making it

flexible for different deformable objects by learning directly from sensory data.
Using deep neural networks gives it strong representation power and the ability
to improve continuously through online learning, adapting to new data in real-
time. However, there are some downsides. It requires a lot of computational
power due to the complexity of the neural networks and real-time processing. It
depends on accurate real-time tracking and reconstruction to handle occlusions,
which can affect its performance if not done correctly.
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5
Conclusion

This thesis offers a comprehensive analysis of contemporary modeling and
control strategies for the manipulation of deformable objects. The research cat-
egorizes existing methodologies into three approaches: analytical, numerical,
and data-driven for modeling; and model-based, model-free control strategy.
We evaluates the strengths, limitations, and suitable applications of each tech-
nique, providing separate assessments for both modeling methods and control
strategies.

Initially, we proceed through the modeling section:
Analytical methods for linear deformable objects (DLOs), has high precision and
theoretical clarity, making them suitable for well-defined systems. They excel in
applications where the physical properties and boundary conditions are accu-
rately known and do not change significantly. However, they are limited by their
assumptions and may not capture the full complexity of real-world behaviors.
Numerical methods handle complex geometries and material properties, provid-
ing detailed simulations of DLO behavior under various conditions. Moreover,
they are adaptable to different scenarios but can be computationally intensive
and require careful parameter tuning. Data-driven methods excel in handling
nonlinearities and complex interactions that are challenging for traditional mod-
eling techniques. They are particularly useful when the underlying physics is not
well understood or when the material properties are highly variable. However,
they require significant computational resources and high-quality training data.
Applications include real-time control in dynamic environments and adaptive
manipulation tasks.
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Numerical methods for planar deformable objects, for materials like cloth and
fabrics have detailed and accurate simulations by approximating the object’s be-
havior under various forces. However, they are computationally demanding.
Data-driven approaches for planar objects capture complex interactions within
fabrics. These models are adaptable and generalizable, making them suitable
for real-time applications where speed and flexibility are crucial. However, they
depend heavily on the quality and quantity of training data.
Analytical methods for 3D deformable objects includes representing the object
using mathematical equations based on physical laws. These methods, though
less commonly used than numerical methods, they can be useful in specific,
simpler scenarios. Numerical methods for 3D deformable objects has detailed
presentation of complex behaviors like bending and stretching. These methods
ensure physical accuracy but they have high computational complexity and re-
quire careful parameter tuning.

We next proceed to the control strategy section, which constitutes the subse-
quent necessary step for the manipulation of deformable objects:
Model-based control strategies for DLOs focus on reducing oscillations at the
DLO’s end, ensuring stability and precision. These strategies require accurate
modeling and are effective in achieving smooth operations but can be complex
to implement due to the need for detailed mathematical models and parameter
tuning. Model-free control approaches have flexibility and adaptability without
needing a predefined physical model. These methods excel in handling various
DLOs and their complex behaviors but require extensive data for training and
good computational power for real-time application.
The control strategies for planar deformable objects, such as fabrics and sheets,
present unique challenges due to their high dimensionality and the need for mul-
tiple grasp points. Model-based approaches has precise control and real-time
adjustments, making them suitable for applications requiring detailed manipu-
lation of planar objects. These methods are effective in scenarios where accurate
modeling of the object’s behavior is needed and computational resources are ad-
equate to support complex simulations. Model-free strategies, uses data-driven
techniques provide robust and adaptable solutions that can learn from experi-
ence. These methods are particularly advantageous in environments where the
object’s properties are difficult to model accurately. However, they require major
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amounts of training data and are sensitive to noise and inaccuracies, particularly
at high speeds.
The model-based for 3D provide high precision by utilizing detailed physical
models. These methods are suitable for applications requiring accurate control
of the object’s shape and deformation, it is ensuring precise manipulation. How-
ever, these strategies are computationally demanding. Model-free strategies, has
significant flexibility by learning from data. These approaches are advantageous
in environments with unpredictable dynamics, as they do not rely on predefined
physical models. However, they necessitate extensive training data and compu-
tational power, and can be sensitive to noise and inaccuracies, especially at high
speeds.
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