
Top International Managers in Engineering

University of Padua
Department of Information Engineering
MSc in Control Systems Engineering

Technical University of Denmark
Department of Applied Mathematics and Computer Science

MSc in Computer Science and Engineering

Huawei’s Munich Research Center
Advanced Wireless Technologies Lab

Robotic Taskforce Group

Master Thesis in:

Cooperative Carrying Control
for Mobile Robots in Indoor Scenario

Supervisor: Student:
Prof. Maria Elena Valcher Alessandro Canevaro

Co­Supervisors:
Prof. Xenofon Fafoutis
Dr. Hanwen Cao
Dr. Massimiliano Maule

Academic Year: 2022 ­ 2023
Graduation Date: July 13th

Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Master Thesis
June, 2023

By
Alessandro Canevaro

Copyright: Reproduction of this publication in whole or in part must include the custom­
ary bibliographic citation, including author attribution, report title, etc.

Approval
This master thesis was prepared over a period of five months at the Advanced Wireless
Technologies Lab, located at Huawei’s Research Center in Munich, Germany.

It is submitted in partial fulfilment of the requirements for the Master of Science degree in
Control Systems Engineering at the University of Padua, Italy, and the Master of Science
degree in Computer Science and Engineering at the Technical University of Denmark, as
part of the Top International Managers in Engineering double degree program.

The thesis encompasses a comprehensive exploration of cutting­edge topics, including
Robotics, Reinforcement Learning, Control and Sensing systems, and 5/6G Communica­
tions.

Alessandro Canevaro

Signature

Date

ii Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Acknowledgements
I am immensely grateful to my esteemed advisor, Professor Maria Elena Valcher, whose
support and advice have been indispensable throughout the entirety of my master’s pro­
gram. Her expertise and endless patience have played a crucial role in the success of
my academic journey, and her personal guidance regarding my future pursuits has been
priceless.

Likewise, I extend my heartfelt appreciation to Professor Xenofon Fafoutis’s mentorship,
for his assistance and sage advice during the composition of my master’s thesis. His
wisdom and feedback have not only augmented but elevated the overall caliber and pro­
fundity of my research.

I am sincerely grateful to the Advanced Wireless Technology Lab for granting me the
opportunity to conduct my research and for all of the resources and support they gener­
ously provided. I would like to express my thanks to Dr. Hanwen Cao for his invaluable
feedback and suggestions. Moreover, I extend a special acknowledgement to Dr. Massi­
miliano Maule, who went above and beyond in aiding me in this work with his exceptional
assistance. His insights and guidance were fundamental in shaping the trajectory of my
research.

To my beloved parents, I am deeply thankful for their unwavering love and support through­
out this transformative journey. Without their constant encouragement and motivation, I
would not have had the strength to get through the challenges and complete this academic
voyage.

Last but certainly not least, I extend my sincere gratitude to all the exceptional colleagues
and friends I encountered during these years. Their willingness to share their experiences
and insights has substantially contributed to both the refinement of my professional and
personal growth, making this entire process even more enriching and rewarding.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario iii

List of Figures
2.1 Example of RL notation used for MDP. 11
2.2 A schematic representation of the unicycle model. 15
2.3 Motion model path decomposition. 19
2.4 New pillars of 6G technologies. 22

4.1 Types of analyzed grid world environments. 30
4.2 Example state matrices that represent a grid world environment. 32
4.3 Output matrices of Φ layer and output matrix of the VProp module. 33
4.4 Scheme of the proposed architecture. 34
4.5 Convolution operator employed to identify suitable spawning locations for

the MRS and the target area. 43
4.6 Joints connecting the robots with the transported object. 45
4.7 Reference frames in the MRS. 46
4.8 Cartesian polynomials path generation algorithm for MRSs. 48
4.9 Non­linear trajectory tracking control scheme. 52
4.10 Compensation of odometry drift error by the AMCL algorithm. 53
4.11 Turtlebot3 ­ model Burger. 56
4.12 Simulated 3D environment and MRS model. 57
4.13 Intra and inter­robot communication scheme. 58
4.14 ROS communication scheme of the intra­robot control loop enhanced with

sensor­based localization algorithm. 59

5.1 Single­agent training results. 62
5.2 Single­agent performance results. 63
5.3 Multi­agent training results in the cooperative static scenario. 65
5.4 Multi­agent training results in cooperative indoor dynamic scenario. 66
5.5 ∆Q metrics during multi­agent training in the indoor dynamic environment. 67
5.6 Example of RL planner combined with the path generation algorithm. 68
5.7 Pathloss values and virtual obstacles. 69
5.8 Controller performances in tracking a reference trajectory. 70
5.9 Global and Local position error metrics comparing different localization strate­

gies. 71
5.10 Global and Local position error metrics comparing the AMCL localization

algorithm with different measurements noise levels. 71

iv Cooperative Carrying Control for Mobile Robots in Indoor Scenario

List of Tables
2.1 Value iteration. 13

4.1 Multi­Agent Actor­Critic. 37
4.2 NN parameters. 43
4.3 Roto­Translation. 47
4.4 Noisy Odometry. 55
4.5 Control node. 58

5.1 Single­agent after­training performance metrics. 64

Cooperative Carrying Control for Mobile Robots in Indoor Scenario v

Acronyms

A2C Advantage Actor­Critic
A3C Asynchronous Advantage Actor­Critic
AGV Automated Guided Vehicle
AI Artificial Intelligence
AMCL Adaptive Monte Carlo Localization
APF Artificial Potential Fields

BFS Breadth First Search

CL Curriculum Learning
CNN Convolutional Neural Network
CoBots Collaborative Robots
CPS Cyber Physical Systems

DFS Depth First Search
DNN Deep Neural Network
DOF Degree Of Freedom
DPG Deterministic Policy Gradient
DQN Deep Q­Network
DRL Deep Reinforcement Learning

eMBB Enhanced Mobile Broadband

GAE Generalized Advantage Estimator

IMU Inertial Measurement Unit
InF Indoor Factory
IoT Internet of Things
ISAC Integrated Sensing and Communication

KF Kalman Filter

LIDAR Light Detection And Ranging
LOS Line­Of­Sight

MARL Multi­Agent Reinforcement Learning
MCL Monte Carlo Localization
MDP Markov Decision Process
ML Machine Learning
mMTC Massive Machine Type Communications
MPC Model Predictive Control
MRS Multi­Robot System
MVProp Max­Propagation

NLOS Non­Line­Of­Sight
NN Neural Network

vi Cooperative Carrying Control for Mobile Robots in Indoor Scenario

PF Particle Filter
PID Proportional Integral Derivative
PPO Proximal Policy Optimization
PRM Probabilistic Road Map

RADAR Radio Detection And Ranging
RHC Receding Horizon Control
RL Reinforcement Learning
ROS Robot Operating System
RRT Rapid­exploring Random Tree

SAC Soft Actor­Critic
SB3 Stable Baseline 3
SDF Spatial Data File
SLAM Simultaneous Localization And Mapping
SoA State­of­the­Art
SONAR Sound Navigation And Ranging
STL Standard Tessellation Language

TDOA Time Difference Of Arrivals

UAV Unmanned Aerial Vehicles
URLLC Ultra Reliability and Low Latency Communi­

cations

VI Value Iteration
VIN Value Iteration Network
VO Visual Odometry
VPN Value Propagation Network
VProp Value Propagation

Cooperative Carrying Control for Mobile Robots in Indoor Scenario vii

Abstract
In recent years, there has been a growing interest in designing multi­robot systems to
provide cost­effective, fault­tolerant and reliable solutions to a variety of automated ap­
plications. In particular, from an industrial perspective, cooperative carrying techniques
based on Reinforcement Learning (RL) gained a strong interest. Compared to a single
robot system, this approach improves the system’s robustness and manipulation dexterity
in the transportation of large objects. However, in the current state of the art, the environ­
ments’ dynamism and re­training procedure represent a considerable limitation for most
of the existing cooperative carrying RL­based solutions.
In this thesis, we employ the Value Propagation Network (VPN) algorithm for cooper­
ative multi­robot transport scenarios. We extend and test the ∆Q cooperation metric to
V­value­based agents, and we investigate path generation algorithms and trajectory track­
ing controllers for differential drive robots. Moreover, we explore localization algorithms
in order to take advantage of range sensors and mitigate the drift errors of wheel odome­
try, and we conduct experiments to derive key performance indicators of range sensors’
precision. Lastly, we perform realistic industrial indoor simulations using Robot Operat­
ing System (ROS) and Gazebo 3D visualization tool, including physical objects and 6G
communication constraints.
Our results showed that the proposed VPN­based algorithm outperforms the current state­
of­the­art since the trajectory planning and dynamic obstacle avoidance are performed in
real­time, without re­training the model, and under constant 6G network coverage.

viii Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Contents
Preface . ii
Acknowledgements . iii
List of Figures . iv
List of Tables . v
Acronyms . vi
Abstract . viii

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and Key Contributions . 1
1.3 Thesis Structure . 2

2 Background Material 5
2.1 Cooperative Robotics . 5

2.1.1 Definitions . 5
2.1.2 Benefits and Challenges . 5
2.1.3 Taxonomy . 6

2.2 Motion Planning . 7
2.2.1 What is Motion Planning? . 7
2.2.2 Single­robot Motion Planning . 8
2.2.3 Metrics . 9
2.2.4 Path Planning & Control Strategies 9

2.3 Reinforcement Learning . 10
2.3.1 Modelling the Environment . 10
2.3.2 Agent Decision Making . 11
2.3.3 RL Algorithms . 12

2.4 Mobile Robots . 14
2.4.1 Overview of Mobile Robot Architectures 14
2.4.2 Unicycle Kinematic model . 15

2.5 Localization and Mapping . 16
2.5.1 Sensors for Localization . 16
2.5.2 Mapping . 17
2.5.3 Sensor Fusion . 18
2.5.4 Odometry Motion Model . 19
2.5.5 Range Finder Measurements Model 20

2.6 Telecommunications in Robotics . 21
2.6.1 5G Technologies . 21
2.6.2 6G Technologies . 21

3 Literature Review 23
3.1 MRSs Motion Planning and Formation Control 23

3.1.1 Traditional Techniques . 23
3.1.2 AI­based Techniques . 24
3.1.3 Formation Control . 24

3.2 Analysis of Key Related Works . 25

Cooperative Carrying Control for Mobile Robots in Indoor Scenario ix

4 System Model & Key Enablers 27
4.1 Environment Model . 27

4.1.1 Grid Worlds . 27
4.1.2 Markov Decision Processes . 28
4.1.3 Types of Environments . 29

4.2 RL­based Motion Planning . 29
4.2.1 Agent’s Neural Network Architecture 31
4.2.2 Actor­Critic Training Algorithm . 34
4.2.3 Evaluation Techniques . 36
4.2.4 Curriculum Learning . 39
4.2.5 Enhanced Planning with 6G Connectivity 40
4.2.6 RL Experimental Configuration . 41

4.3 Multi­Robot 2D­3D Control System . 44
4.3.1 Transforming Actions into Waypoints 45
4.3.2 Multi­Robot Paths and Trajectories 47
4.3.3 Monte Carlo Localization . 52
4.3.4 Metrics for Localization . 53
4.3.5 Generating Noisy Measures . 54
4.3.6 Experimental Platform: Simulations and 3D Visualization 54

5 Results & Discussion 61
5.1 Training and Performance Results of the RL Planner 61

5.1.1 Single­Agent Scenario . 61
5.1.2 Cooperative Scenario . 64
5.1.3 Indoor Scenario . 65
5.1.4 Integration with the Path Generation Algorithm 66
5.1.5 Integration with 6G Radio Coverage Constraints 67
5.1.6 Comparison with the SoA . 67

5.2 Tracking Controller Performance . 68
5.3 Localization Results and Experiments . 69

6 Conclusions & Future Work 73
6.1 Conclusions . 73
6.2 Future Work . 74

Bibliography 75

A Actor­Critic Additional Material 81
A.1 Derivation of the REINFORCE Gradient Estimator 81
A.2 The Baseline Term Does Not Affect the Gradient Estimates 83

B Listings 84
B.1 Value Propagation Module . 84
B.2 Actor Network . 85

x Cooperative Carrying Control for Mobile Robots in Indoor Scenario

1 Introduction
1.1 Motivation
In recent years, there has been a notable upsurge in the deployment of robots within the
manufacturing industry, encompassing sectors such as automotive, electrical, metal, and
machinery. Projections indicate that this growth trajectory is likely to persist in the coming
years, underlining the profound impact of robotics in this domain. Notably, a prime appli­
cation for robots is in the transportation and manipulation of large and heavy objects, an
arduous task often beyond the capabilities of human workers [1]. To address these com­
plex tasks, the adoption of Multi­Robot Systems (MRSs), specifically cooperative ones,
has emerged as a successful concept. Cooperative MRSs have long been a focal point
in the field of robotics, as they offer several advantages compared to single robots, and
they broaden the spectrum of tasks that can be accomplished by a robotic system.

Concurrently with the ongoing proliferation of robots in industrial settings, two additional
catalysts, namely Machine Learning (ML) and 6G technologies, have recently emerged
displaying promising potential in addressing the long­standing challenges faced by MRSs.
As a result, MRSs have lately garnered considerable attention and generated significant
interest within both the scientific and industrial communities.

The primary challenge of MRSs lies in their efficient coordination and control. Traditional
methodologies, owing to the intricate dynamics involved, frequently fall short and face
considerable difficulties when applied in this context. However, the advent of ML, which
has pervaded the field of robotics, offers novel opportunities. These pioneering tech­
niques hold immense potential in bolstering the autonomy of robots and, more precisely,
in tackling the planning and coordination challenges encountered within MRSs.

The stringent communication and perception requirements pose additional challenges in
the realm of MRSs. Indeed, to attain remarkable outcomes in terms of planning and co­
ordination, these two other aspects mandate a strong focus. In the domain of robotics,
telecommunications have already received considerable attention with the advent of 5G
technology. Similarly, perception capabilities continue to be refined through the intro­
duction of increasingly sophisticated sensing devices. Nevertheless, MRSs still present
numerous challenges in these domains. Consequently, these systems have emerged as
a prominent research area in the field of telecommunications, particularly in the context
of 6G technologies.

While acknowledging that ML and 6G technologies are still in the developmental phase
and not yet mature for real­world deployment, their profound potential drives our motiva­
tion to bridge this gap. In this thesis, we present a pioneering solution to the challenge of
cooperative carrying tasks within MRSs. Our objective is to specifically address the under­
lying reasons why existing State­of­the­Art (SoA) techniques have yet to find widespread
adoption in industrial settings. By targeting these limitations, this research aims to con­
tribute to the advancement of MRSs and pave the way for their practical implementation
in the industry.

1.2 Scope and Key Contributions
Our primary research objective is to investigate the design and implementation of a multi­
robot motion­planning algorithm for cooperative carrying. Existing literature lacks a com­
prehensive solution that effectively navigates in dynamic environments, where obstacles

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 1

may be not known in advance, and while also encompassing the advantages offered
by Reinforcement Learning (RL) approaches. To address this gap, we propose a novel
approach that achieves the desired objective through an adaptation of the Value Prop­
agation Network (VPN) algorithm [2]. We conducted thorough testing and validation of
our algorithm across a diverse range of scenarios, including those that closely resemble
the ones encountered in the literature, as well as custom­generated environments that
emulate indoor scenarios commonly encountered in industrial settings where the robots
will operate.

We place significant emphasis on performance metrics, as they are crucial for evaluating
the efficacy and capabilities of a solution, particularly when it involves RL algorithms. In
line with this, we have extended the recently published novel metric, ∆Q, which quantifies
the level of cooperation among robots. This extension enables its applicability to a wider
range of RL algorithms.

We leveraged the 6G connectivity to enhance the proposed planning algorithm to address
the low signal coverage problem, that manifests when the robot system moves inside the
indoor scenario. To overcome this challenge, our solution integrates a radio coverage map
into the planning algorithm. As a result, the robot’s trajectory proactively avoids areas with
insufficient coverage, ensuring seamless connectivity for the robots to accomplish their
mission.

The research focus subsequently shifts towards conducting realistic simulations to eval­
uate the effectiveness of the developed solution. This entails an in­depth investigation of
the path generation algorithm and trajectory tracking controllers for MRSs. To facilitate
these simulations, we expanded upon the experimental platform originally constructed for
testing the RL planner, incorporating additional components and 3D visualization tools.
In order to effectively coordinate the simulations and enable seamless communication
among the various components, we employed the Robot Operating System (ROS).

To enhance the realism of the simulations, we incorporated simulated sensor measure­
ment noise and a localization algorithm. By introducing these elements, we aimed to emu­
late real­world conditions more accurately and account for the uncertainties and limitations
typically encountered in robotic systems. Furthermore, leveraging this comprehensive
framework, we conducted preliminary tests to validate the applicability and effectiveness
of 6G sensing devices in robotic contexts.

1.3 Thesis Structure
This thesis is organized as follows. Chapter 2 serves as the foundation, providing a
comprehensive technical background for the key concepts addressed in this study. We
commence with a thorough overview of cooperative robotics and motion planning. Sub­
sequently, we delve into the fundamental principles of RL. Following this, we explore
path generation algorithms, trajectory tracking controllers, and localization strategies. Fi­
nally, we present an overview of how the relationship between telecommunications and
robotics evolved over time. In Chapter 3, we conduct an in­depth analysis and discussion
of the current SoA in MRSs motion planning and formation control, examining the exist­
ing methodologies and their advantages and limitations. Chapter 4 is divided into three
principal sections. The first section delves into the process of modelling the real­world
environment employing established techniques commonly utilized in the realm of RL. The
second section introduces the proposed RL­based planning solution. The third section is
devoted to designing the control system employed to interface the planning algorithm with
the robotic systems, along with the development of a 3D simulation platform. In Chapter

2 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

5, we carefully analyze the results obtained from our solution, critically examining their
implications. Lastly, in Chapter 6, we summarize the key findings of our work, while also
providing valuable insights into potential future extensions and advancements.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 3

4 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

2 Background Material
2.1 Cooperative Robotics
In this section, we aim to provide a concise introduction to the field of cooperative robotics.
We shall begin by clarifying its fundamental definitions before delving into its advantages
and disadvantages. Finally, we will present a comprehensive summary of the cooperative
robotic taxonomy.

2.1.1 Definitions
The scientific literature exhibits inconsistencies regarding the definition of cooperative
robotics, leading to two distinct interpretations.

The first definition stems from the MRS taxonomy, where cooperation is defined in opposi­
tion to competition. Specifically, a cooperative MRS encompasses multiple robots united
by a shared objective, necessitating their interaction, communication, and coordination
to accomplish it. Prominent tasks within cooperative MRSs involve exploration, search
and rescue operations, as well as transportation. Conversely, competitive MRSs entail
multiple robots competing against each other to achieve individual objectives, such as in
zero­sum games like robot soccer leagues.

Within the context of this thesis, our focus lies specifically in cooperative carrying, which
can be delineated as an MRS wherein robots coordinate and synchronize their actions
to achieve a collective goal, specifically the transportation of an object from an initial to
a target location. This definition, however, does not preclude scenarios where a single
robot undertakes the object transportation, while others assume auxiliary roles in planning
or sensory operations [3].

A second definition arises from the classification of Collaborative Robots (CoBots), which
positions cooperative robots as an intermediary category between industrial robots and
CoBots. In this categorization cooperative robots seek to combine the advantages of
industrial robots with additional benefits conferred by safety sensors, enabling safe oper­
ation in proximity to humans [4].

2.1.2 Benefits and Challenges
The advantages of employing an MRS over a single robot are manifolds:

• Enhanced performance: MRSs demonstrate superior performance in terms of ex­
ecution time and energy consumption. For instance, a task like exploration can be
partitioned into sub­tasks, where each robot covers a smaller area. As a result,
the total time required for completing the task is significantly reduced, thanks to the
parallel execution of sub­tasks.

• Increased manipulation dexterity: MRSs enable improved manipulation capabilities,
as exemplified by some cooperative carrying scenarios. The ability to grasp the
object from multiple points simultaneously empowers the robots to execute intricate
manoeuvres and more effectively handle large, fragile, or flexible objects.

• Enhanced reliability and fault tolerance: the redundant nature of MRSs potentially
offers an increased reliability and fault tolerance to hardware and software failures.
In the event of a unit failure, the remaining robots can reassign tasks among them­
selves to ensure the attainment of the common goal.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 5

• Robustness through information sharing: MRSs can offer enhanced robustness by
facilitating the sharing of redundant information among robots and enabling multi­
robot sensor data fusion. This fosters improvements in localization and perception
capabilities, bolstering the overall system performance.

• Cost­effectiveness: MRSs can be economically advantageous, as the utilization of
multiple simple robots often proves less expensive than deploying a single complex
robot.

• Overcoming complexity: MRSs prove crucial in accomplishing goals that are in­
herently complex and beyond the capabilities of a single robot, such as spatially
separated tasks.

Nonetheless, the utilization of an MRS introduces notable challenges that necessitate
careful consideration when opting to employ such systems. Several key areas require
particular attention: firstly, the intricate coordination required by MRSs necessitates a
revision and modification of traditional motion and path planning algorithms. The com­
plexity of the system demands innovative approaches to ensure efficient and effective
coordination among the robots. Secondly, MRSs may impose more stringent constraints
on positioning, especially in scenarios like cooperative carrying. Consequently, improved
sensing performance becomes essential to meet these requirements effectively. Commu­
nication stands as another critical factor that demands thorough attention within an MRS.
Information sharing and synchronization among robots play a central role, requiring ro­
bust and efficient communication protocols to facilitate seamless coordination. Moreover,
while MRSs offer the potential for increased reliability and fault tolerance if not properly
addressed, failure risks can be higher than in single robot systems. In cases where all
robots are indispensable for accomplishing the common goal, the failure of a single robot
can lead to the failure of the entire system [3], [5].

2.1.3 Taxonomy
In this section, we will provide a concise overview of the prevailing categorizations found
in the cooperative robotics literature.

In their study [6], the authors propose a taxonomy for MRS tasks, which is based on two
key parameters: the dimension of the goal and the number of task iterations. The dimen­
sionality of the goal defines the characteristics of the objective. For instance, if the goal
involves achieving a specific pose configuration, it is considered a zero­dimensional goal.
Conversely, if the objective is to follow a path, typically represented as a curve in space,
it is referred to as a one­dimensional goal. This applies to tasks such as cooperative
carrying or pattern formation. Tasks with higher­dimensional goals, such as exploration,
involve targeting an area rather than a specific point or curve. The second parameter,
the number of task iterations, pertains to the frequency at which the tasks need to be
performed. Certain tasks necessitate multiple executions, as it happens with periodical
region sweeping, foraging, or robot soccer.

In [3], the authors propose a taxonomy for differentiating between the many approaches
employed by cooperative MRSs in tackling various tasks. The taxonomy primarily focuses
on three key factors: coordination, communication, and decision­making. Coordination
can be classified as either static or dynamic. Static coordination refers to situations where
robots adhere to predefined rules (for example, traffic regulations). Conversely, dynamic
coordination involves continuous information exchange among robots during task execu­
tion. Communication is divided into two categories: explicit and implicit. Explicit commu­
nication entails direct information exchange through unicast or broadcast messages, typ­

6 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

ically facilitated by dedicated onboard communication modules. Implicit communication,
on the other hand, involves robots gathering information about other robots through their
sensors and the environment. Decision­making encompasses the process of selecting
actions that enable the robot to achieve its objectives. Cooperative MRS decision­making
approaches can be broadly categorized into centralized and decentralized architectures.
In centralized decision­making, a central robot or computer assumes the responsibility of
making decisions for the entire system. This architecture can offer the advantage of op­
timal decision­making by leveraging comprehensive information about the environment
and the whole MRS. However, it is susceptible to vulnerability in the event of failures.
In contrast, decentralized decision­making entails individual robots autonomously taking
actions. A hybrid approach known as decentralized hierarchical architecture also exists,
combining elements of both centralized and decentralized decision­making approaches.

We will now present a classification of transportation methods for MRSs based on the
review conducted in [5]. Cooperative carrying is a task that can be accomplished by a
diverse range of robots, including mobile robots, manipulators, drones, and even hetero­
geneous MRS configurations. However, the following three categories are independent
of the specific type of robot employed. The first category is the ”pushing­only” strategy,
wherein the robots are not directly attached to the object to be transported. Instead,
they rely solely on pushing movements to move the object. The second category is the
”caging” strategy. Similar to the pushing­only strategy, the robots are not physically at­
tached to the object. However, in this approach, the robots are strategically positioned
around the object, forming a ”cage”. This configuration ensures that the object follows the
same movements as the MRS. Lastly, the ”grasping” strategy involves the robots phys­
ically attaching themselves to the object. This direct attachment enables the robots to
exert better control over the object’s movements, enhancing precision and stability during
transportation.

2.2 Motion Planning
As discussed in the preceding section, motion planning is a critical element of cooperative
MRSs. It plays a central role in coordinating the robots, driving the decision­making pro­
cess, and ultimately ensuring that the MRS achieves its objective. Before delving into an
analysis of the current SoA in MRS motion planning, let us first review some fundamental
concepts about planning.

2.2.1 What is Motion Planning?
Within the literature, motion planning is frequently used interchangeably with path and
trajectory planning, which may result in some confusion [7]. To ensure clarity and prevent
any misinterpretation, we will adhere to the following definitions.

Path planning algorithms operate at a topological level and are responsible for determining
a geometric path that a robot should follow to reach its destination. These algorithms may
take into account constraints imposed by the robot’s geometry. In contrast, trajectory
planners focus on defining how the robot should move along the path in relation to time.
Consequently, trajectory planners typically output reference velocities or accelerations
that the robot should track. These outputs may be subject to constraints imposed by
the robot’s kinematic properties. Both path planning and trajectory planning assume an
empty workspace, meaning they do not consider any environmental information. On the
other hand, motion planners are specifically designed to navigate robots through complex
environments that may contain obstacles. They aim to find paths that enable the robot
to safely manoeuvre in such environments. The output of motion planners is typically a
geometric path or, more commonly, a sequence of waypoints that guide the robot towards

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 7

its destination. Due to the computational complexity involved, motion planning algorithms
often operate in a discrete representation of the workspace [8].

To address the computational challenges and uncertainties of real­world scenarios, mo­
tion planners are commonly divided into two components: a global planner and a local
planner. The global planner primarily relies on prior knowledge of the environment. It
performs offline planning before the robot initiates its movement. This allows the plan­
ner to generate a high­level plan based on the known environment, taking into account
factors such as the robot’s destination and potential obstacles. However, relying solely
on a precomputed plan can be insufficient in real­world scenarios, where uncertainties
arise from factors like localization errors, environmental changes, or unknown obstacles.
To compensate for these uncertainties, local planners are employed. Local planners are
computationally lighter and designed for real­time (online) planning. They are specifically
tailored to handle the uncertainties and dynamic changes encountered by the robot dur­
ing its motion. Rather than considering the entire environment, local planners focus on
a small neighbouring area around the robot. This localized approach allows for faster
computation and adaptation to real­time conditions [9].

2.2.2 Single­robot Motion Planning
When evaluating motion planning algorithms, three key characteristics are commonly
used to assess their effectiveness:

• Optimality: it pertains to the ability of an algorithm to generate paths that optimize a
specific cost/reward function. Common cost (reward) functions in motion planning
are related to the length of the path (to the distance from obstacles).

• Completeness: it refers to the assurance that the motion planning algorithm will
always find a valid path, if one exists. A complete algorithm guarantees that, given
enough time, it will either find a feasible path or determine that no path exists.

• Efficiency: it evaluates the computational performance of the algorithm in terms of
time and space complexity. Motion planning algorithms need to be efficient to be
applicable in real­time scenarios.

Numerous solutions have been proposed in the scientific literature to address these met­
rics. These solutions can be broadly categorized into two macrocategories: graph search­
based algorithms and sampling­based algorithms. The first category primarily operates
on a graph representation of the workspace, where discrete locations are represented
as nodes and spatially adjacent locations are connected by links. The fundamental al­
gorithms within this category include Depth First Search (DFS) and Breadth First Search
(BFS). However, due to their high computational complexity, these algorithms are sel­
dom utilized in practical scenarios. More efficient variants have been introduced, such as
the Dijkstra algorithm and A*, which leverage heuristic functions to guide informed graph
searches. Although these algorithms are complete and capable of finding the shortest
path, their main limitation lies in their computational cost, particularly when dealing with
planning in high­dimensional spaces [10]. The second class of algorithms aims to over­
come these limitations by reducing the size of the graph used for the search. In this
approach, the graph is constructed by randomly sampling the workspace and attempt­
ing to connect nodes until a viable path from the starting to the ending point is obtained.
Among the most successful sampling­based planners are the Probabilistic Road Map
(PRM) and Rapid­exploring Random Tree (RRT) algorithms. However, these planners
have the drawback of producing non­optimal or asymptotically optimal paths, which may
necessitate additional refinement in a subsequent step [9]. In addition to these two main

8 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

families of planners, there exist several other noteworthy approaches. One such exam­
ple is the Voronoi diagram­based planner, which prioritizes maximizing the distance from
surrounding obstacles. Another notable mention is the Artificial Potential Fields (APF)
based algorithm, which is particularly suitable for online planning due to its adaptability to
workspace updates.

Thus far, the presented methods have primarily focused on planning within the workspace,
which corresponds to the physical environment where the robot operates, typically rep­
resented as an R

2 or R3 Euclidean space. Nevertheless, these techniques are equally
applicable to planning in the configuration space. In this space, a dimension is assigned
to each Degree Of Freedom (DOF) of the robot (typically to each joint). Therefore, once
a path is determined, it is straightforward to derive the position that each joint should
assume. However, these approaches often necessitate planning in a high­dimensional
space due to the high number of joints a robot typically possesses. Additionally, con­
structing such a space from prior knowledge or sensing data requires extra computation
[8].

2.2.3 Metrics
Another aspect to consider in the design of robotics systems is performance metrics,
which serve as direct indicators of the system’s effectiveness. Additionally, these metrics
enable direct comparisons between different systems or algorithms. The commonly em­
ployed performance metrics include the time required to complete a task, the number of
successfully accomplished tasks, the length of the traversed path, the number of obstacle
collisions, the smoothness of the followed path, and the clearance distance from obsta­
cles. Although these metrics have been extensively tested for single robot systems, their
applicability to MRSs may not always be evident. For instance, in cooperative carrying
scenarios, it remains unclear how to compare the path taken by the robots with the optimal
one, as the complex dynamics of MRSs result in an ill­defined notion of optimality [11],
[12]. Recent literature has exhibited a growing interest in MRS metrics, such as the work
by the authors in [13], who propose a novel metric known as ∆Q, designed to quantify
the degree of cooperation among robots. However, note that this metric is not univer­
sally applicable to all planning algorithms, but is specifically tailored to Q­Learning­based
approaches.

2.2.4 Path Planning & Control Strategies
Motion planners conventionally output a series of positions (waypoints) intended to guide
the robot towards its objective. However, the direct connection of these waypoints with
straight­line segments may not always suffice to generate a cohesive path that the robot
can seamlessly pursue. In fact, owing to the robot’s kinematics, it may not be feasible to
adhere to such fragmented paths. Consequently, path generation algorithms frequently
incorporate diverse geometric curves, such as polynomials, Dubins curves, or splines, to
foster the generation of a smooth and feasible path.

In conjunction with the geometric constraints, it is important to account for the limitations
imposed by the velocities of the robot. This consideration is incorporated during the tra­
jectory generation phase, wherein a timing law is applied to the purely geometric path.
The timing law empowers us to specify the duration of the manoeuvre while imposing
constraints on the permissible maximum velocity or acceleration.

Wheeled mobile robots are commonly equipped with a low­level control system that re­
ceives a reference velocity signal as input and generates a control signal to actuate the
robot’s motors. This control system is typically built upon a dynamic model that accounts
for the specific mechanical and electrical characteristics of the robot’s hardware. From

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 9

the perspective of the end user, this controller is often regarded as a black box, with its
internal workings abstracted away. While it is possible to directly feed the reference ve­
locity signals from the trajectory planner into the low­level controller, such an open­loop
scheme would result in the robot deviating rapidly from the desired trajectory. To address
this, a second high­level feedback controller is commonly employed to robustly track the
reference inputs. This feedback controller operates based on a kinematic model of the
robot enabling it to abstract away the intricate dynamics. By incorporating this high­level
controller, the robot can achieve more accurate and reliable trajectory tracking while effec­
tively compensating for any discrepancies between the reference inputs and the robot’s
actual motion.

Up until now, our focus has centred on trajectory tracking, whereby a reference pose and
velocity are provided for each time step to guide the robot’s motion. However, there exists
another class of controllers known as regulators, which operate with only the goal pose as
input and navigate the robot towards that target without the need for explicitly specifying
a trajectory. It is worth noting, however, that regulators do not afford the capability to
precisely control the robot’s trajectory at each individual time step [8].

2.3 Reinforcement Learning
RL solutions for motion planning have gained substantial interest in recent years, as ev­
idenced by the multitude of works presented in the next chapter. Envisioning that these
techniques may be extended to address the environmental dynamism present in our sce­
nario, we dedicate this section to introducing some fundamental concepts of RL.

At the core of RL there are three fundamental components: the environment, the agent,
and the training algorithm. In essence, the agent utilizes its sensors to process the infor­
mation it gathers from the environment, which is commonly referred to as observations,
and subsequently takes actions based on this processed data. The training algorithm then
accumulates all the interactions between the agent and the environment and leverages
these interactions to iteratively adjust the agent’s parameters. The primary objective of
this iterative adjustment is to maximize a predefined RL objective function. In the subse­
quent sections, we will undertake a more comprehensive exploration of these fundamental
ingredients [14].

2.3.1 Modelling the Environment
One of the most prevalent and effective approaches for modelling the environment and the
interaction with the agents is through a Markov Decision Process (MDP). Such a model
is typically represented by a four­element tuple: ⟨S,A, Ta, Ra⟩, where:

• S denotes the state, which belongs to the set of states S . In the context of robotics
applications, a state could represent the robot’s pose at a specific time step.

• A denotes the action and A (S) refers to the set of actions available to the agent at
a given state. These actions describe the possible movements or operations that
the agent can undertake, such as ”turn left” or ”go forward.”

• T (a, s, s′) represents the transition probability function, also known as the environ­
ment dynamics. It quantifies the likelihood that the agent will transition to state s′

given that it is in state s and it takes action a.

• R(a, s, s′) represents the immediate reward acquired when transitioning from state
s to state s′ due to action a. It is a numerical value that informs the agent of the
quality of the chosen action based on predefined metrics.

10 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

In RL, these four components are commonly indexed by time steps ranging from t = 0
to t = T . T represents the total amount of steps performed in an episode. Although in
general T could be assumed to be infinite, in our scenario, we will only consider finite
episodes. Therefore St refers to the state of the agent at time step t (see Figure 2.1). ST
is called the terminal state. For actions the reasoning is analogous, but the last action
will be AT−1. Reward Rt is received upon performing action At−1 from state St−1, hence
the first obtained reward will be R1 (not R0). Figure 2.1 gives an example of the notation
used in MDP in RL contexts. Moreover, the transition probability function that can be
rewritten as T (a, s, s′) = P (St+1 = s′|St = s,At = a) is often assumed to be Markovian,
i.e. P (St+1 = s′|St = s,At = a) = P (St+1 = s′|S0, S1, ..., St = s,A0, A1, ..., At = a).
This assumption implies that the current state provides a complete representation of the
environment, rendering any prior history irrelevant. Note that we indicate with small let­
ters (e.g. st, at, rt) a specific realization of the underlying stochastic variables which are
indicated with capital letters (e.g. St, At, Rt).

𝑠𝑡−1 𝑠𝑡 𝑠𝑡+1𝑎𝑡−1 𝑎𝑡
𝑟𝑡 𝑟𝑡+1

Figure 2.1: Example of RL notation used for MDP. The states are indicated with s, and to
move from state st to state st+1 the action at is required. Upon successful transition the
reward rt+1 is yield.

2.3.2 Agent Decision Making
The objective of each agent is to find the best action based on certain criteria and given the
current state. As the agent progresses through different states, it receives corresponding
rewards. The action selected by the agent should aim to maximize a specific quantity
known as the gamma­discounted return, defined as follows:

Gt =

T−t−1
∑

k=0

γkRt+1+k (2.1)

The parameter γ plays the role of weighting the rewards with respect to time. Typically,
γ is assigned a value within the interval [0, 1]. When γ approaches 0, the agent primarily
prioritizes immediate rewards, leading to a more ”myopic” behaviour. Conversely, as γ
approaches 1, the agent aims to maximize both present and future rewards, exhibiting a
more ”farsighted” approach.

While we have discussed the desired behaviour of an agent, we have yet to provide a
formal definition of what an agent is. Mathematically, an agent is described by a function
known as a policy, denoted by π(a|s), which maps each state, s ∈ S, and action, a ∈ A,
to the probability of choosing action a when in state s. In essence, the policy defines the
decision­making process of the agent. Consequently, the problem of RL revolves around
discovering an optimal policy, denoted by π∗, such that an agent following this policy can
maximize its overall return.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 11

2.3.3 RL Algorithms
This section introduces the fundamental that serves as a way to evaluate the agent’s per­
formance, specifically the value functions. Following this, we present an iterative algorithm
known as Value Iteration (VI) which aims to find the optimal policy. However, this algo­
rithm necessitates the knowledge of certain variables that frequently remain unavailable
within real­world scenarios. Consequently, we delve into contemporary methodologies
proposed to surmount this issue.
Value Functions
In order to guide the learning process, all RL algorithms rely on metric functions that
assess the desirability of a state and/or action for the agent. As mentioned in the previous
paragraph, we have utilized the gamma­discounted return (Equation 2.1) as a measure
of an agent’s performance. Now, let us introduce the concept of state­value function:

Vπ(s) = Eπ[Gt|St = s] = Eπ

[

T−t−1
∑

k=0

γkRt+1+k|St = s

]

(2.2)

At first, it may appear puzzling that the right­hand side of the equation involves the time
variable, t, while it is absent on the left­hand side. However, it is important to understand
that when computing the state­value function, the specific time step at which the agent
reaches state s is irrelevant. This is because the state­value function focuses only on
future rewards, disregarding any information from the past, including the number of steps
it took to reach state s. It is worth noting that the state­value function, when combined
with a policy, serves as an evaluation tool for assessing the goodness or utility of a given
state and enables us to determine where the agent is expected to receive the highest
return. Moreover, by leveraging this function, we can compare two distinct policies and
assert which one is better. This observation provides us with a blueprint to identify the
optimal policy. If we were capable of computing the optimal state­value function, denoted
by V ∗(s) = maxπ Vπ(s), then we would also be able to determine the optimal policy:
π∗(·|s) = argmaxπ Vπ(s). This implies that the optimal policy corresponds to the policy
that maximizes the state­value function for each state.

In a similar way let us also recall the definition of the action­value function:

Qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[

T−t−1
∑

k=0

γkRt+1+k|St = s,At = a

]

(2.3)

The key distinction between the state­value function and the action­value function is that
the former accounts for the average expected return across all possible actions available
to the agent when in state s. In contrast, the action­value function divides the total ex­
pected return among the various actions that the agent can choose from in a given state.

A more explicit and detailed explanation of the practical applications and uses of the state­
value and action­value functions will be provided in subsequent sections.
Value Iteration
To solve an MDP and determine the optimal policy, various algorithms have been devel­
oped. One of the pioneering algorithms for solving such problems is the VI algorithm,
introduced by R. Bellman in 1957. Let us first note that the gamma­discounted return can
be rephrased recursively by isolating the first element of the summation:

Gt = γ0Rt+0+1 +
∑

k=1

γkRt+1+k = Rt+1 + γGt+1 (2.4)

12 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

By applying this definition to the state­value function, we obtain the following expression:

Vπ(s) = E[r + γVπ(s
′)|S = s] =

∑

a

π(a|s)
∑

s′,r

P (s′, r|s, a)
[

r + γVπ(s
′)
]

(2.5)

Let us introduce the following definition:

g(a, s) =
∑

s′,r

P (s′, r|s, a)
[

r + γVπ(s
′)
]

(2.6)

so that:

Vπ(s) =
∑

a

π(a|s)g(a, s) (2.7)

Let us recall that the primary objective of the optimal policy is to maximize the value func­
tion. Hence, the optimal policy π∗ is expected to select the action that maximizes the value
of g(a, s). In other words, π∗ should be defined as 1 for a∗, where a∗ = argmaxa g(a, s).
By employing this reasoning, we arrive at the Bellman optimality equation:

Vπ∗(s) = max
a

g(a, s) = max
a

∑

s′,r

P (s′, r|s, a)
[

r + γVπ(s
′)
]

(2.8)

As it stands, the Bellman optimality equation is not solvable. Thus, we aim to develop an
iterative algorithm that converges to Vπ∗(s), which is the VI algorithm. The pseudocode
is provided in Listing 2.1.

Table 2.1 Value iteration
1: for all s ∈ S do
2: V (s)← 0

3: for k = 0, 1, ...,K do
4: for all s ∈ S do
5: V (s)← maxa

∑

s′,r P (s
′, r|s, a) [r + γV (s′)]

6: for all s ∈ S do
7: π(s)← argmaxa

∑

s′,r P (s
′, r|s, a) [r + γV (s′)]

8: return π

Through the application of contraction mapping it can be demonstrated that, for a suffi­
ciently large value of K, the mentioned algorithm converges to the optimal value function
Vπ∗(s) [15]. However, for the sake of brevity, we will not present the proof in this context.
Learning Algorithms
Unfortunately, in most cases, obtaining access to the transition probabilities P (s′, r|s, a)
is not feasible, rendering the direct application of the VI algorithm impractical in real­world
scenarios. To address these challenges, researchers have been exploring methods for
learning an approximate policy or value function by enabling the agent to interact with the
environment. Typically, the policy is parameterized: πθ, where θ represents the learnable
parameters. Furthermore, the emergence of Deep Neural Network (DNN) has had a
profound impact on RL algorithms, as it offers a novel approach for approximating policies

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 13

and value functions. The integration of these two fields is known as Deep Reinforcement
Learning (DRL). The concept of approximating distributions shares similarities with ML,
where a model learns the patterns connecting inputs to outputs through data sampled
from the underlying distribution. However, the key distinction lies in the fact that in RL the
data is not provided by an external entity, but rather generated by the model itself during
its interactions with the environment.

This situation gives rise to several challenges, one of which is the exploration­exploitation
dilemma. This dilemma arises from the fact that the agent must strike a balance between
exploiting its existing knowledge to maximize its objective and exploring new strategies
to potentially discover better ones. If the agent solely relies on exploiting its current strat­
egy, it may miss out on learning more effective policies. Moreover, in contrast to ML, RL
algorithms often face high variance when estimating training losses, which can impact the
learning convergence speed. Another significant challenge pertains to reward specifica­
tion. Generally, rewards are defined based on the agent’s objectives. However, there are
typically multiple ways to define the same desired behaviour. RL algorithms are highly
sensitive to these different reward specifications, making it a complex task to determine
the most appropriate one [16].

More formally, the class of RL algorithms that learn through trial and error by interacting
with the environment is referred to as Model­Free algorithms. These algorithms can be
categorized into three main types:

• Value­based algorithms: in this category, the agent learns an approximate value
function, from which the policy is derived. Prominent algorithms within this class
include Q­Learning [17], Deep Q­Network (DQN) [18], and the family of Monte Carlo
methods [19].

• Policy search approaches: these algorithms aim to directly learn the policy itself. A
popular algorithm in this category is policy gradient [20].

• Hybrid techniques: this category encompasses the so­called actor­critic methods
that simultaneously estimate both the value function and the policy. It involves us­
ing the policy (actor) to predict actions while utilizing the value function (critic) to
evaluate the policy choices. Typical algorithms within this class include Soft Actor­
Critic (SAC) [21], Advantage Actor­Critic (A2C), Asynchronous Advantage Actor­
Critic (A3C) [22], Proximal Policy Optimization (PPO) [23] and Deterministic Policy
Gradient (DPG) [24].

2.4 Mobile Robots
As discussed in previous sections, path generation algorithms and trajectory tracking con­
trollers are essential in translating the output of motion planners into low­level commands,
used for governing the movements of the robot. A key aspect to consider during the de­
sign of these components lies in understanding the kinematic structure of the robot itself.
Indeed, the freedom of movement may be constrained by this very structure. In the fol­
lowing, our attention will be directed towards wheeled mobile robots, and more precisely
towards differential drive robots.

2.4.1 Overview of Mobile Robot Architectures
Let us provide a concise overview of the various categories of wheeled mobile robots,
characterized primarily by three key attributes: wheel configuration, wheel type, and steer­
ing properties. Among the simplest architectures is the two­wheel differential drive sys­
tem, comprising of two independently driven wheels and typically accompanied by a third

14 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

castor wheel to ensure stability. This arrangement enables the robot to execute spot ro­
tations by driving the wheels in opposing directions. However, it is incapable of lateral
movement, necessitating a prior turn in the desired direction before commencing forward
motion. A more restricted system is the renowned Ackermann steer, akin to the steering
mechanism employed in automobiles. Unlike the differential drive, this system precludes
rotation in place, obliging the robot to concurrently move forward or backward to facilitate
rotation. Conversely, the omnidirectional drive is an unconstrained system, which allows
the robot to perform unrestricted manoeuvres. This system leverages a distinct type of
wheels known as Swedish wheels, which, owing to their distinctive design, enables holo­
nomic movement. Nonetheless, these wheels typically exhibit suboptimal performance
on uneven terrains.

2.4.2 Unicycle Kinematic model
In our proposed scenario, we will employ differential drive robots as our primary platform.
While the subsequently showcased path generation and trajectory tracking algorithm can
potentially be extended to various robot architectures, it is crucial to comprehend the
implications of utilizing a specific robot type. Thus, for the purpose of our study, our focus
lies on comprehending the kinematic properties of differential drive robots. To this end, we
shall introduce a widely adopted kinematic model suitable for such robots: the unicycle
model.

The unicycle system comprises a single wheel that can be oriented. Its pose can be fully
characterized by three parameters: q = [x, y, θ]. Herein, the coordinates (x, y) define the
position of the unicycle on a two­dimensional plane, while θ represents its orientation or
heading angle. The control inputs governing the unicycle’s motion encompass two distinct
quantities: the linear velocity (v) and the angular velocity (ω). The linear velocity, often
referred to as the driving velocity, is obtained by multiplying the wheel’s angular speed
by its radius. While the angular velocity corresponds to the rotational speed around the
vertical axis. Figure 2.2 provides a schematic depiction of the unicycle model for visual
reference.

𝑥
𝑦
𝑧2
𝑧3𝜃

𝑣𝜔

Figure 2.2: A schematic representation of the unicycle model. The vehicle is charac­
terised based on its position (x, y) on the two­dimensional plane and its orientation θ. It
is useful to introduce the concept of generalized coordinates z2 and z3 shown here. The
former represents the direction along which the linear velocity vector v acts, while the lat­
ter represents the orthogonal axis that imposes non­holonomic constraints, rendering the
robot incapable of movement in that direction.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 15

Owing to its straightforward physical interpretation, deriving a kinematic model that es­
tablishes a relationship between the control inputs and the configuration vector q is a
relatively simple task. The derived kinematic model is as follows:

q̇ =





ẋ

ẏ

θ̇



 =





cos θ
sin θ
0



 v +





0
0
1



ω (2.9)

In this formulation, we establish a relationship between the control inputs and the time
derivative of the configuration vector, denoted by q̇. However, the configuration vector q
can be obtained by integrating q̇ over time. This kinematic model describes the movement
of the robot, specifically highlighting the non­holonomic constraints, namely that the robot
cannot move in the direction orthogonal to the sagittal axis (the z3 direction). While this
model pertains to single­wheeled robots, it is important to note that it is kinematically
equivalent to the more popular two­wheel differential drive architecture. Typically, these
two­wheel robots are equipped with two independent motors, each responsible for driving
a respective wheel. Thus, establishing a relationship between the control velocities (v, ω)
and the individual wheel speeds (ωR, ωL) becomes fundamental. In this regard, a one­to­
one correspondence exists:

v =
r(ωR + ωL)

2
, ω =

r(ωR − ωL)

d
(2.10)

Here, r represents the radius of the wheels, while d denotes the distance between the
two wheels.

2.5 Localization and Mapping
In tracking controllers and regulators, the feedback mechanism relies on the comparison
between reference inputs and the actual positions or velocities of the robots. However,
in real­world scenarios, these quantities are not directly accessible and can only be esti­
mated using sensor measurements. This limitation motivates the need for investigating
localization algorithms. In this section, we provide a comprehensive overview of the most
widely used sensors for localization. We discuss the intrinsic relationship between the
localization problem and mapping, and how multiple sensors can be effectively combined
using sensor fusion techniques to enhance performance. Furthermore, we present com­
monly employed models that effectively capture the errors associated with odometry and
range finder measurements.

2.5.1 Sensors for Localization
Localization can be approached in two ways: if the robot has prior knowledge of its initial
pose, the localization algorithm focuses solely on tracking the position. However, if the
robot’s starting position is unknown, the localization problem becomes more complex, as
it does not only involve errors that accumulate with motion, but it also requires a precise
understanding of the surrounding environment. This is known as the global localization
problem. However, in our scenario, we assume that the initial pose is known.

One of the most prevalent solutions to address this problem is through the utilization
of wheel odometry. This technique involves employing rotary encoders to measure ve­
locities on each wheel of the robot. By employing a kinematic model and integrating

16 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

these measurements over time, an estimate of the robot’s position can be obtained. How­
ever, this approach is highly susceptible to errors due to the inherent sensitivity associ­
ated with integral computations. Additionally, when encountering off­road terrains, where
wheel slippage can occur, the reliability of the measurements decreases significantly.
Consequently, wheel odometry proves to be insufficiently robust for accurately tracking
the robot’s position over long distances. To overcome these limitations, more sophis­
ticated approaches leverage alternative sensors to estimate the robot’s position. One
such method is Visual Odometry (VO), which, as the name suggests, relies on camera
information to infer the robot’s position. This technique entails extracting and matching
features from each frame, and by analyzing the relative shift of the key points, the robot’s
position can be derived. One of the first successful uses of such an algorithm in real­world
scenarios occurred on NASA’s Mars Exploration Rovers, which could not rely solely on
wheel odometry due to the sandy terrain [25]. One limitation of using cameras for localiza­
tion is their dependency on well­illuminated environments. To overcome this drawback,
researchers have explored alternative sensor types, particularly range finder sensors.
Among these, Sound Navigation And Ranging (SONAR), Radio Detection And Ranging
(RADAR), and Light Detection And Ranging (LIDAR) have gained significant popularity.
Despite their distinct technologies, these sensors operate based on a common underlying
principle: the measurement of distances. They achieve this by emitting a beam, whether
it be sound waves or electromagnetic waves, and subsequently detecting the returning
echo. Such sensors allow the user to capture a view of the surrounding environment.
Typically the generated data is a 360­degree point cloud1. An advantageous character­
istic of these range sensors is their resilience to variations in illumination and weather
conditions, making them particularly useful in outdoor scenarios. However, this family of
sensors also shares similar limitations. For instance, when the beam strikes an obstacle
surface at a highly oblique angle, it may be deflected away, making the obstacle invisi­
ble to the sensor. These sensors are also susceptible to interference from other sensors
operating at the same frequency or from external sources. Additionally, range and visual
sensors performance are affected by the absence of features in the scene, as it may hap­
pen in a long, uniform hallway [26]. In such cases, a potential solution is to enhance the
environment with artificial landmarks, such as QR codes. This strategy is explored in [27],
where the authors analyze the use of roof­mounted QR codes for localization purposes.

2.5.2 Mapping
To achieve accurate localization, the measurements from range sensors must be com­
pared with a map of the environment. This map can be generated using mapping al­
gorithms, with one of the most prevalent families being occupancy grid mapping. An
occupancy map represents the environment as a grid with evenly spaced cells, where
each cell denotes a location and can have one of two values based on whether it is oc­
cupied by an obstacle or not. In order to create this map, the robot utilizes data from
its sensors, but it is assumed that the robot’s pose is known. It becomes evident that
the mapping and localization problems are tightly interconnected. Localization necessi­
tates a map of the environment, while mapping requires knowledge of the robot’s pose.
This interdependency is resolved by another family of algorithms known as Simultaneous
Localization And Mapping (SLAM) algorithms. This approach enables the concurrent ex­
ecution of both tasks, making it one of the most valuable and popular algorithms in the
field of autonomous robotics. Continuous mapping, carried out while the robot is perform­
ing its tasks, is particularly important to cope with dynamic environments where relying
only on a pre­existing map would be challenging [28].

1A point cloud is a discrete set of data points in space, typically representing 3D objects.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 17

2.5.3 Sensor Fusion
In order to exploit the advantages of multiple sensors simultaneously and thus mitigate
their individual drawbacks, researchers have been investigating methods for fusing mea­
surements to enhance localization accuracy. One of the earliest breakthroughs in this
direction was the introduction of the Kalman Filter (KF) by R.E. Kalman in 1960 [29]. The
KF is proven to be optimal for linear systems with Gaussian process and measurement
noise. However, for more complex scenarios, alternative solutions have demonstrated
superior performance. Among these solutions, we find the Extended and Unscented KF,
as well as the widely popular Particle Filter (PF). These filtering techniques enable the
fusion of data at various levels. For instance, one approach involves fusing raw sensor
data to obtain more accurate measurements. Alternatively, data fusion can occur at a
higher level. Taking the position tracking problem as an example, one could obtain sep­
arate estimates of the robot’s position using two different sensors and then fuse these
position estimates [30].

Localization and mapping algorithms can be directly applied to MRSs. However, in such
systems, there are opportunities to further exploit these algorithms by leveraging the col­
laborative nature of multiple robots. Combining the information gathered by each robot
can greatly enhance both localization and mapping tasks. In the context of localization,
one robot can estimate the positions of other robots, thereby influencing their knowledge
with its own measurements. For example, a collaborative localization strategy is proposed
by the authors in [31]. They utilize cameras and Time Difference Of Arrivals (TDOA) from
wireless sensors to estimate the positions of other robots. The authors then perform
sensor fusion, combining odometry and the other estimates using a KF. Additionally, in
[32], researchers explore a cooperative observation scenario where a MRS composed by
Unmanned Aerial Vehicles (UAV) aims to locate a target object. The authors present a
strategy to position the aerial vehicles in a manner that minimizes localization uncertain­
ties when fusing different measurements.
Particle Filters
Filtering techniques, in general, enable us to estimate the internal states of dynamical
systems, such as the pose of a robot, even in scenarios where only partial observations,
such as range finder measurements, are available, and random perturbations are present
in both the sensors and the dynamical system. PF have demonstrated their effectiveness
in handling nonlinear systems, which is particularly relevant to our robot’s characteristics.
These filters effectively represent the posterior distribution by utilizing a set of samples
(particles) drawn from that distribution. In our case, this distribution describes the proba­
bility of the robot being in pose qt given the measurements zt and the control input ut.

Initially, the posterior distribution is approximated based on the prior knowledge of the
system state. Subsequently, the next set of particles is generated by updating the current
particles using the system’s dynamics and the control input ut. Each particle represents
a hypothetical state of the system, and thus the new particle is obtained by sampling from
the conditional distribution p(xt|ut, xt−1). Next, the measurements are incorporated using
the importance factor wt. For each particle, this factor is computed as w[m]

t = p(zt|x[m]
t),

where m denotes the particle index ranging from 1 to M . To combine these weights with
the particle set, the PF employs importance sampling. This sampling procedure enables
the drawing of new particles from the posterior distribution, which is in turn represented
by the set of particles. Each sample is drawn with a probability determined by its corre­
sponding weight, w[m]

t .

Through the iterative process of updating particles and weights as described, it has been
demonstrated that the set of particles will converge to the underlying posterior distribution

18 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

[30].

2.5.4 Odometry Motion Model
Based on the measured rotational displacement of the wheels obtained from the encoders,
we can estimate the relative motion displacement, namely the transition from pose qt−1

to pose qt. In the context of the robot’s odometry system, this transition is represented as
a movement from q̄t−1 to q̄t, where the notation with a bar denotes the coordinate system
specific to the robot’s odometry system, distinct from the global reference frame Oxy.
The relationship between these two reference systems remains unknown, constituting the
essence of the localization problem. Nevertheless, the key concept lies in the fact that
the difference between q̄t−1 and q̄t, provides an estimate of the difference between the
true poses qt−1 and qt. In the position tracking problem it is assumed that the initial pose
is known, i.e., q0 = q̄0, however, due to the drift errors, the uncertainty in the relationship
between these two frames increases over time. To better characterize this uncertainty we
focus on studying the probability p(qt|qt−1, q̄t, q̄t−1).

To analyse such probability we employ the probabilistic motion model proposed by the
authors of [28]. This particular model decomposes the relative displacement between
two poses into three fundamental steps: a rotational adjustment towards the subsequent
position, a linear movement along a straight path to reach the next position, and a final
rotational alignment to match the orientation of the target pose. Figure 2.3 illustrates these
sequential movements.

𝛿𝑡𝑟𝑎𝑛𝑠
𝛿𝑟𝑜𝑡1

𝛿𝑟𝑜𝑡2
Figure 2.3: The robot transitions from its initial pose (on the left) to the target pose (on the
right) by following the path indicated by the red dashed line. This path is decomposed into
three distinct steps by the motion model. Firstly, the rotation δrot1 is performed to align
the robot with the target position. Secondly, the translation δtrans is executed to move the
robot to its final position. Lastly, the rotation δrot2 is carried out to align the robot with the
target orientation.

Mathematically, given two consecutive poses: qt−1 = [xt−1, yt−1, θt−1] and qt = [xt, yt, θt],
the displacement can be decomposed as:

δrot1 = Atan2 (yt − yt−1, xt − xt−1)− θt−1

δtrans =
√

(xt−1 − xt)2 + (yt−1 − yt)2
δrot2 = θt − θt−1 − δrot1

(2.11)

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 19

The probabilistic motion model then assumes that these three quantities are indepen­
dently corrupted by zero­mean Gaussian noise ϵb2 with variance b2. To compute the proba­
bility p(qt|qt−1, q̄t, q̄t−1), first we compute (δrot1, δtrans, δrot2) from (qt, qt−1) and (δ̂rot1, δ̂trans, δ̂rot2)
from (q̄t, q̄t−1). Then the probabilities p1, p2, p3 are derived as follows:

p1 = ϵα1δ
2
rot1+α2δ

2
trans

(δrot1 − δ̂rot1)
p2 = ϵα3δ

2
trans+α4δ

2
rot1+α4δ

2
rot2

(δtrans − δ̂trans)
p3 = ϵα1δ

2
rot2+α2δ

2
trans

(δrot2 − δ̂rot2)
(2.12)

The variance of the noise depends on the magnitude of the translation and rotations steps
and on the parameters α which depend on the specific robot used. Finally, the sought
probability is: p(qt|qt−1, q̄t, q̄t−1) = p1 · p2 · p3.

2.5.5 Range Finder Measurements Model
The shared characteristics of the range finders family enabled scientists to develop a uni­
fied model to describe their behaviour. We introduce the model initially proposed by the
authors in [28], which characterizes the measurement process as the probability density
function p(zkt |qt,m). Here, qt represents the current pose of the robot, m denotes the prior
map of the environment, providing information about the expected locations of obstacles,
and zkt represents the measured distance. Given that the sensor typically performs mul­
tiple measurements in different directions at time t, the index k specifies which specific
measurement is under consideration.

This probability density function is formulated as a mixture of four components:

• A normal distribution phit ∼ N (zk∗t , σ
2
hit), which captures the local measurement

noise when the correct range is detected. Such noise may arise from limitations in
sensor resolution and atmospheric conditions.

• An exponential distribution pshort ∼ Exp(λshort), which models unexpected objects.
The prior map m permits estimating the expected measured distance in a given
direction. However, in the presence of an unknown object obstructing the beam
path, the measured distance will be considerably shorter than initially anticipated.

• A point­mass distribution pmax ∼ I(zmax), that represents missed object failures.
These failures occur when the beam echo fails to return, possibly due to reflections
or light­absorbing objects.

• A uniform distribution prand ∼ U([0, zmax]), which accounts for completely unex­
plainable measurements.

These four contributions are subsequently linearly combined with weights w to obtain the
sought conditional probability:

p(zkt |xt,m) =









whit

wshort

wmax

wrand









T

·









phit
pshort
pmax

prand









(2.13)

The weights coefficients and the parameters of the distributions enable tailoring the model
to the characteristics of a specific sensor.

20 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

2.6 Telecommunications in Robotics
Telecommunications play a crucial role in the realm of modern robotics, facilitating seam­
less communication among robots and humans. The evolution of these technologies has
been driven by the growing requirements of robotic systems. However, the urgent neces­
sity to enhance the interconnectivity of robots and Cyber Physical Systems (CPS) surged
notably with the onset of the fourth industrial revolution, driven by intelligent automation.

2.6.1 5G Technologies
To meet the demands posed by the proliferation of interconnected devices, including
robots, and their stringent communication requirements in terms of latency and band­
width due to their heightened autonomy, novel telecommunications technologies have
been embraced. In response, the design of 5G standards defines three macro types of
services with specific distinct requirements [33]:

• Massive Machine Type Communications (mMTC) focuses on supporting a vast num­
ber of low­power devices, such as sensors, meters, trackers, and other Internet of
Things (IoT) devices, which sporadically transmit small amounts of data. The aim of
mMTC is to achieve a remarkably high connection density of over 1 million devices
per square kilometer.

• Ultra Reliability and Low Latency Communications (URLLC) pertains to the ability
to deliver exceptionally reliable and low­latency communication for mission­critical
applications. These include industrial automation, remote surgery, autonomous ve­
hicles, and smart grids. The goal of URLLC is to achieve latency of less than 1
millisecond and a reliability rate of 99.999%.

• Enhanced Mobile Broadband (eMBB) focuses on empowering 5G networks to pro­
vide enhanced mobile broadband services characterized by higher data rates, in­
creased capacity, and an improved user experience. This facet supports diverse
applications such as high­definition video streaming, virtual reality, augmented real­
ity, and cloud gaming. The objective of eMBB is to attain a peak data rate surpassing
10 Gbps and an average user­experienced data rate exceeding 100 Mbps.

2.6.2 6G Technologies
Nevertheless, the advancement of telecommunications in the realm of robotics does not
culminate with the advent of 5G. On the contrary, researchers are actively engaged in the
development of 6G technology, driven by the pursuit of even greater performance and
more advanced capabilities compared to its predecessor. The potential advantages of
6G in the context of robotics are manifold, encompassing the utilization of terahertz fre­
quencies for communication, millimeter sensing capabilities, and seamless integration of
Artificial Intelligence (AI). Figure 2.4 highlights the evolution of 5G services in 6G. These
envisioned attributes hold the promise of enabling robots to engage in real­time commu­
nication and collaboration, fostering seamless interaction with humans. The incorporation
of AI into the fabric of 6G would empower robots with autonomous decision­making abili­
ties and the capacity to learn from their experience.

Moreover, robots equipped with 6G technology would possess enhanced perceptual ca­
pabilities, allowing them to precisely perceive and interact with their surrounding environ­
ment. In fact, one of the key pillars on which 6G technologies are based is Integrated
Sensing and Communication (ISAC). The concept behind this is that the same sensing
device can perform perception and communication operations simultaneously. This is of
great interest for MRSs, CoBots, autonomous vehicles, smart devices, and smart cities.
The operational principle of such sensors resembles that of conventional range finders,

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 21

albeit operating at different frequencies and employing different waveforms. Generally,
the operating frequency of range finders directly impacts the sensor’s resolution and, con­
sequently, the measurement noise. Thus, 6G sensing devices strive to employ high fre­
quencies such as mm­Waves and terahertz to achieve accuracy comparable to LIDARs.
Moreover, these frequency bands offer high channel capacity and transmission range,
making them excellent communication devices [34]. Despite being a nascent technol­
ogy, several prototypes have already entered the experimental phase, as exemplified in
[35], wherein researchers employ terahertz and mm­Wave­based ISAC devices for SLAM
operations.

The impact of 6G in robotics extends beyond these fundamental improvements, potentially
unlocking novel applications in sectors such as healthcare, manufacturing, agriculture,
and entertainment. The convergence of 6G telecommunications and robotics is poised
to revolutionize these domains, paving the way for ground­breaking advancements and
unimaginable possibilities [36], [37], [38].

Figure 2.4: New pillars of 6G technologies.

22 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

3 Literature Review
This chapter provides a comprehensive literature review of the most recent SoA solutions
in motion planning for MRSs. Subsequently, we will provide a brief overview of the current
SoA in formation control, as it constitutes an indispensable component of the solution we
aim to develop. Lastly, we will delve into two works that closely align with our specific
scenario and we will discuss their advantages and limitations.

3.1 MRSs Motion Planning and Formation Control
When considering MRSs, the task of motion planning assumes a significantly higher level
of complexity. Take, for instance, exploration missions where robots must plan and coordi­
nate their movements to survey different regions of the environment, ideally without over­
lap. Similarly, certain tasks necessitate the maintenance of a specific formation among
the robots, as observed in cooperative carrying scenarios. Accomplishing this presents
a considerable challenge, as the planning algorithm must account for the spatial relation­
ships among all robots, particularly during obstacle avoidance operations. Furthermore,
it is worth noting that the optimal planning problem for MRSs typically falls under the
category of NP­hard problems [3]. Consequently, in order to address such intricate chal­
lenges, the conventional approaches discussed earlier must undergo thorough revision,
often needing to resort to simplifying assumptions.

3.1.1 Traditional Techniques
An initial and highly effective solution employed in the domain is the leader­follower archi­
tecture. Within this framework, a single robot is designated as the leader of the MRS, a
decision determined through consensus algorithms or preexisting knowledge. The leader
is tasked with devising the plan for the entire system, while the followers receive their
motion plan either by direct communication with the leader or by inferring its trajectory.
However, the centralized approach employed by this architecture may encounter prob­
lems with robustness if the leader fails [39].

An example of such an architecture is proposed in [40]. The authors extended the RRT*
planning algorithm to a MRS composed of hexacopters. Notably, in this approach, the
leader is not fixed but dynamically determined as the robot closest to an obstacle, thereby
simplifying the obstacle avoidance process. Similarly, in [41], the authors introduce a co­
operative carrying scenario utilizing UAV and employ a centralized motion planning algo­
rithm based on RRT, coupled with a Model Predictive Control (MPC) technique for trajec­
tory tracking. In [42], the motion planning and obstacle avoidance tasks are carried out by
the leader of the formation, employing an enhanced version of the APF method. However,
the trajectory generation and tracking aspects are executed in a decentralized manner,
allowing each multirotor to adhere to velocity and curvature constraints. Naturally, this
planning architecture finds application not only in aerial MRSs but also in various other
types of robots. In [43], the authors introduce a novel two­stage planning algorithm based
on RRT. Their approach to obstacle avoidance involves constructing a local configura­
tion space with a fixed number of DOF, independent of the number of robots in the MRS.
Likewise, in [44], a configuration space graph search­based motion planning technique is
employed for cooperative carrying using mobile manipulators.

Furthermore, these conventional motion planners are not exclusively employed in cooper­
ative carrying scenarios but also find applications in other prevalent tasks within coopera­
tive MRSs. For instance, in [45], a motion planning technique based on RRT is proposed

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 23

for exploration tasks in unknown environments. The efficacy of this solution is validated
through experimentation with a team of four mobile robots. Similarly, [46] utilizes Voronoi
regions to partition the map into subsections and determine the specific area that each
robot should explore.

Further studies delve into the exploration of novel types of motion planners to address
the limitations posed by traditional approaches. In [47], an occlusion­based strategy is
introduced, wherein the robots push the object solely when the line of sight between the
robot and the goal is obstructed by the object itself. While this method demonstrates
proficiency in the cooperative aspect of transportation, the authors do not delve into au­
tonomous planning for obstacle avoidance. In fact, in the conducted experiments, the
robots pursued a teleoperated goal.

3.1.2 AI­based Techniques
A prominent area of focus for researchers in the context of MRSs is AI. These AI­based
solutions hold the potential to enhance performance when compared to traditional tech­
niques, as they are well­suited to address the complexities of MRS dynamics. An early
achievement in this direction involves a behaviour­based fuzzy logic controller, where the
authors successfully coordinated a team of robots to move in formation and carry out co­
operative tasks [48]. Within the realm of AI, ML has emerged as a particularly successful
subfield. ML techniques possess the capacity to ”learn” from data, alleviating the need
for explicit programming to accomplish specific tasks. In [49], a neural fuzzy controller
is presented, showcasing the efficacy of ML in cooperative MRS scenarios. This con­
troller enables a team of two carrying robots to execute goal­reaching and wall­following
manoeuvres.

In recent years, the robotics community has witnessed a significant surge of interest in
RL, a branch of ML. It involves learning through interactions with the environment, has
emerged as a fundamental component in the development of intelligent robotic systems.
These solutions appear to bring radical transformation in the structural organization of
robot software’s framework. With the advent of RL, the SoA in motion planning has shifted
from a two­stage planning architecture to an end­to­end approach, where algorithms di­
rectly take sensory information from robots as input and output control signals for robot
actuators [16]. This paradigm shift is exemplified in [50], where the authors propose a Q­
Learning­based approach for a cooperative carrying scenario in a heterogeneous MRS,
leveraging external sensors like a roof­mounted camera. Another instance is presented
in [13], where the authors introduce an end­to­end DQN controller capable of learning
and guiding a cooperative carrying MRS in complex environments. Furthermore, in [51],
researchers adopt Hierarchical­Hops Graph Neural Networks to enable MRS ensemble
exploration in unknown environments. They employ Multi­Agent Reinforcement Learning
(MARL) based training algorithm to acquire collaborative strategies.

3.1.3 Formation Control
In cooperative carrying scenarios, the need for imposing constraints on the trajectory be­
comes even more critical to prevent object falls. The geometric paths followed by each
robot must ensure the maintenance of formation throughout the manoeuvre, which also
entails adjusting the speeds of the robots accordingly. To address these constraints, var­
ious solutions have been proposed in the literature.

One approach, presented in [52], involves a modified pose regulator designed for two
differential drive mobile robots engaged in cooperative transportation tasks. In their sce­
nario, the leader robot is teleoperated, while the follower robot must maintain a fixed
distance to preserve the object’s balance. The authors contribute by incorporating kine­

24 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

matic constraints and proposing an algorithm based on Receding Horizon Control (RHC)
to guide the motion of the follower robot. Similarly, [53] tackles the same scenario by
employing a Proportional Integral Derivative (PID) controller to regulate the speed of the
follower robot. The controller takes as input the current mass distribution of the object
between the two robots. In [54], the authors present a method for controlling cooperative
carrying scenarios involving two or more non­holonomic robots. They outline a procedure
for deriving smooth paths for each robot, based on an initial plan for the leader, which
is represented as a virtual robot located at the formation’s center. Additionally, they em­
ploy a nonlinear trajectory tracking controller to guide the robots along their designated
paths. Taking a behaviour­based approach, [55] proposes an infrared sensor­based so­
lution. The infrared sensor detects when the object is on the verge of falling, prompting
the robots to execute manoeuvres to restore the object to its desired position. Lastly,
[56] introduces a dynamic­based optimal controller for a cooperative carrying scenario
featuring two mobile robots with manipulators holding the object. The presence of manip­
ulators enables the object to remain stable even if the mobile platform moves away from
the desired location.

3.2 Analysis of Key Related Works
The previous review of existing literature reveals a multitude of approaches in the field
of motion planning for MRSs. Notably, an evident trend is emerging wherein researchers
are increasingly focusing on AI­based solutions as opposed to traditional algorithms. Two
studies, closely aligned with our specific scenario and task objectives, warrant particular
attention: the two­stage planning algorithm presented in [43] and the DQN controller­
based technique delineated in [13]. Despite their merits, both aforementioned solutions
present certain drawbacks that require careful consideration.

The two­stage planner algorithm, built upon RRT, generates non­smooth paths as a con­
sequence of its two­stage architecture, often deviating significantly from the optimal path.
Additionally, the authors operate under the assumption that unknown obstacles are lower
in height than the transported object, thereby only impacting the carrying robots. More­
over, this approach adopts a centralized framework, which may imply potentially stringent
communication constraints.

In contrast, the DQN controller­based solutions exhibit a considerable improvement in
the quality of generated paths, offering the distinct advantage of being a fully decentral­
ized methodology. Regrettably, its most notable shortcoming lies in the fact that, from
the perspective of the RL algorithm, the robots possess limited perception, detecting ob­
stacles solely upon collision. Consequently, these robots are confined to operating in
static environments, rendering the application of such techniques to real­world scenarios
exceedingly challenging. Whenever environmental changes occur or unknown obstacles
are introduced, the agents necessitate retraining from scratch within the new environment.

Notwithstanding the current limitations of RL­based solutions, we firmly believe in their
tremendous potential. Hence motivating us to focus on such techniques to solve the
challenges presented by our scenario.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 25

26 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

4 System Model & Key Enablers
In section 3.1, it has been observed that RL holds promise as an effective approach for
addressing motion planning problems in MRSs. However, the current SoA strategies
fail to meet the requirements of our specific scenarios. In light of this, we propose an
adapted version of the VPN algorithm [2] tailored to our cooperative carrying scenario.
The experimental results demonstrate that our developed approach surpasses the current
SoA techniques. Notably, our approach exhibits performance similar to the cutting­edge
methods presented in [13], while additionally offering the advantage of handling dynamic
environments without requiring model retraining each time the environment changes.

This chapter commences by elucidating the process of modelling the environment in which
the robot will operate through Grid Worlds (section 4.1). We explain how this model acts as
an intermediary between the real environment and the underlying MDP. Moving forward,
section 4.2 introduces our RL planning algorithm. We outline the architecture of the DRL
agent and delve into the training procedure. Within this section, we also outline advanced
evaluation and training techniques and introduce an extension of our planning algorithm
that incorporates 6G radio connectivity. Furthermore, we provide an extensive account of
the technical implementation strategies that pertain to the RL algorithm. Transitioning to
section 4.3, we shift from the discrete 2D RL domain to a more realistic 3D environment.
Here, we illustrate the critical components required to translate the motion planning output
into control directives for the robotic systems. This includes our multi­robot path gener­
ation algorithm and a trajectory tracking controller. Additionally, to enhance the realism
of the simulated sense­plan­act loop, we integrate measurement noise into the simulated
sensors. Lastly, we provide a comprehensive description of the developed 3D simulation
platform.

4.1 Environment Model
A fundamental component of the RL framework is the environment. It serves as a plat­
form that enables interactions with the underlying MDP. Specifically, it allows the agent
to transition between different states based on its chosen actions and receive the cor­
responding rewards. It is essential for the environment to closely mimic the real­world
setting and accurately represent the dynamics of the agents’ interactions. At the same
time, the RL environment must filter out any extra information to maximize computational
efficiency. Given that the learning process entails a large number of agent­environment
interactions (steps), our objective is to identify the simplest environment model capable
of encapsulating the dynamics of the robots.

4.1.1 Grid Worlds
We focus on developing a model that represents the essential environmental structures,
encompassing obstacles, robots, and the target location. The model should account for
critical factors, such as preventing robot­obstacle collisions and, in the case of cooperative
carrying, maintaining a consistent inter­robot distance. Additionally, our model should
reflect the requirement of reaching the designated target area, potentially by following the
shortest path available.

An excellent candidate that fulfils all the aforementioned requirements is the grid world
environment. Similar to occupancy maps, these environments represent the real­world
setting using a discretized grid­like map. Although they are commonly used for modelling

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 27

video game scenarios, they are also well­suited for robot planning applications. Each grid
cell can contain an obstacle, a robot, or be empty. The robots are capable of moving to
adjacent cells using discrete actions such as move left, right, forward, and backward. In
some cases, diagonal movements may also be included, allowing for eight possible ac­
tions. However, these movements can be restricted to prevent collisions with obstacles
or, in the case of cooperative carrying, to avoid object falls. The objective of the agent is
to reach the cell designated as the target. For mobile robots, where most of the dynamics
occur on a two­dimensional plane, grid worlds offer an excellent choice for modelling such
environments. Moreover, they demonstrate computational efficiency as they can be en­
coded as binary matrices, further enhancing their suitability for use in robotic applications.

4.1.2 Markov Decision Processes
In order to apply RL algorithms, it is convenient to model the environment as an MDP.
Initially, we will concentrate on the single­robot scenario and later extend it to the coop­
erative carrying case.

In an MDP, the tuple ⟨S,A, Ta, Ra⟩ defines its components. In the case of grid worlds, a
state s simply consists of the current map of the environment, including the locations of
the agent and the target. This information is sufficient to fully describe the environment
at the current time step without the need for previous information1. We refer to the state
where the agent’s location coincides with the target position as the ”goal state”. This state
also serves as the terminal state, meaning that once the agent reaches it, it remains there
regardless of subsequent actions. The set A includes the allowable movements for the
agent, such as {left, right, forwards, backwards}. The transition probability function Ta
describes the likelihood of the agent transitioning to state s′ given that it is currently in state
s and takes action a. It is important to note that in our scenarios, the agent’s actions have
a 100% probability of leading to a specific state s′. Therefore, each action is deterministic.
However, it is worth mentioning that Ta also encodes the function that indicates which is
the resulting state s′ (action to state map). If an action would result in the agent colliding
with an obstacle, the transition is changed so that the agent remains in the current state.
Finally, the reward function Ra allows us to model the desired behaviour that the agent
should exhibit. Specifically, we assign a positive reward when the agent reaches the goal
location and a small negative reward for each step it takes2, regardless of whether the
steps are towards the goal or not. Formally, the reward function is:

R(a, s, s′) =

{

+1 if s′ is the goal state
−0.01 otherwise

(4.1)

By maximizing the cumulative rewards, the agent is motivated to strive for the positive re­
ward associated with reaching the goal state. Simultaneously, the small negative rewards
encourage the agent to minimize unnecessary transitions, leading it to select the shortest
path and avoid collisions with obstacles. The specific values assigned to the rewards are
design parameters that require careful tuning during the implementation phase. Typically,
these values depend on factors such as the expected number of transitions necessary to
reach the goal, which, in turn, is influenced by the size and complexity of the environment.
Balancing the reward values effectively is crucial to ensure the agent’s optimal behaviour
in navigating the environment.

1As we are considering 2D grid world environment, without loss of generality, we will indicate with si,j the
state where the agent is in location (i, j).

2For diagonal movements, the negative step reward is multiplied by a
√

2 factor to account for the greater
distance that the agent moves.

28 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

In the case of cooperative carrying, slight modifications are required in the formulation
mentioned earlier. Specifically, the state s will now encompass the positions of all robots
within the MRS. The target location will no longer be a single cell but a larger area capable
of accommodating the entire MRS. The goal state is achieved when the MRS is within the
designated area. As the MRS is viewed as a single entity in the MDP framework, the
actions need to be adapted accordingly. Each agent can still take individual actions, but
these actions must be combined to determine the collective movement performed by the
MRS. One way to obtain these combined actions is by taking the Cartesian product of
all individual action sets. On the other hand, the definition of the transition probability
function remains unchanged. Given the current state and the combined action, there is
only one possible next state s′. However, the action­to­state mapping function becomes
more complex, as it needs to consider the intricate dynamics of the MRS. Similarly, the
reward system remains the same, but with the new definition of the goal state.

4.1.3 Types of Environments
During the execution phase, the layout of the grid world environment is constructed based
on a prior knowledge map, which typically includes static obstacles such as walls. As the
robots move within the environment, the map is dynamically updated to incorporate in­
formation about unknown obstacles that the robots sense. However, in order to train RL
algorithms effectively, it is necessary to generate maps that closely resemble real­world
scenarios in an artificial way. One commonly used approach in RL settings is to utilize en­
vironments with uniformly randomly placed obstacles. In this case, the complexity of the
environment is regulated by adjusting the percentage of occupied blocks. This scenario
serves as a standard benchmark to validate the algorithm implementation and assess its
performance. Additionally, we aim to analyze the specific scenario proposed in [13]. This
scenario features a static environment where the MRS needs to navigate through a narrow
passage to reach the goal location. Although the environment itself is static, this scenario
is of great interest as it allows us to benchmark our approach against the SoA techniques.
Furthermore, it enables us to evaluate the cooperative behaviour of the robots, as they
are forced to cooperate and coordinate their actions to manoeuvre through the bottleneck.
Nevertheless, the previously mentioned environments may not accurately represent re­
alistic indoor scenarios. To address this limitation, ArenaBench [57] and Bench­MR [58]
introduce benchmarking scenario generators specifically designed for mobile robot nav­
igation. These research works present open­source grid world map generators capable
of creating indoor maps that include rooms, hallways, and other typical indoor structures
with randomized layouts. Moreover, the tools provide the flexibility to specify parameters
controlling the size and quantity of generated structures, allowing for the customization
of map appearance. These map generators serve as a valuable resource, not only for
conducting realistic simulations but also as a benchmarking tool for robot navigation. Fig­
ure 4.1 shows some examples of the analyzed environments.

4.2 RL­based Motion Planning
With the Grid World model serving as our foundation for the environment, our focus in
this section is to design an agent that can effectively leverage the benefits offered by this
model. Tightly linked to the agent is the training algorithm, which must be customized to
suit the agent’s specific task. While these represent the primary themes of this section,
we will also delve into several related topics and strategies that enhance the performance
of the training algorithm and planning agent.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 29

(a) (b)

(c) (d)

Figure 4.1: Types of analyzed grid world environments. In each illustration, dark grey
squares depict obstacles, light grey cells represent empty spaces, the red square signi­
fies the goal, and the yellow circle represents the agent. (a) presents a grid world with
obstacles uniformly placed at random, where the overall percentage of obstacle cells is
p = 30%. (b) presents a recreation of the environment proposed in [13]. (c) showcases an
indoor­like environment generated using the ArenaBench tool. (d) depicts another Aren­
aBench generated environment, featuring also moving obstacles represented by dark
grey circles.

30 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

4.2.1 Agent’s Neural Network Architecture
The objective is to determine a policy capable of effectively guiding the agents towards
the desired goal. While the VI algorithm has been previously demonstrated to serve this
purpose, its direct application is unfeasible in our specific scenario due to the lack of knowl­
edge regarding the transition probability function (Ta). Consequently, researchers have
been investigating methodologies for estimating this function through the utilization of ML
techniques. Among the various viable solutions, one particularly promising approach that
emerges in addressing our specific case is the Value Iteration Network (VIN) method [59].

The hallmark of VIN lies in its innovative approach of approximating the VI algorithm
through the use of Convolutional Neural Network (CNN). The creators of VIN have demon­
strated how this reformulation can be achieved in a fully differentiable manner, which
means that it can be integrated into a larger Neural Network (NN) framework and trained
by utilizing conventional ML techniques like backpropagation. This larger NN structure
performs the dual functions of approximating the transition and reward functions3 while
simultaneously serving as a parameterization for the policy. The central idea proposed by
the creators of VIN is that each iteration of the VI algorithm can be viewed as passing the
previous value and rewards function through a convolution layer and a max­pooling layer.
Specifically, every channel of the convolutional layer represents a distinct action, while
the kernel’s weights correspond to the discounted transition probabilities. Therefore, by
repeatedly applying these convolutions K times, the VI algorithm can be obtained.

A drawback of VIN is its inherent difficulty in training, particularly regarding the layers
responsible for approximating the transition and reward functions. The presence of in­
terdependencies within the convolutional layers can lead to instability during the training
process. In light of these challenges, a recent advancement has emerged as a potential
solution: the introduction of the VPN. It is founded upon the same underlying principle
of achieving a differentiable VI algorithm that can be seamlessly integrated within a NN
framework. Remarkably, the findings presented by the authors indicate that VPNs exhibit
significantly enhanced training efficiency and superior overall performance.
Value Propagation
The architecture of VPNs bears resemblance to that of VINs. Specifically, the initial seg­
ment of the NN is dedicated to modelling the reward and transition functions. This is
accomplished through the utilization of a NN referred to as Φ, which accepts the state s
as input and outputs three quantities:

rini,j , r
out
i,j , pi,j = Φ(s)i,j (4.2)

The quantities involved are indexed by the parameters i and j, which serve as coordi­
nates in a 2D grid­like structure. Specifically, the agent is restricted to moving from its
current position (i, j) to an adjacent cell. The state, denoted by s, is typically represented
using binary matrices. These matrices commonly consist of an environment matrix (in­
dicating the presence of obstacles), an agent location matrix, and a goal location matrix
(see Figure 4.2).

These matrices are then treated as a 3­channel image and processed by a DNN Φ, com­
monly implemented using CNNs as the transition probabilities are assumed to be trans­
lation invariant. The output of this network consists of three matrices (rini,j , routi,j , pi,j) of the
same size as the input. Notably, the first two matrices model the reward function, where

3Although in our scenario the reward function is known, VIN still treats it as an unknown entity as it plans
on an unknown MDP related to the original one only by the states and actions sets.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 31

(a) (b) (c) (d)

Figure 4.2: Example state matrices that represent a grid world environment. (a) a bird’s­
eye view of the environment. (b) the environment matrix, which indicates the presence
of obstacles in each corresponding cell. (c) the agent location matrix, highlighting the
position of the agent within the grid world. (d) the goal location matrix, indicating the
position of the goal within the grid world.

rini,j represents the rewards obtained upon entering position i, j, and routi,j represents the
reward obtained when the agent moves out of cell i, j. The matrix pi,j , referred to as the
propagation matrix, is responsible for impeding the propagation of the state­value func­
tion. We will provide a more intuitive explanation of the meaning of these outputs shortly.
Let us first introduce the Value Propagation (VProp) module utilized in the VPN, which is
based on the VI algorithm:

vki,j = max
(

v
(k−1)
i,j , max

(i′,j′)∈N (i,j)

(

pi,jv
(k−1)
i′,j′ + rini′,j′ − routi,j

)

)

(4.3)

HereN (i, j) is the set of states neighboring si,j . For instance in case there are four actions
(representing the four cardinal directions) the neighboring states will be:

N (i, j) = {s(i+1,j), s(i−1,j), s(i,j+1), s(i,j−1)} (4.4)

The value function at position (i, j) is indicated as vi,j and it is initialized to zero. Sub­
sequently, employing the propagation equation, an estimation of the value function is
obtained after K iterations.

Figure 4.3 depicts an illustrative example showcasing the rewards model, propagation
factor, and state­value function resulting from training an agent on a 16 × 16 map with
randomly positioned obstacles. rini,j exhibits values close to zero in correspondence with
obstacle locations, accurately representing the agent’s need to avoid these cells. Con­
versely, routi,j showcases reduced values near the goal position, effectively capturing the
agent’s requirement to remain at that location once reached. The matrix p manifests low
values precisely where obstacles are located, effectively preventing the propagation of
the state­value function through these obstructed areas.

Furthermore, the far right matrix in Figure 4.3 showcases the outcomes of the VProp
module. Evidently, higher values are concentrated near the goal, gradually decreasing
as the distance from the goal grows. This outcome aligns intuitively with the concept that
the state­value function correlates with the expected cumulative return. Consequently,
proximity to the goal results in higher state­value function estimates, as the agent can
reach the goal with relatively fewer steps. It is worth noting that the example presents three
regions (top right and bottom corners) where the state­value function is zero, which may
initially appear as an invalid number. However, the top right corner of the map is entirely

32 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

obstructed by obstacles, rendering it impossible for the agent to navigate towards the goal
if spawned in that region. Whereas, the zeros in the bottom areas can be attributed to
the limited number of iterations (K = 16) executed by the VProp algorithm, which, in this
case, is insufficient to cover the entire map comprehensively.

Figure 4.3: Output matrices of Φ layer (rin, rout, and p) and output matrix of the VProp
module (Values).

The authors additionally introduce an alternative formulation for Equation 4.2 and Equa­
tion 4.3, referred to as Max­Propagation (MVProp), which should exhibit improved perfor­
mance in larger environments:

ri,j , pi,j = Φ(s)i,j (4.5)

v0i,j = ri,j ; vki,j = max
(

v
(k−1)
i,j , max

(i′,j′)∈N (i,j)

(

ri,j + pi,j(v
(k−1)
i′,j′ − ri,j)

)

)

(4.6)

This modified formulation constrains the model to propagate only positive rewards. While
it may yield superior outcomes for a single agent, as demonstrated by the author’s ex­
periments, our investigation within the MRS scenario did not reveal any advantages in
employing MVProp. Consequently, our subsequent analysis will concentrate exclusively
on the VProp architecture.
Policy
Figure 4.3 further provides valuable insight into the expected behaviour of the policy. In
order to maximize the cumulative reward, the policy should prioritize selecting the actions
that move the agent to the adjacent cell with the highest state­value function estimates.
In the case of the scenario involving a single agent, such policy can be formulated as
follows:

π(s, (i0, j0)) = argmax
(i′,j′)∈N (i0,j0)

vKi′,j′ (4.7)

However, it is important to note that this policy formulation holds true only when the actions
can be straightforwardly associated with the positions of adjacent cells. In the context of
cooperative MRSs, this mapping is often unknown due to the involvement of intricate dy­
namics. Consequently, to facilitate the learning of such mapping function, we employ a
policy that is parameterized by a NN. This NN takes as input the state’s neighbourhood
surrounding the agent’s position, along with the corresponding estimated state­value func­
tion:

π(s, (i0, j0)) = F
(

[si′,j′](i′,j′)∈N (i0,j0), [v
K
i′,j′](i′,j′)∈N (i0,j0)

)

(4.8)

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 33

In this case, the definition of N (i, j) has been revised to encompass an expanded neigh­
bourhood, thus enabling the policy to capture a more comprehensive view of the sur­
rounding conditions involving also other agents in the case of MRSs. The schematic
representation of the proposed network architecture is depicted in Figure 4.4. The sys­
tem includes a first module responsible for computing an approximation of the state­value
function based on input observations, and a second module that with the assistance of
the first one computes the distribution of action probabilities. Although the second mod­
ule apparently only operates on local information, specifically the neighbour of the agent,
it possesses the ability to make globally optimal decisions. This is made possible by
leveraging the computed state­value function approximation, which encapsulates global
information.

Φ VProp

F

Observations𝐵,𝐷, 𝑆, 𝑆 2x Conv2D

layers

ҧ𝑟𝑖𝑛, ҧ𝑟𝑜𝑢𝑡 , 𝑝𝐵, 3, 𝑆, 𝑆 Value

Propagation

Values𝐵, 1, 𝑆, 𝑆

Obs. concatenated

with Values𝐵, 𝐷 + 1, 𝑆, 𝑆 Neighbor around

the agent position𝐵,𝐷 + 1, 𝐶, 𝐶 Flatten layer𝐵, 𝐷 + 1 𝐶2 2x Linear

layers

Action

prob. dist.(𝐵, 𝐴)
Figure 4.4: Scheme of the proposed architecture. B denotes the batch size, and D rep­
resents the number of input channels, which corresponds to the total number of agents
along with the environment and goal matrices. The size of the environment is denoted
by S, while C represents the cut­out area surrounding the agent’s position. Lastly, A
symbolizes the number of available actions.

4.2.2 Actor­Critic Training Algorithm
The primary objective of RL training algorithms is to optimize the parameters of the policy
to maximize the agent’s return. Analogous to loss functions utilized in ML algorithms, in
RL, we also define an objective function:

J(θ) =

∫

P (S0)Vπθ
(S0)dS0 = Eπθ

[G0] (4.9)

It should be noted that if we are able to compute the derivative of the state­value function
and maximize the aforementioned cost function, we will, by definition, obtain the opti­
mal policy. Furthermore, in comparison to traditional ML where the objective is typically
defined by comparing predictions to ground truth data, RL operates differently. In RL,
there is no ground truth data available. Instead, the data is generated through the policy’s
interaction with the environment. However, this introduces additional challenges as the
generated samples often exhibit high variance.

34 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

By computing the gradient of the aforementioned cost function with respect to the policy
parameters (detailed calculations are available in section A.1), we derive the following
unbiased estimator also known as REINFORCE gradient estimator:

∇θJ(θ) = E

[

T−1
∑

τ=0

γτGτ∇θ logπθ(Aτ |Sτ)
]

(4.10)

Baseline
The presence of large gradients in the estimator of Equation 4.9, caused by the derivative
of the logarithm, contributes to the high variance problem. These large gradients can lead
to unstable learning and cause the policy distribution to skew in non­optimal directions.
While we cannot directly modify the logarithm, we can address the issue by focusing
on the return Gτ . The proposed approach involves subtracting a factor from the return:
(Gτ − b(Sτ)). One might question whether this alteration would significantly impact the
estimator. However, it can be demonstrated that the estimator remains unaffected. By
leveraging the linearity of the expectation, it can be proven that (for more details see
section A.2):

E [b(Sτ)∇θ logπθ(Aτ |Sτ)] = 0 (4.11)

The next question to address is: what function should we utilize as b(Sτ)? To achieve
the objective of having the quantity (Gτ − b(Sτ)) close to zero and reducing the magni­
tude of the gradients, it is reasonable to select a function b(Sτ) that, on average, equals
Gτ . A function that precisely achieves this requirement is the state­value function Vπ(Sτ).
However, in practice, we do not have access to the true underlying state­value function.
Therefore, we approximate it using a parameterized version, denoted by Vφ(Sτ), where ϕ
represents the tunable parameters of a NN.
Advantage Actor­Critic
In the literature, the term (Gτ − b(Sτ)) is commonly referred to as the advantage function.
Various versions of the advantage function exist, and here we have presented a basic
formulation to provide an understanding of its working principle. To summarize, we have
explored how to address the high­variance problem by employing an estimation of the
state­value function, which is itself approximated by another NN that requires training.
This architecture is known as the advantage actor­critic method. Specifically, the critic’s
role is to estimate the state­value function and provide feedback to the actor. The actor, in
turn, updates the policy based on the received feedback. This actor­critic method aligns
well with our network structure, as our network already utilizes an approximation of the
state­value function to support the policy.

In summary, the policy training procedure operates as follows: initially, the agents interact
with the environment, executing B episodes. During each episode, the trajectories in
the MDP are collected: s(i)0 , a

(i)
0 , r

(i)
1 , ..., s

(i)
T ∀i ∈ {1, ..., B}. Subsequently, the gamma­

discounted return g
(i)
τ is computed for each episode. Finally, the policy parameters are

updated using the following formula:

θ ← θ + ϵ
1

B

B
∑

i=1

[

T−1
∑

τ=0

(g(i)τ − Vφ(s(i)τ)∇θ logπθ(aτ |sτ)
]

(4.12)

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 35

To update the critic parameters, it is important to recall that we aim to approximate the
return with our parametrized state­value function, i.e., Vφ(sτ) ≈ gτ . In this context, a com­
mon approach is to employ the square loss as a training objective to update the weights
ϕ:

Ecritic(ϕ) =
1

B

B
∑

i=1

(g
(i)
0 − Vφ(s(i)τ))2 (4.13)

Finally, the weight update equation is:

ϕ← ϕ− ξ∇φE
critic(ϕ) (4.14)

Note that in Equation 4.12 and Equation 4.14, the symbols ϵ and ξ represent the learning
rates.
Further Developments
Compared to the theoretical framework we have presented, the current SoA methods
(A3C and the A2C [22]) extend the concept of parallelism by simultaneously running mul­
tiple agents. The experiences collected from these parallel runs are then utilized to col­
lectively update the policy and state­value function. Furthermore, these methods often
employ a more advanced advantage function known as the Generalized Advantage Es­
timator (GAE). By introducing a control parameter (λ), it enables the regulation of the
bias­variance trade­off that rises from the approximation of the state­action function (Vφ)
[60]. Additionally, these methods incorporate various techniques to address high­variance
issues, such as gradient clipping, which help stabilize the learning process.
Multi Agent Training
In the literature, numerous approaches have been explored to address the challenges
of training MARL systems. One prominent paradigm is the “Centralized training for De­
centralized Execution,” which involves various combinations of centralization and decen­
tralization in the training of actors and critics [61], [62]. In our specific scenario, we will
employ a simple yet effective strategy. Our objective is to have a single trained model that
can be deployed on all robots within the multi­agent environment. To achieve this, we will
train a single agent using the actor­critic structure described earlier. However, during the
episode trajectory collection, we will use the same policy to move the other agents in the
MRS. The actions of all the agents are combined to govern the movements of the MRS.
Likewise, the rewards and observations provided by the environment to the MRS will be
used to train the single agent. Furthermore, in each episode, we will randomly select
a different agent to be trained, enhancing the generalization capabilities of the NNs. A
simplified overview of the proposed algorithm is presented in Table 4.1.

4.2.3 Evaluation Techniques
To assess the performance of the agents during the training phase and the execution
phase, it is crucial to employ metrics that effectively highlight their behaviour when inter­
acting with the environment. In light of this, we present the metrics utilized to evaluate
the agents in our specific scenario. These metrics encompass not only the widely em­
ployed measures for assessing RL algorithms but also incorporate specialized techniques
designed for evaluating robot navigation.
Training Metrics
To assess the success of the training process and enable comparisons between different
training algorithms, two widely adopted metrics are the mean episode rewards and the

36 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Table 4.1 Multi­Agent Actor­Critic (single training step)
1: for episode = 1 to M do
2: Initialize pose of the MRS randomly
3: for step = 1 to T do
4: for agent = 1 to N do
5: Using the current policy, compute action (i)at from observation (i)obst

6: Execute all (i)at
7: Receive rewards: rt+1, and observation obst+1

8: Store all transitions ((i)st,
(i) at,

(i) st+1,
(i) rt+1)

9: Update Actor parameters (θ) using Equation 4.12
10: Update Critic parameters (ϕ) using Equation 4.14

mean episode length. The former represents the average cumulative rewards obtained
by the agent over a specified number of episodes. Initially, when the policy has not yet
been learned, the agent may move randomly and struggle to reach the goal, resulting in a
low value for this metric. Conversely, in the case of successful training, this metric should
exhibit an increasing trend as the agents progressively learn to execute the appropriate
actions. Similarly, the mean episode length measures the average number of steps re­
quired by the agent to reach the goal. Throughout the training process, we anticipate a
decrease in this metric, meaning that the agent becomes more efficient in reaching the
desired objective. It is important to note that, given our defined rewards (Equation 4.1),
these two metrics are deterministically interconnected. In other words, providing one of
them allows to reconstruct the corresponding value of the other metric.

Additional metrics aim to evaluate the performance by directly focusing on the training
algorithm. Specifically, the policy loss and value loss are two metrics derived from the
update equations 4.12 and 4.14, respectively. It is expected that these metrics converge
to zero after the training phase, indicating that the model’s weights have reached optimal
values.

Furthermore, two other commonly used metrics are the policy entropy loss and the ex­
plained variance. The policy entropy loss measures the entropy of the action distributions
(x) and is typically defined as follows:

H(x) = −
n
∑

i=1

P (xi) loge P (xi) (4.15)

This metric quantifies the agent’s confidence in making decisions by assessing the level
of uncertainty in the chosen action.

The explained variance is a widely employed indicator used across various fields. It mea­
sures the proportion to which the model’s predictions (ŷ) account for the variance in a
given dataset (y) and is calculated as follows:

ExpV ar(y, ŷ) = 1− V ar(y − ŷ)
V ar(y)

(4.16)

In actor­critic algorithms, this metric is often used to evaluate the accuracy of the estimated
state­value function. Scores close to 1 are desirable, indicating that the predictions closely

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 37

align with the actual values, while scores close to zero suggest that the predictions are
akin to random guessing.
Performance Metrics
To assess the performance of the agent once the training is completed and verify its capa­
bilities, researchers commonly employ domain­specific metrics. Specifically, for robotic
navigation, we have previously presented the most prevalent approaches in subsec­
tion 2.2.3. We are primarily interested in two metrics: the number of successful missions
and the length of the path. The number of successful missions is determined by setting a
threshold on the maximum number of steps allowed, beyond which an episode is consid­
ered failed. The length of the path is closely intertwined with the number of steps taken
by the agent to reach the goal.

Comparing the path of the agent with the optimal path, or equivalently, comparing the
number of steps taken by the agent to reach the goal with the minimum possible, is of
particular interest. This allows us to assess the deviation of the agent’s policy from the
optimal one. In the case of a single agent, determining the minimum number of steps
can be easily accomplished using simple graph search algorithms such as BFS or DFS.
However, for cooperative MRSs, this task becomes significantly more challenging. In
our study, we opted to estimate the optimal path for MRSs by treating them as a single
agent positioned at the center of the formation. However, this approach only provides a
lower bound and does not account for additional steps the MRS may need to rotate and
manoeuvre through the environment. Nevertheless, this approach is still relevant as it
establishes a baseline for comparison. To quantify the deviation, we found it particularly
useful to compute the relative difference, rather than the absolute difference, between the
number of steps taken by the robot (nsteps) and the optimal number of steps (nsteps∗). This
is expressed using the following formula:

RelDiff =
nsteps − nsteps∗

nsteps∗
(4.17)

The utilization of this formula and its implications will be clarified further in subsection 4.2.4.
Cooperation Metrics
This last section is dedicated to the novel metric proposed in [22] to quantitatively as­
sess cooperation between individuals in MRSs. The authors suggest utilizing the mean
absolute error between the Q­values of the two agents:

(ij)∆Q =
1

T

T−1
∑

t=0

|(i)Qt −(j) Qt| (4.18)

with:

(i)Qt = Qπ((i)st,
(i) at) (4.19)

Intuitively, this metric reflects how differently the two robots evaluate their respective sit­
uations at the same moment. A small value of ∆Q indicates a high level of cooperation
between the two robots. One limitation of this metric is that it can only be computed
for Q­learning­based agents, where the Q­values are available. Therefore, we present
a way to extend this metric to other types of RL algorithms. Specifically, we are inter­
ested in agents that employ the Actor­Critic algorithm, where the V­values are available
as opposed to Q­values.

38 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

To address this challenge, it is important to consider that the Q­values can be mathemat­
ically linked to the V­values through the utilization of the Bellman equation. This relation­
ship can be expressed as follows:

Qπ(s, a) =
∑

s′∈S

P (s′|s, a)
(

R(s′, a, s) + γV π(s′)
)

(4.20)

Here, P (s′|s, a) represents the transition probability associated with the environment dy­
namics, indicating the likelihood of transitioning to state s′ when the agent is currently in
state s and performs action a. In our grid world environment, the dynamics are determin­
istic, meaning that for any given state and action, there exists only a single potential next
state. Leveraging this observation, we can simplify the previous equation by eliminating
the summation, resulting in the following reformulation:

Qπ(s, a) = R(s′, a, s) + γV π(s′) (4.21)

and after the agent performed action a, the realization of the previous stochastic equation
becomes:

(i)Qt =
(i) rt+1 + γ(i)Vφt+1 (4.22)

thus replacing Equation 4.19. By substituting into the Equation 4.18, we obtain:

(ij)∆Q =
1

T

T−1
∑

t=0

∣

∣

∣

(i)Qt −(j) Qt

∣

∣

∣

=
1

T

T−1
∑

t=0

∣

∣

∣

(

(i)rt+1 + γ(i)Vt+1

)

−
(

(j)rt+1 + γ(j)Vt+1

)∣

∣

∣

=
1

T

T−1
∑

t=0

∣

∣

∣

(

(i)rt+1 −(j) rt+1

)

+ γ
(

(i)Vt+1 −(j) Vt+1

)
∣

∣

∣

(4.23)

By adopting this revised formulation, we gain the ability to utilize the ∆Q metric for our
agent. This metric enables us to assess whether the robots are successfully acquiring
cooperative behaviours.

4.2.4 Curriculum Learning
In our scenario, a challenge that significantly impacts the rate of convergence of the train­
ing algorithm is the restricted amount of environmental feedback received by the agent.
Specifically, the agents solely receive a positive reward upon successfully reaching the
goal. This issue, commonly referred to as the ”sparse reward problem”, has been exten­
sively discussed in the literature. In order to address this challenge, one approach is to
provide additional positive feedback through rewards for accomplishing intermediate sub­
goals. However, this approach often leads to suboptimal policies. Alternatively, another
viable solution lies in the application of Curriculum Learning (CL). This concept draws
inspiration from human learning processes, for example, students progressively tackle in­
creasingly complex concepts after mastering simpler ones. Likewise, in the domain of RL,
the CL framework partitions the overall task into a sequence of subtasks, which exhibit

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 39

an incremental increase in difficulty [63]. In order to implement CL effectively within our
specific scenario, it is crucial to delve into several fundamental questions. For instance,
what is the precise definition of ”difficulty” for our agent? How can we generate a well­
structured sequence of tasks that progressively increase in complexity? Furthermore,
how can we determine the readiness of the agent to advance to the next task?

In order to address the first question, it is important to recognize that the primary obstacle
impeding the robot’s ability to reach the goal lies in the distance between them. In fact,
when the policy is not yet trained, the probability of reaching the goal solely through ran­
dom movements is inversely proportional to the size of the environment, specifically the
distance between the starting point and the goal. This observation also provides insight
into the second question. To construct a sequence of tasks that progressively increase
in difficulty, a straightforward approach involves systematically augmenting the distance
between the robot’s starting position and the goal. In the literature, this approach is com­
monly referred to as a ”region­growing curriculum.” Another curriculum that aligns well with
our particular scenario is known as the ”single­to­multi­robot curriculum.” In this curricu­
lum, the robot initially learns to interact with the environment and successfully reach the
goal in an individual manner, before subsequently tackling the multi­agent coordination
scenario [64].

To address the final question, we propose employing a manual approach for the single­
to­multi­robot curriculum and automatic CL techniques for the region­growing curriculum
[65]. In the former approach, we assume the responsibility of determining when the sin­
gle agent has sufficiently learned the task and is ready to tackle the multi­agent environ­
ment. Conversely, in the latter approach, this decision is made automatically, utilizing
the RelDiff metric (as presented in Equation 4.17) as feedback. In the ”region­growing
curriculum”, the agent initially starts in close proximity to the goal, thereby increasing
the chances of reaching it. As the RelDiff metric (averaged over the last n episodes)
drops below a predefined threshold, it indicates that the agent has effectively learned the
subtask, signifying that the distance between the agent’s starting position and the goal
can be increased. The utilization of the relative difference instead of the absolute dif­
ference allows us to define a constant threshold that remains unaffected by the current
path length. For the single­to­multi­robot curriculum, we employed a manual approach
as it only requires one update when the agent is ready for the multi­robot scenario. How­
ever if possible automatic CL techniques should be preferred as they offer numerous
advantages. In fact, a manual curriculum typically requires predetermining the number of
episodes the agent must complete before transitioning to the next subgoal. As a result,
if the designated number of episodes is excessively large, the training process becomes
unnecessarily long. Conversely, if the number is too small, the agent may progress to a
more challenging environment without having fully mastered the preceding one, thereby
compromising its performance.

4.2.5 Enhanced Planning with 6G Connectivity
Robot operations are conventionally designed to take place in areas where network cov­
erage is optimal. In practical terms, robots depend on an external infrastructure for com­
munication with the external world. However, this infrastructure often faces challenges
in ensuring uniform radio coverage across the entire operational environment, particu­
larly in large­scale factories. Consequently, issues arise when robots traverse areas with
inadequate coverage, resulting in a loss of connectivity. This loss can lead to the immobi­
lization of the robot, as it no longer receives instructions from the external world, or make
it ineffective, in case its tasks consist of transmitting its collected sensor data.

40 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Our proposed solution entails treating these low network coverage areas as virtual obsta­
cles and integrating them into the motion planning algorithm. Hence enabling the robots to
actively avoid them. Given the static nature of the telecommunication infrastructure, char­
acterized by fixed access points, our approach involves combining these virtual obstacles
with the prior map of the environment. We expect that dynamic updates to these virtual
obstacles during the execution phase will be unnecessary, as the presence of physical
dynamic obstacles, such as other robots or humans, should not significantly impact the
signal strength due to their limited size. To estimate the locations of these low­coverage
areas, we employ pathloss values, which quantify the attenuation of the electromagnetic
wave based on the distance between the transmitting and receiving antennas. We com­
pute these values for all robot positions on the map and subsequently apply a threshold
to identify areas where the radio signal falls below the required level. The calculation of
pathloss can be performed through experimental measurements or, more conveniently,
by simulating the channel model. This model provides a map that relates the transmitted
signal to the received one, taking into account factors such as distance, carrier frequency,
physical obstacles, and various other parameters. Lastly, to combine the obtained virtual
obstacle map with the environment map, we utilize a simple element­wise OR operator
on the two binary matrices.

For our experimental setup, we opted to select the 72 GHz E­band frequency, as it pro­
vides an excellent balance between range and capacity4. To accurately simulate the
channel characteristics, we employed the sparse clutter, low base station variant of the
Indoor Factory (InF) propagation model outlined in the 3GPP Release 17 TR 38 901 [67].
This scenario closely aligns with our target environment, ensuring relevant and realis­
tic results. To conduct the simulations and generate the pathloss values, we utilized the
mmWave module of the NS­3 simulator [68]. This module incorporates the channel model
by employing the following formulas:

PLLOS = 31.84 + 21.50 log10(d3D) + 19.00 log10(fc)

PLNLOS = max(PL, PLLOS) with PL = 33 + 25.5 log10(d3D) + 20 log10(fc)
(4.24)

The distance between the transmitting and receiving antenna (i.e., the access point and
the robot) is denoted by d3D, while fc represents the carrier frequency. The model incor­
porates two distinct formulas, depending on whether the antenna have a Line­Of­Sight
(LOS) or Non­Line­Of­Sight (NLOS) propagation. Within the NS­3 simulator,the scenario
is configured according to our testing environment. By moving the robot, the pathloss is
estimated on the whole environment and combined with the inputs of our motion planning
model, as it will be illustrated in subsection 5.1.5.

4.2.6 RL Experimental Configuration
As part of this thesis research, we have successfully implemented the cooperative carry­
ing RL motion planning algorithm previously described to assess and validate its capa­
bilities and performance. In this section, we present the design principles adopted and
provide insights into the algorithmic aspects of our implementation. In recent years, the
OpenAI Gym Python library [69] has emerged as a prominent software framework within
the RL community. It offers a standardized approach to building RL software by facilitating
the seamless integration of RL environments with agents and training algorithms. Given
the intertwined relationship between RL algorithms and ML, it is common for agents and

4Additionally, this frequency range is currently being investigated for indoor scenarios as part of the on­
going 6G development [66].

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 41

training algorithms to rely on ML backend frameworks. For our implementation, we have
opted to utilize the PyTorch library [70], renowned for its emphasis on code readability
and user­friendliness.
Environment
The OpenAI Gym Library mandates that environments developed within its framework
adhere to specific guidelines and implement key functions with standardized input and
output arguments. The principal functions include:

• reset: this function is called whenever the environment requires reinitialization, such
as at the conclusion of an episode. In our specific scenario, this function is respon­
sible for generating the map, determining the location of the goal, and specifying the
agent’s initial spawning position.

• step: this function orchestrates the agent’s interaction with the environment. It ac­
cepts the agent’s action as input, executes the state transition accordingly, and re­
turns the new state observation and the associated reward.

• render: this function is dedicated to the graphical interface, enabling users to visu­
alize the interactions between the agent and the environment. It provides a means
to observe the dynamic behaviour and outcomes of the agent­environment interac­
tions.

Existing literature has already introduced grid world environments for various purposes.
For instance, in the VPN article, the authors utilized the MazeBase environment [71].
Another widely used solution is the MiniGrid library [72]. However, it is important to note
that these environments primarily focus on video game scenarios rather than specifically
addressing robotic navigation tasks. Given our unique requirements and the need to
seamlessly integrate other components, such as the indoor map generation algorithm,
we opted to develop a custom environment.

Considerable emphasis has been placed on the reset function, particularly in regard to the
generation of indoor scenario maps. To accomplish this, we leveraged the ArenaBench
map generation tool, which yields a binary matrix representing the randomly generated
map. The map generation process can be further fine­tuned, allowing for the creation of
diverse map configurations, ranging from open spaces to narrow corridors. These tunable
parameters enable us to control the complexity of the generated maps. In addition to the
static map generated using the aforementioned tool, we introduce dynamic obstacles that
change their position at each step of the agent. To ensure that the MRS and the target
area spawn in suitable locations without overlapping with map obstacles, we employ the
convolution operator. Specifically, we treat the MRS and the goal area as filters, with a
shape matching that of the occupied cells, and set the weights to 1. By convolving this
filter with the binary matrix representing the map, we obtain an output matrix of the same
size, which exclusively indicates the valid locations for spawning the MRS and the goal
area, free from any interference with the obstacles present in the map. Figure 4.5 gives
an example of how the convolution operator is used in this context.
Agent and Training
Multiple libraries already provide implementations of popular RL training algorithms, and
two recent and widely used examples are RAY rllib [73] and Stable Baseline 3 (SB3) [74].
While RAY rllib excels in performance and natively supports distributed training, we have
opted to utilize SB3 due to its ease of use and customizability. In particular, we are in­
terested in the A2C algorithm as it closely aligns with the actor­critic method described in
subsection 4.2.2. However, the A2C algorithm is originally designed for single­agent sce­
narios, requiring it to be adapted for the multi­agent setting, as discussed previously. Fur­

42 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

∗ =
Figure 4.5: Convolution operator employed to identify suitable spawning locations for the
MRS and the target area. The left side shows the grid­world environment (obstacles
matrix). In the middle, there is the convolutional filter. In this example the MRS occupies
three vertical cells (in its initial configuration), resulting in a 3x1 matrix with all values set
to 1. On the right, the output of the convolution is depicted. Namely a matrix containing
the positions where it is possible to spawn the MRS (green cells). Note that those are all
the available locations where both the top and bottom adjacent cells are also empty.

thermore, the A2C algorithm in SB3 is designed to work in conjunction with SB3 ActorCritic
Policies. These policies typically comprise a shared Feature Extractor NN, responsible for
preprocessing input observations, followed by shared or separate actor­critic networks. In
our implementation, we have customized this structure by removing the Feature Extractor
and substituting the default actor­critic network with our adapted VPN. However, we have
maintained the same interface as the original policy class to ensure smooth interaction
with the other components of the system.

To implement the NN Φ, we utilized two Conv2D layers with the parameters outlined in Ta­
ble 4.2. The VProp module follows the formulation presented in Equation 4.3, but instead
of performing element­wise computations, we parallelized the computation using tensor
manipulation functions provided by PyTorch. Lastly, the policy network (F) is constructed
using two fully connected linear layers. In Appendix B we report our implementation of
the VProp module and the of the actor network.

Conv2D layers 1st layer 2nd layer
input channels 4 3
output channels 3 3
kernel size 3 3
padding 1 1
stride 1 1
dilation 1 1
bias true true
activation function ReLU Sigmoid
Linear layers 1st layer 2nd layer
input channels (4 + 1)72 64
output channels 64 8
activation function ReLU SoftMax

Table 4.2: NN parameters for the case of a two­robot system. In this case, the policy
cutout region spans a 7× 7 area. The action set has size 8.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 43

We opted to employ the RMSProp optimizer for the purpose of maximizing the objective
function. Specifically, we utilized the same parameters as the SB3 implementation of the
A2C algorithm, albeit with a gradient clip threshold set to 10. Throughout all our exper­
iments, we implemented a linear learning rate scheduler, which gradually reduces the
learning rate during the training process. Intuitively the benefits of this approach are that
during the initial stages, when we are distant from the optimal solution, larger steps are
allowed to expedite the convergence to the optimum. Conversely, as we approach the
end, smaller steps are favoured to prevent over­shootings. In our experiments, the initial
learning rate was set to 0.01, and it was gradually reduced until reaching a value of 0.

To further mitigate the issue of high variance in the generated samples, it is common prac­
tice to employ a relatively large batch size compared to scenarios involving supervised
machine learning. Consistent with previous experiments documented in the literature, we
utilized batches of size 128. In our implementation, these interactions were obtained by
executing 16 agents in parallel, each operating in its own environment for a duration of 8
steps. Through careful experimentation, we determined this specific configuration to be
optimal for the hardware utilized in our study.

In addition, in our implementation, the VProp algorithm dynamically adjusts the K param­
eter, which is synchronized with the automatic CL updates. Specifically, during the early
stages of the curriculum, when the agent is in close proximity to the goal, a lower value
of K suffices for the propagation of the state­value function and for covering all relevant
states. As the agent’s paths become longer, the K coefficient is incrementally increased.
This technique speeds up the training process during the initial phases. Indeed, the K

coefficient directly influences the computational cost associated with making predictions
and backpropagating weight updates, as it represents the number of convolutional layers
employed to approximate the VI algorithm. It is worth mentioning that modifying the num­
ber of layers during training does not impact other components of the NN, as these layers
do not contain learnable parameters.
Callbacks and Monitoring
To facilitate the automatic CL feedback loop and data logging, we leveraged the customiz­
able callback functions5 provided by SB3. In our implementation, we designed a callback
function to retrieve the training metrics of the agent and, based on these metrics, we
dynamically adjust the complexity of the environment, as described in subsection 4.2.4.
Additionally, SB3 offers a set of built­in callbacks that enable the logging of training data
on TensorBoard, a widely used data­logging tool in the field of ML. By leveraging this tool,
we were able to effectively monitor the training progress in real­time, gaining valuable
insights into the performance and behaviour of our RL motion planning algorithm.

4.3 Multi­Robot 2D­3D Control System
As outlined in section 2.2, motion planners that adopt a graph­based representation of
the environment generally yield a sequence of waypoints that guide the robot towards
the goal. However, robot locomotion requires trajectories that are continuous in time and
space. In the following sections, we shall initially explore the methodology of adjusting
the output format of our RL planning algorithm such that it matches the output of con­
ventional motion planners. Subsequently, we shall explore the generation of paths under
the constraints that the MRS requires the maintenance of a constant inter­robot distance.
Following that, we will present the procedure by which paths are transformed into trajecto­
ries, alongside an examination of how trajectory­tracking controllers can be employed to

5Callbacks are functions that are executed periodically during the training process, providing a low­level
interface with various components.

44 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

move the robots. Thereafter, we introduce a localization algorithm employed to estimate
the position of the robot, a crucial requirement for the control system. We then present
two metrics to assess the localization performance within the context of MRS. Finally, we
propose a method to effectively simulate the planning and control techniques developed
in this study using 3D models of the environment and the robots.

For the purposes of this project, we shall consider, without loss of generality, an MRS
configuration consisting of two differential­drive robots tasked with the transportation of
an elongated, bar­shaped object. Each robot is positioned beneath one end of the bar. It
is assumed that the object is attached to each robot by means of a revolute joint, enabling
360­degree rotational motion, as well as a prismatic joint that allows for slight adjustments
in the robot’s movements before the object becomes dislodged. A schematic view of the
joints connecting the robots to the transported object is shown in Figure 4.6.

Figure 4.6: Joints connecting the robots with the transported object. On the bottom, two
differential drive mobile robots serve as the base platform. Each robot is surmounted by
a revolute joint and subsequently by a prismatic joint which is connected to the to­be­
transported object.

4.3.1 Transforming Actions into Waypoints
The first question we seek to tackle pertains to the conversion of the discrete actions
generated by the RL policy into corresponding positional updates for the MRS. A limitation
of utilizing our VPN­based planner is its lack of an end­to­end architecture, making it
incapable of directly controlling the robots. Nevertheless, this architecture exhibits the
advantage of being independent of the mechanical characteristics of the robots, and thus
applicable across various robot types.

To facilitate the translation of policy actions into the corresponding new position of the
MRS, our approach involves interpreting these actions as forces exerted on a rigid body
(the transported object). By applying such forces, a roto­translational motion is induced,
leading the MRS to its new position.

In our approach, we establish a 2D reference frame, denoted byOxy, which remains fixed
with respect to the environment. Additionally, we introduce a secondary frame, Omrsxy,
positioned at the center of the transported object. This auxiliary frame enables us to mon­
itor the pose of the MRS in relation to the base coordinates. Each action­generated force
possesses a unit magnitude and a direction corresponding to the action itself. These

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 45

forces are applied at the robot’s position responsible for generating the respective action.
Figure 4.7 offers an illustrative representation to help understanding the spatial relation­
ships between the previously defined frames.

𝜃𝑐
𝑦𝑥

Robot 1

Robot 2

𝑂
𝑂𝑚𝑟𝑠𝑦 𝑥

Figure 4.7: The yellow circles and the light gray bar represent the MRS seen from a top­
down view. The fixed reference frame Oxy is located in the upper left corner, while the
auxiliary frame Omrsxy is positioned at the center of the transported object. The angle
formed between these two frames is denoted by θc. Finally, the red arrow symbolizes the
forces that are generated as a result of the actions undertaken during the current time
step.

The exerted forces contribute to both the translation and the rotation of the MRS. The
translational motion is determined by summing all the individual forces and applying the
resultant force at the center of the object (at the origin of theOmrsxy frame). The rotational
motion is computed by calculating the mechanical moment induced by each force (using
the MRS center as the fulcrum). Subsequently, the torques generated by all the forces
are summed and applied at the center of the MRS formation.

We proceed to calculate the linear and angular accelerations by dividing the resulting force
and torque by the mass (m) and inertia (I) of the MRS, respectively. As a subsequent
step, assuming that these forces and torques act upon the MRS for a predefined time
interval (∆t), we determine the linear and angular velocities, followed by the computation
of the displacement in the pose. The pseudocode for the described algorithm is presented
in Table 4.3.

Since our primary focus is not on achieving a physically accurate rigid­body simulation,
we treat the mass (m) and inertia (I) as design parameters that provide control over the
strength of translation and rotation, respectively. For the same reason, each time the
algorithm is executed, the accelerations and velocities are reinitialized to zero, ensuring
that no momentum is carried over from previous actions.

Note that, in our implementation, this algorithm is directly embedded into the step function
of the developed RL grid world environment. It implicitly contains the unknown mapping
between actions and states of the underlying MDP.

46 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Table 4.3 Roto­Translation
1: procedure RotoTranslation(p(c), θ(c), {(f (1), r(1)), ..., (f (N), r(N))},∆t,m, I)
2: f (c) ← f (1) + · · ·+ f (n) ▷ Sum all forces
3: a← f (c)/m ▷ Compute linear acceleration
4: v ← a ·∆t ▷ Compute linear velocity
5: p

(c)
new ← p(c) + v ·∆t ▷ Compute new position

6: τ (c) ← f (1) × r(1) + · · ·+ f (N) × r(N) ▷ Compute total torque
7: α← τ (c)/I ▷ Compute angular acceleration
8: ω ← α ·∆t ▷ Compute angular velocity
9: θ

(c)
new ← θ(c) + ω ·∆t ▷ Compute new orientation

10: return p(c)new, θ
(c)
new

4.3.2 Multi­Robot Paths and Trajectories
The motion planning algorithm employed in our study operates within a discrete environ­
ment (grid world), where time is also discretized into steps. However, it is important to
acknowledge that real­world robots do not operate in such discrete settings. To bridge this
gap, the following path generation algorithm aims to identify a continuous path in the phys­
ical space, linking the waypoints provided by the motion planning algorithm. Specifically,
we seek to determine a path that navigates the robots from an initial configuration, de­
noted by qi = [xi, yi, θi], to a desired final configuration, represented by qf = [xf , yf , θf].
Moreover, this path must accommodate the non­holonomic constraints imposed by the
underlying kinematic model and it should ensure a constant inter­robot distance in the
formation.

Our proposed approach for addressing this challenge involves a two­step process. Firstly,
we focus on finding a path for the center of the formation. Subsequently, leveraging this
central path, we derive individual paths for each robot within the formation.

Path for the Formation’s Center
Considering the previously described MRS with its pose characterized by the Omrsxy

frame or, equivalently, by the configuration vector q(c) = [x(c), y(c), θ(c)], our objective is
to determine a path q(c)(s) = [x(c)(s), y(c)(s), θ(c)(s)] that guides the MRS from the initial
pose qi to the final pose qf . To accomplish this, we employ the Cartesian polynomials
method, which generates smooth paths by interpolating a cubic polynomial between the
initial and final poses as shown by the following equations:

x(c)(s) = s3x
(c)
f − (s− 1)3x

(c)
i + αxs

2(s− 1) + βxs(s− 1)2

y(c)(s) = s3y
(c)
f − (s− 1)3y

(c)
i + αys

2(s− 1) + βys(s− 1)2
(4.25)

The parameter s serves as a parameterization for the polynomial curve and ranges from
si = 0 to sf = 1. Additionally, the parameters α and β are utilized to enforce boundary
conditions that ensure the initial and final orientations align with the specified values θ(c)i

and θ
(c)
f , respectively. To impose these conditions, we employ the following systems of

equations:

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 47

[

αx

αy

]

=

[

k cos θ(c)f − 3x
(c)
f

k sin θ(c)f − 3y
(c)
f

]

,

[

βx
βy

]

=

[

k cos θ(c)i − 3x
(c)
i

k sin θ(c)i − 3y
(c)
i

]

(4.26)

In the systems, k represents an additional design parameter that impacts the curvature of
the resulting path. Consequently, its selection must be made with careful consideration,
taking into account the desired path characteristics and the size of the robots.

To obtain the heading angle function θ(c)(s), a linear interpolation approach is employed6.
Specifically, we interpolate between the initial orientation θ(c)i and the final orientation θ(c)f

using the equation:

θ(c)(s) = s · θ(c)f + (1− s) · θ(c)i (4.27)

An example of the Cartesian polynomials method applied to MRSs is depicted in Fig­
ure 4.8.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
[m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

[m
]

Figure 4.8: Cartesian polynomials path generation algorithm for MRSs. The left side
presents a two­robot system, depicted in dark grey, in its initial configuration. On the right
side, the same system is depicted in its target pose. The coloured squares represent
samples of the path q(c)(s) and, additionally, the MRS pose at each step is illustrated in
light grey.

6Note that with this definition, the function θ(c)(s) is monotonic.

48 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Individual Robot’s Paths
Deriving the path for each individual robot within the MRS becomes straightforward once
we have obtained the path for the center of the formation. To facilitate this process, we
introduce a notation that expresses the position of each robot in the MRS coordinates
(Omrsxy). For implementation purposes, we employ polar coordinates, where the position
of robot i is defined by a radius and an angle (r(i), ψ(i)). With this notation in place, we
can establish the path of each robot, q(i)(s) = [x(i)(s), y(i)(s), θ(i)(s)], based on the given
center path q(c), by utilizing the following expressions:

x(i)(s) = x(c)(s) + cos
(

θ(c)(s) + ψ(i)
)

r(i)

y(i)(s) = y(c)(s) + sin
(

θ(c)(s) + ψ(i)
)

r(i)
(4.28)

To define θ(i)(s), a commonly adopted approach involves assigning the robot the same
heading angle as the tangent to the path. This can be expressed as follows:

θ(i)(s) = Atan2
(

ẏ(i)(s), ẋ(i)(s)
)

(4.29)

We would like to emphasize that the paths generated using the aforementioned equations
possess the property of ensuring a constant inter­robot distance. Given the square of the
distance between the position of the two robots:

d2ij(s) =
(

x(i)(s)− x(j)(s)
)2

+
(

y(i)(s)− y(j)(s)
)2

(4.30)

The constant inter­robot distance property can be expressed as:

d2ij(s) = d2ij(0) ∀s ∀i, j (4.31)

Where (i, j) is a pair of robots in the MRS. While this property may seem geometrically
intuitive, we will now present a mathematical proof specifically for the case of our two­robot
system. However, the following proof can be readily extended to other configurations,
even those of a more complex nature.

Given the two­robot system defined as [(r(1), ψ(1)), (r(2), ψ(2))] = [(r, 0), (r, π)], the dis­
tance between the paths of the two robots, q(1)(s) and q(2)(s), remains constant and equal
to 2r for all values of s. In other words, the following relationship holds:

√

d2ij(s) = 2r ∀s (4.32)

Proof
First, given the definition of d2ij(s), let us focus on:

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 49

x(1)(s)− x(2)(s) = x(c)(s) + cos
(

θ(c)(s) + ψ(1)
)

r(1) − x(c)(s)− cos
(

θ(c)(s) + ψ(2)
)

r(2)

= cos
(

θ(c)(s) + ψ(1)
)

r(1) − cos
(

θ(c)(s) + ψ(2)
)

r(2)

by using the definitions of r(i) and ψ(i)

= r
(

cos
(

θ(c)(s)
)

− cos
(

θ(c)(s) + π
))

by the rule cos(α+ π) = − cos(α):
= 2r cos(θ(c)(s))

(4.33)

Similarly y(1)(s)− y(2)(s) = 2r sin(θ(c)(s)). Hence:

2r =

√

(

x(1)(s)− x(2)(s)
)2

+
(

y(1)(s)− y(2)(s)
)2

=

√

(

2r cos(θ(c)(s))
)2

+
(

2r sin(θ(c)(s))
)2

=

√

4r2 cos2(θ(c)(s)) + 4r2 sin2(θ(c)(s))

=
√
4r2

= 2r □

(4.34)

Further Considerations
There exist two special cases that enable us to simplify the computational complexity as­
sociated with generating paths. The first case occurs when the MRS moves on a straight
line. In such instances, complex cubic polynomials are unnecessary for interpolating the
initial and final positions. The second case arises when the MRS executes an in­place
rotation, causing each robot in the formation to follow a circular arc path.

As a negative consequence of these two special cases, it is possible for discontinuities
to arise in the orientation of the robot between consecutive path segments. The final
orientation of the preceding segment may not correspond to the initial orientation of the
subsequent one. This mismatch in orientations can result in significant errors between the
reference path and the actual robot position, potentially leading to the displacement of the
transported object. Consequently, prior to commencing a new path segment, the robot
will execute an in­place rotation to ensure proper alignment with the correct direction. This
step ensures smoother transitions between path segments and minimizes tracking errors.

Trajectory Generation
To transform the purely geometric path q(s) into a trajectory expressed as a function of
time, a timing law s(t) needs to be applied. This timing law not only converts the variable
s into t, which ranges from ti to tf , but also serves as a means to enforce additional
constraints. Real robots have limitations in terms of their top speeds, both linear and
angular, and to ensure accurate tracking performance, the reference trajectories should
not exceed these limits. Consequently, one of the most commonly employed approaches
is uniform scaling, which involves slowing down the timing law by dividing it by the duration

50 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

of the trajectory7 T :
s(t) =

t

T
(4.35)

Hence, by increasing the value of T , we can effectively reduce the maximum speed re­
quired for the robot to follow the trajectory. However, the trajectory q(t) solely comprises
the robot’s pose information, whereas controlling the robot also necessitates knowledge
of the linear and angular velocities v(t) and ω(t). These reference velocities can be com­
puted from q(t) using the following formulas:

v(t) =
√

ẋ2(t) + ẏ2(t), ω(t) =
ÿ(t)ẋ(t)− ẍ(t)ẏ(t)
ẋ2(t) + ẏ2(t)

(4.36)

Trajectory Tracking
The velocities reference values outlined in Equation 4.36 of course represent an input
signal for the robot to follow the desired trajectory qr(t). Nevertheless, relying solely on this
feedforward approach is impractical for real­world robotic systems due to its susceptibility
to process noise. In order to address this challenge and bolster the tracking system’s
robustness, we opt for employing a feedback error­space architecture based on pose
error. This error is not merely the difference between the reference pose (qr(t)) and the
current pose (q(t)), but rather, it is defined in the following manner:

e =





e1
e2
e3



 =





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1









xr − x
yr − y
θr − θ



 (4.37)

The primary function of the rotation matrix is to align the Cartesian component of the error
with the robot’s reference frame. More specifically, e1 characterizes the error along the
sagittal axis of the robot. Our objective is to develop a controller that drives the error
dynamics to zero while simultaneously tracking the reference velocities. In essence, the
controller should generate a signal u = [u1, u2] that modulates the velocities based on the
current pose error. For the sake of conciseness, we will omit the detailed derivation of
the error dynamics and the controller design, as they are available in [8]. Instead, we will
provide the final outcome. The input transformation that relates the control signal u, the
reference velocities and the pose error to the actual velocity input signal is:

v(t) = vr(t) · cos(e3(t))− u1(t)
ω(t) = ωr(t)− u2(t)

(4.38)

Regarding the controller, it has been demonstrated that, due to the nonholonomy of the
unicycle system, there does not exist a universal controller capable of tracking arbitrary
trajectories [75]. Consequently, a common assumption is often made, wherein the trajec­
tories to be tracked are deemed persistent. This assumption implies that the reference
velocity vr(t) can converge to zero as long as ωr(t) does not, and vice versa. Fortunately,
our trajectories, designed using the Cartesian polynomials method, fulfil this criterion.
Therefore, we can employ a family of controllers that asymptotically stabilize persistent
trajectories. Specifically, we utilize the following nonlinear controller:

7Note that we have employed the same symbol to denote the number of steps within an RL episode. How­
ever, the context in which the symbol is used should provide sufficient information to prevent any confusion
or ambiguity.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 51

u1(t) = −k1 · e1(t)

u2(t) = −k2 · vr(t)
sin(e3(t))
e3(t)

· e2(t)− k3 · e3(t)
(4.39)

where k1, k2, k3 are the controller’s gains. We have adopted the same values employed by
the authors of the controller in their simulations: k1 = k3 = 1.4 and k2 = 1. The stability
of this controller is proven by the authors using conventional techniques that involve a
Lyapunov candidate function.

Non-linear

controller

Input

transformation
Robot

𝑞𝑟 𝑞
𝑒

𝑣𝑟, 𝜔𝑟 𝑣, 𝜔𝑢
Rotation

matrix

Figure 4.9: Non­linear trajectory tracking control scheme. In this scheme, the pose error is
determined by applying a rotation matrix to the difference between the reference pose and
the actual pose. The nonlinear controller utilizes this pose error along with the reference
velocities to generate the control signal u. Subsequently, the signal u is converted into
control velocities v and ω through the input transformation block.

During the design of the control system in the preceding sections, an underlying assump­
tion was made, namely, that the robot’s current pose q is known. However, this assump­
tion does not hold true in real­world scenarios, where the robot’s pose can only be es­
timated. In the following, our focus shifts towards the investigation of pose estimation
methods. Finally, we propose a method for generating measures that closely mimic real­
world data, thereby enhancing the realism of our simulations. We also provide detailed
insights into the integration process of localization algorithms within the developed simu­
lation framework.

4.3.3 Monte Carlo Localization
As we have seen in subsection 2.5.1 odometry­based localization is prone to drift errors,
therefore we aim to fuse odometry and range finders measurements to obtain a better
localization algorithm. To achieve this, we employ the Adaptive Monte Carlo Localization
(AMCL) approach.

Monte Carlo Localization (MCL) is a family of localization algorithms that leverages the
PF as its core algorithm. In the context of localization problems, the initial distribution of
particles is typically a uniform distribution that encompasses all possible states, especially
when dealing with global localization. Conversely, for position­tracking problems where
the initial state is known, the initial distribution tends to be concentrated around the starting
state. The system’s dynamics are determined by the motion model, wherein the control
inputs (denoted by ut) correspond to odometry measurements q̄t, q̄t−1. These measure­
ments provide information about the robot’s motion and aid in updating the particle set to

52 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

represent the potential states of the system. The importance factors, which weigh the con­
tribution of each particle, are computed based on the range finder measurements model
p(zkt |qt,m).

The adaptive version of the MCL algorithm optimizes certain steps to reduce computa­
tional costs and make the algorithm more suitable for online applications. One key factor
contributing to the algorithm’s efficiency is the number of particles that need to be sim­
ulated. Typically, to achieve good results, the number of particles ranges from 100 to
10,000. However, a high number of particles is usually only necessary when the algo­
rithm has little knowledge about the robot’s initial position. As the algorithm converges
and gains more information, the number of particles can be reduced. This is precisely
what the adaptive version of the algorithm accomplishes. It dynamically adjusts the num­
ber of particles at each step based on the current requirements.

Despite the improved accuracy of the AMCL algorithm in estimating the robot’s pose com­
pared to simple odometry­based localization, it is not suitable for direct usage in the control
feedback loop due to its computational slowness. In practical implementations, odome­
try localization is employed within the feedback loop as it can be executed at high fre­
quencies, allowing for responsive control. However, to mitigate drift errors, the odometry
estimates are periodically adjusted with the more accurate AMCL estimates.

To effectively merge the two pose estimates, we leveraged the AMCL algorithm imple­
mentation found in the Nav2 package [76], which also is directly compatible with ROS.
Our approach involves extracting the transformation between the fixed global reference
frame and the odometry frame. This transformation, implicitly computed by the AMCL al­
gorithm, compensates for the drift in odometry, as depicted in Figure 4.10. This strategy
ensures that the localization maintains its responsiveness while benefiting from the drift
error mitigation capabilities given by the AMCL algorithm.

𝑥𝑦
(a)

𝑥𝑦
(b)

𝑥𝑦
(c)

Figure 4.10: Compensation of odometry drift error by the AMCL algorithm. The diagram
illustrates the true pose of the robot on the left. In the middle, the robot’s pose in the
odometry model frame of reference deviates from the true pose due to drift errors. On the
right, the odometry reference frame is adjusted using the frame transformation provided
by the AMCL algorithm (represented by the green arrow), resulting in an accurate pose
estimation that aligns with the true pose.

4.3.4 Metrics for Localization
In order to assess the performance of the localization algorithm and evaluate different
sensing devices, we introduce two metrics: the global position error and the local position
error. The global position error measures the difference between the reference position

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 53

and the actual position of the MRS center at each time step, namely:

Global pos. err. =
√

(

x
(c)
r (t)− x(c)(t)

)2
+
(

y
(c)
r (t)− y(c)(t)

)2
(4.40)

On the other hand, the local position error focuses on the error associated with maintaining
a constant inter­robot distance. This metric specifically evaluates the precision of the MRS
in preserving a desired formation. For our two­robot system, it can be expressed by the
following equation:

Local pos. err. = 1

2
·
(

√

(

x(1)(t)− x(2)(t)
)2

+
(

y(1)(t)− y(2)(t)
)2 − dnom

)

(4.41)

with dnom the nominal (reference) distance between the two robots:

dnom =

√

(

x
(1)
r (t)− x(2)r (t)

)2
+
(

y
(1)
r (t)− y(2)r (t)

)2
(4.42)

In the context of transportation scenarios, requirements are typically imposed on this local
position error as it is essential to prevent any unintended displacement or destabilization
of the transported object.

4.3.5 Generating Noisy Measures
The odometry motion model presented in subsection 2.5.4 has two key applications that
make it highly relevant in our scenario. Firstly, it serves as a means to comprehend the
accumulation of motion errors over successive time steps, while also being an integral
component of the AMCL algorithm. Secondly, it finds application in simulating odometry
errors. In our simulation framework (as described in subsection 4.3.6), the robots exhibit
ideal motion without any process noise, and the sensor returns noiseless measurements.
In order to facilitate a more realistic simulation, we artificially introduce noise­corrupted
measures by reversing the equations of the motion model. The step­by­step procedure
for generating the noisy measures qnt is provided in Table 4.4.

The Turtlebot3 robot is equipped with a LIDAR scanner that enables it to measure dis­
tances up to 3.5 meters in all directions around the robot, covering a full 360­degree range.
In the simulated robot, the LIDAR operates similarly to its real­world counterpart, provid­
ing measurements with noise generated according to the model described in subsec­
tion 2.5.5. However, due to constraints in simulation, the pmax and prand components of
the model are excluded. Additionally, we assume that the environment is fully mapped
in advance, eliminating the need to consider the pshort component. As a result, the mea­
surement model in the simulated environment reduces to a simple Gaussian noise model.
Despite this simplification, the model remains representative of real­world measurements,
as the phit component typically is the predominant one.

4.3.6 Experimental Platform: Simulations and 3D Visualization
This section presents an implementation­oriented description of the integration process
between the motion planning algorithm, the path generation module, and the trajectory
tracking controller outlined previously. Additionally, we describe how we conducted real­
istic simulations utilizing the ROS framework and the Gazebo 3D visualization tool.

54 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Table 4.4 Noisy Odometry
1: procedure NoisyOdometry(qt−1, qt, q

n
t−1)

2: δrot1 ← Atan2 (yt − yt−1, xt − xt−1)− θt−1

3: δtrans ←
√

(xt−1 − xt)2 + (yt−1 − yt)2
4: δrot2 ← θt − θt−1 − δrot1

5: srot1 ← Sample
(

ϵα1δ
2
rot1+α2δ

2
trans

)

6: strans ← Sample
(

ϵα3δ
2
trans+α4δ

2
rot1+α4δ

2
rot2

)

7: srot2 ← Sample
(

ϵα1δ
2
rot2+α2δ

2
trans

)

8: δnrot1 ← δrot1 + srot1
9: δntrans ← δtrans + strans

10: δnrot2 ← δrot2 + srot2

11: xnt ← xnt−1 + δntrans cos(θnt−1delta
n
rot1)

12: ynt ← ynt−1 + δntrans sin(θnt−1delta
n
rot1)

13: θnt ← θnt−1 + δnrot1 + δnrot2

14: return qnt

Turtlebot 3
The planning algorithm presented in this thesis is designed to be applicable to various
types of mobile robots. However, for the purpose of our simulations, we specifically con­
centrate on the differential drive architecture. In this regard, we have chosen the Turtle­
bot3 robot platform (depicted in Figure 4.11) as our preferred option. The Turtlebot3 is
widely recognized for its user­friendly nature, making it ideal for educational and research
purposes. Moreover, it benefits from extensive documentation and is an open­source
project. Notably, the Turtlebot3 is equipped with a diverse range of sensors, including
wheel encoders, an Inertial Measurement Unit (IMU), and a LIDAR scanner.
Simulated Environment
To faithfully replicate real­world scenarios, our objective is to reconstruct the 2D grid world
environments presented in section 4.1 in a 3D format. To accomplish this, we leveraged
an open­source tool called image2gazebo [77], which facilitates the conversion process
from a 2D binary matrix representing an occupancy map to a 3D model of the map. This
conversion is achieved by extruding the obstacles indicated on the map into the third
dimension. The output of this process is a Standard Tessellation Language (STL) file
that contains the meshes8 of the resulting 3D model. Subsequently, the STL file can be
combined with a Spatial Data File (SDF) model, which incorporates physical properties
such as collisions, textures, and gravity. This SDF model can then be interpreted by
the Gazebo visualization tool. Additionally, this conversion plugin offers the flexibility to
specify parameters such as the height of the walls and the size of the cells.

It is important to note that the conversion process from 2D to 3D for simulations is opposite
to what the robots undergo during the execution phase. In practice, the robot lives within
a 3D world and, through its sensors, reconstructs a 2D representation of the surrounding
environment, which is then used for planning operations.

8A 3D mesh is the structural build of a 3D object model consisting of a collection of vertices, edges, and
faces.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 55

Figure 4.11: Turtlebot3 ­ model Burger.

To complete the simulation framework, we integrated the online available 3D model of the
Turtlebot3, which includes plugins to simulate its various sensors and actuators. Addition­
ally, we custom­designed the object being transported to match the scale of the robots
used in the experiments. Figure 4.12 illustrates the process of converting the 2D grid
world into a 3D environment and the 3D model of the MRS under test.
Middleware Interface with ROS
To orchestrate the planning and control components with the simulated robot hardware,
we employed ROS, a middleware framework. At the core of ROS lies its powerful message­
passing interface, which enables seamless communication and interaction between di­
verse components. While ROS encompasses a range of communication protocols, its
fundamental approach is rooted in the publish/subscribe paradigm. Each component op­
erates autonomously within a dedicated node (process), and in order to exchange infor­
mation with other nodes, it must publish its data to a designated topic. Correspondingly,
to receive data, a node must subscribe to the topic of interest. In the context of our sce­
nario, ROS assumes the critical role of facilitating both intra and inter­robot communica­
tion, while also serving as the interface between the robotic system and the visualization
tool.

In terms of intra­robot communications, we have devised a main control node that as­
sumes responsibility for both planning and control operations. This node subscribes to
the relevant robot sensors topics, enabling the reception of perception data. Upon pro­
cessing this data through our planning algorithm, the controller then transmits its directives
to the actuators by means of publishing them on a dedicated topic. Turning our attention
to inter­robot communications, their purpose lies in the synchronization and coordination
of the multiple robots within the MRS. This synchronization is paramount to ensure the si­
multaneous movement and maintenance of formation among the robots. Additionally, our
planning algorithm mandates precise knowledge of the positions of all robots within the
MRS. Consequently, a periodic exchange of this positional information becomes impera­
tive. While simulations may not differentiate between intra and inter­robot communication
channels, in practical implementations, a distinction arises. Intra­robot communication

56 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

(a) (b) (c)

(d) (e)

(f)

Figure 4.12: Simulated 3D environment and MRS model. The 32x32 2D grid world en­
vironment (a) is the input for the image2gazebo conversion tool. The resultant 3D en­
vironment is presented from both a top view (b) and a perspective view (c). Each cell
within the environment has dimensions of 30x30cm, thereby resulting in an overall envi­
ronment size of approximately 10x10m. In (d), the 3D Turtlebot3 model is depicted, while
(e) showcases the 3D MRS model which includes two Turtlebot3 robots and the trans­
ported object. The entirety of the 3D scenario, encompassing the 3D environment, the
MRS model, and the target area (depicted as a red rectangle) situated at the center of the
map, is illustrated in (f).

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 57

is typically realized using a wired connection system. On the other hand, for inter­robot
communication wireless technologies are commonly employed.

An overview of the communication’s links between the various components is shown in
Figure 4.13 while Table 4.5 reports the main steps executed within the main control node.

Gazebo

Robot 1Control node 1

Robot 2Control node 2

Control signal

Raw sensor data

Synch channel 1 Synch channel 2

Control signal

Raw sensor data

Figure 4.13: Intra and inter­robot communication scheme. The bi­directional intra­robot
communication is represented by the control signal and raw sensor data exchanged by the
control node and the robot hardware. Additionally, the presence of two synch. channels
enable inter­robot communications, allowing the robots to synchronize and coordinate
their actions. Lastly, for visualization purposes, Gazebo collects the robot’s current state.

Table 4.5 Control node
1: while goal not reached do
2: a(self) ← policy.predict(obs)
3: publish a(self), q(self) to the synchronization channel
4: wait until a(other), q(other) are received from the other robot
5: compute q(c)f using the RotoTranslate procedure
6: compute the center path q(c)r (s) given q(c)i and q(c)f

7: compute the robot path qr(s) given q(c)r and (r, ψ)
8: compute the robot trajectory qr(t) given qr(s) and s(t)
9: compute the reference velocities vr(t) and ωr(t) given qr(t)

10: for = 0 to T do
11: compute pose error et given q(t) and qr(t)
12: compute the control signal ut given et, vr(t), and ωr(t)
13: compute the control velocities vt and ωt given et, ut, vr(t), and ωr(t)
14: publish vt and ωt to the robot’s actuators
15: update obs with new robot’s positions and new sensed environment’s obstacles

Integration of the Localization Algorithm
The parameters associated with the motion model and the AMCL algorithm are often un­
known and require fine­tuning based on the results obtained from simulation or real­world
experiments. In our case, we have adopted the parameter values reported in study [78],
which applies the same models and algorithms presented here to an AGV. Furthermore,
Figure 4.14 illustrate how the feedback loop of the tracking controller, specifically the
intra­robot communication scheme depicted in Figure 4.13, incorporates the generation
of corrupted measurements and the utilization of the sensor­based localization algorithm.

58 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

RobotControl node Control signal

Ideal odometry

Range finder scanAMCL

Motion noise

Noisy odometry

Compensating

frame

Figure 4.14: ROS communication scheme of the intra­robot control loop enhanced with
sensor­based localization algorithm.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 59

60 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

5 Results & Discussion
In this chapter, we present the outcomes of the implemented solutions. Firstly, we provide
an extensive analysis of the results obtained from the RL planning algorithm, emphasizing
its implications in comparison to the existing SoA approaches. Secondly, we showcase
the outcomes derived from the path generation and trajectory tracking controller. Lastly,
we present the findings obtained from the conducted sensing experiments.

5.1 Training and Performance Results of the RL Planner
Before exploring the multi­agent scenario and realistic indoor environments, we deem
it crucial to replicate the experiments outlined in the original VPN article [2]. This pre­
liminary step is essential to validate our adapted implementation of the algorithm before
proceeding with cooperative robot scenarios. The authors of the article primarily present
the algorithm in a mathematical framework, providing limited details pertaining to its im­
plementation. Consequently, reproducing the results becomes a challenging task. Nev­
ertheless, we consider the results presented by the authors as the standard against which
we seek to compare our own implementation.

Recall that our measurement of training time is in steps, which correspond to a single
observation­action­reward iteration, namely, the atomic unit in RL settings. For the sake
of completeness, we will also provide the total number of episodes required to train the
agents. However, note that there is no standardized relationship between these two vari­
ables, as the specific implementation parameters can greatly influence the correlation.

All of our training experiments were conducted on an Intel Core i9­12900K processor with
64 GB of main memory. In an effort to accelerate the training process, we explored the
option of running the agent’s NN on a GPU, specifically the NVIDIA GeForce RTX 4090.
However, it is important to emphasize that RL algorithms cannot be directly executed on
accelerators. While NNs can be parallelized and effectively executed on GPUs [79], RL
environments are primarily designed to run on CPUs as it happens in our case. Conse­
quently, we did not observe significant advantages from utilizing the GPU for training. The
bottleneck arises from the cost associated with data transfer between the CPU and GPU,
which offsets any potential benefits gained from GPU acceleration.

5.1.1 Single­Agent Scenario
Following the approach proposed in the article, we conduct an analysis using a grid world
of varying dimensions, featuring uniformly randomly placed obstacles, and a single agent.
Specifically, we evaluate environments ranging from 16×16 to 64×64 in size. The obstacle
probability is set at p = 0.3, meaning that approximately 30% of the cells within the grid
will be occupied by obstacles.

Figure 5.1 illustrates the progression of the training metrics described in subsection 4.2.3
as a function of the training steps. The results demonstrate that the training algorithm
successfully converged, leading to a nearly­optimal solution. The plot depicting the policy
loss exhibits a decreasing trend, indicating the convergence of the function towards zero,
as expected. Furthermore, the entropy loss function displays a similar trend, indicating
that the agent is gaining confidence in the choice of actions. Likewise, the plots related
to the state­value function approximation exhibit satisfactory convergence, with the value
loss (Equation 4.13) steadily decreasing and approaching zero, as expected. Additionally,
the explained variance exhibits an upward trend, approaching the unitary value. Following

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 61

the completion of the training, the explained variance reached an impressive value of
97.8%, reflecting the high fidelity of the approximated state­value function.

Figure 5.1: The plot illustrates the outcomes of the single­agent training process. Specif­
ically, we present the policy and value loss, along with the entropy loss and the explained
variance. The light red background data represents the actual recorded data, while the
bold red line is employed for visualization purposes, obtained by applying a Gaussian
kernel to the underlying data.

While training metrics provide valuable insights into the learning process, metrics directly
measuring the agent’s performance are even better indicators. Figure 5.2 depicts the
mean episode length and the mean episode rewards throughout the training phase. Ad­
ditionally, Figure 5.2 presents the optimal episode length, the relative difference metric,
and a graph showcasing the updates made by the automatic CL to the maximum spawn­
ing distance.

The plotted data highlights the presence of two different training phases. The first phase
spans from steps 0 to 2 million, during which the automatic CL algorithm is actively en­
gaged. Throughout this phase, the distance between the agent and the goal is incremen­
tally increased, facilitating a gradual progression in the agent’s learning process. The
second phase, stemming from step 2 million, marks the agent’s transition to the final
stage of the curriculum, where it steadily improves its performance towards the optimum.
The division between these two phases is clearly discernible in Figure 5.2 (bottom right),
which visualizes the points at which the curriculum is updated. In this specific experiment,
the target maximum distance between the goal and the agent was set to 64 cells.

The first phase can be further subdivided into two distinct stages. The initial stage, span­

62 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Figure 5.2: The plots showcase the performance metrics of the single agent through­
out the training phase. Specifically the mean episode length contains the agent’s mean
episode length (in red) and the optimal mean episode length (in blue). The dashed grey
line indicates the transition between the two training phases.

ning from 0 to 100,000 steps, is characterized by the agent transitioning from random
movements to understanding the objective of reaching the goal. This is evident from
the mean episode length plot, which initially exhibits a relatively high value, despite the
goal being only one cell away. Once the agents grasp the objective, the CL protocol is
employed to gradually increase the difficulty level until the target task is achieved. The
curriculum undergoes updates when the relative difference metrics fall below 0.2. This
threshold indicates that, on average, the agent’s path is more than 20% longer than the
optimal path when the curriculum is considered complete. This level of performance is
suboptimal, as the agent’s paths should ideally closely align with the optimal path.

The second phase of training is therefore primarily focused on optimizing the length of the
agent’s path. Over the course of the subsequent 3 million steps, the relative difference
metric consistently decreases, resulting in the agent’s path being less than 5% longer than
the optimal path. One alternative approach would be to set a lower curriculum update
threshold right from the beginning, ensuring that the agent’s path is already close to the
optimal one upon completing the curriculum sub­tasks. However, adopting this approach
would not necessarily expedite the training process, as each stage of the curriculum would
likely require more time to achieve the desired level of performance.

Lastly, note that the mean episode reward plot exhibits a similar trend to that of the mean
episode length, albeit inverted and re­scaled.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 63

Table 5.1 presents the results in terms of win rate and the relative difference between our
findings and those reported in the VPN article. While our results demonstrate the great
performance of the algorithm, it should be noted that the exact definition of these metrics
used by the authors remains somewhat unclear. For instance, a variation in the thresh­
old that determines a successful episode (in our case, 100 steps) would yield different
win rates and subsequently different values for the RelDiff metric. However, despite
these potential variations, our findings indicate that the training process converges, and
the overall performance achieved aligns with our intended objectives, thus validating our
implementation for our scope and purpose.

Train
map size

Test
map size

Training duration
step, episodes, time

Win rate RelDiff
SoA Our SoA Our

16x16 16x16 2.5M, 70K, 1.1h 94.4 99.8 0.2 0.09
32x32 n.a. 98.6 n.a. 0.45

32x32 32x32 5M, 150, 5.7h 68.8 99.6 0.4 0.13
64x64 n.a. 92.9 n.a. 0.49

64x64 64x64 10M, 280K, 18.2h 53.2 93.4 0.5 0.21

Table 5.1: Comparison of after­training performance metrics of the single­agent with the
SoA. In our study, the win rate is averaged over 1000 episodes, and the RelDiff metric
is computed exclusively for successful episodes. The authors of the SoA article did not
provide information regarding the training time and steps, but only specified the number
of episodes: 30,000 for all map sizes. Additionally, the agent trained on 16 × 16 and
32 × 32 maps was tested on larger maps (32 × 32 and 64 × 64, respectively) to evaluate
its generalization capabilities.

5.1.2 Cooperative Scenario
In order to address the cooperative transportation scenario, we initially seek to replicate
the scenario proposed in the current state­of­the­art study on cooperative carrying using
DQN [13]. The replication of the environment, utilizing grid world models is depicted in
Figure 4.1b. This specific scenario provides a straightforward evaluation of the robot’s
ability to cooperate, as cooperation is the sole means by which the robots can reach their
objective. In our scenario, the goal is situated in the lower right corner, and spans a 5× 5
area, while the MRS is randomly spawned within the left half of the map.

To address this scenario, we employed pre­trained agents. Specifically, we initially trained
the agents individually, following the approach described in the previous section, on maps
featuring randomly positioned obstacles. Subsequently, utilizing the NN weights obtained
from this initial training phase as a starting point, we changed the scenario to the coop­
erative one. We named this approach single­to­multi­robot manual CL. The outcomes of
the second training stage are presented in Figure 5.3.

A notable distinction compared to the single­agent scenario is the convergence speed.
The algorithm achieves convergence in a mere 500,000 steps. This quantity of steps
corresponds to approximately a couple of hours of training, signifying a substantial en­
hancement over the DQN approach, which, as indicated by the authors’ findings, requires
several days to complete the training procedure. This relatively rapid convergence can be
attributed to the agents being pre­trained and the map being smaller and static. Nonethe­
less, this outcome serves as a compelling demonstration of our algorithm’s capability to
acquire and adapt to cooperative dynamics.

64 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Figure 5.3: The plot illustrates the training metrics of the cooperative multi­agent scenario
in the presence of a static environment.

5.1.3 Indoor Scenario
In line with the previous scenario, also in this context, we employ the single­to­multi­robot
curriculum. However, the cooperative stage of the training process proves to be con­
siderably more challenging due to the dynamic nature of the environment. In fact, the
environment is randomly generated at each episode using the ArenaBench tool. More­
over, the presence of moving obstacles, constituting 5% of the total cells, further adds to
the complexity as their positions change at each step.

Figure 5.4 presents the outcomes of the second stage of the training process. Analogous
to the initial single­agent scenario, the plots within the figure can be partitioned into two
distinct sections. The first segment corresponds to the automatic region­growing curricu­
lum, wherein the complexity of the scenario progressively escalates. The subsequent part
of the figure is dedicated to the refinement of the agent’s policy.

In this case, the threshold for the RelDiff metric must be set significantly higher. The
rationale behind this adjustment lies in the fact that the MRS functions as a solitary agent
for the purpose of calculating the optimal path length, hence neglecting the intricate ma­
noeuvres the MRS might need to undertake. Furthermore, the optimal path computation
occurs at the beginning of each episode, thereby failing to account for the presence of
moving obstacles. For this specific experiment, we determined the threshold to be 2.0,
accounting for these considerations.

In order to gain deeper insights into the cooperative aspects of the training process, we
have employed the re­formulation of the ∆Q metric tailored to V­value­based agents.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 65

Figure 5.4: The plot presents the training metrics of the cooperative multi­agent scenario
in the context of an indoor dynamic environment.

The resulting values are depicted in Figure 5.5. Although the initial phase of the metric is
not particularly informative due to its susceptibility to the rapidly changing region­growing
curriculum, the subsequent phase effectively corroborates the observations made by the
original ∆Q metric’s authors. Starting from the 6 millionth step and continuing until the
end, the plot exhibits a consistent downward trend, which indicates a progressive en­
hancement in the level of cooperation between the robots.

Through empirical observation, we have discovered a seemingly counter­intuitive be­
haviour exhibited by the agent when trained with randomly moving obstacles. Specifically,
the MRS demonstrates a preference for maintaining a considerable distance from these
dynamic obstacles, despite this choice resulting in a longer path towards the goal. At first
glance, it may appear that the agents are not effectively learning. However, their strategic
choice is justified by the potential hindrances posed by closely approaching a randomly
moving obstacle. Such proximity could significantly impede the manoeuvrability of the
MRS. Consequently, the agents exhibit a preference for taking locally sub­optimal steps,
ultimately leading to superior global outcomes.

5.1.4 Integration with the Path Generation Algorithm
This section is dedicated to presenting the outcomes achieved through the integration of
the RL planner with the path generation algorithm. An exemplification of this integration
is depicted in Figure 5.6. The devised RL algorithm formulates plans based on the grid
world representation of the environment, and subsequently, its directives are seamlessly
translated into continuous paths in the real­world domain.

66 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

0 2 4 6 8 10
Steps 1e6

0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18

D
el

ta
 Q

Figure 5.5: The plot depicts the trend of the ∆Q metrics during multi­agent training in the
indoor dynamic environment.

5.1.5 Integration with 6G Radio Coverage Constraints
Figure 5.7 illustrates the outcomes obtained from the pathloss computation. It demon­
strates the integration of virtual obstacles into the environmental map, showcasing the
areas where the radio signal strength is insufficient. Additionally, the figure depicts the
planned trajectory of the MRS as it strategically avoids these low­coverage areas.

5.1.6 Comparison with the SoA
In comparison to the current SoA approach that utilizes DQN, our proposed approach
possesses the capability to plan in dynamically changing environments. During the ex­
ecution phase, if the environment undergoes modifications, each planning agent within
our framework adapts its actions accordingly. This dynamic planning ability is facilitated
by the input map that serves as the interface between the real world and the agent. In
contrast, the DQN approach relies on agents ”memorizing” the surrounding environment
structure through collisions with walls. Consequently, if the environment changes, all the
acquired knowledge becomes obsolete, necessitating a restart of the training process. In
contrast, our agents have acquired the ability to take optimal actions that lead towards
the goal based on the current state of the environment. It is worth noting that in real­world
scenarios, an a priori map of the environment may not always be available. However,
assuming the robot can sense the obstacles in the vicinity of its current position, our al­
gorithm can still guide the robot towards the goal. This may not be achieved in an optimal
manner, but rather in a similar way to how a flood­fill path­finding algorithm would operate
[80]. It is important to acknowledge the trade­off between the level of a priori information
about the map and the optimality of the generated paths. In cases where no information
is available, the transportation tasks are accompanied by an additional exploration task.

A limitation of our approach is that the planning process takes place within a discretized
world, which inherently restricts the accuracy of the environment map. While discrete
maps are commonly employed in robotics, the drawback of our algorithm lies in the size
of the map that the algorithm can effectively process. In our experiments, we utilized
a 32 × 32 grid world configuration, resulting in block sizes of 30 × 30cm to represent a
10× 10 meter room. This level of granularity may be insufficient to accurately capture the
details of the environment. Although it is possible to increase the resolution of the grid
world, such enhancement would come at the cost of significantly increased training time.
Moreover, the algorithm’s output, which comprises discrete actions, also contributes to
the lack of smoothness in the resulting path executed by the robot.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 67

0.75 1.65 2.55 3.45 4.35 5.25 6.15
Meters

2.55

3.45

4.35

5.25

M
et
er
s

Figure 5.6: An exemplification of the RL planner integrated with the path generation algo­
rithm, resulting in a continuous global path guiding the MRS from its initial pose (located
at the bottom left) towards the goal area (positioned at the top right).

5.2 Tracking Controller Performance
To validate the performance of the trajectory tracking controller we performed experiments
using the developed simulation framework. Specifically, we use the simulated Turtlebot3
robot and made it follow a trajectory designed with the Cartesian polynomial method, such
that it emulates the paths that the robot will follow when part of the MRS. To isolate the
controller from other factors, we took advantage of the perfect knowledge of the robot
pose the simulation environment provides. Figure 5.8 shows the results. To further test
the stability of the controller we also tested the cases where the initial robot’s pose is
different from the reference one.

To assess the effectiveness of the trajectory tracking controller, we conducted experi­
ments utilizing our custom simulation framework. In particular, we employed the sim­
ulated Turtlebot3 robot to follow a trajectory generated using the Cartesian polynomial
method. In order to isolate the controller’s performance from other factors, we leveraged
the precise knowledge of the robot’s pose that the simulation environment provided. The
outcomes of these experiments are presented in Figure 5.8 . To further evaluate the sta­
bility of the controller, we also conducted tests where the initial pose of the robot differed
from the reference pose.

The obtained results demonstrate the capability of the controller to asymptotically track
the desired trajectory, even when the initial conditions differ from the reference pose. It is
important to note that the controller implemented in the simulation is a discretized version
of the controller described in subsection 4.3.2. To achieve this discretization, we utilized
the forward Euler method with a sampling interval of 10ms.

68 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Figure 5.7: On the left side, the computation of pathloss values is performed utilizing
the preexisting map of the environment. The access point is positioned in proximity to the
bottom left corner of the map. On the right side, the outcomes are displayed after applying
a threshold to the pathloss values (in this instance, set at ­95 dBm). Virtual obstacles are
depicted in a light grey shade. The Multi­Robot System is initially positioned in the upper
portion of the map, and in order to reach the designated goal (red rectangle), it strategically
opts for a longer but safer route (solid line).

5.3 Localization Results and Experiments
The outcomes of applying the localization metrics described in subsection 4.3.4 to the
scenario depicted in Figure 5.6 are illustrated in Figure 5.9. This figure presents a com­
parison among three different scenarios: the ideal case where the robots possess perfect
knowledge of their true position, the scenario where odometry­based localization is em­
ployed with simulated noisy odometry using the procedure outlined in Table 4.4, and the
utilization of the AMCL algorithm with LIDAR measurements.

The plotted data clearly demonstrates that relying solely on odometry­based localization
leads to system failure. In this case, the global position error reaches approximately 30cm.
This means that the robot may be dangerously close to colliding with obstacles without
the planning algorithm being aware of this proximity. Likewise, the local position error
also reaches similar values, around 20cm, which undoubtedly compromises the stability
of the transported object. It is important to note that in our scenario, where the transported
object is approximately 1 meter in length, an acceptable threshold for the local error would
be around 5 or 10cm. Conversely, when utilizing the AMCL algorithm, both the global and
local error remain below the 3cm threshold. This represents a remarkable achievement.
It is worth mentioning that even in the case of perfect localization (ideal scenario), both
metrics do not report zero error. This discrepancy arises due to the non­ideal response
of the control system in following the reference signal.

Figure 5.10 presents a comparison between the outcomes obtained by applying the AMCL
algorithm with LIDAR measurements and the same algorithm utilizing emulated 6G sens­
ing devices. In order to emulate the performance of these sensors, we took advantage of
the shared underlying measurement model with LIDAR sensors. To achieve this emula­
tion, we amplified the noisy variance of the LIDAR measurements by factors of 5 and 10,
thereby downgrading its accuracy. This comparison allows us to assess the effectiveness
and robustness of the AMCL algorithm when operating with different sensing devices.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 69

Figure 5.8: Controller performances in tracking a reference trajectory. The reference
trajectory and velocities are shown in red, while the actual robot trajectory and velocities
are shown in blue. Additionally, we report in green the robot’s trajectory and velocities for
the case where the initial condition does not match the reference one (the robot shifted on
the y­axis of about 3cm). The Cartesian trajectories in the 2D operational plane and the
heading angle trajectory as a function of time are shown in the top plots. The reference
linear and angular velocities as well as the actual velocities are reported in the middle.
The Cartesian (e1 solid line, e2 dotted line) and angular error (e3) are depicted on the
bottom.

70 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Figure 5.9: Global (on the left) and Local (on the right) position error metrics comparing
different localization strategies.

Figure 5.10: Global (on the left) and Local (on the right) position error metrics comparing
the AMCL localization algorithm with different measurements noise levels.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 71

The results demonstrate that despite the diminished accuracy in measurements, the lo­
calization performance remains largely unaffected. Thus this experiment represents a
first step in proving the viability of such sensing devices in robotic scenarios.

72 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

6 Conclusions & Future Work
6.1 Conclusions
In this thesis, our primary focus revolved around the design of multi­robot motion planning
for the cooperative carrying task. Our specific contribution lies in proposing an adapted
version of the VPN algorithm [2], with the underlying belief that RL algorithms can out­
perform traditional approaches in the context of MRSs. Our research yielded two key im­
provements over the current SoA. Firstly, we demonstrated that the theoretical framework
underlying VPNs can effectively address multi­agent scenarios. Secondly, compared to
the SoA RL algorithm for cooperative MRSs planning, namely the DQN approach pre­
sented in [13], our solution exhibits superior adaptability in dynamic environments with
moving obstacles, without requiring re­training procedures.

To validate our algorithm, we conducted a proof­of­concept implementation using modern
RL software frameworks. The performance of our algorithm was rigorously evaluated
by comparing it against current SoA approaches. The comprehensive results obtained
from these evaluations demonstrate the effectiveness of our algorithm, not only in terms
of overall performance but also in terms of training time and across various evaluation
metrics. Of particular significance is our extension of the ∆Q metric, which serves as
additional evidence that the agents successfully acquired cooperative behaviours through
the learning process.

Additionally, our RL framework serves as a 2D visualization tool, however, by recogniz­
ing that real­world robots operate in a three­dimensional space, we dedicated substantial
efforts to create a simulation platform that accurately reflects this reality. We provided
a detailed description of the development process of this platform, encompassing the
construction of the 3D environment, the modelling of the MRS based on the Turtlebot3
robot, and the seamless orchestration of the various components through ROS. In the
process of building this simulation platform, we seized the opportunity to investigate other
crucial elements in robot navigation, specifically path generation algorithms and trajectory
tracking controllers. Our research successfully demonstrated the effectiveness of the pro­
posed multi­robot trajectory generation algorithm in maintaining a consistent inter­robot
distance, a crucial requirement for the carrying task.

To enhance the realism of the simulation, we implemented a sensor­based localization
algorithm, the AMCL. We conducted a comparative analysis between this algorithm and
odometry­based localization, and evaluated the accuracy based on the global and local
position error metrics. The results of our study demonstrated that the integration of LIDAR­
based localization through AMCL significantly improves reliability and accuracy, ensuring
the successful completion of the mission.

Lastly, in anticipation of the growing integration of telecommunication and robotics as a
cohesive functional system, we presented an innovative concept that leverages 6G signal
connectivity, using E­band spectrum as communication technology. With this technique,
we enabled the robot to intelligently select routes that prioritize stronger network connec­
tivity, utilizing E­band communication as our experimental platform. Furthermore, in line
with the ongoing development of 6G ISAC technologies, we conducted preliminary tests
to evaluate the feasibility of utilizing 6G sensing devices for robot localization. Remark­
ably, these tests revealed that the performance of 6G sensors closely aligns with that of
the current standard in the field, i.e. LIDARs, when used for localization purposes.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 73

6.2 Future Work
One of the most significant trade­offs we encountered during the design of the RL motion
planning algorithms was the adoption of a coarse grid map to represent the world, coupled
with the restriction of agent actions solely to adjacent cell movements. This decision led
to a drawback in which the map fails to capture the smaller details present in the actual
environment, while the constrained output of the agents underutilizes the robot’s mobility
capabilities. To address these limitations, forthcoming research should focus on revising
the network architecture to encompass a larger set of actions, and on further optimizing
the training algorithm to enable fast learning on high­resolution maps.

Moreover, the multi­robot path generation algorithm we have developed suffers from a
similar limitation, wherein the generated paths exhibit local smoothness, i.e. between
consecutive checkpoints, but lack a global optimization step. Consequently, the MRS
must readjust its alignment at each checkpoint before advancing to the subsequent one.
To address this issue, future investigations should focus on the integration of the sub­
sequent checkpoints into the path generation algorithm. This enhancement will enable
the algorithm to consider the future targeted direction, thereby fostering globally smooth
paths.

Finally, an additional area of focus would involve the expansion of the developed coopera­
tive robotic simulator to incorporate enhanced telecommunication components. Including
telecommunication aspects would introduce realism to the data exchange mechanism be­
tween robots, encompassing factors like delays and packet loss. Moreover, a robotic sim­
ulation platform would provide dynamic scenarios with stringent telecommunication and
perception requirements. These scenarios would serve as benchmarks for ongoing 6G
development, thereby facilitating the evaluation and advancement of novel ISAC devices.
The reciprocal interaction between robotics and telecommunication simulations presents
a unique opportunity for mutual enhancement, benefiting both fields and contributing to
the progress of cutting­edge technologies in a symbiotic manner.

74 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

Bibliography
[1] World Robotics Industrial Robots and Service Robots. https://ifr.org/worldrobotics/.

2022.
[2] Nantas Nardelli et al. “Value Propagation Networks”. In: CoRR abs/1805.11199

(2018). arXiv: 1805.11199. url: http://arxiv.org/abs/1805.11199.
[3] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. “A Survey and Analysis of Multi­

Robot Coordination”. In: International Journal of Advanced Robotic Systems 10.12
(2013), p. 399. doi: 10 .5772/57313. eprint: https ://doi . org/10 .5772/57313. url:
https://doi.org/10.5772/57313.

[4] Yulin Wang. “What Are Cooperative Robots and Collaborative Robots?” In: IDTechEX
(2022). url: https://www.idtechex.com/en/research- article/what- are- cooperative-
robots - and - collaborative - robots/28376#:~ : text=As%20a%20relatively%20new%
20definition,between%20human%20operators%20and%20themselves..

[5] Elio Tuci, Muhanad H. M. Alkilabi, and Otar Akanyeti. “Cooperative Object Transport
in Multi­Robot Systems: A Review of the State­of­the­Art”. In: Frontiers in Robotics
and AI 5 (2018). issn: 2296­9144. doi: 10.3389/frobt.2018.00059. url: https://www.
frontiersin.org/articles/10.3389/frobt.2018.00059.

[6] Jun Ota. “Multi­agent robot systems as distributed autonomous systems”. In: Ad­
vanced Engineering Informatics 20.1 (2006), pp. 59–70. issn: 1474­0346. doi: https:
//doi.org/10.1016/j.aei.2005.06.002. url: https://www.sciencedirect.com/science/
article/pii/S1474034605000509.

[7] Michael W Otte. “A survey of machine learning approaches to robotic path­planning”.
In: University of Colorado at Boulder, Boulder (2015).

[8] B. Siciliano et al. Robotics: Modelling, Planning and Control. Advanced Textbooks
in Control and Signal Processing. Springer London, 2010. isbn: 9781849966344.

[9] Zichen He, Jiawei Wang, and Chunwei Song. “A review of mobile robot motion plan­
ning methods: from classical motion planning workflows to reinforcement learning­
based architectures”. In: CoRR abs/2108.13619 (2021). arXiv: 2108.13619. url: https:
//arxiv.org/abs/2108.13619.

[10] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson se­
ries in artificial intelligence. Pearson, 2021. isbn: 9781292401133. url: https://books.
google.com.hk/books?id=B4xczgEACAAJ.

[11] Zhi Yan et al. “Metrics for performance benchmarking of multi­robot exploration”.
In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2015, pp. 3407–3414. doi: 10.1109/IROS.2015.7353852.

[12] Nelson Munoz Ceballos, Jaime Valencia Velasquez, and Nelson Ospina. “Quan­
titative Performance Metrics for Mobile Robots Navigation”. In: Mar. 2010. isbn:
978­953­307­076­6. doi: 10.5772/8988.

[13] Lin Zhang et al. “Decentralized Control of Multi­Robot System in Cooperative Object
Transportation Using Deep Reinforcement Learning”. In: IEEE Access 8 (2020),
pp. 184109–184119. doi: 10.1109/ACCESS.2020.3025287.

[14] Sutton R. S. and Barto A. G. Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, Massachusetts; Lon­
don, England, 2018. isbn: 9780262193986. url: https : / /www.andrew . cmu . edu/
course/10-703/textbook/BartoSutton.pdf.

[15] Tanmay Gangwani. Value Iteration, Policy Iteration and Policy Gradient. Oct. 2019.
url: https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 75

[16] Luíza Caetano Garaffa et al. “Reinforcement Learning for Mobile Robotics Explo­
ration: A Survey”. In: IEEE Transactions on Neural Networks and Learning Systems
(2021), pp. 1–15. doi: 10.1109/TNNLS.2021.3124466.

[17] C. J. C. H. Watkins. “Learning from Delayed Rewards”. PhD thesis. King’s College,
Oxford, 1989.

[18] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: (2013).
cite arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013. url: http://
arxiv.org/abs/1312.5602.

[19] Bruno Bouzy and Guillaume Chaslot. “Monte­Carlo Go Reinforcement Learning Ex­
periments”. In: 2006 IEEE Symposium on Computational Intelligence and Games.
2006, pp. 187–194. doi: 10.1109/CIG.2006.311699.

[20] R. J. Williams. “Simple statistical gradient­following algorithms for connectionist re­
inforcement learning”. In: Machine Learning 8 (1992), pp. 229–256.

[21] Tuomas Haarnoja et al. “Soft Actor­Critic: Off­Policy Maximum Entropy Deep Re­
inforcement Learning with a Stochastic Actor”. In: CoRR abs/1801.01290 (2018).
arXiv: 1801.01290. url: http://arxiv.org/abs/1801.01290.

[22] Volodymyr Mnih et al. Asynchronous Methods for Deep Reinforcement Learning.
2016. arXiv: 1602.01783 [cs.LG].

[23] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR abs/
1707.06347 (2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347.

[24] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: Proceedings of the
31st International Conference on International Conference on Machine Learning ­
Volume 32. ICML’14. Beijing, China: JMLR.org, 2014, pp. I–387–I–395.

[25] Yang Cheng, Mark Maimone, and Larry Matthies. “Visual odometry on the Mars
Exploration Rovers”. In: 2005 IEEE International Conference on Systems, Man and
Cybernetics. Vol. 1. 2005, 903–910 Vol. 1. doi: 10.1109/ICSMC.2005.1571261.

[26] Muhammad Khan et al. “Investigation of Widely Used SLAM Sensors Using Ana­
lytical Hierarchy Process”. In: Journal of Sensors 2022 (Jan. 2022), pp. 1–15. doi:
10.1155/2022/5428097.

[27] Huijuan Zhang et al. “Localization and navigation using QR code for mobile robot
in indoor environment”. In: 2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO). 2015, pp. 2501–2506. doi: 10.1109/ROBIO.2015.7419715.

[28] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Intelligent Robotics and
Autonomous Agents series. MIT Press, 2005. isbn: 9780262201629. url: https://
books.google.com.hk/books?id=2Zn6AQAAQBAJ.

[29] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Prediction Prob­
lems”. In: Transactions of the ASME–Journal of Basic Engineering 82.Series D
(1960), pp. 35–45.

[30] Brian D. O. Anderson. Optimal Filtering. eng. Dover Books on Electrical Engineer­
ing. Newburyport: Dover Publications, 2012. isbn: 0­486­13689­2.

[31] Yoon­Gu Kim et al. “Localization strategy based on multi­robot collaboration for in­
door service robot applications”. In: 2013 10th International Conference on Ubiq­
uitous Robots and Ambient Intelligence (URAI). 2013, pp. 225–226. doi: 10.1109/
URAI.2013.6677348.

[32] Feng Gu et al. “Experimental study of vision sensor based multiple robots active co­
operative observation using multi­RFRs testbed”. In: 2011 IEEE International Con­
ference on Robotics and Biomimetics. 2011, pp. 2417–2418. doi: 10.1109/ROBIO.
2011.6181665.

[33] Zhenyi Chen et al. “6G Mobile Communications for Multi­Robot Smart Factory”.
In: Journal of ICT Standardization 9.03 (Dec. 2021), pp. 371–404. doi: 10.13052/

76 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

jicts2245-800X.934. url: https://journals.riverpublishers.com/index.php/JICTS/article/
view/7121.

[34] Alireza Bayesteh et al. “Integrated Sensing and Communication (ISAC) — From
Concept to Practice”. In: Communications of HUAWEI RESEARCH (2022). url:
https://www.huawei .com/en/huaweitech/future- technologies/ integrated- sensing-
communication-concept-practice.

[35] Marina Lotti et al. Radio SLAM for 6G Systems at THz Frequencies: Design and
Experimental Validation. 2022. arXiv: 2212.12388 [eess.SP].

[36] Carlos De Lima et al. “Convergent Communication, Sensing and Localization in 6G
Systems: An Overview of Technologies, Opportunities and Challenges”. In: IEEE
Access 9 (2021), pp. 26902–26925. doi: 10.1109/ACCESS.2021.3053486.

[37] 6G: The Next Horizon: From Connected People and Things to Connected Intelli­
gence. Cambridge University Press, 2021. doi: 10.1017/9781108989817.

[38] 6G and Robotics. Jan. 2023. url: https://one6g.org/new-one6g-position-paper-on-
6g-robotics/#.

[39] Soon­Jo Chung et al. “A Survey on Aerial Swarm Robotics”. In: IEEE Transactions
on Robotics 34.4 (2018), pp. 837–855. doi: 10.1109/TRO.2018.2857475.

[40] Hyeonbeom Lee, Hyoin Kim, and H. Jin Kim. “Planning and Control for Collision­
Free Cooperative Aerial Transportation”. In: IEEE Transactions on Automation Sci­
ence and Engineering 15.1 (2018), pp. 189–201. doi: 10.1109/TASE.2016.2605707.

[41] Vojtech Spurny et al. “Cooperative Transport of Large Objects by a Pair of Un­
manned Aerial Systems using Sampling­based Motion Planning”. In: 2019 24th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). 2019, pp. 955–962. doi: 10.1109/ETFA.2019.8869298.

[42] Hyeonbeom Lee, Clark Youngdong Son, and H. Jin Kim. “Collision­Free Path Plan­
ning for Cooperative Aerial Manipulators Under Velocity and Curvature Constraints”.
In: IEEE Access 7 (2019), pp. 171153–171162. doi: 10.1109/ACCESS.2019.2946273.

[43] Stephanie Kamarry Alves De Sousa et al. “Two­Layers Workspace: A New Ap­
proach to Cooperative Object Transportation With Obstacle Avoidance for Multi­
Robot System”. In: IEEE Access 10 (2022), pp. 6929–6939. doi: 10.1109/ACCESS.
2022.3140857.

[44] A. Yamashita et al. “Motion planning of multiple mobile robots for Cooperative ma­
nipulation and transportation”. In: IEEE Transactions on Robotics and Automation
19.2 (2003), pp. 223–237. doi: 10.1109/TRA.2003.809592.

[45] Vinayak Honkote et al. “Design and Integration of a Distributed, Autonomous and
Collaborative Multi­Robot System for Exploration in Unknown Environments”. In:
2020 IEEE/SICE International Symposium on System Integration (SII). 2020, pp. 1232–
1237. doi: 10.1109/SII46433.2020.9025810.

[46] Junyan Hu et al. “Voronoi­Based Multi­Robot Autonomous Exploration in Unknown
Environments via Deep Reinforcement Learning”. In: IEEE Transactions on Vehic­
ular Technology 69.12 (2020), pp. 14413–14423. doi: 10.1109/TVT.2020.3034800.

[47] Jianing Chen et al. “Occlusion­Based Cooperative Transport with a Swarm of Minia­
ture Mobile Robots”. In: IEEE Transactions on Robotics 31.2 (2015), pp. 307–321.
doi: 10.1109/TRO.2015.2400731.

[48] Yili Fu, Han Li, and Yulin Ma. “Path Planning of Cooperative Robotics and Robot
Team”. In: 2006 IEEE International Conference on Robotics and Biomimetics. 2006,
pp. 1250–1255. doi: 10.1109/ROBIO.2006.340107.

[49] Jyun­Yu Jhang, Cheng­Jian Lin, and Kuu­Young Young. “Cooperative Carrying Con­
trol for Multi­Evolutionary Mobile Robots in Unknown Environments”. In: Electronics

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 77

8.3 (2019). issn: 2079­9292. doi: 10.3390/electronics8030298. url: https://www.mdpi.
com/2079-9292/8/3/298.

[50] Ying Wang and C.W. de Silva. “Cooperative Transportation by Multiple Robots with
Machine Learning”. In: 2006 IEEE International Conference on Evolutionary Com­
putation. 2006, pp. 3050–3056. doi: 10.1109/CEC.2006.1688694.

[51] Hao Zhang et al. “H2GNN: Hierarchical­Hops Graph Neural Networks for Multi­
Robot Exploration in Unknown Environments”. In: IEEE Robotics and Automation
Letters 7.2 (2022), pp. 3435–3442. doi: 10.1109/LRA.2022.3146912.

[52] Tohru Kawabe and Kou Nakamura. “Cooperative Carrying Task Control based on
RHC for Mobile Robots”. In: International Journal of Circuits, Systems and Signal
Processing. Vol. 4. 3. 2010, pp. 129–136.

[53] Devika Mohan and A. Vivek. “Navigation of two wheeled mobile robots cooperatively
carrying an object”. In: 2017 International Conference on Circuit ,Power and Com­
puting Technologies (ICCPCT). 2017, pp. 1–7. doi: 10.1109/ICCPCT.2017.8074218.

[54] Alpaslan Yufka, Osman Parlaktuna, and Metin Ozkan. “Formation­based coopera­
tive transportation by a group of non­holonomic mobile robots”. In: 2010 IEEE In­
ternational Conference on Systems, Man and Cybernetics. 2010, pp. 3300–3307.
doi: 10.1109/ICSMC.2010.5642400.

[55] Mahitthidetch Udomkun and Poj Tangamchit. “Cooperative behavior­based control
of decentralized mobile robots on an overhead box carrying task”. In: 2008 5th In­
ternational Conference on Electrical Engineering/Electronics, Computer, Telecom­
munications and Information Technology. Vol. 2. 2008, pp. 633–636. doi: 10.1109/
ECTICON.2008.4600513.

[56] S. Furuno, M. Yamamoto, and A. Mohri. “Trajectory planning of cooperative multiple
mobile manipulators”. In: Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). Vol. 1. 2003,
136–141 vol.1. doi: 10.1109/IROS.2003.1250618.

[57] Linh Kästner et al. “Arena­Bench: A Benchmarking Suite for Obstacle Avoidance
Approaches in Highly Dynamic Environments”. In: IEEE Robotics and Automation
Letters 7.4 (2022), pp. 9477–9484. doi: 10.1109/LRA.2022.3190086.

[58] Eric Heiden et al. “Bench­MR: A Motion Planning Benchmark for Wheeled Mobile
Robots”. In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 4536–4543. doi:
10.1109/LRA.2021.3068913.

[59] Aviv Tamar, Sergey Levine, and Pieter Abbeel. “Value Iteration Networks”. In: CoRR
abs/1602.02867 (2016). arXiv: 1602.02867. url: http://arxiv.org/abs/1602.02867.

[60] John Schulman et al. High­Dimensional Continuous Control Using Generalized Ad­
vantage Estimation. 2018. arXiv: 1506.02438 [cs.LG].

[61] Xueguang Lyu et al. “Contrasting Centralized and Decentralized Critics in Multi­
Agent Reinforcement Learning”. In: CoRR abs/2102.04402 (2021). arXiv: 2102 .
04402. url: https://arxiv.org/abs/2102.04402.

[62] Ryan Lowe et al. “Multi­Agent Actor­Critic for Mixed Cooperative­Competitive En­
vironments”. In: Proceedings of the 31st International Conference on Neural Infor­
mation Processing Systems. NIPS’17. Long Beach, California, USA: Curran Asso­
ciates Inc., 2017, pp. 6382–6393. isbn: 9781510860964.

[63] Sanmit Narvekar et al. “Curriculum Learning for Reinforcement Learning Domains:
A Framework and Survey”. In: CoRR abs/2003.04960 (2020). arXiv: 2003.04960.
url: https://arxiv.org/abs/2003.04960.

[64] Gyuho Eoh and Tae­Hyoung Park. “Cooperative Object Transportation Using Curriculum­
Based Deep Reinforcement Learning”. In: Sensors 21.14 (2021). issn: 1424­8220.
doi: 10.3390/s21144780. url: https://www.mdpi.com/1424-8220/21/14/4780.

78 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

[65] Gyuho Eoh and Tae­Hyoung Park. “Automatic Curriculum Design for Object Trans­
portation Based on Deep Reinforcement Learning”. In: IEEE Access 9 (2021), pp. 137281–
137294. doi: 10.1109/ACCESS.2021.3118109.

[66] Danny Tseng. Riding the Wave of 5G, a Millimeter at a Time. 2021. url: https://
developer.qualcomm.com/blog/riding-wave-5g-millimeter-time.

[67] ETSI 3GPP. 5G; Study on channel model for frequencies from 0.5 to 100 GHz
(3GPP TR 38.901 version 17.0.0 Release 17). 2022. url: https://www.etsi.org/.

[68] Marco Mezzavilla et al. “End­to­End Simulation of 5G mmWave Networks”. In: IEEE
Communications Surveys and Tutorials 20.3 (2018), pp. 2237–2263. doi: 10.1109/
COMST.2018.2828880.

[69] Greg Brockman et al. “OpenAI Gym”. In: CoRR abs/1606.01540 (2016). arXiv: 1606.
01540. url: http://arxiv.org/abs/1606.01540.

[70] Adam Paszke et al. “PyTorch: An Imperative Style, High­Performance Deep Learn­
ing Library”. In: Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[71] Sainbayar Sukhbaatar et al. “MazeBase: A Sandbox for Learning from Games”. In:
CoRR abs/1511.07401 (2015). arXiv: 1511.07401. url: http://arxiv.org/abs/1511.
07401.

[72] Maxime Chevalier­Boisvert, Lucas Willems, and Suman Pal. Minimalistic Gridworld
Environment for Gymnasium. 2018. url: https://github.com/Farama-Foundation/
Minigrid.

[73] Eric Liang et al. “Ray RLLib: A Composable and Scalable Reinforcement Learning
Library”. In: CoRR abs/1712.09381 (2017). arXiv: 1712.09381. url: http://arxiv.org/
abs/1712.09381.

[74] Antonin Raffin et al. “Stable­Baselines3: Reliable Reinforcement Learning Imple­
mentations”. In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8. url:
http://jmlr.org/papers/v22/20-1364.html.

[75] David A. Lizárraga. “Obstructions to the Existence of Universal Stabilizers for Smooth
Control Systems”. In: Mathematics of Control, Signals and Systems 16.4 (Mar.
2004), pp. 255–277. issn: 1435­568X. doi: 10.1007/s00498-003-0140-x. url: https:
//doi.org/10.1007/s00498-003-0140-x.

[76] Steven Macenski et al. “The Marathon 2: A Navigation System”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2020.

[77] Salih Marangoz. image2gazebo. https://github.com/salihmarangoz/image2gazebo.
2020.

[78] Wallace dos Reis et al. “An extended analysis on tuning the parameters of Adap­
tive Monte Carlo Localization ROS package in an automated guided vehicle”. In:
The International Journal of Advanced Manufacturing Technology 117 (Nov. 2021),
pp. 1–21. doi: 10.1007/s00170-021-07437-0.

[79] Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A Tutorial and
Survey”. In: CoRR abs/1703.09039 (2017). arXiv: 1703.09039. url: http://arxiv.org/
abs/1703.09039.

[80] Semuil Tjiharjadi and Erwin Setiawan. “Design and Implementation of a Path Find­
ing Robot Using Flood Fill Algorithm”. In: International Journal of Mechanical Engi­
neering and Robotics Research. 5 (Jan. 2016). doi: 10.18178/ijmerr.5.3.180-185.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 79

80 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

A Actor­Critic Additional Material

A.1 Derivation of the REINFORCE Gradient Estimator
Recall the RL objective function:

ERL(θ) =

∫

P (S0)Vπθ
(S0)dS0 = Eπθ

[G0] (A.1)

Let’s unroll the expectation:

Eπθ
[G0] =

∑

S0,...,ST

∑

A0,...,AT−1

∑

R1,...,RT

T−1
∏

t=0

P (St+1, Rt+1|St, At)

T−1
∏

t=0

πθ(At|St)
T−1
∑

k=0

γkRk+1

(A.2)

let’s define:

P0:τ =
τ
∏

k=0

P (Sk+1Rk+1|Sk, Ak) (A.3)

Qθ
0:τ =

τ
∏

k=0

πθ(Ak|Sk) (A.4)

∑

S,A,R

=
∑

S0,...,ST

∑

A0,...,AT−1

∑

R1,...,RT

(A.5)

therefore:

Eπθ
[G0] =

∑

S,A,R

P0:T−1Q
θ
0:T−1

T−1
∑

k=0

γkRk+1

=

T−1
∑

k=0

∑

S,A,R

P0:T−1Q
θ
0:T−1γ

kRk+1

= by summing the probabilities that do not depend on other terms

=

T−1
∑

k=0

∑

S,A,R

P0:kQ
θ
0:kγ

kRk+1

(A.6)

By differentiating over the policy parameters θ we obtain:

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 81

∂ERL

∂θ
=

T−1
∑

k=0

∑

S,A,R

P0:kγ
kRk+1

∂Qθ
0:k

∂θ

= using ∂h(x)

∂x
= h(x)

∂ log(h(x))
∂x

=

T−1
∑

k=0

∑

S,A,R

P0:kγ
kRk+1

∂ logQθ
0:k

∂θ
Qθ

0:k

=
T−1
∑

k=0

∑

S,A,R

P0:kQ
θ
0:kγ

kRk+1
∂

∂θ

k
∑

τ=0

logπθ(Aτ |Sτ)

=
∑

S,A,R

T−1
∑

k=0

k
∑

τ=0

P0:kQ
θ
0:kγ

kRk+1
∂ logπθ(Aτ |Sτ)

∂θ

=
∑

S,A,R

T−1
∑

τ=0

T−1
∑

k=τ

P0:kQ
θ
0:kγ

kRk+1
∂ logπθ(Aτ |Sτ)

∂θ

(A.7)

which means that:

=

T−1
∑

τ=0

T−1
∑

k=τ

γkRk+1
∂ logπθ(Aτ |Sτ)

∂θ

=

T−1
∑

τ=0

γτ
T−1
∑

k=τ

γk−τRk+1
∂ logπθ(Aτ |Sτ)

∂θ

=

T−1
∑

τ=0

γτGτ
∂ logπθ(Aτ |Sτ)

∂θ

(A.8)

is an estimate of ∂ERL

∂θ
. Hence the gradient estimator is:

∂ERL

∂θ
= E

[

T−1
∑

τ=0

γτGτ
∂ logπθ(Aτ |Sτ)

∂θ

]

(A.9)

82 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

A.2 The Baseline Term Does Not Affect the Gradient
Estimates

Note that:

∂ERL

∂θ
= E

[

T−1
∑

τ=0

γτ (Gτ − b(Sτ))
∂ logπθ(Aτ |Sτ)

∂θ

]

=
T−1
∑

τ=0

E

[

Gτ
∂ logπθ(Aτ |Sτ)

∂θ
− b(Sτ)

∂ logπθ(Aτ |Sτ)
∂θ

]

= E

[

T−1
∑

τ=0

γτGτ
∂ logπθ(Aτ |Sτ)

∂θ

]

−
T−1
∑

τ=0

E

[

b(Sτ)
∂ logπθ(Aτ |Sτ)

∂θ

]

(A.10)

let’s focus on the second term:

E

[

b(Sτ)
∂ logπθ(Aτ |Sτ)

∂θ

]

=
∑

Sτ

∑

Aτ

P (Sτ)πθ(Aτ |Sτ)b(Sτ)
∂ logπθ(Aτ |Sτ)

∂θ

=
∑

Sτ

∑

Aτ

P (Sτ)b(Sτ)
∂πθ(Aτ |Sτ)

∂θ

=
∑

Sτ

P (Sτ)b(Sτ)
∂

∂θ

∑

Aτ

πθ(Aτ |Sτ)

=
∑

Sτ

P (Sτ)b(Sτ)
∂

∂θ
1

= 0

(A.11)

Therefore the baseline term in expectation does not affect the gradient estimator.

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 83

B Listings
B.1 Value Propagation Module

1 def _v_prop(
2 self,
3 rin: torch.Tensor,
4 rout: torch.Tensor,
5 p: torch.Tensor,
6) -> torch.Tensor:
7 """
8 Value propagation algorithm
9

10 :param rin: reward matrix
11 :param rout: reward matrix
12 :param p: propagation matrix
13 :return: values, values matrix
14 """
15 actions = [(0, 1), (2, 1), (1, 0), (1, 2),
16 (0, 0), (0, 2), (2, 0), (2, 2)]
17 values = torch.zeros_like(rin)
18
19 padded_rin = torch.nn.functional.pad(
20 rin, (1, 1, 1, 1, 0, 0), "constant", 0
21)
22
23 for __ in range(self.vi_k):
24 padded_v = torch.nn.functional.pad(
25 values, (1, 1, 1, 1, 0, 0), "constant", 0
26)
27
28 for h_offset, w_offset in actions:
29 shifted_v = padded_v[
30 :,
31 h_offset : h_offset + self.maze_size ,
32 w_offset : w_offset + self.maze_size ,
33]
34 shifted_rin = padded_rin[
35 :,
36 h_offset : h_offset + self.maze_size ,
37 w_offset : w_offset + self.maze_size ,
38]
39
40 nv = p * shifted_v + shifted_rin - rout
41 values = values.maximum(nv)
42
43 return values

Listing B.1: PyTorch Implementation of the Value Propagation Module

84 Cooperative Carrying Control for Mobile Robots in Indoor Scenario

B.2 Actor Network

1 def _compute_logits(
2 self, obs: torch.Tensor, values: torch.Tensor
3) -> torch.Tensor:
4 """
5 Forward of the policy net (logits)
6
7 :param obs: Observation
8 :param values: Values matrix
9 :return: logits, output of the latent layer of the policy net

10 """
11 # Retrieve Batch Size
12 B = obs.shape[0]
13
14 # concatenate values to observations
15 obs_val = torch.cat((obs, values.unsqueeze(dim=1)), dim=1)
16
17 # Neighbor cut-out
18 padding = self.neighbor_size // 2
19 padded_obs_val = torch.nn.functional.pad(
20 obs_val,
21 (padding, padding, padding, padding, 0, 0, 0, 0),
22 "constant",
23 0,
24)
25
26 pos = torch.nonzero(obs_val[:, 1, :, :])[:, 1:]
27 if pos.numel() == 0:
28 assert False, "Agent not found"
29
30 selected_obs_val = torch.zeros(
31 (B, self.in_channels + 1, self.neighbor_size , self.neighbor_size)
32)
33 for b in range(B):
34 i, j = pos[b, 0] + padding, pos[b, 1] + padding
35 selected_obs_val[b, :, :, :] = padded_obs_val[
36 b,
37 :,
38 i - padding : i + 1 + padding,
39 j - padding : j + 1 + padding
40]
41
42 # Policy network
43 logits = self.Logit(torch.flatten(selected_obs_val , start_dim=1))
44 logits = self.relu(logits)
45 return logits

Listing B.2: PyTorch Implementation of the Actor Network

Cooperative Carrying Control for Mobile Robots in Indoor Scenario 85

University of Padua Technical University of Denmark Huawei Munich Research Center

Via VIII Febbraio, 2 Anker Engelunds Vej, 1 Riesstraße 25
35122 Padova, Italy 2800 Kgs. Lyngby, Denmark 80992 München, Germany

www.unipd.it www.dtu.dk www.huawei.com

	Preface
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Scope and Key Contributions
	1.3 Thesis Structure

	2 Background Material
	2.1 Cooperative Robotics
	2.1.1 Definitions
	2.1.2 Benefits and Challenges
	2.1.3 Taxonomy

	2.2 Motion Planning
	2.2.1 What is Motion Planning?
	2.2.2 Single-robot Motion Planning
	2.2.3 Metrics
	2.2.4 Path Planning & Control Strategies

	2.3 Reinforcement Learning
	2.3.1 Modelling the Environment
	2.3.2 Agent Decision Making
	2.3.3 RL Algorithms

	2.4 Mobile Robots
	2.4.1 Overview of Mobile Robot Architectures
	2.4.2 Unicycle Kinematic model

	2.5 Localization and Mapping
	2.5.1 Sensors for Localization
	2.5.2 Mapping
	2.5.3 Sensor Fusion
	2.5.4 Odometry Motion Model
	2.5.5 Range Finder Measurements Model

	2.6 Telecommunications in Robotics
	2.6.1 5G Technologies
	2.6.2 6G Technologies

	3 Literature Review
	3.1 MRSs Motion Planning and Formation Control
	3.1.1 Traditional Techniques
	3.1.2 AI-based Techniques
	3.1.3 Formation Control

	3.2 Analysis of Key Related Works

	4 System Model & Key Enablers
	4.1 Environment Model
	4.1.1 Grid Worlds
	4.1.2 Markov Decision Processes
	4.1.3 Types of Environments

	4.2 RL-based Motion Planning
	4.2.1 Agent's Neural Network Architecture
	4.2.2 Actor-Critic Training Algorithm
	4.2.3 Evaluation Techniques
	4.2.4 Curriculum Learning
	4.2.5 Enhanced Planning with 6G Connectivity
	4.2.6 RL Experimental Configuration

	4.3 Multi-Robot 2D-3D Control System
	4.3.1 Transforming Actions into Waypoints
	4.3.2 Multi-Robot Paths and Trajectories
	4.3.3 Monte Carlo Localization
	4.3.4 Metrics for Localization
	4.3.5 Generating Noisy Measures
	4.3.6 Experimental Platform: Simulations and 3D Visualization

	5 Results & Discussion
	5.1 Training and Performance Results of the RL Planner
	5.1.1 Single-Agent Scenario
	5.1.2 Cooperative Scenario
	5.1.3 Indoor Scenario
	5.1.4 Integration with the Path Generation Algorithm
	5.1.5 Integration with 6G Radio Coverage Constraints
	5.1.6 Comparison with the SoA

	5.2 Tracking Controller Performance
	5.3 Localization Results and Experiments

	6 Conclusions & Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	A Actor-Critic Additional Material
	A.1 Derivation of the REINFORCE Gradient Estimator
	A.2 The Baseline Term Does Not Affect the Gradient Estimates

	B Listings
	B.1 Value Propagation Module
	B.2 Actor Network

