

Dipartimento di Geoscienze

Tesi di Laurea triennale in Scienze Geologiche

Anno accademico 2013-2014

STUDY OF "BULCED CRATERS" IN ARABIA TERRA (MARS)

> Supervisor: Dr. Massironi Matteo Co-supervisor: Dr. Pozzobon Riccardo

Bachelor-Degree candidate: Giovanni Baldo

What's a bulge?

A bulged crater is carachterized by a central swelling in the crater's floor, unrelated to impact derived central peak.

The origin is widely debated and two possible causes has been proposed so far:

- Erosion by circolar blowing of winds within the crater (Andrews-Hanna et al. 2010, JGR)
- Sub-surface fluids effusions and accretion of spring material (Pondrelli et al. 2011, EPSL)

Our suggestion is that they are caused by uprising of evaporitic material through passive diapirism.

Arabia Terra area is suitable for bulged craters for the following reasons:

- high craters density with different sizes (highland);
 - already reported bulged craters infilled by sedimentary deposits;
 - gentle slope degrading towards the northern lowlands where sabka enviornments could have been favoured during the Noachian.

Arabia Terra

We operated in two different ways:

1) We have analyzed topographic profiles (MOLA 128px/deg) of all craters (larger than 15km in diameter) in an area of about 7'360'000km² to retrive shape and dimensions of possible inner bulges and to determine their distribution in Arabia Terra.

2) We created a geological map of a representative bulged crater to discover possible traces of other processes which could be hints of evaporitic uprising.

Phase 1: craters topographic profiles analyses

Data:

- MOLA topographic (128px/deg)
- THEMIS IR day (512 m/px)
- HRSC DTM (50 m/px)
- CTX mosaic (6 m/px)
- Robbins craters database (2012, JGR)

Software:

- ISIS3
- ArcCatalog
- ArcMap
- Excel
- Origin
- MathLab
- Paint.NET

Robbins craters database

Probable bulged craters

Ambiguous bulged craters

Craters with chaotic inner infilling

Bulged craters for sure

Step 2: topographic profiles of sure bulged craters

For each sure crater we have drawn four topographic profiles.

Then we used Origin to create a representative mean topographic profile for each crater.

< >

Average1* NUM

We have calculated the pristine depth of each bulged crater using Robbins equation for all global complex craters : $d=0.107D^{0.559}$

where «d» stands for floor depth. (Robbins and Hynek 2012) The pristine depth is different from real measured depth possibly for crater infilling.

ROBBINS AND HYNEK: MARS CRATER DATABASE—RESULTS

Table 2. Crater Depth/Diameter Ratios on Mars Over Different Terrains^a

	Deepest Craters	Fresh Craters	All Craters
Global			
Smp (N = 37,091)	$d = 0.179 D^{1.012}$	$d = 0.097 D^{1.061}$	$d = 0.047D^{1.284}$
Cpx (N = 32,021)	$d = 0.286 D^{0.582}$	$d = 0.250 D^{0.527}$	$d = 0.107 D^{0.559}$
-40° to $+40^{\circ}$			
Smp (N = 24,875)	$d = 0.175 D^{1.022}$	$d = 0.084 D^{1.245}$	$d = 0.078D^{1.106}$
Cpx (N = 22,290)	$d = 0.280 D^{0.570}$	$d = 0.229 D^{0.567}$	$d = 0.155D^{0.464}$
≤-40°, ≥+40°			
Smp $(N = 12,210)$:	$d = 0.177 D^{0.724}$	$d = 0.083 D^{1.073}$	$d = 0.014D^{1.465}$
Cpx (N = 9742)	$d = 0.244 D^{0.579}$	$d = 0.174 D^{0.629}$	$d = 0.032D^{0.881}$
Northern Plains			
Smp(N = 3693)	$d = 0.165 D^{1.094}$	$d = 0.073 D^{1.311}$	$d = 0.011D^{1.992}$
Cpx (N = 1308)	$d = 0.479 D^{0.359}$	$d = 0.274 D^{0.502}$	$d = 0.227D^{0.158}$
Volcanic Terrain			
Smp(N = 2471)	$d = 0.212D^{0.886}$	$d = 0.182 D^{0.718}$	$d = 0.091D^{1.010}$
Cpx (N = 1008)	$d = 0.291 D^{0.526}$	$d = 0.240 D^{0.539}$	$d = 0.209 D^{0.451}$
Southern Highlands			
Smp (N = 23,087)	$d = 0.235 D^{0.777}$	$d = 0.154 D^{0.821}$	$d = 0.051D^{1.261}$
Cpx (N = 23,850)	$d = 0.303 D^{0.571}$	$d = 0.231 D^{0.556}$	$d = 0.112D^{0.541}$
Polar Terrain			
Smp (N = 727)	-	-	$d = 0.0028D^{1.843}$
Cpx (N = 202)	-	-	$d = 0.014 D^{1.161}$

^aThis table shows the simple (top line) and complex (bottom line) depth/Diameter relationship when they are divided into a variety of terrain types. The number *N* of craters in this table is the number used in the "All Craters" analysis.

Similarly we have calculated the pristine elevation of the bulge and measured the real elevation.

Height	Diameter						
h bulge h rim h floor	87.34 Km						
-1588.75 -1588.41 -2996.74	4 87340 m						
H floor	H bulge						
real calculated	real calculated						
3.487897 Km							
-1408.33 3487.897 m	1407.99 3487.557						
Relationship							
D/H bulge real D/H bulg	e calculated						
62.03169 25.0433	32						

Step 3: results Best Fit measured diameter/height

Fit name:	h_real		Power				~			✓ Auto fit	
X data:	D		Number of terms:	1			~			Fit	
Y data:	h_real v		Equation:	a*x^b						Stop	
Z data:	(none) v						Fit Options				
Weights:	(none) v										
Results											
General mode $f(x) = a^*x$ Coefficients (x a = 6.35	el Power1: <^b with 95% confidence bounds): 52e-008 (-4.837e-007, 6.107e-007)	1600							h_real	vs. D	
b = 2.074 (1.319, 2.829) Goodness of fit: SSE: 6.912e+005 B.course: 0.9416		1400 -					•				
Adjusted R-9 RMSE: 230.0	square: 0.8294 6	1000 -									
		الم 1 800 - ب 800 -									
Gene f(x	eral model Power1: <) = a*x^b	400 -				•					
Coeff a	ficients (with 95% confidence l = 6.352e-008 (-4.837e-007, 6	oounds): ²⁰⁰ 6.107e-007) •	* .								
b	0 = 2.074 (1.319, 2.829)		2	3 4	5	6 7 D	7 8	9	10	11 x 10 ⁴	
ab			BEE								
[#] Gooc	iness of fit:	e 	DFE 13	Adj R-sq 0.9388	RMSE 286.8926	# Coeff 2	Validation	n Data	Validation SSE	Validation	KMSE 🔨
^เ R-sqเ	uare: 0.8416		13	0.8294	230.5922	2					~

... it seems to be an exponential trend

Step 3: results Best Fit calculated diameter/height

Fit name:	n calc		Polynomial				~		✓ Auto	fit
X data:			Degree: 1				~		Fitte	
Y data:	- h calc		Robust: Off						Fit	
Z data:	(none)						•		Stop	
Weights:	(none)						Fit Options			
weights.	(none)						in options			
Results										
Linear model $f(x) = p1^*$ Coefficients (v p1 = 0 p2 = 0	Poly1: x + p2 vith 95% confidence bounds): .03921 (0.03344, 0.04498) 114.9 (-439.5, 209.7)	4000						-	h_calc h_calc vs. D	-
Goodness of f SSE: 1.07e+ R-square: 0. Adjusted R-s RMSE: 286.9	t: 006 9431 quare: 0.9388	3000 -					· ·	-		
		<u>0</u> 2500 - 2000				•	•			-
Linea f(x Coeff	r model Poly1:) = p1*x + p2 icients (with 95% confidence bo	1500 - 1000 - unds): 500 -	•							-
р р	$\begin{array}{rcl} 1 &=& 0.03921 & (0.03344, 0.0449) \\ 2 &=& -114.9 & (-439.5, 209.7) \\ \end{array}$	8)	2	3 4	5	6 7 D	8	9 10	0 11 x 1	10 ⁴
t		R-square	DFF	Adi R-so	RMSF	# Coeff	Validation	Data Validatio	on SSE Validat	tion RMSF
_h Good	ness of fit:	.9431	13	0.9388	286.8926	2				^
[►] R-sqι	iare: 0.9431	.8416	13	0.8294	230.5922	2				~

linear relationship (as expected)

Therafter we divided craters into classes, using bulge feautures as parameter. We identified three classes, from A to C, possibly showing an evolving process, with A class which represents the most advanced stage.

Features: folds, mud volcanoes, centrifugal strata dip directions, high slope angles (30°-45°)

Features: mud volcanoes, centrifugal strata dip directions, intermediate slope angles $(\leq 30^{\circ})$, sinkholes

Features: slight bulge with low slope angles (<<30°)

C Class

Collapsed Width (m)

Phase 2: geological mapping of 12000088 crater It belongs to B class craters. Actually it is composed by two craters which intersect each

Data:
CTX mosaic (6 m/px)
HiRISE (25 cm/px)
MOLA (128 px/deg)

Software: ArcMap ArcCatalog

other.

Geological units

Talus (crater slope)

Equatorial Layered Deposits

Aeolian deposits and morphologies

Channels

Sinkholes

Mounds

Small mounds

UNIVERSITA' DEGLI STUDI DI PADOVA GEOLOGICAL MAP OF "12000088" CRATER (ARABIA TERRA, MARS)

AN 14 2

201 1

UNIVERSITA' DEGLI STUDI DI PADOVA GEOLOGICAL MAP OF "12000088" CRATER (ARABIA TERRA, MARS)

These sketches illustrate the evolution of a bulge. This process began with an impact that created a crater: it caused a differential lithostatic load onto a deep evaporitic layer. The underlying salt stratum used the fractured brittle zone below the crater to flow into a diapir.

Stage one

These sketches illustrate the evolution of a bulge. This process began with an impact that created a crater: it caused a differential lithostatic load onto a deep evaporitic layer. The underlying salt stratum used the fractured brittle zone below the crater to flow into a diapir.

Stage two

These sketches illustrate the evolution of a bulge. This process began with an impact that created a crater: it caused a differential lithostatic load onto a deep evaporitic layer. The underlying salt stratum used the fractured brittle zone below the crater to flow into a diapir.

These sketches illustrate the evolution of a bulge. This process began with an impact that created a crater: it caused a differential lithostatic load. The underlying salt stratum used the fractured brittle zone below the crater to flow into a diapir.

Stage three

These sketches illustrate the evolution of a bulge. This process began with an impact that created a crater: it caused a differential lithostatic load onto a deep evaporitic layer. The underlying salt stratum used the fractured brittle zone below the crater to flow into a diapir.

Stage four

Finally, following our analysis, we have reached two important results:

We have discovered the presence of a connection which tie up the craters diameter with the height of the bulge, both in the relationship with measured data and in the one with calculated data (found through the Robbins equation).

We have observed, as a consequence of the cataloguing of all the craters which show a bulge and of the geological analysis of one of them, the presence of different features wich suggest us the exsistence of an upwelling evaporitic body.