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Sommario

La tecnologia di riscaldamento ad induzione trova una diffusione sempre maggiore in
ambito medico, industriale e domestico ed è pressoché insostituibile in alcuni processi
metallurgici. Il principio di funzionamento è basato sull’effetto termico generato da
corrente indotte in un materiale ferromagnetico immerso in un campo magnetico alter-
nato ad alta frequenza. I principali vantaggi del riscaldamento ad induzione sono l’alta
efficienza di trasferimento del calore che è generato direttamente nel pezzo, l’elevata
potenza specifica per unità di volume generata, la sicurezza del processo non essendo
coinvolti processi di combustione a fiamma e la pulizia, in quanto sono eliminati tutti i
prodotti di combustione. Una delle principali carenze di tale tecnologia sta nel bassis-
simo rendimento (sotto il 50%) nel riscaldamento di ottimi conduttori metallici non
magnetici come rame e alluminio.

Il sistema di riscaldamento tramite magneti permanenti rappresenta una tecnologia
ancora poco diffusa che invece presenta rendimenti altissimi e potenze specifiche in
gioco maggiori rispetto alla classica induzione soprattutto per ottimi conduttori non
magnetici.

Entrambe queste tecnologie sono realizzate appositamente per riscaldare determi-
nati pezzi metallici distinti per forma, proprietà elettromagnetiche e tipologia di riscal-
damento desiderato, proprio per questo si parla di sistemi e non dispositivi di riscal-
damento ad induzione; il pezzo stesso agisce attivamente alla disposizione del campo
magnetico e quindi del calore trasferito.

Sono dunque utilizzati modelli FEM elettromagnetici che rappresentano un’ accu-
rata soluzione per la modellizzazione ed analisi dei sistemi ad induzione e a magneti
permanenti, tuttavia richiedono tempi di computazione molto lunghi, anche di giorni.
Lo scopo di questa tesi è di elaborare un modello analitico che fornisca la potenza
trasmessa al carico in funzione dei diversi parametri in gioco sia nel caso di induttori di
tipo pancake che nel caso della tecnologia a magneti permanenti. Tali modelli analitici
verranno poi implementati in un codice di calcolo Matlab e confrontati con i risultati
FEM. La tesi si articola in sei capitoli:

• Capitolo 1: Riscaldamento ad induzione

• Capitolo 2: Induttori di tipo pancake

• Capitolo 3: Riscaldamento tramite magneti permanenti

• Capitolo 4: Tensore degli sforzi di Maxwell

• Capitolo 5: Appicazioni
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• Conclusioni e prospettive

Il primo capitolo esamina come il riscaldamento ad induzione sia in alcuni campi
di applicazione estremamente competitivo in termini di risparmio di energia primaria,
costi di funzionamento e manutenzione rispetto al riscaldamento a fiamma. Sempre
in questo capitolo viene esposto il principio di funzionamento e la parte impiantistica
utilizzata in tale tecnologia. Viene inoltre affrontato il problema del basso rendimento
per metalli con bassissima resistività elettrica.
Il secondo capitolo descrive matematicamente il modello analitico dellinduttore di tipo
pancake che, nella configurazione implementata e grazie alla simmetria cilindrica del
sistema, vengono risolte le equazioni di Maxwell nel potenziale vettore magnetico nella
sola componente azimutale. Si ricava quindi lespressione analitica della resistenza
equivalente del carico misurata ai capi dellinduttore. La potenza trasmetta al carico
è il prodotto della resistenza per la il quadrato della corrente. Inoltre, modificando le
condizioni al contorno del modello analitico precedente, si simula la presenza di uno
strato di ferrite al di sotto dellinduttore. Tutti i risultati trovati sono poi comparati con
il modello FEM nel caso di riscaldamento di dischi di alluminio e acciaio.
Al fine di generare una corrente indotta nel carico è necessario variare il campo mag-
netico allinterno di esso. Tale variazione può avvenire alterando il campomagnetico nel
tempo come nel caso della bobina pancake alimentata da corrente sinusoidale oppure
mantenere il campo magnetico fisso tramite un magnete permanente e farlo variare
nello spazio. Il sistema più semplice da studiare è basato su un insieme di magneti per-
manenti magnetizzati assialmente e diposti a raggiera su un disco di ferrite che viene
fatto rotare rispetto al carico; il terzo capitolo studia analiticamente tale sistema. Allo
scopo di semplificare gli operatori differenziali indotti dalle equazioni di Maxwell ne
viene studiato un sistema linearizzato, poi adattato al sistema rotante. Una volta trovato
il campo magnetico in tutte le regioni dopo aver fissato le condizioni al contorno, si ri-
cava la distribuzione delle correnti indotte allinterno del disco metallico. La potenza
generata da tali correnti per effetto Joule è il risultato dellintegrale del quadrato della
densità di corrente nel volume del carico per la propria conduttività elettrica. A partire
dal campo magnetico, tramite il tensore degli sforzi di Maxwell si ricava la forza e mo-
mento cui è soggetto il disco. Si nota che, a differenza dal riscaldamento tramite bobina
pancake, il riscaldamento a magneti permanenti genera unimportate forza assiale re-
pulsiva ed un momento meccanico assiale che limitano estremamente lapplicabilità di
tale tecnologia, specialmente in ambito domestico. Anche qui i risultati dei modelli
sono confrontati con la simulazione FEM.
Nel quarto capitolo si spiega il motivo della presenza della forza assiale e del momento
meccanico sul carico nel sistema a magneti permanenti, non presente invece nel pan-
cake. Viene introdotto quindi il concetto di quantità di moto associata al campo elet-
tromagnetico.
Nel quinto capitolo vengono proposti alcuni accorgimenti per eliminare il momento e la
forza assiale cui è soggetto il disco metallico da riscaldare. Tali configurazioni trovano
implementazione solo in ambito industriale e non domestico.
Nell’ultimo capitolo sono tratte le conclusioni e osservazioni sul lavoro di tesi e sono
descritti i possibili studi futuri che possono rendere il riscaldamento a magneti perma-
nenti in particolare una tecnologia implementabile anche in ambito domestico.
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Chapter 1

Induction heating

Induction heating is the process of heating an electrically conducting object (usually
a metal) by using electromagnetic induction, through heat generated in the object by
eddy currents. An induction heater consists of an electromagnet and an electronic os-
cillator that passes a high-frequency alternating current (AC) through the electromag-
net. The rapidly alternating magnetic field penetrates the object, generating electric
currents inside the conductor, called eddy currents. The eddy currents flowing through
the resistance of the material heat it by Joule heating. In ferromagnetic materials like
iron, heat may also be generated by magnetic hysteresis losses. The frequency of cur-
rent used depends on the object size, material type, coupling between the coil and the
object to be heated and shape of the workpiece[1].
The basic principles of induction heating have been understood and applied to manu-
facturing since the 1920s. During World War II, the technology developed rapidly to
meet urgent wartime requirements for a fast, reliable process to harden metal engine
parts. More recently, the focus on lean manufacturing techniques and emphasis on im-
proved quality control have led to a rediscovery of induction technology, along with the
development of precisely controlled, all solid state induction power supplies[2]. The
main success factors which lead to the spread of this technology and which make it
often irreplaceable are basically the following:

• The heat is generated directly inside the workpiece

• Possibility to locate the heat in specific workpiece’s zone in order to perform par-
ticular applications

• Rational use of electrical energy spent to produce heat

• Very high repeatability of thermal treatments i.e. high standardization of the final
product with the consequent reduction of waste

• Possibility to have high specific power and therefore very low heating time, with
consequentially the grown of the production

• High efficiency due by the almost absence of the environmental’s heating
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Induction heating

• High reliability of the induction heaters which reduces interruptions for fault or
maintenance

• Elimination of environmental pollution due by the heating process with the con-
sequent improvement of the healthiness of the working place

These characteristics make the induction heating a very competitive systemwith respect
classical methods of heating by combustion. Induction heating finds mostly industrial
applications but also in growing domestic applications as inductions hobs.
The main drawbacks or disadvantages are the following:

• Induction heating equipment is more complex than heating by flame and the ini-
tial cost is higher and it can be a real investment

• Poor adaptability and interchangeability, the induction heating system generally
is designed only for determinate dimension of the workpiece

• Induction heating can’t be used for complex shape workpieces

An other important downside of the induction heating is when we have to heat a good
conductor workpiece as aluminium or copper, in fact this process has a relative low
efficiency. The aim of this thesis is to develop an analytical model for pancake induc-
tors and permanent magnets induction heating system which is a new high efficiency
process to heat good conductors.

1.1 Primary energy and economical considerations

In the 1970s, as a result of the oil crises, the greatest concern on a global scale became
the availability of primary energy sources, particularly fossil fuels. The energy econ-
omy became a major political goals. During the 1980s, however, the possible negative
influence of human activities, particularly energy use, on the environment was recog-
nised as an even more urgent problem. Energy programmes were reformulated with
the aim of reducing energy consumption, but also to reduce environmental pollution.
The electrothermal technologies (arc heating, resistance heating, plasma heating, elec-
tronica heating, induction heating, ... ) play an important role in terms of greenhouse
gas (GHG) reduction and energy saving [3].
In order to compare different energy sources it’s necessary to get an arbitrary unit of
measurement: the primary energy (PE). PE is an energy form found in nature that has
not been subjected to any human engineered conversion process. It is energy contained
in raw fuels, and other forms of energy received as input to a system. For example, coal
can be converted to synthetic gas, which can be converted to electricity; in this exam-
ple, coal is primary energy, synthetic gas is secondary energy, and electricity is tertiary
energy. If we want to compare therefore electricity and natural gas which is a primary
energy, it’s necessary to relate the electricity to its primary energy consumption. Con-
sidering figure 1.1 taking into account the generation efficiency, the transmission losses,
losses due by transformers and of the device supply, 10 MJ of primary energy generates
the equivalent of 2.6 MJ of electrical energy. We can therefore say that 2.6 MJ of end-
user electrical energy are equivalent to 10 MJ of primary energy. We have to note that
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10 MJ 0.74 kWh
(2.6 MJ)

Figure 1.1: Electricity production to supply chain.

the PE equivalent for electricity could not seems convenient in terms of efficiency but
electricity is one of the best energy carriers Electricity is one of the most common en-
ergy carriers, it can be transformed from various primary energy sources such as coal,
oil, natural gas, and wind and used for in many applications as traction, heating, light-
ing and as well storage. The electrical energy found a huge spread for the following
proprieties:

• usability

• convertibility

• transmissibility

• generability from different primary energy sources

If we wanna to compare for example two process A and B which supply the same "prod-
uct X" and process A neds an amount of electrical energy in kWh EA and an amount of
MJ FA of fuel while process B EB and FB as shown in figure 1.2.
It’s useful to define the replacement factor γ :

A B

PRODUCT X PRODUCT X

EB

FB

EA

FA
Fuel

Electricity Electricity

Fuel

(kWh) (kWh)

(MJ)(MJ)

Figure 1.2: Comparison between two productive energy process.

γ =
∣∣∣∣∣FA −FBEA −EB

∣∣∣∣∣ [MJ/kWh] (1.1)
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Induction heating

If we wanna switch from the process A to the process B where the last one absorbs a
bigger amount of electricity but a smaller amount of fuel i.e.:

FA > FB
EA < EB

in this case the replacement factor expresses that the process B replace with γ MJ of
fuel for each 1 kWh of electricity with respect process A. This means that considering
the process in figure 1.2 where to produce 0.74 kWh of electricity is necessary 10 MJ
of primary energy so to produce 1 kWh of electricity is necessary 13.5 MJ of primary
energy, we will have a primary energy saving if:

γ > 13.5 [MJ/kWh]

The value of γ∗ where primary energy saving is null and in the case of electricity drawn
from the grid, depends strongly by the share of renewable energy sources (RES) which
was in EU 14.8% in 2005, 30% in 2017 and the forecast for the 2030 is 49% [4]. This
means that primary energy saving is a dynamic concept and the value γ∗ will drops
with the implementation of new RES in the European grid and the estimated value
of γ∗ = 13.5 is absolutely an overestimated value cause it considers electricity produced
only since fossil fuels. The calculation of the whole γ∗ coefficient for the Italian or Euro-
pean grid is a complex task and can be done with different methodologies. In literature
has been defined the primary energy factor (PEF) and indicates how much primary en-
ergy is used to generate a unit of electricity or a unit of useable thermal energy. Figure
1.3 shows the PEF in Europe from 2000 and the forecast until 2030 by using four dif-
ferent calculation methods. At the moment the PEF is about 2.00 therefore, in order to
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Figure 18: Comparison of the results for the different PEF calculation methods 

Calculation method 1 results in a decrease of the PEF for electricity from 2.41 

in 2000 to 1.74 in 2030. In parallel the PEF for electricity calculated with 

method 3 decreases from 2.52 in 2000 to 1.87 in 2030.  

The calculation method which yields the lowest PEF for electricity is the LCA-

based method 2. To put an emphasis on the positive effects of RES on climate 

protection and sustainability, only non-renewable energies are considered and 

a zero equivalent is applied for RES (compared to a minimum of 1 in the other 

calculation methods). Consequently the difference between method 2 and the 

other calculation methods increases with increasing shares of RES by the end 

of the assessment period. In 2000, with only low shares of RES in power gen-

eration, the PEF of electricity still amounts to 2.52 and thus is even higher 

than in method 1. The reason for this is the difference in the CHP method, 

which levels out the lower PEF for renewable fuels. By contrast, by 2030 the 

PEF of electricity which results from method 2 amounts to 1.35 and is thus 

even by 0.29 points lower than PEF derived using method 1.  
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Figure 1.3: Comparison of the results for the different PEF calculation methods for
European electricity production[5].

produce 1 kwh of electricity is necessary to deliver 2 kWh of primary energy and the
efficiency η = 50%, grater than the 26% with the process shown in figure 1.2 and γ∗ is
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7.2 MJ/kWh.
The primary energy saving however is not the only index to optimize cause the cost
of the different forms of energy; in order to evaluate the if process B is cheaper than
process A, it’s useful to define the coefficient β:

β = KE/KF [MJ/kWh] (1.2)

where KE is the electricity cost [e/kWh] and KF the fuel cost [e/MJ], basically, the
process B is cheaper than the process A if:

γ > β (1.3)

1.1.1 Practical example

One interesting and actual comparison in a domestic application is among induction
hobs and gas hobs. In Italy the price of the natural gas for the end user depends on
region to region and is about 0.90 e/m3 while the price for one kWh of electricity
depends by contract type and can be assumed 0.20 e/kWh. Without considering the
supplied energy due the transportation of the gas therefore assuming a primary energy,
the average heating value of natural gas (methane) is 52 MJ/kg and the specific weight
is 0.67 kg/m3.
Let us suppose that the hobs have the following heating efficiency:

Type
Input power

(kW) Efficiency
Delivered power

(kW)
Induction 1.11 90% 1.00

Gas 2.50 40% 1.00

Further assuming that the cooking time is 1 hour, the total supplied energy is:

Type Supplied energy
Induction 1.11 kWh

Gas 2.50 kWh ≡ 9.00 MJ

which are equivalent to burn 173 g of methane therefore the cost of this heating process
for the two types of energy source are:

Electricity 0.22 e/h
Gas 0.23 e/h

we can therefore see how the price for both the heating systems is almost the same,
therefore it’s difficult to say that induction heating is cheaper than gas because of the
dynamic variation of electricity and fuel cost.
We can applying the tools shown before; we can calculate the β coefficient defined in
equation 1.2 which results:

β =
KE

KF
=

20 cente/kWh
2.58 cente /MJ

= 7.75 MJ/kWh
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while the replacement factor defined in equation 1.1 labelling the induction heating as
the process B and gas A, γ results:

γ =
FA
EB

=
9.00 MJ
1.11 kWh

= 8.11 MJ/kWh (1.4)

We can notice that γ is slightly grater than β therefore the process B (induction heating)
is cheaper than process A (gas).
Regarding the primary energy saving γ> γ∗ = 7.2 MJ/kWh therefore the process A neds
more primary energy to supply the same product than process B i.e. induction heating
process saves primary energy. As already said, the increase of RES in the grid decreases
the value of γ∗ therefore the induction heating will be more and more competitive in
the future.
Summarizing we can say that induction heating in terms of operative cost is similar to
the gas heating and the investment cost and actually the initial investments (higher for
induction hobs) can’t be amortise for domestic use. In term of primary energy saving
for induction heating, cause the higher heating efficiency, is better than the flame one
and the future trend is going to getting better.
Induction hobs have other advantages such as easy cleaning, safety, no combustion but
on the other hand they need special pots to work. In fact, aluminium and copper pots or
non-magnetic metals have a low efficiency. In this thesis therefore we will study a sys-
tem based on permanent magnets which allows to heat with high efficiency aluminium
or copper pots as well.

1.2 Heating demand

Heating and cooling (H/C) of ambient and objects requires a huge share of energy de-
mand. In fact, as shown in figure 1.4 the end-user energy demand in the EU28 in 2012
was 12,821 TWh whose 6,497 (51%) TWh used for heating and cooling. The remanent
6,323 TWh of the energy demand are the non H/C comprises end-uses like transporta-
tion, mechanical energy in industry as well as residential and service sector appliances.
From these data we can say that the increase the heating efficiency in terms of primary
energy saving would have a big impact on the total energy demand. The cooking heat-
ing neds the 2% of the whole energy demand while processing heating the 15%. From
figure 1.5 we can see how the natural gas leads the primary energy demand with 45%
of share followed by coal with 15%; as already said in this pie chart electricity is not
present, because is considered a secondary energy. As we talked in subsection 1.1.1,
induction heating allows to save primary energy than gas in domestic applications and
this can be even more valid in industry where the process heating energy demand is
eight times bigger than household.
With equal final energy demand, less primary energy can be consumed by substituting
fossil fuel heating system with electric heating system which have the advantage to be
a zero emission technology. Moreover, with the installation of a private photovoltaic
power plant also financed by government incentives, industries can improve drastically
the primary energy saving and also the heating process cost.
The development of a new high-efficiency electricity-based heating system can find a
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Work package 1: Final energy consumption for the year 2012 
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makes up for 30% (~2000 TWh). Water heating (sanitary hot water) accounts for 
about 10% (~640 TWh), cooking in the residential sector for about 3% (~210 TWh) 
and cooling uses 5% in total. Cooling is distributed to space cooling (~130 TWh) and 
process cooling (~190 TWh) as illustrated in Figure 18. 

Figure 18: Final energy demand for EU28 by end-use for H/C in all sectors in 
2012 [TWh] 

 
* Non-H/C comprises end-uses like transportation, mechanical energy in industry as well as residential and 

service sector appliances 
Source: own calculation 

The allocation of end-uses to the sectors residential, industry and tertiary is shown in 
Figure 19. Accordingly, H/C demand in the residential sector is dominated by space 
heating with a share of 78%. While also water heating has a substantial share of 16%, 
the remaining end-uses cooking and space cooling account for only 6% and 1%, re-
spectively. In the industrial sector, process heating makes up for the major share with 
about 82%. Also in the tertiary sector, space heating has the major share, but other 
end-uses such as water heating, (14%), process cooling (10%) and space cooling 
(9%) also show relevant shares. 

134   ; 1%

192   ; 2%

3,347   ; 26%

638   
; 5%

1,976   ; 15%

209   ; 2%

6,323   ; 49% 6,497   ; 51%

Space cooling

Process cooling

Space heating

Water heating

Process heating

Cooking

non-H/C*

Other
uses

Heating

and
cooling

Figure 1.4: Primary energy demand for EU28 by energy carrier for H/C in all sectors in
2012 [TWh][6].
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5 Results 

5.1 Overall 

5.1.1 EU28 

In 2012, about 8000 TWh primary energy demand were used in the EU28 for H/C pur-
poses. Thereof 45% was natural gas which is the individual most important energy 
carrier for the supply of heating and cooling in the EU28. It is followed by coal with 
about 15%. Biomass and fuel oil both account for about 11%. Nuclear energy for 7% 
and RES (wind, PV and hydro) for 5%, both are used for electricity generation which in 
turn is used for heating and cooling. Other RES like solar (thermal) energy, ambient 
heat and geothermal energy in sum account for 1.5%. Across all energy carriers, RES 
account for 18% of primary energy supply for H/C, whereas fossil fuels account for the 
major share of 75%. 

  
Source: own calculation 

                                          
21  The remaining 49% not used for heating and cooling is mainly used for transportation, mechanical 

energy in industry as well as household and service sector appliances. 
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Overall, final energy demand in the EU28 accounted for about 12,821 TWh in 2012. 
Thereof around 6,500 TWh were used for heating and cooling (H/C) purposes, which 
equals a share of about 51%21. The final energy for H/C is used for a variety of differ-
ent end-uses. Space heating is the most relevant end-use with a share of 52% of the 
total final energy demand for H/C (~3250 TWh), followed by process heating which 

Figure 17: Primary energy demand for EU28 by energy carrier for H/C in all sec-
tors in 2012 [TWh] 

Figure 1.5: Primary energy demand for EU28 by energy carrier for H/C in all sectors in
2012 [TWh][6].

wide field of application in industry but also in household and will be always more
competitive with the grown of the RES share in the grid.

1.3 Working principle of induction heating

The working principle of the induction heating is a non-contact process which is a com-
bined recipe of Electromagnetic induction and Joule heating therefore is based on three
physical principles, here below explained:

1. Transfer of energy from the inductor to the piece to be heated (workpiece or billet),
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by means of Electromagnetic Fields.

2. Transformation of the electric energy into heat due to Joule effect (P = RI2).

3. Transmission of the heat inside the workpiece by means of Thermal Conduction.

Considering figure 1.6, an alternating current flows into the coil which generates an
electromagnetic field which surrounds the entire space. If the coil has an optimized

Figure 1.6: Induction heating working principle [7].

shape i.e. is well coupled with the workpiece, the electromagnetic field is strong into
the workpiece space. The magnetic flux density generated in a point P distant r by a
infinitesimal wire of length dL where flows an oriented current I is described by Biot-
Savart’ law:

B =
ˆ

µ0
4π

(dL I)× r̂
r2

(3.5)

The key principle of the induction heating is the Faraday’s Law which says that the
instantaneous electromotive force (e.m.f) along a generic closed path Γ is opposite to
the variation of magnetic flux in a arbitrary surface Σ which lies on Γ with respect the
time, in formula:

e.m.f .
∣∣∣
Γ
(t) = −dΦΣ

dt
= − d

dt

ˆ
∂Γ

B · ûNdΣ (3.6)

Equation 3.6 is applicable for each closed path, in air but also inside the workpiece;
right inside the conductor workpiece since the Ohm’s law the Faraday’s e.m.f. generates
a current proportional to the conductivity σ of the metal. The induced currents inside
the workpiece (eddy currents) generate heat for Joule losses directly in the billet body.
The base working principle is the variation of magnetic flux inside the workpiece with
respect the time as expressed in the Faraday’s Law. This means that in order to heat
the billet it’s necessary a variation of ΦΣ which derives by the sinusoidal variation of
magnetic flux density with respect the time. Basically the stronger the applied mag-
netic field, or the greater the electrical conductivity of the conductor, or the faster the

8
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field that the conductor is exposed to changes, then the greater the currents that are
developed and therefore the heating.
The Faraday’s law tell us in addition that what is really important is the variation of ΦΣ

with respect the workpiece in the time; in particular if we consider a permanent mag-
net in motion with a relative speed vx with respect the workpiece along the x-direction,
manipulating equation 3.6 we obtain:

e.m.f .
∣∣∣
Γ
(t) = −dΦΣ

dt
= −dΦΣ

dx
dx
dt

= −dΦΣ

dx
vx (3.7)

The electromotive force is still generated even if the magnetic field is maintained con-
stant in the time therefore we can say that in order to generate heat into the billet:

• The magnetic flux density varies over time.

• The magnetic flux density varies over space.

The actual induction heating systems with the coils are based of the variation of the
magnetic flux density over the time by supplying an alternating current. The aim of
this thesis is also to study a new induction heating system based on the space-variation
of the magnetic flux density.

1.4 Elements of induction heating

There is a particular frequency of the sinusoidal current which supplies the coil called
resonance frequency where the load seen from the coil terminal is particular resistive
i.e. the cosϕ reaches the maximal value. In order to obtain the resonance frequency
which depends by the load type as metal type, shape, heating required, the coil has to
generate high frequencymagnetic field therefore has to be supplied with high frequency
current. Figure 1.7 shows the simplified block diagram of an induction heating unit
where, starting from AC 50 Hz and passing through DC stage, we obtain the final AC-
HF.

DC
AC

AC input EMI filter Rectifer + filter Inverter Capacitor Inductor Load

AC 50 Hz DC AC - HF
MAGNETIC
COUPLING

Figure 1.7: Simplified block diagram of an induction heating unit.

All the basic steps of system are shown below:

• AC input: An induction heater is powered by the electric grid which works at
50/60 Hz. For industrial applications the grid generally is three-phase with a low
or medium voltage while single-phase for the domestic or for limited power appli-
cations.
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• EMI filter: Cause of the distorting load which induction heater system is, in order
to decrease the harmonic contribution which would affects the grid, it is necessary
to connect EMI filters. The major contributor to harmonic is the rectifier which
generates 2nd order harmonics for single-phase input and 3rd order for three-phase
input and second contributor to higher-order harmonics is the inverter. A basic
EMI filter is a capacitor-inductor which short circuits to ground the harmonics;
more sophisticated filters are based on an active electronic which generate an out
of phase harmonic in order to delete the harmonic total contribution.

• Rectifier: In order to supply the inverter, it’s necessary to convert the AC 50 Hz
source into a DC source. This task is performed by the rectifier which can be single
or three phase as shown in figure 1.8. If instead of diodes we use thyristors, it’s

L1

L2

L3

DC

+

-

L

N
DC

+

-

Figure 1.8: Schematic representation of single and three phase rectifier.

possible to control the conduction of component and therefore control the final DC
voltage value which then will supply the inverters and therefore the inductor. The
capacitor (filter) in the DC stage allows to decrease the ripple level and guarantees
a better quality output voltage decreasing the harmonics.

• Inverter: is one of the main part of an induction heating system and starting from
the DC power supply, convert into AC HF; the inverter is rated by its operating
frequency range and power. There are various types of inverters supplies which
are line-frequency supplies, frequency multipliers, motor-generators, spark-gap
converters, and solid-state inverters. Solid-state inverters have the most efficiency
between the power supplies.
The DC current goes to the inverter, where solid-state switches, such as IGBTs
or MOSFETs convert it into a current, this time at a high frequency (typically in
the range of 10kHz-600kHz). According to figure 1.9 IGBTs can work at a higher
power level and lower frequency versus MOSFETs operating at a lower power level
and higher frequencies [8].

• Capacitor: The natural behaviour of the load is inductive so the cosϕ is particu-
larly low and, in order to control the apparent power supplied from the inverter
and rectifier, it’s necessary the power factor correction with a capacitor. The ca-
pacitance C to connect in parallel to the inductor has to be calculated since the
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Figure 1.9: Power vs frequency for commercial solid-state power supplies [9].

resonant frequency fR:

fR =
1

2π
√
LC

(4.8)

where L is the inductance of the induction coil. The necessity to the power factor
correction capacitor is to decrease the size of the inverter which will supply about
the active power transferred through heat to the load with a consecutive reduction
of the cost of the plant.

• Inductor: The induction heating coil is specifically shaped copper tubing or other
conductive material which alternating electrical current is passed through, creat-
ing a variable magnetic field. Metal parts or other conductive materials (load) are
placed within, through or close to the induction heating coil, without touching the
coil and the variable magnetic field that is generated creates eddy currents within
the metal causing it to heat. In order to transfer to the metal as much power as
possible, the inductor has to be well coupled with the load thus it has to be par-
ticularly shaped. Figure 1.10 shows the most common coil shapes. The magnetic

Table 4
Machine related parameters influencing induction heating efficiency.

Parameter Effect on heating Remarks Reference

Coil geometry Dependent on magnetic flux density Coil geometries should be designed to fit the heating problem [65,66]
Magnetic flux

concentrators
Application usually leads to higher heating rates Danger of inhomogeneous heating due to locally higher magnetic flux [65]

Coupling distance The smaller the coupling distance the higher is
the heating effect

Homogeneous heating sometimes requires less efficient coupling distance
(danger of local overheating)

[28,65,67]

Frequency A high frequency is generally better for the fast
heating of composites

Very high values limit penetration, also dependent on size for particulate
susceptors, high-frequency generators less efficient

[4,24,67]

Inductor current A high current leads to more power in the system
and thus a faster heating

Risk of local overheating (micro-level) [28,66,67]

Table 5
Summary of effects occurring during electromagnetic induction heating.

Name Characteristics Schematic Reference

Skin effect Limitation of the penetration depth of the causative electromagnetic field due to induced magnetic fields
with opposite direction

[4]

Proximity
effect

Interference with close conducting elements disturbing the electromagnetic field [69]

Ring effect Concentration of magnetic field lines in a circular coil causes inhomogeneous field and heating [4,69]

Edge effects Change of electrical paths and field lines at the edges of a work piece due to the differences in magnetic
permeability

[69]

Fig. 1. Common coil designs applied for the inductive heating of composites (A) pancake coil, (B) helical coil, (C) conical coil, (D) single-turn coil, (E) irregular coil adapted to
the workpiece shape, (F) double-helical coil (Helmholtz coil).

30 T. Bayerl et al. / Composites: Part A 57 (2014) 27–40

Figure 1.10: Common coil designs applied for the inductive heating of composites (A)
pancake coil, (B) helical coil, (C) conical coil, (D) single-turn coil, (E) irregular coil
adapted to the workpiece shape, (F) double-helical coil (Helmholtz coil) [10].

field generated from the coil, as already said, depends by the current which flows
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inside it. In order to increase the current capability, the inductor presents a hole
inside its section where water flows to keep the copper temperature low.

• Load: The load itself is part of the induction system which is customized in base
on the basis of metal kind, shape, heating treatment kind.

1.5 The problem of the low efficiency for good conductors

Without going into detail, considering a cylindrical billet with constant resistivity and
permeability around which a coil is wrapped where flows a sinusoidal current with
angular frequency ω. With reference to the system in figure 1.11 the billet has radius
R, electrical resistivity ρ and relative permeability µr . The coil has N turns with radius
Rc = αR, radial length s and axial length a.

=

Figure 1.11: System consisting of the inductor and the cylindrical load.

From this geometrical configuration it’s possible to derive the electrical efficiency of the
system η[11]:

η =
r ′L

r ′L + rc
=

1
1+ rc/r

′
L

(5.9)

where r ′L is the resistance of the load reported at the coil terminals and results:

r ′L =N2ρ
2πR
lδ

√
2P (5.10)

and δ is the penetration depth, quantity with a key role in induction heating and defined
as following:

δ =

√
2ρ

µ0µrω
(5.11)

while the quantity P is defined as:

P =ℜ

−√−j J1(
√
−jm)

J0(
√
−jm)

 with m =

√
2R
δ

(5.12)

12



Induction heating

where J0 and J1 are the firs kind Bessel function of order 0 and 1 respectively.
The quantity rc is the resistance of the coil without the load (billet) and results:

rc =N2ρc
2πRi

lδc
Ackc (5.13)

where ρc is the electrical resistance of the coil, kc is a parameter which takes into account
the density of the turns and is defined for a rectangular axial section of the coil with
dimension a× s:

kc =
l

Na
(5.14)

it has to note that figure 1.11 shows an hollow conductor, the hole is necessary to the
cooler (generally water) flowing but in this case of study we assume that the turns have
rectangular section with no hole. δc is the penetration depth of the coil calculated with
the resistivity of the coil. The quantity Ac is defined as following:

Ac =ℜ

(1 + j)
cosh

(√
2js/δc

)
sinh

(√
2js/δc

)  (5.15)

Equation 5.9 becomes by replacing r ′L with equation 5.10 and rc with 5.13:

η =
1

1+α
√

ρc
ρµr

Ackc√
2P

(5.16)

The electrical efficiency increases with the decreasing of α which has the minimal the-
oretical value equal to 1 i.e. the coil is wrapped around the billet without air gap. The
same is still valid for the parameter kc which reaches its minimal value of 1 when the
turns axial pitch is a. Both those two conditions are equivalent to say that the inductor
is well coupled with the load. If this is verified and assuming to have sufficiently high
values of m, the maximal electrical efficiency is:

ηmax =
1

1+α
√

ρc
ρµr

(5.17)

Figure 1.12 show the electrical efficiency in function ofm for α = 2 and kc = 1 for differ-
ent material listed in table 1.1. We suppose the coil is made up copper with resistivity
ρc = 1.68×10−8 Ωm. It’s easy to note that form>2.5 the efficiency is mostly independent
by m i.e. the frequency and reach the value ηmax, while below 2.5 η strongly drops to
zero withm equal to zero. We can also note that for the magnetic steel below the Curie’s
temperature, the efficiency is higher than the steel above the Curie’s temperature even if
the resistivity is higher. In fact in the transaction from magnetic to non-magnetic steel
µr pass from 500 to 1 while the resistivity grows just of the 30% and the whole effect
is a reduction of the efficiency. An other important term which play a key role for the
efficiency is the coefficient α express basically how the coil is radially close to the billet.
Figure 1.13 shows the dependence of the efficiency in function of m for different values
of α from 1.5 to 3.0 for steel above the Curie’s temperature and for copper.
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Figure 1.12: Electrical efficiency of coil-load system in function of m (α = 2, kc = 1).

Material
Electrical resistivity ρ

[Ωm] Relative permeability µr

Steel (up to 800 ◦C) 0.756e-6 500
Steel (1200 ◦C ) 1.04e-6 1

Aluminium (500 ◦C) 8.03e-8 1
Copper (500 ◦C) 4.91e-8 1

Table 1.1: Resistivity and permeability for different materials.

We can see how for good no-magnetic conductors like copper or aluminium, the electri-
cal efficiency is poor. This is due because the current in the coil heats the coil itself i.e.
the maximal theoretical efficiency to heat the same copper which constitutes the coil is:

ηCu
max =

1
2

(5.18)

while the maximal theoretical efficiency to heat aluminium is:

ηAl
max =

1

1+
√

ρCu
ρAl

≃ 0.56 (5.19)

14



Induction heating

0 2 4 6 8 10 12

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Electrical efficiency in function of m for different values of  

=1.5

=2.0

=2.5

=3.0

=1.5

=2.0

=3.0

=2.5

COPPER
  500 °C

 STEEL
1200 °C

Figure 1.13: Electrical efficiency of coil-load system for different values of alpha.

Heating a copper or aluminium billet by using induction is a extremely poor in therms
of efficiency and this outcome is valid for axial inductors but also for pancake inductor
or, in general, for every kind of coil shape.
This issue limits the spread of the induction hobs because of the necessity to replace
normal pots with magnetic steel pots which guarantees a sufficient level of heating. As
already told we speak of induction heating system not induction heating device cause
the load interacts directly with the power supplied and gradually with the increasing of
the temperature in the billet, increase the resistivity and the efficiency as well. Depend-
ing on the operation to be carried out, it is therefore necessary to carry out a specific
analysis to identify the ideal generator for induction heating. Frequency is one of the
decisive factors for successful induction heating. However, the material, the heating
temperature and the quantity of parts to be treated also have a decisive influence on the
planning of the induction heating solution.
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Chapter 2

Pancake inductor

A pancake inductor is made up of a flat spiral copper coil which allows to generate a
magnetic field with a big radial component around it. The magnetic field is therefore
generated in a flat region and, for this reason, pancake inductors are used to heat steel
foils, flat metal disks and are installed in the induction hobs (see figure 2.1).

Figure 2.1: Pancake inductor used in induction hobs.

The principal characteristic of this kind of inductor is the number of turns N , the inter-
nal and the external radius Ri and Re and the space between the turns. An other feature
of the device is the diameter of the turns which contributes also to the ampacity. Is the
current which generates the magnetic fields so it has to be as high as possible without
overheating the inductor. Since the current varies with frequency of some tens of kHz
the skin effect affect the wire and, in order to distribute the current along all the con-
ductor it is made up Litz wire which replace the mono-wire by numerous smaller single
insulated wires resulting the same cross section.
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2.1 Mathematical model

In order to have a mathematical model of the pancake inductor-load systemwe consider
the inductor made up by a concentric planar circular coil of negligible axial thickness
characterized by N concentric adjacent turns as show in figure 2.2. The innermost turns
has radius Ri while the outermost turn Re. The position of the coil is parallel to the x-y
plane, at a coordinate z = s. At z = r+s there is a soft magnetic yoke with ideally infinite
permittivity which shield the upper space by the magnetic field however it hasn’t con-
sidered in the mathematical model. In z = 0 is present a supposed infinite long metal
disk with electrical conductivity σ an thickness h, over the disk is present air again.

0

1

2

Figure 2.2: Schematic configuration of the system.

We can therefore define three regions which will have different solutions:

• Region 0O : air gap region (0 < z < s);

• Region 1O : metal region (−h < z < 0);

• Region 2O : air region (z < −h);

A sinusoidal current flows in the coil with the time-dependent law i(t) = I sin(ωt)
which can be written in terms of the phasor I :

i(t) =ℑ(I) =ℑ(Iejωt) (1.1)

where I =
√
2Irms is the peak current value and Irms is the root mean square value of

the current. In order to simplify the study we will operate with phasors, in particu-
lar, in sinusoidal steady state the magnetic flux density B generated by the current will
follow the same law of the current and can be represented as phasor B = Bej(ωt+ϕ). Pha-
sors are also the components of a phasor vector but, in order to reduce the complexity
of notation, the underline of the components will be avoided. Due to the geometrical
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symmetry, we choose to use cylindrical coordinates (ρ,θ,z) and in this coordinate sys-
tem the magnetic flux density for physical considerations has the azimuthal component
equal to zero:

B =

Bρ

Bθ
Bz

 =
Bρ

0
Bz

 (1.2)

Since:
B = ∇×A (1.3)

where A is the magnetic potential vector which is perpendicular to B and has only the
azimuthal component:

A =

Aρ

Aθ
Az

 =
 0
Aθ
0

 (1.4)

If we study the system in terms of magnetic potential vector we reduce the numbers
of unknown to one. Still taking advantage of geometric symmetry Aθ = Aθ(ρ,z) i.e.
it doesn’t depend by the azimuthal coordinate. We can therefore write the equations
which govern the system starting from the Ampere’s law:

∇×H = J (1.5)

J is the current density which can be expressed with the Ohm’s law J = σEwhere σ is the
electrical conductivity and E is the electric field. Considering also that B = µH where µ
is the magnetic permittivity, equation 1.5 becomes:

∇×
B
µ
= σE (1.6)

Taking into account the relation between B and A we can write:

∇×∇×
A
µ
= σE (1.7)

Remembering that ∇×∇×A = ∇(∇·A)−∇2A and considering the Coulomb gauge (∇·A =
0) we obtain:

∇2A = −σµE (1.8)

Starting from the MaxwellFaraday equation we can express the electric field in terms of
the magnetic vector potential:

∇×E = −
∂B
∂t

= − ∂
∂t
∇×A = ∇×

(
−∂A
∂t

)
⇒ E = −

∂A
∂t

(1.9)

We said that in sinusoidal steady state all the time-dependent variables are expressed
by phasors and a time-derivate is replaced with jω i.e. ∂

∂t → jω. The final expression
becomes:

∇2A = jωσµA (1.10)
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In cylindrical coordinate system the Laplacian operator has the following structure:

∇2A =


∇2Aρ −

Aρ

ρ2 −
2
ρ2

∂Aθ
∂θ

∇2Aθ −
Aθ
ρ2 + 2

ρ2
∂Aρ

∂θ

∇2Az

 (1.11)

In our case of study Aρ = Az = 0 therefore equation 1.10 becomes:
− 2
ρ2

∂Aθ
∂θ

∇2Aθ −
Aθ
ρ2

0

 =
 0
jωσµAθ

0

 (1.12)

Note that if the magnetic vector potential has only the azimuthal component and equa-
tion 1.10 is true, Aθ is constant along θ as we already said. The operator ∇2Aθ can be
developed as:

∇2Aθ = ∇ · (∇Aθ) = ∇ ·


∂Aθ
∂ρ

1
ρ
∂Aθ
∂θ

∂Aθ
∂z

 = ∇ ·

∂Aθ
∂ρ

0
∂Aθ
∂z

 = 1
ρ

∂
∂ρ

(
ρ
∂Aθ

∂ρ

)
+
∂2Aθ

∂z2

=
1
ρ
∂Aθ

∂ρ
+
∂2Aθ

∂ρ2
+
∂2Aθ

∂z2

(1.13)

where it’s used the divergence in cylindrical coordinates (∇·A = 1
ρ
∂ρAρ

∂ρ + 1
ρ
∂Aθ
∂θ + ∂Az

∂z ) and
the chain rule for the partial derivate. For the only azimuthal component, equation 1.10
by using equations 1.11 and 1.13 becomes:

∂2Aθ

∂ρ2
+
∂2Aθ

∂z2
+
1
ρ
∂Aθ

∂ρ
− Aθ

ρ2
= jωσµAθ (1.14)

We can solve the differential equation using themethod of the separation of the variable,
we can therefore write the solution with the structure:

Aθ(ρ,z) = P (ρ)Z(z) (1.15)

equation 1.14 can be rewritten as:

Z
∂2P

∂ρ2
+ P

∂2Z

∂z2
+
Z
ρ
∂P
∂ρ
−Z P

ρ2
= jωσµPZ (1.16)

dividing by Z we obtain:

∂2P

∂ρ2
+ P

1
Z
∂2Z

∂z2
+
1
ρ
∂P
∂ρ
− P

ρ2
= jωσµP (1.17)

It’s possible to simplify the expression by defining:

ζ2 :=
1
Z
∂2Z

∂z2
(1.18)

20



Pancake inductor

Equation 1.17 by using eq. 1.18 becomes:

∂2P

∂ρ2
+ P ζ2 +

1
ρ
∂P
∂ρ
− P

ρ2
= jωσµP (1.19)

which can be rewritten:

ρ2
d2P

dρ2
+ ρ

dP
dρ

+ P
(
ρ2(ζ2 − jm2)− 1

)
= 0 (1.20)

where m =
√
2/δ where δ is the penetration depth δ :=

√
2

ωσµ . The solution of the differ-
ential equation 1.18 is:

Z(z) = A′1(ζ)e
ζz +A′2(ζ)e

−ζz A′1,A
′
2 ∈R (1.21)

while the differential equation 1.19 has solution1:

P (ρ) = B′1J1 (kρ) +B′2Y1 (kρ) B′1,B
′
2 ∈R

= B′(k)J1 (kρ)
(1.22)

where k2 := ζ2 − jm2, J11 and Y11 are Bessel functions respectively of first and second
kind, first order. The general solution for the magnetic vector potential is:

Aθ(ρ,z) = P (ρ)Z(z) = J1(kρ)
[
C1(k)e

ζz +C2(k)e
−ζz

]
(1.23)

where C1(k) = B′(k)A′1(ζ) C1(k) = B′(k)A′2(ζ) depends only by k because ζ can be as-
sumed as dependent variable of k. We found now the expression of Aθ which depends
by the variable k. If the solution extends radially, so that there are no restrictions on the
radial function P (ρ), there are correspondingly no restrictions also on k and the solution
involves an integral over all k[13]:

Aθ(ρ,z) =
ˆ ∞
0

J1(kρ)
[
C1(k)e

ζz +C2(k)e
−ζz

]
dk (1.24)

The solution changes for the various regions of the system.

• Region 0, (0 < z < s):
This region is composed by air σ = 0 and µ =mu0 therefore k = ζ. The solution can
be splitted in two terms:

Aθ0 = A0e +A0r

=
µ0NI

2(Re −Ri)

ˆ ∞
0

C0(k)J1(kρ)e
−k(s−z)dk +

ˆ ∞
0

C01(k)J1(kρ)e
−kzdk

(1.25)

where:

C0(k) =
ˆ Re

Ri

ρJ1(kρ)dρ (1.26)

1x2 d2y
dx2

+ (2p+1)x dy
dx + (a2x2r + β2)y = 0 has solution: y = x−p

[
C1Jq/r (

a
r x

r ) +C2Jq/r (
a
r x

r )
]
[12]
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the term A0e represents the exiting field potential vector i.e. the potential vector
of the inductor coil field in the absence of conducting material in region 1. The
second term, A0r , represents te so-called reaction field potential of the load[14]. The
splitting of the solution is corrected on the basis of the superposition principle.

• Region 1, (−h < z < 0):
This is a conductive region with conductivity σ1 , 0 and permeability µ1 therefore
k , ζ and the solution is:

Aθ1 =
ˆ ∞
0

[
C11(k)e

ζ1z +C12(k)e
−ζ1z

]
J1(kρ)dk (1.27)

where ζ21 = k2 + jωσ1µ1.

• Region 2, (z < −h):
Here we have air again, the conductivity is zero an the solution has the same be-
haviour of the region 0 but in this case the magnetic potential vector for z→ −∞
must be zero thus the constant of the term e−kz is zero and the solution has the
following form:

Aθ2 =
ˆ ∞
0

C2(k)e
kzJ1(kρ)dk (1.28)

2.2 Boundary conditions

The unknown coefficients C01, C11, C12 and C2 can be derived by applying the continu-
ity conditions of the magnetic field and the magnetic flux density. Considering figure
2.3 the perpendicular component at the boundary of B is direct along z-direction while
the parallel component to the boundary of B is direct along ρ-direction. Across the

Figure 2.3: Magnetic flux density and magnetic field through material with different
permeability.

boundary there is the conservation of the z-component of the magnetic flux density
(Bz1 = Bz2). Since the free current density Jf ree is zero along the boundary surface,
we have the conservation of the ρ-component of the magnetic field (Hρ1 = Hρ2). From
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the considerations of the section 2.1 we have to express the magnetic flux density in
function of A; by using equation 1.3 we obtain in cylindrical coordinates:

B =

Bρ

Bθ
Bz

 =

−∂Aθ

∂z
0

1
ρ (

∂(ρAθ)
∂ρ )

 (2.29)

By using the conservation of the component of the magnetic flux density wa have:

Bz1 = Bz2
1
ρ (

∂(ρAθ1
∂ρ ) = 1

ρ (
∂(ρAθ2
∂ρ ) ∀ρ ⇐⇒ Aθ1 = Aθ2

(2.30)

From the conservation of the component of the magnetic field (no free current density
is present) we have:

Hρ1 =Hρ2

Bρ1

µ1
=
Bρ2

µ2
1
µ1

∂Aθ1

∂z
=

1
µ2

∂Aθ2

∂z

(2.31)

We can now apply conditions 2.30 and 2.31 to our case of study firstly imposing the
continuity of A and of its z-derivate in z = 0 and then in z = −h. We obtain the system:

Aθ0

∣∣∣
z=0

= Aθ1

∣∣∣
z=0

∂Aθ0
∂z

∣∣∣
z=0

= ∂Aθ1
∂z

∣∣∣
z=0

Aθ1

∣∣∣
z=−h = Aθ2

∣∣∣
z=−h

∂Aθ1
∂z

∣∣∣
z=−h =

∂Aθ2
∂z

∣∣∣
z=−h

(2.32)

which can be written in matrix form:
1 −1 −1 0
k ζ1

µr1
− ζ1
µr1

0
0 e−ζ1h eζ1h −e−kh

0 ζ1
µr1e−ζ1h

− ζ1
µr1eζ1h

−ke−kh

 ·

C01
C11
C12
C2

 =

− µ0NI
2(Re−Ri )

C0(k)e−ks
µ0NI

2(Re−Ri )
kC0(k)e−ks

0
0

 (2.33)

We can in particular express the coefficient C01 which has the explicit expression
derived from 2.33:

C01 =
µ0NI

2(Re −Ri)
C0(k)F(k) (2.34)

where

F(k) = −

(
e2hζ1 − 1

)
ζ21 +

(
1− e2hζ1

)
k2µ2r1(

e2hζ1+k s − ek s
)
ζ21 +

(
2e2hζ1+k s +2ek s

)
kµr1ζ1 +

(
e2hζ1+k s − ek s

)
k2µ2r1

(2.35)

It has to note that the electric and the magnetic field in region 0 is computable with
only the coefficient C01 while to compute current density and power distribution inside
the load it’s necessary to find also C11, C12 and C2.
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2.3 Impedance of inductor-load system

Focussing now on the region 0 we wanna calculate the e.m.f. at the ends of the coil. By
using equations 1.10 and the Ohm’s law:

E(ρ,z) =
1
σ
J(ρ,z) = −jωA(ρ,z) (3.36)

From equation 3.36 we can calculate the e.m.f Ve on an elementary turn Γr of radius r of
the coil in the conductive region:

V e =
˛
Γr

E ·dl =
ˆ 2π

0
A0(ρ,z)rdθ = −j2πωrA0(ρ,z) (Ri < r < Re) (3.37)

the total e.m.f. of N turns V is:

V =
ˆ Re

Ri

Ve
N

Re −Ri
dρ = −j2πω N

Re −Ri

ˆ Re

Ri

ρA0(ρ,z)dρ (3.38)

It’s possible therefore to calculate the value of impedance of the coil-load system. This
value of impedance Ż is intend as the variation of impedance with the load assuming
zero the resistance of the coil and by using equations 1.25, 2.34 and 3.38 we obtain:

Ż = −V
I
= jπωµ0

N2

Re −Ri

{ˆ ∞
0

[C0(k)]
2dk +

ˆ ∞
0

[C0(k)]
2F(k)e−ksdk

}
(3.39)

The first integral gives the reactance of the coil in air, with no load while the second
which is a complex number, gives the variation of impedance due by the load. It’s
useful to have an analytical expression of them:

Xair = πωµ0
N2

Re −Ri

ˆ ∞
0

[C0(k)]
2dk (3.40)

∆Ż = R+ j∆X = jπωµ0
N2

Re −Ri

ˆ ∞
0

[C0(k)]
2F(k)e−ksdk (3.41)

The complexity of the equation 3.39 derives from the integral overall k. We can there-
fore evaluate this integral with te Gauss-Laguerre quadrature formulae2:

Ż = j
πωµ0N

2

(Re −Ri)2

 n∑
i=1

wie
xi [C0(xi)]

2 +
1
s

n∑
i=1

wi

[
C0

(xi
s

)]2
F
(xi
s

) (3.42)

In figure 2.4 is shown the behaviour of the resistance and the reactance variation in
function of the ratio between h and δ1 with parameters shown in table 2.1.

We have to note that the variation of reactance due by the load ∆X is lower than zero
in fact the reactance of the system with the load decreases its inductance. In the graphic
is plotted X = Xair +∆X.

2´ +∞
0 e−xf (x) ≈

∑n
i=1wif (xi )

where xi is the ith root of Laguerre polynomial Ln(x) and the weight wi is given by: xi
(n+1)2[Ln+1(xi )]2

[15]
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Figure 2.4: Equivalent resistance R and equivalent reactance X as function of the ratio
h/δ1 for various values of thickness h of the metallic disk.

Symbol Description Value

Re External radius of the coil 100 mm
Ri Internal radius of the coil 0 mm
N Number of turns 20
s Inductor load distance 5 mm
σ Conductivity of the copper disk 57 MS
µr1 Relative permittivity of the copper disk 1
n Sum limit of Laguerre polynomials 100

Table 2.1: Parameters of the case of study.
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2.4 Power transmitted in the billet

We found the variation of resistance of the coil due the load, it’s possible to evaluate the
power generated by the eddy currants in the metallic disk using the relation:

P + jQ = ŻI2 = RI2 + j(X +∆X)I2 (4.43)

There is another expression for the active power transmitted into the metallic disk start-
ing from the current density:

P =
ˆ
V

J2

σ
dV (4.44)

The computation of the power with this method is computationally complicated with
respect the method described by equation 4.43 but it’s interesting to understand how
induced current flows in the metal. We can therefore compute the current density in
the disk as previously seen using the equation:

J
1
(ρ,z) = σE(ρ,z) = −jσωA(ρ,z) (4.45)

The current density J
1
has only the azimuthal component as the magnetic vector poten-

tial. By using equation 1.27 we obtain:

J1(ρ,z) = −jσω
ˆ ∞
0

[
C11(k)e

ζ1z +C12(k)e
−ζ1z

]
J1(kρ)dk (4.46)

where:
C11(k) = µ0

NI
2(Re −Ri)

C0(k)G(k) (4.47)

C12(k) = µ0
NI

2(Re −Ri)
C0(k)H(k) (4.48)

with:

G(k) =
e2hζ1 kµr1ζ1 +2e2hζ1 k2µ2r1(

e2hζ1+k s − ek s
)
ζ21 +

(
2e2hζ1+k s +2ek s

)
kµr1ζ1 +

(
e2hζ1+k s − ek s

)
k2µ2r1

(4.49)

H(k) =
kµr1ζ1 − 2k2µ2r1(

e2hζ1+k s − ek s
)
ζ21 +

(
2e2hζ1+k s +2ek s

)
kµr1ζ1 +

(
e2hζ1+k s − ek s

)
k2µ2r1

(4.50)

The complexity to find the current density from equation 4.46 derives from the integral
overall k. We can again evaluate it with the Gauss-Laguerre quadrature formulae and
we obtain:

J1(ρ,z) = −jωσ
n∑
i=1

wie
xi
[
C11(xi)e

ζ1iz +C12(xi)e
−ζ1iz

]
J1(xiρ) (4.51)

where

ζ1i =

√
x2i +

2j

δ21
(4.52)
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Figure 2.5: Current density distribution in
copper disk with f = 1 kHz.

Figure 2.6: Current density distribution in
copper disk with f = 10 kHz.

with the parameters described in table 2.1 for a copper disk of thickness 5 mm with
I = 10A we plot the current density at the frequency of 1 kHz and 10 kHz in the graphs
2.5 and 2.6 for different frequencies. The penetration depth is 2.1 mm at the frequency
of 1 kHz and 670 µm at 10 kHz. We can see how for the higher frequency the current
density is present mostly on the surface. The disposition of the current is well shown in
figures 2.7 and 2.8 where is plotted the current density for different values of z. Figures
2.9 and 2.10 show the current density for different relative values of z for NiCr metal
(σ = 950 kS/m, µr = 1) at 10 kHz (d.o.p. = 5.1 mm) and 70 kHz (d.o.p. = 1.95 mm).

We can note that chose of the frequency depends basically by the material type (con-
ductivity and permeability) and by required treatment, hardening or core heating.
We can now proceed to evaluate the power transmitted in the billet by using the method
of the integral of the square current density overall the volume described by equation
4.44 and with the equivalent resistance seen by the inductor by using equation 3.42.

Material f R X RI2ef f
´
V

J2

σ dV err%(P )

Copper
σ = 5.7MS/m
µr = 1

1 kHz 7.04 mΩ 47.1 mΩ 352 mW 332 mW 6.1%
5 kHz 16.7 mΩ 214 mΩ 836 mW 784 mW 6.6%
10 kHz 23.9 mΩ 417 mΩ 1.19 W 1.12 W 6.7%

NiCr
σ = 950kS/m
µr = 1

10 kHz 189 mΩ 538 mΩ 9.43 W 8.95 W 5.3%
70 kHz 464 mΩ 3.26 Ω 23.2 W 21.8 W 6.2%
150 kHz 701 mΩ 6.63 Ω 35.0 W 32.9 W 6.4%

Table 2.2: Comparison between the power transmitted in the metal disk for different
materials at different frequencies (I = 10A).
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Figure 2.7: Current density distribution in
copper disk with f = 1 kHz.
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Figure 2.8: Current density distribution in
copper disk with f = 5 kHz.
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Figure 2.9: Current density distribution in
NiCr disk with f = 10 kHz.
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Figure 2.10: Current density distribution in
NiCr disk with f = 70 kHz.

2.5 Electrical efficiency

The electrical efficiency is obtained as the ratio between power transformed into heat
and the total active power absorbed by the inductor:

ηe =
Pheat
Ptot

=
RI2

(R+Rcoil)I2
=

R
R+Rcoil

=
1

1+ Rcoil
R

(5.53)

where R is the load resistance reported on the terminals of the inductor and Rcoil is the
resistance of the coil which we have to estimate.
We assume the inductor is made up Litz coil therefore the current is equally distributed
along its section. We proceed to calculate the resistance of one turn R1t with mean
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Figure 2.11

radius Rm as shown in figure 2.11 considering a coil with conductivity σc . the section
of this turn is ∆ρhc where ∆ρ = (Re −Ri)/N and R1tis:

R1t =
1
σc

2πRm

∆ρhc
(5.54)

the mean radius is given by:

Rm =
ˆ Re

Ri

ρ

Re −Ri
dρ =

R2
e −R2

i

2(Re −Ri)
(5.55)

therefore the resistance of the coil Rcoil made up N turns is:

Rcoil =
πN 2

σchc

R2
e −R2

i

(Re −Ri)2
(5.56)

We can calculate the electrical efficiency remembering that R is given by equation 3.41
and is the real part of ∆Ż. The electrical efficiency is therefore:

ηe =
1

1− 1
m0

Re−Ri
R2e −R2i

ℑ{´∞0 [C0(k)]2F(k)e−ksdk}
(5.57)

with:
m0 =ωµ0σchc (5.58)

It’s difficult to see from the equations 5.57 the dependences of the efficiency by the
parameters. The graphs 2.12 and 2.13 show the behaviour of the efficiency in function
of the ratio between disk thickness and penetration depth for copper and NiCr billets.

The efficiency depends obviously by the frequency and tends to one for high fre-
quencies. For the more conductive material the efficiency grows slower with respect the
other one. The air gap affects more for the copper disk which has the same conductivity
of the coil. The electrical efficiency depends also by the ratio between conductivity of
the coil and of the material and increases as the conductivity of the material decreases.
It’s more "easy" to heat a material with low conductivity in terms of efficiency because
more is conductive the disk, more the coil heats itself with respect the load. Good con-
ductive no-magnetic materials needs low current frequencies and the efficiency is low,
these are the big problems for heating copper or aluminium. We can finally say that:
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Figure 2.12: Electrical efficiency in function
of the ratio between disk thickness and pene-
tration depth for different air gap for copper.
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Figure 2.13: Electrical efficiency in function
of the ratio between disk thickness and pen-
etration depth for different air gap for NiCr.

• for h/δ1 < 2 the electrical efficiency is low even if the current is well distributed
along the entire thickness of the disk.

• for 2 < h/δ1 < 5 the heating occurs with satisfactory efficiency.

• fro h/δ1 > 7 the heating has a low thermal efficiency.

the electrical efficiency, for the effect of the material characteristics, could be very high
(0.9) for material with low conductivity while it remains slow for material with high
conductivity.

2.6 Quality factor and power factor

The quality factor Q is defined as the ratio between the reactive power and the active
power absorbed by the inductor:

Q =
Xair +∆X
Rcoil +R

(6.59)

where we remember that ∆X is negative. Values of Q are reported in figures 2.14 and
2.15 in function of h/δ1 respectively for copper and NiCr for different air gap thickness.
The quality factor is an important quantity which can be used to calculate easily the
cosϕ which is:

cosϕ =
Rcoil +R√

(Rcoil +R)2 + (Xair +∆X)2
=

1√
1+Q2

(6.60)

Always for non copper and NiCr with geometrical parameters described in table 2.1,
the behaviour of the cosϕ is shown in figures As we can see the cosϕ is very low also for
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Figure 2.14: Quality factor in function of h/δ1
for Cu.
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Figure 2.15: Quality factor in function of h/δ1
for NiCr.
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Figure 2.16: Cosϕ in function of h/δ1 for Cu
with different air gap thickness.
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Figure 2.17: Cosϕ in function of h/δ1 for
NiCr with different air gap thickness.

reasonable value of h/δ1, for this reason it’s necessary the compensation of the inductive
reactive power absorbed by the inductor with a capacitor connected in parallel. It’s to
note that in the line (cable) between power factor correction capacitor and the inductor,
the current is strongly out of phase and the module of the current could assume high
values.
The cosϕ is generally higher for copper with respect the NiCr. It depends strongly by
the air gap thickness and has a different distribution in the case of NiCr i.e. there is a
relative maximum at h/δ1 ≃ 0.5 which corresponds at the resonance frequency which
is not present in the case of copper. At the resonant frequency (RF) the cosϕ reaches
the maximal value (with a good heating) and right at resonance frequency the pan-
cake inductor has to be supplied. Even if the electrical efficiency is higher for higher

31



Pancake inductor

frequencies, setting the system at RF has the advantage to decrease the size of power
factor correction capacitors and reduce the apparent power supplied from the inverter
and moreover at low frequencies the heating is more uniform.

2.7 FEM

To compare the results obtained with the analytical model of pancake inductor with a
FEM simulation by using COMSOLMultiphysics®. The model considers the conductive
disk with infinite extension. For no-magnetic materials the induced current distribution
along the radial coordinate ρ drops to zero for ρ > Re + 10%Re therefore the analytical
model will fit with the FEM model if Rb > 1.1Re. The analytical model doesn’t take into
account the variation of conductivity due by the temperature increase in the load and
in the coil neither the magnetic saturation. In fact the aim of this thesis is the heating
transfer mechanism for no-magnetic conductors.

The analytical model considers one dimensional coil therefore with no thickness
while in the FEM simulation, but also in the reality, the coil has thickness hc. In order
to doesn’t error we have to set the air gap in the analytical model:

s→ s+
hc
2

In figure 2.18 is shown the distribution of the current along a 2D axisymmetric section
of the disk with parameters in table 2.19.

Figure 2.18: Current density distribution [A/m2] in the copper
disk at f=1kHz with FEM simulation.

Symbol Value
f 1 kHz
I 10 A
Re 100 mm
Ri 0 mm
Rb 150 mm
N 20
s 5 mm
hc 5 mm
σ 57 MS

σcoil 57 MS
µr1 1

Figure 2.19: Parame-
ters of the FEM case of
study.

In order to compare the results of the FEM with the analytical model in figure 2.20
is plotted the surface current density (at z=0) along the radius ρ. We can see how the
two curves of the current density distribution well fit.
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Figure 2.20: Current density comparison at z=0 in function of the radius.

To make a more effective comparison between the two models we wanna compare
also the electrical parameters of the system as equivalent resistance R, the equivalent
reactanceX and the total power transmitted into the disk by using the integration of the
current density inside the disk. In order to test the analytical model, we’ll change the
geometrical parameters with respect the previous examples. The coil is made up copper
and the resistance of the coil has been computed with FEM and analytical model:

Rcoil,FEM = 33.3 mΩ

Rcoil,AN = 32.9 mΩ

The study is done for three material type: aluminium, steel and iron with a geometrical
dimension similar to a bottom of a pot. The results and the parameters of the system is
shown in table 2.3. As we can see the analytical model make good forecast in presence
of no-magnetic materials, while it is in misleading for the magnetic ones. This is due
by the fact that for magnetic materials the permeability depends by the magnetic flux
density intensity as well as the temperature. For this reason choosing a value of µr at the
final temperature of the disk is not enough. It’s necessary to consider an average value
of the permeability along the entire hysteresis cycle. Always taking in consideration the
case of study, the steel keep up well its magnetic proprieties and indeed the discrepancy
between FEM and analytical model is tolerable while for iron no. In fact for iron the µr
strongly depends by the magnetic flux density strength and a correction is necessary.
We have to pot therefore an average value of the permeability which can be calculated
through:

µr,eq =
1

Bi −Bf

ˆ Bf

Bi

µr(B)dB (7.61)
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Geometrical parameterss Material properties Analytical FEM Err
Ri = 25 mm Aluminium

σ = 37.7 MS/m
µr = 1

R = 138 mΩ R = 141 mΩ 2.1%
Re = 80 mm X = 2.35 Ω X = 2.18 Ω 7.8%
s = 4 mm P = 47.2 W P = 46.9 W 0.6%
f = 20 kHz AISI steel 430

σ = 1.5 MS/m
µr = 100

R = 2.23 Ω R = 2.02 Ω 10%
I = 30 A X = 6.50 Ω X = 15.43 Ω 58%
N=25 P = 941 W P = 895 W 5.1%

h = 3 mm, hcoil = 2 mm Iron
σ = 9MS/m
µr = 500

R = 2.17 Ω R = 1.38 Ω 57%
Rb = 90 mm X = 6.22 Ω X = 50.8 Ω 88%

σcoil = 57MS/m P = 957 W P = 605 W 58%

Table 2.3: Parameters of the case of study and comparison between FEM and analytical
model.

where µr,i is the initial value and µr,f is the final value of the relative permeability which
is:

µr =
1
µ0

dB
dH

(7.62)

With this assumption correcting the permeability with its equivalent one we obtain the
final values in table 2.4. We can note that even with the correction to the permeability,

Material properties Analytical FEM Err
AISI steel 430
σ = 1.5 MS/m

µr,eq = 69

R = 2.11 Ω R = 2.02 Ω 4.4%
X = 5.95 Ω X = 15.43 Ω 61%
P = 945 W P = 909 W 3.9%

Iron
σ = 9 MS/m
µr,eq = 80

R = 1.39 Ω R = 1.38 Ω 0.7%
X = 4.09 Ω X = 50.8 Ω 92%
P = 603 W P = 605 W 0.3%

Table 2.4: Parameters of the case of study and comparison between FEM and analytical
model with equivalent permeability.

the error of the reactance X in high. This error doesn’t affect the value of the calculated
power but affects strongly the forecast of the cosϕ.

2.8 Soft magnetic yoke

If we insert a ferrite layer (soft magnetic yoke) up the coil we insulate magnetically the
region above it and we increase the magnetic field magnitude in the metal disk. Figure
2.21 show the geometrical configuration, in particular the soft magnetic yoke is distant
r from the coil and is a disk with infinite radius and supposing infinite permeability.
The considerations done in the section 2.1 since the symmetry of the system are still
valid, in particular the magnetic vector potential A has only θ component and depends
only by ρ and z in a cylindrical coordinate system (ρ,θ,z). As already done, we can
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Figure 2.21: Schematic configuration of pancake inductor, load and soft magnetic yoke.

study the solutions in threimposing the continuity of magnetic vector potential if the
two border regionse regions:

• Region 0, (0 < z < s+ r):
Here the solution has two terms, one descending exponential term and growing
one:

Aθ0 = A0e +A0r

=
µ0NI

2(Re −Ri)

ˆ ∞
0

C0(k)
[
e−k|s−z|dk +C01(k)e

kz +C02(k)e
−kz

]
J1(kρ)dk

(8.63)

where:

C0(k) =
ˆ Re

Ri

ρJ1(kρ)dρ (8.64)

• Region 1, (−h < z < 0):

Aθ1 =
ˆ ∞
0

[
C11(k)e

ζ1z +C12(k)e
−ζ1z

]
J1(kρ)dk (8.65)

where ζ21 = k2 + jωσ1µ1.

• Region 2, (z < −h):

Aθ2 =
ˆ ∞
0

C2(k)e
kzJ1(kρ)dk (8.66)

2.8.1 Boundary conditions

We will study the problem only for −h ≤ z ≤ r + s and this leads to the following bound-
ary conditions:
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• z=r+s: imposing the orthogonality of magnetic field (cause the infinite permeabil-
ity) respect the soft magnetic yoke which leads:

∂Aθ0

∂z
= 0 (8.67)

• z=0: imposing the continuity of magnetic vector potential in the two border re-
gions and since the conservation of the radial component of the magnetic field we
obtain:

Aθ0 = Aθ1

∂Aθ0

∂z
=

1
µr1

∂Aθ1

∂z

(8.68)

• z=-h: since the continuity of the magnetic vector potential:

Aθ1 = Aθ2 (8.69)

This procedure leads to a system of equations in number equal to the number of the
unknown coefficients Cij which can be written in the matrix form[16]:

1 1 −1 −1 0
−k k ζ1

µr1
− ζ1
µr1

0
0 0 e−ζ1h eζ1h −e−kh

0 0 ζ1
µr1

e−ζ1h − ζ1
µr1

eζ1h − k
µr1

e−kh

−kek(s+r) ke−k(s+r) 0 0 0


·


C01
C02
C11
C12
C2

 =

−e−ks
ke−ks

0
0

−ke−kr

 (8.70)

In the same way as done in section 2.3 we can derive the equivalent impedance of the
system which is:

Ż = j
πωµ0N

2

(Re −Ri)2

ˆ ∞
0

C0(k)
2
[
1+C01(k)e

ks +C02(k)e
−ks

]
dk (8.71)

with the load the variation of impedance is:

∆Ż = j
πωµ0N

2

(Re −Ri)2

ˆ ∞
0

C0(k)
2
[
C01(k)e

ks +C02(k)e
−ks

]
dk (8.72)

by using the Gauss-Laguerre quadrature formulae for simplify the expression, in order
to implement it in the computational code equation 8.72 becomes:

∆Ż = R+ j∆X = j
πωµ0N

2

(Re −Ri)2

n∑
i=1

1
s
wiC0

(xi
s

)2 [
C01

(xi
s

)
e2xi +C02

(xi
s

)]
(8.73)

In table 2.5 shows the variation of the equivalent resistancemeasured at the terminals of
the coil due to the load and compared with the results found previously. We can see how
for both the case of studies we have an increment of equivalent resistance adding a soft
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Material With yoke Without yoke
Analytical FEM Err. Analytical FEM Err.

Aluminium
σ = 37.7 MS/m

µr = 1
R=174 mΩ R=167 mΩ 4% R=138 mΩ R=141 mΩ 3%

Steel AISI 430
σ = 1.5 MS/m

µr = 100
R=5.26 Ω R=5.48 Ω 4% R=2.23 Ω R=2.02 Ω 10%

Table 2.5: Variation of equivalent resistance with soft magnetic yoke.

magnetic yoke due to a greater concentration of the magnetic field on the workpiece.
The analytical model outcomes are in according with the FEM simulation where the soft
magnetic yoke had null electrical conductivity and µr = 4000, like the common ferrite
on the market. The heating with 10 A of current in the coil for aluminium is only 17
W despite the ferrite layer. In the case of steel the increase of resistance is double than
without ferrite with consequentially the same increment of the power heating.
The magnetic flux density lines for pancake inductors with and without yoke are shown
in the figures 2.22 and 2.23 for an aluminium workpiece. We can note how with the

Figure 2.22: Magnetic flux density distribution with soft magnetic yoke.

ferrite layer above the pancake the magnetic field is less dispersed and for this reason
the heating is grater.
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Figure 2.23: Magnetic flux density distribution without soft magnetic yoke.

2.9 Considerations

The analytical model which describes the pancake inductor heating system simulates
with a good approximation the equivalent resistance R measured ad the terminals of
the coil and compared with the FEM results. The error is below 5% for non magnetic
materials while for magnetic materials as steel 430 or iron the error grows even above
50%. As we already said this issue can be solved by considering the mean value of the
permittivity along the hysteresis cycle. Even with the correction by using the equiva-
lent permeability the reactance X of the system is definitely underestimated and can’t
be token into account.
The analytical model therefore make good forecast when the load is made up non-
magnetic material.
The analytical model moreover doesn’t consider the hysteresis losses Phys and the power
transmitted is underestimated, it’s necessary to add the following term:

Phys = ηBn
maxf V (9.74)

where η is the Steinmetz hysteresis coefficient (depending on material [J/m3]), Bmax is
the maximal value of the flux density, n is the Steinmetz exponent (range from 1.5 to
2.5 depending on material), f the frequency and V the volume of magnetic material.
We have to say that the magnetic flux density is not constant inside the material there-
fore it’s necessary to take an average value.
In the last section we have seen how adding a soft magnetic yoke the resistance increases
on equal characteristics, according with the FEM simulation. In conclusion the analyt-
ical model makes good forecast for non magnetic material. We have to remember that
this model supports a huge range of frequency and therefore is useful to do preliminary
estimates. The downside is that we are not interested to heat non-magnetic materials
cause the poor electrical efficiency.
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Chapter 3

Permanent magnets induction
heating

3.1 Introduction

As already said in order to generate eddy currents into the workpiece it’s necessary
varies the magnetic flux inside itself. This operation can be done varying the magnetic
field with respect the time as done for the pancake case or by varying the magnetic field
in the space. In this chapter we will consider the last case.
The working principle is simple: the variation of magnetic flux is due by using perma-
nent magnets which are in relative motion with respect the workpiece. The most simple
configuration to implement and to study is when the permanent magnets are placed on
a rotating disk closed to the metal piece to heat. Figure 3.1 shows the configuration of
the system: there are two coaxial disks (metal disk and permanent magnets disk) along
the z direction separate by a air layer of thickness s. The upper disk has radius R3,

x

z

Figure 3.1: Geometrical parameters of the permanent magnets disk - metal disk.

39



Permanent magnets induction heating

thickness h and it is made up by a non magnetic conductor with electrical conductivity
σ for example copper or aluminium and it’s make round with angular speed ω. The ve-
locity of a generic point belonging the conductive disk ad the distance ρ from the axes
of rotation has velocity v in magnitude proportional to:

v =ωρ (1.1)

and the direction is tangent. The other disk is fixed and it’s constituted of no magnetic
material with equally spaced permanent magnets (PM) bonded on top of it.

Figure 3.2 shows the geometrical proprieties of the permanent magnets disk.

N

N

NN

S S

S S

Figure 3.2: Geometrical parameters of the permanent magnets disk.

The magnets are disposed alternatively with North pole (N ) and South pole (S) with
a regular angular spacing π/p where p is the number of dipoles which constitute the
system. Basically the angular spacing between two magnets with the same polarity is
2π/p. The magnets have circular crown arch shape with R1 and R2 respectively the
internal and external radius and the angle is απ/p with 0 < α ≤ 1 to avoid the overlap
of the two opposite poles.

The problem shows an elegant cylindrical symmetry, the natural way to study the
system is using cylindrical coordinates (ρ,ϑ,z) even if this choice will complicate the
partial differential equations carried by Laplacian, curl and the divergence. Our goal is
to find an analytical solution of the current density J inside the billet. It’s necessary to
separate the solutions in four regions:

• ¬ : permanent magnets region (r < z < 0);
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•  : air gap region (r ≤ z < r + s);

• ® : conductive region (r + s ≤ z < r + s+ h);

• ¯ : air infinite region* (r + s+ h ≤ z);

in order to solve the three-dimensional boundary value problem, we have to find the
boundary conditions in the four regions. The region number four will be discussed later
because neds particular precautions.

3.2 Magneto-dynamic formulation

In this section we will show the physical behaviour of a charged particle into a magnetic
field, in particular we’ll study the dynamics of single particle focussing to microscopical
quantities. This will allow us to have not only a simple mathematical model but also a
more general physical comprehension.

Let us consider the system in figure 3.1, the billet is rotating around z-direction with
angular velocity ω. The cylindrical billet is made of non magnetic metal (aluminium or
copper) with high electrical conductivity σ . Similarly to Drude model we can assume
charges free to move inside the conductor. Considering the figure 3.3 a free charge into
the billet in position P (x,y) supposing positively charged (+q) is moving with respect a
system of reference attached to the magnetic disk, the charge q is moving with velocity
v.

+q

P( )

x

y

Figure 3.3: Lorentz force on a charged particle in magnetic field portion.
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Inside the blue zone exist a magnetic field B supposing constant and only along
positive z-direction. In the red zone the magnetic field is along negative z-direction
while in the white zone no magnetic field is present. Where magnetic field is not zero,
the Lorentz’s force FL acts on the charge with the relation:

FL = qv×B (2.2)

applying the dynamics to the charge taking into account the system’s geometry we ob-
tain the acceleration a of the charge:axay

az

 = q

m

vxvy
vz

×
 00
Bz

 = q

m

 vyBz

−vxBz
0

 (2.3)

wherem is the particle mass, the equation 2.3 tell us that is zero the acceleration along z-
direction thus there is the conservation of the velocity along the B direction; we suppose
that in steady state conditions vz ≡ 0. This three-dimensional problem is simplified in
two-dimensional problem in (x,y). Reminding that the acceleration is the derivate with
respect the time of the velocity (a = v̇), we can write:(

v̇x
v̇y

)
=
qBz

m

(
vy
−vx

)
(2.4)

where qBz/m is the gyrofrequency and henceforth will be indicated as ωc. Supposing to
have the earth’s average magnetic flux density field (B=35 µT ) and considering electron
as charges (q= -1.60·10−19 C,m= 9.11·10−31 Kg )ωc is about 6.15 ·106 rad ·s−1 value quite
bigger with the angular velocity of the rotation ω. Equation 2.4 is a linear differential
equations system that can be rewritten in terms of matrix:

v̇ =A · v (2.5)

where A is the matrix

A =
(

0 ωc
−ωc 0

)
(2.6)

the problem is resolvable with the method of matrix exponential and the solution has
the following form:

v(t) = eAtC , C ∈R2 (2.7)

the step now is to calculate the exponential of the matrix A, to do this it’s necessary to
diagonalize itself in the way that A = P ·B ·P−1, where B is a diagonal matrix which it’s
easy to compute its exponential:

eAt = P · eBt (2.8)

To find B it’s necessary to find eigenvalues and eigenvectors of A which are λ1 = jωc

and λ2 = −jωc with respective eigenvectors w1 =
(
−j
1

)
and w2 =

(
j
1

)
and we obtain:

v(t) =
(
−j j
1 1

)
·
(
ejωct 0
0 e−jωct

)
·
(
c1
c2

)
(2.9)
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which becomes: (
vx(t)
vy(t)

)
=

(
−jc1ejωct + jc2e

−jωct

c1e
jωct + c2e

−jωct

)
(2.10)

now, in order to solve the differential equation system we have to impose the initially
conditions. At time t=0 the charge is moving with the billet at distance r from the
rotation axis with tangential velocity ωr therefore at the initial instant we have:(

vx(0)
vy(0)

)
=

(
0
ωr

)
(2.11)

with these conditions it’s easy to see that the constants become c1 = c2 = ωr/2, remem-
bering the Euler’s formula it can be written:vx(t) = ωr sin(ωct)

vy(t) = ωr cos(ωct)
(2.12)

with respect the supportive reference system to disk billet, the velocity of the charges
are: vx(t) = ωr sin(ωct)

vy(t) = ωr(cos(ωct)− 1)
(2.13)

In order to have the chargee’s trajectory we have to find the position integrating the
velocities, supposing that for t=0 x = r and y = 0 we obtain:x(t) = r + r ω

ωc
(1− cos(ωct))

y(t) = r ω
ωc
(sin(ωct)−ωct)

(2.14)

The parametric plot of the equations 2.14 consideringωc = 4ω and radius r is showed
in figure 3.4.

It’s interesting to note that the x-position varies from r to r + δr while the y-position
tends globally to increment with the time (thanks to the initial velocity of the particle)
but some times there is reduction of y i.e. the charge "turn back". In the system we
studied, ωc >> ω therefore the y-pitch δy = rω/ωc is very small as is small δr = 2rω/ωc.
This model is not applicable to other studies, its aim is just to have a comprehension of
the physical system. In fact for example a particle at the border of the magnetic region
(blue and red region in figure 3.3) could be deflected in the non magnetic zone and no
be more governed by the Lorenz’s law. What do we expect is that boundary regions have
a not well predictable behaviour with this magneto-dynamic formulation. A big lack of
this model is the non consideration of the other charges which interact with each other.
Considering the presence of other charges is a quantum-statistic problem, but we can
say that in the middle of the magnet region there is the coexistence of charges spinning
in opposite directions leading to very low values of current density. The last consid-
eration is that the velocity is proportional to the angular velocity ω. According with
the Drude’s model, the current density J is proportional to the velocity. The electrical
power losses due by the eddy currents is proportional to J2 therefore what we do expect
is:

Pel ∝ω2 (2.15)
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Figure 3.4: Trajectory of a particle in a magnetic flux density (ωc = 4ω) with respect the
billet reference system.

We’ll discuss after the FEM model results.
At the end the magneto-dynamic formulation at the is not appropriated to study this
case of study cause it doesn’t takes into account the behaviour of all the charges inside
the load to heat. We need a to study the system with a electromagnetic formulation
based on the Maxwell’s equations.

3.3 Linearisation of the system

The system presents an elegant cylindrical symmetries which leads us to think that the
easier way to study the problem is with cylindrical coordinates. Even if this approach
could simplify the geometrical definitions, it will carry out to a very complex differen-
tial equations deriving from the Maxwell’s formulation of the fields, specifically with
the "nabla" operator. An other important consideration is that the cross product be-
tween two vectors is defined only in cartesian coordinate system and not in the cylin-
drical one. Study the cylindrical system in cartesian coordinates is complex therefore
there is an other approach to solve the problem i.e. the linearisation of the system. In
this way we transform rotational motion into a linear motion. Figure 3.5 shows the lin-
earised system; the geometrical quantities have been fitted starting from the system in
Figure 3.1. The opposite permanent magnets are posed at distance τ from each other
and have length ατ and width L. The air gap from permanent magnets and conductive
plate (thickness h and width D) is always s. In this system with respect the cylindrical
the x-direction represents the azimuthal direction, the y-direction the radial one while
the z-direction is the axial one. The relative speed v between conductive plate and per-
manent magnets is along x-direction with magnitude ωRm. The system is supposed
infinitely extended in both direction along the x-axis with a periodicity of 2τ with two
pole pitch. As we can see from figure 3.6, the problem has three solution domains of
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s

h

D

r

Figure 3.5: Three-dimensional representation of the linear eddy-current coupling.

the magnetic field: the permanent magnet region, the air gap region and the conductive
one respectively region 1,2 and 3. In order to solve the eddy current problem it’s nec-

O

AIR GAP

L

D

Figure 3.6: Transversal y-z section of the linearised system.

essary to find boundary conditions in x and y directions and interface conditions along
the z-directions. As the origin of reference system we set the point O in the geometrical
centre of permanent magnet between its layer and the soft-magnetic yoke layer.

3.3.1 Boundary conditions

Due to alternate polarity of the permanent magnets there is a periodicity of the system
along the x-direction. This has repercussion also in the solution therefore it can be
considered x only in the range −τ/2 ≤ x ≤ τ/2 and with the boundary condition:

Hi(−τ/2, y,z) = −Hi(τ/2, y,z) with i = 1,2,3 (3.16)

whereHi is themagnetic field in all the three regions. Theminus sign is because we con-
sider the single pole pitch and not the dipole pitch. Due to the soft-magnetic yoke with
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a supposing infinite magnetic permeability the magnetic field has are only z-component
at z=0:

H1(x,y,0)× ûz = 0 (3.17)

The study in the y-direction is limited by the geometrical dimension of the conductive
plate therefore the domain is −D/2 ≤ y ≤ D/2. In this case we impose an artificial
boundary condition: the perfect magnetic boundary condition (Dirichelet):

Hi(x,±D/2, z)× ûy = 0 with i = 1,2,3 (3.18)

this artificial condition obviously compromises the solution’s accuracy but this impact
is limited if D>L, which corresponds to a well designed eddy current coupling [17, 18].

An other important general boundary conditions is the continuity of magnetic field
and magnetic flux density across a surface. Considering the figure 3.7 when the mag-
netic flux density across a from a material with permittivity µ1 to a second material
with µ2, the normal component BN1 of the magnetic flux density near the boundary,
immediately inside material 1 is equal to the normal component BN2 immediately in-
side the second material. There is therefore the conservation of the normal component

Figure 3.7: Normal and tangential components across twomaterial’s surface of the mag-
netic flux density.

of the magnetic flux density across a surface:

BN1 = BN2 (3.19)

And since B andH are related by the permeability, we know how the normal component
of the magnetic field HN changes across the boundary:

µ1HN1 = µ2HN2 (3.20)

If in the boundary exist a surface free current density Jf directed along the outline,
we will have the magnetic field discontinuous by the exact amount of surface current
density:

HT 1 −HT 2 = Jf × ûN (3.21)

where ûN is the unit normal points in the direction from medium 2 to medium 1 [19].
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For our considerations the magnetic permittivity is always µ0 therefore there is the
continuity of the normal component of themagnetic flux density and themagnetic field.
In our system no free current are presents therefore there is also the continuity of the
tangential component of the magnetic field. Overall both magnetic flux density and
magnetic field are preserved.

3.3.2 General solution in the non conductive regions

In the region 1 and 2 are present non conductive materials therefore no current flows
inside these regions, Maxwell’s equation can be written in the following form:

∇ ·Bi = 0
∇×Hi = 0 with i = 1,2 (3.22)

this is a magneto-static problem, H is irrotational and can be express in terms of a
magnetic scalar potential:

Hi = −∇Φi with i = 1,2 (3.23)

Solving a differential equation starting fromMaxwell’s equations with the scalar poten-
tial is easier with respect H or B which are 3-dimensional vectors i.e. we have to find
only one solution instead of three. In the PM region there is a residual magnetization
term M to takes into account, therefore the magnetic flux density is:

Bi = µ0µriHi +µ0Mi (3.24)

where µ0 = 4π · 10−7H ·m−1 is the permeability constant and µri is the relative perme-
ability. Combining equation 3.22, 3.23 and 3.24 we obtain:

∇2Φi = ∇ ·Mi with i = 1,2 (3.25)

PM are magnetized only the z-direction and the residual magnetization doesn’t depend
by z thus we can write:

Mi =Mz(x,y)ûz with i = 1,2 (3.26)

The magnetization distribution has theM(x,y) has a behaviour shown in figure 3.8 and
3.9. To express the magnetization if an analytic way it’s we use the double Fourier series
therefore the expression of M(x,y) becomes:

Mz(x,y) =
Br

µ0
ξx(x)ξy(y) (3.27)

where Br is the remanence flux density in the PMs, ξx(x) and ξy(y) are dimensionless
functions of the only variables x and y respectively and have the following expression:

ξx(x) =
∞∑

m=1,3,5,...

ξxm cos
(
m
π
τ
x
)

(3.28)

and
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Figure 3.8: Magnetization distribution
along x-direction.

Figure 3.9: Magnetization distribution
along y-direction.

ξy(y) =
∞∑

n=1,3,5,...

ξyn cos
(
n
π
D
y
)

(3.29)

with

ξxm =
4
mπ

sin
(mπα

2

)
(3.30)

and

ξyn =
4
nπ

sin
(nπL
2D

)
(3.31)

We can now rewrite the equation 3.27 using the equations 3.28 and 3.29 therefore:

Mz(x,y) =
∞∑

n=1,3,5,...

∞∑
m=1,3,5,...

Mnm cos
(
m
π
τ
x
)
cos

(
n
π
H
y
)

(3.32)

where

Mnm =
16Br

µ0π2nm
sin

(mαπ
2

)
sin

(nπL
2D

)
(3.33)

Because of the simplification of the future calculations it’s useful to express the equa-
tion 3.32 in the following form:

Mz(x,y) =ℜ

 ∞∑
n=1,3,5,...

∞∑
m=1,3,5,...

Mnm cos
(
n
π
D
y
)
ejm

π
τ x

 (3.34)

The figure 3.10 shows the behaviour of the normalized functionMz(x,y) in the three-
dimensional space. If Mz(x,y) doesn’t depend by z, it’s easy to see that ∇ ·Mi = 0 there-
fore we obtain a second order partial differential equation valid in the two regions:

∂2Φi

∂x2
+
∂2Φi

∂y2
+
∂2Φi

∂z2
= 0 with i = 1,2 (3.35)
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Figure 3.10: Tridimensional rapresentation of the magnetization Mz(x,y).

The boundary conditions 3.16 and 3.18 (valid for boot the regions) are transmitted to
the magnetic scalar potential:

Φi(−τ/2, y,z) = −Φ(τ/2, y,z)
Φi(x,−D/2, z) = Φ(x,D/2, z) with i = 1,2 (3.36)

According with the Fourier’s series and the method of separation of variables, general
solutions which satisfy boundary conditions 3.36 are:

Φi(x,y,z) =ℜ

 ∞∑
n=1,3,5,..

∞∑
m=1,3,5,..

Φ̄i(z)cos
(
n
π
D
y
)
ejm

π
τ x

 with i = 1,2 (3.37)

where n andm are odd integer numbers. Substituting the solution 3.37 into the equation
3.35 and making the derivates and simplifying we obtain:

d2Φ̄i(z)
dz2

=
{(nπ

D

)2
+
(mπ
τ

)2}
Φ̄i(z) (3.38)

which has solution:
Φ̄i(z) = Āie

αnmz + B̄ie
−αnmz (3.39)

where αnm doesn’t depend by the region and its value is:

αnm =

√(nπ
D

)2
+
(
kπ
τ

)2
(3.40)

therefore the solution in the two regions are given by the equation 3.37 with Φi equal
to:

Φ̄1(z) = Ānme
αnmz + B̄nme

−αnmz (3.41)
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Φ̄2(z) = C̄nme
αnmz + D̄nme

−αnmz (3.42)

where the constants Ānm, B̄nm, C̄nm and D̄nm are in general complex numbers to be
determined using the interface boundary conditions [20].

3.3.3 General solution in the conductive region

Maxwell’s equations in the billet region (region 3) have to considerate the presence of
current density therefore can be written as follows:

∇×E3 = −
∂B
∂t

, ∇×H3 = J3 , ∇ ·B3 = 0 (3.43)

where E3 in the electric field and J3 the induced current density in region 3. The
Ohm’s law for a moving conductor with velocity v with respect a stationary magnetic
field is expressed by:

J3 = σ (E3 + v×B3) with v = vûx (3.44)

The reference system we consider is supportive of the magnets disk and in steady
state conditions the magnetic source is static therefore:

∂B
∂t

= 0 (3.45)

and the eddy current problem reduces to a magneto-static problem. Without any
simplification, combining the equations 3.43 and 3.44, with some algebraic passages
we obtain:

∇×H3 = σ (v×B3) (3.46)

making the curl to both the terms and remembering that ∇× (∇×H) = ∇(∇·H)−∇2H,
considering from the equation 3.45 ∇ ·H = 0 we obtain:

∇2H = −σµ0∇× (v×H3) (3.47)

the product vector between v andH3 thanks to the choice of the cartesian coordinates
system becomes:

v×H3 =

 v
0
0

×
 Hx
Hy

Hz

 =
 0
−vHz
vHy

 (3.48)

in order to lighten the notation from now on the subscript 3 will be removed even
if the solution is always intended in the region 3. We can now make the curl to the
resultant vector in the equation 3.48 which becomes:

∇× (v×H) =


v(

∂Hy

∂y + ∂Hz
∂z )

−v ∂Hy

∂x

−v ∂Hz
∂x

 = −v


∂Hx
∂x
∂Hy

∂x
∂Hz
∂x

 (3.49)
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using the relation (∇ ·H = 0). Now we can write the three partial differential equations:
∂2Hx
∂x2 +

∂2Hy

∂y2 + ∂2Hz
∂z2 = σµ0v

∂Hx
∂x

∂2Hx
∂x2 +

∂2Hy

∂y2 + ∂2Hz
∂z2 = σµ0v

∂Hy

∂x
∂2Hx
∂x2 +

∂2Hy

∂y2 + ∂2Hz
∂z2 = σµ0v

∂Hz
∂x

(3.50)

Now, in order to solve this PDE we proceed with the method of the variable sepa-
ration with the boundary conditions 3.16 and 3.18, we suppose the solutions have the
following structure:

Hx(x,y,z) =ℜ
{

∞∑
n=1,3,5,...

∞∑
m=1,3,5,...

H̄x,nm(z)cos
(
n π
D y

)
ejm

π
τ x

}
Hz(x,y,z) =ℜ

{
∞∑

n=1,3,5,...

∞∑
m=1,3,5,...

H̄z,nm(z)cos
(
n π
D y

)
ejm

π
τ x

} (3.51)

where H̄nmx(z) and H̄nmz(z) are functions of the only z variable. Similarly what we’ve
done in the previous section:

H̄x,nm = Ēeγnmz + F̄e−γnmz

H̄z,nm = Ḡeγnmz + H̄e−γnmz (3.52)

where Ē, F̄, Ḡ and H̄ are constants to be determined by the boundary conditions
while:

γnm =

√(nπ
D

)2
+
(mπ
τ

)2
+ jmσµ0v

π
τ

(3.53)

The termHy(x,y,z) is given by∇·H = 0 therefore is directly obtainable fromHx(x,y,z)
and Hz(x,y,z):

Hy(x,y,z) = −
ˆ (

∂Hx

∂x
+
∂Hz

∂z

)
dy (3.54)

Using equations 3.51, 3.52 we can rewrite 3.54 as follows:

Hy(x,y,z) =ℜ

 ∞∑
n=1,3,5,...

∞∑
m=1,3,5,...

H̄y,nm(z)sin
(
n
π
D
y
)
ejm

π
τ x

 (3.55)

where

H̄y(z) = −
D
nπ

(
jm

π
τ
H̄x(z) +

dH̄z(z)
dz

)
(3.56)

3.3.4 Composition of the solutions

Now that we have found the general solutions in all the three regions we can proceed
to find the particular solutions imposing the boundary conditions. We introduce now a
fourth region which is the space over the billet, is made up air and is supposed infinitive
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extended. We already know the solution in the region 4 because is the same of the 1 and
2 and is:

Φ4(x,y,z) =ℜ

 ∞∑
n=1,3,5,..

∞∑
m=1,3,5,..

Φ̄4(z)cos
(
n
π
D
y
)
ejm

π
τ x

 (3.57)

with:

Φ̄4(z) = J̄nme
αnmz + Īnme

−αnmz (3.58)

where, again, J̄nm and Īnm are constant to be determined by the boundary conditions.
We also know that αnm is a real positive number. The solution for z → +∞ must be
zero therefore must be zero also J̄nm. We have now nine unknown coefficients to deter-
mine, we need therefore nine independent linear equations. From the equation 3.17 we
obtain:

Φ1(x,y,0) = 0 (3.59)

From the conservation of all the components of the magnetic field between region 1 and
2 (z=r) we have:

Φ1(x,y, r) = Φ2(x,y, r)

∂Φ1(x,y, r)
∂z

=
∂Φ2(x,y, r)

∂z
−Mz(x,y)

(3.60)

From the conservation of all the components of the magnetic field between region 2 and
3 (z=r+s) we have:

∂Φ2(x,y, r + s)
∂x

= −H3x(x,y, r + s)

∂Φ2(x,y, r + s)
∂y

= −H3y(x,y, r + s)

∂Φ2(x,y, r + s)
∂z

= −H3z(x,y, r + s)

(3.61)

And from the conservation of all the components of the magnetic field between region
3 and 4 (z=r+s+h) we have:

∂Φ4(x,y, r + s+ h)
∂x

= −H3x(x,y, r + s+ h)

∂Φ4(x,y, r + s+ h)
∂y

= −H3y(x,y, r + s+ h)

∂Φ4(x,y, r + s+ h)
∂z

= −H3z(x,y, r + s+ h)

(3.62)

The system can be written in matrix form:

[A]nm · [Y]nm = [B]nm (3.63)
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where the matrix [A]nm is:

1 1 0 0 0 0 0 0 0
eαnmr e−αnmr −eαnmr −e−αnmr 0 0 0 0 0
eαnmr −e−αnmr −eαnmr e−αnmr 0 0 0 0 0
0 0 eαnmzh

τ
jmπ

e−αnmzh
τ

jmπ
eγnmzh e−γnmzh 0 0 0

0 0 eαnmzh

( D
nπ )

2
e−αnmzh

( D
nπ )

2
eγnmzh

τ
jmπ

e−γnmzh
τ

jmπ
γnme

γnmzh −γnme−γnmzh 0

0 0 αnme
αnmzh −αnme

−αnmzh 0 0 eγnmzh e−γnmzh 0
0 0 0 0 eγnmzt e−γnmzt 0 0 eαnmzt

τ
jmπ

0 0 0 0 eγnmzt
τ

jmπ

e−γnmzt
τ

jmπ
γnme

γnmzt −γnme−γnmzt eαnmzt

( D
nπ )

2

0 0 0 0 0 0 eγnmzt e−γnmzt αnme
αnmzt


(3.64)

where zh = r + s and zt = r + s+ h and:

[Y]nm =



Ā
B̄
C̄
D̄
Ē
F̄
Ḡ
H̄
Ī


and [B]nm =



0
0
−Mnm

αnm

0
0
0
0
0
0


(3.65)

The unknown vector is easy to determinate and is:

[Y]nm = [A]−1nm · [B]nm (3.66)

the inversion of the matrix [A]nm is implemented in the computational codex by using
MATLAB®therefore an analytical expression of the unknown coefficients is not shown
because of its length. The current density inside the metal is calculable from the equa-
tion:

J3 = ∇×H3 (3.67)

which becomes:

J3x =
∞∑

n,m=1,3,5,...

D e
j mπx

τ sin
(
nπy
D

) ( j mπ(Ē γnm ezγnm−F̄ γnm e−zγnm)
τ + Ḡγ2

nm ezγnm + H̄ γ2
nm e−zγnm

)
nπ

−

−
e

j mπx
τ

(
Ḡ ezγnm + H̄

ezγnm

)
nπ sin

(
nπy
D

)
D

(3.68)

J3y =
∞∑

n,m=1,3,5,...

e
j mπx

τ cos
(nπy

D

) (
Ē ezγnm γnm − F̄ γnm e−zγnm

)
−

−
e

j mπx
τ cos

(
nπy
D

) (
Ḡ ezγnm + H̄

ezγnm

)
j π

τ

(3.69)
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The z-component of the current density J3z has an analytical form but the computa-
tional results (once computed the unknown coefficients Ā,..., Ī) show that J3z is zero
with an approximation of 10−31 i.e. the induced current flows only in the x-y plane
(laminar eddy current). Figures 3.11, 3.12 and 3.13 show the behaviour of the induced
current into the magnetic disk in z = r + s+h/2 with the parameters shown in table 3.1.

Figure 3.11: Current density magnitude distribution for the linearised system.
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Figure 3.12: Induced current density dis-
tribution for the linearised system.
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Symbol Description Value

R1 Inner radius of the magnets 50 mm
R2 Outer radius of the magnets 100 mm
R3 Radius of the conductive disk 150 mm
r Magnet thickness 5 mm
s Air-gap length 5 mm
h Conductive plate thickness 5 mm
α PMs pole-arch to pole-pitch ratio 0.9
p Pole-pairs number 4
Br Remanence of PMs 1 T
σ Conductivity of the metal 57 MS/m
ω Angular velocity 1000 rpm
N Number of harmonic terms in x-direction 20
M Number of harmonic in y-direction 20

Table 3.1: Parameters of the case of study.

3.4 Power transmitted into the disk and electromagnetic
torque

The power generated for Joule effect due by the eddy currents is calculable with the
integral over the volume of the disk of the square of the eddy currents divided the elec-
trical conductivity. We’ve seen how the current density from equations 3.68 and 3.69
has sum for n and m for each the components; when we compute the square, the final
expression becomes complicated. It’s not possible to have a simple analytical expression
of the power losses in the billet. We can however estimate the losses by using the sum
instead of the integral:

P =
ˆ
V

J2

σ
dxdydz ∼

∑
{xi ,yi ,zi }∈V

J2(xi , yi , zi)
σ

∆x∆y∆z (4.70)

In order to have an analytical expression, we suggest to compute the power losses
with the electromagnetic torque which have a more simple expression. Once found the
torque, assuming the system with no other losses, the power is the torque multiplying
by ω i.e.:

P = Teω (4.71)

The electromagnetic torque is obtained using Maxwell stress tensor1 which, in pres-
ence of only magnetic fields, leads to the total electromagnetic force along the speed
direction by means of the formula[21]:

Fe =
1
µ0

ˆ
S
BxBzdS (4.72)

1More details about the Maxwell stress tensor will be addressed in the chapter 4.
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where S is a generic surface perpendicular to the z axis. We chose, in order to have a
simple expression of themagnetic flux density, to set the surface S in the border between
region 1 and region 2, as shown in figure 3.14. Multiplying equation 4.72 for Rm we

r

D

conductive plate

S

Figure 3.14: Surface chosen to calculate the electromagnetic torque.

obtain the torque given by a single pole-pair therefore. The integral over the surface S
is for −τ < x < τ and −D/2 < y < D/2. For p pole-pairs and remembering that B2 = µ0H2,
the electromagnetic torque Te is:

Te = pRmµ0

ˆ τ

−τ

ˆ D/2

−D/2
H2x(x,y, r)H2z(x,y, r)dydx (4.73)

In region 2 the magnetic field is expressed by the equation 3.23 and is for the two
components:

H2x(x,y, r) = −
∂Φ2

∂x
= −ℜ

 ∞∑
n=1,3,5,...

∞∑
m=1,3,5,...

jm
π
τ
[Ceαnmr +De−αnmr ]cos

(nπ
D

y
)
ejm

π
τ x


(4.74)

H2z(x,y, r) = −
∂Φ2

∂z
= −ℜ

 ∞∑
n=1,3,5,...

∞∑
m=1,3,5,...

αnm [Ceαnmr −De−αnmr ]cos
(nπ
D

y
)
ejm

π
τ x


(4.75)

We can note how the electromagnetic torque depends directly on the physical and geo-
metrical parameters. We have now two expressions to evaluate the power losses into the
metallic disk as we have a two expression to evaluate the electromagnetic torque which
acts on the metal disk. Figure 3.15 shows the torque in function of the slip speed ω by
using the two methods (equations 4.71 and 4.73) with parameter in table 3.1. We can
see how the torque calculated by using the electromagnetic stress tensor is a bit lower (∼
5%) with respect the other method. Beyond the numerical values the two curves follow
the same trend i.e. the torque has a maximum about at 800 rpm.
This is a good result because this is the validation of the two methods which have com-
pletely different and independents formulations.
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Figure 3.15: Torque comparison between two independent methods of calculation.

3.5 Axial force

The eddy currents into the metallic disk generate a magnetic field which interacts with
the magnetic field of the permanent magnets thus a force is born. In general the force
can be computed as the opposite to the gradient of the potential energy Ep i.e.:

F = −∇Ep (5.76)

If we assume that the metal disk is bigger enough with respect the external radius of
the PMs disk in order to avoid the eddy current in the edge of the disk, we can say that
a variation of the position of the disk in x and y-direction doesn’t change the potential
energy therefore Fx and Fy are both zero. We can therefore, neglecting the gravitational
potential, say that the only force acting on the disk is along z.
In the analytical model we developed the outcome is the power generated, therefore we
have to use the power and not the potential energy. The instantaneous force along z is:

Fz(t) = −
∂Ep

∂z
(5.77)

in a time laps δt a quantity of energy Ep = P δt is transmitted to the rotation od the PMs
to the billet and converted into heat and this continues for the next δt. The choose of
δt is not arbitrary, δt has to be chosen low enough that the variation of power in the
time laps δt is negligible with the variation of power along z. This is the quasi static
condition, we can therefore say that the average force in the time laps δt is:

< Fz >δt =
1
δt

ˆ δt

0
Fz(t)dt = −∂P

∂z
δt (5.78)
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In our problem the condition of quasi stationary is verified and we assumed δt= 1s. Fig-
ure 3.16 shows the axial force in function of the air gap thickness by assuming as case of
study parameters in table 3.1. We can note how the force is positive o.r. repulsive and
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Figure 3.16: Axial force in function of the air gap thickness at 1000 rpm.

assumes higher values with respect the weight of the metallic disk and decrease with
the increasing air gap thickness.
This method of calculation of the axial force is powerful but neds to compute the
derivate of the power, therefore at least two values of power i.e. two computing ses-
sions. We can therefore use an other approach to the axial force calculation this time
direct: taking into account the Maxwell stress tensor with the surface S already used
for the calculation of the electromagnetic torque, the force is [22]:

Fz = pµ0

ˆ D/2

−D/2

ˆ τ

−τ

H2
2z(x,y, r)−H

2
2x(x,y, r)−H

2
2y(x,y, r)

2
dxdy (5.79)

Figure 3.17 shows the behaviour of the axial force in function of the slip speed for
different air gap thickness (3, 5 and 7 mm). We can see how the force is null for velocity
equal to zero as we expected since copper is not magnetic material and grows for higher
velocities.

With the method described by the equation 5.76 for air gap thickness equal to 5 mm
we computed an axial force of 251 N while with the Maxwell stress tensor method 280
N. The two methods give outcomes with 10% of errors. From now on we will use the
second method because needs less computational power and will be compared with the
FEM results.
The physical explanation of the phenomena is that every system evolves to the state at
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Figure 3.17: Axial force in function of the slip speed for different air gap thickness by
using the Maxwell stress tensor.

lower energy. The eddy currents in the metallic disk generate a magnetic field which
tends to oppose to the external magnetic field due by the magnets. The generated mag-
netic field is directed in the opposite way of the external one and this generates a repul-
sive force and as the system is configured this force will be always repulsive, because
the system would reach the state of minimal energy which is the state without currents
in the disk therefore for z→∞.

In the same way the state with lower energy is the state where the slip speed is null
and this is also the reason of the electromagnetic torque.

3.6 FEMModel

In order to check the results derived from the analytical model we use a 3D finite el-
ement model (FEM) by using COMSOL Multiphysics®. The analytical model gave us
results from a linearised system therefore, to compare the results with the FEMmethod,
we have to reconvert to the cylindrical system. In particular the expression of the power
for the linearised system is:

Plin =
ˆ zt

zt−h

ˆ D/2

−D/2

ˆ τ

−τ
wi(x,y,z)dxdydz (6.80)

where wi = J2/σ is the specific volume power. If find the expression over a disk we
have to take in mind that the total volume of integration has to be the volume of the
disk equal to πR2

3h while the equation 6.80 gives a volume equal to 2τDh = 2RmπDh/p.
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The expression of D has to take into account a symmetrical distribution of the current
density, therefore if Rm = R3/2, D = R3 otherwise a more general expression is:

D = 2(R3 −R2) +R2 −R1 (6.81)

which take into account only the region of the disk with current described by the lin-
earised system. The final expression of the power in the disk of p pole-pairs number
is:

Pdisk = p
R2
3

2RmD
Plin (6.82)

The FEM model is shown in figure 3.18 with parameters in table 3.19 where the light
blue volume is the conductive disk and the permanent magnets disk has 4 pole-pairs
numbers.

Figure 3.18: Geometrical 3D
FEM model of the system.

Symbol Description Value

R1 Inner radius of the magnets 50 mm
R2 Outer radius of the magnets 100 mm
R3 Radius of the conductive disk 150 mm
r Magnet thickness 5 mm
s Air-gap length 5 mm
h Conductive plate thickness 5 mm
α PMs pole-pitch ratio 0.9
p Pole-pairs number 4
Br Remanence of PMs 1 T
σ Conductivity of the metal 57 MS/m
ω Angular velocity 1000 rpm
y Yoke thickness 2 mm
µry Yoke relative permeability 4000

Figure 3.19: Parameters of the FEM model.

The same model has been modified also for 1, 2, 6, 7, 8 and 10 pole-pairs numbers.
The simulation ran for about 40 seconds at 1000 rpm but, for higher values of speed,
it ned even more one hour to converge to the solution while the analytical model Mat-
lab®’s implementation only 4 seconds independently by the rpm value. The results of
the simulation have been shown in figure 3.20 for the current density magnitude where
the top of the disk is the z-coordinates equal to r+s and the white arrows indicate the
current density direction. We can note how the current distribution follows in steady
state the geometrical conformation of the PMs disk. There are regions of the disk indi-
cates with blue colour where a very low current flows. In order to increase the power
losses in the disk it’s necessary to remove as possible the blue zones increasing R2 and
decreasing R1 i.e. rising the PM’s surface. An other parameter to consider is the pole-
pairs number, in figures 3.21 and 3.22 is shown the current disposition in the disk in
the bottom side and in the top side respectively. It easy to note that the current density
is lower in the top layer with respect the upper one because of the bigger distance from
the magnets.
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Figure 3.20: Results of current density distribution for FEM simulation on an axono-
metric view.

(a) p=4 (b) p=6 (c) p=8 (d) p=10

Figure 3.21: Current density distribution for different pole-pairs number - bottom.

3.7 FEM comparison

In this section we will talk about the comparison between analytical model and FEM
model. In particular we will discuss about the power supplied to the disk in function
of the slip speed, number of pole-pairs and α. Al the studies are done considering
parameters in tables 3.1 and 3.19.
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(a) p=4 (b) p=6 (c) p=8 (d) p=10

Figure 3.22: Current density distribution for different pole-pairs number - top.

• Slip speed: the distribution of the power in function of the slip speed is shown
in figure 3.23. We can note how the analytical model well forecasts the behaviour
of the power transmitted into the billet especially for low angular velocity. For
higher velocity the error between the two models grows, this is due by the error
of the discrete integration of the current density in the volume disk, which can be
decrease arbitrarily by using lower steps, and the intrinsic error for the analytical
model due by the linearisation of a rotating system. We can also note that at about
600 rpm is present a inflection point i.e. the increase of the power’s derivate is
positive before this point and after negative. The power for low slip speed depends
by the square of the velocity while for high slip speed depends linearly. We’ll
investigate later because, as already said, the computational time for FEM model
at slip speed bigger than 1500 rpm is huge. For this reason the comparison is
limited to this slip speed.
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Figure 3.23: Power versus slip speed.
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• Number of pole-pairs: the distribution of the power in function of the pole-pairs
number is shown in figure 3.24. We can see how again the analytical model well
fits with the FEM results. In particular the power has a maximum bot for the
analytical model and for FEM at p=8. The power has a similar value also for p=7
and p=9. This peak is present because increasing the pole-pairs number increase
too the magnitude of the eddy current and the number of peak zone but decrease
also the thickness of the these zones. The optimal value is reach for p=8 at 1000
rpm.
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Figure 3.24: Power versus pole-pairs number at 1000 rpm.

• Permanentmagnets pole-arc to pole-pitch ratio (α): the distribution of the power
in function of the parameter α is shown in figure 3.25. We can see how the ana-
lytical model well fits with the FEM results. The growth of the power in function
of α is about linear. In order to reach high values of power we have to choose α as
high as possible. Ideally α can reach the unit value.

It could been interesting also to compare the eddy current density distribution in the
disk but this is misleading because the linear analytical model considers the mean effect
of the eddy current and locally the current density distribution could be in mismatch-
ing.

Others quantities to compare with the FEMmodel are the torque and the axial force.
The torque, as previously seen, can be computed starting from the power losses into the
metallic disk which well fits with the FEM outcomes. The axial force has instead to be
compared because comes from an other formulation. Figure 3.26 shows the comparison
for the two quantities in function of the slip speed. The FEM model shows that for
ω=0 Fz is lower than zero while is about zero since the analytical model. In general the
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Figure 3.25: Power versus permanent magnets pole-arch to pole-pitch ratio at 1000
rpm.
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Figure 3.26: Axial force comparison in function of the slip speed.

FEM outcomes are in agree with the results of the analytical forecast especially for the
behaviour of the curves with respect the numerical values. Again the FEM’s outcomes
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are a bit lower with respect the analytical ones.

3.8 Influence of parameters on power

The goal of heating a metal by using permanent magnets is increment as high as possi-
ble the power therefore in this section we will study the parameters which influence the
power, how depends by they in order to have a efficient heating system. As we’ve seen
in the previous section, the analytical model is in agree with the FEM results, therefore
we will use the first one. As already done we will use the parameters shown in table
3.1.

The power can be controlled by the permanent magnet characteristics or by the con-
figuration of the mechanical system type. The PMs characteristics are:

• Permanent magnet pole-arc to pole pitch ratio (α): this parameter as already
said, affects the power about linearly therefore it has to be selected as near to 1 as
possible because for the Faraday-Neumann’s Law the variation of magnetic flux is
maximal at α=1 while for the other values the variation is not fromN to S instanta-
neously but soft. Figure 3.27 shows the power in function of α for different values
of pole-pairs number p. We can see how the choice of p affect also the growth of
the curve: for α < 0.3 p=4 maximize the power otherwise p=8. Others geomet-
rical parameters of the PMs are the external and internal radius R1 and R− 2 that
have to be chosen is such a way that the magnet would by as bigger as possible i.e.
R1→ R3 and R2→ 0 in order to cover as high as possible the metal disk’s area.

• Magnetic flux density remanence (Br) of PMs: the remanence of the PMs affects
strongly the power supplied, as shown in figure 3.28 the power depends exponen-
tially by the remanence. Once again we have the power peak reached weakly for p
= 8.

• PMs thickness (r): this parameter is affects the power transmission linearly as
shown in figure 3.29, this time is plotted only for p=4 because is mostly linear
independently by the value of p. The thickness of the magnets is a good parameter
for adjust the power supplied in the planning phase, the downside is that the PMs
disk will have bigger moment of inertia.

The mechanical and geometrical configuration of the system can control the power
transfer to the disk. These parameters are:

• Slip speed: this is the main contributor to the power supplied to the disk and
the movement of the magnets with respect the metal disk convert the mechanical
power into the thermal power.we can see from figure 3.30 the behaviour of the
power in function of the velocity. We can see how the curves have a higher angular
coefficient for low rpmwhich decreases for higher velocity until stabilized. We can
observe how low speed the optimal number of pole-pairs is 8 and for speed higher
than 1750 rpm, the optimal p is 10. Probably this trend continues for p=12 an so
on.
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Figure 3.27: Power in function of the parameter α at 100rpm.
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Figure 3.28: Power in function of mag-
net remanence.
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Figure 3.29: Power in function of the
magnet thickness.

• Air gap thickness (s): the distance between permanent magnets and metal disk
is a crucial parameter. In order to convert mechanical power in heat s has to be
as low as possible. As shown is figure 3.31 the dependence of the power to the air
gap thickness decreases exponentially. With s equal to 5 mm the total power is 2
kW while if s is equal to 2 mm we obtain an increase of power more of the 50%.

Summarizing the power can be controlled by controlling the magnetic field with α,
Br or permanent magnets thickness but the main parameter is the slip speed between
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Figure 3.30: Power in function of the slip speed for different pole-pairs number.
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Figure 3.31: Power in function of the air gap thickness.

PMs and disk. The air gap has to be as low as possible for maximum magnetic field
transmission.
We have to take into account that the metal disk is an active part to the system and the
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power transmitted depends by the electrical properties of themetal i.e. the conductivity
σ . In figure 3.32 is shown the power in function of the conductivity of the disk, it’s easy
to see how the power is low, with equal conditions, for low material conductivity: the
permanent magnets works well only for good conductors. We can therefore said that in
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Figure 3.32: Dependence of the power by the conductivity of the metal disk.

first approximation is valid the relation:

logPmat1

logPmat2

=
logσmat1

logσmat2

(8.83)

where σmat1 is the conductivity of the material 1 while σmat2 of the material 2. The
relation is valid also for the torque because there is proportionality between power and
torque:

logTmat1

logTmat2

=
logσmat1

logσmat2

(8.84)

These two equation give an order of magnitude and are valid if the two materials have
a big range of difference.

3.9 Magnetic materials

If we suppose the disk is made up magnetic material with relative permeability µr the
mathematical model changes in the boundary conditions and in the term γnm defined
in 3.53 becomes:

γnm =

√(nπ
D

)2
+
(mπ
τ

)2
+ jmσµ0µrv

π
τ

(9.85)
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while the boundary conditions expressed in equations 3.59 and 3.60 remain the same
while change 3.61 and 3.62 taking into account the conservation of the normal compo-
nent of the magnetic flux density and the conservation of the tangential component of
the magnetic field on the boundary described by equation 3.20, we obtain:

∂Φ2(x,y, r + s)
∂x

= −H3x(x,y, r + s)

∂Φ2(x,y, r + s)
∂y

= −H3y(x,y, r + s)

∂Φ2(x,y, r + s)
∂z

= −µrH3z(x,y, r + s)

(9.86)

and

∂Φ4(x,y, r + s+ h)
∂x

= −H3x(x,y, r + s+ h)

∂Φ4(x,y, r + s+ h)
∂y

= −H3y(x,y, r + s+ h)

∂Φ4(x,y, r + s+ h)
∂z

= −µrH3z(x,y, r + s+ h)

(9.87)

and the matrix [A]nm defined in 3.64 becomes:



1 1 0 0 0 0 0 0 0
eαr e−αr −eαr −e−αr 0 0 0 0 0
eαr −e−αr −eαr e−αr 0 0 0 0 0
0 0 eαzh

τ
jmπ

e−αzh
τ

jmπ
eγzh e−γzh 0 0 0

0 0 eαzh

( D
nπ )

2
e−αzh

( D
nπ )

2
eγzh
τ

jmπ

e−γzh
τ

jmπµr

γeγzh −γe−γzh 0

0 0 αeαzh −αe−αzh 0 0 µre
γzh µre

−γzh 0
0 0 0 0 eγzt e−γzt 0 0 eαzt

τ
jmπ

0 0 0 0 eγzt
τ

jmπµr

e−γzt
τ

jmπµr

γeγzt −γe−γzt eαzt

( D
nπ )

2

0 0 0 0 0 0 µre
γzt µre

−γzt αeαzt


nm

(9.88)

the quantities α and γ replace, for a lighter notation, αnm and γnm respectively. A mag-
netic material like iron influences themagnetic flux density inside the disk, in particular
the magnetic field inside the body load is stronger and the eddy currents grown and the
transmitted power is higher. The higher is the permeability the lower is the depth of
penetration, this means that for high magnetic materials the current is superficial and
the power decrease.
Figure 3.33 shows the behaviour of the power losses into a iron disk (σ = 10 MS/m)
supposing we can change the permeability µr . The parameters of the geometry are al-
ways the same, shown in table 3.1 but for 8 pole-pair numbers.
The outcomes of the analytical model are then compared with the FEM results just un-
til the permeability µr = 10 cause the grown of computational time with µr . We have
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Figure 3.33: Power in function of the relative permeability of the disk (1000 rpm, σ =
10 MS/m, p=8).

to remember that the analytical model doesn’t take into account the losses due by hys-
teresis in ferromagnetic materials but anyway we can say that for magnetic materials
the eddy currents losses have a bigger contribute to the power the non magnetic ma-
terial. We observe the power peak at µr = 12 and the power is double than at µr = 1,
above the peak the power decreases drastically. The real iron permeability is certainly
higher than 1000, therefore we can say that heating magnetic materials with permanent
magnets is not effective. Moreover magnetic loads generate an attractive force for low
rotation speed and a repulsive one for higher speed, there is therefore a particular rpm
value where the axial force is zero.

3.10 Considerations

Contrary to what has been done for the pancake inductor analytical model, in the case
of permanent magnet analytical model, the power transferred to the load is computer
by integrating the current density inside the volume of the metallic disk. This heating
system well works for good no magnetic conductors and soft magnetic however the ma-
terials to heat have generally high permittivity therefore we can say that this process in
ineffective.
The analytical model outcomes are in a very good agreement with the FEM ones, be-
cause of the high computational time for high speed rotation and high permeability, a
comparison couldn’t be done. Since the rotational system hap beenmapped into a linear
translation, the limits of the model are correlated to this transformation, in particular
the model forecast are precise until che R2 −R1 < 50%R2.
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Chapter 4

Maxwell stress tensor

In this chapter we will compare the pancake induction heating and heating by perma-
nent magnets, in particular we will discuss about the limitations of these two systems.
In fact the main problem of the PMs heating is the axial force and the torque which
affect the workpiece. The main question is: if both the two heating systems produce a
time dependent magnetic field inside the load, why only the PMs heating system gen-
erates a torque and an axial force. In order to answer at this question we start with the
concept of momentum of an electromagnetic field.

4.1 Momentum of an electromagnetic field

Let us consider figure 4.1, two charges q1 and q2 both positive, are moving along the
two axes with velocity v1 and v2. The charge q1 is in motion with respect q2 with veloc-

Figure 4.1: Electromagnetic interaction of two charges.
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ity v = v1 −v2 generates a magnetic flux density B2 in q2 and a non-coulombian electric
field as well. Both the charges are affected by a Lorentz’s force which is the variation of
momentum. If we consider only the system of q2 we observe a variation of momentum
p for a mechanical isolated system. Put like that, it would seem that an isolated system
violates the conservation of momentum. In reality, we must also consider the contribu-
tion of the electromagnetic field: it carries momentum.
In order to understand the momentum of the electromagnetic field always consider-
ing figure 4.1, let us take the infinitesimal volume τ and let calculate the force on the
particle q2:

F =
ˆ

(E+ v×B)dq2 (1.1)

we can extend the concept to a local distribution of charge density ρ and remembering
that J = ρv equation 1.1 becomes:

F =
ˆ
τ
(E+ v×B)ρdτ =

ˆ
τ
(ρE+ J×B)ρdτ (1.2)

Now, remembering the Maxwell’s equations:

∇ ·D = ρ
J = ∇×H− ∂D

∂t
(1.3)

we obtain:

F =
ˆ
τ

[
E(∇ ·D)−B× (∇×H)− ∂D

∂t
×B

]
dτ (1.4)

expressing:

∂
∂t

(D×B) = ∂D
∂t
×B+D× ∂B

∂t
⇒ ∂D

∂t
×B =

=
∂
∂t

(D×B)−D× ∂B
∂t

=
∂
∂t

(D×B) +D× (∇×H)

(1.5)

therefore equation 1.4 becomes:

F = −
ˆ
τ

∂
∂t

(D×B)dτ +
ˆ
τ
[E(∇ ·D)−D× (∇×E)−B× (∇×H)]dτ (1.6)

now we can insert in the expression 1.6 the term H(∇ · B) which is identically null in
order to obtain a symmetrical expression for the electric and magnetic fields:

F+
ˆ
τ

∂
∂t

(D×B)dτ =
ˆ
τ
[E(∇ ·D)−D× (∇×E) +H(∇ ·B)−B× (∇×H)]dτ (1.7)

the force F is the variation of mechanical momentum p i.e. F = dp
dt and

´
τ (D×B)dτ has

the size of momentum. We can therefore define the momentum volume density of the
electromagnetic field:

g =D×B (1.8)
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The quantity E(∇·D)−D× (∇×E)+H(∇·B)−B× (∇×H) can be expressed as a 3×3 tensor
T̃ whose components after a few algebraic steps are:

Tij = ϵ0

{
EiEj + c2BiBj −

1
2
δij(E

2 + c2B2)
}

(1.9)

where c is the speed of light and δij is the Kronecker delta. If we define G =
´
τ gdτ , the

force expression becomes:

F =
∂
∂t

(p+G) =
ˆ
∂τ

T̃ · dS (1.10)

If the material doesn’t absorb momentum i.e. we are in void, the tensor T̃ is null there-
fore if we consider the total tridimensional space where are limited all the fields, the
integral over the border on τ is equal to zero i.e.:

∂
∂t

(p+G) = 0→ p+G = constant (1.11)

We have obtained the momentum conservation for body and electromagnetic fields.

4.1.1 Conservation of angular momentum

If the electromagnetic field carries momentum, what we expect is that carries the an-
gular momentum as well. We can then define, by analogy with the momentum volume
density, the angular momentum volume density l:

l = r× g = r× (D×B) (1.12)

since equation 1.12 we can define the transferred angular momentum to a material
volume τ as:

L =
ˆ
τ
ldτ (1.13)

If magnetic fields are presents and if D × B , 0 then there will be present an angular
momentum associated at the electromagnetic field. Since equation 1.13 we can obtain
the torque M:

M =
dL
dt

(1.14)

4.2 Pancake inductors angular momentum

As already told in the chapter 2 the magnetic flux density B produced by the pancake
inductor due the symmetry of the system has only radial and axial component. Since
the same symmetry the electric displacement fieldD has only tangential component, D
and B are shown in figures 4.3 and 4.4 for a z-ρ section by using a FEM simulation.
If we consider a generic point inside the metal workpiece identified with the position
vector r with respect the point O in the middle of the disk as shown in figure 4.2. The
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Figure 4.2: Angular momentum volume density in the workpiece.

momentum volume density g becomes:

g =

 0
DT
0

×
BR
0
Bz

 =
 DTBz

0
−DTBR

 (2.15)

now by using equation 1.12 we can calculate the angular momentum volume density l,
taking into account that r has radial and axial component, we obtain:

l = r× g =

rR0
rz

×
 DTBz

0
−DTBR

 =
 0
rRDTBR + rzDRBT

0

 (2.16)

we found that in this particular configuration l has only tangential component. In the
same way we can calculate l′ for the symmetrical point described by the position vector
r’ such that:

r =

xy
z

⇒ r′ =

−x−y
z

 (2.17)

then, as also shown graphically:
l′ = −l (2.18)

Now we proceed to calculate the angular momentum L for the electromagnetic field
as the integral over all the volume of the workpiece by using the equation 1.13. The
angular momentum dL for a infinitesimal volume dτ centred in the point described by
r is:

dL = ldτ (2.19)

similarly the angular momentum dL’ for a infinitesimal volume dτ ′ centred in the point
described by r’ is:

dL’ = l’dτ ′ = −ldτ (2.20)

the infinitesimal volumes for uniformity are the same dτ=dτ ′. If we calculate the in-
tegral over the metallic disk with cylindrical coordinates (ρ,θ,z) and we split it in two
sides we obtain:

L =
ˆ
τ
ldτ =

ˆ π

0
ρdθ
ˆ R

0
dρ
ˆ h/2

−h/2
dzl+

ˆ 2π

π
ρdθ
ˆ R

0
dρ
ˆ h/2

−h/2
dzl’ = 0 (2.21)
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where R is the radius of metal disk and h is its thickness. The two integral are oppo-
site therefore their sum is zero. If the angular momentum is constantly zero, also the
total torque on the workpiece is zero. This condition of null torque is given thanks the
cylindrical symmetry the system presents which affects the disposition of B and D.

Figure 4.3: Electric displacement value for pancake inductor system (only azimuthal
component).

Figure 4.4: Magnetic flux density value for pancake inductor system (no azimuthal com-
ponent).
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4.3 PMs angular momentum

Similarly to the pancake calculation, let us consider a generic point described by a po-
sition vector r as shown in figure 4.5. Let’s take a second point described by the vector

NS

Figure 4.5: B and D in two magnetic-symmetrical points inside the metal disk for PMs
heating system.

position r’ shifted of one pole-pole pitch along the azimuthal angle i.e. in cylindrical
coordinates:

r =

ρθ
z

⇒ r’ =


ρ

θ + π
p

z

 (3.22)

Both the magnetic flux density B and the electric displacementD in the point r into the
metallic disk are, in general, oriented in all the three directions (see figure 4.7 and 4.8)
i.e. have radial, tangential and axial component:

B(r) =

BR
BT
Bz

 and D(r) =

DR
DT
Dz

 (3.23)

in the point r’ the two vectors are, since the symmetry of the system:

B’(r’) =

−BR
−BT
−Bz

 and D’(r’) =

−DR
−DT
−Dz

 (3.24)

the vector g in r is:

g(r) =

gRgT
gz

 =
DR
DT
Dz

×
BR
BT
Bz

 =
DTBz −DzBT
DzBR −DRBz
DRBT −DTBR

 (3.25)

while the vector the vector g’ in r’ is:

g’(r’) =

g
′
R
g ′T
g ′z

 = −
DR
DT
Dz

×−
BR
BT
Bz

 =
DzBT −DTBz
DRBz −DzBR
DRBT −DTBR

 = g(r) (3.26)
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We demonstrated that the vector g’ in r’ has the same value of g in r considering the
radial, tangential and axial component. If we calculate draw g in all the point with az-
imuthal pitch equal to π/p starting a generic point described bt r we obtain the graphic
in figure 4.6. the angular momentum volume density l in r will have the same compo-

Figure 4.6: B, D and g in PMs disk in axonometric view.

nents in r’, r” and so on:

l(r) = r× g = r’× g’ = ... = r(2p) × g(2p) =

lRlT
lz

 (3.27)

when we calculate the contribution of dL for all the 2p points in cartesian coordinates
we obtain taking into account that, always for symmetries, the infinitesimal volume is
equal for all the points: dLxdLy

dLz

 =

lx + l′x + ...+ l

(2p)
x dτ

ly + l′y + ...+ l
(2p)
y dτ

lz + l′z + ...+ l
(2p)
z dτ

 =
 0

0
2plzdτ

 (3.28)

the only contributor to the angular momentum is therefore along z-direction. And this
is given by the geometrical symmetry of the system, which manifests itself in the fields.
Take a point P in the disk, the magnetic and electric fields in P are alternating with
respect the time. For example for the magnetic flux density is valid the relation:ˆ

T
B(P , t)dt = 0 with T =

2π
ωp

(3.29)

always for symmetry also the electric displacement field is still alternating therefore:ˆ
T
D(P , t)dt = 0 with T =

2π
ωp

(3.30)
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The momentum volume density g and therefore L don’t follow the same alternating
law, in fact they are directed always in the same direction therefore the average value is
different than zero:

2
T

ˆ
T /2

L(t)dt , 0 (3.31)

The period of L(t) is one half on the period of B(t) and D(t) cause the L varies from 0
to its maximal value. The torque present on the system is calculable since the equation
1.14 and, like L, has only the axial component as we expected.
In conclusion the difference between pancake and PMs which manifests presence of
torque in the last mentioned system, lies in the symmetry of the geometry which leads
the disposition of the field. In particular the braking of the azimuthal symmetry for sys-
tem generates the axial torque. For example if the magnets wouldn’t placed with eq-
uispaced angles an other symmetry would be broken and an other component on the
torque would be generated. The same considerations can be done to explain the pres-
ence of the axial force in the case of permanent magnet induction heating.

Figure 4.7: Magnetic flux density B inside the metallic disk.
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Figure 4.8: Electric displacement field D inside the metallic disk.

79



Maxwell stress tensor

80



Chapter 5

Applications

Practical applications of heating by using permanent magnets can be widely used in
the industry for heat no-magnetic billets with an important primary energy saving with
respect heating by frames or the classical induction heating.
The most critical point is the electromagnetic torque and the axial force applied to
the billet, generated by the relative motion of the permanent magnets with respect the
workpiece which therefore needs an attachment system for the billet. The need to op-
erate with an attachment system limits considerably the possible applications, in par-
ticular the domestic ones. In fact the system as presented can’t be use as hobs because
the pot will start to rotate around itself and move upward making cooking impossible
but above all, dangerous for the people. An other drawback is the presence on the hob
of strong magnetic fields generated by the PMs which also exist with the system off and
can interact with external devices.
A possible domestic application which can find diffusion in the eastern countries is a
cooking plate heated by permanent magnets. This solution can be achivable because
the plate is fixed to the cooking system structure therefore cooking is safe as long as
you use non-metallic tools.

In the next sections are presented some possible solutions to avoid the electromag-
netic torque applied to the workpiece but, as already mentioned, not the axial force.

Before of all we will show the actual technology to make possible the permanent
magnets induction heating in particular the mechanism of rotation and the PMs, in
order to have an order of magnitude of the parameters in the system.

5.1 Components of PMs induction heating

We’ve seen in the previous chapter howmany parameters are presents in the PMs induc-
tion heating system and the influence of them on the power transfer. The goal obviously
is to transmit power as high as possible and is necessary to have an order of magnitude
of the achivable parameters in particular remanence of the magnets, velocity and torque
of the motor.

• Motors: the electric motor is the device which convert the electrical power into
mechanical one and is the only component which contributes at the heating. As
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we have seen the power is proportional to the slip speed and therefore have to be
as high as possible. The motors can be divided in two groups: AC motors and DC
motors.
AC motors are characterized by efficiency from 85% for 1 kW of power to 96% for
big high efficiency motors (P>100 kW) but depends also by torque and velocity i.e.
the working conditions. Synchronous and asynchronous motors can be controlled
in velocity but also in torque with an inverter which have efficiency from 88% for
low power to 96% for output power grater than 40 kW[23]. Figure 5.1 shows the
efficiency maps of synchronous and asynchronous motors. We can see that these

Figure 4. Typical efficiency maps of synchronous (PSM) and asynchronous motor
(ASM) (Neudorfer 2016).

gearbox. Alternative configurations are two traction motors with reduction
gears near the wheels or two to four in wheel motors (Lajunen 2014). These
configurations with multiple traction motors can use a simple torque splitting
or a specific driving and regenerative braking regulation design can be used to
optimise the vehicle efficiency, as shown in Zhang & Goehlich (2016).

According to the ZeEUS Project (2016) the majority of bus suppliers
(20/26) have single traction central motors using asynchronous motor (ASM)
or permanent magnet synchronous motor (PSM). The power peak ranges from
100 kW to 480 kW for 8 m–24 m buses.

For the system design, the crucial information is the characteristic of the
powertrain. Figure 4 shows typical efficiency maps of a PSM and an ASM
including the efficiency of the inverter (Inv.). In general, synchronousmotors have
high efficiency at low motor speed and high torque, whereas the asynchronous
machine is more efficient at high speed and low torque.

Currently, both types can be found in bus systems, because in actual system
design, packaging, motor control and cost are further parameters that need to be
examined. Permanent magnet synchronous motors have advantages in mass and
have higher efficiencies in the nominal operating point, but are more costly due
to permanent magnets and manufacturing issues (Neudorfer 2016).

2.4. Battery system
While nearly all modern electric vehicles feature some form of lithium-based
battery (Thielmann et al. 2017), various cell chemistries exist whose technical
parameters differ significantly. The most important characteristics of a specific
cell type with regard to electric bus operations are energy density, charge rate and
cycle life.

Currently, lithium iron phosphate (LFP), lithium titanium oxide (LTO) and
lithium nickel manganese cobalt oxide (NMC) are the most common cell types
encountered in electric buses, as our surveys of electric bus projects indicate.
Table 2 shows typical parameters for these cell types from catalogue data. For
the sake of comparability, only pouch-type cells are considered. Figure 5 indicates
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Figure 5.1: Typical efficiency maps of synchronous (PSM) and asynchronous
motor(ASM)[24].

motors can reach 12000 rpm and the efficiency (inverter + motor) depends by the
working point but is high for a big range of speed/torque points. AC motors have
a simple design and a low relative low cost but need a speed controller (inverter)
and are work bad for low speed.
DC motors present a simply design, have an easy torque and high speed control,
in fact it’s necessary to varying the voltage sent to the motor. Are characterized
in general by slightly lower efficiency with respect AC motors. The speed for DC
motors varies from 1000 to 5000 rpm.
An other type of motor is the Electronically Commuted (EC) characterized with per-
manent magnets on the rotor and use electronics to control the voltage and current
applied to the motor. They have by a slightly higher efficiency with respect the
others but the cost increases[25].

• Permanent magnets (PMs): are typically described by proprieties as remanence
(Br ) and coercivity (Hc).
Remanence is the residual magnetization that remains when no magnetic field is
applied to a magnetic material that was previously magnetized to saturation. It is
often used interchangeably with the term remanent magnetization, or the residual
magnetization when no magnetic field is applied, whether or not the material was
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previously magnetized to saturation. Remanence is directly related to the amount
of magnetic flux that can be generated with a permanent magnet.
Coercivity is the magnetic field required to reduce the magnetization of a material
that is magnetized to saturation down to zero. It is a measure of the ability of a
magnetic material to resist demagnetization, i.e., the permanency of a materials
magnetization. The term coercivity is often used interchangeably with coercive
field, the term for any magnetic field that reduces magnetization to zero whether
or not the material was previously magnetized to saturation.Magnetic materials
are classified as hard or soft based on coercivity. Hard magnetic materials such
as permanent magnets have high coercivity, while soft magnetic materials such
as electrical steel have low coercivity. Coercivity is a structure-sensitive extrinsic
magnetic property, affected by temperature, crystal anisotropy, stress-state, and
microstructural impurities[26].
For soft magnetic the saturation of magnetization (Js) substitutes the remanence.
These three parameters are shown in figure 5.2 for different magnet type. An

10 Materiali per magneti permanenti resistenti alle alte temperature 

 

2 Materiali per i magneti permanenti 
Le leghe magnetiche sono tipicamente descritte dalle loro proprietà quali la rimanenza Br per i 

magneti permanenti e la saturazione di polarizzazione Js per i materiali magnetici morbidi, 

misurate in [T] o in [Vs/m2] e la coercività Hc data in [A/cm] o in [kOe]. Per i materiali magnetici 
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2.1 Alnico 

L’alnico è stato sviluppato nei primi anni del 1930. Dopo la seconda guerra mondiale ha sostituito 

il magnete d’acciaio in molte applicazioni. Per la sua alta induzione e la sua buona resistenza alla 

smagnetizzazione e alla stabilità, dovuta al suo basso coefficiente di temperatura (-0.02%/°C) 

l’alnico era diventato il materiale di scelta. Il nome “Alnico” descrive una famiglia di magneti che 

deriva da una composizione di alluminio, nichel, cobalto e ferro. Ci sono molte variazioni sui 

costituenti di questa lega, che producono diverse caratteristiche magnetiche. Il passo più critico 

nel processo dei magneti in alnico è il trattamento termico di questa lega, che è controllato in 

modo da precipitare una dispersione di particelle magnetiche in una matrice debolmente 

magnetica. Queste particelle fine sono a forma di lunghe aste sottili, la cui anisotropia nella forma 

determina la coercività del materiale. Durante il raffreddamento ci sono tre fasi che possono 

cristallizzare, conosciute come α1, α2 e γ. L’obiettivo è ottenere la fase α1, che è una matrice 

debolmente magnetica di Al-Ni-Fe e particelle di fase α2 fortemente magnetiche di Co-Fe. 

L’aspetto della fase γ rovinerà questa formazione, ma dal momento che essa cristallizza a 1000-

Figura 2.1: Panoramica dei magneti permanenti e leghe 
Figure 5.2: Coercivity, saturation magnetization, and remanence of various magnetic
materials[27].

other important parameter is the working temperature and the Curie tempera-
ture Tc which are respectively the temperature range where the magnet maintains
its proprieties and the maximal temperature where above Tc the magnet becomes
paramagnetic.
There are many PMs some of the most important are AlNiCo which present high
temperature stability and high remanence which make it widely used in measur-
ing instruments. AlNiCo is characterized by high Curie temperature (v800 ◦C)
with working temperature up to 550 ◦C.
The ferrite can be used for high temperature up to 300 ◦C, is the most economical
and presents high corrosion resistance but it has low mechanical strength and low
remanence.
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NdFeB is a rare-earth element characterized by remanence up to 1.5 T which
make it the most powerful magnet on the market. Is has Curie temperature of
350 ◦C with working temperature up to 230 ◦C. Are characterized by very low
corrosion resistance therefore is applied on the surface a protective layer. There
are neodymium magnets of different degrees: the degree is a code that always
starts with the letter N (abbreviation of Neodymium) and is followed by two digits
(e.g. N27, N30, N33, N35, N38, N40, N42, N45, N48, N50). The higher num-
bers have higher energy and currently are commercialized until the degree N52
which guarantees Br of 1.43-1.45 T. Figure 5.3 shows a commercial N52 arc seg-
ment strong permanent NdFeB neodymium magnet with axial magnetization, the
magnets shape studied in the analytical model.

Figure 5.3: N52 Arc Segment Strong Permanent NdFeB Neodymium Magnet with axial
magnetization (Guangzhou Zixiong Import and Export Co.).

5.2 Coaxial PMs disks

A possible solution to avoid the issue of the electromagnetic torque on the workpiece is
to develop a system with two independent coaxial PMs disks rotating in opposite ways.
The idea is to identify a configuration of velocities which cancel the total electromag-
netic torque allowing to maintain the metal disk motionless.
Figure 5.4 shows the configuration of the system. The internal PMs disk rotates with
angular velocity ω1 while the external circular crown rotates with ω2 in the opposite
way. The PMs of the internal disk have a sector of circular crown shape with internal
radius R1 and external one R2 and angle length απ/p. In the same way the external PMs
have internal radius R3 and the external one R4 and in the picture the magnets have the
same angle length. For example purpose only the internal and the external PMs disks
have the same pole-pairs number p which is 4 but obviously this is a grade of freedom
for the design of a possible optimized system.
The theoretical ratio between the two velocities, in order to avoid the total torque, is
basically given by the ratio between the two mean radius in order to have the same
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Figure 5.4: Coaxial PMs disk system geometrical configuration.

peripheral speed which satisfy the conservation of angular momentum law:

ω1

ω2

∣∣∣∣∣
Te=0

=
Rm2

Rm1
=
R3 +R4

R1 +R2
(2.1)

where ω1 is obviously grater than ω2. It’s interesting to note that this assumption is
independent by the characteristic of the load (metallic disk) depends only by the geo-
metrical parameters of the configurations which are the internal and external radius.
A FEM simulation about this configuration has been made and compared with the an-
alytical model. The FEM model was developed for the system with parameters shown
in table 5.1 while figure 5.5 shows the geometrical configuration of the analysed sys-
tem. The angular velocity of the two disks is not reported in the table because has been
changed in order to achieve the condition of null torque which has be reached in the
FEMmodel by attempts with an error of 10−3 Nm. Setting the internal angular velocity
ω1 equal to 2500 rpm the condition of null torque has been reached with ω2 equal to
748 rpm. Figure 5.6 shows the current density distribution in the metal disk, it’s easy to
note that the main contributor to the heating is the internal disk, we can therefore say
that the external disk performs the torque cancellation function. In fact setting ω1 = 0
and ω2 = 748 rpm the system generates 616.55 W while, in opposite conditions ω1 =
2500 rpm and ω2 = 0 the power is 1733 W while for both rotating disks 2119.5 W. The
last value is not the sum of the two powers because for is not valid the superposition
principle. In order to optimize the system we suggest to make the external PMs as thin
as possible and to obtain ω1 v ω2.

Even if the analytical model considers only one rotating PMs disk, we can approach
to the problem by using the superposition principle i.e. calculate the eddy current
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Symbol Description Value

R1 Internal radius of the inner magnets 20 mm
R2 External radius of the inner magnets 65 mm
R3 Internal radius of the outer magnets 70 mm
R4 External radius of the outer magnets 90 mm
Rd Radius of the conductive disk 100 mm
r Magnet thickness 5 mm
s Air-gap length 5 mm
h Conductive plate thickness 3 mm
α PMs pole-arch to pole-pitch ratio 0.9
p Pole-pairs number 8
Br Remanence of PMs 1 T
σ Conductivity of the metal (Cu) 57 MS/m
y Yoke thickness 2 mm
µry Yoke relative permeability 4000

Table 5.1: Parameters of the case of study for coaxial PMs disks.

Figure 5.5: Geometry of the FEM for coax-
ial permanent magnet disks.

Figure 5.6: Current density distribution.

considering only the internal disk rotating and external one stopped. We can therefore
calculate the currents with the internal PMs disk stopped and the other in rotating. The
sum of the two currents is therefore the current of the system with both rotating disks.
Also in this case to calculate ω2 which satisfies the null torque condition we proceed
by attempts; in figure 5.7 are shown the values of ω2 in function of ω1 in order to
obtain null torque. We can see how at low velocity the basic relation 2.1 indicates with
"Theoretical" is valid while for higher velocities (>500 rpm) ω2 is lower with respect
the theoretical forecast. With the parameters of the case of study the theoretical speed
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Figure 5.7: External velocity in function of the internal velocity with the condition of
null torque.

relation is:

ωTH
2 =

Rm,int

Rm,ext
= 0.531ω1 (2.2)

Analytical model and FEM simulation again are in agree even if is still presence the
positive difference between analytical and FEM outcomes.

5.2.1 Considerations

The system with two opposite rotating PMs disks obviously presents a more complexity
due by the needed to have two independent rotating system to build but also to control.
The issues related to this system are the following:

• It’s needed a big accuracy to set ω2 in function of ω1 to avoid perfectly the torque.
If the metal disks to heat is standardized ω2 can be a default function of ω1 but if
the metal disk change in shape or in material it’s necessary to develop a feedback
system with sensor which measures the speed and the direction of the metal disk
in order to accelerate the internal or the external disk. It must be said that isn’t
necessary which the electromagnetic torque is perfectly zero because on the disk
act static friction forces anyway.

• The axial force is still present therefore a blocking system is required.

• It’s necessary that the disk has been positioned perfectly with the centre in the
rotation axes od the PMs or which the disk is bigger with respect the PMs in order
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to avoid the x and y-direction force satisfied only with these conditions.

• The external velocity depends also by the material type, in fact for aluminium the
null torque condition is different with the respect copper when is not satisfied the
theoretical condition. By changing only the metal of the disk, table 5.2 shows the
values of ω2 which satisfy the null torque condition. We can note how for the

Material ω1 ω2 Te Fz

Cu
(57 MS/m) 2500 rpm 738 rpm 2.06E-5 Nm 191.2 N

Al
(37.7 MS/m) 2500 rpm 1008 rpm -1.90E-4 Nm 129.3 N

Table 5.2: Null torque conditions for copper and aluminium.

aluminium disk ω2 tends to the theoretical value of 1328 rpm which, as already
mentioned, depends only by the geometrical properties of the system.

5.3 Alternating PMs disk motion

An other approach to avoid the torque which affects the metallic disk is to apply an al-
ternating rotation of the PMs disk in order to have the average torque equal to zero. The
instantaneous torque is in general different to zero and therefore it’s necessary to study
the response of the mechanical system in order to control the resonance phenomena.
At the instant t the disk is affect by the electromagnetic torque Te which in sinusoidal
steady state is described by the relation:

Te(t) = Te,max sin(ωt) (3.3)

where the initial time has been chosen in order to have torque equal to zero. An other
force applied on the disk is the friction which have torque Tf assumed constant. If the
disk is still the friction is null while if the disk is in motion, the friction is in the opposite
direction of Te. We can therefore incorporate the friction in Te. Applying the dynamic
to the disk which have moment of inertia I we obtain the equation:

I
d2θ(t)
dt2

= Te,max sin(ωt) (3.4)

The solution of this differential equation is the sum of the solution of the associated
homogeneous equation plus the particular solution which are respectively:

θ′(t) = A
dθ
dt

+Bθ (3.5)

θ′′(t) =
(ω0

ω

)2
sin(ωt −π) (3.6)

88



Applications

where ω0 =
√
Te,max/I is the natural frequency. If we consider the disk with initial posi-

tion and velocity equal to zero (A=0=B) the general solution is the equation 3.6 and the
oscillation amplitude (which is in phase opposition) θmax is therefore:

θmax =
(ω0

ω

)2
(3.7)

The goal is to obtain an amplitude as low as possible therefore ω have to be as high as
possible with respectω0. It’s interesting to understand the values ofω0 for a copper and
aluminium disk. We suppose to operate with parameters of the example in chapter 3
shown in table 3.1 in particular the radius of the disk is 15 cm. At 1000 rpmwe suppose
that the torque is about the same for copper and aluminium of 14 Nm. We remember
that the torque once reach the max value, decrease with increasing ω. Remembering
that for a cylinder of radius R and mass M the moment of inertia is 1

2MR2 and remem-
bering that ρAl = 2.70 kg/dm3 and ρCu = 8.92 kg/dm3, the ratio between the two natural
frequencies is:

ωCu
0

ωAl
0

=

√
T Cu
e

T Al
e

ρAl
ρCu
∼

√
ρAl
ρCu

= 0.55 (3.8)

For this system of heating based on alternating motion of the permanent magnets it’s
easy to heat copper with respect aluminium because of its lower natural frequency
which is:

ωCu
0 =

√
Te
I
∼ 19.80 rad/s ≡ 189 rpm (3.9)

If we set therefore for example ω equal to 2000 rpm the amplitude of the oscillations is
lower than 0.5◦ without considering the reduction of torque due by the higher velocity.
Now we’ve understand what we have to choose a frequency bigger with respect the
natural frequency, we can start to study the alternating PMs disk motion.
With the support of figure 5.8 we start to study the angular position φ of the PM with
respect the metallic disk in function of the time. In sinusoidal steady state the angle for
example have the following expression:

φ(t) = −φM cos(ωPMt) (3.10)

where ωPM is the angular velocity of the PMs disk, imposed for example by an actuator
and φM is the amplitude of oscillation which, in order to have a optimized system, has
to be an integer multiple of the magnet pitch:

φM = k
π
p

k ∈N (3.11)

The instantaneous angular velocity ω is therefore:

ω(t) = φ̇(t) = φMωPM sin(ωPMt) (3.12)

we can therefore say that ω has maximal value ωM which is:

ωM = φMωPM (3.13)
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Figure 5.8: Alternating PMs disk system.

We can therefore apply this result to the analytical model: in fact we can study this
system with quantities defined in sinusoidal steady state as a linear system by using the
expressing with the RMS value. The RMS value of the angular velocity, which is the
only parameter that interest us, is expressed by:

ωRMS =
1
√
2
φMωPM (3.14)

which depends by the pitch of the PMs disk and by its frequency. In order to have a
good value of power it’s necessary to have a big pitch in fact, being φM expressed in
radians, decrease the product with ωPM if lower of 57.3◦.
For this system, for the complexity of implementation in Comsol Multiphysics®, the
FEM simulation will not be done also because the difficulty to create an alternating
mechanical motion makes this system difficult to develop.

5.3.1 Considerations

The complexity of this configuration is the type of movement which can be make start-
ing from a rotational motion to a alternating one with a connecting rod-crank mecha-
nism or by stepper motors. The issues derived by this system are related to the inertia
of the PMs disk which have to change the direction of rotation many times per second
therefore if the PMs disk is no lighter enough the mechanical stress is huge.
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Even if this method makes null the average torque doesn’t cancel the axial force thus
it’s necessary to fix the metal disk. An other important issue is that this system has lim-
ited power because of the maximal parameters influence the transmitted power with
its RMS value. An advantage is that for this system the centre of the metallic disk not
necessarily has to be placed along the rotation axes, in fact is every position the average
torque is always null. This gives opportunity to heat complex shape object.

5.4 Specular PMs disks

This configuration has been studied in order to eliminate both the torque and the axial
force acting on the metallic disk. The idea is to put an other PMs disk above the metal-
lic disk, specular with respect the bottom one. We have therefore two PMs disks which
have to control the conditions of null torque and null axial force with its angular veloc-
ity. Anyway the goal is not to attain these two conditions but transmit controlled power!
Therefore it’s necessary to insert an’other degree of freedom which can be reached by
adding an other disk. As shown in figure 5.9 the third PMs disk in inserted in the centre
of the bottom disk, creating the coaxial PMs disk configuration already seen in section
5.2. We can therefore name 1 the PMs bigger bottom disk with internal radius Ri1 and

S

S

N

N NS

z

O

Figure 5.9: Schematic representation of specular PMs disk.

eternal Re1, the bottom internal 2 with radii Ri2 and Re2 while the upper would be the
PMs disk 3 with Ri3 and Re3. We suppose that the PMs of the disks 1 and 2 are levelled
at the same z-coordinate therefore s is the air gap thickness between the top and the
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bottom disks. The system of equation to satisfy is therefore:
P (ω1,ω2,ω3)

∣∣∣
z∗
= P ∗

Te(ω1,ω2,ω3)
∣∣∣
z∗
= 0

Fz(ω1,ω2,ω3)
∣∣∣
z∗
=mg

(4.15)

where P ∗ is the power transmitted into the metallic disk which has mass m, g is the
gravity (9.81 m/s2) while z∗ indicates the z-coordinate of equilibrium. It has to note
that if the metallic disk would not subjected to the gravity force, the condition of Te = 0
and Fz = 0 would be reached by using only the PMs disks 1 and 2 with the condition of
opposite speed if the two disks are identical.
As an example we consider a specular PMs disks systemwith parameters shown in table
5.3. Due by the large number of degree of freedom of the system we decide to impose

Symbol Description Value

Re1 External radius of disk 1 90 mm
Ri1 Internal radius of disk 1 70 mm
Re2 External radius of disk 2 60 mm
Ri2 Internal radius of disk 2 40 mm
Re3 External radius of disk 3 90 mm
Ri3 Internal radius of disk 3 70 mm
Rd Radius of the conductive disk 120 mm
r Magnet thickness 5 mm
s Air-gap length 15 mm
h Conductive plate thickness 5 mm
α PMs pole-arch to pole-pitch ratio 0.9
p Pole-pairs number 8
Br Remanence of PMs 1 T
σ Conductivity of the metal (Cu) 57 MS/m
m Mass of conductive metal 2.02 Kg
y Yoke thickness 2 mm
µry Yoke relative permeability 4000

Table 5.3: Parameters of the case of study for specular PMs disks.

the disk 1’s speed at ω1 equal to 1000 rpm. This condition can been seen as the impo-
sition of the transmitted power P ∗ i.e. ω1 controls the power while ω2 and ω3 control
the torque Te and the axial force Fz null conditions. The 3D graphics in figures 5.10
and 5.11 show the behaviour of the axial force and the electromagnetic torque in func-
tion of the ratio ω1/ω3 and the vertical shift ∆z of the centre of the metal disk from the
midway point of the air gap. The red plan represents the two-dimensional ω1/ω3-∆z
plane where the axial force is null and the torque as well. The intersection of the red
plan with the surf is a line. If exist, the equilibrium condition is reached when the is
a intersection point between the line of the force and the line of the torque. The two
graphics don’t take into account the speed of the disk 2 (ω2=0). In fact the speed of
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Figure 5.10: Axial force in function of
ω1/ω3 and distance of the disk from the ge-
ometrical centre.

Figure 5.11: Electromagnetic torque in
function of ω1/ω3 and distance of the disk
from the geometrical centre.

the second disk is necessary if no intersection points are present between the lines. An
other parameter to take in mind is the weight of the metal disk which can be considered
by moving the axial force’s red plan not for Fz=0 but for Fz = mg. This condition leads
to a new equilibrium situation which is with a negative shift. The balance condition
given by the intersection of the lines is well shown in the figure 5.12 where are plot-
ted the torque and force lines on the (ω1/ω3,∆z) bidimensional space. As we expected,

Figure 5.12: Balance conditions for torque and axial force.
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without considering the weight of the workpiece the point of equilibrium is reached
for ω1=ω3 with null shift while, taking into account the mass m of the metal, the new
balance condition is reached with a negative shift in fact the metal disc would tend to
fall down. The downward shift is extremely limited (<0.1 mm) cause the high electro-
magnetic force involved on the system. It’s easy to see that the variation of torque with
respect the distance z is limited than the variation of force and both curves increase
with the speed increasing.
Another piece of information to derive is the stability of the equilibrium point: suppos-
ing that initially the work piece is put in the middle of the air gap and the PMs disks
1 and 3 are rotating with same opposite speed. Due to the weight force the workpiece
starts to move down and this z variation makes rotating it in the direction of the disk 1’s
rotating speed. The relative slip speed with the PMs disk 3 increase and the repulsive
force for the disk 3 as well while the relative. The slip between disk 1 and work piece
has been decreased with a consequential reduction of the axial force. This situation
could lead to an unstable condition but the variation of air gap between metal disk and
PMs disk 1 increase drastically the axial force with a consequential increase of the axial
force which affect the workpiece therefore we have a steady balance.
The transmitted power in function of ω1/ω/2 and ∆z is shown in figure 5.13. We can

Figure 5.13: Power distribution in function of ω1/ω3 and ∆z.

note that the balance conditions is achieved with the minimum of the power, once fixed
the ratio of velocities. Figure 5.14 shows the transmitted power in function of ω1 and
ω3 and if ω1 =ω3 = 1000 rpm the power is P = 2.50 kWwhile with only one disk in mo-
tion the power would be 670 W. This is the proof that we can’t apply the superposition
of the effects for the power, in fact we applied the superposition for the current. The
power therefore is by using two specular disks, one on the top and one on the bottom
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Figure 5.14: Power transmitted in function of ω1 and ω3 for ∆z=0.

of the workpiece, is more than the double of the power transmitted for a single disk
in rotation. That’s due to the fact that the second PMs disk changes the magnetic field
distribution in the core of the workpiece in particular we obtain a stronger the magnetic
flux density time variation which generates for the Faraday’s law a bigger electromotive
force and induced current as well; this is a particularity of the specular PMs disks sys-
tem.
These consideration are valid only disregarding the speed of the 2nd disk cause the com-
plication of the system and the difficulty to draw a graphic in function of ω1, ω2 and
ω3.

5.4.1 Considerations

This kind of system allows to avoid the torque and the axial force which affect the
workpiece and it has the following advantages as well:

• High increase of the transmitted power on the workpiece.

• More uniform heating along the thickness of the workpiece and symmetry of the
eddy current density on the both sides of it.

• The suspension of the workpiece in air reduces the heat conduction losses.

• Possibility to reduce the air gap thickness cause the workpiece tends to be arranged
in the middle between the upper and the lower disks.

The complexity of this heating system is the main issue and gives the following draw-
backs:
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• Necessity to have a sensor which measures the slip speed of the metal disk.

• Necessity to have a control system on the basis of the workpiece slip speed which
controls in feedback

• High mechanical complexity manufacturing for the system.

• Difficulty to manage a system with three PMs disks velocities ω1, ω2, ω3.

5.5 Hybrid system

As we already told, induction heating system is customized on the basis of the material
to heat, the shape of the workpiece, the type of heat treatment (core heating, hardening,
preheating) in terms of inductor shape but mainly on frequency. It works better for
magnetic metals conductors while the electrical efficiency to hear copper or aluminium
is generally below 50%.
The permanent magnets system, on the other hand, works best for good conductive
materials and the power is proportional to the round speed of the PM with respect the
load and doesn’t heat magnetic metals. In order to obtain a system which combine the
characteristics of heating with sufficient efficiency for good conductors and magnetic
poor conductor starting from copper to magnetic steels, we can join pancake inductor
with PMs to obtain an hybrid system as shows in figure 5.15. The pancake inductor has

N N

N

N

S S

SS

Figure 5.15: Hybrid system scheme.

internal radius R0 and external R1 while the PMs disk with four pole pairs number has
internal radius R2 and the external R3. The idea is that in presence of a magnetic work-
piece only the pancake inductor is power on while is off in presence of good conductor
and the PMs disk rotates with angular velocity ω.
Obviously what we do expect is that axial force and torque are still present on the work-
piece when PMs turns therefore it’s necessary to fix it.
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If R2 is at least 10% grater than R1 we can consider the two system separately because
the induced currents don’t mix and therefore in this condition the total transmitted
power can is the sum of the power for each contributor. Considering an hybrid system
with characteristic in table 5.4 we wanna to show the possibility to heat a metallic disk
made up copper and AISI steel 430. The main contributor to heating copper is the PM

Quantity Value Description
R0 25 mm Internal radius inductor
R1 80 mm External radius inductor
R2 100 mm Internal radius PM disk
R3 130 mm External radius PM disk
Rd 150 mm Metallic disk radius

Table 5.4: Parameter of the case of study.

disk which with a speed of 1550 rpm generates into the disk with thickness 5 mm with
an airgap 5 mm is 2.18 kW. While a pancake coil with 25 turns and 30 A only 38 W
with a very poor efficiency so it’s not convenient to switch it on. The choice to place the
PMs disk externally derives that the heating produced is very higher if would be placed
internally. Figures 5.16 and 5.17 show the graph of the current density J in function
of the radial coordinate of the disk ρ and the depth z for the hybrid system into the
metallic disk made of copper and steel respectively. How we expected, in the copper

Figure 5.16: Surface current density in cop-
per disk for hybrid system - 1 kHz - 1500
rpm.

Figure 5.17: Surface current density in AISI
steel 430 disk for hybrid system - 20 kHz -
1500 rpm.

disk the major contributor to the heating is the PMs disk whereas in the case of steel
the heating power contribution from the PMs is just 13.7 W with respect 958 W given
by the pancake inductor. In the case of copper the inductor worked ad 1 kHz while in
the case of steel 20 kHz and the parameters of PMs disk are the same used in table 5.3
unless otherwise specified.
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Since the several orders of magnitude of difference between the induced currents gen-
erated from inductor and PMs disk, figures 5.18 and 5.19 show the previous two graphs
with the current density in logarithmic scale. We can note that the current along the

Figure 5.18: Surface current density in cop-
per disk for hybrid system in log scale- 1
kHz - 1500 rpm.

Figure 5.19: Surface current density in AISI
steel 430 disk for hybrid system in log scale
- 20 kHz - 1500 rpm.

thickness of the disk generated by the pancake decreases more than the current of the
PMs and this is correlated by the frequency of the current which feeds the inductor
i.e. the penetration depth. The current along the radial coordinate ρ of the metallic
disk depends too by the azimuthal angle therefore it has been chosen the θ angle which
maximize the current peak, this explains difference of the peaks current for the two
system separately (100 A/mm2 vs 15 A/mm2). In fact while the eddy current generated
by the inductor are independent from the azimuthal angle and the heating is more uni-
form than with PMs which has a number of 2p (poles number) local heat sources.
The advantages of the hybrid system are thus the possibility to heat different type of
metals magnetic and non-magnetic, good conductors or not with a global sufficient ef-
ficiency. The drawbacks derives by the necessity to have a mechanical system based on
motor and a electrical system based on inverter, capacitors which supply the inductor.
This kind of system would have interesting domestic applications because it avoid the
necessity to buy specific induction pots if it were not for axial force and the torque ap-
plied to the pot and generated with the rotation of the PMs.
With this hybrid system we extend the range applicability and, implementing control
and feedback systems, we should obtain not an induction heating system but an "induc-
tion heating device" where the choice of the load is semi-independent by the heating.
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Among the conclusions and overall considerations that have been written at the end of
each chapter, some remarks must be given.
The analytical model for pancake inductors predicts the trend of the power transferred
to the load with an error of a few percentage points. This error increases with increas-
ing frequency and magnetic permeability of the material. However, it is possible to
make rough predictions on the power transferred for a wide range of frequencies with
computational times significantly shorter than the FEM study. It has been seen that
the heating of excellent conductors such as copper, brass and aluminium by means of
a pancake coil is inefficient and limited in terms of transmitted power, i.e. induction
heating (in general) is not suitable to heat these types of metals.
The innovative mechanical heating system with permanent magnets instead is much
more effective for this kind of non-magnetic metals. The analytical model developed in
this thesis work for this system is in excellent agreement with the FEM results in terms
of power transfer to the load, axial force generated and torque. The computational time
of the analytical model is inverse in the choice of parameters and much shorter than
that of the FEM simulation which, especially for high rotational velocity, can be tens of
hours.
The repulsive force and the mechanical moment to which the load is subjected consid-
erably limit the applications of this system, currently only in the industrial field. With
particular precautions, however, the torque and axial force can be elided with a conse-
quent complication of the mechanical and control part. While for pancake inductors
the technology is already present and studied and the purpose of the analytical model
is to reduce the study time, the permanent magnet system is still little known and used.
Here has been presented a configuration with axial flux which is useful to heat flat metal
pieces but other types of configurations can be studied based on the shape of the work-
piece to heat. In the case of heating cylindrical billets the most effective configuration
can be with radial flux PMs as shown in figure 5.20.
In any cases the big issue is the axial force that limits the safety and applicability in the
home, so future studies will have to solve or avoid this problem. A possible solution
can be to put a ferrite layer on the top of the pot, in order to eliminate the axial force or
better, to make the force attractive, in this way the friction between pot and hob plane
will also avoid the torque.

99



Remarks and Future trends

B. Analytical solution
The analytical solution of the problem has been developed using a cylindrical
coordinates system (r, q, z) ith the origin in the center of the billet. In the following
formulas, the index of the regions makes reference to the description of Figure 1.

Maxwell’s equation are taken into account neglecting the displacement currents:

~7 £ ~H ¼ ~J ð8Þ
with the constitutive equation:

~J ¼ s
#
~Eþ ~v £ ~B

$
where : ~v ¼ V:r:~uv ð9Þ

Computation of the magnetization M. In the permanent magnets (region 3), the
constitutive equation is (Zhu et al., 2002):

~B3 ¼ m3
~H3 þ m0

~M ð10Þ
Considering magnets having a linear second quadrant demagnetization characteristic
and with remanence Br the amplitude of ~M is:

M ¼ Br

m0
ð11Þ

Figure 2.
Induced current density
distribution (color shade
plot) and equiflux lines

resulting in the
steady-state condition of a
transient FEM solution at
different rotational speeds
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Figure 5.20: Induced current density distribution and equiux lines resulting in the
steady-state condition of a transient FEM solution for a radial magnetic field [28].
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Appendix A

A.1 Nodes andweights of theGauss-Laguerre quadrature

i xi wi

1 0.070539889692 0.1687468018511
2 0.3721268180016 0.2912543620061
3 0.9165821024833 0.266686102867
4 1.7073065310283 0.1660024532695
5 2.7491992553094 0.074826064668792
6 4.048925313851 0.02496441730928
7 5.6151749708616 0.006202550844572
8 7.459017453671 0.0011449623864769
9 9.5943928695811 1.5574177302781E-4
10 12.038802546964 1.5401440865225E-5
11 14.814293442631 1.086486366518E-6
12 17.948895520519 5.330120909557E-8
13 21.47878824029 1.757981179051E-9
14 25.451702793187 3.725502402512E-11
15 29.932554631701 4.7675292515782E-13
16 35.01343424048 3.372844243362E-15
17 40.833057056729 1.1550143395E-17
18 47.619994047347 1.539522140582E-20
19 55.810795750064 5.28644272557E-24
20 66.524416525616 1.656456612499E-28

Table A.1: First 20 terms of Gauss-Laguerre’s coefficients.
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