
UNIVERSITÀ DEGLI STUDI DI PADOVA

FACOLTÀ DI INGEGNERIA

Laurea Magistrale in

INGEGNERIA INFORMATICA

Minimization of the Crossing Number in a

Reconciled Tree

October 17, 2012

Relatore

Cinzia Pizzi

Correlatore

Lars Arvestad

Candidato

Marco Pierobon

Anno Accademico 2011/2012

Contents

1 Reconciled Gene and Species Trees 1
1.1 Gene and Species Trees . 1

1.1.1 Gene Tree . 1
1.1.2 Species Tree . 2

1.2 Reconciliations . 3
1.2.1 Tanglegrams . 4
1.2.2 Tree within tree reconciliation 4

1.3 Minimizing Crossing Problem . 6

2 PrimeTV 9
2.1 PrimeTV Input . 9

2.1.1 Newick basic format . 9
2.1.2 Newick extended format 10

2.2 PrimeTV Processing and Output 12

3 Crossing minimization 16
3.1 Proposed Heuristic . 16
3.2 Implementation of the algorithm 17

3.2.1 Implementation of the Map 17
3.2.2 Additional binary tree . 19
3.2.3 Computing the number of crossings 20
3.2.4 Adaptation of the GTL algorithm 21
3.2.5 Carrying out the rotation in the gene tree structure . . . 23

4 Performance analysis 24
4.1 Methodology . 24
4.2 Tests . 24

4.2.1 Test with real species trees 24
4.2.2 Test with generated species trees 25

5 Conclusions 27

iii

Abstract

The problem of building a reconciled tree from a gene and a species tree is of
great interest in bioinformatics, since it allows to highlight the relation between
the evolution of the genes with the evolution of one or more species. In partic-
ular, a reconciled tree with a minimized number of crossings can help tracing
down accurately the biological events of interest and avoiding wrong assump-
tions on the available data. The way the operation is performed a�ects heavily
the usefulness of the resulting tree.

The Minimized Crossing Number in a Reconciled Tree problem(MCNRT)
problem is an NP-Complete problem. In this thesis we present an heuristic
that aims to provide a solution for this problem. The proposed algorithm is
based on the solution of the Generalized Tanglegram Layout problem, that has
been adapted to work for the whole tree structure. Finally, the algorithm has
been integrated in a running project, namely PrimeTV. The resulting code has
been tested and proved able to optimize the number of crossings under di�erent
conditions.

iv

Sommario

Il problema della costruzione di un albero riconciliato a partire da un albero di
evoluzione dei geni e da un albero di evoluzione delle specie è di grande interesse
in bioinformatica, dato che permette di evidenziare la relazione fra l'evoluzione
dei geni e l'evoluzione di una o più specie. In particolare, un albero riconciliato
con un numero di attraversamenti minimizzato può aiutare ad identi�care gli
eventi di interesse biologico e ad evitare di fare assunzioni sbagliate sui dati
disponibili.

Il problema Minimized Crossing Number in a Reconciled Tree (MCNRT) è
un problema NP-Completo. In questa tesi è presentata un'euristica che fornisce
una soluzione a tale problema. L'algoritmo proposto è basato sulla soluzione
del problema Generalized Tanglegram Layout, che è stata adattata in modo
da poter lavorare sull'intera struttura dell'albero. Inoltre, l'algoritmo è stato
integrato come parte di un progetto attivo, PrimeTV. Il codice risultante è stato
testato e si è dimostrato capace di ottimizzare il numero di attraversamenti sotto
di�erenti condizioni.

v

Introduction

This thesis is focused on the study of the Minimization of the Crossing Number
in a Reconciled Tree problem and on its solution. In biology the study of species
and gene trees allow scientists to have a better understanding of the evolution of
speci�c genes and to determine the relation between species. A reconciled tree
merges the informations a species tree and a gene tree provide. It allows also to
identify event of evolutionary interest such as gene duplication, gene speciation
and horizontal gene transfer. A reconciliation is de�ned by means of a map
that connects the nodes in the gene tree with the nodes in the species tree.
The reconciliation process is well known and is fully described in [8]. It can be
performed using di�erent metrics, like the count of the number of evolutionary
event or a most likelihood criteria [4]. Such a reconciliation can be described
graphically by a tree, where the gene nodes are positioned inside the species
node they have been assigned to by the map. The layout obtained has usually
several edges crossings. These crossings may mislead the scientists analyzing the
problem, making them think biological events have occurred even when it is not
what had happened in reality. It follows that a reconciled tree with a minimized
number of edge crossings is desirable. The problem of the minimization of the
number of edge crossings in reconciled trees has not been treated speci�cally.
There is thus the need of a study of the problem and of an algorithm that solves
it.

This thesis is organized as follows:

• The �rst chapter introduces the notions of Species Tree and Gene Tree.
In addition two ways to perform a reconciliation are described. The �rst
one involves tanglegrams, a graph where the leaves of the species tree and
the leaves of the gene tree are connected with a set of inter-tree edges.
The second one de�nes a tree-within-tree reconciliation, where the map
between the two trees regards every node, not just the leaves. Finally, the
chapter de�nes the Minimization of the Crossing Number in a Reconciled
Tree problem and the Generalized Tanglegram Layout problem.

• The second chapter describes PrimeTV [10], the software in which the so-
lution of the problem has been implemented, as well as the Newick format,
that is the format in which the input data of PrimeTV is required to be
written. PrimeTV has been developed by the Stockholm Bioinformatics
Center of the Stockholm University and is a tool that produces graphical
output of reconciled trees. PrimeTV relies on the plotutils [9] library to
output the reconciled tree in a variety of formats.

• The third chapter describes the heuristic that solves the problem and
describes the transformation, which maps every layer of the problem into
an instance of the Generalized Tanglegram Layout problem. Every layer is
composed of a node of the species tree and its two children, together with
the gene nodes associated with them. Furthermore the basic property

vi

of the crossings in the layout is de�ned and the way the crossings are
counted is formalized. This allows to determine when a node rotations
reduces the number of crossings by comparing the original layout with the
reversed layout. In addition a description of the way the algorithm has
been implemented in the code is presented.

• The fourth chapter illustrates the results achieved by the proposed algo-
rithm. Two di�erent sets of tests are performed: the �rst set is intended
to evaluate the performance of the heuristic with real biological data and
the second set with random generated data. The tests are intended both
to determine the number of instances that the algorithm is able to im-
prove as well as the magnitude of the improvements, namely the number
of crossings avoided.

vii

Chapter 1 RECONCILED GENE AND SPECIES TREES 1

1 Reconciled Gene and Species Trees

In this chapter we give the basic biological background needed to understand
the problem on which the thesis focus, namely the reconciliation of gene and
species trees.

1.1 Gene and Species Trees

Let us start with the de�nition of Gene trees and Species trees.

1.1.1 Gene Tree

Genes hold the information used by an organism to build and maintain its cells
and to transmit genetic traits to its o�spring. Every organism has several genes,
each of which corresponds to one or more biological traits.

A gene can be de�ned as a sequence of nucleic acid (generally DNA), whilst
one of its variant is called an allele.

Due to gene replication, the evolution of a gene is represented as a gene tree:
every time there is a replication of a gene copy at a speci�c locus (the position
of a gene in a chromosome) and its di�erent versions (alleles) are passed to
more than one o�spring a new branch in the gene tree is created. Since that
gene copy has a unique ancestral version, the resulting history is a branching
tree. In addition a gene mutation may lead to an imperfect representation of
the original tree; sexual reproduction and recombination reduce the genomic
history into many small pieces, where each piece has a strictly treelike pattern
of descent [6].

Chapter 1 RECONCILED GENE AND SPECIES TREES 2

Q
9BV

K
4_H

U
M
A
N
_224_316

Q
99L54_M

O
U
SE_224_316

RLA
0_Y

EA
ST_222_311

Figure 1.1: Example of a gene tree. Q9BVK4_HUMAN_224_316 and
Q99L54_MOUSE_224_316 are more closely related to each other than to
RLAO_YEAST_222_311

The study of a gene tree gives scientists many insights on the evolution of the
genes, allowing them to track down events of interest and to get them visualized
with a time reference.

1.1.2 Species Tree

A species is often regarded as a group of organism capable of interbreeding and
producing a fertile o�spring.

A species tree can be de�ned as the pattern used to branch species lineages
through the process of speciation, namely the event that leads to the creation
of two di�erent species from a common ancestor.

When the reproductive communities are split by a speciation event the gene
copies held by this communities are split likewise into separate bundles of de-
scent. Inside each bundle, the gene trees keeps on evolving, by mean of branches
and descends as the time passes [6].

Chapter 1 RECONCILED GENE AND SPECIES TREES 3

 YEAST MOUSE HUMAN

Figure 1.2: Example of a species tree. Mouse and Human are species more
closely relate to each other than to Yeast.

Species trees give the opportunity to study the relation between species and
to determine their distance in an evolutionary context, allowing to determine
which species are closer to each other and to identify common ancestors.

1.2 Reconciliations

Merging the information contained in the gene and species trees may be useful
to identify cross species gene transfer, to determine the rate of evolution and to
make hypothesis on the evolution of species.

This can lead, for instance, to a better analysis of phenomenas such as:

• gene duplication

• gene speciation: the transmission of di�erent version of the gene to the
o�spring

• gene loss: the loss of the gene by a species

• deep coalescence: the failure of ancestral genes copies to look back in time
until deeper than the previous speciation event

Chapter 1 RECONCILED GENE AND SPECIES TREES 4

• horizontal gene transfer: the event of transmission of genetic content in-
dependent from reproduction.

The latter is particularly di�cult to analyze because when such an event occurs
(for instance, a cell ingesting large DNA molecules) the resulting DNA sequence
may be unpredictable. Even if this kind of event a�ects mostly not complex
living forms, it has been shown that even higher organisms can be subjects of
it[11].

Usually the reconciliation process described above is obtained in two di�erent
ways: by using tanglegrams or by de�ning a tree-within-tree reconciliation.

1.2.1 Tanglegrams

The �rst approach, as described in [1] is carried out using tanglegrams.

A tanglegram is a graph containing two trees (in this context the species
and the gene trees), where their leaves have been �rstly aligned on two parallel
lines. Then a two dimensional layout is speci�ed, in order to connect every gene
leaf to the species leaf that very gene was sampled from. Every such connection
is usually referred to as a tangle, or a tangle edge, and it is represented as a
straight line. This operation de�nes a series of inter-tree edges, whose number
depends on the two trees.

Figure 1.3: Leaves layers of a gene tree (on the left) and of a species tree (on
the right) joined by tangles showing the relation between them. Picture is from
[1] by courtesy of Bansal.

1.2.2 Tree within tree reconciliation

The second approach requires to de�ne a tree-within-tree structure using a rec-
onciliation. By doing this, a map between the nodes (both leaves and internal
nodes) of the two trees is speci�ed. This map allows to establish a connection

Chapter 1 RECONCILED GENE AND SPECIES TREES 5

between a gene and the species that gene was sampled from and to study its evo-
lution along with the evolution of the species. This process permits to represent
hypothesis on the evolution of a set of species by means of phylogeny trees[12].
It should be noted that the reconciliation process stemmed independently from
di�erent areas of study in biology, such as biogeography and molecular system-
atics, aiming the description of historical associations and is therefore suited also
for di�erent uses, like for instance the study of host-parasite cospeciation [8].

Q
9B
V
K
4_H

U
M
A
N
_224_316

Q
99L54_M

O
U
SE_224_316

R
LA
0_Y

EA
ST_222_311

YEAST MOUSE HUMAN

Figure 1.4: Example Figure of a tree within tree reconciliation from gene and
species tree of Figure 1.1 and Figure 1.2, respectively. The bottom layer con-
tains the leaves of both the trees. The name of the species is written horizontally,
the name of the gene is written vertically.A circled dot in the bottom layer means
there is a gene leaf there, in an upper layer means a gene speciation. The blue
oval means the species has speciated.

Finally, it needs to be remarked that a gene tree can disagree with its con-

Chapter 1 RECONCILED GENE AND SPECIES TREES 6

taining species tree: one could think that sister species will have sister copies of
genes tree and that the other aspects related to the gene tree will be congruent
with the species tree, but this is not always the case [2]. This last aspect is the
reason why the reconciliation process is di�cult to tackle.

The basic algorithm performing the construction of a reconciled tree is well
known and described accurately in [8].

This operation can be carried out using di�erent evaluation metrics, such as
the number of evolutionary event or a most likelihood criteria [4]. In this work
we will suppose the reconciliations are performed with the most parsimonious
criteria, which assumes the smaller number of genetic events.

The problem of minimizing the number of crossings in such a tree has been
named Minimizing Crossings Number in a Reconciled Tree and will be referred
to as MCNRT hereafter.

1.3 Minimizing Crossing Problem

In order to fully understand the nature of the problem it is necessary to introduce
some amount of formalism. In the present chapter we will try to keep this
formalism at a minimum, although in some cases a more detailed model would
be preferred or required. Such a model can be found in [5].

De�nition 1 (Species Tree). Let I containing N di�erent species. An evo-
lutionary species tree S de�ned over it is a tree where:

a. S is a rooted binary directed tree

b. S has N leaves, each one uniquely labeled by an element of I

De�nition 2 (Gene Tree). Similarly an evolutionary gene tree G is a tree
such that:

a. G is a rooted binary directed tree

b. the leaves of G are labeled by elements of I

Let L (T) indicate the set of leaves that occurs in the subtree rooted at T .

Usually when working with reconciliations the assumption L (S) = L (G) is
made. As shown in [3] this does not imply any loss of generality.

De�nition 3 (Reconciled Tree). A reconciled tree TR (G,S) is the smallest
tree having leaves labeled such that:

a. it contains only sets from S

b. G is contained as a subtree

Chapter 1 RECONCILED GENE AND SPECIES TREES 7

c. for two children a and b of g ∈ TR (G,S) we have either L(a) ∩ L(b) = ∅
or L(a) = L(b) = L(g)

Given a rooted tree T , V (T) and E(T) are respectively its node and edge
set. A node in V (T) that is not a leaf is called an internal node. The root node
of T is denoted by rt(T). Given a node v ∈ V (T), pa(v) denotes the parent of
v in T , Ch(v) is the set of children of v, and T (v) denotes the subtree of T
rooted at v. If two nodes in T have the same parent, they are called siblings.

Let us de�ne E(S,G) as the embedding of the gene tree inside the species
tree, such that E(S,G) ⊆ S × G, where each node of S is incident on at least
one edge in E(S,G), and each node in G is incident on at least two edges in
E(S,G).

Furthermore, we de�ne an order τ over the set E(S,G), such that if

(u, v) <τ (u,w), u ∈ S, v, w ∈ G, then the gene node v is located before w
in the mapping inside the species node u. The result is a tree R embedding G
inside S with an order de�ned by τ .

An example is shown in Figure 1.5. The elements in the �gure would con-
tribute to E(S,G) with a subset

{(s1, g1) , (s1, g2) , (s1, g3) , (s1, g4) , (s1, g5) ,

(s2, g1) , (s2, g3) , (s2, g4) , (s3, g2) , (s3, g5)}

s1

s2 s3

g1 g2 g3 g4 g5

g1 g3 g4 g2 g5

Figure 1.5: Part of a reconciled tree

Chapter 1 RECONCILED GENE AND SPECIES TREES 8

Similarly, let us call σ the order on S that de�nes the layout of the tree S,
which allows to determine for every v ∈ S which son is the left or right one.

Finally, we need to de�ne the function to evaluate the quality of the layout.
Given the above mentioned σ and τ de�ned, respectively, over S and E(S,G)
the number of crossing between σ and τ is denoted as cr(σ, τ, E(S,G)) and
equals to
| (u, v) , (u,w) ∈ E(S,G) : (((u, v) <τ (u,w)) f ((u′, w) >τ (u′, v)))g

g (((u,w) >τ (u, v)) f ((u′, v) <τ (u′, w))) |

where u′ is one of the two children of u.

Now we can de�ne the basic problem of the minimization of the crossings
number in a reconciled tree.

De�nition 4 (Minimizing Crossings Number in a Reconciled Tree
(MCNRT)). Given an instance < S,E(S,G) > �nd compatible linear orders
σ and τ , respectively on S and on E(S,G), such that cr(σ, τ, E(S,G)) is mini-
mized.

Theorem 5 (MCNRT is NP-COMPLETE).

Wotzlaw et al. showed in [12] that the Generalized k-ary tanglegrams on
level graphs is a NP-Complete problem for k > 1.

Being MCNRT its restriction where the trees are binary (k=2) it follows it
is a NP-Complete problem.

The solution of MCNRT relies on the solution of the Generalized Tanglegram
Layout (GTL) problem, that will now be stated.

De�nition 6 (Generalized Tanglegram Layout Problem). Given an in-
stance < S, T, I(S, T) >, where S and T are trees and I(S, T) is the set of the
intertree edges connecting the leaves of S with the leaves of T , �nd compatible
linear orders σ and τ on trees S and T , respectively, such that cr(σ, τ, I(S, T))
is minimized.

Chapter 2 PRIMETV 9

2 PrimeTV

PrimeTV(PRobabilistic Integrated Models of Evolution Tree Viewer) is a soft-
ware developed by the Stockholm Bioinformatics Center of the Stockholm Uni-
versity. It allows to get a graphical representation of a tree-within-tree recon-
ciliation, by the use of the plotutils library.

It is written in C++ and accepts two �les as input: the �rst one is the
reconciled tree and the second one is the species tree. Both the trees have to be
speci�ed in the Newick format.

The produced output is a graphical �le showing the reconciliation between
the species and the gene tree. The �le format of the output can be chosen to
be an X window or an image in raster or vector format.

2.1 PrimeTV Input

The Newick format allows to de�ne the structure of the trees in a very straight-
forward and intuitive way. It was introduced in 1857 by the English mathe-
matician Arthur Cayley. The current accepted standard is de�ned in [7]. We
will limit ourselves to an introduction of the basic notation that allows to de�ne
the tree structure along with the lengths of the branches. We then explain the
extended Newick format, that is what is required to run PrimeTV.

2.1.1 Newick basic format

Each internal node is identi�ed by a pair (id1, id2), where id1and id2 are the
children of the node.

The distance of a leaf node from its father is speci�ed by placing a colon and
the distance after the node, e.g. id1 : length.

The distance of an internal node from the father is speci�ed by placing a
colon and the distance after the parenthesis that identify the node,
e.g.(id1, id2) : length.

A semicolon is put at the end of the tree de�nition.

So for example for the tree depicted in Figure 2.1 we would obtain a notation
like:

(
(MOUSE:0.0110,
HUMAN:0.0110):0.1466,

YEAST:0.1576);

Chapter 2 PRIMETV 10

Figure 2.1: Tree built from Newick notation. Mice and Humans are 0.011 far
apart from each other and 0.1466 from Yeast.

2.1.2 Newick extended format

The Newick extended format needed to run PrimeTV requires to add a label
to each node. This label allows to refer to the node from the �le where the
reconciliation is de�ned.

In order to show how such labels are applied let us see a small example. In
the Figure 2.2 we have:

a. Species tree S in Newick format

b. Gene tree G in Newick format

c. Leaf map between the species tree in a) and the gene tree in b) in a tabular
form

d. The full reconciliation γ in a tabular format. For a node x of the species
tree (on the left column),γ (x) (on the right column in the same row)
includes all the gene tree nodes whose incoming edges appear on the in-
coming edge of x in the reconciled tree. Notice a gene node can be mapped
to several species vertices

e. The reduced reconciliation γ̌ in tabular format, obtained from the full
reconciliation γ by removing from γ (x) all gene vertices that are ancestral
to other vertices in γ (x)

f. The reconciled tree (x, γ) in Prime format. This is a Newick tree with
Prime tags added to its nodes; every sequence of Prime tags are always
given within brackets and are preceded by the tag &&PRIME. For a
gene vertex, v, the tag ID indicates a unique number identifying v. The
tag AC indicates the ID of the species tree node that v maps to in the
reduced reconciliation; these species tree nodes should always form a path

Chapter 2 PRIMETV 11

in the species tree. Finally, for a leaf l, the tag S indicate the label of the
gene tree leaf that the leaf l maps to.

Figure 2.2: Input formats of PrimeTV. Image is from [10], by courtesy of Lars
Arvestad.

The extended Newick representation for the tree shown in Figure 2.1 is:

(
(MOUSE:0.0110[PRIME ID=1],
HUMAN:0.0110[PRIME ID=2]):0.1466[PRIME ID=3],

YEAST:0.1576[PRIME ID=0]);

Similarly as it has been done for the species tree we can de�ne the reconcil-
iation in the newly de�ned notation:

(
(Q99L54_MOUSE [&&PRIME S=MOUSE AC=(1)],
Q9BVK4_HUMAN [&&PRIME S=HUMAN AC=(2)])

[&&PRIME AC=(3)],
RLA0_YEAST [&&PRIME S=YEAST AC=(0)]) [&&PRIME AC=(4)];

By doing so we get the full input required to run PrimeTV. It can be seen
how the reconciliation speci�es a genes tree and how each node is mapped into
the species tree by using the previous de�ned labels.

Chapter 2 PRIMETV 12

2.2 PrimeTV Processing and Output

In order to create a graphical visualization of that tree the program needs to
gather some more data from the input �les, like the maximum number of genes
nodes within a species node. Then the coordinates where to put each species
and gene node are calculated.

When those information have been brought together PrimeTV uses the plo-
tutils library [9] to get a graphical output, by printing the two trees sepa-
rately [10].

0.011

0.1576

0

Ti
m
e

Q
9B
V
K
4_H

U
M
A
N
_224_316

Q
99L54_M

O
U
SE_224_316

R
LA
0_Y

EA
ST_222_311

YEASTMOUSEHUMAN

Figure 2.3: PrimeTV output from the above de�ned species and reconciled trees

If the input is simple, in terms of number of gene and species nodes in the
reconciled tree, PrimeTV faces no problems in displaying the graphical output
in the most correct way. However, when the input size starts to grow, and
consequently its complexity, some limitations of the software emerge.

If for instance we would provide the program with the following normal sized
inputs:

Chapter 2 PRIMETV 13

Species Tree

(
(

(
(

(
(

(ANASP_6:0.0200000[&&PRIME ID=7],
ANAVT_1:0.0200000[&&PRIME ID=8])
100:0.260000[&&PRIME ID=9],

TRIEI_1:0.280000[&&PRIME ID=6])
99:0.110000[&&PRIME ID=10],

SYNY3_4:0.390000[&&PRIME ID=5])
99:0.110000[&&PRIME ID=11],

SYNE7_1:0.500000[&&PRIME ID=4])
84:0.160000[&&PRIME ID=12],

(PROM9_1:0.380000[&&PRIME ID=13],
(SYNS3_1:0.220000[&&PRIME ID=14],

((SYNSC_1:0.100000[&&PRIME ID=17],
SYNPX_1:0.100000[&&PRIME ID=16])
50:0.0300000[&&PRIME ID=18],

SYNS9_1:0.130000[&&PRIME ID=15])
100:0.0900000[&&PRIME ID=19])

100:0.160000[&&PRIME ID=20])
100:0.280000[&&PRIME ID=21])
100:0.130000[&&PRIME ID=22],

(SYNJB_1:0.0700000[&&PRIME ID=1],
SYNJA_1:0.0700000[&&PRIME ID=2])

100:0.720000[&&PRIME ID=3]):0.210000[&&PRIME ID=23],
GLVIO1_1:1.00000[&&PRIME ID=0]):0.00000
[&&PRIME ID=24][&&PRIME NAME=G]

(Reconciliation omitted)

we will get an output with an unoptimized layout, as the one depicted in
Figure 2.4. It can be seen how the program does not handle the minimiza-
tion of the crossing edges in the reconciled tree, since even by some simple
rotations of the species tree numerous crossings could be avoided. (pick for in-
stance the two species nodes where the gene SYNJA_1_PE1339 and the gene
SYNPX_1_PE1525 are mapped: a rotation there would avoid a crossing).

Since each crossing can be traced back to an evolutionary event, it is impor-
tant to have a layout that minimizes them, in order to get a better understanding
of the data.

Chapter 2 PRIMETV 14

0.07

0.02

0.28

0.39

0.5

0.1

0.13

0.22

0.38

0.66

0.79

1

0

Ti
m
e

A
N
A
SP_6_PE1302

A
N
A
V
T_1_PE102

SY
N
JA
_1_PE1339

SY
N
JB
_1_PE1571

SY
N
PX
_1_PE1525

SY
N
S3_1_PE1887

SY
N
S9_1_PE883

SY
N
SC
_1_PE961

SY
N
Y
3_4_PE2543

TR
IEI_1_PE898

A
N
A
SP_6_PE1631

TR
IEI_1_PE899

SY
N
Y
3_4_PE2599

PR
O
M
9_1_PE225

SY
N
PX
_1_PE1937

SY
N
SC
_1_PE496

SY
N
S9_1_PE1814

SY
N
S3_1_PE2358

A
N
A
SP_6_PE1629

SY
N
Y
3_4_PE935

PR
O
M
9_1_PE673

SY
N
PX
_1_PE839

SY
N
SC
_1_PE1773

SY
N
S9_1_PE837

SY
N
S3_1_PE1162

SY
N
S3_1_PE540

GLVIO1 1SYNJB 1 SYNJA 1

100

SYNE7 1SYNY3 4TRIEI 1ANASP 6 ANAVT 1

100

99

99

84

PROM9 1 SYNS3 1 SYNS9 1SYNPX 1SYNSC 1

50

100

100

100

100

Figure 2.4: Layout of the middle sized example input

Chapter 2 PRIMETV 15

0.07

0.02

0.28

0.39

0.5

0.1

0.13

0.22

0.38

0.66

0.79

1

0

Ti
m
e

A
N
A
SP_6_PE1302

A
N
A
V
T_1_PE102

SY
N
JA
_1_PE1339

SY
N
JB
_1_PE1571

SY
N
PX
_1_PE1525

SY
N
S3_1_PE1887

SY
N
S9_1_PE883

SY
N
SC
_1_PE961

SY
N
Y
3_4_PE2543

TR
IEI_1_PE898

A
N
A
SP_6_PE1631

TR
IEI_1_PE899

SY
N
Y
3_4_PE2599

PR
O
M
9_1_PE225

SY
N
PX
_1_PE1937

SY
N
SC
_1_PE496

SY
N
S9_1_PE1814

SY
N
S3_1_PE2358

A
N
A
SP_6_PE1629

SY
N
Y
3_4_PE935

PR
O
M
9_1_PE673

SY
N
PX
_1_PE839

SY
N
SC
_1_PE1773

SY
N
S9_1_PE837

SY
N
S3_1_PE1162

SY
N
S3_1_PE540

GLVIO1 1 SYNJB 1SYNJA 1

100

SYNE7 1 SYNY3 4TRI EI 1ANASP 6ANAVT 1

100

99

99

84

PROM9 1SYNS 3 1SYNS 9 1 SYNPX 1 SYNSC 1

50

100

100

100

100

Figure 2.5: Optimized layout of the middle sized example input

Chapter 3 CROSSING MINIMIZATION 16

3 Crossing minimization

The output of PrimeTV shows how simple trees rotations could lead to signif-
icant reductions in the number of crossings, and hence in the improvement of
the overall quality of the visualization.

Detecting the right conditions when to apply such an intervention is not
as straightforward as it may appear. This is caused both by the nature of the
problem (the minimization of the number of crossing in a graph is a NP-complete
problem) and by the di�culty in predicting how evolutionary data changes over
time. There is thus the need of an heuristic, which will set a reasonable tradeo�
between the quality of the �nal output and the time required to attain it.

3.1 Proposed Heuristic

As a contribution to this thesis we propose an algorithm that tries to identify
when rotations should be applied to the reconciled layout. The idea is based
on the solution of the tanglegram problem, described in [1]. This algorithm is
supposed to provide a solution that minimizes the number of crossings in the
mapping between the leaves of the gene and the species tree. We will extend
this approach to work with the other layers of the reconciled tree. In order to
do so the algorithm will operate iteratively on the tree structure, by working on
one layer at a time. Each layer is composed by an internal node of the species
tree and by its left and right childs. An example of such a layer is shown in
Figure 3.1.

v

v1 v2

g1 g2 g3

g1 g1g2 g3 g3

Figure 3.1: Example of a layer of the problem, gene evolution is described by
lines, a square indicates a gene speciation. A blue oval indicates a species.

At every iteration we will minimize the number of crossings of the gene edges

Chapter 3 CROSSING MINIMIZATION 17

in the current layer. Repeating the process for every layer of the reconciled tree,
we will obtain an heuristic that works on the entire structure.

By considering one layer at a time, the algorithm optimizes the layout for the
current layer, not caring about the constraints it will impose on the following
ones. Since the number of crossings is related to the number of gene edges and
the number of branches of the gene tree increases with the height of the tree, a
non-optimal layout for an upper layer is preferred over a non-optimal layout for
a lower one. For this reason a bottom up approach has been chosen.

For every layer the algorithm determines the best species tree structure, by
comparing the number of crossing in the default con�guration with the number
of crossings after the rotation, when the left child becomes the right child and
viceversa (in Figure 3.1 with such a rotation we would have v2 to be the left
child and v1 the right child).

The best con�guration among the two will be the starting point of the op-
timization of the layout. To perform the next step of the optimization we put
the layer in the con�guration required by the GTL algorithm to minimize the
number of crossings for the current layer. This is done in two steps:

• we ensure a one to one mapping between the gene nodes that lie in the
father species node and the ones in the children species node

• we build an additional binary tree structure for the nodes mapped into
the species father

The �rst step allows to count the number of crossings by using the position of
the gene node in the species node, as described in 3.2.4. The second is required
to determine the number of crossings for di�erent layouts without changing the
reconciled tree structure.

This process allows to handle every layer of the reconciled tree as an instance
of the GTL problem.

3.2 Implementation of the algorithm

PrimeTV is written in C++ and therefore all the modi�cation described has
been implemented in this programming language.

However, to allow the reader to easily understand the way the algorithm
works, all the code will be described in the pseudocode language.

We will now describe the basic steps performed by the heuristic, namely how
a gene node is mapped inside a species one, how the crossings are counted and
how the structure to perform such an operation is built.

3.2.1 Implementation of the Map

As described in Chapter 1.3 and in Chapter 2, in the reconciled tree gene nodes
are mapped into species nodes.

This mapping is performed by a function γ, and it is implemented in the code
by the class GammaMap. As described in the comments of the class, written
by the original author,

Chapter 3 CROSSING MINIMIZATION 18

GammaMap implements the map between the nodes of the species tree and the
ones of the gene tree, by de�ning such a mapping as the function γ:V(S)→ 2V (G),
where γ (x) comprises all the vertices in G that has incoming edges whose pass
through the edge (x, parent (x)) ⊂ S.

The �rst thing we have to do is to transform the problem instance in order
to have a 1-to-1 mapping between the gene nodes in the current layer, obtaining
a structure similar to the one described in [1]. Figure 3.1 shows an example of
a layer where such a condition is not met.

The code described in Algorithm 1 starts from the last layer and builds two
layouts: σ and τ , according to the de�nitions provided in Chapter 1.3, ensuring
they are of the same size. Both layouts contain the gene nodes to be ordered
in the current layer together with an index. The index for an element of σ
is just its position in the array, whilst for an elements in τ it is the position
the same node has among the gene nodes in the two child species nodes of the
layer, where their elements are considered as a unique set. Every gene has its
descendant checked to see if they belong to the level. If it is the case they are
added to the layouts and set as siblings in the additional tree structure, that
will be explained in Section 3.2.2.

It needs to be remarked that the gene trees is not a�ected by these opera-
tions, since they are performed in a secondary data structure.

Starting from Figure 3.1, after the execution of the algorithm we would end
up with the con�guration shown in Figure 3.2. The resulting layouts σ and τ
are shown in Table 1.

g1'

g1'

g1''

g1''

g2

g2

g3'

g3'

g3''

g3''

g1

g3

Figure 3.2: The instance of Figure 3.1, modi�ed in order to have a one to one
mapping between the nodes of the gene tree

Chapter 3 CROSSING MINIMIZATION 19

Data: reconciled tree TR (G,S)
Result: σ and τ layouts
read the leaf layer;1

while the root has not been reached do2

N← number of gene nodes in the current layer;3

s← father species node in the current layer;4

for i← 0 to N − 1 do5

if nodei.children ∈ current layer then6

add them to sigma and tau and set them as siblings;7

else8

σi = nodei;9

p = �nd(nodei, s.leftSon, s.rightSon);10

τp = nodei ;11

end12

end13

move up one layer14

end15

Algorithm 1: Build σ and τ

Layout 1 2 3 4 5

σ 1 2 3 4 5
τ 1 4 2 3 5

Table 1: σ and τ for the layer shown in Figure 3.2. Column i represents the
i-th position in the father species node.

In order to determine whether it is better to rotate the left and right children
for a given gene node, a supplementary double pointer is needed: reversedTau
allows to compare the current layout and the rotated layout by using the prop-
erty on the number of crossing stated in [1]:

De�nition 7. [Crossing equivalence] Let τ̄ denote the linear order obtained
by reversing τ . Then, for any v ∈ V (S), we must have

cr(σ̄v, τ, I(S, T), v) = cr(σ, τ̄ , I(S, T), v)

3.2.2 Additional binary tree

By comparing the number of crossings brought about by each layout, we can
determine whether it is better to perform the rotation or not. In order to use
the property stated in De�nition 7 we need to have the nodes in the layout σ
organized in an additional binary tree. They already belong to a binary tree
structure (the gene tree), but we cannot use it for two reasons:

Chapter 3 CROSSING MINIMIZATION 20

Data: σ layout
Result: additional binary tree for the nodes in sigma
M ← sigma.size;1

U ← ∅;2

for i← 0 to sigma.size do3

U.add(sigmai)4

end5

while U6= ∅ do6

for i← 0 to U.size do7

if σi and σi+1 have not been set as brothers then8

σi.sibling = sigmai+1;9

σi+1.sibling = sigmai;10

create new node n;11

σi.parent = n;12

σi+1.parent = n;13

end14

U.add(σi.parent);15

U.remove(σi) ;16

U.remove(σi+1) ;17

if σi+2 is last then18

i← U.size19

end20

end21

end22

Algorithm 2: Build an additional binary tree

• we do not want to a�ect nodes of other layers when we perform a rotation

• determining the common parent of two nodes may require to visit all the
gene tree

Algorithm 2 performs the construction of the additional binary tree for the
actual layer. The result of Algorithm 2 applied to the graph of Figure 3.2 is
shown in Figure 3.3.

3.2.3 Computing the number of crossings

In order to compare the number of crossings in the regular layout layer and in
the rotated layer two auxiliary vectors are created: rotatedTau, which store the
rotated version of tau and revRotTau, that is the reversed version of rotatedTau.

The algorithm then determines for every species node whether rotating the
two species children is the best choice to make, by the comparison of the number
of crossings the two choices imply. In order to compute the number of crossings,

Chapter 3 CROSSING MINIMIZATION 21

g1'

g1'

g1''

g1''

g2

g2

g3'

g3'

g3''

g3''

g1

g3g4

g5

Figure 3.3: Modi�ed instance, where an additional tree structure has been built

we need to let the algorithm undertake a preliminary phase where no tree is
modi�ed, since a modi�cation at this stage would force the choice over which
layout to choose. We then determine the better option for the layout of the
species tree in the current layer. We then use it to optimize the layout of the
embedded gene edges, having made the assumption that if we start from a better
initial point we will end up with a better solution.

3.2.4 Adaptation of the GTL algorithm

Every node is stored together with its position in the layout, making him self-
aware of how many nodes are on its left and on its right.

Let us recall thatL (T) indicate the set of leaves that occurs in the subtree
rooted at T .

Starting from the father of the left most node in the layout σ we climb the
tree by choosing at every iteration the father of the current node y, until the
root is reached. At every iteration we consider all the leaves that belongs to
L (r), where r is the right son of y.

Let z be the the largest leaf label in L (l), where l is the left son of y. It is
seen that every node with a label smaller than z has to belong to L (l).

Chapter 3 CROSSING MINIMIZATION 22

y

r

z

0 1 2 3 4 5 6 7

Figure 3.4: Example of a layout

The algorithm goes through all the possibles z, counting the numbers of
nodes that appear after the node x in the linear layout τ , having label smaller
or equal to z. Every such an event represents a crossing and is therefore added
to the counter.

Once that information is collected, the algorithm establishes whether a rota-
tion of that node could reduce the number of crossings. So, using the property
stated in the De�nition 7 in this chapter, we can decide whether a gene node
rotation would prove useful or not by comparing the crossings of the regular lay-
out with the crossings of the rotated layout. For every considered internal node
z two counters are hold: sum and reversedSum, which keep track, respectively,
of the crossings induced by all its children in the regular and reversed layout.
Then those numbers are compared: if reversedSum is greater than sum for an
internal node v, then an internal node rotation would improve the quality of the
layout and is therefore performed. Such an operation requires two step:

a. a swap of the left and right son of the internal node in the additional
structure

b. the rotation of T (v) in the sigma layout.

The described procedure is operated recursively layer after layer, until the
root is reached.

Chapter 3 CROSSING MINIMIZATION 23

3.2.5 Carrying out the rotation in the gene tree structure

Due to the usage of the plotutils library, in the code every gene node has its own
vertical and horizontal coordinates as well as a list of �extra� coordinates, which
represents the evolution of the gene down the species tree, until a speciation
or a duplication event happens. Every gene node in the reconciled tree can be
considered in the program as an instance of the Node class or just as a set of
coordinates.

Hence, when exchanging two nodes inside a layout this aspect needs to be
taken into account in order to not interfere with the natural functioning of
the output library, and the form of the node to be swapped has to be chosen
accordingly.

To accomplish this the class that de�nes a Node has been modi�ed and a
struct valueInfo has been added. This struct is responsible for keeping track of
the change of position inside the mapping the node may be subject to. Every-
time the node needs to be moved a new item is added to the map, specifying
the type of node it will have to replace.

Before invoking plotutils to have the print operations performed, there is
the need of a phase where these swaps take place. This is done along a tree
exploration performed by primeTV, so it does not require almost any additional
time.

Chapter 4 PERFORMANCE ANALYSIS 24

4 Performance analysis

In this chapter, we report the results achieved by the algorithm in terms of the
quality of the solution.

4.1 Methodology

As it may be expected by an heuristic algorithm, the quality of the outputs
PrimeTV gives vary according to the input it receives.

The auxiliary structure is build coupling the nodes pairwise from left to right
(as shown in 3.2.2). The way this tree is built a�ects directly the quality of the
rotations the algorithm is able to perform. In every layer a comparison between
the number of crossings of the original layout and of the optimized one is made.
The algorithm decides then to perform the changes that bring an improvement
on the quality of the solution. However, the minimization of the number of
crossings in a layer is seen as a process independent from the solution of the
problem in the other layers. Therefore every iteration is not aware of the e�ects
its decision will have on the following ones. For this very reason the algorithm
could be deceived by a local optima and discard the best solution, preferring a
non optimal one.

Anyhow we will see how this will not a�ect greatly the overall behavior of
the algorithm and how, in the general case, the attempt of the algorithm to
reduce the number of crossings is e�ective.

4.2 Tests

The tests have been performed in two rounds. The �rst set of tests used real
species trees and the second set used random generated species trees.

4.2.1 Test with real species trees

In the �rst part of the tests 10 reconciled trees have been generated for each
of the 6 di�erent species trees. This lead to 60 di�erent trees, that have been
sorted by the number of gene nodes in the root of the species tree. In Table 2
the di�erent classes used for the �rst set of tests are outlined. In every test the
algorithm keeps track of the number of crossings the original layout produces
and of the crossings produced by the optimized version.

Class Number of nodes in the root Number of reconciled trees

Small 5-7 20
Medium 8-11 20
Big 12-14 20

Table 2: Di�erent classes of reconciled trees from real species trees used in the
�rst type of tests

Chapter 4 PERFORMANCE ANALYSIS 25

Table 3 shows how the algorithm performed with real species trees. It can
be seen that the number of optimized instances is not greatly a�ected by the
size of the input and that the heuristic improves the quality of the layout in the
55-60 percent of the cases.

Class Optimized Non-optimized Optimized % Unchanged %

Small 12 8 60 25
Medium 11 9 55 30
Big 11 9 55 15

Table 3: Number of instances where the algorithm improves the quality of the
solution in the �rst set of tests with the percentage of improved and unchanged
solutions (out of the total)

The average improvement of the solution for every class has been tracked,
together with the total number of crossings removed. The obtained results are
illustrated in Table 4 and show that the algorithm performs better when the
size of the input is small or large.

Class Optimized instances Crossings removed Improvement %

Small 12 186 32.41
Medium 11 182 16.12
Big 11 715 39.82

Table 4: Number of total crossings removed and average improvement by class
in the �rst set of tests

4.2.2 Test with generated species trees

In the second set of tests 10 di�erent species trees have been generated. Then
for each of them 60 di�erent reconciliations have been created. This led to 600
di�erent reconciled trees, that have been sorted by the number of gene nodes in
the root of the species tree. In Table 5 the di�erent classes used for the second
round of tests are described. The classes are the same used in the �rst round,
but the number of tested trees is increased by a ten factor. In every test the
algorithm keeps track of the number of crossings the original layout produces
and of the crossings produced by the optimized version.

Table 6 shows how the algorithm performs with generated species trees. The
results achieved by the algorithm are steady when the size of the input changes.
The number and percentage of improved solution are illustrated, together with
the number of non-optimized solution and the percentage of unchanged solutions
(out of the total).

Chapter 4 PERFORMANCE ANALYSIS 26

Class Number of nodes in the root Number of reconciled trees

Small 5-7 200
Medium 8-11 200
Big 12-14 200

Table 5: Di�erent classes of reconciled trees from generated species trees used
for the second type of tests

Class Optimized Non-optimized Optimized % Unchanged %

Small 147 53 73 12
Medium 147 53 73 6
Big 137 63 68 1

Table 6: Number of instances where the algorithm improves the quality of
the solution in the second round of tests with the percentage of improved and
unchanged solutions

The total numbers of crossings removed in every class has been calculated.
Furthermore the improvement of the solutions in the optimized instances has
been averaged by class. Those results are shown in Table 7.

Class Optimized Crossings Improvement %

Small 147 1715 24.14
Medium 147 3150 14.68
Big 137 3438 14.96

Table 7: Number of total crossings removed and average improvement by class
in the second set of tests

The algorithm achieves good results in all the tested con�gurations. It should
be noted that the algorithm provides solution for a wider range of inputs when
is provided with random data, but the improvements are greater when the data
are not computer generated. This may suggest that the heuristic is suited to
work with true biological data.

Chapter 5 CONCLUSIONS 27

5 Conclusions

In this thesis we have proposed an heuristic that minimizes the number of cross-
ings in the layout of a reconciled tree. The algorithm has been implemented
and integrated in an active project aiming to improve the quality of its result.

We have also evaluated the quality of this heuristic, by comparing the num-
ber of crossings it produces with the number yielded by the original program.
It has been shown that the algorithm is able to produce fewer crossings than
the original version of the program. In addition it has been tested that the al-
gorithm has good performances both with real biological data and with random
generated data.

However, there is still room for improvement. In the reconciled tree there are
many independent layers, that could be solved in parallel. In fact, the limited
number of data that needs to be exchanged between layers makes the algorithm
interesting for parallelization.

Chapter REFERENCES 28

References

[1] Mukul S. Bansal, Wen-Chieh Chang, Oliver Eulenstein, and David
Fernández-Baca. Generalized binary tanglegrams: Algorithms and
applications. In Proceedings of the 1st International Conference on
Bioinformatics and Computational Biology, BICoB '09, pages 114�125,
Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-00726-2.
doi: 10.1007/978-3-642-00727-9_13. URL http://dx.doi.org/10.1007/

978-3-642-00727-9_13.

[2] Je� J. Doyle. Gene Trees and Species Trees: Molecular Systematics as
One-Character Taxonomy. Systematic Botany, 17(1):144�163, 1992. ISSN
03636445. doi: 10.2307/2419070. URL http://dx.doi.org/10.2307/

2419070.

[3] O. Eulenstein, B. Mirkin, and M. Vingron. Duplication-based measures of
di�erence between gene and species trees. J Comput Biol, 5(1):135�148,
1998. ISSN 1066-5277. URL http://view.ncbi.nlm.nih.gov/pubmed/

9541877.

[4] J. Felsenstein. Inferring phylogenies from protein sequences by parsimony,
distance, and likelihood methods. Methods in Enzymology, 266:418�427,
1996.

[5] Pawel Górecki. Reconciliation problems for duplication, loss and horizontal
gene transfer. In Proceedings of the eighth annual international conference
on Resaerch in computational molecular biology, RECOMB '04, pages 316�
325, New York, NY, USA, 2004. ACM. ISBN 1-58113-755-9. doi: 10.1145/
974614.974656. URL http://doi.acm.org/10.1145/974614.974656.

[6] Wayne Maddison. Gene Trees in Species Trees. Systematic Biology, 46
(3):523�536, 1997. doi: 10.2307/2413694. URL http://dx.doi.org/10.

2307/2413694.

[7] Gary Olsen. Gary olsen interpretation of
the newick tree format standard, August 1990.
http://evolution.genetics.washington.edu/phylip/newick_doc.html.

[8] Roderic D. M. Page. Maps between trees and cladistic analysis of historical
associations among genes, organisms, and areas, 1994.

[9] Nick Tu�llaro Robert Maier. The plotutils package, October 2011.
http://www.gnu.org/software/plotutils/.

[10] Bengt Sennblad, Eva Schreil, Ann Charlotte Berglund Sonnhammer, Jens
Lagergren, and Lars Arvestad. primetv: a viewer for reconciled trees. BMC
Bioinformatics, 8(1):148+, May 2007. ISSN 1471-2105. doi: 10.1186/
1471-2105-8-148. URL http://dx.doi.org/10.1186/1471-2105-8-148.

Chapter REFERENCES 29

[11] Michael Syvanen. Cross-species gene transfer; implications for a new theory
of evolution. J Theor Biol, 112:333�343, 1985.

[12] Andreas Wotzlaw, Ewald Speckenmeyer, and Stefan Porschen. Gen-
eralized k-ary tanglegrams on level graphs: A satis�ability-based ap-
proach and its evaluation. Discrete Applied Mathematics, 160(16-17):
2349�2363, 2012. URL http://dblp.uni-trier.de/db/journals/dam/

dam160.html#WotzlawSP12.

