
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Cybersecurity

Temperature attacks on TRNG and QRNG

devices

Supervisor Master Candidate
Prof. Mauro Conti Ludovica Barsi
University of Padova

Co-supervisor Student ID
Prof. Julio Hernandez Castro 2004063
University of Kent

Academic Year
2022-2023

ii

“”

iv

Abstract

The generation of completely random sequences is a crucial point for the security of systems
and technological infrastructures: in fact, we need purely random sequences for example for
the generation of cryptographic keys , values intended to be used only once (nonces) or initial
values (IV) necessary to check the integrity of the message received. These sequences can be
generated either by software or by hardware. For the latter, the generation of randomnumbers
is possible thanks to a physical (or quantum) process that let the produced sequences to be
completely randomand therefore tobenot predictable at all. Indeed, the big problem related to
the generation of randomnumbers is that if an attacker were able to predict what the sequence
produced in output will be, he could be able to compromise the entire system.
In thiswork, carried out in collaborationwith theUniversity ofKent (Kent,UK),we tried to

perform two different temperature attacks on two different hardware devices: in particular, we
worked on a True Random Number Generator (TRNG) named OneRNG and a Quantum
RandomNumberGenerator (QRNG)namedComSciremodel PQ32MU. For the first attack,
we brought both devices to very low temperatures (reaching a maximum of -30°C) while for
the second attack, both devices were brought to a maximum temperature of 80°C and 170°C
respectively.
The goal of these attacks was to measure not only which were the lowest and highest criti-

cal temperatures at which devices would stop generating truly random data, but also to mea-
sure which of the two devices was more resilient to thermal change. A thorough analysis of
the results obtained follows, in which we will analyze each file produced by the two devices.
For this scope, five different statistical tests were used: Ent, Booltest, PractRand, TestU01 and
BitRepsv1.0, an innovative statistical test created by the University of Kent which, using the
Bloom Filter, is able to provide a very accurate analysis of the results.

v

vi

Contents

Abstract v

List of figures ix

List of tables xiii

Listing of acronyms xv

1 Introduction 1

2 RelatedWork 3

3 Main Concepts 5
3.1 Formal Definition of RandomNumbers 5

3.1.1 The Continuous UniformDistribution 5
3.2 RandomNumber Generators . 6

3.2.1 Main features . 7
3.2.2 Different RandomNumber Generators in commerce 7

4 The OneRNGTRNGDevice 9
4.1 Device Design . 9

4.1.1 Avalanche Diode . 9
4.1.2 Channel-Hoppin Radio Receiver 11
4.1.3 Data Whitening . 11

4.2 Device Usage . 12
4.3 Data Collection . 12

4.3.1 Testing Environment . 12
4.3.2 Software Installation . 13
4.3.3 Device Operation . 13
4.3.4 Collection Process . 13

5 The ComScire PQ32MUQRNGDevice 17
5.1 Device Design . 17

5.1.1 Ring Oscillator . 18
5.1.2 The Quantum-Shot Noise . 19

5.2 Device Usage . 20

vii

5.3 Data Collection . 21

6 Statistical Tests 25
6.1 Ent . 25
6.2 BoolTest . 27
6.3 TestU01 . 29
6.4 PractRand . 31
6.5 BitReps . 33

6.5.1 Mathematical Theory . 33
6.5.2 The Bloom Filter . 34
6.5.3 Main Features . 36
6.5.4 Result interpretation . 39

7 Temperature Attacks 41
7.1 The cooling attack . 41

7.1.1 Setup . 41
7.1.2 The attack . 42

7.2 The heating attack . 44
7.2.1 Setup . 44
7.2.2 The attack . 46

8 Results Analysis 49
8.1 Results obtained with devices in normal conditions 50
8.2 Results obtained with devices under attack 53

8.2.1 The cooling attack results . 54
8.2.2 The heating attack results . 55

8.3 Result Analysis . 57
8.4 BitReps . 60

9 Conclusion 79

References 81

Acknowledgments 83

viii

Listing of figures

3.1 Probability Density Function of the UniformDistribution 6

4.1 OneRNGDevice . 10
4.2 Avalanche diode in reverse bias conditions 10

5.1 PQ32MUQRNGComScire Device . 18
5.2 Ring Oscillator Diagram . 19

6.1 Ent statistical test output . 27
6.2 BoolTest statistical test output . 28
6.3 TestU01 Rabbit statistical test output . 30
6.4 PractRand statistical test output . 32
6.5 BitReps Calculator Window . 37
6.6 BitReps Analyzer Window . 38
6.7 BitReps statistical test output . 39

7.1 Setup of Cooling experiment . 42
7.2 ComScire device after Cooling experiment 43
7.3 OneRNGDevice after Cooling experiment 44
7.4 Setup of Heating experiment . 45
7.5 Heating Attack on TRNGOneRNG device 47
7.6 Heating Attack on QRNGComScire device 48

8.1 OneRNG and Comscire data files analyzed with Ent Statistical Test 51
8.2 ComScire data file analyzed with BoolTest Statistical Test 52
8.3 OneRNG cmd0 data file analyzed with BoolTest Statistical Test 52
8.4 OneRNG cmd1 data file analyzed with BoolTest Statistical Test 53
8.5 OneRNG cmd3 data file analyzed with BoolTest Statistical Test 53
8.6 OneRNG cmd6 data file analyzed with BoolTest Statistical Test 54
8.7 OneRNG cmd7 data file analyzed with BoolTest Statistical Test 54
8.8 ComScire data file analyzed with TestU01 Rabbit Battery Statistical Test . . . 55
8.9 OneRNG cmd0 data file analyzed with TestU01 Rabbit Battery Statistical Test 56
8.10 OneRNG cmd6 data file analyzed with TestU01 Rabbit Battery Statistical Test 57
8.11 OneRNG cmd7 data file analyzed with TestU01 Rabbit Battery Statistical Test 57
8.12 ComScire data file analyzed with PractRand Statistical Test 58
8.13 OneRNG cmd0 data file analyzed with PractRand Statistical Test 59

ix

8.14 OneRNG cmd1 data file analyzed with PractRand Statistical Test 60
8.15 OneRNG cmd3 data file analyzed with PractRand Statistical Test 61
8.16 OneRNG cmd6 data file analyzed with PractRand Statistical Test 64
8.17 OneRNG cmd7 data file analyzed with PractRand Statistical Test 65
8.18 ComScire data file analyzed with Ent Statistical Test when the device is under

the cooling attack . 65
8.19 ComScire data file analyzed with BoolTest Statistical Test when the device is

under the cooling attack . 66
8.20 ComScire data file analyzed with Rabbit TestU01 Statistical Test when the

device is under the cooling attack . 66
8.21 ComScire data file analyzed with PractRand Statistical Test when the device

is under the cooling attack . 67
8.22 OneRNGdata file analyzed with Ent Statistical Test when the device is under

the cooling attack . 67
8.23 OneRNG cmd0 data file analyzed with BoolTest Statistical Test when the de-

vice is under the cooling attack . 68
8.24 OneRNG cmd6 data file analyzed with BoolTest Statistical Test when the de-

vice is under the cooling attack . 68
8.25 OneRNG cmd7 data file analyzed with BoolTest Statistical Test when the de-

vice is under the cooling attack . 69
8.26 OneRNG cmd6 and cmd7 data file analyzed with TestU01 Rabbit Battery

Statistical Test when the device is under the cooling attack 69
8.27 OneRNGcmd0datafile analyzedwithPractRandBattery StatisticalTestwhen

the device is under the cooling attack . 70
8.28 OneRNG cmd6 and cmd7 data files analyzed with PractRand Statistical Test

when the device is under the cooling attack 71
8.29 ComScire data files analyzedwith Ent Statistical Test when the device is under

the heating attack . 72
8.30 ComScire data files analyzed with BoolTest Statistical Test when the device is

under the heating attack (temperature=180°C) 72
8.31 ComScire data files analyzed with BoolTest Statistical Test when the device is

under the heating attack (temperature=200°C) 72
8.32 ComScire data files analyzed with PractRand Statistical Test when the device

is under the heating attack . 73
8.33 ComScire datafiles analyzedwithTestU01RabbitBattery StatisticalTestwhen

the device is under the heating attack . 74
8.34 OneRNGdata files analyzedwithEnt Statistical Testwhen the device is under

the heating attack . 74
8.35 OneRNG cmd0 data files analyzed with BoolTest Statistical Test when the

device is under the heating attack . 75

x

8.36 OneRNG cmd6 data files analyzed with BoolTest Statistical Test when the
device is under the heating attack . 75

8.37 OneRNG cmd7 data files analyzed with BoolTest Statistical Test when the
device is under the heating attack . 75

8.38 OneRNG cmd0 data files analyzed with PractRand Statistical Test when the
device is under the heating attack . 76

8.39 OneRNG cmd6 data files analyzed with PractRand Statistical Test when the
device is under the heating attack . 76

8.40 OneRNG cmd7 data files analyzed with PractRand Statistical Test when the
device is under the heating attack . 77

xi

xii

Listing of tables

4.1 OneRNGmodesof operation. Source: www.moonbaseotago.com/onerng/theory 12

8.1 Bitreps, block size=32 bits, error rate= 0.00001, expected distribution [79480,
146] , expected duplicates 79837, Expected false positives 20 62

8.2 Bitreps, block size=64 bits, error rate= 0.00001, expected distribution [8] ,
expected duplicates 0, Expected false positives 10 62

8.3 Bitreps, block size=128 bits, error rate= 0.00001, expected distribution [5] ,
expected duplicates 0, Expected false positives 5 62

8.4 Bitreps, block size=256 bits, error rate= 0.00001, expected distribution [-] ,
expected duplicates 0, Expected false positives 3 63

8.5 Bitreps, block size=512 bits, error rate= 0.00001, expected distribution [5] ,
expected duplicates 0, Expected false positives 1 63

xiii

xiv

Listing of acronyms

RNG RandomNumber Generator

PDF Probablity Density Function

IC Integrated Circuit

PRNG Pseudo-RandomNumber Generators

TRNG True RandomNumber Generators

QRNG QuantumRandomNumber Generators

IV Initial Values

BS Block Size

xv

xvi

1
Introduction

Random numbers are nowadays an essential resource given their use in the most diverse appli-
cations: indeed, randomnumbers are needed in statistical analysis [1], probability theory [2] as
well as in modern-day computer simulations [3]. In particular, they are at the basis of today’s
digital encryption: acting as ’nonces’, cryptographic keys, or initial values they are at the core
of every cryptographic algorithm. The generation of these numbers is carried out either by spe-
cific software (in this case we are referring to pseudo-random numbers) or by hardware which
exploit the physical (or quantum) properties of some components which by their nature are
random, such as the avalanche diode or quantum shot noise.

It is important to underline that although there exist many different devices for generating
random numbers, not all of them are reliable in the same way: that is to say, it is also essential
to pay attention to the quality of the numbers that are produced, as not always a number that
at first sight seems random it really is. There are a myriad of reasons why it could happen that a
device doesnotbehave as it should: this couldbedue to amalfunctionof oneof its components,
to an algorithm not implemented correctly as well as to an attack carried out by an external
attacker. To overcome this problem, statistical tests have been created capable of monitoring
the quality of these numbers: among these we mention the most famous ones such as Ent,
Dieharder or TestU01.

The aim of this thesis is to analyze the behavior of different hardware devices, specifically,
a True Random Number Generator (TRNG) named ’OneRNG’ and a Quantum Random
Number Generator (QRNG) named ’ComScire PQ32MU’, while these devices are under at-

1

tack. We performed two different temperature attacks: the first one aims to bring both devices
to very low temperatures while the second one aims to bring them to an extremely high temper-
ature up towhen they stop their functioning. In both cases our objective is tomeasure how the
devices react to such attacks and if and howmuch the entropy they are generating is influenced
from these attacks. This analysis can be done by monitoring the quality of the random num-
bers generated by these devices through different statistical tests: for this work, we chose four
of the most common statistical tests in commerce: Ent, BoolTest, PractRand and TestU01.
Moreover, a deep analysis of the statistical test BitReps is done: a novel statistical test devel-

oped by the University of Kent which exploits the Bloom Filter in order to check if there are
any repetitions at bit level.
Chapter 2 presents the related work to this thesis; in Chapter 3 it is included a brief explana-

tion of the main concepts needed in order to understand what a random number is and which
are the main random number generators in commerce; Chapters 4 and 5 explain in detail the
two devices we are going to use, which are their source of entropy and how we can use them
in order to generate and collect data. In Chapter 6 are presented the main statistical tests with
which we are going to perform the analysis of the results while Chapter 7 shows the two at-
tacks we have performed. Chapter 8 shows the results and makes a comparison obtained by
analysing the data before and after performing the attacks with the several statistical tests men-
tioned above while Chapter while chapter 9 is left for drawing conclusions.

2

2
RelatedWork

As the number of RNG hardware devices grew, so to did the number of attempted attacks.
This is also true with regard to the creation of new statistical tests, as some peculiar attacks are
so well performing that it is increasingly difficult to identify them. The aim of these tests is
to try to recognize sequences related to each other (and therefore under attack) in the shortest
possible time, in order to avoid that the compromised sequence can affect the application for
which it is used.

In a 2016 article written by B. Yang [4], an efficient method to detect attacks using on-the-
fly tests discovered which could be directly implemented in the RNG hardware. In particular,
almost all low-cost attacks (such as changing the temperature, voltage or clock frequency) were
attempted on the RNG device, subsequently several statistical tests were processed on input
data with the aim of selecting the most accurate features (in terms of lowest percentage of er-
ror) for detecting attacks. As a result, it was demonstrated that on-the-fly tests are capable of
detecting an attack as soon as a specific pattern of bits is identified in the sequence. This would
allow to immediately stop the entropy source and avoid that the compromised sequences can
affect the security of the device.

Another interesting result was found in [5], whereV.Govindan et al. pointed out the inabil-
ity of some statistical TRNG tests (among which we mention the NIST and Dieharder tests)
to recognize if a particular TRNG device is under attack or not. To test this, they developed a
“Hardware Trojan Horse” (HTH) based attack on the TRNG of a Field Programmable Gate
Array (FPGA) cryptosystem, on which they were able to introduce a 96-bit fixed pattern at

3

the beginning of 100 consecutive 218 bit-sized bitstream chunks. The HTH is activated when
an internal temperature of 42°C is reached, and once the attack has been performed, theHTH
returns to its inactive state until it is triggered again. It has been shown, accordingly to the birth-
day paradox, that in the presence of active HTH the probability of colliding bit sequences is
of 100%, but no one of the statistical tests that have been performed on the device was able to
point out that an attack was in progress.

Researchers in [6] exhibit a parametric hardware Trojan for a Ring Oscillator (RO-based)
TRNG presented in [7]. They demonstrate that at high temperature the entropy source is dis-
able to trigger the Trojan, and so it produces non-random and predictable results, but operates
properly under normal environmental conditions. They achieved the rapid collapse behavior
in a few cycles on the RO construction at high temperature, which is not useful to generate
random bits to provide enough entropy.

Authors in [8] investigate the experimental evaluation of a TRNG based on the Transition
Effect Ring Oscillator (TERO), which is originally proposed in [9]. They focused on the ro-
bustness of TERO TRNG against low temperature attacks and underpower attack. In this
vein, they demonstrated that in their TERO TRNG difference between low-temperature at-
tack and normal operationwas fairly low, but it was vulnerable to underpower attack. Authors
also clarified that lower voltage are known to slow down the circuit, which is influenced on the
decrease of the number of oscillations and this consequently decrease of randomness.

4

3
Main Concepts

In this chapter themain concepts that will be covered in the thesis will be discussed, so that any
reader, even less experienced, can deepen these topics and acquire a more solid basis to face the
rest of the thesis without gaps and be able to understand it more lightly.

3.1 Formal Definition of RandomNumbers

In order to explain what a Random Number is, we can mention the definition proposed by
NIST Institute [10]: ”A value in a set of numbers that has an equal probability of being se-
lected from the total population of possibilities and, in that sense, is unpredictable. A random
number is an instance of an unbiased random variable, that is, the output produced by a uni-
formly distributed random process.”

3.1.1 The Continuous UniformDistribution

One of the fundamental properties satisfied by random numbers is that they follow a uniform
distribution. In probability theory , the continuous uniform distribution or rectangular distri-
bution is a family of symmetric probability distributions. The distribution describes an exper-
iment where there is an arbitrary outcome that lies between certain bounds. The bounds are
defined by the parameters, a and b, which are the minimum and maximum values. The inter-
val can either be closed (e.g. [a, b]) or open (e.g. (a, b)). Therefore, the distribution is often

5

abbreviated U (a, b), where U stands for uniform distribution [11]. The difference between
the bounds defines the interval length; all intervals of the same length on the distribution’s
support are equally probable. This distribution represents the maximum entropy probability
distribution for a random variable X under no constraint other than that it is contained in the
distribution’s support.

In probability theory, the Continuous UniformDistribution is defined as a rectangular dis-
tribution since it allows to draw out an element over a uniform area, such that all the elements
have the same probability of being drawn out. The rectangular area is delimited by 2 param-
eters which define the bounds of the rectangle, ’a’ and ’b’: by changing these parameters we
define the underlying area of the rectangle. The distribution is often abbreviated as U(a, b),
where U stands for uniform distribution.

The corresponding Probability Density Function (PDF) is given by:

f(x) =

{
1

b−a for a ≤ x ≤ b
0 for x < a or x > b

(3.1)

Figure 3.1: Probability Density Function of the Uniform Distribution

3.2 RandomNumber Generators

High quality RandomNumbers are nowadays of vital importance for security-critical environ-
ments: indeed, in order for a cryptographic system to be defined as secure, it must use keys,
seeds or nonces (i.e. sequences of bits necessary to encrypt a message or to exchange keys be-
tween two parties) that are completely random and therefore cannot be predicted. In fact, if it

6

would have been possible to predict such sequences, this would mean not only that they could
no longer be used (because of the lack of secrecy) but also that the entire cryptographic system
would be compromised.

3.2.1 Main features

Asmentioned in [12], there exist different features that must be taken into account in order to
understand how well an RNG device is behaving, in particular:

• Uniformity: Generated numbers should be evenly distributed in a given range;

• Independence: the numbers generated must not have correlations among them;

• Period length: The period must be high before a repeating sequence begins;

• Replicability: the generation of a sequence of numbersmust be replicable (e.g. to allow
for testing);

• Speed: clearly the algorithmmust have a suitable speed for the various applications;

• Controlledmemory usage;

• Security: In sensitive applications, such as encryption for online communications, it
should not be possible to predict the result of the algorithm.

Each of these characteristics affects the quality and reliability of the numbers generated in
output: for example, with the same quality of bits, it will always be preferred a faster generator
than a slower one, or the one more resistant to attacks, or again the one which will have fewer
times a sequence repeated in the output.

3.2.2 Different RandomNumber Generators in commerce

RandomNumber Generators (RNGs) are software or hardware that allow the production of
RandomNumbers. There exist mainly three different types of RNGs:

• Pseudo-Random Number Generators (PRNGs) Are based on an algorithm whose
initial value is determined by a seed. PRNGs are able to produce output numbers that
seem to be random but, due to the underlying deterministic algorithm that produces
them, they are actually easily predictable. That said, over time it becomes extremely easy
for a smart user to predict which sequences will be obtained from a PRNG’s output,
which is why currently PRNGs are no longer in use in cryptographic systems;

7

• True Random Number Generators (TRNGs) Base their strength on the use of un-
predictable physical phenomena, such as avalanche noise, thermal noise, or clock drift
[13]. Thanks to their non-deterministic nature, TRNGs offer an easy and cheap way to
generate random data: the necessary physical components needed for randomness that
must be installed on the TRNG hardware are all easily accessible, both from the point
of view of availability and cost. While this can be seen as an advantage, it also appears to
be the biggest drawback: in fact, being easy to find these materials, it is at the same time
very easy to tamper with the hardware and compromise the use of the device;

• QuantumRandomNumber Generators (QRNGs)Are generators that base their ran-
domness on the laws of quantum physics (which, by nature, are non-deterministic pro-
cesses): according to the Born’s rule [14], the possible outcome of a number cannot be
predicted except at the exact moment in which it is measured. There are several method-
ologies for the generation of quantum random numbers: the greatest effort, given its
large-scale implementation, is employed in trying to generate ever smaller and faster de-
vices, while maintaining an affordable price.

8

4
The OneRNGTRNGDevice

4.1 Device Design

OneRNG [15] is an open source random number generator, created by two developers based
in New Zealand: Jim Cheetham and Paul Campbell. The device’s design has gone through
a number of incremental improvements, with versions 2 and 3 being made available for pur-
chase via an associated e-shop. Due to the open source nature of OneRNG, it is easy to study
both the hardware and software components of the device to get a deeper understanding of its
functionality. In this chapter, the design of this device is more thoroughly examined.

As shown inFigure 4.1,OneRNGis designed tobe connected to a hostmachine via aUSB-A
port. It is compatible with a number of operating systems such as various Linux distributions,
MacOS andWindows.

OneRNG generates random data through two entropy sources that, namely an avalanche
diode and a channel-hopping radio receiver, which are covered in more detail below.

4.1.1 Avalanche Diode

By applying a specific reverse bias voltage to a diode that is higher than it should receive, the
forced passage of current allows free electrons (which acquire a certain kinetic energy) to hit a
lattice of atoms of the diode present in the depletion region. This impact (which is commonly
referred to as “avalanche breakdown” [16]) causes new electrons to detach from the lattice and,

9

Figure 4.1: OneRNG Device

following a similar process, to hit other atoms, which will release even more electrons, gener-
ating a new reverse passage of current within the diode. This process can be used as a source
of entropy as the exact current flowing across an avalanche diode while it is in avalanche break-
down is unpredictable, thus leading to an (almost) completely random process.
In Figure 4.2 it is possible to see the functioning of the avalanche diode: the positive charge

attracts the free electrons (green dots) while the negative charge attracts the protons (red holes)
leaving a large depletion region (yellow area): by applying an high voltage in input, the deple-
tion region is filled with many electrons generating a passage of current.

Figure 4.2: Avalanche diode in reverse bias conditions

10

4.1.2 Channel-Hoppin Radio Receiver

The OneRNG’s second source of randomness uses an random number generation method
that is pre-built into the CC2531 chip. This method measures RF signals from a randomly
selected frequency (between 2394-2457MHz), and records the least significant bit. After 80-
111 sampling loops, a new frequency is selected.

4.1.3 DataWhitening

In order to offset slight biases in the entropy generation methods (Approximately 5% more
1’s than 0’s in the avalanche diode system, and approximately 0.14% using the RF source), On-
eRNGalso provides the option toperformdatawhitening on any collected randomdata before
providing it to the host. Data whitening is a process that attempts to take data that may be ini-
tially correlated, and produce almost completely uncorrelated output. This is possible thanks
to a whitening process that transforms a vector of random variables with a specific covariance
matrix into a set of new variables whose covariance is the identity matrix: in particular, the co-
variancematrix (whose aim is to give information about howmuch data in input are correlated
among them) projects input data along a specific direction. After the whitening process data,
which now have identity covariance and variance equal to 1, are spread and projected into a
sphere about the origin, thus deleting the dependencies from the initial direction (that is why
the whitening transformation is also referred to as sphering transformation). Data whitening is
used across different RNG devices, since it is a simple process that allows to eliminate any kind
of bias or correlation among data.

The OneRNG implements data whitening by inputting the generated entropy into a CRC
algorithm provided by the on board CC2531 chip. To do this, OneRNG feeds any generated
input into a linear-feedback shift register (LFSR) one byte at the time, which triggers a CRC-
16 calculation to be performed using the polynomial x16+ x15+ x2+ x. The upper byte of the
CRC calculation is then added to the entropy pool.

The developers recommend that rather than using this whitening method, users should in-
stead use OneRNG as an entropy source for any random number generators already provided
by their operating systems.

11

Table 4.1: OneRNG modes of operation.
Source: www.moonbaseotago.com/onerng/theory

Command Avalanche
Disable

RF
Enable

Whitener
Disable Function

cmd0 0 0 0 Avalanche noise with whitener
cmd1 0 0 1 Raw avalanche noise
cmd2 0 1 0 Avalanche & RF noise with whitener
cmd3 0 1 1 Raw Avalanche & RFNoise
cmd4 1 0 0 No noise
cmd5 1 0 1 No noise
cmd6 1 1 0 RF noise with whitener
cmd7 1 1 1 Raw RF noise

4.2 Device Usage

Users can interact with the device by sending commands via a terminal interface. These com-
mands can be used to select which entropy source(s) should be active, whether to apply data
whitening to generated data, or dump program data. The full list of commands that is shown
below in Table 4.1.

Typically, however, the user will not interact with the device directly. Instead, users are en-
couraged tomodify a configuration file provided as part of the installation process. Despite the
RF source being less prone to bias, by default, the OneRNG uses the avalanche diode circuit
(with whitening enabled) to generate entropy. According to the developers, this is due to the
RF source being potentially more vulnerable to outside interference.

4.3 Data Collection

For this work, we needed to create a reliable and reproducible environment with which to test
the OneRNG devices. In this section, the steps taken to install and extract data from the On-
eRNG device will be detailed, such that the environment may be re-created.

4.3.1 Testing Environment

All testing that was performed on version three of theOneRNGdevice. In all instances of data
collection, the connected host machines were using Ubuntu 22.04 installed over a VirtualBox.

12

4.3.2 Software Installation

In order for the OneRNG to function as intended, users are required to install a set of soft-
ware from the OneRNG website. Initially, we attempted to install version 3.6-1 of the soft-
ware, made available on the e-shop website. However, due to the age of the software, a num-
ber of compatibility issues were encountered. One of the dependencies required by the soft-
ware, python-gnupg, was not able to be installed via the original method. After investigating
further, the forum Instead, we modified the provided “.deb” package to instead depend on
python3-gnupg, which was possible to install. Additionally, to work with newer kernel up-
dates, an updated script was provided on a forum provided by the developers. For our testing,
we implemented these changes, and were successfully able to interact with the device. An “of-
ficial release” of these changes was released on the main website in April 2022, as version 3.7-1.
This version contains minimal differences when compared to our implementation, and can be
used as a substitute.

4.3.3 Device Operation

The software installation can be split into three parts: a udev rule, a shell script, and a configu-
ration file.

First, the udev rule is used to detect when a OneRNG device is plugged in. Once a On-
eRNG device is detected, the shell script is run to configure the device and perform any neces-
sary validation. The behaviour of this script is influenced by the configuration file, which can
be accessed by the user to modify various device settings.

4.3.4 Collection Process

For our tests, we ideallywanted to extract data directly from the device. This can be achieved by
reading directly from the device via the /dev/ttyACMX file (where X is the index of the USB
device). While this allowed us to collect large amounts of data, we also wanted to be able to
switch the device’s modes of operation.

To operate the device as closely to its intended usage as possible, to switch modes we would
modify the configuration file to the new mode, then re-plug the device. In some cases, we
were even able to re-plug the device when the power of the host’s USB ports were software
controllable. During this work, we developed a shell script that could be used to automatically
collect data from connected OneRNG devices with various modes, which is provided below:

13

#!/bin/bash

################CONFIG################
device_id="1-1:1.0" # check /sys/bus/usb/drivers/cdc_adc
for options
gensize="1gb" # NOTE: also have to change the dd "count".
datasource=$1
######################################

remount_rng() {
echo "Remounting OneRNG, this will take about
15 seconds."
echo -n $device_id | sudo tee -a /sys/bus/usb/drivers/cdc_acm/unbind
1>/dev/null
sleep 3
echo -n $device_id | sudo tee -a /sys/bus/usb/drivers/cdc_acm/bind
1>/dev/null
sleep 10
}

modifycmd() {
echo "Mode set to cmd$1."
sed -i -r "s/ONERNG_MODE_COMMAND=\"cmd.*\"/ONERNG_MODE_COMMAND=
\"cmd$1\"/" /etc/onerng.conf

}

reset_rng() {
echo "Restoring original configuration"
mv onerng.conf.bak /etc/onerng.conf
remount_rng
}

echo "----------OneRNG file generator----------"

14

if ["$EUID" -ne 0]
then echo "Must be running as root to modify OneRNG Config"
exit

fi

List out original config and save it
echo "'Default' config variables:"
grep -E '^ONERNG_START_RNGD|^ONERNG_MODE_COMMAND|^ONERNG_AES_WHITEN|
^ONERNG_URANDOM_RESEED|^ONERNG_ENTROPY|^ONERNG_FEED_KERNEL|
^ONERNG_FEED_RATE' /etc/onerng.conf

echo -e "\nSaving backup of current config to local directory.\n"
cp /etc/onerng.conf ./onerng.conf.bak

echo -e "Setting stty to fetch raw data"
stty -F /dev/ttyACM0 raw -echo

echo -e "Gen Filesize: $gensize\n"

Loop through various cmd modes.
for mode in 1 3 6 7
do
echo "###Creating file: oneRNG_${datasource}_cmd${mode}.rand"
modifycmd $mode
remount_rng

Are we getting directly from the device, or via /dev/random?
if ["$datasource" = "direct"]; then
dd bs=1024 if=/dev/ttyACM0 iflag=fullblock count=1048575
of=oneRNGraw_${datasource}_cmd$mode.rand status=progress

elif ["$datasource" = "devrand"]; then
echo "Waiting 30 seconds so that the new mode can feed into the

15

entropy pool a few times."
sleep 30
dd bs=1024 if=/dev/random iflag=fullblock count=1048575
of=oneRNGraw_${datasource}_cmd$mode.rand status=progress

else
echo -e "\nError, no datasource selected.\nUSAGE: gen.sh
[datasource]\n---Datasources:\n'direct' to fetch directly
from OneRNG\n'devrand' to fetch from /dev/random\n\n"

reset_rng
exit
fi

done
reset_rng

In particular, the OneRNG device produces data at a rate of 53kb/s. For the experiments
we had to conduct, we first collected 100MB of data for each of the 7 modes (cmd0-cmd7) of
the device and, each time we performed an attack, we again collected the same amount of data
with the same modes to analyze how much they differed from each other. The only 2 modes
whose we avoided to collect data from are modes 4 and 5: this is because those 2 commands do
not use any of the entropy sources of our interest.

16

5
The ComScire PQ32MUQRNGDevice

In this chapter we will analyze in more detail the QRNG device PQ32MU [17] sold by the
ComScire company. This device seems to be extremely promising by exploiting a quantum
property called Quantum Shot-Noise, which guarantees high reliability on the data generated
in output.

5.1 Device Design

ThisQRNGdevice was designed in accordance with recommendations provided byNIST (SP
800-90), which provide entropy source specifications for random number generators. This
generator guarantees the passing of every statistical test aimed at analyzing the randomness of
a device. Furthermore, this device has been designed to generate at least 1TB of data. Last
but not least, all ComScire models have internally several tests designed to measure the quality
of the output data such as the p-value, the z-score or the auto-correlation: the device has an
internal threshold sensor which, if exceeded, indicates that the output is no longer generating
the data correctly, blocking its leakage to prevent security issues. In image 5.1 it is shown the
internal circuit of the device.

This device is capable of generating data at a speed of 32Mb/s with an estimated error of
+-0.005%. The value of the auto-correlation is minimal (<1 part per trillion) and the estimated
entropy is around 0.99 bits per output bit. The device looks like a black aluminum box closed
with an internal FPGA: this is done to prevent the formation of humidity and the thermal

17

Figure 5.1: PQ32MU QRNG ComScire Device

conditions in which it can work are 0-50C°. The manufacturers suggest that it is suitable for
gaming, security,cryptography and research. This QRNG device hosts an Altera Cyclone III
FPGA, a low cost Integrated Circuit(IC) which also allows it to be programmed according to
the specifications desired by the vendor. As entropy source, the QRNG PQ32MU uses a 12-
LUT Ring Oscillator which allows the generation of quantum shot-noise - in the following
sub-sections the entropy generation functioning is explained in detail.

5.1.1 Ring Oscillator

As shown in Figure 5.2, a ring oscillator [18] can be defined as a chain formed by an odd num-
ber of inverters (also called NOT gates) whose output oscillates between two voltage levels
which represents the ’0’ bit (false) or the ’1’ bit (true). The last inverter output is connected
in a feedback loop to the first inverter in input - that is why we refer to it with the term ’ring’.
In particular, inverters are electronic components that given in input a Direct Current (DC)
generate in output an Alternate Current (AC) with a square wave form: this is possible thanks
to an oscillator which is able to turn on and off several transistors (which are often substituted
byMOSFETs) at an high speed.

18

Figure 5.2: Ring Oscillator Diagram

Since the first inverter generates the logical NOT, by putting in series an odd number of
NOT gates, also the last output generates again a logical NOT. The final output is asserted
a finite amount of time after the first input is asserted and the feedback of the last output to
the input causes oscillation. The number of ring oscillator’s stages depends on the number of
inverters N: if we refer to the ring-oscillator in figure 5.2, a 3-stage ring oscillator contains N=3
inverters in the chain.
Generation of the square wave
In order to understand how a ring oscillator works, first we need to understandwhat is a gate

delay. In order to work properly, an inverter made with MOSFETs must first be charged and,
after a specific amount of time, it generates the corresponding output: this generates a delay
between the input and the output and, by adding several inverters in series, the delay increases
even more causing a reduction in the frequency produced in output.

Given these premises, suppose to be in the situation in which an inverter has the same volt-
age in input and output and to have a small amount of noise in input to the inverter: this
small amount of noise generates a voltage gain greater than 1 in output, which is then inverted
and given in input again to the inverter through the feedback loop causing the square wave in
output.

5.1.2 The Quantum-ShotNoise

The quantum-shot noise [19] is a noise that, due to its nondeterministic nature, can be de-
fined as a quantum process and it is the source entropy of the QRNG ComScire PQ32MU.
Similarly to the TRNGOneRNG device, the Altera Cyclone III FPGA contains a MOS [20]
(Metal-Oxide Semiconductor) which works in reverse bias conditions: when in reverse bias,
if in input the MOS receives a voltage higher than allowed, the p-n junction capacitance of

19

the diode increases generating a gate leakage of electrons which, by hitting the lattice of atoms,
generates fluctuations of uncorrelated, quantized charge carriers which is by nature non deter-
ministic.
The jitter
The jitter [21] can be generalized as a delay that may arise for many causes, such as thermal

noise or time variations. In a n-LUT ring oscillator, at each n stage the total jitter increases
as soon as we pass through each stage (each of the n inverters). The total cumulative jitter
from these sources is the jitter introduced by a single stage multiplied by the square root of the
number of stages the transition has passed through before being measured. In our case, the
jitter is indeed caused by source entropy generated by the the quantum shot-noise signal in in-
put, and it is possible to measure the amount of entropy generated by sampling in output the
free-running oscillator with another oscillator. The Altera Cyclone III FPGA contains three
connections which are equally-spaced along the 12-LUT ring oscillator. These three connec-
tions are then combined in a 3-input XOR gate to produce an enhanced ring oscillator output
signal at three times the ring oscillation frequency: this allows also the generation of three inde-
pendent entropy sources because the time spacing between the three connections is very large
compared to the jitter distribution at each tap (over 10,000 standard deviations), and therefore
the amount of mutual entropy due to sampling of overlapping jitter distributions is insignifi-
cant. Basically, first it is given in input to theMOS a slightly higher voltage than allowedwhich
permits the generation of discrete quantize carriers; the amount of voltage generated in output
is sampled and measured by the 12-LUT ring-oscillator and it is finally converted from analog
to digital in order to return the stream of bits in output.

5.2 Device Usage

The ComScire device is extremely easy to install under Windows and relatively easy to install
under a Linux OS, in particular we have installed the latest software version, v3.6. While on
the Windows operating system the software contains an intuitive and easy to use GUI, on the
Linux operating system all operations are performed and displayed from the terminal. As far as
installation is concerned, ComScire has an online guide which explains in detail all the steps to
be taken to install the software depending on the operating system we are using. In particular,
in our case we used Ubuntu 22.04 installed on the VirtualBox v7.0 virtual machine.

There are 3 libraries to install:

• LIBUSB-1.0which allows the device to be recognized by the USB port;

20

• LIBFTDI1 which, used together with LIBUSB-1.0 allows a connection to talk to the
FTDI’s UART/FIFO chips integrated in the device;

• LIBQWQNG, a library that allows access to the device (only after changing the access
privileges to the .sh file with the command chmod +x ubuntu-x64.sh.

After installation, you can verify that everything went well by running several tests listed in
the ./examples folder:

$./examples/clear
$./examples/deviceid
$./examples/diagnostics
$./examples/errorhandl
$./examples/randbytes
$./examples/randint32
$./examples/randnormal
$./examples/randuniform
$./examples/reset
$./examples/runtimeinfo
Once installation is complete, the device is connected to the computer via a USB2.0 cable

supplied in the box: the device automatically starts generating data and at the same time pro-
viding information about the tests it carries out: p-value, z- score, entropy and auto-correlation.

5.3 Data Collection

For our purposes, we have generated an executable file ./lotta which allows the generation
of a specific amount of data which are automatically saved on file: in fact, all the statistical tests
are performed not by directly analyzing the data generated in output but by inputting the test
the .rand file directly.

We first collected 10 files of 100MB each and at least 1 file of 100MB for each type of attack
performed. The executable file ./lotta allows to decide the amount of data to generate and
save it on a file whose we can choose the name:

#include <stdlib.h>
#include <stdio.h>

21

#include <string.h>
#include <qwqng.hpp>

QWQNG* QNG;

// Author: Calvin Brierley (crb34@kent.ac.uk)
// Based upon original example code provided by ComScire (RandBytes.cpp)
int main(int argc, char *argv[])
{

if(argc != 2) {
printf("Incorrect number of arguments.\n");
printf("Expected usage: %s [number of bytes]\n", argv[0]);
return EXIT_FAILURE;
}

char* p;
long totalBytes = strtol(argv[1], &p, 10);
if(!*p == 0) {
printf("Provided argument was not a number, exiting.\n");
return EXIT_FAILURE;
}

int qngStatus = 0;

QNG = new QWQNG(); // create class

//printf("\n%s\n\n", "Start Device...");

/* Print Status String */
char* statusString;
statusString = QNG->StatusString();
//printf("Status: %s\n\n", statusString);

22

/* Print open device serial number */
char* SerialNumber;
SerialNumber = QNG->DeviceID();
//printf("DeviceID %s\n\n", SerialNumber);

/* Loop through and get bytes */
//printf("\nGetting %s random bytes\n\n", argv[1]);
char* randbyte;
int bytecount;
while(totalBytes > 0){
if(totalBytes >= 1024) {
bytecount = 1024;
} else {
bytecount = totalBytes;
}

randbyte = new char [bytecount];
if ((qngStatus = QNG->RandBytes(randbyte, bytecount)) != S_OK) {

printf("Error: %s\n\n", QNG->StatusString());
return EXIT_FAILURE;

}
for (int i=0; i<bytecount; i++) {

printf("%c", randbyte[i]&0xFF);
}
totalBytes -= bytecount;
//printf("\nBytes left to print: %ld\n\n", totalBytes);
}

// Cleanup
delete [] randbyte;
delete QNG;

23

//printf("\n\n%s\n\n", "EXIT...");

return EXIT_SUCCESS;
}

24

6
Statistical Tests

In order to measure the reliability of the output of OneRNG and ComScire devices, several
state-of-the-art statistical tests have been chosen: their goal is precisely to perform different
types of tests on the data generated in the output to verify if there is any kind of correlation
between the measured bits. It is legitimate to wonder why different statistical tests are carried
out on the output data instead of choosing only one thatwedeem themost accurate: the reason
is because each of the tests taken into consideration perform a different type of analysis on the
data, thus allowing not only to check whether the output is random or not, but also whether
the possible internal correlation of the data is for example long-range or short-range, orwhether
the output fails on a specific test. All this information is extremely important to be able to carry
out an in-depth analysis on the quality of the output and understand how, after performing a
specific attack, the data has been modified.

We have considered five statistical tests, in particular: Ent, Booltest, PractRand, TestU01
and BitReps, each with different characteristics to allow us to analyze different aspects on the
obtained data - a detailed analysis of them follows in this chapter.

6.1 Ent

Ent [22] is a straightforward and easy-to-use statistical test for testing randomness: it performs
5 different sub-tests on an input file and gives in output information about if the input stream
can be defined as random or not.

25

Ent computes five different tests which are defined as follows:
- Entropy: measures the information density of a file content, basically analysing its com-

pression: for a byte file, the entropy value should be a value near to 8 while for a bit file, this
value should be near 1;

- Chi-square test (χ2) : is an extremely sensitive test and give precise information about if
a file is truly random or not. Firstly, Chi-square test computes the expected number of oc-
currences in a given bit sequence and then compares this value with the one obtained by the
output file: if the difference between the expected uniform value and the output file is large, it
is possible to conclude that the file contains signs of non-randomness. For a byte output file,
the Chi-square value can be computed as:

χ2 =
255∑
i=0

(xi − E[xi]])2

E[xi]]

where xi is the number of occurrences of byte i obtained from the output file while E[xi] is
the expected number of occurrences under the assumption of a uniform output;

-Aritmetic Mean:
It gives information about the bytes average value for a byte output file this mean should be

around 127.5 and can be easily computed as:

x̄ =
n−1∑
i=0

xi
n
;

- Montecarlo value for π: a sequence of 6 bytes is used to compute the 24-bit X and Y
coordinates within a square. For almost random sequences, the inscribed circle in this square
should assume a value near to π ;

- Serial correlation coefficients: measures how much a byte depends on the previous one.
For completely random data, this value should be near to 0; for pseudo-random data instead
this value is nearly 0.5 while if data are completely correlated, the serial correlation coefficient
value may reach values near to 1.

Moreover, Ent allows to specify 5 different options, each of which allows you to make a
specific analysis on the data:

• [-b]: the input file is read as a stream of bits instead of bytes;

• [-c]: prints the number of occurrences for each byte (or bit if -b option is enabled);

• [-f]: folds upper-case letters to lower-case letters according to the ISO 8859-1 standard;

26

• [-t]: output file is in CSV format which allows for an easier analysis of data;

• [-u]: just prints the how-to-call information.

In the image below it is possible to see the output of Ent test: the first row indicates the
different parameters that Ent takes into consideration while the corresponding results for that
particular data file are shown in the second row. By specifying the -t parameter, we require
that the output is also shown in .svg format: indeed, the third row shows the amount of '0's
and '1's contained in the data file and the corresponding percentage of appearance for each
of them.

Figure 6.1: Ent statistical test output

6.2 BoolTest

BoolTest [23] is based on looking for Boolean functions that exhibit an unexpected bias and
identifying the simplest function that does so.

TheMonobit test , which looks at the ratio of ones and zeros in the given sequence, served as
themodel for BoolTest. When inMonobit test, f(x1) = x1 is applied to all of the sequence’s bits,
its outcomes is testing whether number of ones ’1’s and ’0’s are close to each other as would
be expected for random data.f(x1, x2, ..., xm) of m variables can be used to apply any Boolean
function on non-overlapping blocks ofm bits.

Additionally, in order to find connected bits in the bit level processing, we must repeatedly
run theprocesswithdifferent relations andbit chosen,which is actually time consuming. How-
ever, Booltest simply needs only a brief amount of time to evaluate the test. The performance
was verified on more than 20 real world cryptographic functions – block and stream ciphers,
hash functions and pseudorandom generators.

In Booltest, input data are divided into multiple non-overlapping blocks and then the poly-
nomials are built based on the bit values depicted in a block. After finishing the analysis of
the input data, Booltest computes the distribution of bit-level polynomials based on the given

27

input and compares them with the expected distribution of truly random data. The level of
randomness of a given data is computed by checking a value known as z-score: if the z-score of
observed distribution is outside the interval of the z-score of predefined expected truly of random
data, the tested data is considered to be non-random, otherwise it is reported as acceptably
random.
Z-score and P-value
Z-score is a numerical measurement, which follows the standard normal distribution of the

original data, and performs value’s relationship to the mean of a group of value. It measures
the distance between the mean using standard deviation and a certain data point. Z-score can
be positive or negative. It is positive if the observed value is above themean, and it is negative if
observation value is below themean. In Booltest the stronger distinguisher (Boolean function)
is obtained by the bigger value of z-score.
P-value is a probabilistic indicator of how closely perfect random sequence (expected value)

and random sequence being tested (observed value) match. Instead of computing p-value, one
can directly compute z-score, since they are related and z-score is also simpler and faster.

In the image below a possible output of BoolTest is shown. The analysis is done through
the z-score value: if the output from data lies in the interval [4.775841 , 7.609938] , the
randomness test is passed and Booltest output the log “BoolTest could not find statistically
significant non-randomnes”.

Figure 6.2: BoolTest statistical test output

28

6.3 TestU01

TestU01 [24] is an extremely powerful software library implemented in ANSI Cwhich allows
to perform a great variety of statistical tests on data and consequent analysis of the results.

It is possible to use this test not onlywith your own randomnumber generators (for example,
specific RNG hardware) but also with some already predefined ones in the library, which rep-
resent the best known generators proposed in the literature or found in widely-used software.
The same goes for statistical tests: TestU01 proposes some of the most famous ones already
existing in the literature but also most recent ones. It provides general implementations of the
classical statistical tests for randomnumber generators, as well as several others proposed in the
literature, and some original ones. It gives also the option to use basic tools for plotting vectors
of points produced by generators.

Additional software permits one to perform systematic studies of the interaction between a
specific test and the structure of the point sets produced by a given family of random number
generators. That is, for a given kind of test and a given class of random number generators,
to determine how large should be the sample size of the test, as a function of the generator’s
period length, before the generator starts to fail the test systematically.

This library consists of four modules:

1. ’u’ module: to implement RNGs;

2. ’s’ module: to implement single statistical tests;

3. ’b’ module: to implement pre-defined battery of tests, which consist of different single
statistical tests defined in ’s’ module;

4. ’f’ module: implementing tools for applying tests to entire families of generators.

The name of every library element, such as type, variable or function, is prefixed by the name
of themodule towhich it belongs. Chapters 2 to 5of theUser’s guide describe these four classes
of modules and give some examples.

TestU01 comes with a comprehensive guide[25] which helps the user to perform different
analysis according to his specific needs. For our needs, we wrote a simple C program which
takes as a generator in input directly the data files generated byOneRNGandComScire devices
and executes specific tests on these data. The program performs the Rabbit battery test, since
together with the Alphabit battery tests are the only two batteries whose it is possible to decide

29

the amount data to give in input. Here follows the code, where everytime it is necessary to
specify the data file name which in this case is the "ComScire.bin" file:

#include "unif01.h"
#include "bbattery.h"
#include "gdef.h"
#include "swrite.h"
#include <stdio.h>

int main(void)
{

swrite_Basic = FALSE;
bbattery_RabbitFile ("ComScire.bin", 100000000)
return 0;

}

In thefigurebelow it is showna summaryof theRabbit battery test appliedon theComScire.bin
file: after a brief summary about the version in use, the type of generator and the time used by
the CPU to compute the test, the TestU01 output shows only the singular statistical tests (if
any) belonging to the battery that have not beenpassed and the correspondingp-value obtained
in output.

Figure 6.3: TestU01 Rabbit statistical test output

30

6.4 PractRand

PractRand [26], which stands for ’Practically Random’, is a C++ library that works both as
an RNG and as a Statistical Test for analyzing the randomness of data. With the provided
commands, it is possible to give in input both the files produced by the PractRand RNG or,
if needed, also new input files. Simlar to what Ent Test does, PractRand performs a variety of
sub-tests, this time trying to find out both correlations on long and short range sequences: in
fact in many cases the different attacks on RNGs are made by making sure that analyzing the
data over short range (i.e. based on short data sequences), they seem unrelated but once it is
performed a longer range analysis (i.e. based on very long sequences) it is possible to notice a
strong dependence among output data.

The five subtests that PractRand performs are presented above:

• BCFN: checks for long range linear correlations (bit counting), in practice this test looks
for Fibonacci style repetitions that, relying on long sequences, often escape other statis-
tical tests;

• DC6: checks for short range linear correlations (bit counting) and this is done basically
by looking for overlapping values of short sequences;

• Gap16: counts the number of digits that appear between repetitions of a particular digit
and then uses the Kolmogorov-Smirnov test to compare with the expected number of
gaps

• BRank: sequences of bits are given in input as rows to a matrix, then it is checked for
linear dependencies among different rows;

• Float Point Frequency - FPF: checks for short range correlations (shorted than DC6
test)

As for the interpretation of the results, PractRand progressively updates the analysis status
in output showing the RNG name, the number of bytes tested, the time taken and the RNG
seed used. Once the test has analyzed all the input data, if one or more anomalies have been
detected an output table is shown containing the name of the test on which the sequence has
“failed” (i.e. it could not be judged as random), the corresponding p-value of the data found on
that test and a final evaluation that indicates whether the sequence seems only “suspicious” (i.e.
signs of non-randomness have been detected but they are not enough to declare the sequence
as compromised for that test) or if it is completely compromised and so it is not possible to use

31

it anymore. On the contrary, if the test does not detect anomalies, it ends as soon as all the bytes
have been analyzed and does not show anymessage, unless the “-p 1” option is enabled: in that
case the output table will show all the results obtained from the different tests and will mark
them as “normal” .

Figure 6.4: PractRand statistical test output

Infigure 4.4 it is possible to see part of thePractRand statistical test output. Not surprisingly,
this test analyzes increasing bit sequences, each time increasing the power it is observing by 2:
in this way it can first apply the short-range tests on short bit sequences and then pass to an
analysis on longer sequences.

32

PractRand is a very lightweight and powerful test, it is extremely accurate and tries to solve
the problem raised in Ent: at the expenses of a large use of memory, by being able PractRand
to obtain information on both short-range and long-range sequences, it ranks among themost
promising tests currently in use.

6.5 BitReps

Developed by the University of Kent as part of the Quantum Communications Hub, Bitreps
[27] is a statistical test for identifying signs of non-randomness within the output of an RNG.
By making use of the Bloom filter, its purpose is to identify bit-level repetitions in a sequence:
this is done by comparing the observed level of repetition with the expected level of repetition
that a random sequence should have, basically measuring the distinguishability between two
probability distributions.

6.5.1 Mathematical Theory

The aimofBitReps is to compute the expected number of genuine repetitions for a givenRNG
output. Given a set {1, ..x}, let Xn denote the number of distinct results if the set {1, ..x} is
drawn n times.

Then the expected number of genuine repetitions is given by:

E[Xn|Xn−1 = r] =
r
x
· r+

(
1− r

x

)
·
(
r+ 1

)
=

(
1− 1

x

)
·r+ 1

which can be rewritten as:

E[Xn|Xn−1] =
(
1− 1

x

)
·Xn−1 + 1

So the expected value of Xn can be computed as:

E[Xn] = E[E[Xn|Xn−1]] = 1+
(
1− 1

x

)
·E[Xn−1]

which, solving the recursive relation, results in:

E[Xn] = 1+
(
1− 1

x

)
+
(
1− 1

x

)2
+
(
1− 1

x

)3
+..+

(
1− 1

x

)n−1

that, finally, can be rewritten as:

33

E[Xn] = x
(
1−

(
1− 1

x

))n

Let b represent the blocksize (in bits) of a given sequence: the output of an RNG can be
considered the sampling of the set {x=0, ..., 2b}. Using the above formula, BitReps calculates
the expected number of genuine repetitions for a given RNG output, being n the number of
blocks. Inpractice, in order to compute the expectednumber of repetitions of a given sequence,
BitReps makes use of Bloom Filters.

6.5.2 The Bloom Filter

BitReps bases its theory on Bloom filters [28], designed in the 1970s by developer Burton
HowardBloom. Thesefilters are extremelyuseful because they allow toworkwith large amounts
of data while maintaining high efficiency in terms of memory used, speed and computational
complexity. A Bloom filter can be described as an approximate data structure since it is able, in
a very short time, to provide information about whether one or more elements are (probably)
present in a set or if they certainly are not: in practice, the final result may be a false positive
but for sure it will not be a false negative.

In this section, after briefly explaining the basic properties of hash functions, we are going
to see how Bloom Filters work, what makes them so efficient and how do we exploit them in
our work.

• Hash Functions
Ahash function is a function h : X → Y that maps any arbitrary long input X to a fixed
length output Y. In particular, this function has two properties:
- for any given input X to an hash function, the corresponding output Y = h(X) is
easy to compute but hard to invert: while it is easy to compute Y knowing X, it is hard
knowing Y to retrieve information about X.
- Given the distribution of the input X, the output distribution Y is a uniform distribu-
tion over the set of the possible outputs: Y ∼ U(Y)

• How the Bloom Filter works
Given a set of hash functions {h1, h2..hn} , an array of elements starting from index 0
and a set of inputs {x1, x2..xn}, first of all every input is hashed with each hash func-
tion present in the set (e.g. for input x1 we need to compute all the hash functions

34

{h1, h2..hn}): the corresponding outputs {y1, y2..yn} obtained by each single input are
represented as integer values that indicate the corresponding output storage location in
memory (e.g. suppose that the hash function h1 of input x1 assumes value 4 in output,
then it will be stored in the array in position 4).
Once this operation is performed for all the input values, the obtained array of elements
will contain a ’1’ in the indices where an hash function for a given input is computed, a
’0’ otherwise.
That said, it is important to mention that different inputs for different hash functions
could assume the same output values: given two different inputs x1 and x2 , it is likely
that the output obtained (so the value we are going to save in the array of elements) is
the same for the two inputs even if the hash functions that generated those outputs are
different.
This is precisely the crucial point of the Bloom filter: when we want to know if an ele-
ment is present in the array or not, first we give it in input to the Bloom filter, then the
filter will compute the corresponding hash functions for that element and finally it will
check if the corresponding outputs are present in the array or not. As soon as an output
is not present, it means that surely that element cannot be present in the array, while if
all the outputs are present, it means that it is likely that the element is present but, given
that such output value could be assumed also by other inputs, there is no absolute cer-
tainty that the found element is exactly the one we asked for.

• Efficiency
Bloom filter efficiency arises from two main factors:

1. The computational complexity required to perform the hashing operations on the
input and verify the presence (or not) of the element in memory is polynomial.

2. Littlememory space is required in order to store all the output values: beingm the
Bloom Filter’s length, memory usage is m

8 bytes plus a few bytes of overhead.

• How BitReps makes use of Bloom filters
Given an RNG that emits sequences of bits at a certain speed, our aim is to monitor
whether these sequences are independent and uniform and therefore can be defined as
completely random. The use of Bloom filters helps in this sense, since by applying this
filter to the sequences in output from the RNG, BitReps can declare whether a certain
sequence has already (probably) been observed previously in output or not: if the answer
is affirmative, it means that the output is not homogeneous as specific sequences of bits
may (probably) have been repeated.

35

6.5.3 Main Features

BitReps is implemented through a Graphic User Interface (GUI) which greatly simplifies its
use. As soon as the GUI opens it gives the possibility to select two types of screens: the Calcu-
lator and the Analyzer.

Calculator
Gives information about the eventual number and location of repetitions obtained from

RNG output. As shown in 6.5 , once in this section, it is possible to choose the file on which
computing repetitions by clicking on the Select Input Data button. Then it is required to fill
in all the remaining field:

• Block size: the number of bits over which a repetition is measured. It is possible to
choose among six different fixed value: 8, 16, 32, 64, 128 and 512 bits;

• SlidingWindow: if selected, shifts the blocks by one bit a time instead of by the chosen
block size;

• Error rate: the maximum desired error rate for the underlying Bloom Filter.

In the absence of files tomonitor, BitReps provides a file that can be immediately used to test
data: it is located in the input folder, the RNG that produced it is provided by a PRNG found
onUnix-like operating systems called/dev/urandom and thefilename isurandom100M-2.bin

Once the parameters have been set, by clicking on the Run button BitReps starts to com-
pute all the calculations: a progress bar is shown providing information on the amount of data
analyzed and the time taken to perform the analysis.

As soon as BitReps finishes monitoring all bits, a .json file is written in the output folder
with the name:

[filename of RNG data]-blocksize
-errorrate-slidingwindow.json

which will then be necessary for the analysis section.
Finally, it is possible to click on the reset button to reset all inputs and allow the user to

select a new file.

Analyzer

36

Figure 6.5: BitReps Calculator Window

Performs a statistical analysis on the repetitions that have been found. 6.6 shows the Ana-
lyzer section: firstly, by clicking on the Select Input Data button it is possible to select the
analysed file which can be found in the output folder; then, by clicking on the Select Model
button it is possible to choose a reference model that will be needed to perform a comparison
between a supposed to be uniform data distribution and the actual output that has been ob-
tained from the Calculator section.
Once data file has been selected, by clicking on the Run button, an automated analysis is per-

formed. On the left-side screen it is possible to visualize the parameters that have been chosen
for analysing the file whilst in the right-side screen are shown the different values necessary to
perform the analysis on the data:

• Expected distribution: The expected distribution used in the chi-square calculation

• Observed distribution: The observed distribution used in the chi-square calculation

• Chi-square: The chi-square value of the observed vs. expected distribution

• Expected false positives: The expected number of false positives given the size of the
Bloom filter

• Expected duplicates: The expected number of genuine repetitions given the blocksize
and size of the RNG output

37

Figure 6.6: BitReps Analyzer Window

• Observed hits: The number of repetitions measured by BitReps

• Ratio:

N° expected repetitions
N° observed repetitions

(6.1)

• Maximum repetition: The single most repeating ”word” in the RNG output (as well
as its binary representation)

The Writebutton can be used towrite the information from the right-hand side of theGUI
to a file in the directory using the same naming convention as for the output file.

The Generate button (reserved for a future release) can be used to generate various graphi-
cal visualisations of the repetitionwithin givenRNGoutputwith respect to the frequency and
period of repetition.

The Reset button can be used to reset the metadata as well as the results obtained from
automated analysis.

38

6.5.4 Result interpretation

In figure 6.7 it is possible to see two different outputs obtained by two different files: the first
one defines the analysed file as random while the second one defines the file as compromised
(non-random).

Figure 6.7: BitReps statistical test output

In the randomfile, it is possible to see that the observed distribution stays in the same interval
of the expected distribution: that is why theChi-square has a low value. On the contrary, in the
non-random file the observed distribution is much more larger that the expected one, making
the Chi-square value extremely high.
Scrolling through the various values obtained, another important data is provided by the

analysis of the Ratio which can be obtained by dividing the expected number of duplicates
by the observed number of duplicates: a low Ratiomeans too many repetitions of specific se-
quences compared to the ideal ones, resulting in a high probability that the sequence will be
defined as non-random.

39

40

7
Temperature Attacks

In this section we will discuss the two attacks carried out: both attacks were carried out in
the research laboratory of the University of Kent, as we needed hand and face protection and
specific tools that could only be used in the laboratory. In particular, the first attack involves
bringing both devices to very low temperatures while the second, through the use of a hot air
gun, brings both devices to very high temperatures: in both cases the goal was to test howmuch
these thermal changes affect the output of the devices.

7.1 The cooling attack

7.1.1 Setup

For this attack, as canbe seen in the figure 7.1, weneeded goggles and aprotectivemask aswell as
safety gloves. Furthermore, wepurchased 12different freezing sprays, aswehad to replace them
every time the device temperature fell below -30°C: the liquid insidewas therefore sufficient for
only one experiment at a time. In addition, we also used an infrared thermometer to constantly
measure the temperature and a camera to record the whole experiment.

41

Figure 7.1: Setup of Cooling experiment

7.1.2 The attack

We started the attack starting from the ComScire QRNG device: after connecting the device
viaUSB,we entered the command./lotta 10000000 > Cooling_attack.rand from the
terminal: in thiswaywe asked the device to generate 100MBofdata and save them in afile called
Cooling_attack.rand. While the data extractionwas in progress, we aimed the freezing spray on
the CPU contained within the device’s hardware and, in themeantime, wemonitored the tem-
perature through the infrared thermometer. As soon as we reached themaximum temperature
of -30°C, we terminated the experiment.

The same is valid for the OneRNGTRNGdevice: wemodified some parameters inside the
main.py file of the program that allowed us to extract a specific amount of data for each of the
7 possiblemodes of the device, setting again the amount of data to extract for each of the 7ways
equal to 100MB. At the end of this process, the OneRNG device data files were automatically
generated in output adding the post-fix on each file name about the specific operating mode
that was in use i.e. during the extraction data of operating mode 1 the filename in output was

42

OneRNG_raw_direct_cmd1.rand

Once this was done, and after starting the data extraction, we followed exactly the same pro-
cess used for the ComScire device: we aimed the freezing spray nozzle at the hardware CPU
and in the meantime we monitored the temperature through the infrared thermometer. As
soon as we reached -30°C, we ended the experiment.

As it is possible to see in the figures 7.2 and 7.3, these were the devices after having suffered
the attack: both devices were completely frozen, in particular, the temperature of the device
is clearly lower near the CPU where a minimum temperature of -31°C is reached and slightly
higher in the outer parts (-16°C).

Figure 7.2: ComScire device after Cooling experiment

43

Figure 7.3: OneRNG Device after Cooling experiment

7.2 The heating attack

7.2.1 Setup

The setup of the heating attack is similar to that of the freezing attack, i.e. first we connected
one device at a time to the PC thanks to the USB input and then, on each of the two devices,
we performed the attack while we were extracting data.

As it is possible to see in figure 7.4, for this attack we used a hot air gun which was available
at the Shed of the University of Kent’s Institute of Computer Science. This hot air gun emits
continuous and linearly increasing heat, up to a maximum temperature of 550°C.

For the ComScire QRNG device we performed the experiment only once during the data
extraction. The whole experiment lasted 3minutes which is the amount of time needed by the
device to generate data: during this amount of time we were pointing the hot air gun toward
the CPU until it reached the maximum allowed temperature.

44

Figure 7.4: Setup of Heating experiment

For the OneRNGTRNG device instead we repeated the experiment at fixed intervals of 10
minutes for each of the 7 operatingmodes. Thewhole experiment for this device lasted around
3 hours: this is because each operating mode from 1 to 7 requires around 30 minutes (53kb/s)
to generate 100MB of data. Again, during this amount of time the hot air gun was pointing
toward the CPU until it reached the maximum allowed temperature. The extraction method
remains the same discussed in the Cooling attack:

• For the QRNGComScire device,we entered the command
./lotta 10000000 > Heating_attack.rand

from the terminal: in this way we asked the device to generate 100MB of data and save
them in a file called Heating_attack.rand;

• For the TRNG OneRNG device, we let run the main.py program that allowed the
extraction of 100MB of data from each of the 7 operating modes of the device.

While we were performing the attack and we were pointing the heating gun towards the
CPUof the devices, we alsomeasured constantly the temperature with the infrared thermome-

45

ter such that it was possible to monitor which was the maximum temperature that could be
reached by the two devices.
Unlike the previous attack, for this experiment it was necessary to cover both devices with

a thermal tape and leave only the CPU part uncovered, allowing to concentrate the heat only
in that area and to keep the temperature on the other components unchanged: this was done
to prevent the heat from damaging the remaining parts of the device, as although the CPU is
able to withstand very high temperatures, on the contrary there are some components (such as
resistors) that stop working at high temperatures thus requiring the need to protect such areas.

7.2.2 The attack

While thedatawasbeing extracted,we aimed thehot air gun againnear theCPUofbothdevices:
as soon as we reached the maximum temperature, we moved the hot air gun to a point outside
the device to try to keep the heat in equilibrium at a fixed temperature as far as possible.

While for the ComScire device we performed the heating attack only once (the output rate
is high and 100MB of data was produced in 3 minutes), for the OneRNG device, having an
output rate significantly slower than the ComScire (53kb/s, therefore a data extraction time of
about 30 minutes), we repeated the experiment at regular intervals of 10 minutes for each of
the 7 operating modes: as soon as the device reached room temperature, the experiment was
repeated and the whole experiment lasted, as in the first attack, around 3 hours in total.

In figures (7.5 and 7.6) it is possible to see the status of the devices during the attack.
In particular, we made several tests to understand which was the ideal maximum tempera-

ture that the two devices were able to reach, concluding that:

• for the ComScire QRNG device, the maximum temperature it manages to reach with-
out compromising the device is 170°C: it was possible to draw this conclusion because as
soon as we tried to exceed this temperature, the device activated a protectionmechanism
for which it terminated the extraction of data, allowing the quality of the data produced
up to that moment to remain stable;

• for the TRNG OneRNG device, the maximum temperature reached is 80°C: we were
able to ascertain this result because, once this threshold was exceeded, the LED that usu-
ally flashes while it is extracting entropy, gradually stopped working as the temperature
rose, meaning the device has stopped generating entropy.

46

Figure 7.5: Heating Attack on TRNG OneRNG device

47

Figure 7.6: Heating Attack on QRNG ComScire device

48

8
Results Analysis

In this chapter we will analyze all the results obtained andmake a comparison between the per-
formances reached by theTRNGOneRNGdevice compared to those obtained by theQRNG
PQ32MU device.

In Section 8.1 are analyzed, using the four statistical tests reported in Chapter 6, the data
files obtained from the two devices. The data files were all collected as described in the ”Data
Collection” paragraphs 4.3 and 5.3.
In Section 8.2 instead are analyzed the data files collected while the devices were subjected

to the temperature attacks following the same methodology used in section 1.
Section 8.3 will follow, aimed at carrying out an accurate analysis on the results obtained,

also making an in-depth study depending on the type of test carried out: in fact, we want to
try to understand not only if the attack was successful or not, but also in what how the attack
affected the data. For example, the data might be more predictable over long-range rather than
short-range sequences; or theremaybe a strong auto-correlation value on specific bit sequences;
or again simply the amount of ’0’ or ’1’ used could be completely unequal, perhaps with 30%
’0’ and 70% ’1’.

Section 8.4 is instead entirely dedicated to the analysis of the results obtained by testing the
data with the BitReps statistical test. This statistical test was entirely written with Python pro-
gramming language by the PhD student Jamie Pont at the University of Kent (UK) and has
been the subject of in-depth analysis, since it has never been tested before.

The output results obtained with each statistical test is shown for OneRNG device with

49

modes 0,1,3,6 and 7 of theOneRNGdevice as specified in section 4.2 and, since the ComScire
PQ32MUdevice has only 1 operating mode, only one result is shown for it. We avoided to use
modes 4 and 5 of the OneRNG since those operating modes do not use the channel-hopping
Radio Frequency (which is the main mode used in order to generate entropy), meaning that
the output has a quite low entropy and so it is not useful for our goal (e.g. OneRNG would
not give in output an interesting result when under attack using those modes).

8.1 Results obtained with devices in normal condi-
tions

Ent
First of all, we are going to see the results obtained by using Ent Statistical Test on data files

collected when both devices are in normal conditions. In Figure 8.1 it is possible to see the
resulting output: the options enabled for Ent were [-b -c -t], so that the output is shown in bits
and not in bytes and the output is in .svg format. Through the [-c] option, we specify that
we want to print in output the number of occurrences for each bit.

Besides cmd1 and cmd3 which return in output and entropy value respectively of 0.80 and
0.94, for all the other OneRNG operating modes and for ComScire device the entropy ob-
tained is of 1 or at most 0.99, meaning that the numbers are completely random.
BoolTest
The second statistical test we have used is BoolTest with the following common testing pa-

rameters:

--top 128 --no-comb-and --only-top-comb --only-top-deg --no-term-map
--topterm-heap --topterm-heap-k 256

As it is possible to see from figure 8.2 to figure 8.7, BoolTest it is an extremely precise and
scrupulous test, in fact only the data obtained from the ComScire device and the OneRNG
device withmodes 6 and 7 were defined as random, while theOneRNGfiles inmodes 0, 1 and
3 were defined as non-random files.

This result is already interesting in itself as it shows how it is not enough to analyze data with
a single statistical test but there is a need to compare the results obtained with different tests so
that it is possible to judge with certainty whether a certain file is random or not.
TestU01

50

Figure 8.1: OneRNG and Comscire data files analyzed with Ent Statistical Test

For the TestU01 Statistical test we experimented data using the Rabbit battery, since to-
gether with the Alphabit battery tests are the only two batteries whose it is possible to decide
the amount data to give in input. Here follows the code, where everytime it is necessary to
specify the data file name which in this case is the "ComScire.bin" file:

#include "unif01.h"
#include "bbattery.h"
#include "gdef.h"
#include "swrite.h"
#include <stdio.h>

int main(void)
{

swrite_Basic = FALSE;
bbattery_RabbitFile ("ComScire.bin", 100000000)

51

Figure 8.2: ComScire data file analyzed with BoolTest Statistical Test

Figure 8.3: OneRNG cmd0 data file analyzed with BoolTest Statistical Test

return 0;

}

From figure 8.8 to figure 8.11 it is possible to see the obtained results when applying Rabbit
Battery test to the 5 OneRNGmodes files and to the ComScire file.

The reason the results obtained using modes 1 and 3 of the OneRNG device are missing is
because the test was unable to finish the computation: this happens when the data files have
such low entropy that it would take up too much memory and calculation work to measure
the actual values in output. The OneRNGmode 6 and 7 data files and the ComScire data file
passed all output tests, meaning no non-random statistical data was noted. On the contrary,
the OneRNG cmd0 data file also shows all the tests that have not been passed and the relative
p value obtained that goes indeed outside the parameters.
PractRand
From figure 8.12 to figure 8.17 are shown the obtained results when applying PractRand

statistical test to the 5OneRNGmodes files and to theComScire file. PractRanddoesn’t signal
if a specific data file has passed the tests or not, just shows for each string of data taken in input
if all the test for that block size were passed or not. As already shown for BoolTest statistical
test, also in this case ComScire andOneRNGmodes 0, 6 and 7 passed all tests while OneRNG

52

Figure 8.4: OneRNG cmd1 data file analyzed with BoolTest Statistical Test

Figure 8.5: OneRNG cmd3 data file analyzed with BoolTest Statistical Test

modes 1 and 3 data files returned several tests that were not passed. In particular, were refused
the tests for the BCFN, DC6 and FPF parameters, which represent the parameters linked to
short range sequences: while on long data sequences the data result to be completely random,
this hypothesis fails when analyzing short sequences.

8.2 Results obtainedwith devices under attack

In this section are analyzed the data files when both devices are under attack. In the subsections
8.2.1 and 8.2.2 are reported the results obtained respectivelywhendevices are under the cooling
attack and the heating attack. Each of the data files of both devices are again analyzed with
each statistical test. Taking into consideration the results obtained by analyzing data files when
they are under normal conditions, we avoid to repeat the attack on the data files OneRNG
with modes 1 and 3 since they didn’t pass the majority of statistical tests already in normal
conditions.

53

Figure 8.6: OneRNG cmd6 data file analyzed with BoolTest Statistical Test

Figure 8.7: OneRNG cmd7 data file analyzed with BoolTest Statistical Test

8.2.1 The cooling attack results

ComScire PQ32MU results

In Figures from 8.18 to 8.21 are shown the results obtainedwhen analyzing the ComScire data
file with the four statistical tests when the device is under the cooling attack. As it is possible
to see, all the tests were passed meaning that when bringing the ComScire device to very low
temperatures (-30°C), this does not compromise in any manner the output result.

OneRNG results

From figures 8.22 to 8.28 are shown instead the results obtained when the OneRNG device is
under the cooling attack. As it is possible to see and differently from the data reported when
the device is under normal conditions. OneRNG cmd0 data file is considered not random
from all the statistical tests but Ent, whose entropy measured is 0.9965, which is still a good
entropy value. OneRNG cmd6 and cmd7 remain quite stable since the entropy in output is
still near to 1. PractRand result for OneRNG cmd0 data file fails on almost every FPF test,
meaning that the data file is rich of repetitions on the short range. It was not possible to collect
any result from Rabbit battery test when analyzing the OneRNG cmd0 data file. The results

54

Figure 8.8: ComScire data file analyzed with TestU01 Rabbit Battery Statistical Test

obtained for cmd6 and cmd7 OneRNG data files are the same (no anomalies in all the tests),
that is why their results are reported in the same image. This meaningful result tell us how the
cooling attack did not influence almost at all both devices, since all the results remained almost
the same both when devices are in normal conditions and under the cooling attack.

8.2.2 The heating attack results

In this section are analyzed the results obtained when the devices are under the heating attack.
The process about how we performed this attack are reported in section 7.2.

ComScire results

For the ComScire device, we first made several experiments in order to understand which was
the maximum temperature that the device could reach keeping working properly. After some
trials, we concluded that the maximum temperature admissible is of 180°C. We could verify
this result since when we tried to exceed this temperature (reaching 200°C), the device stopped
to generate random numbers: indeed we are going to analyze the results obtained when the
heating gun reached 180°C and those obtainedwhen are reached 200°C. For the last case, since
the device stopped its functioning when 200°C were reached, the data file size is of 77.1MB
instead of 100MB as for all the others.

Again, as it is possible to see from figure 8.29 to figure 8.32the ComScire device even under
the heating attack returns very good results: indeed it passed all the tests of all statistical tests
and its the entropy is still 1.0 even when we reach 200°C.

55

Figure 8.9: OneRNG cmd0 data file analyzed with TestU01 Rabbit Battery Statistical Test

OneRNG results

In this section, from figure 8.34 to figure 8.40, the results obtained when the OneRNG de-
vice is under heating attack are reported. The results are extremely significant, as it is possible
to see how this time, unlike the others, all data files are classified as non-random by any test.
In particular, looking at the figure 8.34, we see that the amount of ’0’ and ’1’ is decidedly dis-
proportionate with 80% of ’0’ and 20% of ’1’. The Rabbit battery belonging to the TestU01
statistical test does not produce any results when analyzing these files, that’s why the results
obtained from this test have not been reported.

56

Figure 8.10: OneRNG cmd6 data file analyzed with TestU01 Rabbit Battery Statistical Test

Figure 8.11: OneRNG cmd7 data file analyzed with TestU01 Rabbit Battery Statistical Test

8.3 Result Analysis

Summarizing what was done in this chapter, we first analyzed the data files generated by both
devices when they were under normal conditions, then we performed the same analysis on
the data files generated by the two devices when they were under attack. All data files, where
possible, were analyzed with all four statistical tests mentioned in the 6 chapter. In particular,
the only test that sometimes did not produce results was the Rabbit Battery of TestU01: this is
because the analysis carried out by this test is so thorough and requires somany computational
calculations and memory that if the file was non-random, does not allow the test to complete
the operation.

As it has been possible to see from the results reported, the ComScire device is able, when it
suffers this type of attack, to react promptly: in fact, as soon as it is no longer able to guarantee
the randomness of the data produced, the device automatically stops data generation. On the
contrary, this does not happen in the OneRNG device which, when it underwent the heating

57

Figure 8.12: ComScire data file analyzed with PractRand Statistical Test

attack, simply reduced the output entropy compromising the generated data.
This result is extremely important, as a random number generation device should be as re-

silient as possible when external conditions change, and react like the ComScire device when
these conditions are not met, thus stopping data generation to avoid compromise the system.
While we can’t add much more regarding the analysis of the results obtained by the Com-

Scire device (as it passed every test under every attack performed), we can carry out a more
in-depth analysis of the results obtained by the OneRNG device. We recall that the cooling
attack did not produce interesting results, as on that occasion the OneRNG device was able
to withstand low temperatures without compromising the data generated: in fact, the results
obtained are practically identical to those obtained when the device was under normal condi-
tions. On the contrary, really significant results were obtained when the OneRNG device was
subjected to the heating attack, which we analyze below.
The first interesting thing to notice is how the entropy has dropped from a value close to 1.0

58

Figure 8.13: OneRNG cmd0 data file analyzed with PractRand Statistical Test

to a value of 0.56 (cmd0file) in theworst case and0.72 in the best case (cmd7file). Furthermore,
referring to the Ent test shown in figure 8.34it is curious how the quantity of ’0’ and ’1’ always
tends to be with a ratio of 80/20, therefore 80% of ’0’ and 20% of ’1’. The Chi-square value is
extremely high, 431557441.22 in the worst case and 284019462.63 in the best case. Observing
instead the results obtainedwithBoolTest and shown in figures 8.35, 8.36 and 8.37 , the z-score
reaches a peak of 1246.34 in the worst case: bearing in mind that the possible interval is [4.77 ,
7.60], this is definitely not a good result .

As regards the results obtainedwith the PractRand statistical test, it is possible to notice how
all three OneRNG data files show almost the same output: the failed tests concern analyzes of
short sequences, meaning that the data files are full of short repeated sequences (e.g 010101,
111000 repeated many times within the whole data file)

59

Figure 8.14: OneRNG cmd1 data file analyzed with PractRand Statistical Test

8.4 BitReps

This section is entirely dedicated to the analysis of the results obtained through BitReps. Its
operation is fully explained in the ?? chapter. Since this is still a primitive version of BitReps,
it is not extremely efficient, i.e. the computation time required to analyze a 100MB data file
ranges from 10minutes to 40minutes, depending on the block size (e.g. for a 32-bit block size,
the time required is 40minuteswhile for a block size of 512bits the time required is 10minutes).
The analysis in this case was carried out only on the data files under normal conditions, this is
because if we try to carry out the analysis on the data files compromised by the attacks, BitReps
cannot contain all the operations in the RAMmemory, blocking and terminating the process.

The results have been reported in the tables below.
We performed the test on:
- the data files extracted from theOneRNGdevicewith cmd0, cmd1, cmd3, cmd6 and cmd7

modes;
- the data files extracted from another TRNG called Infnoise [29].
We also analyzed the same file with each of the five modes, each error rate present in the

60

Figure 8.15: OneRNG cmd3 data file analyzed with PractRand Statistical Test

range [0.00001, 000.1 , 00.1, 0.1] and every possible block size (BS) of those proposed by the
software (16, 32, 64, 128, 256, 512).

When we tried to analyze the file with a BS=16 bits, BitReps stopped its operation at about
56% of the progress bar: it was not possible to report any results for this BS for any of the error
rates. The results obtained for each error rate vary minimally, for this reason and for ease of
reading we report only the tables with error rate = 0.00001.

As it is possible to see from the tables, the smaller the BS, the more precise the output re-
sult: in fact, when we analyze the data with BS=32, the chi-square generated in the output
is extremely sensitive even to the slightest variations (e.g. a chi- square very high for minimal
repetition of bit sequences).

The tables show all the data that can be viewed in the BitReps Analyzer window. The last
column is marked with✓if the file is random, with x otherwise. When we parsed the data files
with BS=32 bits, the only file that could not be computed was the OneRNG_cmd1.rand file.
As regards the analysis of the results obtained with BS=32 bits, it is possible to deduce that the
files Infnoise_raw, oneRNG_cmd0, oneRNG_cmd1, oneRNG_cmd2 and oneRNG_cmd3
are not random: this confirms the analysis made by the other statistical tests (Ent, PractRand,
BoolTest and TestU01). For the non random files the chi-square value is really high while the

61

Observed distribution Chi-square Observed hits Ratio Maximum repetition Random
Infnoise_default [79508, 164] 2.23 79672 1.0 2 ✓
Infnoise_raw [953269, 27415] 14699420.49 981314 0.08 4 x
OneNRG_cmd0 [652205, 61002] 29493114.2 726560 0.11 9 x
OneNRG_cmd1 - - - - - -
OneNRG_cmd2 [146503, 914] 60558,29 147442 0.54 3 x
OneNRG_cmd3 [1275934, 223225] 358861808.24 1611055 0.05 54 x
OneNRG_cmd6 [79790, 153] 1.54 79944 1.0 3 ✓
OneNRG_cmd7 [79473, 161] 1.54 79635 1.0 3 ✓

Table 8.1: Bitreps, block size=32 bits, error rate= 0.00001, expected distribution [79480, 146] , expected duplicates 79837,
Expected false positives 20

Observed distribution Chi-square Observed hits Ratio Maximum repetition Random
Infnoise_default [6] 0.5 6 1.67 1 ✓
Infnoise_raw [9] 0.12 9 1.11 1 ✓
OneNRG_cmd0 [11] 1.12 11 0.91 1 ✓
OneNRG_cmd1 [22] 24.5 22 0.45 1 x
OneNRG_cmd2 [10] 0.5 10 1.0 1 ✓
OneNRG_cmd3 [13] 3.12 13 0.77 1 x
OneNRG_cmd6 [10] 0.5 10 1.0 1 ✓
OneNRG_cmd7 [10] 0.5 10 1.0 1 ✓

Table 8.2: Bitreps, block size=64 bits, error rate= 0.00001, expected distribution [8] , expected duplicates 0, Expected false
positives 10

Observed distribution Chi-square Observed hits Ratio Maximum repetition Random
Infnoise_default [7] 0.8 7 0.71 1 x
Infnoise_raw [6] 0.2 6 0.83 1 ✓
OneNRG_cmd0 [6] 0.2 6 0.83 1 ✓
OneNRG_cmd1 [7] 0.8 7 0.71 1 x
OneNRG_cmd2 [4] 0.2 4 1.25 1 ✓
OneNRG_cmd3 [4] 0.2 4 1.25 1 ✓
OneNRG_cmd6 [3] 0.8 3 1.67 1 ✓
OneNRG_cmd7 [3] 0.8 3 1.67 1 ✓

Table 8.3: Bitreps, block size=128 bits, error rate= 0.00001, expected distribution [5] , expected duplicates 0, Expected
false positives 5

62

Observed distribution Chi-square Observed hits Ratio Maximum repetition Random
Infnoise_default [-] 0.0 1 3.0 1 ✓
Infnoise_raw [-] 0.0 2 1.5 1 ✓
OneNRG_cmd0 [-] 0.0 4 0.75 1 ✓
OneNRG_cmd1 [-] 0.0 3 1.0 1 ✓
OneNRG_cmd2 [-] 0.0 3 1.0 1 ✓
OneNRG_cmd3 [-] 0.0 3 1.0 1 ✓
OneNRG_cmd6 [-] 0.0 2 1.5 1 ✓
OneNRG_cmd7 [-] 0.0 4 0.75 1 x

Table 8.4: Bitreps, block size=256 bits, error rate= 0.00001, expected distribution [‐] , expected duplicates 0, Expected
false positives 3

Observed distribution Chi-square Observed hits Ratio Maximum repetition Random
Infnoise_default [-] - - - - -
Infnoise_raw [1] 3.2 1 1.0 1 ✓
OneNRG_cmd0 [1] 3.2 1 1.0 1 ✓
OneNRG_cmd1 [-] - - - - -
OneNRG_cmd2 [2] 1.8 2 0.5 1 ✓
OneNRG_cmd3 [-] - - - - -
OneNRG_cmd6 [-] - - - - -
OneNRG_cmd7 [2] 1.8 2 0.5 1 ✓

Table 8.5: Bitreps, block size=512 bits, error rate= 0.00001, expected distribution [5] , expected duplicates 0, Expected
false positives 1

63

Figure 8.16: OneRNG cmd6 data file analyzed with PractRand Statistical Test

ratio is really small. A completely random file should instead have a low chi-square and an high
ratio near 1.
As soon as we increase the BS, the results get worst and worst up to BS=512 bits where all

the results were ’0’. This was really meaningful: indeed BitReps loses precision as soon as we
increase the block size,meaning that it, or at least its 1.0 version is able to obtain concrete results
only with BS=32 bits. On the other hand, we can also affirm how accurate this software is, as
it is able to detect even the slightest error in a sequence: in fact, when the analysis is done using
the BS=32 bits, BitReps is able to reveal very accurately whether the file is random or not.

64

Figure 8.17: OneRNG cmd7 data file analyzed with PractRand Statistical Test

Figure 8.18: ComScire data file analyzed with Ent Statistical Test when the device is under the cooling attack

65

Figure 8.19: ComScire data file analyzed with BoolTest Statistical Test when the device is under the cooling attack

Figure 8.20: ComScire data file analyzed with Rabbit TestU01 Statistical Test when the device is under the cooling attack

66

Figure 8.21: ComScire data file analyzed with PractRand Statistical Test when the device is under the cooling attack

Figure 8.22: OneRNG data file analyzed with Ent Statistical Test when the device is under the cooling attack

67

Figure 8.23: OneRNG cmd0 data file analyzed with BoolTest Statistical Test when the device is under the cooling attack

Figure 8.24: OneRNG cmd6 data file analyzed with BoolTest Statistical Test when the device is under the cooling attack

68

Figure 8.25: OneRNG cmd7 data file analyzed with BoolTest Statistical Test when the device is under the cooling attack

Figure 8.26: OneRNG cmd6 and cmd7 data file analyzed with TestU01 Rabbit Battery Statistical Test when the device is
under the cooling attack

69

Figure 8.27: OneRNG cmd0 data file analyzed with PractRand Battery Statistical Test when the device is under the cooling
attack

70

Figure 8.28: OneRNG cmd6 and cmd7 data files analyzed with PractRand Statistical Test when the device is under the
cooling attack

71

Figure 8.29: ComScire data files analyzed with Ent Statistical Test when the device is under the heating attack

Figure 8.30: ComScire data files analyzed with BoolTest Statistical Test when the device is under the heating attack
(temperature=180°C)

Figure 8.31: ComScire data files analyzed with BoolTest Statistical Test when the device is under the heating attack
(temperature=200°C)

72

Figure 8.32: ComScire data files analyzed with PractRand Statistical Test when the device is under the heating attack

73

Figure 8.33: ComScire data files analyzed with TestU01 Rabbit Battery Statistical Test when the device is under the heating
attack

Figure 8.34: OneRNG data files analyzed with Ent Statistical Test when the device is under the heating attack

74

Figure 8.35: OneRNG cmd0 data files analyzed with BoolTest Statistical Test when the device is under the heating attack

Figure 8.36: OneRNG cmd6 data files analyzed with BoolTest Statistical Test when the device is under the heating attack

Figure 8.37: OneRNG cmd7 data files analyzed with BoolTest Statistical Test when the device is under the heating attack

75

Figure 8.38: OneRNG cmd0 data files analyzed with PractRand Statistical Test when the device is under the heating attack

Figure 8.39: OneRNG cmd6 data files analyzed with PractRand Statistical Test when the device is under the heating attack

76

Figure 8.40: OneRNG cmd7 data files analyzed with PractRand Statistical Test when the device is under the heating attack

77

78

9
Conclusion

In this thesis we have analyzed the results obtained when two devices (respectively a TRNG
and a QRNG) were subjected to temperature attacks. The devices considered were a TRNG
device namedOneRNG and aQRNGdevice namedComScire PQ32MU. These devices have
been chosen because they possess a similar mode for generating entropy: in fact both contain
a diode and a MOS in reverse bias conditions. First, we generated data from the devices under
normal conditions. Then we extracted further data when the devices were under attack: in
particular, we performed a cooling attack which envisaged bringing the devices to very low
temperatures (-30°C) and a heating attack which instead envisaged bringing both devices to
very low temperatures high (80°C, 180°C).

Analyzing the results obtained, it was possible to demonstrate howmuch theQRNGdevice
is far more resistant and reliable than the TRNG device. Indeed, the ComScire QRNG device
was able to resist both attacks, and as soon as itwarned (probably through an internal threshold)
that it was no longer able to guarantee the reliability of the data produced during the heating
attack whenwe reached amaximum temperature of 200°C, it stopped generating data. On the
contrary, this was not visible with regard to the data produced by the OneRNG device: in fact
in this case the device continued to produce data even during the heating attack, compromising
them. The results obtained show a drastic fall of entropy reaching the value of 0.56.

Each of the data files generated by both devices has been analyzed using four different sta-
tistical tests: Ent, PractRand, BoolTest and TestU01, which is the only test that wasn’t able to
generate result when data were collected with devices under attack.

79

A special section has been left for the analysis of the performances of the BitReps statisti-
cal test, for which it has not been possible to analyze the data files when devices were under
attack since, similarly to TestU01, also BitReps is not able to compute the chi-square for not
random data: it requires too computational memory. This is the reason why the analysis of
this statistical test is performed only analyzing the data files under normal conditions.
For future work, we would like to carry out the same type of experiment this time reaching

even lower temperatures than those reached during the cooling attack, so that it is possible to
find the minimum value below which the devices stop working in that case as well correctly.

80

References

[1] J. Mandel, The Statistical Analysis of Experimental Data. pp. 15-25, 1914.

[2] J. E. Gentle, Random Number Generation and Monte Carlo Methods. pp. 217-228,
2003.

[3] A. B. . J.Wellmann, “Computer simulations then and now: an introduction and histor-
ical reassessment,” 2019.

[4] Bohan Yang, “Total: Trng on-the-fly testing for attack detection using lightweight hard-
ware,” 2016, [Accessed: September 2022].

[5] V. Govindan, “A hardware trojan attack on fpga-based cryptographic key generation:
Impact and detection,” 2018, [Accessed: September 2022].

[6] S. Ghandali, D. Holcomb, and C. Paar, “Temperature-based hardware trojan for ring-
oscillator-based trngs,” arXiv preprint arXiv:1910.00735, 2019.

[7] K. Yang, D. Fick, M. B. Henry, Y. Lee, D. Blaauw, and D. Sylvester, “16.3 a 23mb/s
23pj/b fully synthesized true-random-number generator in 28nm and 65nm cmos,”
in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). IEEE, 2014, pp. 280–281.

[8] Y. Cao, V. Rožić, B. Yang, J. Balasch, and I. Verbauwhede, “Exploring active manipula-
tion attacks on the tero random number generator,” in 2016 IEEE 59th International
Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2016, pp. 1–4.

[9] M. Varchola and M. Drutarovsky, “New high entropy element for fpga based true ran-
domnumber generators,” in International workshop on cryptographic hardware and em-
bedded systems. Springer, 2010, pp. 351–365.

[10] NIST. (-) Nist - computer security center resource - random numbers. [Online].
Available: https://csrc.nist.gov/glossary/term/random_number

81

https://csrc.nist.gov/glossary/term/random_number

[11] ——. The concinuous uniform distribution. [Online]. Available: https://www.itl.nist.
gov/div898/handbook/eda/section3/eda3662.html

[12] gameludere. (2020) I numeri casuali: Algoritmi di generazione e applicazioni. [Online].
Available: https://www.gameludere.it

[13] W. L. Yuan Cao, “Entropy sources based on silicon chips: True random number gener-
ator and physical unclonable function,” 2022.

[14] B. Dikshit, “A simple proof of born’s rule for statistical interpretation of quantum me-
chanics,” 2017.

[15] J. Cheetham. Onerng website. [Online]. Available: https://onerng.info/

[16] Electrical4U. (2020) Avalanche diode: Working principle & applications. [Online].
Available: https://www.electrical4u.com/avalanche-diode/

[17] Comscire datasheet. [Online]. Available: https://comscire.com/files/datasheet/
PQ32MU_datasheet.pdf

[18] Ring oscillator operations & applications. [Online]. Available: https://electricalmag.
com/ring-oscillator/

[19] C. Beenakker and C. Schönenberger, “Quantum shot noise,” Physics Today 56, 5, 37;
doi: 10.1063/1.1583532, 2003.

[20] D. Hurley-Smith and J. H. Castro, “Quantum leap and crash: Searching and finding
bias in quantum random number generators,” 2019.

[21] S. A. Wilber. Entropy analysis and system design for quantum random number
generators in cmos integrated circuits. [Online]. Available: https://psigenics.com/files/
papers/Pure_Quantum_White_Paper.html

[22] Ent website. [Online]. Available: https://www.fourmilab.ch/random/

[23] Booltest website. [Online]. Available: https://github.com/crocs-muni/booltest

[24] Testu01 website. [Online]. Available: http://simul.iro.umontreal.ca/testu01/tu01.
html

82

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3662.html
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3662.html
https://www.gameludere.it
https://onerng.info/
https://www.electrical4u.com/avalanche-diode/
https://comscire.com/files/datasheet/PQ32MU_datasheet.pdf
https://comscire.com/files/datasheet/PQ32MU_datasheet.pdf
https://electricalmag.com/ring-oscillator/
https://electricalmag.com/ring-oscillator/
https://psigenics.com/files/papers/Pure_Quantum_White_Paper.html
https://psigenics.com/files/papers/Pure_Quantum_White_Paper.html
https://www.fourmilab.ch/random/
https://github.com/crocs-muni/booltest
http://simul.iro.umontreal.ca/testu01/tu01.html
http://simul.iro.umontreal.ca/testu01/tu01.html

[25] P. L’Ecuyer and R. Simard, “Testu01: A software library in ansi c for empirical testing
of random number generators,” 2013.

[26] Practrand website. [Online]. Available: https://pracrand.sourceforge.net/

[27] Bitreps website. [Online]. Available: https://github.com/jjp31/bitreps-1

[28] Bloom filter. [Online]. Available: https://brilliant.org/wiki/bloom-filter/

[29] S. Infnoise trng. [Online]. Available: https://github.com/waywardgeek/infnoise

83

https://pracrand.sourceforge.net/
https://github.com/jjp31/bitreps-1
https://brilliant.org/wiki/bloom-filter/
https://github.com/waywardgeek/infnoise

84

Acknowledgments

From September 2022 until December 2022 I was given the opportunity to carry out a mo-
bility period at the University of Kent (Kent, UK), supervised by professors Mauro Conti and
Julio Hernandez Castro. Furthermore, I had the opportunity to collaborate with three PhD
students,MaryamEhsanpour, Jamie Pont andCalvin Brierley: I want to thank each of you for
making this experience possible.

Abig thank you also goes to theCY4GATEcompany and in particular to theCY4WOMEN
campaign for having contributed financially to this period of mobility.

85

86

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Related Work
	Main Concepts
	Formal Definition of Random Numbers
	The Continuous Uniform Distribution

	Random Number Generators
	Main features
	Different Random Number Generators in commerce

	The OneRNG TRNG Device
	Device Design
	Avalanche Diode
	Channel-Hoppin Radio Receiver
	Data Whitening

	Device Usage
	Data Collection
	Testing Environment
	Software Installation
	Device Operation
	Collection Process

	The ComScire PQ32MU QRNG Device
	Device Design
	Ring Oscillator
	The Quantum-Shot Noise

	Device Usage
	Data Collection

	Statistical Tests
	Ent
	BoolTest
	TestU01
	PractRand
	BitReps
	Mathematical Theory
	The Bloom Filter
	Main Features
	Result interpretation

	Temperature Attacks
	The cooling attack
	Setup
	The attack

	The heating attack
	Setup
	The attack

	Results Analysis
	Results obtained with devices in normal conditions
	Results obtained with devices under attack
	The cooling attack results
	The heating attack results

	Result Analysis
	BitReps

	Conclusion
	References
	Acknowledgments

