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Abstract 

The aim of this Thesis is to evaluate whether a multivariate multi-block latent variable 

regression model, JYPLS (García-Muñoz et al., 2005), is as an effective tool to predict and 

optimize product quality through transfer learning from a pilot-scale plant to an industrial-scale 

one, ascertaining, at the same time, what is the appropriate number of pilot-scale batches 

required to transfer information from the pilot scale to the industrial scale. The case study 

considered in this Thesis is a simulated fed-batch process for penicillin fermentation. In 

particular, Pensim (Birol et al., 2002) is used to simulate the pilot scale, while Indpensim 

(Goldrick et al., 2014) is used for the industrial scale. The specific objectives are: i) to obtain 

the most accurate and precise estimations of the final penicillin concentration from process 

variables collected online, and ii) to optimize the product quality achieving the highest 

penicillin concentration possible at the end of the batch in the industrial scale through model 

inversion. Two methodologies for designing the experimental campaign for data collection in 

the pilot-scale plant are also evaluated: a full factorial design and happenstance design.  

It has been demonstrated that JYPLS is an effective transfer learning model, particularly in the 

case of well-controlled processes where random disturbances on the process variables are 

limited, even if low amount of data are available from a low number of batches (starting from 

2 pilot-scale batches the model can be improved).  Model accuracy and precision are improved 

by 5%, and productivity increased by 0.03%, which is equivalent to more than 1 kg of penicillin 

per batch.
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Introduction 

The term scale-up describes the procedure of increasing the size of a plant from the laboratory 

scale of the pilot scale to the industrial scale. The engineering challenge is to maintain process 

stability and product quality during this transition (Barberi et al., 2022 Processes 2022, 10, 

1796.). The selection of the proper operating conditions for the new industrial plant is of critical 

importance to the purpose of reducing costs and accelerating the process development (Tomba 

et al., 2012). For this reason, mathematical models are used during process development to 

describe the process (Barberi et al., 2021). These models are constructed using theoretical 

relationships derived from existing literature or historical data from the considered plant or 

from similar facilities (Chu et al., 2021). However, in the case of biopharmaceutical industries, 

where high value-added products are manufactured, it is challenging to find the necessary 

information (Botton et al., 2022; Facco et al., 2020). In fact, only a limited number of 

experiments are typically performed in the industrial scale, given the high costs involved. 

Instead, extensive lab-scale or pilot-scale experimental campaigns can be conducted prior to 

scale-up. However, this information is not incorporated into mathematical models, but rather 

serves as a general guideline for the industrial plant. In 2020, Facco et al. proposed a framework 

for the use of data analytics biopharmaceutical process scale-up. Following this paper, 

promising results are obtained from studies about monoclonal antibodies models (Barberi et al., 

2021; Barberi et al., 2022; Botton et al., 2022). The aim of this Thesis is investigating the 

feasibility of transferring data from pilot-scale experiments to industrial-scale models and to 

quantify the number of batches required to transfer this information. Additionally, it seeks to 

determine whether different experimental designs in the pilot-scale on the pilot scale affect the 

resulting data. The accuracy and the precision of a model that utilizes both pilot-scale data and 

industrial-scale data Joint-Y Partial Least Squares (JYPLS; García-Muñoz et al., 2005) as a 

transfer learning approach to predict the final product quality from process data taken online is 

studied and compared with a state-of-the-art multivariate regression model that employs only 

industrial-scale data, Partial Least Squares (PLS; Wold, 1975). This study is carried out in the 

case of two simulated penicillin production process: Pensim (a 100-L pilot-scale plant) and 

Indpensim (a 100,000-L industrial-scale plant), two benchmarks which is highly suitable for 

the objectives of this Thesis. In the initial Chapter of this Thesis, the mathematical models are 

presented in a theoretical manner with the most significant equations. The second Chapter 

provides an overview of the key features of the processes. The subsequent Chapter focuses on 

the experimental strategies to collect data from the processes. The fourth and fifth Chapters 

present a comparative analysis of the models performance, with the former examining
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predictive capabilities and the latter assessing optimized operating conditions. The concluding 

chapter presents the findings of the study and offers insights into their implications.



 

Chapter 1 

Mathematical methodologies for transfer 

learning 

This Chapter presents the theoretical basis of the multivariate methodologies used in this Thesis, 

namely Partial Least Squares (PLS; Wold, 1975) and Joint-Y Partial Least Squares (JY-PLS; 

García-Muñoz et al., 2005). These are regression models to predict the penicillin concentration 

at the end of the production batch and to suggest the optimal operating conditions to maximize 

the productivity of the industrial-scale process. 

1.1 Partial least squares 

Partial least squares (PLS; Geladi & Kowalski, 1986) is a bilinear regression model that deals 

with 2 two-dimensional matrices, the predictor matrix (𝐗) and the response matrix (𝐘) (both 

with batches along the rows and process variables along the columns for the predictors, and the 

product quality indices along the columns for the predicted variables) and reduces their 

dimensionality by identifying latent variables (LV) that best predict the responses from the 

predictors. Latent variables are hidden, unobservable factors that are inferred from the data, and 

represent underlying phenomena describing correlations within and between datasets. They are 

constructed as linear combinations of the original variables. PLS identifies the latent space that 

maximizes the covariance between 𝐗 and 𝐘. This assumes that both datasets are influenced by 

the same underlying factors, which are captured by the latent variables. By focusing on these 

shared latent structures, PLS helps to better understand the relationships between the variables 

in the two datasets.  

In this Thesis, multiway-PLS (MPLS; Bro, 1996) is used because the regressor data, 

𝐗 [𝑁 × 𝑉 × 𝑇], are collected in a three-dimensional matrix (where the dimensions represent the 

batch numbers 𝑁, the number of variables 𝑉 and the number of time instants 𝑇). MPLS consists 

in the unfolding of the three-dimensional matrix, followed by a standard PLS. In this Thesis, 

batch-wise unfolding is used. In the batch-wise unfolding, variables measured in all the batches 

in a predetermined time instant 𝑡, 𝐗𝑡 [𝑁 × 𝑉], are horizontally concatenated to obtain the matrix 

𝐗 [𝑁 × 𝑉 ∙ 𝑇]. Accordingly, this means considering every variable in every time instant as a 

distinct column of the matrix and studying the correlation between different time instants of a 

single variables and its correlation also with all the time instants of all the variables.
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Nonlinear iterative partial least squares (NIPALS; Wold, 1975) algorithm is used for calculating 

the latent variables, with the objective of optimising the covariance of 𝐗 and 𝐘. 

1.1.1 Mathematical formulation  

PLS comprises two outer relations (one for the predictors and one for the responses) and an 

inner relation that relates the predictors 𝐗 [𝑁 × 𝑉 ∙ 𝑇] to the response 𝐘 [𝑁 × 𝑃], were 𝑃 is the 

number of the dependent variables. The outer relations are: 

𝐗 = 𝐓 ∙ 𝐏T + 𝐄 = ∑ 𝐭a ∙ 𝐩a
T + 𝐄   ,A

a=1                                                                                   (1.1) 

𝐘 = 𝐔 ∙ 𝐐T + 𝐅 = ∑ 𝐮a ∙ 𝐪a
T + 𝐅   ;A

a=1                                                                                 (1.2) 

where 𝐴 is the number of latent variables, 𝐓 [𝑁 × 𝐴] and 𝐔 [𝑁 × 𝐴] are the score matrix for the 

X-block and Y-block, respectively, 𝐏 [𝑉 ∙ 𝑇 × 𝐴] and 𝐐 [𝑃 × 𝐴] are the loading matrix, 𝐄 

[𝑁 × 𝑉 ∙ 𝑇] and 𝐅 [𝑁 × 𝑃] are the residual matrix. The scores are the projections of the original 

data in the latent variables space, allowing to study the relationships among observations (i.e., 

batches). The loadings represent the contribution of each original variable to each latent 

variable, thus, providing information on the correlation among variables. Residuals are obtained 

by the difference between the original data and the reconstructed data, namely the information 

that is not captured by the PLS model.  

The inner relationship is: 

𝐔 = 𝐓 ∙ 𝐁 + 𝐅   ;                                                                                                                         (1.3) 

where 𝐁 is the regression coefficients matrix. This relation connects the scores matrices of the 

X and Y. 

1.1.1.1 NIPALS algorithm 

The NIPALS algorithm (Wold et al., 2001) deals with data which are mean-centered and scaled 

to unit variance. The NIPALS algorithm is composed by eight steps:  

1) initialize the score 𝐮 as a column of the matrix 𝐘: 

𝐮 = 𝐲𝑝   ;                                                                                                                                     (1.4) 

2) the weights of the X-block are calculated and normalize as follows: 

𝐰T =
𝐮T𝐗

𝐮T𝐮
   ,                                                                                                                              (1.5) 

𝐰T =
𝐰T

‖𝐰T‖
   ;                                                                                                                           (1.6)
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3) the scores of the X-block are calculated as 

𝐭 = 𝐰𝐗   ;                                                                                                                                     (1.7) 

4) for the Y-block the loadings are calculated and normalize as: 

𝐪T =
𝐭T𝐘

𝐭T𝐭
   ,                                                                                                                                (1.8) 

𝐪T =
𝐪T

‖𝐪T‖
   ;                                                                                                                             (1.9) 

5) finally, the score for the Y-block is updated as 

𝐮 =
𝐪𝐘

𝐪T𝐪
   ;                                                                                                                               (1.10) 

6) the convergence of the algorithm is tested with the X-block scores 𝐭: the algorithm proceeds 

to step 7 if the normalized difference between the scores of two consecutive iterations is 

sufficiently small (typical thresholds are 10−8 or 10−10), otherwise return to step 2. 

7) Calculate the loadings of the X-block and deflate the matrices to remove the calculated 

component (subscript ℎ) from the original regressor and response matrixes, to calculate a new 

component only on the information that has not already been modelled by previous latent 

variables: 

𝐩T =
𝐭T ∙ 𝐗

𝐭T𝐭
   ,                                                                                                                          (1.11) 

𝐩T =
𝐩T

‖𝐩T‖
   ,                                                                                                                           (1.12) 

𝐄𝑎+1 = 𝐗 − 𝐭𝑎𝐩𝑎
T   ,                                                                                                                (1.13) 

𝐅𝑎+1 = 𝐘 − 𝐮𝑎𝐪𝑎
T   ;                                                                                                               (1.14) 

8) return to step 1 to build the next component by considering 𝐄𝑎+1 and 𝐅𝑎+1 instead of 𝐗 and 

𝐘, respectively.  

This procedure is iterated until the desired number of latent variables is constructed. 

1.1.2 Prediction algorithm  

To predict the response loadings and weights are needed. The scores are related to 𝐗 through 

the modified weights, 𝐖∗, as: 

𝐓 = 𝐗 ∙ 𝐖∗   .                                                                                                                           (1.15)
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The scores of X-block are a good predictor for the Y-block: 

𝐘 = 𝐓 ∙ 𝐐T + 𝐅   ,                                                                                                                    (1.16) 

𝐘 = 𝐗 ∙ 𝐖∗ ∙ 𝐐T + 𝐅   ;                                                                                                           (1.17) 

the regression coefficients 𝐁 are defined as: 

𝐁 = 𝐖∗ ∙ 𝐐T   ;                                                                                                                        (1.18) 

and Equation 1.16 can be rewrite as: 

𝐘 = 𝐗 ∙ 𝐁 + 𝐅   ;                                                                                                                       (1.19) 

and the prediction equation is: 

�̂� = 𝐗 ∙ 𝐁   ;                                                                                                                              (1.20) 

where �̂� is the predicted response. 

The modified weights, needed to calculate the regression coefficients, can be obtained from the 

weights (i.e., calculated during NIPALS) in this way: 

𝐖∗ = 𝐖 ∙ (𝐏T ∙ 𝐖)−1   .                                                                                                       (1.21) 

1.1.2.1 Number of latent variables selection 

The selection of the number of latent variables is a crucial point in the construction of a reliable 

model, because it is important to model the phenomena involved in the system under study to 

be optimally predictive for the response without capturing noise. Many criteria could be used 

to select the proper number of latent variables to be considered, but the most important are the 

minimization of the prediction residual sum of squares (PRESS) and the minimization of the 

root mean square error in cross validation (RMSECV).  

In this Thesis, since two different models are compared (i.e., PLS and JY-PLS), the number of 

LVs that explain 90% of 𝐘 is selected, constraining the maximum allowable number of latent 

variables to eight.
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1.1.2.2 Coefficient of determination 

In this Thesis the metric chosen to evaluate the performance of the models is the coefficient of 

determination. 

The coefficient of determination is defined in this way: 

R2 = 1 −
∑ ∑ (y𝑛,𝑝 − ŷ𝑛,𝑝)

2𝑁
𝑛=1

𝑃
𝑝=1

∑ ∑ (y𝑛,𝑝 − y̅𝑛,𝑝)
2𝑁

𝑛=1
𝑃
𝑝=1

   ;                                                                               (1.22) 

where ŷ𝑛,𝑝 is the predicted response, y𝑛,𝑝 is the true response and y̅𝑛,𝑝 is the average value of 

the true response. The coefficient of determination has values between 0 and 1, where 1 

indicates a perfect prediction, while 0 indicates that the model is predicting the average value 

of the observation. Negative coefficient of determination values indicates extremely bad 

prediction performance.  

1.1.2.3 Hotelling’s T2 

The Hotelling’s 𝑇2 statistic explains how close a sample is to the average conditions described 

in the calibration dataset and represents the position of each sample with respect to the score 

space origin. It is calculated for each observation n as:  

𝑇𝑛
2 = 𝐭𝑛𝚲−1𝐭𝑛

T   ,                                                                                                                      (1.23) 

where 𝐭n is the 𝑛-th row of the score matrix 𝐓 and 𝚲 is a diagonal matrix containing the 

eigenvalues corresponding to 𝐴 latent variables and is defined as: 

𝚲 =
𝐓𝐓T

(𝑁 − 1)
   .                                                                                                                       (1.24) 

Confidence limit for the Hotelling 𝑇2 can be established. The confidence limits define a 

confidence region in which the true population mean is expected to lie within a certain 

probability (i.e., confidence). It is essentially the maximum value of the Hotelling’s statistic 

expected to see if the true population mean is statistically equal to the hypothesized mean with 

the predetermined confidence. Accordingly, if an observation lies outside the confidence 

region, it results to be far from the average conditions. The confidence limit of the Hotelling’s 

𝑇2 is defined as: 

𝑇𝑙𝑖𝑚
2 =

𝑉 ∙ 𝑇 ∙ (𝑁 − 1)

(𝑁 − 𝑉 ∙ 𝑇)
∙ F𝛼(𝑉 ∙ 𝑇, 𝑁 − 𝑉 ∙ 𝑇)   ;                                                               (1.25) 

where 𝑉 ∙ 𝑇 is the number of columns of the X-block, and F𝛼(𝑉 ∙ 𝑇, 𝑁 − 𝑉 ∙ 𝑇) is the critical 

value for the F-distribution with 𝑉 ∙ 𝑇 and (𝑁 − 𝑉 ∙ 𝑇) degrees of freedom and 𝛼 significance 

level (e.g., 0.05 for a confidence limit with 95% probability).
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1.2 Joint-Y Partial Least Squares 

JYPLS is a multi-block regression model which is used for the transfer learning problem, 

specifically to transfer information from a source plant to a target plant. The primary objective 

is to construct a unified response latent variable model based on the data from both plants. This 

model is particularly advantageous during the start-up phase, when data for the target are 

limited. The only limitation pertains to the Y-block. In fact, the response matrices of the two 

plants must come from the same population of the variables. However, no restrictions are 

present for the predictors block (𝐗), which can have different dimensions, namely have different 

variables. The key assumption behind JY-PLS is the existence of shared chemical and physical 

phenomena between plants, which allows the construction of a common latent space for the 

response. 

1.2.1 Mathematical formulation  

The JY-PLS uses data from two sources. In this Thesis, they are indicated as “pil” for the pilot 

process, which is the source plant, and “ind” for the industrial process, which is the target plant. 

The model uses a joint 𝐘 matrix to determine common loading matrix 𝐐𝐽, which identifies a 

common latent space for the Y-blocks of both plants. To better understand this structure a 

schematic representation of JY-PLS is shown in Figure 1.1. 

 

Figure 1.1. Structure of the JY-PLS. Adapted from García-Muñoz et al. (2005)
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The common 𝐘 latent space is defined as: 

𝐘J = [
𝐘pil

𝐘ind
] = [

𝐓pil

𝐓ind
] ∙ 𝐐J

T + 𝐄J   ;                                                                                        (1.26) 

where 𝐘J is the common matrix of the responses, where the response of the pilot scale 𝐘pil is 

vertically concatenated with the one of the industrial scale 𝐘ind, and 𝐄J is the residual for this 

common matrix. 

The single 𝐗 data can be decomposed in its latent space as:  

𝐗pil = 𝐓pil ∙ 𝐏pil
T + 𝐄pil   ,                                                                                                      (1.27) 

𝐗ind = 𝐓ind ∙ 𝐏ind
T + 𝐄ind   ;                                                                                                   (1.28) 

weights are used to link the scores to the regressors in this way: 

𝐓pil = 𝐗pil ∙ 𝐖pil
∗    ,                                                                                                                 (1.29) 

𝐓ind = 𝐗ind ∙ 𝐖ind
∗    ;                                                                                                              (1.30) 

the weight matrixes of Equations 1.28 and 1.29 are obtained from the modified ones as in 

Equation 1.19. 

1.2.1.2. Modified NIPALS algorithm 

A modified NIPALS algorithm (García-Muñoz et al., 2005) is usually employed to calculate 

the JY-PLS score, loading and weights. The main advantages of the NIPALS algorithm are an 

easy implementation and the possibility to manage missing data on both X and Y-blocks. The 

modified NIPALS comprises the following 8 steps. 

1) Initialize the scores of Y-block as the first columns of the responses: 

𝐮pil = 𝐘pil,1   ,                                                                                                                           (1.31) 

𝐮ind = 𝐘ind,1   ;                                                                                                                         (1.32) 

where the subscript 1 is referred to the first column of the matrix. 

2) Calculate the weights by regressing the X-block using the 𝐮 scores: 

𝐰pil = 𝐗pil
T ∙ 𝐮pil ∙ (𝐮pil

T 𝐮pil)
−1

   ,                                                                                       (1.33) 

𝐰ind = 𝐗ind
T ∙ 𝐮ind ∙ (𝐮ind

T 𝐮ind)
−1

   ;                                                                                  (1.34)
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3) normalize the weights to unit length. 

4) Calculate the scores of the X-block as: 

𝐭pil = 𝐗pil ∙ 𝐰pil ∙ (𝐰pil
T 𝐰pil)

−1
   ,                                                                                       (1.35) 

𝐭ind = 𝐗ind ∙ 𝐰ind ∙ (𝐰ind
T 𝐰ind)

−1
   ;                                                                                  (1.36) 

5) regress the joint 𝐘𝐽 onto the scores to obtain the joint loadings: 

𝐪J = 𝐘J
T ∙ 𝐭J ∙ (𝐭J

T𝐭J)
−1

   ;                                                                                                        (1.37) 

6) calculate new the scores from the joint loadings and check the convergence respect to the 

initial values of the scores (Equations 1.31 and 1.32): 

𝐮pil = 𝐘pil ∙ 𝐪J ∙ (𝐪J
T𝐪J)

−1
   ,                                                                                                 (1.38) 

𝐮ind = 𝐘ind ∙ 𝐪J ∙ (𝐪J
T𝐪J)

−1
   ;                                                                                               (1.39) 

if convergence is not reached return to step 2 and iterate the procedure until convergence, 

otherwise continue to step 7. 

7) Calculate the loadings for the X-block: 

𝐩pil = 𝐗pil
T ∙ 𝐭pil ∙ (𝐭pil

T 𝐭pil)
−1

   ,                                                                                           (1.40) 

𝐩ind = 𝐗ind
T ∙ 𝐭ind ∙ (𝐭ind

T 𝐭ind)
−1

   ;                                                                                      (1.41) 

8) deflate the predictors and the responses for each source and calculate the next component as 

described in point 7 of Section 1.1.1.1 (Equations 1.12 and 1.13). 

1.2.2 Latent-variable model inversion  

A calibrated JY-PLS model can be inverted to obtain the estimation of the conditions in term 

of regressors that ensure the desired responses. In this Thesis, JY-PLS inversion provides the 

operating conditions that maximize the productivity in the industrial process (García-Muñoz, 

2004). First of all, the desired response (𝐲ind,des
T ) for the industrial process must be defined, 

then the inversion can be performed directly when there are no constraints on the new predicted 

scores vector (𝛕ind,new) and on the desired response (𝐲ind,des) as: 

𝛕ind,new
T = (𝐐J

T ∙ 𝐐J)
−1

∙ 𝐐J
T ∙ 𝐲ind,des   

T    ;                                                                         (1.42)
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once the scores corresponding to the desired responses are obtained, it is possible to determine 

the original data from the scores vector as:  

�̂�ind,new = 𝛕ind,new ∙ 𝐏ind
T    ;                                                                                                 (1.43) 

instead, when a non-fully determined response and constraints are present on regressors and /or 

responses, the inversion is performed through an optimization problem (Tomba et al., 2012) 

and the problem is defined as: 

min
𝛕ind,new

[(�̂�ind,new − 𝐲ind,des) ∙ 𝚪 ∙ (�̂�ind,new − 𝐲ind,des)
T

+ 𝑔1 ∙ (∑
τ𝑎

2

s𝑎
2

𝐴

𝑎=1

)]   ,         (1.44) 

st. 

�̂�ind,new = 𝛕ind,new ∙ 𝐐ind
T    ,                                                                                                 (1.45) 

�̂�ind,new = 𝛕ind,new ∙ 𝐏ind
T    ,                                                                                                  (1.46) 

ŷ𝑝,ind,new ≤ 𝑏𝑝   ,                                                                                                                    (1.47) 

𝑙𝑏𝑝
y

≤ ŷ𝑝,ind,new ≤ 𝑢𝑏𝑝
y

   ,                                                                                                      (1.48) 

𝑙𝑏𝑣∙𝑡
x ≤ x̂𝑣∙𝑡,ind,new ≤ 𝑢𝑏𝑣∙𝑡

x    ;                                                                                               (1.49) 

in this set of equations, �̂�ind,new is the predicted responses vector for the industrial process from 

the predicted scores vector 𝛕ind,new, 𝜏𝑎 is the 𝑎-th element of the solution 𝛕ind,new and 𝑠𝑎 is the 

standard deviation of the columns of the matrix 𝐓ind. 𝚪 is a matrix in which on the diagonal 

elements there are the weights given to the specified equality constrains (𝐲ind,des) in the 

solution, 𝑔1 is a constant to balance the two terms in the summation (a good choice can be the 

reciprocal of the 95% confidence limit for the Hotelling’s 𝑇2, namely 𝑇𝑙𝑖𝑚
2 ). 𝑏𝑝 is the element 

of a vector 𝐛 which force each column of the new predicted response (ŷ𝑝,ind,new) inside some 

specified ranges. 𝑙𝑏𝑝
y
, 𝑢𝑏𝑝

y
, are the lower and upper boundaries for each column of the new 

predicted response (ŷ𝑝,ind,new). 𝑙𝑏𝑣∙𝑡
x  and 𝑢𝑏𝑣∙𝑡

x  are the lower and upper boundaries for each 

column of the new predicted regressors (x̂𝑣∙𝑡,ind,new). Equations 1.48 and 1.49 are used to 

maintaining the proximity of the new inputs to the historical. 

When the rank of the predictors is bigger than the one of the responses, some latent variables 

of 𝐗 do not change the �̂�ind,new, the ensemble of these LV are called null space. Inside the null 

space 𝛕ind,new can be changed without affecting the response. This space can be the target of 

an optimization problem in which between all possible solutions, which lead to the desired 

�̂�ind,new, an optimized solution is found imposing some specified criteria, such as economical
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or safety criteria. The condition that must be respected by the null space to guarantee the 

independence of the response is: 

�̂�ind,new = 𝐐ind
T ∙ (𝛕ind,new + ∆𝛕ind,new,null)   ,                                                               (1.50) 

𝐐ind
T ∙ ∆𝛕ind,new,null = 0   .                                                                                                    (1.51)



 

 

Chapter 2 

Penicillin process simulators at different 

scales 

Chapter 2 presents an overview of two penicillin simulated processes employed in this Thesis 

for the problem of product/process scale transfer. The processes deal with the penicillin 

production at different production scales, namely, pilot scale and industrial scale. In particular, 

the key concepts, the structure and the most important model equations are presented. 

2.1 Pilot-scale penicillin production process simulator Pensim 

The Pensim process simulator (Birol et al., 2002) is a dynamic model of a pilot (100 L) fed-

batch fermentation reactor for penicillin production.  

The mechanistic model in Pensim, inspired by the Bajpai & Reuss (1980), is unstructured, 

meaning that no structural information about cellular activity is included and all the cellular 

physiology information is included into a single biomass term. 

2.1.1 Pensim model structure  

To better understand the structure of this model a simplified scheme in presented in Figure 2.1. 

 

Figure 2.1. Simplified Pensim model structure.

ProcessInputs: Outputs:
Substrate feed temperature

Substrate feed flowrate

Agitator power input

Water flowrate

Acid flowrate

Volume

Fermenter temperature

Generated heat

pH

Glucose concentration

Biomass concentration

Aeration rate

Penicillin concentration

Dissolved oxygen concentration

Carbon dioxide concentration

Base flowrate

pH set point

Temperature set point

Initial substrate concentration
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The variables of the model are collected in the following table. 

Table 2.1. Variables list of the Pensim simulator. 

Variable # Variable name Type 

1 Acid flowrate Input 

2 Aeration rate Input 

3 Agitation power Input 

4 Base flowrate  Input 

5 Cooling water flowrate Input 

6 Substrate feed temperature Input 

7 Temperature controller set-point Input 

8 Initial substrate concentration Input/design 

9 pH controller set-point Input/design 

10 Substrate feed flowrate Input/design 

11 Generated heat Output 

12 Temperature Output 

13 Volume Output 

14 Biomass concentration Output/state 

15 Carbon dioxide concentration Output/state 

16 Oxygen concentration Output/state 

17 pH Output/state 

18 Substrate concentration Output/state 

19 Penicillin concentration Output/target/state 

 

Sampling time for process measurement is set to 1h, while for the concentrations, being more 

difficult to measure, is set to 12h. The feed addition starts when the glucose concentration 

reaches the threshold value of 0.3 (g/L). The length of the batches is 240h. 

2.1.2 Mathematical model  

The model structure is composed by six equations (2.1-2.6) which model the dynamic 

behaviour of the state variables and state the effects accounted for each of these variables: 

𝑋 = 𝑓(𝑋, 𝑆, 𝐶L, 𝐻, 𝑇)   ,                                                                                                            (2.1) 

𝑆 = 𝑓(𝑋, 𝑆, 𝐶L, 𝐻, 𝑇)   ,                                                                                                             (2.2) 

𝐶L = 𝑓(𝑋, 𝑆, 𝐶L, 𝐻, 𝑇)   ,                                                                                                           (2.3) 

𝐶P = 𝑓(𝑋, 𝑆, 𝐶L, 𝐻, 𝑇, 𝐶P)   ,                                                                                                    (2.4) 

𝐶𝑂2 = 𝑓(𝑋, 𝐻, 𝑇)   ,                                                                                                                  (2.5) 

𝐻 = 𝑓(𝑋, 𝐻, 𝑇)   ;                                                                                                                      (2.6)
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where 𝑋 (g/L) is the biomass concentration, 𝑆 (g/L) is the substrate concentration, 𝐶𝐿 (g/L) is 

the dissolved oxygen concentration, 𝐶P (g/L) is the penicillin concentration, 𝐶𝑂2 (mmol/L) is 

the carbon dioxide concentration, 𝐻 (mol/L) is the hydrogen ion concentration, namely the pH, 

and 𝑇 (K) is the temperature. There are no hard constraints on input variables or kinetic 

parameters in the simulator, but the use of values outside the suggested ranges by Bajpai & 

Reuss (1980) could lead to outputs without physical meaning. 

In this Thesis, the perfect control of the pilot scale is assumed, to simplify the problem. This 

means that no random disturbances on the input variables, nor measurement noise is considered.  

In the next Sub-subsections, the detailed formulations of the important pilot scale variables are 

shown for substrate concentration, pH, and penicillin concentration. All the other information 

can be found in the paper by Birol et al. (2002). 

2.1.2.1 Substrate and penicillin 

In this model the substrate utilization is strictly related to the feed flow rate, required for the 

maintenance of the organisms, the biomass growth and the penicillin production. The two major 

equations involve the mass balances of glucose and oxygen (dissolved) which are the nutrients 

for microorganisms:  

d𝑆

d𝑡
= −

µ

𝑌𝑥 𝑆⁄
∙ 𝑋 −

µ𝑝𝑝

𝑌𝑝 𝑆⁄
∙ 𝑋 − 𝑚𝑥 ∙ 𝑋 +

𝐹 ∙ 𝑠𝑓

𝑉
−

𝑆

𝑉
∙

d𝑉

d𝑡
   ,                                               (2.7) 

d𝐶𝐿

d𝑡
= −

µ

𝑌𝑥 𝑂⁄
∙ 𝑋 −

µ𝑝𝑝

𝑌𝑝 𝑂⁄
∙ 𝑋 − 𝑚𝑂 ∙ 𝑋 + 𝐾𝑙𝑎 ∙ (𝐶𝐿

∗ − 𝐶𝐿) −
𝐶𝐿

𝑉
∙

d𝑉

d𝑡
   ;                         (2.8) 

where 𝑡 is the time (h), µ is the specific growth rate (h-1), 𝑌𝑥 𝑆⁄  is the constant yield of biomass 

over glucose (g biomass/g glucose), μ𝑝𝑝 is the specific penicillin production rate (per h), 𝑌𝑝 𝑆⁄  

is the constant yield of penicillin over glucose (g penicillin/g glucose), 𝑚𝑥 is the maintenance 

coefficient on substrate (per h), 𝐹 is the feed flow rate of substrate (L/h), 𝑠𝑓 is the feed substrate 

concentration (g/L), 𝑉 is the culture volume (L), 𝑌𝑥 𝑂⁄  is the constant yield of biomass over 

oxygen (g biomass/g oxygen), 𝑌𝑝 𝑂⁄  is the constant yield of penicillin over oxygen (g penicillin/g 

oxygen), 𝑚𝑂 is the maintenance coefficient on oxygen (h-1) and 𝐶𝐿
∗ is the dissolved oxygen 

concentration at saturation (g/L).  

The overall mass transfer coefficient 𝐾𝑙𝑎 (L/h) is calculated with: 

𝐾𝑙𝑎 = α ∙ √𝑓𝑔 ∙ (
𝑃𝑤

𝑉
)

𝛽

   ;                                                                                                          (2.9) 

where parameters α and β are estimated from experimental data (Bailey & Ollis, 1986), 𝑓𝑔 is 

the flow rate of oxygen (L/h) and 𝑃𝑤 is the agitation power (W).
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2.1.2.2 pH 

The mass balance of the hydrogen ions is: 

d[𝐻+]

d𝑡
= 𝛾 (µ ∙ 𝑋 −

𝐹 ∙ 𝑋

𝑉
) + [

−𝐵 + √(𝐵2 + 4 ∙ 10−14)

2
− [𝐻+]] ∙

1

∆𝑡
   ;                 (2.10) 

where: 

𝐵 =
[10−14 [𝐻+]⁄ − [𝐻+]] ∙ 𝑉 − 𝐶𝑎 𝑏⁄ ∙ (𝐹𝑎 + 𝐹𝑏) ∙ ∆𝑡

𝑉 + (𝐹𝑎 + 𝐹𝑏) ∙ ∆𝑡
   ;                                             (2.11) 

[𝐻+] is the hydrogen ion concentration, 𝛾 is a constant (mol[𝐻+]/g biomass) determined from 

experimental data (Mou & Cooney, 1983), 𝐹𝑎 and 𝐹𝑏 are the acid and base flow rates (L/h), and 

𝐶𝑎 𝑏⁄  is the concentration of both solutions assumed the same dilution (M). 

In the specific growth rate of biomass (Equation 2.10) an inhibition effect of the concentration 

of hydrogen ions is included as: 

𝜇 ∝ 𝑓 {
𝜇𝑥

1 + [𝐾1 [𝐻+]⁄ ] + [[𝐻+] 𝐾2⁄ ]
}   ;                                                                            (2.12) 

𝜇𝑥 is the maximum specific growth rate (h-1) and the terms 𝐾1 and 𝐾2 are constants (Nielsen & 

Villadsen, 1994; Shuler & Kargi, 2002). 

The pH of culture medium tends to decrease as the reaction proceeds. For this reason, a 

controller of pH is implemented to keep the acidity close to the set-point adjusting the flowrate 

of 𝑁𝐻4𝑂𝐻 provided to the culture. Settings of the pH controller, as the one for the temperature 

controller can be found in (Birol et al., 2002). 

2.1.2.3 Penicillin production 

The penicillin mass balance is: 

d𝐶P

d𝑡
= μ𝑝𝑝 ∙ 𝑋 − 𝐾 ∙ 𝐶P −

𝐶P

𝑉
∙

d𝑉

d𝑡
   ;                                                                                  (2.13) 

in the specific penicillin production rate, an inhibition effect of the substrate (Bajpai & Reuss 

1980) is included as: 

μ𝑝𝑝 = μ𝑝 ∙
𝑆

(𝐾𝑝 + 𝑆 + 𝑆2 𝐾𝐼⁄ )
∙

𝐶𝐿
𝑝

(𝐾𝑜𝑝 ∙ 𝑋 + 𝐶𝐿
𝑝)

   ;                                                          (2.14) 

where μ𝑝 is the specific rate of penicillin production (h-1), 𝐾𝑝 is the inhibition constant (g/L), 

𝐾𝐼 is the inhibition constant for product formation (g/L), 𝐾𝑜𝑝 is the oxygen limitation constant 

(-) and 𝐶𝐿
𝑝
 is the dissolved penicillin concentration (g/L). Equation 2.14 illustrates that, up to a 

certain threshold, an increase in substrate favors penicillin production. Beyond this threshold, 

however, the increase in the substrate level led to a reduction in penicillin production.
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2.2 Industrial-scale penicillin production process simulator 

Indpensim 

Indpensim (Goldrick et al., 2014) simulates the behaviour of an industrial-scale (100000 L) fed-

batch fermentation process for penicillin production. This simulator was developed for process 

control and optimization studies. The model, based on the work of Paul & Thomas (1996), is 

structured, meaning that the cellular information about the structure and the activity of the 

biomass are considered and it simulates the behaviour of an industrial strain of Penicillium 

Chrysogenum. 

2.2.1 Model’s structure  

The structure of the IndPensim simulated process is presented in Figure 2.2. 

Figure 2.2. Scheme of the Indpensim process with all inputs and outputs. Variables denoted with 

asterisk are not recorded by the batch records. (Goldrick, Ștefan, Lovett, Montague & Lennox 2014).
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As in Sub-section 2.1.1 the variables of the model are collected in a table. 

Table 2.2. Variables list of the Indpensim simulator. 

Variable # Variable name Type 

1 Acid flowrate Input 

2 Aeration rate Input 

3 Agitation power Input 

4 Base flowrate  Input 

5 Cooling water flowrate Input 

6 Heating water flowrate Input 

7 Injection water flowrate Input 

8 Oil flowrate Input 

9 Temperature controller set-point Input 

10 Initial substrate concentration Input/design 

11 pH controller set-point Input/design 

12 Substrate feed flowrate Input/design 

13 Ammonia concentration Output 

13 Biomass concentration Output 

14 Carbon dioxide % in off-gas Output 

15 Carbon evolution rate Output/state 

16 Dumped broth Output 

17 Generated heat Output 

18 Oxygen concentration Output 

19 Oxygen % in off-gas Output 

20 Oxygen uptake rate Output 

21 pH Output 

22 Phenylacetic acid concentration (offline) Output 

23 Phenylacetic acid concentration (online) Output 

24 Pressure Output 

25 Substrate concentration Output 

26 Temperature Output 

27 Viscosity Output 

28 Volume Output 

29 Weight Output 

30 Penicillin concentration Output/target 

 

Sampling time for online measurements is set to 1h, while off-line variables are recorded every 

12h. The batch length is 240h congruent to one chose for the pilot scale simulator (Sub-section 

2.1.2). The manipulated variables in this case are the initial substrate concentration, the recipe 

(which define the mixture flowrate of soybean oil and substrate) and the pH controller set-point.  

2.2.2 Indpensim mathematical model  

The mathematical model is composed by fourteen equations, the first four ones are the biomass 

balances in the different regions of the Penicillium Chrysogenum Fungus, which are: growing 

regions, non-growing regions, degenerated regions, and autolysed regions. The number of 

parameters is seventy-two. For simplicity only the most important balances are presented in the 

next sections, for the complete model and parameters values refers to the work by Goldrick and 

coworkers (Goldrick et al., 2014). The model adds random disturbances to the variables and 

parameters, the magnitude of these disturbances is shown in the following table.
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Table 2.3. Maximum random variability added to variables and parameters. 

Variable/Parameter list Maximum percentage of variability (±%) Type 

Initial biomass concentration 30.00 Measured 

Maximum specific growth rate of biomass 6.10 Measured 

Maximum specific growth rate of penicillin 6.10 Measured 

Initial substrate concentration 2.00-10.00  Manipulated 

Initial dissolved oxygen concentration 3.33 Measured 

Initial volume 0.86 Measured 

Initial weight 0.81 Measured 

Initial carbon dioxide concentration 2.63 Measured 

Initial oxygen concentration 25.00 Measured 

Initial pH 1.54 Measured 

Initial temperature 0.17 Measured 

Initial phenylacetic acid concentration 3.57 Measured 

Initial nitrogen concentration 2.94 Measured 

Overall mass transfer coefficient 11.76 Measured 

Phenylacetic acid concentration in the feed 3.77 Measured 

Nitrogen concentration in the feed 1.33 Measured 

 

Furthermore, a low passing filter with a cut-off about 99.5% is implemented on the penicillin 

specific growth rate, biomass specific growth rate, oil mass inlet concentration, acid molar inlet 

concentration, base molar inlet concentration, phenylacetic mass inlet concentration, coolant 

inlet temperature, and oxygen percentage inlet concentration. This means that the 0.5% of the 

lowest values are discarded. 

2.2.2.1 Substrate balance 

The substrate is a mixture of sugars and soybean oil, the latter is the second carbon source and 

provides anti-foaming action. The substrate mass balance is: 

d𝑆

d𝑡
= −𝑌𝑠 𝑋⁄ ∙ 𝑟𝑒 − 𝑌𝑠 𝑋⁄ ∙ 𝑟𝑏 − 𝑚𝑠 ∙ 𝑟𝑚 − 𝑌𝑠 𝑃⁄ ∙ 𝑟𝑃 +

𝐹𝑠 ∙ 𝑐𝑠

𝑉
+

𝐹𝑜𝑖𝑙 ∙ 𝑐𝑜𝑖𝑙

𝑉
−

𝐹𝑖𝑛 ∙ 𝑆

𝑉
   ; (2.15) 

where 𝑆 is the substrate concentration (g/L), 𝑌𝑠 𝑋⁄  is the biomass substrate yield coefficient (g 

substrate/g biomass), 𝑟𝑒 is the rate of extension (g biomass/(L∙h)), 𝑟𝑏 is the rate of branching (g 

biomass/(L∙h)), 𝑚𝑠 is the substrate maintenance term (g/(g∙h)), 𝑟𝑚 is the rate of maintenance 

(g/L), 𝑌𝑠 𝑃⁄  is the penicillin substrate yield coefficient (g substrate/g penicillin), 𝑟𝑃 is the rate of 

production (g penicillin/(L∙h)), 𝐹𝑠 is the sugar feed rate (L/h), 𝑐𝑠 is the sugar concentration (g 

substrate/L), 𝑉 is the vessel volume (L), 𝐹𝑜𝑖𝑙 is the soybean oil feed rate (L/h), 𝑐𝑜𝑖𝑙 is the soybean 

oil concentration (g soybean oil/L) and 𝐹𝑖𝑛 represent all the process feed rate inputs except the 

discharge rate [L/h]. 

Two manipulated variables are influenced by the substrate: initial substrate concentration and 

recipe. The initial substrate concentration is the value of the concentration of this mixture at the 

beginning of the process. The recipe defines the amount of substrate to be fed at each moment 

of time along the batch. This substrate control strategy (Montague et al.,1986) shows a sharp 

increase in the substrate flow rate around 20h from the start of the batch to ensure excess of



20  Chapter 2 

substrate that led to a rapid biomass growth at the beginning of the process. The flow rate is 

then reduced to low values to maximize penicillin production.  

2.2.2.2 pH 

The pH is modelled through a hydrogen ion (H+) balance, which considers the generation of 

hydrogen ions during the growth phase, metabolic production, and maintenance activities, in 

addition to the introduction of acid/base and other process inputs: 

d[𝐻+]

d𝑡
= γ1 ∙ (μ𝑥 ∙ 𝑋 + μ𝑝 ∙ 𝐶P) − 𝑚𝑝𝐻 ∙ 𝑋 − γ2 ∙ 𝐹 + [𝐻1

+]   ;                                    (2.16) 

where γ1 is the hydrogen ion production term during biomass and penicillin growth (-), μ𝑥 is 

the growth rate of biomass (h-1), μ𝑃 is the growth rate of penicillin (h-1), 𝑚𝑝𝐻 is the constant 

ion production related to the maintenance activities of the biomass, γ2 is the hydrogen ion 

process inputs term (-) and account for the disturbances in inputs feed 𝐹 (L/h), and the effect of 

acid/base additions is modelled by [𝐻1
+] (mol/L). To model the effect of pH deviations on the 

growth rate of biomass, an inhibition term is included (Nielsen et al., 2003) as: 

μ𝑥 ≈ μ𝑥𝑚𝑎𝑥
∙ [

1

1 + 𝐾1 [𝐻+]⁄ + [𝐻+] 𝐾2⁄
]   ;                                                                     (2.17) 

where 𝐾1 and 𝐾2 represent the higher and lower hydrogen ion concentration ([𝐻+]), 

respectively, at which the biomass growth rate is observed to be half its maximum value. 

Furthermore, μ𝑥𝑚𝑎𝑥
 is the maximum specific growth rate of biomass (h-1). Note that these values 

are specific to the strain and process under consideration.  

The influence of pH changes on fermentation processes is considerable and deviations of as 

little as 0.2 or 0.3 may have an adverse effect on a batch (Vogel and Todaro, 1997). For this 

reason, a PID control is implemented to keep the pH around an optimal set-point. 

2.2.2.3 Penicillin production 

The penicillin production mechanism is described through its mass balance: 

d𝐶P

d𝑡
= 𝑟𝑃 − 𝑟ℎ −

𝐹𝑖𝑛 ∙ 𝐶P

𝑉
   ;                                                                                                  (2.18) 

where 𝑟𝑃 and 𝑟ℎ are the rate of product formation and product hydrolysis respectively (g/(L∙h)) 

and 𝐹𝑖𝑛 is the total flow in (L/h). Temperature and pH must be controlled to facilitate the cell 

growth and the product formation, because they influence the rate of product hydrolysis 𝑟ℎ. The 

degradation of penicillin is modelled using a second-order polynomial (Kheirolomoom et al. 

1999): 

log(𝑟ℎ) =  𝐵1 + 𝐵2 ∙ 𝑝𝐻 + 𝐵3 ∙ 𝑇 + 𝐵4 ∙ 𝑝𝐻2 + 𝐵5 ∙ 𝑇2   ;                                            (2.19)
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where constants 𝐵1 - 𝐵5 are equal respectively to: -67.8, -1.82, 0.36, 0.12, -4.9∙10-4; and are 

calculated to obtain a hydrolysis rate of 0.003 (h-1) at temperature of 298 (K) and pH of 6.5 (-) 

(Paul and Thomas, 1996).



 



 

Chapter 3 

Experimental data  

This Chapter presents the available data, which are generated in silico by means of the simulated 

processes. The preprocessing to obtain data which can be treated through the methodologies 

presented in Chapter 2 is shown in terms of: data resampling, elimination of useless variables, 

and scaling. 

3.1 Pilot-scale data 

Recalling that the objective of this Thesis is to quantify the number of pilot scale batches that 

allows an improved description of the process at the industrial scale through transfer learning 

methods, to assess the effect of different data generation strategies, two independent datasets 

are created: i) using a full factorial design approach (FFD) and ii) using a gaussian design 

approach (GAU). Both the datasets are composed of 200 batches, which are used for calibrating 

the models, and 50 batches used to validate the models.  

3.1.1 Design variables and ranges 

For both the datasets, the design variables are: the initial substrate concentration, the substrate 

feed rate (that has the same effect of the recipe in the Indpensim simulator) and the pH set-

point. These design variables are selected because they are: i) easy to manipulate, ii) important 

for the response variable; and iii) strictly linked to the manipulated variables of the industrial 

scale process simulator. The ranges for manipulating the design variables are reported in Table 

3.1. 

Table 3.1. Ranges of manipulated variables for the Pensim simulator. 

Manipulated variable Lower boundary Upper boundary 

Initial substrate concentration 1.0 (g/L) 61.0 (g/L) 

Substrate feed rate 0.1 (L/h) 0.5 (L/h) 

pH controller set-point 5.0 (  -  ) 5.4 (  -  ) 

 

The ranges, taken from literature (Birol et al., 2001; Chu et al. 2018), are adjusted to avoid any 

numerical issue in the penicillin concentration values.
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3.1.2 Gaussian design approach 

In the gaussian design approach, the batches are generated sampling the design variables from 

independent gaussian distributions. The mean and the standard deviation of the gaussian 

distributions used in this Thesis are reported in Table 3.2. The means are selected as the mean 

value of the means in Table 3.1, and the standard deviations are set to one fourth of the range 

in Table 3.1, in this way 95% of the batches fall inside the ranges. 

Table 3.2. Means and standard deviations of the design variables used to generate data in the 

gaussian design approach on the Pensim simulator. 

Manipulated variable Mean Standard deviation 

Initial substrate concentration 31.0 (g/L) 15.0 (g/L) 

Substrate feed rate 0.3 (L/h) 0.1 (L/h) 

pH controller set-point 5.2 (  -  ) 0.1 (  -  ) 

 

Using this approach, the operating conditions for 250 batches (200 for model calibration and 

50 for validation) are generated (Figure 3.1). The validation batches were generated for an 

initial PLS model construction for the pilot scale. 

 
(a)
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Figure 3.1. Design variables values of calibration and validation batches generated with the 

Gaussian approach by the Pensim simulator: (a) Penicillin concentration values as function of the 

initial substrate concentration; (b) Penicillin concentration values as function of the feed substrate 

rate. (c) Penicillin concentration values as function of the pH set-point. Calibration batches are the 

blue stars, validation are the red crosses, and the black circle is the batch with the highest penicillin 

concentration in the calibration dataset.
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As previously mentioned in Sub-subsections 2.1.2.1 and 2.1.2.2, the importance of the initial 

substrate concentration and the feed substrate concentration is demonstrated in Figure 3.1 as 

they induce the largest changes in penicillin concentration. On the contrary, the pH set-point 

has a lower effect on the penicillin concentration than the other two design variables.  

3.1.3 Full factorial design approach 

To generate the operating conditions for the full-factorial approach, a full-factorial design with 

3 factors and 6 levels is used. Accordingly, the design span of each variable is divided into six 

segments, and the operating conditions result from a combination of the three factors in the 6 

levels. The selected levels for the initial substrate concentration are: 1, 13, 25, 37, 49, and 61 

(g/L). The selected levels for the substrate feed rates are: 0.10, 0.18, 0.26, 0.34, 0.42, and 0.50 

(L/h). The selected levels for the pH controller are: 5, 5.08, 5.16, 5.24, 5.32, and 5.40 (-). Among 

the resulting 216 (63) batches, 200 were randomly selected to be used as calibration dataset, 

while the remaining 16 are discarded, this is done to match the number of calibration batches 

generated in Sub-section 3.1.2. No new validation batches are created with this approach. The 

same 50 validation batches crated in Section 3.1.2 for validation are used here as validation set. 

 
(a)
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(b) 

 
(c) 

Figure 3.2. Design variables values of calibration and validation batches generated with the Full 

Factorial Design approach by the Pensim simulator: (a) Penicillin concentration values as function 

of the initial substrate concentration. (b) Penicillin concentration values as function of the feed 

substrate rate. (c) Penicillin concentration values as function of the pH set-point. Calibration 

batches are the blue stars, validation are the red crosses, and the black circle is the batch with the 

highest penicillin concentration in the calibration dataset.
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Even in this case the major effects on penicillin are related to the initial substrate concentration 

and the feed substrate rate, as already seen in Sub-subsections 2.1.2.1 and 2.1.2.2. Furthermore, 

from a deeper analysis on the effect of the variables, a small effect of the pH controller set-

point is highlighted, especially when the initial substrate concentration is high, and the substrate 

feed rate is low. 

3.1.4 Data treatment 

In both approaches, 200 batches are generated, which are composed of 15 variables (aeration 

rate, agitator power, substrate feed rate, substrate feed temperature, volume, pH, temperature, 

generated heat, acid flow rate, base flow rate, and water flow rate) measured in 241 time instants 

(one sampling per hour from 0 to 240 hours) and 4 concentration variables (substrate, oxygen, 

biomass, and carbon dioxide) measured in 21 time instants (every 12h). The multiway 

methodologies used in this Thesis require the batch-wise unfolding of the matrices to properly 

manage the time evolution of batches (Section 1.1). In batch-wise unfolding the variables at 

measured at different time instants are horizontally concatenated to obtain two-dimensional 

matrices 𝐗𝑝𝑖𝑙,FFD and 𝐗𝑝𝑖𝑙,GAU of dimensions [𝑁 × 𝑉 ∙ 𝑇] = [200 × 2735], where 2735 results 

from 15∙241+21∙4. The response variable is organized in a vectors 𝐘𝑝𝑖𝑙,FFD and 𝐘𝑝𝑖𝑙,GAU of 

dimensions [𝑁 × 𝑃] = [200 × 1], 𝑃 is equal to 1 because only the last time instant is 

considered, for instance the outlet penicillin concentration. 

3.1.4.1 Elimination of constant variables 

Some variables, such as aeration rate, agitator power and the substrate feed temperature, are the 

process manipulated variables and they are kept constant all over the batch duration. 

Accordingly, since these variables do not add information to the model, they are excluded from 

the datasets. The resulting dataset used for modelling have dimensions [200 × 2012]. 

3.1.4.2 Scaling 

Data are autoscaled prior the analysis by subtracting to each column its mean value and dividing 

for its standard deviation as: 

𝐱𝑣,𝑛 =
(𝐱𝑣 − �̅�𝑣)

𝜎(𝐱𝑣)
   ;                                                                                                                  (3.1) 

where 𝐱𝑣is the column 𝑣 of the real values matrix 𝐗𝑝𝑖𝑙, 𝐱𝑣,𝑛 are the autoscaled values, �̅�𝑣 is the 

mean of the column, and 𝜎(𝐱𝑣) is the standard deviation of the column.
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3.2 Industrial-scale data 

In the industrial case, the same number of batches is generated, namely 200 for model 

calibration and 50 for validation, using only the Gaussian design approach. The validation 

batches generated at the industrial scale are used to assess the reliability and performance of 

both PLS and JYPLS. 

3.2.1 Design variables and ranges 

The selected design variables are the initial substrate concentration, the recipe and the pH 

controller set-point, to manipulate factors and obtain effects like the pilot case. In the Table 3.3, 

the ranges in which the selected design variables are varied are presented. 

Table 3.3. Ranges of manipulated variables for the Indpensim simulator. 

Manipulated variable Lower boundary Upper boundary 

Initial substrate concentration 1.0 (g/L) 5.0 (g/L) 

Recipe -1.0 (  -  ) 1.0 (  -  ) 

pH controller set-point 6.0 (  -  ) 6.5 (  -  ) 

 

The ranges for the initial substrate concentration and the pH controller set-point, taken from 

literature (Goldrick et al., 2014), are adjusted to avoid numerical issues. 

3.2.1.1 Recipe 

The recipe is a predetermined time profile of feed flowrate provided to the batch at each time 

point. The two default recipes of the simulator are considered and called -1 and 1 (-1 the recipe 

with the lowest values of the flowrate and 1 the one with the largest values). A third recipe, the 

average of the two default ones, is added and named 0.  

 

Figure 3.3. Different recipes used in the generation of artificial data with the Indpensim 

simulator.
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3.2.2 Generation of batch operating conditions 

In the gaussian design approach, the batches are generated by sampling the values of the design 

variables from independent gaussian distributions. The mean and the standard deviation of the 

gaussian distributions used in this Thesis are reported in Table 3.4. The means are selected as 

the mean value of the ranges (Tables 3.3), and the standard deviations are set to one fourth of 

the range span for the same motivation of Section 3.1.2. 

Table 3.4. Means and standard deviations of the design variables used to generate data in the 

gaussian design approach on the Indpensim simulator. 

Manipulated variable Mean Standard deviation 

Initial substrate concentration 3.00 (g/L) 1.000 (g/L) 

pH controller set-point 6.25 ( - ) 0.125 ( - ) 

 

The recipe is assigned randomly among the selected three recipes (i.e., [1,0, −1]), in such a 

way to obtain an equal number of batches with each recipe. Accordingly, 67 calibration batches 

follow the 1 recipe, 67 follow the 0 recipe, and 66 follow the -1 recipe. For the validation 

batches, 17 are follow the 1 recipe, 16 follow the 0 one, and 17 follow the -1 recipe.  

 
(a)
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(b) 

 
(c) 

Figure 3.4. Design variables values of calibration and validation batches generated with the 

Gaussian approach by the Indpensim simulator: (a) Penicillin concentration values as function of 

the initial substrate concentration. (b) Penicillin concentration values as function of the feed 

substrate rate. (c) Penicillin concentration values as function of the pH set-point. Calibration 

batches are the blue stars, validation are the red crosses, and the black circle is the batch with the 

highest penicillin concentration in the calibration dataset.
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As previously mentioned in Sections 2.2.2.1 and 2.2.2.2, the importance of the recipe is 

demonstrated in Figure 3.4 as it induces the largest changes in penicillin concentration. On the 

contrary, the initial substrate concentration and the pH set-point have a lower effect on the 

penicillin concentration than the other two design variables. The two clusters of batches arise 

for the inhibition effects shown in Section 2.2.2. 

3.2.3 Data treatment 

At the industrial scale, 250 batches are generated, which are composed of 23 variables (aeration 

rate, agitator power, substrate feed rate, acid flow rate, base flow rate, cooling water flow rate, 

heating water flow rate, water inlet, pressure, dumped broth, substrate concentration, dissolved 

oxygen concentration, vessel volume, vessel weight, pH, temperature, generated heat, carbon 

dioxide percent in off-gas, oxygen uptake rate, on-line phenylacetic acid concentration, oil flow, 

oxygen in percent in off-gas, and carbon evolution rate) measured in 241 time instants (one 

sampling per hour from 0 to 240 hours) and 4 variables (off-line phenylacetic acid 

concentration, ammonia concentration, biomass concentration and viscosity) measured in 21 

time instants (every 12h). The resulting data is unfolded in a batch-wise fashion to obtain the 

matrix 𝐗𝑖𝑛𝑑 of dimensions [𝑁 × 𝑉 ∙ 𝑇] = [250 × 5627]. The response variable is organized in 

a vector 𝐘𝑖𝑛𝑑 of dimensions [𝑁 × 𝑃] = [250 × 1], again P is equal to 1 because only the final 

penicillin concentration is considered. 

3.2.3.1 Elimination of constant variables 

Some variables, such as aeration rate, agitator power, water inlet, pressure, dumped broth, on-

line phenylacetic acid, and oil flow, are the process manipulated variables and are kept constant 

all over the batch duration. Accordingly, since these variables do not add information to the 

model, they are eliminated from the datasets. The resulting dataset used for modelling are 

[250 × 3940]. At this point the 2D matrix is horizontally divided in two different matrices, one 

for the calibration batches containing the first 200 batches ([200 × 3940]), and one for the 

validation batches containing the last 50 batches ([50 × 3940]). 

3.2.3.2 Scaling 

Process variables in the industrial dataset 𝐗𝑖𝑛𝑑 are scaled in different ways according to the 

measurement type. The variables substrate feed rate, dissolved oxygen concentration, vessel 

volume, vessel weight, pH, temperature, generated heat, carbon dioxide percent in off-gas, 

oxygen uptake rate, oxygen in percent in off-gas, carbon evolution rate, off-line phenylacetic 

acid concentration, ammonia concentration, biomass concentration and viscosity, are 

autoscaled as explained in Section 3.1.4.2. The other variables, such as acid flow rate, base flow 

rate, cooling water flow rate, heating water flow rate, and substrate concentration, are scaled 

using a min-max technique. A different scaling method is used because these variables are the



Experimental data  33 

manipulated variables of the process and might induce numerical issues as they are typically 

set either at the minimum or at the maximum value. For the substrate concentration the same 

problem arises at time instant where almost all the batches have value close to zero. The 

equation used for the min-max scaling is: 

𝐱𝑣,𝑛 =
𝐱𝑣

max(𝐱𝑣∗) − min(𝐱𝑣∗)
   ;                                                                                            (3.2) 

where𝐱𝑣,𝑛 is the column of the min-max scaled values of a real values column 𝐱𝑣 of a variable 

v, max(𝐱𝑣∗) is the maximum value choice for a variable v, and min(𝐱𝑣∗) is the minimum value 

choice for the variable v. To use the min-max technique the minimum and maximum limits for 

these variables are identified (Table 3.5). 

Table 3.5. Minimum and maximum values used for the scaling in the Indpensim simulator. 

Variable Minimum value Maximum value 

Acid flow rate 0 (L/h) 20 (L/h) 

Base flow rate 0 (L/h) 225 (L/h) 

Cooling water flow rate 0 (L/h) 700 (L/h) 

Heating water flow rate 0 (L/h) 520 (L/h) 

Substrate concentration 0 (g/L) 40 (g/L) 

 

The values in Table 3.5 are obtained by rounding the maximum values of these variables, and 

using 0 for the minimum values, as it is the minimum physical value for these measurements.



 



 

 

Chapter 4 

Penicillin concentration prediction 

performance: comparison between 

different strategies and sensitivity on the 

number of available data  

This Chapter presents a comparison between multivariate models that predict the penicillin 

concentration at the end of the production batch. In particular, a PLS model built on industrial 

batches only is compared to a JY-PLS built on both pilot-plant data and industrial-plant data. 

Specifically, the sensitivity of the model performance to a varying number of experimental 

batches used for calibration is evaluated.  

4.1 Procedure for performance comparison 

The procedure presented in this Section is used to make a fair comparison between the PLS 

built on industrial data only, and JY-PLS, which considers both data from the pilot scale and 

the industrial scale to predict the penicillin concentration of the end product.  

Specifically, the procedure used to calibrate and assess the performance of the JY-PLS is as 

follows: 

1. Batches from the pilot scale simulator are chosen with the Kennard-Stone algorithm 

(Kennard & Stone, 1969). The Kennard-Stone algorithm is a space-filling sample 

selection method to identify a representative subset of data, which are typically used 

for model calibration or validation. The algorithm selects samples that are the most 

distant from each other in the feature space, guaranteeing at the same time a uniform 

distribution of the selected data. In this way, the most comprehensive representation of 

the entire data distribution is ensured. The number of pilot scale batches used in the JY-

PLS are varied from 2 to 25. 

2. A predefined number of industrial batches (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 40, 50, and 60) is randomly selected from the 

pool of 200 generated calibration batches. To improve the robustness of the results, this
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3. procedure is repeated 100 times, each time selecting a different random subset of the 

data to calibrate the model. No more than 60 industrial batches are explored because 

itis a reasonable value in which the JYPLS does not add additional information to the 

models. 

4. At each iteration, the model is built on the selected pilot and industrial data. The 

performance is evaluated, and the number of selected latent variables is recorded 

(Subsection 1.1.2.1). Performance is evaluated on the validation dataset composed by 

50 industrial batches (Section 3.2).  

5. The mean value and the standard deviation of the coefficient of determination are 

averaged over the 100 iterations to obtain a summary of the performance for each 

combination of the number of pilot scale and industrial scale batches. 

To calibrate and evaluate the PLS model the same procedure is followed, but considering only 

industrial batches (no information on the pilot scale is considered; step 1) and used to build the 

model (step 3). Furthermore, at step 2, the same industrial batches of JY-PLS are selected and 

used for the PLS, both for calibration and validation.  

4.1.1 Analysis of the prediction performance with a varying number of 

calibration batches 

In this Section, the comparison of model prediction performance is presented when a varying 

number of batches is used to calibrate the models. For the comparison between models, the 

coefficient of determination is used. This index results from an average over 100 iterations 

performed with a constant number of industrial calibration batches (step 4 of Section 4.1). For 

the JYPLS models the same pilot calibration batches (chosen as shown in step 1 of Section 4.1) 

are used for all the 100 repetitions.
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4.1.1.1 ffd-JYPLS 

The coefficient of determination is important because (as seen in Subsection 1.1.2.2) it gives a 

clear indication of the model accuracy. It is calculated on the industrial validation dataset. 

 

(a)                                                                       (b) 

Figure 4.1. Coefficient of determination R2 on the industrial validation dataset at different numbers 

of pilot and industrial calibration batches: (a) isometric perspective. (b) view from above. In blue 

the PLS model, in red the ffd-JYPLS model. 

Figure 4.1 represents the values of the coefficient of determination evaluated on the validation 

industrial dataset. The blue surface is related with the PLS model, while the red one is related 

with the ffd-JYPLS (i.e., a model built on pilot scale batches generated with a full factorial 

design of experiments). In Figure 4.1b a view from above is presented to better highlight the 

region in which the ffd-JYPLS model has better performances (red zones) with respect to the 

PLS model. Clearly, the PLS model is independent with respect to the number of pilot batches, 

so the performance values are constant as the number of pilot batches varies. For both the 

models the coefficient of determination goes down decreasing the number of industrial batches, 

because the number of data that is not sufficient to have a good prediction of the process. The 

ffd-JYPLS until 13 pilot batches and 25 industrial batches works better than the PLS model, 

increasing the number of these batches two behaviors happen: i) if the number of industrial 

batches increases there is no need of using the pilot-scale batches because the industrial data 

provide sufficient information for the prediction; ii) if the number of pilot batches increases the 

model is tailored on the pilot scale losing performance on predicting the industrial-scale 

process.
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(a)                                                                       (b) 

Figure 4.2. Differences between the prediction performance (coefficient of determination R2) of 

PLS and the ffd-JYPLS: (a) R2 of ffd-JYPLS minus R2 of PLS view from above. (b) R2 standard 

deviation of PLS minus R2 standard deviation of ffd-JYPLS view from above. 

Figure 4.2 is useful to better understand the magnitude of the improvement in the predictive 

performance provided by the ffd-JYPLS. The white region of Figure 4.2a is the region in which 

the PLS has better predictive performances with respect to the ffd-JYPLS, namely the 

coefficient of determination of PLS is higher than the JY-PLS. Instead, the white region of 

Figure 4.2b is where the standard deviation (over the 100 iterations) is lower for the PLS, 

namely where the PLS performance is more precise (i.e., stable) than the ffd-JYPLS. In Figure 

4.2a it emerges that until 5 pilot batches a zone with high variability is present, probably due to 

the low number of batches that in some cases are well distributed and sufficient to add 

information for a good prediction. Then a maximum is reached around 6 pilot batches, where 

the maximum improvement that can be reached with the ffd-JYPLS is 5% (yellow zone). 

Adding a larger number of pilot batches the performance decreases until the PLS model 

outperforms the JY-PLS (13 batches). It is interesting to highlight that using pilot scale batches 

makes the model more stable and less sensitive to the industrial batches selected (Figure 4.2b), 

because the standard deviation of R2 in PLS is lower in the region until 25 industrial batches. 

This effect is not only confined to the region in which the ffd-JYPLS works better than the PLS, 

but for a larger range of the number of batches considered. 

4.1.1.2 gau-JYPLS 

For the gau-JYPLS (i.e., a model built on pilot scale batches generated with a gaussian 

distribution of the experiments) the same analysis as Subsection 4.1.1.1 is performed.
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(a)                                                                       (b) 

Figure 4.3. Coefficient of determination R2 on the industrial validation dataset at different numbers 

of pilot and industrial calibration batches: (a) Isometric perspective. (b) View from above. In blue 

the PLS model, in green the gau-JYPLS model. 

Figure 4.3 should be seen as Figure 4.1, the only difference is that in this case the green surface 

is the gau-JYPLS. As before, the coefficient of determination of both the models goes down 

decreasing the number of industrial batches for similar reasons as previously explained. This 

time a different area in which the JYPLS model works better than the PLS model is highlighted. 

A bigger area (up to 8 pilot batches) where the best performing model varies is present, this can 

be due to the generation of data through the gaussian distribution. In fact, with this approach 

5% of the batches fall out the specified ranges of the design variables (Table 3.1), and these 

batches could be the first selected by the Kennard-Stone algorithm for the reasons shown in 

Section 4.1 step 1. Furthermore, gaussian generated data, explore a domain of variables 

conditions which is worse than the full factorial design ones, so the Kennard-Stone algorithm 

will also select less representative pilot calibration batches. Then up to 13 pilot batches and 30 

industrial batches the gau-JYPLS model has better performances than the PLS model (green 

zones). Different from the ffd-JYPLS, beyond this point the performance of the PLS is better 

than JY-PLS, but in some spots JY-PLS model still outperforms PLS. This again can be due to 

the different method chosen to generate pilot scale data. In the blue areas the PLS model works 

better because either i) the number of industrial batches is too large and the pilot scales data 

does not add useful information to the model, or ii) a high number of pilot scale batches 

improves prediction of pilot scale data, but degrades the prediction of industrial scale one.
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(a)                                                                       (b) 

Figure 4.4.  Differences between the prediction performance (coefficient of determination R2) of 

PLS and the gau-JYPLS: (a) R2 of ffd-JYPLS minus R2 of PLS view from above. (b) R2 standard 

deviation of PLS minus R2 standard deviation of ffd-JYPLS view from above. 

Figure 4.4 represents the magnitude of the improvement in the predictive performance provided 

by the gau-JYPLS and it is analogous to Figure 4.2. The maximum improvement in prediction 

performance of JY-PLS is reached at ~10 pilot batches, where maximum improvement, like 

previous case, of 5% is reached. In all the other areas where JY-PLS outperforms PLS the 

degree of improvement is lower compared to the maximum one (< 5%). Figure 4.4b shows that, 

in almost the entire experimental domain, the JY-PLS has a lower standard deviation and thus 

lower performance variability apart from a few areas reduced to high industrial batch numbers. 

The maximum is found at about ~10 pilot batches and 20-30 industrial batches. Furthermore, 

this effect is greater than the one that happens in the ffd-JYPLS case.
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4.1.2 Analysis on the number of latent variables 

Is important to analyse the number of latent variables chosen for the model construction, 

because this can explain some of the behaviours observed in the previous Section.  

 
(a) 

 
(b)
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(c) 

Figure 4.5. Mean number of latent variables chosen at different number of pilot and industrial 

batches: (a) PLS model. (b) ffd-JYPLS. (c) gau-JYPLS. 

Figure 4.5 shows the number of selected latent variables, for all models, when the number of 

pilot and industrial batches varies. The JYPLS models use more latent variables to describe the 

process (Figure 4.5), but this can be expected because they take information from both the 

sources. In both the JY-PLS models (Figure 4.2a and 4.4a), a precise number of pilot batches 

(5 for the ffd-JYPLS and 8 for the gau-JYPLS) is present in which the number of latent variables 

chosen is not congruent with the rest of the plot. It is interesting because it is precisely the 

number of pilot scale batches that can be defined as the end of the initial variability region (the 

region in which the JYPLS performs better than the PLS before the more stable performance 

area). Furthermore, a great difference in the right side of the plots is observed. For the gau-

JYPLS more latent variables are constantly chosen which can provide an explanation for the 

lower standard deviation of the 𝑅2 indicating a more stable model. 

4.2 Models weights analysis 

An analysis of the weights of the models is proposed in this Section. For the sake of simplicity, 

only one case is considered for each model, because the objective is to understand if there are 

differences in the PLS and in the JYPLS accounting for the variables. For the PLS 25 industrial 

calibration batches are chosen, instead for both the JYPLS model 8 pilot calibration batches 

and 15 industrial calibration batches are chosen. Three models are created with these
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specifications which are good enough and with similar performance (coefficient of 

determination around 0.85). Only the most important differences are exposed in the next Sub-

sections. 

4.2.1 Analysis of the first latent variable weights 

For the first latent variable the value of the weights of the two JYPLS models are close. The 

PLS and the JYPLS have the similar weights, both in values and trends; the major differences 

are on the variables that the pilot simulator does not measure, as: phenylacetic acid 

concentration, ammonia concentration, and off-gas. For the variables which are measured in 

the simulators of both scales the most significant difference are captured in the following 

figures. 

 
(a)
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(b) 

 
(c) 

Figure 4.6. Weights values along batch duration for the first latent variable: (a) Substrate feed rate. 

(b) Dissolved oxygen concentration. (c) Biomass concentration. In blue the PLS model, in red the 

ffd-JYPLS model and in green the gau-JYPLS model. 

In Figure 4.6 the variables for which the weights of the first latent variable differ between the 

models are represented. Figure 4.6a represents the substrate feed rate (recipe), and the JYPLS
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models underestimate the importance of this variable with respect to PLS. For what concerns 

Figures 4.6b and 4.6c is clear that even the dissolved oxygen concentration (Figure 4.6b) and 

the biomass concentration (Figure 4.6c) are treated in different ways by the models. 

4.2.2 Analysis of the second latent variable weights 

In the second latent variable stronger differences emerge even between the two JYPLS models. 

These can be responsible to the different performances between the gaussian and the full 

factorial model. The general trend is that the ffd-JYPLS model is like PLS, while the gau-

JYPLS appears to more dissimilar. As for the previous Sub-section the major differences are 

on the variables that the pilot simulator does not measure, as: phenylacetic acid concentration, 

ammonia concentration, and off-gas. For the variables which are measured in the simulators of 

both scales the most significant difference are captured in the following figures. 

 
(a)
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(b) 

 
(c) 

Figure 4.7. Weights values along batch duration for the second latent variable: (a) Substrate 

concentration. (b) Dissolved oxygen concentration. (c) pH. In blue the PLS model, in red the ffd-

JYPLS model and in green the gau-KYPLS model. 

In Figure 4.7, as in Figure 4.6, the variables for which the weights of the first latent variable 

differ between the models are represented. Figure 4.7 confirms the trend that the ffd-JYPLS is
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like PLS. Furthermore, even if the JYPLS models follow the trends of these weights, they 

underestimate the importance of all these three variables, this is the cause of the 

underperforming of the models. In fact, the substrate concentration (Figure 4.7a) and the pH 

(Figure 4.7c) are strictly related to the design variables. The same difference present in Figure 

4.6b is committed in Figure 4.7b, but the magnitude of the difference is bigger.



 



 

Chapter 5 

Optimizing operating conditions with 

variable number of batches 

In this Chapter the objective is to evaluate which model proposes the best operating condition 

of the industrial process to maximize penicillin production. To do this an inversion problem 

(Sub-section 1.2.2) must be solved. In particular, two cases are analyzed: the one in which only 

industrial data are available and the other with the transfer learning from pilot plant to industrial 

plant. The sensitivity of the performance is evaluated for a varying number of available data.   

5.1 Product optimization through model inversion with and without 

transfer learning 

To identify the optimal operating conditions, varying the number of batches, 4 different cases 

are studied: i) 8 pilot batches and 8 industrial batches, ii) 8 pilot batches and 25 industrial 

batches, iii) 25 pilot batches and 8 industrial batches, iv) 25 pilot batches and 25 industrial 

batches. These 4 cases are selected to show the different combinations of a limited and large 

number of batches for both the scales. The number of pilot batches are chosen in a way that can 

consider, in the full factorial design, the 8 vertices of the cube that represent the space of 

manipulated variables. The number of industrial batches are chosen to be in a condition of 

similar performance of the models. For all the tests the same industrial batches are used to 

calibrate the models. 

The optimal operating conditions, that correspond to the maximum penicillin produced, are 

obtained through the inversion of the model. The different models are built as in Section 4.1. 

Pilot calibration batches are chosen with the Kennard-Stone algorithm, instead the industrial 

scale calibration batches are chosen randomly. This time the choice of the industrial scale 

batches is not done 100 times but 10 times.  Then, the batch corresponding to the identified 

optimal conditions are carried out in the industrial process to have an actual indication of the 

penicillin production. The final penicillin concentration are reported in the figures both as 

average values and as values of each specific case (i.e. each random selection of industrial 

calibration batches).
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5.1.1 Industrial process without disturbances on process variables 

The four cases of Section 5.1 are performed on the industrial process without disturbances (i.e. 

considering the values of Table 2.3 equal to 0). Excluding the disturbances means assuming a 

perfect control of the process, which can be an interesting case from a design perspective. 

 

(a)
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(b) 

Figure 5.1. End penicillin concentrations using the optimal point proposed by the inversion of the 

three models at different numbers of industrial calibration batches and pilot calibration batches, 

without random disturbances: (a) 8 pilot batches and 8 industrial batches. (b) 25 pilot batches and 

25 industrial batches. Blue stars represent the penicillin concentration of the PLS model, red circles 

represent the penicillin concentrations of the ffd-JYPLS, and the green crosses represent the 

penicillin concentrations of the gau-JYPLS. The bold lines are the means (performed over the 10 

iterations) of the three models. 

Figure 5.1 shows the penicillin concentration obtained using the optimal operating conditions 

determined through the inversion of the models. The results of the case 25 pilot batches and 8 

industrial batches are not shown because equal to Figure 5.2a, same for the case 8 pilot batches 

and 25 industrial batches that gives the same results of Figure 5.2b. This is because the operating 

conditions proposed by the same model at different pilot batch numbers are very similar to each 

other, producing very similar results that would not be seen in figures. In all cases the JYPLS 

outperforms the PLS, providing operating conditions that allow a higher concentration of 

produced penicillin. Furthermore, the ffd-JYPLS works better than the gau-JYPLS. The t-

Student test results say that the two JYPLS models are not statistically different. For 25 

industrial batches both the JYPLS models are statistically different from the PLS model, 

instead, with 8 industrial calibration batches, only the gau-JYPLS is statistically different from 

the PLS model. In this last case the p-value of the t-Student test is investigated, the p-value of 

the models PLS and ffd-JYPLS is equal to 0.10 so they are statistically different if a 90% 

confidence limit is used. In Table 5.1 the mean penicillin concentration achieved in each case 

using the optimal process conditions is presented.
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Table 5.2. Mean values of the inversion for the three models in different combinations of industrial 

and pilot batches. 

n° of industrial 

batches 

n° of pilot 

batches 
PLS mean (g/L) ffd-JYPLS mean (g/L) gau-JYPLS mean (g/L) 

8 8 33.7938 33.8071 33.8041 

25 8 33.7932 33.8024 33.8028 

8 25 33.7938 33.8071 33.8041 

25 25 33.7932 33.8024 33.8028 

 

As expected, the PLS mean changes only with the number of industrial batches. Even the mean 

penicillin concentration achieved through the two JYPLS models change only with the number 

of industrial batches, meaning that an increase from 8 to 25 pilot batches does not affect the 

information added for the identification of the optimal operating conditions. The operating 

conditions proposed by the ffd-JYPLS improve the penicillin production of 0.04% (1.33Kg per 

batch) and 0.03% (0.92Kg per batch) with 8 and 25 calibration industrial batches, respectively. 

Clearly the improvement will decrease by increasing the number of industrial batches used for 

calibration. Accordingly, the JYPLS model ensures improved productivity with respect to the 

PLS one. 

5.1.2 Industrial process with random disturbances in process variables 

The results of the 4 cases, obtained with the disturbances added process disturbances (i.e. 

considering the values of Table 2.3) are shown in the following figures. 

 

(a)
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(b) 

 

(c)
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(d) 

Figure 5.2. End penicillin concentrations using the optimal point proposed by the inversion of the 

three models at different numbers of industrial calibration batches and pilot calibration batches, 

with random disturbances added: (a) 8 pilot batches and 8 industrial batches. (b) 8 pilot batches 

and 25 industrial batches. (c) 25 pilot batches and 8 industrial batches. (d) 25 pilot batches and 

25 industrial batches. Blue stars represent the penicillin concentration of the PLS model, red circles 

represent the penicillin concentrations of the ffd-JYPLS, and the green crosses represent the 

penicillin concentrations of the gau-JYPLS. The bold lines are the means (performed over the 10 

iterations) of the three models.  

Figure 5.2 shows, similarly to Figure 5.1, the penicillin concentration obtained using the 

optimal operating conditions determined through the inversion of the models. There is not a 

model that works better than the other, sometimes the JYPLS is the best choice, sometimes it 

is the PLS. This is due to the high random disturbances present in the process variables in this 

case. Performing a t-Student test, the penicillin concentration average values obtained in this 

case (i.e. adding the random disturbances in the models) are not statistically different, so it is 

not certain that the JYPLS model outperforms the PLS one.



 

Conclusions 

This Thesis demonstrated that transfer learning in predictive models for scale up is not only 

possible, but also beneficial thanks to the implementation of JYPLS. This technique is 5% more 

accurate and 5% more precise with respect to a model built by the PLS, when the number of 

available data from pilot-scale batches and industrial-scale batches is low. This is a significant 

outcome, because transfer learning not only yields superior predictive accuracy, but also results 

in a model that is less susceptible to the industrial batches employed in calibration. The 

optimization of industrial operating conditions has been demonstrated to result in a 1 kg 

increase in penicillin production per batch, which represents a significant industrial outcome 

given that typical production plants utilize multiple chemostats, with each reactor producing 

over 30 batches per year. A further noteworthy aspect of these findings is that they can be 

readily implemented at no additional cost, assuming that an experimental pilot-scale campaign 

has already been conducted. The transfer of information has been demonstrated to enhance the 

performance of the PLS, particularly when the number of pilot-scale and industrial-scale 

batches is limited to 13 and 25, respectively, for the JYPLS. Another point supporting this thesis 

is that the results are obtained from simulators which describe the fermentation process in 

different ways; using similar simulators data could facilitate a greater transfer of information 

and more effective results. Since these results are obtained when the process is well controlled, 

in a simulated environment, and no random disturbances affect the process variables, when 

these disturbances cannot be neglected the advantage of using transfer learning techniques is 

not proven. About the experimental campaign in the pilot-scale plant, the results indicate that 

there is no difference between the case in which happenstance data are available or a full-

factorial designed experimentation has been performed. The limitations of this work are related 

to the fact that the data were generated from simulated processes. For this motivation, future 

work will be oriented to utilize real plant data. 
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