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CONTENTS v

The analysis of the large-scale structure of the Universe represents one of the most
promising research fields in Cosmology in the next years. The continuous rising of the
amount of data available from the surveys has brought us in the era of the precision
cosmology, that means that our understanding in the Universe can be tested up to a pre-
cision level that was before impossible. In the last two decades, many experiments have
been developed to this aim, leading to the development and observational confirmation
of the concordance model ΛCDM (Lambda Cold Dark Matter), which describes the
evolution of the components of the Universe. This model is far from be complete and
very big questions still domain our understanding of the Universe, such as the nature
of the Dark Matter and dark Energy, so it is crucial to use all the information we have
available. In the Large Scale Structure field is well known that the study of the Redshift
Space Distortions is one of the most interesting and promising subject, since they allow
to test theory up to very large scales. They are due to the peculiar motion of the galaxies
that alter the pattern of the galaxy configuration observed in the surveys, so it is crucial
to account for them in order to recover a real map of the Universe. Nowadays modern
galaxy surveys can observe very large and deep region, almost approaching the Hubble
radius, and so can be demonstrated that, together with the Redshift Space Distortions,
at this scale also General Relativistic effects such as Sachs-Wolfe effect (standard and
integrated), Doppler and gravitational lensing and Shapiro time delay can modify the
observed positions of the galaxies in Redshift space. The 3D map of a survey is a com-
bination of the Redshift space distortions due to the peculiar velocity and the General
relativistic effects. In this thesis we try to understand if these effects can leave an im-
print in the Power Spectrum of a galaxy survey, making them distinguishable. In order
to do this we use the LIGER code to create galaxy catalogs that contains these effects.
We compute the Power Spectrum for these catalogs comparing them and understand-
ing if they presents some differences. The different behavior that we are searching is
dominant only in the large scale part of the Power Spectrum, where however the effect
of the window function of the specific survey is dominant. It tends to flatten the power
spectrum at large scale, destroying the information of the redshift space distortions, so
the difference between the various Power Spectrum would be impossible to measure.
We overlap this issue computing the Power Spectrum of the mock catalogs using the
"Quadratic Estimator" code by Oliver Philcox that takes as input a galaxy mock and
measure its Power Spectrum without the effects of the window function, making our
analysis possible at all scales.
This thesis is organized as follow: in the first chapter we review the formation of the
cosmic structure, introducing the theory of the Redshift Space Distortions, in the second
chapter we review the General relativistic effects that have to be taken into account and
will be shown how LIGER works, in the third chapter will be shown the theory of the
Quadratic Estimator; finally in the fourth and fifth chapter will be presented our results
and conclusion.
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Chapter 1

Redshift Space Distortions

1.1 Galaxy clustering
In the thesis we set c = 1 and we use the common cosmological dimension in which
the distances are in Mpc/h. The presence of the h term is due to the fact that nowadays
the actual value of the Hubble constant is not known and various independent measure-
ment of it give different values (see e.g. Valentino et al. 2021). For example the infer
of H(t) from Planck gives a value at present time of H0 = 67.8± 0.9 km s−1 Mpc−1

(P. A. R. Ade et al. 2016), while inference from the Chepeid distribution is H0 =
73.75± 2.11 km s−1 Mpc−1 (Cardona, Kunz, and Pettorino 2017). Thus the Hubble
constant at present time is written as (Dodelson 2003)

H0 = 100 h km s−1 Mpc−1 =
h

0.98×1010years
,

in which h contains the uncertainties on the actual value, so to specify the Hubble con-
stant that one wants to adopt, we have to specify the value of h. We adopt h = 0.67.

The theory of the Large Scale Structure (hereafter LSS) suggests that they begin
to form thanks to the gravitational instability process. It is based on the fact that at
very early stage of the Universe, it was subjected to an incredible expansion called
"Inflation". In this stage the energy for the expansion is due to the presence of the
inflaton field, that is the particle (and so the field) that nowadays is associated as the
"cause" of the inflation (see e.g. Turok 2002). In figure(1.1) is shown the value of the
inflaton field (x-axes) and of its potential (y-axes). The potential of the inflaton at the
beginning is almost flat, and this act as a "cosmological constant" allowing the Universe
to expands. When inflation ends, the inflaton passes from the constant potential stage
to the "bell" shape beginning to oscillate giving rise to the reheating phase, where the
inflaton decays creating less massive particle (see e.g. Allahverdi et al. 2010). During
the constant potential phase the scale factor suddenly increases, while the Hubble radius,

1



2 CHAPTER 1. REDSHIFT SPACE DISTORTIONS

defined as (Dodelson 2003)

rH(t) =
1

a(t)H(t)
(1.1)

decreases. The term at the denominator is the Hubble constant defined (Dodelson 2003)

H(t) =
ȧ(t)
a(t)

(1.2)

that quantifies the expansion of the Universe at time t. In figure(1.2) is shown a simple
scheme that explain what happens during inflation. The red line is the Hubble radius,
the solid black horizontal line is a generic scale k−1 and everything evolves with time
(from left to right). k is the Fourier modes of a specific distance λ that we are con-
sidering, and they are related through k = 2π/λ (Dodelson 2003), so k−1 means that
we are referring to the specific length distance λ/2π (for more details see section(1.3)).
Inflation causes the Hubble radius to decreases and so a generic scale k−1 at a certain
time becomes greater than it, entering in the regime of "super-horizon" scale, but when
inflation stops, the Hubble radius becomes to rise, so the same scale becomes less than
the Hubble radius (that when inflation ends it begins to increase) re-entering the stage
of the "sub-horizon" scale (see e.g. Peebles 1980a, Dodelson 2003, Matarrese, Musso,
and Riotto 2004, Gonzalez, Padilla, and Matos 2020). The inflaton being a quantum
field is subjected to quantum fluctuations. (see e.g. Tsujikawa 2003). These primordial
fluctuations once they cross the horizon are frozen and when they re-enter the horizon
(and become sub-horizon) they are enhanced in macro-fluctuations, that means that they
pass from a quantum stage to a classical stage (see e.g. Gonzalez, Padilla, and Matos
2020). After inflation the Universe begins its radiation-dominated era, during which
the growth of matter perturbations is inhibited by the large pressure provided by the
radiation. Perturbations in the coupled photon and baryon fluids oscillate with constant
amplitude (see e.g. Dodelson 2003). Shortly before recombination, however, the Uni-
verse becomes matter dominated and the radiation pressure disappears, so that density
fluctuations can start to grow under the influence of gravity. This growth of the matter
perturbations led to the LSS of the Universe (see e.g. Peebles 1980a, Brandenberger
2001, Troxel, Peel, and Ishak 2013, Baumann 2018).

Dark matter halos are gravitationally bound regions of matter that have decoupled
from the Hubble expansion and collapsed. Within the radius of a dark matter halo there
may be multiple, distinct peaks in the density field with virialized clumps of dark matter
gravitationally bound to them, where galaxies form. These sub-halos are smaller than
the host halo, and they orbit within the gravitational potential of the host halo (Wechsler
and Tinker 2018). Galaxies move with the flow of mass inside the dark matter halo in
which are formed and so they will contribute to grow over-dense regions, and empty
under-dense regions, creating the galaxy clustering. This because the force that drive
this process is the gravitational one, so the matter following the potential is forced to
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Figure 1.1: The schematic process of how the potential of the inflaton changes. At the
beginning the inflaton potential remains almost constant, before beginning to oscillate
during the reheating phase. (Figure from Gonzalez, Padilla, and Matos 2020).

Figure 1.2: Behaviour of the Hubble radius (equation1.1) during inflation, in which are
highlighted when a generic scale k−1 (as previous defined as k = 2π/λ ) enters and exits
the horizon (Figure from Nandi 2017a).
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agglomerate at the centre of the potential, going from the under-dense region to the over-
dense, making the first more under-dense and the second more dense (see e.g. Kravtsov
and Borgani 2012). At a certain time the matter flow is so high that the over-dense
region begin the radiative processes that allow creation the galaxies, that since are in
the same dark matter halo, they resent the gravitational force of the others, and so they
begin to agglomerate giving rise to the so called "galaxy clustering" (see e.g. Walker
et al. 2019). This section is based on (A. J. S. Hamilton 1998, Bertschinger 1994) and it
gives a review of how the perturbation in the density field growth in which we show how
the perturbations in the density field grow, deriving a relation for the growing velocity
of the perturbation in the linear regime, that will be useful in section(1.4).

Since the Universe expands we have to be careful when we define distances. We
define the physical and the comoving distance(J. A. Peacock 1998). In figure(1.3) is
shown a scheme that explain the difference between the distances. Imagine to select
four points in the Universe ( that for simplicity form a square), that tend to expand with
the Universe. We define the comoving system as a reference frame that expands with
the Universe, so each point is at rest in this frame (see the comoving coordinate) and
they don’t change their comoving distance, while their physical distance is changing,
that is the actual distance between the points. Calling the physical distance r and the
comoving one x, they are related through (Dodelson 2003)

r = a(t)x, (1.3)

in fact the changing of the physical distance is proportional to the expansion of the
Universe, and so on the scale factor, which is set to a(t0) = a0 = 1. We define the
comoving distance as the distance between a distant emitter at redshift z = 1/a−1 and
us as (Dodelson 2003)

χ(a) =
∫ t0

t(a)

dt ′

a(t ′)
=

∫ 1

a

da′

a′2H(a′)
, (1.4)

Where we have changed the integration over t ′ to 1/a′, which brings in the additional
factor of da/dt = aH in the denominator. We define also the conformal time as the time
that is the distance light could have traveled in the absence of interactions since t = 0

η =
∫ t

o

dt ′

a(t ′)
(1.5)

The reason this distance is so important is that no information could have propagated
further than η since the beginning of time.

We have to distinguish between matter that satisfies a continuity equation given
by equation(1.6) and galaxies which don’t, because of galaxy formation and merging.
The matter satisfies this equation since it is considered as a fluid, that at large scale
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Figure 1.3: Taking four coordinate points that makes a square, is qualitatively shown
the difference between the physical and comoving distance. The first depends on time
and is bigger since the expasion of the square, while the latter remain constant, since it
expands with the Universe.(Figure from Dodelson 2003)

can be treated at linear order. On the contrary galaxies are formed in a high non-linear
regime, where the perturbations are not |δM| ≪ 1, and so the matter perturbation are so
high that they collapse, giving rise to the formation of galaxies (Somerville and Davé
2015, Benson 2010). In LSS analysis we use the galaxies as tracers of the underlying
matter field, this means that we use the first to infer properties of the second, but we
have to take into account the fact galaxy surveys do not measure the matter density field
itself, but rather the distribution of galaxies, that is, of highly nonlinear objects which
are the result of a complex formation process. Bias describes, in a statistical sense, the
relation of the distribution of these objects to that of matter, that means that we use it to
connect the galaxy distribution to the matter one (see e.g. Coles 1986, Demiański and
Doroshkevich 1999, Cooray and R. Sheth 2002, Desjacques, Jeong, and Schmidt 2018)
. The linearized continuity equation for the matter is given by (A. J. S. Hamilton 1998)

βδ +∇ ·v = 0, (1.6)

with β the value that solves this equation and v the irrotational velocity (as predicted
by gravitational growth theory). As we now will show equation(1.6) can be linearized
if we are in the linear regime, that means that the perturbations are small |δ ≪ 1 (see
below). The continuity, Euler and Poisson equations for cold pressurless matter in a
perturbed Friedmann-Robertson-Walker Universe in comoving coordinates are (see e.g.
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Dodelson 2003, Bertschinger 1994, Peebles 1980b)

∂δM

∂ t
+

1
a

∇ · (1+δM)vM = 0, (1.7)

∂vM

∂ t
+

ȧ
a

vM +
1
a
(vM ·∇)vM =−1

a
∇φ , (1.8)

∇
2
φ =

3H2
0 Ωm

2a
δ . (1.9)

with the subscript M that indicates matter, ρ̄M the proper mean matter density that scales
as ρ̄M ∝ a−3 since being a density it is defined in a volume (a(t)3)), that however ex-
pands with the Universe, so it scales as the volume expands and Ωm the cosmological
matter density that is defined as (Dodelson 2003)

Ωm =
ρM,0

ρcrit

with ρcrit = 3H2/8πG that is the critical density value at which the Universe would
be flat (see e.g. Ryden 2017, Bertschinger 1994). Since the over-densities are small
|δM| ≪ 1, we are in the linear regime, so the the continuity and Euler equations become:

∂δM

∂ t
+

1
a

∇ ·vM = 0, (1.10)

∂vM

∂ t
+

ȧ
a

vM =−1
a

∇φ . (1.11)

Combining the linearized continuity, Euler and Poisson equations we obtain a second
order linear differential equation for the overdensity δM (Dodelson 2003)

∂ 2δM

∂ t2 +2H
∂δM

∂ t
−

3H2
0 Ωm

2a3 δM = 0. (1.12)

The meaning of the equation is that an over-density evolve according to a "source" term
proportional to the quantity of matter, diluted by a term proportional to the Universe
expansion. The general solution can be factorized and written as (Dodelson 2003)

δ (x, t) = D+(t)∆+(x)+D−(t)∆−(x), (1.13)

with D+(a) the linear growth factor. Inserting equation(1.13) into equation(1.12) we
find the temporal behaviour of D+ and D−. In a matter dominated Universe (Ωm = 1)
the two solutions are D+ = a and D− = a−3/2, so the latter decays with time and so the
interesting solution is the growing one, that for a generic value of the density parameter
it is written as (T. Padmanabhan 1995)

D+(a) =
5Ωm,0

2
H(a)

∫ a

0
da′/(da′/dt)3, (1.14)
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which evolves in time without changing in shape (Peebles 1980a). Ωm,0 is the matter
density parameter evaluated at present time. Equation(1.14) is normalized such that
D+ → a as a → 0 (A. J. S. Hamilton 2001). Equation(1.14) goes through two stages, at
z≫ 1, the density parameter Ωm ≈ 1, so the perturbation grows linearly. At low redshift,
Ωm ≈ 0, so the grow freezes out. This gives us yet another way to probe cosmological
parameters: by looking at the density of objects in the universe, or the abundance of
structures in the universe, if the universe is of critical density, then the number density
will decline rapidly towards high-z; if it is low density, then the number density will be
roughly constant and then decline towards high redshift.

In order to find the velocity field first as saw we write it in terms of a gradient of
a scalar potential (A. J. S. Hamilton 1998)

v = ∇ψ. (1.15)

We use the continuity equation to relate the potential ψ to the physical matter over-
density δ . The continuity equation can be wrote as (A. J. S. Hamilton 1998)

∇
2
ψ =−aH f δ . (1.16)

where
f =

d ln D+

d ln a
(1.17)

is the dimensionless linear growth rate of the growing mode (Dodelson 2003). Equa-
tion(1.17) measures how rapidly structures in the Universe are growing as a function
of cosmic time or redshift and in a ΛCDM Universe with a cosmological constant it is
(A. J. S. Hamilton 1998)

f (Ωm,Ωλ )≈ Ω
0.6
m +

ΩΛ

70

Å
1+

Ωm

2

ã
. (1.18)

Solving this equation bring the velocity field for the matter field (Davis 1998)

v(x,a) =
f aH
4π

∫
d3x′δM(x′,a)

x′−x
|x′−x|3

, (1.19)

In linear perturbation theory, the initial peculiar velocities are damped by the expansion
of the Universe, and the peculiar velocity field is directly proportional to the gravi-
tational acceleration due ti matter distribution around the position x. Equation(1.19)
assumes that the velocity field is determined by all the matter that is clustering, however
since we are in the linear regime, it smooths all the non-linear contributions, such as
the collapse and merging of galaxies at small scales (see e.g. Strauss and Willick 1995,
Strauss, Yahil, et al. 1992, Bertacca 2020)

Regard that all these equations are solved for the matter, but actually we are inter-
ested in solving the linearized continuity equation for the galaxies, so we need a bias
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factor that connect the galaxy distribution and the matter distribution, accounting for the
fact that the galaxies form in dark matter halos, but they don’t trace perfectly the under-
lying matter distribution of matter. The simplest bias factor at linear order is δ = bδM
(see e.g. Coles 1986, Demiański and Doroshkevich 1999, Cooray and R. Sheth 2002,
Desjacques, Jeong, and Schmidt 2018) that assumes that the matter distribution is lin-
early biased by a constant factor b. We assume that the galaxies velocity faithfully
follow the velocity of matter, but pay attention that this is an assumption, since in the-
ory also the velocity could biased (Carlberg, Couchman, and Thomas 1990). Thus the
un-biased velocity field for the galaxies is

v(x,a) =
βaH
4π

∫
d3x′δ (x′,a)

x′−x
|x′−x|3

, (1.20)

with
β =

f
b
. (1.21)

1.2 Redshift Space Distortions
In this and following sections, distances discussed are proper distances unless men-
tioned otherwise and velocities refer to the proper velocity as dr/dτ = (aH0)dr/dt
(A. J. S. Hamilton 1998). Modern galaxy surveys such as the "Dark Energy Sur-
vey" (Hartley et al. 2021, Sevilla-Noarbe et al. 2021) or the "Sloan Digital Sky Survey"
(Margony 1999) create very accurate 3D maps of the Universe , in which each galaxy
position is parameterized only by three parameters: right ascension, declination (that
are the angles between the object projected position in the sky and the coordinate sys-
tem used) and the distance from the observer. The firsts two are basically angles in the
sky coordinates and are strongly affected by the lensing of a galaxy. This means that
the the "shape" of the galaxy is altered. To infer its position one have to account for
a lensing model, in order to delete its effect in the received image of the galaxy, being
able to reconstruct its actual shape (Dunham et al. 2019). The distance is inferred using
the Hubble law as after shown. The Universe energy is dominated by the cosmologi-
cal constant, in fact around z ≈ 0.55 it passes from a matter dominated era to the era
dominated by the cosmological constant (see e.g. Velten, Marttens, and Zimdahl 2014),
that makes it expands with an an accelerated motion. The acceleration felt by an object
is proportional to the distance from the observer(see e.g. Garriga, Livio, and Vilenkin
1999)) and so the farthest the object the higher the recession velocity from us. The pho-
tons received are redshifted proportional to the recession velocity and so to the distance.
It is possible to connect the measured redshift of the received photon with the distance
of the emitting galaxy through the relation proposed by Hubble (1929). The redshift z
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is the fractional change of the wavelength of the light emitted from an object due to the
cosmological expansion, it is defined as (Dodelson 2003)

z =
λ0

λe
−1, (1.22)

where λo and λe are the received and emitted wavelength. Hubble found the relation
(Hubble 1929)

v ≈ z = H0d. (1.23)

with z the redshift (the term should be cz but we set c = 1 as said) and d the distance
of an object from the observer, such that the true distance is r = H0d. Actually equa-
tion(1.23) is valid at low-z, since it is an approximation of a relativistic form that is valid
at all redshift (see e.g. Carroll 2019). Assuming a cosmological model, we know the
behaviour of H(t) and so starting from the redshift of the photon, is possible to infer
the distance of the galaxy and this method would be exact if the motion of the galaxy
would be given only by the recession due to the expansion of the Universe. In reality
the motion of each galaxy is given not only by the recession velocity, but also by others
factors (see e.g. Anand et al. 2019). It can be affected both by the gravitational attrac-
tion from near galaxies and by the infalling of the galaxy into the potential well of the
Dark matter halo in which it resides (see e.g. Lokas 2000,Karachentsev et al. 2006).
These others factors give to the galaxy a peculiar velocity that is independent from the
one due to the Universe expansion, since their causes are disconnected by the causes of
the expansion, in fact the velocity direction due to the expansion is not the same given
by the other factors (R. K. Sheth and Diaferio 2001) The position s in redshift space is
related to the particle position in real space r through(A. J. S. Hamilton 1998)

s = r+ r̂v, (1.24)

given by the sum of the true distance plus the r̂v term that is the projected velocity
of the galaxy along the Line of Sight. The former term in the equation contains the part
of the distance inferred considering the redshift due to the cosmic expansion, while the
latter is the part of the redshift due to the peculiar motion. Note that r·v may be both
positive, negative and null, so the value of the redshift distance could be higher, lower
or equal respect to the real one, depending on the direction of the peculiar velocity of
the galaxy along the Line of Sight direction:

• if r·v>0 the galaxy is moving away from the observer, so it gives an "extra"
redshift summed to the expansion one, so s>r and the position in Redshift space
is higher then the one in Real space;

• if r·v=0 the peculiar motion is perpendicular to the Line Of Sight, so the distance
due to it is zero and so the positions in Redshift and Real space are the same: s=r;
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Figure 1.4: Differences of the positions measured between the Real and Redshift spaces,
figure from A. J. S. Hamilton (1998).

• if r·v<0 the galaxy is approaching the observer, so the measured redshift is the ex-
pansion one minus the one due to the peculiar motion, so the position in Redshift
space is thus reduced: s<r.

In fig(1.4) is shown how the positions of the galaxies change between the Real space
and the Redshift space, considering a spherical pattern of galaxies that are falling into
the centre of the system (considering that we are observing from down):

• First panel: the positions of galaxies on the sides aren’t modified since their move-
ments are perpendicular to the Line of Sight. The galaxy that is receding from the
observer will be measured with an higher redshift and so the inferred position
would be higher, while in the opposite case, since the galaxy is approaching the
observer, the redshift is less (since the peculiar velocity gives a blueshift contri-
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Figure 1.5: Difference between a survey in Real space and Redshift space (Figure from
Praton, Melott, and McKee 1997)

bution) and so the inferred position is lower. This means that a spherical con-
figurations in the Real space is translated into a "squashed" one in the Redshift
space.

• Middle panel: For the galaxies on the sides hold the same argument as before,
while the positive and negative contributions of r·v is exactly the same, so the in
Redshift space the galaxies seems to be in the same position. This gives a straight
line configuration.

• Bottom panel: The peculiar velocities of the galaxies on the Line of Sight when
they enter the non linear regime are so strong that the nearest galaxy in Real
space "acquires" so much redshift that it becomes the farest in Redshift space and
viceversa for the other galaxy. So a spherical pattern in Real space assumes the
classical "Finger of God" pattern in Redshift space.

In fig.(1.3) is shown how a galaxy survey changes if the galaxies positions are inferred
in the Real or Redshift space, according with how just explained. In the Redshift one
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the Finger of God and the squashed pattern are very visible.
In reality the peculiar motion is not the only effect that could alter the observed

redshift of the received photons and consequently the inferred position of the galax-
ies in the two spaces. Can be shown that when the size of a survey is large enough
there are some Relativistic effect that have be taken into account. For example Doppler
effect, Shapiro time delay and Sachs-Wolfe effect alter the measured redshift as well,
while the magnification effect alter the number of counts of the galaxies into the survey.
These effects will be discussed in detail in the next chapter, while in the next section we
introduce the Real and the Redshift spaces.

1.3 Real space and Redshift space
In this section we define what the Real and Redshift spaces are, defining also the power
spectrum in the two spaces, following (A. J. S. Hamilton 1998, Linder 2005, Nandi
2017b, Okumura et al. 2015)

We begin introducing a theoretical quantity that is the true density field of the
universe. Let ρ(r) be the matter density of the universe at the real (true) position in-
dicated with r and ρ̄ the constant mean density. We define the matter contrast at each
single position r as (A. J. S. Hamilton 1998)

δ (r) =
ρ(r)− ρ̄

ρ̄
. (1.25)

Measuring this quantity in all the positions r would means to measure the behaviour of
the over and under densities in the Universe, namely understanding its properties. In a
survey we are not able to observer at the same time the whole Universe, so what we do
is to try to infer its properties observing only a portion of it. The observed galaxies are
thus considered as a statistical sample randomly drawn from a true underlying theoreti-
cal population, thus using the observed to infer the properties of the true population.
The statistic to study the over-densities is the 2 Point Correlation Function (2PCF) and
its Fourier transformation that is the Power Spectrum. The 2PCF called also correlation
function is the expectation value of the product of the over-densities of a pair of ran-
domly positioned points at r1 and r2 respectively separated by r12 = |r1 − r2| (A. J. S.
Hamilton 1998)

ξ (r12) = ⟨δ (r1)δ (r2)⟩. (1.26)

The fact that the 2PCF depends only on the separation between the two points and not
on their orientation is a direct consequence of the isotropy of the universe. The Fourier
transform of the over-density and its inverse Fourier transform are defined as (Sefusatti
et al. 2016)

δ̂ (k)≡
∫

eik·r
δ (r)d3r, δ (r) =

∫
e−ik·r

δ̂ (k)d3k/(2π)3. (1.27)
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The Power Spectrum is defined as the covariance of the Fourier modes and so simply
the Fourier transform of the correlation function (A. J. S. Hamilton 1998)¨

δ̂ (k1) δ̂ (k2)
∂
=

∫
eik1·r1+ik2·r2ξ (r12)d3r1d3r2, (1.28)

and since the correlation function is written in function only of the separation, it be-
comes: ¨

δ̂ (k1) δ̂ (k2)
∂
= (2π)3

δD (k1 +k2)P(k1) , (1.29)

where the Dirac Delta function contains the assumption of translation invariance due
to the homogeneity of space, while the isotropy assumption make the power spectrum
depends on the modulus of the modes |k| and not on its orientation. P(k) is the Power
Spectrum:

P(k)≡
∫

eik·rξ ξ (r)d3r, ξ (r) =
∫

e−ik·rP(k)d3k/(2π)3. (1.30)

As said these quantities are related to the theoretical density field expressed in
equation (1.25), but the actual surveys scan only a part of the sky and so only a portion
of the density field of the Universe, giving only a "restricted" representation of this
field. Obviously the bigger the survey the nearest the statistical sample can reproduce
the theoretical properties. Each survey is characterized by a selection function n̄(r)
(A. J. S. Hamilton 1998) which is the expected mean number of galaxies at position r
given a selection criteria (e.g. selection on the flux, on distance...). The main hypothesis
is that the observed galaxies form a Poisson process on the underlying population with
the selection function specifying the probability of including a galaxy at position r into
the survey. Let n(r) denote the number density of galaxies at position r in a survey, thus
the observed galaxy contrast is defined as (A. J. S. Hamilton 1998)

δobs(r)≡
n(r)− n̄(r)

n̄(r)
. (1.31)

Being this process Poissonian the expectation value C (r1,r2) of the Covariance of the
observed over-densities is a sum of the true correlation function ξ (r12) with a Poisson
sampling noise, or shot noise, term (A. J. S. Hamilton 1998)

⟨δobs (r1)δobs (r2)⟩ ≡C (r1,r2) = ξ (r12)+δD (r1 − r2) [n̄(r1)]
−1 . (1.32)

Thus any average ⟨δobs (r1)δobs (r2)⟩ of products of pairs of over-densities at any finite
separation r12 ≡ |r1 − r2| ̸= 0, provides an unbiased estimate of the true correlation
function ξ (r12). Note that the higher the selection function, the lower the shot noise (
1/n̄(r1)→ 0), this means that the more galaxies are observed in a survey, the more the
observed density field approaches the theoretical one.
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With the same spirit we can define in the Redshift space the Redshift space
correlation function as

ξ
s (s12,s1,s2)≡ ⟨δ s (s1)δ

s (s2)⟩ , (1.33)

that is the ensemble average of the over-densities measured at redshifts s1 and s2. Note
that since the redshift is for definition measured along a Line Of Sight, this partially de-
stroy the translation symmetry, preserving the rotational one, so the correlation function
depends also on the separation s12 = |s1 − s2|. Suppose that the angle between the two
galaxy positions s1 and s2 is small enough, the Redshift distortions are plane-parallel
and thus the the correlation function is written in terms of the parallel and perpendicular
part of the Redhsift

ξ
s (s12,s1,s2)≈ ξ

s (s//,s⊥
)
. (1.34)

with s// and s⊥ the part of the redshift respectively parallel and perpendicular to the
Line Of Sight The Fourier transform of the true Redshift space over-density defines the
redshift Fourier modes

δ̂
s(k)≡

∫
eik·ss

(s)d3s, δ
s(s) =

∫
e−ik·s

δ̂
s(k)d3k/(2π)3. (1.35)

The Covariance of the redshift Fourier modes defines the Redshift space power spec-
trum, which is equal to the Fourier transform of the redshift correlation function¨

δ̂
s (k1) δ̂

s (k2)
∂
=

∫
eik1·s1+ik2·s2ξ

s (s12,s1,s2)d3s1d3s2. (1.36)

As said in Redshift space there is not statistical homogeneity (thus translation symme-
try) and so the redshift Power Spectrum is no longer a diagonal matrix. The residual
rotational symmetry around the observer that is still preserved implies that the redshift
power spectrum is a function only of the modulus of the combinations of the various
modes (and not on their orientation):¨

δ̂
s (k1) δ̂

s (k2)
∂
= ξ̂

s (|k1 +k2| ,k1,k2) . (1.37)

As before if we apply the plane-parallel approximation we recover the statistical homo-
geneity, and in this case the redshift Power Spectrum is again a diagonal matrix:¨

δ̂
s (k1) δ̂

s (k2)
∂
≈ (2π)3

δD (k1 +k2)Ps (k1//,k1⊥
)
, (1.38)

where k1// and k1⊥ are the components of the wavevector k1 respectively parallel
and perpendicular to the Line Of Sight, and

Ps (k//,k⊥
)
≡

∫
eik·ss

ξ
s (s//,s⊥

)
d3s. (1.39)
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Remind that this discussion is for the underlying theoretical field in redshift space. The
observational density contrast field from a survey is given by

δ
s
obs(s) =

ns(s)− n̄(s)
n̄(s)

, (1.40)

with ns(s) the observed number density of galaxies at redshift position s and n̄s(s) the
redshift space selection function. As for for the real space the actual observed quantities
don’t match perfectly the theoretical one, and so assuming that a survey is a Poisson
process the expectation value Css (s1,s2) of the Covariance of observed Redshift space
over-densities δ ss

obs (s) defined by (3.18) is a sum of the corresponding true Redshift
space Correlation function ξ ss (s12,s1,s2), equation (4.83), with a Poisson sampling
noise term

⟨δ ss
obs (s1)δ

ss
obs (s2)⟩ ≡Css (s1,s2) = ξ

ss (s12,s1,s2)+δD (s1 − s2)
n̄(s1)

[n̄s (s1)]
2 . (1.41)

Again, the coefficient n̄(s1)/ [n̄s (s1)]
2 of the Poisson sampling term is valid for a

flux-limited redshift survey.

1.4 Linear Redshift Distortion Operator
In the previous sections we introduced the Real and the Redshift space, now we show
how these spaces are connected, introducing the Linear Redshift Distortion Operator
S that contains the information of how the galaxies positions are displaced due to the
Redshift Space Distortions. It connects the over-densities observed in the Redshift space
with those observed in the Real, so it is written as (A. J. S. Hamilton 1998)

δ
s = Sδ , (1.42)

with δ s and δ the over-densities respectively in the Redshift and Real space. To derive
the Linear Redshift Distortion operator we begin from the conservation equation of
galaxies, that is based on the fact that in Redshift space the positions of the galaxies are
displaced, but the actual number of galaxies has to be the same of that one in the Real
space, since galaxies can’t appear or disappear, so the number density is conserved:

ns(s)d3s = n(r)d3r. (1.43)

We write this expression in terms of the over-densities

n̄(s) [1+δ
s(s)]s2ds = n̄(r)[1+δ (r)]r2dr, (1.44)
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and using the expression that connects the position in the Redshift space with the one in
the Real space

s = r+ r̂v, (1.45)

It becomes:

1+δ
s(s) =

r2n̄(r)
(r+ v)2n̄(r+ vr̂)

Å
1+

∂v
∂ r

ã−1

[1+δ (r)]. (1.46)

Now we do two assumptions:

• We are interested in the linear regime, so the perturbation (so the over-densities)
are small: |δ (r)| ≪ 1, which implies also that |∂v/∂ r| ≪ 1

• We assume that the peculiar velocities of the galaxies are very small compared to
the distance from the observer: |v| ≪ r

So at linear order equation (1.46) becomes:

δ
s(r) = δ (r)−

Å
∂

∂ r
+

α(r)
r

ã
v, (1.47)

with

α(r)≡ ∂ lnr2n̄(r)
∂ lnr

In equation (1.20) we have derived an expression for the velocity in the linear the-
ory, and so putting this result into equation (1.47) it yields the final Linear Redshift
Distortion Operator:

δ
s(r) = δ (r)+β

Ç
∂ 2

∂ 2r
+

α(r)
r

∂

∂ r

å
∇
−2

δ . (1.48)

The Redshift Space Distortion operator since introduce a Line Of Sight destroys trans-
lation symmetry, so that Fourier modes are no longer eigenmodes of the distortion oper-
ator, and the redshift space power spectrum isn’t a diagonal matrix. The radial redshift
distortion operator does however preserve angular symmetry about the observer (A. J. S.
Hamilton 1998), in fact the distortion operator S commutes with the angular momentum
operator L, so that the eigenmodes of the angular momentum operator, which are the
spherical harmonics Ylm, are also eigenmodes of the distortion operator. In next section
we introduce the plane parallel approximation, in which the plane-parallel distortion
operator is diagonal in Fourier space, which is intimately associated with the fact that
plane-parallel redshift distortions preserve translation invariance.
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1.4.1 Linear Plane-Parallel Redshift Distortion Operator

In the previous section we showed the derivation of the Linear Redshift Distortion Oper-
ator that allows to connect the galaxy positions in Real space with the ones in Redhsift
space. Nowadays instead of the expression in equation (1.48) is commonly used the
Plane-Parallel approximation (called also "distant observer") that is based on the as-
sumption that the galaxies observed are very far from the observer, that is r ≫ 1 and so
galaxies move along only one Line Of Sight since the separation angle is θ = 0. The
second term in equation (1.48) goes to zero, so we ends up with

Sp = 1+β
∂ 2

∂ z2
LOS

∇
−2, (1.49)

with z the distance along the Line Of Sight (we use the subscription LOS to clarify that
this is a quantity computed along the Line Of Sight and is not the redshift). In Fourier
space we have:

(∂/∂ zLOS)
2
∇
−2 = k2

z,LOS/k2 = µ
2
k, (1.50)

with µk = ˆzLOS · k̂ the cosine of the angle between the wavevector k and the Line Of
Sight zLOS. So the Linear Redshift Distortion operator in the Plane-Parallel approxima-
tion becomes:

Sp = 1+β µ
2
k, (1.51)

and so writing it with the over-densities in Redshift and Real space

δ̂
s(k) =

Ä
1+β µ

2
k

ä
δ̂ (k), (1.52)

we can recover the relation between the Power Spectra:

Ps(k) =
Ä

1+β µ
2
k

ä2
P(k). (1.53)

This equation has a very simple meaning, it states that the Power Spectrum computed in
Redshift space is simply equal to the one in real space, amplified by a term

(
1+β µ2

k
)2.

This results was first obtained by (Kaiser 1987). In fig.(1.6) there is a simple "visual"
explanation for this effect: the over-densities along the Line Of Sight are parametrized
by a wave of amplitude δ (k) in Real space (thin line) and in Redshift space (thick
line). The peculiar velocities (indicated with the arrows) make the amplitude in Red-
shift space enhanced by a factor (1+β ) if the wavevector k is along the line of sight,
or by (1+ β µ2

k) if the wavevector form a general angle. In figure (1.7) is shown the
comparison between the predicted power spectrum for a full sky configuration limited
to the redshift z = (1.5,1.8) in Real space and with the relative Kaiser prediction. The
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Figure 1.6: Visualization of how the over-densities change between the Redshift and
real space. (Figure from A. J. S. Hamilton 1998)

Real Space power spectrum is obtained by correcting the linear power spectrum for the
time evolution within the light-cone as in (Yamamoto, Nishioka, and Suto 1999),

PLC =

[∫
zi

z f b2n̄2
gD2

+
dVs
dz dz∫

zi
z f n̄2

g
dVs
dz dz

]
PLin(k), (1.54)

with Plin(k) the matter power spectrum at z = 0, D2
+ the linear growth factor normalised

to one at present time and Vs the comoving volume within the past light-cone of the
observer, everything computed assuming the cosmology in Table(4.1).The kaiser pre-
diction is instead obtained as just showed with equation(1.7). It’s very visible that the
power spectrum in the Redshift space is similar to the one in Real space, only with an
enhanced amplitude.

1.5 Wide angle Redshift Space Distortions
The plane-parallel analysis describes sufficiently well galaxy surveys where the number
of pairs with large angular separation is small (i.e the θ angle between the two galaxies
is very small for most of the pairs). However, this approximation could be valid in
the past, but the situation is going to be different for current and future wide-angle
galaxy surveys such as DESI (DESI Collaboration et al. 2016), SPHEREx (Doré et
al. 2014), Euclid (R. Scaramella et al. 2022) and SKA (Weltman et al. 2020) since
they will have a better sky coverage and probe larger and wider scales (for example
the sky coverage of Euclid is roughly ≈ 15000 square degrees). When we drop the
plane-parallel approximation we lose the translation symmetry about the observer; this
happens because if we introduce an observer and we adopt the most realistic description
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Figure 1.7: Comparison between the predicted power spectrum in Real space and with
kaiser formula for a full sky survey with z = (1.5,1.8). The Real Space power spectrum
is computed with equation(1.54) assuming the cosmology in table(4.1), while the power
spectrum in Redshift space is computed with equation(1.7) with same cosmology.



20 CHAPTER 1. REDSHIFT SPACE DISTORTIONS

of θ ̸= 0, galaxies do not move along parallel, radial, lines, but they will move as in
figure(1.8) (Castorina and M. White 2020). In figure(1.8) is shown the plane parallel
case on the left, where the galaxies passing from Real to Redshift Space move along
only one Line Of Sight, giving rise to the common pattern described in section(1.2),
while on the right is shown the wide angle case, where now there are various Line Of
Sight directions and each galaxy moves along one giving rise to the so called "Pancacke
of God".

Wide-angle effects can be subdivided in “purely wide-angle” and “mode-coupling”
terms: “purely wide-angle” effects correct plane-parallel predictions accounting for the
fact that the separation angle is non-zero (see e.g. Beutler, Castorina, and Zhang 2019),
“mode-coupling” terms in addition account for the fact that galaxy pairs coherently
move in a way that is dependent on sample density (see e.g. Raccanelli, Bertacca,
Jeong, et al. 2016). The wide-angle distortion operator turns out to have a more compli-
cated expression than the plane parallel one (Raccanelli, Bertacca, Jeong, et al. 2016).
This happens because without translation symmetry, Fourier modes are no longer eigen-
modes of the redshift distortion operator, and thus the redshift space power spectrum
⟨δs(k1)δ (k2)⟩ is no longer a diagonal matrix. In the Kaiser formula it is used a single
Fourier mode approximation; this is correct in the plane parallel case, where modes are
independent, but it is not in the wide-angle case (Kaiser 1987). The fact that the power
spectrum is no longer a diagonal matrix means that different modes are “mixed”, and
so this assumption is not anymore valid. The wide-angle redshift distortion operator
does however preserve angular symmetry about the observer (see e.g. Castorina and M.
White 2018). This because the distortion operator S commutes with the angular momen-
tum operator L (that is defined as L = ir×∂/∂r = ik×∂/∂k, that is the same in Real
or Fourier spaces as showed in A. J. S. Hamilton (1998), so that the spherical harmonics
Ylm, that are the eigenmodes of the angular momentum operator, are also eigenmodes
of the distortion operator (A. J. S. Hamilton 1998). For this reason, spherical harmon-
ics modes remain statistically orthogonal with respect to the angular indices in redshift
space (see e.g. Yoo and Seljak 2014). Spherical harmonics are special functions defined
on the surface of a sphere and they form a complete set of orthogonal functions and thus
an orthonormal basis, each function defined on the surface of a sphere can be written
as a sum of these spherical harmonics. This is similar to periodic functions defined
on a circle that can be expressed as a sum of circular functions (sines and cosines) via
Fourier series (Altmann, Bradley, and Hume-Rothery 1963). The over-density δ using
spherical harmonics is defined as (A. J. S. Hamilton 1998)

δlm(r) =
∫

Ylm(r̂)δ (r)dor, δ (r) = ∑
lm

Y ∗
lm(r̂)δlm(r), (1.55)

and its counterpart in Fourier space

Ylm(k̂)δ (k)dor, δ (k) = ∑
lm

Y ∗
lm(k̂)δlm(k), (1.56)
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with dor and dor that denotes an interval of solid angle in Real and Fourier space and
Ylm the tabulated spherical harmonics. The wide-angle redshift distortion operator is not
Hermitian, unlike the plane-parallel one, so not all the eigenvalues of its eigenfunctions
are real; this means that redshift distortions cause a phase shift to some modes when
passing from the real to the redshift space, and so generating the “mode-coupling” terms
(A. J. S. Hamilton 1998).

When we derived the Linear Redshift Distortion operator in section(1.4), we
obtained equation(1.46) that can be rewritten as (Raccanelli, Bertacca, Jeong, et al.
2016)

1+δ
s(s) =

n̄(r)
n̄(r+ vr̂)

Å
1+

∂v
∂ r

ã−1(
1+

vr

r

)−2
[1+δ (r)], (1.57)

with vr = r̂ ·v/(aH) that is the radial component of the peculiar velocity normalized with
the Hubble parameter. Working in the linear regime the term (1+v/r)−2 is proportional
to v/r and assuming the plane parallel approximation as in section(1.4.1) this terms
is negligible since at large distance v/r ≪ 1. Is important to underlying that in this
approximation this term being very small is negligible, but it is not completely null.
In the wide angle computation the (1+ v/r)−2 ( that we call "Doppler term") can’t be
neglected and its presence can alter the power spectrum, especially at small redshift (see
e.g. 2.2)(Raccanelli, Samushia, and Percival 2010,Pápai and Szapudi 2008,Raccanelli,
Bertacca, Jeong, et al. 2016). It is very important to underlying that in the computation
of the Redshift Space Distortions made in the previous chapters, we did the assumption
of working in the linear regime (where all the calculation are simpler) and in the flat-
sky approximation. This allowed us to write the power spectrum in redshift space in
function of the power spectrum in real space, through the proportionality term (β µ2

k). If
we instead adopt the more realistic prescription that the Doppler term is not negligible in
a general relativistic contest, the things change. Now we are not able to write the power
spectrum in redshift space in function of the power spectrum in real space, since as
just said we lose translation symmetry and the Fourier modes are no longer eingemodes
of the redshift space distortion operator and so the redshift space power spetcrum isn’t
a diagonal matrix, as it is in the flat-sky case. In this case, with all the relativistic
corrections the α(z) term is expressed as in Bertacca et al. (2012)

α(z) =−χ(z)
H(z)
(1+ z)

ï
be(z)−1−2Q(z)+

3
2

Ωm(z)−
2

χ(z)
[1−Q(z)]

(1+ z)
H(z)

ò
,

(1.58)
Note that now the distance that enter in the α term is χ , that is the comoving one ex-
pressed in equation(1.4), so now we are mapping from the observed coordinates, rather
than the real one as before. Note that in a general relativistic context we can’t imple-
ment a flat-sky approximation as in the previous section, since even for χ ≫ 1 the α(z)
term becomes not negligible, so in this case the flat-sky approximation is infeasible.
As showed in Raccanelli, Bertacca, Jeong, et al. (2016) the Redshift Space Distortion
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Figure 1.8: Left: How galaxies moves from Redshift to Real Space adopting the plane
parallel approximation, giving rise to the "Pancake" of God shape. Right: How the sit-
uation change adopting the wide angle formalism, now the galaxies moves along differ-
ent Line of Sight, giving rise to the "Croissant" of God shape.(Figure from Raccanelli,
Bertacca, Jeong, et al. 2016)
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operator can be written as
S = Skaiser +Wα , (1.59)

with Skaiser the standard operator in the flat-sky approximation, plus

Wα = α
β µ

kχ
, (1.60)

with χ the comoving distance and µ the cosine of the angle Φ as in figure(1.9). Wα

is an operator that accounts for the wide angle corrections, with α(z) that in this case
is written as (Raccanelli, Bertacca, Jeong, et al. 2016) where the magnification bias
paramater for a magnitude-limited survey is

Q =−
d ln n̄g

d lnL

∣∣∣∣
L=Llim

,

and

be(z) =−(1+ z)
∂ ln[ng(1+ z)−3]

∂ z

∣∣∣∣∣
L=const.

.

(Note that this definition is the same of equation(2.60 only written make explicit the
redshift dependence, for details on these parameters see section(3.3). Note that the
presence of k in equation(1.60) is directly connected to the "mode coupling" explained
before. The operator in equation(1.60) contains the doppler term, so the Redshift Space
power spectrum is (Raccanelli, Bertacca, Jeong, et al. 2016)

Ps(k,µ) =

ñ
(1+β µ

2)2 +

Å
α

β µ

kχ

ã2ô
Pr(k), (1.61)

that the first term is the usual term from the Kaier approximation (Kaiser 1987), plus a
"correction" due to the doppler term. Note that also here we are mapping in the observed
coordinates. In figure(1.10) and figure(1.11) are shown the angular averaged power
spectra using the flat-sky approximation and adding the W operator in the wide angle
case at different redshift z = 0.1 and z = 1 and for various values of the non-gaussianity
parameter fNL, we will discuss this parameter in section(2.1), so in the figures we ana-
lyze only the fNL = 0 case. In the figures is clear that adding the doppler term the power
spectrum acquires power at large scale, especially for survey at low redshift. This is
totally expected, because the lower is the redshift, the higher is the v/r term. As showed
in equation(1.61) the Doppler term introduces an additive term in the power spectrum
so we expect that the power spectrum including wide angle effect will be over-powered
with respect to the one in flat sky.

Signature of wide angle effects can be seen also in the correlation function (Rac-
canelli, Bertacca, Jeong, et al. 2016) as shown in figure(1.12), where are plotted the 2D
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redshift space galaxy correlation function, comparing the correlation function includ-
ing the doppler term (with the subscript WA) and the one in the flat-sky approximation
(with the suscript FS) for redshift z = 0.1 (top) and z = 1 (bottom). r// and r⊥ are the
parallel and perpendicular component of the galaxy pair distance (remind that we are
using the observed distance not the proper). The colored contours indicate the corre-
lation accounting for the doppler term, black lines instead the correlation excluding it.
Black lines overlapping with borders between different colored contours indicates that
the effect of including the Doppler term is negligible, since this means that the amount
of correlation between the two cases is the same. At high redshift this happens in both
the plane-parallel (as expected) and wide-angle cases (bottom panels), since in this case
the term v/r is small and so (1+ v/r)−2 → 1 (also here hold the previous comments
on which distance we are adopting). At low-z, in the plane-parallel approximation,
the lines overlap meaning that the doppler term is negligible. However, the top right
panel shows how the wide-angle in the low-z case is not negligible, since the black lines
and colored contour are not overlapping, meaning that at low-z the correlation function
strongly depends on if the wide angle effects are considered or not.
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Figure 1.9: Position of galaxies in the wide angle formalism. here each galaxy has its
own Line Of Sight through it is projected, and so now the θ angle is the observational
angle, while φ is the angle between the galaxies separation directiona and the Line of
Sight (Figure from Raccanelli, Samushia, and Percival 2010)
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Figure 1.10: The angle averaged power spectra for z = 0.1 computed in the flat-sky
approximation (solid black line) with fNL = 0 (for a detailed discussion on fNL see sec-
tion(2.1)), accounting for wide angle effect, that is the Doppler term (dotted black) with
fNL = 0, in the flat-sky approximation (solid black line) with fNL = 5 and accounting
for wide angle effect, that is the Doppler term (dotted black) with fNL = 5 (Figure from
Raccanelli, Bertacca, Jeong, et al. 2016). For comparison are showed the expected er-
ror obtained with the SPHEREx (Spectro-Photometer for the History of the Universe,
Epoch of Reionization and Ices Explorer), that is a mission that will scan the whole sky.
SPHEREx will survey hundreds of millions of galaxies near and far, some so distant
their light has taken 10 billion years to reach Earth.
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Figure 1.11: The angle averaged power spectra for z = 1 computed in the flat-sky ap-
proximation (solid black line) with fNL = 0 (for a detailed discussion on fNL see sec-
tion(2.1)), accounting for wide angle effect, that is the Doppler term (dotted black) with
fNL = 0, in the flat-sky approximation (solid black line) with fNL = 5 and accounting
for wide angle effect, that is the Doppler term (dotted black) with fNL = 5 (Figure from
Raccanelli, Bertacca, Jeong, et al. 2016). For comparison are showed the expected er-
ror obtained with the SPHEREx (Spectro-Photometer for the History of the Universe,
Epoch of Reionization and Ices Explorer), that is a mission that will scan the whole sky.
SPHEREx will survey hundreds of millions of galaxies near and far, some so distant
their light has taken 10 billion years to reach Earth.
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Figure 1.12: 2D redshift space galaxy correlation function accounting (black lines,
right) and not accounting (colored contour, left) for the wide angle effects, at redshift
bins z= 0.1 (top) and z= 1 (bottom). At high redshift the Doppler term is negligible. At
low-z, in the plane-parallel approximation, the lines overlap meaning that the doppler
term is negligible. However, the top right panel shows how the doppler term in the low-
z case is not negligible, since the black lines and colored contour are not overlapping,
meaning that at low-z the correlation function strongly depends on if the doppler term
effects are considered or not. (Figure from Raccanelli, Bertacca, Jeong, et al. 2016)



Chapter 2

Relativistic simulations

2.1 General relativistic effects
In the previous chapter we saw how the peculiar velocities of the galaxies alter the ob-
served galaxy pattern between the Real and Redshift space. The observed redshift and
positions of the photons emitted by a galaxy can be actually modified not only by the
peculiar velocities, but also by other general relativistic effects (see e.g. Yoo (2009a),
Jeong, Schmidt, and Hirata (2012), Bonvin (2014), Challinor and Lewis (2011), Bertacca
(2015)). These effects arise from the fact that we observe the photon that had trav-
elled in a perturbed Friedman-Robertson-Walker (hereafter FRW) Universe (see equa-
tion(2.22)), and so all the inhomogeneities encountered altered its path and its energy
and consequently the inferred position in the sky and redshift, distorting the total galaxy
pattern (see e.g. Grimm and Yoo (2021), Grimm, Scaccabarozzi, et al. (2020)). The
total effects that have to be taken into account for a proper treatment are:

• Gravitational lensing: The path of the photons is altered due to the curvature of
the space-time around a perturbation between the source and the observer, mean-
ing that the galaxy is observed in a wrong position in the sky (Bartelmann 2010);

• Doppler lensing: This is an effect due to the peculiar motion of a galaxy as showed
in fig.(2.2). In the picture there are an observer on the left that observes three
galaxy: two with peculiar motion signed by the arrow (galaxy B and C) and the
galaxy A at rest. Since the distance of the galaxy C and B is altered, all three
galaxies are seen at the same redshift (equal to the redshift of A). This means that
since the angular size of B is the same, while the distance inferred is higher, this
galaxy will be magnified with respect to A, because for emitting the same flux at
an higher inferred distance It should be larger than A; while the galaxy C will be
de-magnified, since the distance inferred is shorter (Bacon et al. 2014).

29
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Figure 2.1: A scheme of how the Gravitational lensing distorts the position of a
source. The inferred poisition on the sky of the galaxy depends on hoy the photon path
was influenced by the inhomogeneity between the observer and the source. Source:
"http://cmbcorrelations.pbworks.com", credit: Peter Laursen

Figure 2.2: A scheme of how doppler lensing works in which are shown how the galax-
ies are magnified or de-magnified according to their peculiar motion(Bacon et al. 2014)
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Figure 2.3: A scheme of how Sachs-Wolfe effect works. Are shown the two cases in
which a photon acquires or loose energy. Source: (Figure from Nandi 2017b)

• Sachs-Wolfe effect (abbreviated SC effect): It gives two contributions:
Standard SC effect: that modifies the redshift of the photon when it climb the
potential well of the emitting source;
Integrated SC effect: when a photon during its path encounter a gravitational
potential, it is subject to a blueshift (rise of energy) when it enters the potential and
a redshift (lose of energy) when It climbs away the potential. If the gravitational
potential of the source remain constant, the energy of the exiting photon is equal
to the energy of the entering one, but if the gravitational potential increase or
decrease (for example due to the expansion of the Universe) the energy gained is
not equal to the energy lost, so the photon is redshifted or blueshifted as shown in
fig(2.3) (Boughn and Crittenden 2005).

• Shapiro time delay: due to the space-time dilation around a massive object (Shapiro
1964).

The angular diameter size of a source is its angular widthness. We describe a perturba-
tive correction to the angular diameter distance, relative to the background distance d̄A
at background redshift zs, by

dA(zs) = d̄A(zs)+δdA(zs), (2.1)

and using the parametrization as in Bacon et al. (2014) we write the perturbed angular
diameter size as

dA(zs,n) = d̄A(zs)[1−κ(zs,n)], (2.2)

with d̄A(zs) the angular diameter size for a source observed at zs in the direction −n
in the perturbed model and k the convergence term, that is a correcting factor which
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includes all the contributions of the various gravitational, doppler, Sachs-Wolfe and
Integrated Sachs-Wolfe effects:

κ = κg +κd +κSW +κISW . (2.3)

In Bacon et al. (2014) they show that actually the last two terms are sub-dominant so
we can write

κ = κg +κd. (2.4)

We now briefly discuss when the gravitational lensing is dominant with respect to the
Doppler, and vice-versa, as shown in fig(2.4).
The convergence term of the Doppler and Gravitational lensing parts can be written as
(Bacon et al. 2014)

κd =

Å
1− 1+ zs

Hχs

ã
vs ·n, (2.5)

κg =
∫

χs

0
dχ(χs −χ)

χ

χs
∇⊥Φ, (2.6)

with χs the comoving distance, vs the velocity of the source and n the Line of Sight
direction and Φ the Bardeen potential (Bardeen 1980), that is a gauge-invariant potential
that enters in the perturbed-FRW metric that accounts for the inhomogenities of the
metric, as shown in equation(2.22) (see e.g. Uggla and Wainwright 2011, Bardeen
1980). Firstly note that the Doppler terms sign depends on the motion of the source, for
object moving towards us kv < 0 so dA(zs,n) > d̄A(zs) and the source appears dimmer,
so is de-magnified, while if the source is moving away from us kv > 0 and dA(zs,n) <
d̄A(zs) it appears brighter, thus magnified, as already shown in fig.(2.2). Secondly with
increasing redshift, the factor in brackets in equation(2.5) decreases in amplitude, so the
magnitude of the Doppler lensing falls, while that of κg grows. Therefore kd profiles
change sign at high redshift (Bacon et al. 2014); this is due to an effect which dominates
at high redshift, in which the object’s image experiences significantly more (or less)
cosmic expansion than we inferred from its observed redshift. To have an estimate
at which scale the Doppler lensing is important we estimate the velocity contribution
|v| ≈H0δ/k (Bacon et al. 2014), so we expect that the effect is important on large scales.
The region where the Doppler lensing dominates over standard gravitational lensing is
shown in Fig.(2.4). Here we expands the κd and the κg via spherical harmonics (Bacon
et al. 2014)

κg(z,θ ,φ) = ∑
lm

κ
g
lmYlm(θ ,φ), κd(z,θ ,φ) = ∑

lm
κ

d
lmYlm(θ ,φ), (2.7)
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where the coefficients κ
g
lm and κd

lm are (Bacon et al. 2014)

κ
g
lm(z) =

∫
dΩθ dΩφY ∗

lm(θ ,φ)κg(z,θ), (2.8)

κ
d
lm(z) =

∫
dΩθ dΩφY ∗

lm(θ ,φ)κd(z,θ). (2.9)

The angular auto-power spectrum Cl(z,z′) between two redshift z and z′ can be extracted
from the average (Bacon et al. 2014)

⟨κ i
lm(z)κ

i
l′m′(z′⟩=Ci j

l (z,z
′)δll′δmm′ with i = g,d (2.10)

The "l" index is associated with the number of spatial oscillations, also called nodes,
that are equal l + 1 in the θ direction in spherical coordinates, and "m", the number of
spatial oscillations (nodes) in the φ direction. m varies from "˘l" to "l". For example,
the l = 0 mode has zero oscillation in the θ direction, i.e., a monopole, or constant value
over the whole sphere, that sets the overall scale. l = 1 is a dipole: one full oscillation
over the sphere in the θ direction. Go to higher and higher l values, and you get more
spatial oscillations (and therefore smaller wavelength) over the sphere surface. We see
that Doppler lensing dominates over gravitational lensing from medium to low redshifts
and wavenumbers (l ≤ 1000 at z = 0.2 and l ≤ 100 at z = 0.4). Be careful that we are
only comparing the "importance" of these two lensing, because both at large scales have
to be considered since their contributions even if is not the same, it is non-negligible. It
is very important to note also that the importance ranges are divided also in "wide angle"
and "small scale", this means that the doppler lensing dominated over the gravitational
lensing also if the observational angle under which the galaxies are seen is wide, as
seen in the previous section. On the contrary for small angles the gravitational lensing
dominates.

All the presented effects (Gravitational and Doppler lensing, SC effects and time-
delay) begin to become non-negligible at large scales and since modern galaxy survey
are able to observe portion of Universe comparable with the horizon 1/H(z) (see e.g.
DESI Collaboration et al. 2016, Doré et al. 2014, R. Scaramella et al. 2022, Weltman
et al. 2020), they could be effectively detectable (see e.g. Yoo 2009a, Jeong, Schmidt,
and Hirata 2012, Bonvin 2014, Challinor and Lewis 2011, Bertacca 2015). At these
scales the galaxy count is affected by the peculiar motion of the galaxies as described
in the previous chapter (Kaiser 1987, A. J. S. Hamilton 1998), magnification due to
lensing (see e.g. Sasaki 1987, Matsubara 2000)) and the other presented general rela-
tivistic effects (see e.g. Bertacca et al. 2012, Raccanelli, Bertacca, Doré, et al. 2014,
Raccanelli, Bertacca, Maartens, et al. 2016,Raccanelli, Montanari, et al. 2016, Gaz-
tanaga, Bonvin, and Hui 2017)). The depth and in particular the wide observational
angle of modern survey make these effects indispensable for a complete cosmological
treatment, because they can affect a lot of cosmological quantities. For example as
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Figure 2.4: The red dot are the points where the doppler lensing multipoles power is
equal to the gravitational one in function of the redshift, with the blue line the inter-
polating function. The plot shows the ranges in which the gravitational and doppler
lensing dominates. The former at large redshift and small observational angle, while the
latter for low redshift and wide observational angle. (Figure from Bacon et al. 2014)
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Figure 2.5: Ratio between the correlation function accounting for general relativistc
effects and in the Newtonian case. (Figure from Bertacca et al. 2012)
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showed in Bertacca et al. (2012), the galaxy correlation function and so the power spec-
trum in Redshift Space at large scale have to include these effects to recover the proper
behaviour at large scales. In figure(2.5) is plotted the ratio of the redshift space galaxy
correlation function accounting for the general relativistic effects and the one that con-
sider the Newtonian plane-parallel approximation, in function of the angular separation
of the pair of galaxies χ12. It is visible that the two correlations function deviates for
wide galaxy separation angles, while for low separation angle we recover the flat-sky
approcimation and so the ratio→ 1, so it necessary to include the relativistic effects to
recover the right correlation function and so the power spectrum.

Since these quantities are present in the large scale part of the power spectrum,
it is immediate to observe that they could affect also the inference of the primordial
non-Gaussianity (as anticipated in section1.5). In the standard model of cosmology,
the primordial perturbations, corresponding to the seeds for the LSS, are chosen from
a Gaussian distribution with random phases. Actually the central limit theorem (Kwak
and Kim 2017) implies that a Gaussian distribution arises whenever one has a vari-
able which is a linear superposition of a large number of independent random variables
which are all drawn from the same distribution. Nevertheless, a minimal deviation from
Gaussianity is perhaps the most robust theoretical prediction of models that explain
the observed Universe; it is necessarily present even in the simplest scenario (see e.g.
Bartolo et al. 2004. In addition, most inflationary models produce far higher levels
of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early
Universe, a detection would present a monumental discovery in cosmology, providing
clues about physics at very high energy scales. (see e.g. Byrnes and Choi 2010, Celo-
ria and Matarrese 2018, Meerburg et al. 2019). The common parametrization of the
non-Gaussianities is the fNL parametrization, where the Bardeen potential is written as
(Raccanelli, Bertacca, Maartens, et al. 2016)

ΦNG = φ + fNL(φ
2 −⟨φ 2⟩), (2.11)

that on scales lower than the Hubble scale reduces to the Newtonian one. φ is a gaus-
sian random field and fNL include the degree of deviation from Gaussianity. As showed
in Dalal et al. (2008) the amount of galaxy cluster depends on the value of the as-
sumed fNL. In fact in figure(2.6) are shown various simulation that assumes a ΛCDM
model with Ωm = 0.24 and ΩΛ = 0.76 at redshift z = 0 generated with the same Fourier
phases, but with (from top to bottom) fNL =−5000,−500,0,+500,+5000. Each slice
is 375 h−1Mpc wide, and 80 h−1 Mpc high and deep. Note that for positive fNL, over-
dense regions are more evolved and produce more clusters than their Gaussian counter-
parts, while underdense regions are less evolved. For negative fNL, underdense regions
are more evolved, producing deeper voids, while overdense regions are less evolved, as
illustrated by the grid lines apparent in the left of the top panel. This shows that fNL
influence the galaxy cluster, but actually we use the galaxy cluster to infer it (Cunha,
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Huterer, and Doré 2010), so since the clustering is affected by the general relativistic
effects, this implies that also fNL is affected. In particular, fNL introduces a scale-
dependent modification of the large-scale halo bias (Dalal et al. 2008) that is written
(see e.g. Dalal et al. 2008,Raccanelli, Bertacca, Maartens, et al. 2016)

b(k) = b+∆b(k), (2.12)

with

∆b(z,k) = [b(z)− p] fNL(k)δec
3Ωm,0H2

0
k2T (k)D(z)

, (2.13)

where b(z) is the usual bias calculated assuming Gaussian initial conditions, which
we assume to be scale-independent, 1 < p < 1.6 and p = 1 for galaxies that entirely
populates halos in a given mass range and p = 1+δ−1

ec ≈ 1.6 for galaxies that populates
only recently merged halos (Slosar et al. 2008), D(z) is the linear growth factor, Ωm,0
is the matter density parameter at present day and δec is the critical value of the matter
over-density for ellipsoidal collapse set to δsc ≈ 1.68 (see e.g. R. K. Sheth, Mo, and
Tormen 2001). The fNL parameter is assumed scale-dependent (Raccanelli, Bertacca,
Maartens, et al. 2016)

fNL(k) = fNL

Å
k

k∗,NG

ãnNG

, (2.14)

with the pivot scale k∗,NG = 0.04 h Mpc−1 and nNG ≈ O(1). In figure(2.7) are shown
the ellipsoidal errors on fNL and nNG accounting for the general relativistic effects (solid
line) and with a Newtonian treatment (dashed line) for a SKA-like (Weltman et al. 2020)
and Euclid-like (R. Scaramella et al. 2022) survey after marginalizing over all the others
parameters. It is visible that accounting for general relativistic effects produces more
restricted constraints, and so they are fundamental for putting more bounds in the infer-
ence of this parameter.

General relativistic effects don’t impact only the estimation of non-Gaussianities,
but as showed in Raccanelli, Bertacca, Maartens, et al. (2016) and Lorenz, Alonso, and
Ferreira (2018) also the constraint on the Dark matter nature can be affect. Nowadays
its nature remain an open question in Cosmology, even its most basic behaviour, for
example if it has a constant value of it varies with time (Yang et al. 2018). Dark energy
is distinguished from the cosmological constant simply considering that the latter has
an equation of state w = p/ρ =−1 with p the pressure and ρ the energy density of the
"cosmic fluid", while the former has an unknown equation of state, and so its ratio is
written as (see e.g. Raccanelli, Bertacca, Maartens, et al. 2016, Linder 2003, Linder
2005)

w(a) = w0 +wa(1−a), (2.15)

with w(a) normalized as w(a) = 1 at a0 = 1. It is called "dynamical dark matter" since
it depend on the scale factor and so evolves with time. To constrain a dark matter model
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Figure 2.6: The dependence of the galaxy clustering on the fNL value: (from top) fNL =
−5000,−500,0,+500,+5000. (Figure from Dalal et al. 2008)

we have to put constrain on the w0 and wa parameter, and so in figure(2.8) are shown the
constraints on the dynamical dark energy parameters for survey like the SKA and Euclid
one, marginalized over other cosmological parameter. As before the constraint that ac-
counts for general relativistic effects are more bounded and restricted, meaning another
time that these effects are fundamental for the cosmological parameter estimation.

How these effects change the power spectrum?
Now we show how the presence of the general relativistic effects can alter the

power spectrum. In Jeong, Schmidt, and Hirata (2012) and Challinor and Lewis (2011)
they derive a complete and self-consistent treatment of the power spectrum account-
ing for the peculiar velocities of the galaxies and also for the general relativistic effects.
Here we highlight the main result. In figure(2.9) are shown the three dimensional galaxy
power spectra of the Kaiser prediction (dotted line) (Kaiser 1987), of the kaiser predic-
tion with a fNL = −0.147 (dashed line) and the one that accounts for the General rela-
tivistic effects (thick line), all at various redshift bins and bias factor b. The vertical line
is at k = aH, that is the horizon. At small scales the behaviour of the power spectra is ba-
sically the same, and begins to deviate when the scales approaches k ≤ 10−3 h Mpc−1.
At larger scales the contribution of the general relativistic effects presented becomes
dominant, and it is much higher with respect to the Kaiser one. Note that at all redshift
the power spectrum with general relativistic effects has this behaviour. One very im-
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Figure 2.7: Ellipsoidal error on the fNL and nNG parameters, accounting (solid line)
and not accounting (dotted line) for general relativistic effects (Figure from Raccanelli,
Bertacca, Maartens, et al. 2016)
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Figure 2.8: Ellipsoidal error on the w0 and wa parameters, accounting (solid line)
and not accounting (dotted line) for general relativistic effects(Figure from Raccanelli,
Bertacca, Maartens, et al. 2016)
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portant thing to note is the behaviour of the power spectrum with the relativistic effects
and the one with the kaiser prescription plus a non-gaussian parameter, since as said in
the previous section, the presence of the relativistic effects can "induce" a non-gaussian
behaviour at large scale and in fact the two spectra are very similar. In figure (2.10) is
shown instead the two-dimensional redshift galaxy power spectrum divided in the com-
ponents of the modes parallel to the line Of Sight k// and perpendicular k⊥, for various
redshift and bias factor. Here are showed the result including the relativistic effects
(black solid lines), the Newtonian result from Kaiser (contour and dashed line). The
first thing that we can note is the typical behaviour of the "squashed" configuration in
redshift space, as shown in the first chapter, that become more and more squashed along
the perpendicular direction as redshift increases. Second note that the contour and solid
lines deviates only at large scales (as saw in figure(2.9)), becoming very distinguishable
again around k ≤ 10−3 h Mpc−1.

In the next section we will give a quantitative explanation on how LIGER is able to
account for the Redshift Space Distortions and the general relativistic effects to create
galaxy mocks.

2.2 LIGER theory

As shown in figure(2.11) we observe a galaxy as it was at the time when its world-line
intersect our past light cone (see e.g. Cuesta-Lazaro et al. 2018). The null geodesic
of the photon emitted by a galaxy is altered due to all the perturbations on its path, so
actually we observe the modified photon path. In figure(2.11) the direction nr is the ac-
tual direction of the galaxy, while ns is the direction under which the galaxy is observed
after the perturbation of its position. The position of the galaxy can be parametrized by
two angles that indicates its position ns in the sky and its redshift z that indicates the
distance. We can think as the actual position of the galaxy in the sky is displaced by
∆xi = ni

sδ χ + δxi that is the displacement vector that connects the actual position and
the observed one. It is composed by the first term that is a displacement in the distance
and the second that is a displacement in the position on the sky. What LIGER does
essentially is to compute this displacement vector ∆xi in order or be able to create a
map between the Real and Redshift space accounting for the peculiar velocities and the
general relativistic effects. As showed in (Borzyszkowski, Bertacca, and Porciani 2017)
in redshift space a null geodesic from an observed galaxy is described by the 4-vector:

xµ
s = (ηs,xs) = (η0 −χs,χsns) , (2.16)

with η0 the conformal time at present time, ni
s = xi

s/χs a unit vector that point to the
galaxy position in the sky and χs(z) the comoving distance. The relation between the
position in Real space and Redshift space is given by (Borzyszkowski, Bertacca, and
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Figure 2.9: The three dimensional galaxy power spectra of the Kaiser prediction (dotted
line) (Kaiser 1987), of the kaiser prediction with a fNL =−0.147 (dashed line) and the
one that accounts for the General relativistic effects (thick line), all at various redshift
bins and bias factor b. The vertical line is at k = aH, that is the horizon.(Jeong, Schmidt,
and Hirata 2012)
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Figure 2.10: The two-dimensional redshift galaxy power spectrum divided in compo-
nent of the modes parallel to the line Of Sight k// and perpendicular k⊥, for various
redshift(Jeong, Schmidt, and Hirata 2012) and bias factor
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Figure 2.11: The configuration of how the path of a photon is altered and consequently
the position of the emitting galaxy (Figure from Borzyszkowski, Bertacca, and Porciani
2017)
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Porciani 2017)
xµ

r [χr (χs)] = xµ
s (χs)+∆xµ (χs) . (2.17)

This means that the actual position of the galaxy is the one observed into the redshift
map, plus a 4-vector that contains the displacement due to the various effects ∆xµ (χs).
Since the displacement are very small, we can write χr = χs + δ χ and perturbing xµ

r
around xµ

s we obtain at linear order (Borzyszkowski, Bertacca, and Porciani 2017)

xµ
r (χr) = xµ

s (χr)+δxµ (χr) (2.18)

= xµ
s (χs)+

dxµ
s

dχs
δ χ +δxµ (χs) , (2.19)

and so combining equation (2.17) and (2.18), the displacement is written as (Borzyszkowski,
Bertacca, and Porciani 2017)

∆x0(χs) =−δ χ +δx0(χs), (2.20)

∆xi(χs) = ni
sδ χ +δxi(χs), (2.21)

assuming that d/dχs =−∂/∂ηs+ ni
s∂/∂xi

s, χs as affine parameter and that at linear or-
der dxi

s/dχs = ni
s. Knowing δ χ , δx0 and δxi means to know how the position of the

galaxy is displaced, and so now our aim is to compute esplicity these terms, studying
how the Redshift Space Distortions and the general relativistic effects actually con-
tribute.

In the linear regime the perturbed metric in the Poisson gauge is (see e.g. Bardeen
1980, Peebles 1982, Dodelson 2003, Brandenberger 2001)

ds2 = a2(η)
î
−(1+2Ψ)dη

2 − (1−2Φ)δi j dxi dx j
ó
, (2.22)

with Ψ and Φ the Bardeen potentials of the inhomogeneities and a(η) the scale factor.
A zero-shear velocity field uµ projected along ∂µ can be written as (Challinor and Lewis
2011, Bardeen 1980, Peebles 1980b)

uµ = a−1(1−ψ)δ
µ

0 , (2.23)
uµ = a(1+ψ)δµ0. (2.24)

We decompose the wavevector kµ = dxµ/dλ into a directional part ea and a frequency
(energy) part that satisfy k ·u = ε/a, so that the differential equation for the photon can
be written as

dx
dη

= (1+φ +ψ)e, (2.25)

dη

dλ
= a−2

ε(1−ψ). (2.26)
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This implies that the geodesic equation is simply given by a propagation equation of e
that account for the "positional" part and an evolutionary equation of the frequency ε

that account for the energy of the photon. We can then write the geodesic equation as a
propagation equation for e and an evolution equation for the frequency

de
dη

=−∇⊥(φ +ψ), (2.27)

dε

dη
=−ε

dψ

dη
+ ε(φ̇ + ψ̇), (2.28)

where ∇⊥ = ∇− e ·∇.
Combining equations (2.25), (2.26) and the integral with the propagation equation of e
we recover the equation for a generic photon path (Challinor and Lewis 2011)

x(n̂;η) =−eo (ηo −η)+ e
∫

η

ηo

(ψ +φ)dη
′−

∫
η

ηo

(
η −η

′)
∇⊥(ψ +φ)dη

′, (2.29)

Where ”o” means that are quantities seen by the observer so that −eo is the Line-of-
sight direction for a Newtonian-gauge observer. Equation(2.29) states that the position
of an observed galaxy is due to the summation of the first term that is the "unperturbed"
one, since it account only for the cosmic time at which the photon was emitted (in
the direction −eo) through the observer; and the last two terms that account for the
"perturbed" part (in fact are the only terms where the Bradeen potentials appear), with
the first that is the radial displacement that correspond to the Shapiro time delay and the
second is the transverse displacement due to the lensing.

What is missing is how the redshift (and so the radial part) are affected by the
perturbation along the path. We begin by the usual relation between the emitted red-
shift (”e”) considered perfectly known and the observed (”o”), that is translated into an
equation of the energies (Borzyszkowski, Bertacca, and Porciani 2017)

1+ z =

(
uµ

e kµ

)∣∣
e(

uµ
o kµ

)∣∣
o

, (2.30)

we decompose the velocities both of the source and of the observer into two compo-
nents:

uµ
e = uµ + vµ

e , (2.31)

uµ
o = uµ + vµ

o . (2.32)

Regarding that uµ
s = a−1[1−ψ,vi], equation (2.30) becomes (Challinor and Lewis 2011)

1+ z =
ao

a
ε

εo
[1+ n̂ · (ve −vo)] , (2.33)
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with n̂=−eoA the line-of-sight direction. The energy ratio ε/εo can be determined from
integrating the energy evolution (equation(2.28))

ε

εo
= 1+ψo −ψ +

∫
η

ηo

(ψ̇ + φ̇)dη
′, (2.34)

that as before is divided into the first term that is the "unperturbed" part (in fact the
emitted and observed energies are equals if there are not perturbation along the path)
and the "perturbed" part that contain the standard Sachs-Wolfe effect and the integrated
Sachs-Wolfe (ISW) effect. So combining equations (2.33) and (2.34) we write

1+ z =
ao

a

ï
1+ψo −ψ +

∫
η

ηo

(ψ̇ + φ̇)dη
′+ n̂ · (ve −vo)

ò
. (2.35)

Setting η ≡ ηs+δη , thus η is given by t its value for a source of redshift zs plus a little
displacement where the unperturbed metric relation 1+ zs = ao/a(ηs) holds, we must
have

δη =
1

H (ηs)

ï
ψo −ψ +

∫
ηs

ηo

(ψ̇ + φ̇)dη
′+ n̂ · (ve −vo)

ò
, (2.36)

and so combining this with equation (2.29) we obtain the radial position of a photon at
observed source redshift zs (Challinor and Lewis 2011)

χ (n̂,zs) = χs +δ χ = ηo −ηs −δη −
∫

ηs

ηo

(ψ +φ). (2.37)

So writing the positional shift as in equation (2.20), substituting all the perturbed
quantities just found and setting the observer spatial coordinate to zero, we ends up
with the final coordinate displacement for the galaxies position between the Redshift
and Real space (Borzyszkowski, Bertacca, and Porciani 2017):

δ χ =−
Å

χs +
1

H

ã[
ψo −

(
ni

svi
)

o

]
+

1
H

[
ψe −

(
ni

svi
)

e

]
+

1
H

∫
χs

0
∂0(φ +ψ)dχ

+
∫

χs

0
[2ψ +(χs −χ)∂0(φ +ψ)]dχ, (2.38)

δx0 =−χs
[
ψo −

(
ni

svi
)

o

]
+2

∫
χs

0
ψdχ +

∫
χs

0
(χs −χ)∂0(φ +ψ)dχ, (2.39)

δxi =−
(
vi

o +φoni
s
)

χs +2ni
s

∫
χs

0
φdχ −

∫
χs

0
(χs −χ)δ

i j
∂ j(φ +ψ)dχ, (2.40)

with H = ∂0lna. These equations are the explicit form of the displacement in equa-
tion(2.20), accounting for how the inferred position of a source is affected by the various
relativistic effects presented and by the peculiar velocities.



48 CHAPTER 2. RELATIVISTIC SIMULATIONS

2.2.1 Magnification
Since the Redshift Space Distortions alter the both the position and the distance of a
galaxy, we have to be careful when we study the flux received from a galaxy (see e.g.
Hui, Gaztañ aga, and LoVerde 2008, Breton, Torre, and Piat 2022). If a galaxy is saw at
redshift z1 under a solid angle Ωz1 and flux Fz1 and supposing that its actual redshift is
at z2 > z1, this implies that the galaxy to emit the observed flux has to be brighter than
inferred, since it is farther. For same reason if the actual position is at z3 < z1, to have
the same flux and solid angle it has to be fainter then expected at z1. This effect is called
Magnification and it is important for limited in flux survey, that select only galaxy in a
certain range of luminosities (see e.g. Unruh et al. 2020). In this section we show how
the luminosity of a galaxy is affected by the Redshift Space Distortions and relativistic
effects. Consider:

• A source with 4-velocity ua
s that emits isotropically radiation in its rest frame

dE = Lsdτs in a proper time τs, emitting photons of energy (ksua
o)|λ (with λ the

affine parameter). The number of photons emitted within a solid angle dΩs is
(Challinor and Lewis 2011)

dN =
LS dτs dΩs

4π (kaua)|
λ

. (2.41)

• An observer with 4-velocity ua
o that collect the photons observed with energy

(kaua
o)|λ with a detector of area dAo in time dτo

The angles and areas are connected through the Jacobi relation (1+z)2dΩsdAs = dΩodAo
( dAs = detDodΩo with D0 the Jacobi map) (Challinor and Lewis 2011). The total en-
ergy received by A is then (Challinor and Lewis 2011)

dEo =
(
kµuµ

)∣∣
o dN =

LsdτodAo

4π(1+ z)4 detDo
, (2.42)

considering dτo/dτs = 1+ z. The luminosity distance in an unperturbed space-time is
given by (Dodelson 2003)

dL =

…
L

4πF
= (1+ z)χ, (2.43)

but in the perturbed case (always at first order) it becomes (Bertacca 2015,Challinor and
Lewis 2011)

dL(n̂) = (1+ z)2 (detD0)
1/2 . (2.44)

The magnification is defined as (Jeong, Schmidt, and Hirata 2012, Borzyszkowski,
Bertacca, and Porciani 2017)

M =

Å
dL

d̃L

ã−2
, (2.45)
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where d̃L is the luminosity distance in a background unperturbed universe evaluated at
the observed redshift of the galaxy. Note that in absence of perturbation dL = d̄L and
so M = 1. The full expression of the Jacobi map is obtained from the linear pertur-
bation theory (Challinor and Lewis 2011), and we ends up with the final form of the
Magnification (Borzyszkowski, Bertacca, and Porciani 2017)

M = 1−2
Å

1− 1
H χs

ã[
ψo −

(
ni

ovi
)

o

]
+2
Å

1− 1
H χs

ãï∫
χs

0
∂0(φ +ψ)dχ +ψe −

(
ni

svi
)

e

ò
+2φe −

2
χe

∫
χe

0
(φ +ψ)dχ +2κ. (2.46)

As before even in the Magnification equation appear all the contributions from the pe-
culiar velocities, lensing, Sachs-Wolfe effects and Shapiro time delay as expected.

2.3 LIGER method
There are two methods that can be used to create survey simulations that are able to
accounts for the Redshift Space Distortions and relativistic effects: one is to create sim-
ulations of cosmic structure formation using equations consistently derived from general
relativity, accounting in detail for the relativistic effects solving the geodesic equation
for particles, taking into account the relativistic potentials (Adamek et al. 2016); an-
other is to account for General Relativistic corrections a posteriori, meaning that we
start from a Newtonian simulation and we then apply all the corrections. This is the
method that we adopt in this thesis using the available code LIGER (Borzyszkowski,
Bertacca, and Porciani 2017, Elkhashab, Porciani, and Bertacca 2021). This code

• Takes as input a very generic Newtonian simulation;

• Select some specific observer;

• It shifts all the positions of the galaxies in the Newtonian simulations accounting
for all the Redshift Space Distortion and the general relativistic effects. It do this
applying a coordinate system transformation that accounts for relativistic local
and integrated along the Line Of Sight contributions. See section(2.2)

• As output it gives the distribution of the galaxies of each input simulation snap-
shot as they would be observed in our perturbed past light cone with the galaxies
positions shifted considering the Redshift Space Distortion and the general rela-
tivistic effects selected. See section(3.3)
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In this section we are going to show how LIGER, taking into account all the corrections
as showed in the previous section, actually implement the displacements of the galaxies
positions in practice. Since the aim is to understand how perturbations in the metric alter
the null geodesic of the photons, the first step is to compute the gravitational potential
in function of space and time starting from the particles distribution in the simulation.
At a linear order in the perturbations the source equation for Ψ in the Poisson gauge for
a pressure-less fluid in a ΛCDM universe can be written in terms of the matter density
contrast in the synchronous comoving gauge δsyn as the standard Poisson equation (see
e.g. Chisari and Zaldarriaga 2011,Green and Wald 2012):

Φ = Ψ = φ , (2.47)

∇
2
φ = 4πGa2

ρ̄mδsyn, (2.48)

vi = vi
syn. (2.49)

with G the Newton’s gravitational constant and ρ̄ the matter density in the FRW back-
ground. Since δsyn = δsim (Borzyszkowski, Bertacca, and Porciani 2017) these equations
can be written in terms of the matter density contrast of the simulation:

Φ = Ψ = φ , (2.50)

∇
2
φ = 4πGa2

ρ̄mδsim, (2.51)

vi = vi
sim. (2.52)

The simulation is divided into snapshots and the gravitational potential (in each of them)
is calculated starting from the simulation particle distribution calculating the matter den-
sity contrast on a regular Cartesian grid with the cloud in cell method (for a discussion on
the particle assigment scheme see section(4.2.1)). The Poisson equation is then solved
using a fast Fourier transform (see e.g. Duhamel and Vetterli 1990) obtaining the poten-
tial in function of space (depending on the position in the simulation) and in time (since
it is solved for all the snapshots): φ(x, t).

Once we know how the perturbed metric is written and how the gravitational
potential evolves in space and time, we are able to apply the particles displacements
of equations (2.46), (2.38), (2.39) and (2.40). Note that the effects in these equations
give both local terms evaluated at a specific position and non-local terms (integrated
terms). The integrals in the equations are computed along the line of sight and should
be performed in Redshift space, where the path is a straight line, however since at linear
order in the perturbation |φ | ≪ 1 (see e.g. Carlson, M. White, and N. Padmanabhan
2009) and the deflections are small, the integrals are performed in Real space from the
observer position to the Redshift space position of the galaxy. Obviously not all the
galaxies are shifted at the same moment, LIGER first identify the snapshots (so the
time) in which a given galaxy would cross the backward light cone of the observer (in
a FRW universe) and then the displacements are applied when the galaxy world line
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Figure 2.12: A scheme of how LIGER weight the particle shifts, accounting for both
local and integrated terms. (Figure from Borzyszkowski, Bertacca, and Porciani 2017)

cross the observer past light cone. There are two main updates in the LIGER code from
(Elkhashab, Porciani, and Bertacca 2021): the peculiar velocity and potential of the
observe, that are the first term in equations (2.38) (2.39) (2.40) (2.46), are now taken
into account while in the previous version they were neglected; and now the observer is
associated with the closest simulation particle to the observer-selected location.

In figure(2.12) there is a simple scheme that shows how LIGER account for these
two contributions: first the local terms are evaluated at the position of the galaxy and
a first shift is applied, then the non-local terms are calculated through the integrals and
a second shift is applied. However the transverse size of the light cone that intersect
the worldline of the galaxies rapidly increase with redshift, requiring large simulations
to cover the wide opening angle. This would create a problem for high mass resolu-
tion simulation, in which the computational time would drastically increases. This is
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the reason why LIGER is able to apply the displacement directly to the dark matter
particles in a simulation and compute the galaxy density field a posteriori, account-
ing for the galaxy bias. At linear order the matter density contrast in redshift space is
(Borzyszkowski, Bertacca, and Porciani 2017)

δs = δsim +δRSD, (2.53)

where the term (see e.g. Yoo 2009b,Bonvin and Durrer 2011,Jeong, Schmidt, and Hirata
2012,Challinor and Lewis 2011)

δRSD =

Å
∂0H

H 2 +
2

χsH

ã
δ lna+ψe −2φe +

(∂0φ)e
H

+3H ψv (2.54)

− 1
H

[
ni

s∂i
(
n j

sv j
)]

e +
2
χs

∫
χs

0
(φ +ψ)dχ −2κ, (2.55)

collects all the corrections due to Redshift Space Distortions and relativistic effects. φv
is the linear velocity potential at the galaxy position, vi = ∂iφv and the apparent redshift
change due to the perturbations is

δ lna = ψo −
(
ni

svi
)

o −ψe +
(
ni

svi
)

e −
∫

χs

0
∂0(φ +ψ)dχ. (2.56)

This equation is connected to the apparent redshift change (Borzyszkowski, Bertacca,
and Porciani 2017)

δ lna =
δ z

(1+ z)
, (2.57)

and using equation(2.35) that shows how the redshift is perturbed, we ends up with
the form in equation(2.56). As showed in (Challinor and Lewis 2011,Jeong, Schmidt,
and Hirata 2012) instead the galaxy density contrast profile can be written in terms of
three bias parameter

δg,s = bδsim +Q(M −1)+E (δ lna−H φv)+δRSD, (2.58)

With

• The bias parameter b. At first order the intrinsic perturbation in the galaxy number
density in real space is δg,r = bδsim;

• The Magnification-bias parameters that quantifies the impact of the Magnifica-
tion.

Q =−
∂ ln n̄g

∂ lnL

∣∣∣∣
L=Llim

(2.59)

Here n̄g denotes the comoving number density of galaxies with luminosity higher
than L. The Magnification factor appears for limited in flux survey with Llim the
limiting luminosity;
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• The evolutionary-bias that accounts for the fact that the comoving number density
of galaxies change with the redshift.

E =−
∂ ln n̄g

∂ ln(1+ z)
(2.60)

Assuming that: |H ψv ≪ δ lna|, neglecting the velocity potential and using equation
(2.53), we can write (Borzyszkowski, Bertacca, and Porciani 2017)

δg,s = (b−1)δsim +δs +E δ lna+Q(M −1). (2.61)

To relate the galaxy over-density to the galaxy density in the simulations, we com-
bine equations 2.53 and(2.58), then write the over-densities in terms of the number
densities of the simulation, the final result for the galaxy number density is given by
(Borzyszkowski, Bertacca, and Porciani 2017)

ng,s(n̂s,z) = [b(z̄)−1][wg(z̄)nsim,r(n̂s,z)− n̄g(z)]+wg(z̄)wQ(n̂s,z)nsim,s(n̂s,z), (2.62)

where nsim,r is the real space number density, nsim,s the redshift space number density,
n̄sim is the simulation box averagre number density, z̄ = z−δ z the redhift perturbation,
wQ =M Q the magnification term and wg = n̄g/n̄sim denotes the mean number of galax-
ies per simulation particle at a given redshift. Each shift of the particle simulation are
weighted by wg. In order to estimate the matter density contrast starting from the par-
ticle in our N-body simulations, we use the standard mass weighted smoothing scheme
(Elkhashab, Porciani, and Bertacca 2021)

1+δ (x) =
η(x)

η̄
=

1
η̄

∫
ηpart(y)WCIC(x−y)d3y, (2.63)

=
1
η̄

∫ ñ
∑

i
δD(yi −y)

ô
WCIC(x−y)d3y, (2.64)

=
1
η̄

∑
i

WCIC(x−yi), (2.65)

where η , ηpart and η̄ are the smooth, discrete and average particle number density,
respectively the index i runs over the simulation particles and WCIC denotes the "cloud-
in-cell" kernel (Hockney and Eastwood 1981). We use the real space particle position
to get δsim and the redshift space ones to get δs. We sample the continuous fields δsim
and δs on the same regular Cartesian grid that covers the past light cone of the observer.
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Chapter 3

Quadratic estimator

3.1 Old Quadratic estimator

The quantity and quality of the data collected during a Survey are rapidly increasing (see
e.g. Croom et al. 2021), so it is necessary to develop more and more accurate Power
Spectrum estimator that can squeezing the most information possible from the obser-
vations. Here we review the Quadratic estimator for the Power Spectrum introducing
a new version that is able to calculate un-windowed spectrum. The idea of Quadratic
estimators is not new, it was already adopted in particular for CMB data-set analysis
(see e.g. Max Tegmark, Blanton, et al. 2004, Max Tegmark, Dodelson, et al. 2002, M.
Tegmark, A. J. S. Hamilton, and Xu 2002, A. J. S. Hamilton, Max Tegmark, and N.
Padmanabhan 2000).

Let us parameterize the power spectrum P(k) by some set of parameters grouped
into a vector θ . Finding the values of the components of these vector would mean find
the power spectrum P(k). The standard approach to parameter estimation is to package
our data set into a vector x, and then write down the expression for the probability dis-
tribution f (x;θ) (Max Tegmark, Andrew J. S. Hamilton, et al. 1998). We interpret f as
the probability distribution over θ given a data set x. If we take x to be the measured
coordinates of a set of N measured galaxies, the likelihood function f is unfortunately
hopeless to compute numerically, since it involves the N -point correlation function.
Even in the Gaussian approximation that is given by a product over two-point correla-
tion functions (S. D. M. White 1979, Fry 1984), this requires evaluating a multivariate
polynomial of degree N/2 in the correlations of the N(N+1)/2 galaxy pairs. The tradi-
tional approach has therefore been to take x to be something else: band-power estimates
of the power spectrum. These are essentially computed by multiplying the observed
density field by some weight function, Fourier transforming it, taking the squared mod-
ulus of the result and averaging over shells in k-space (Max Tegmark, Andrew J. S.
Hamilton, et al. 1998). We follow this approach and so we divide the power spectrum

55
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into "bins". The goal is to measure the band-power of each, that is, the value of the
power spectrum into the specific k-range (bin). Thus the power spectrum is given by
the value of each bins, collected into a vector p = [pα ] in which each pα is the band
power of the bin with kα < k < kα+1, that means that we select the k-shell that refers to
the vector r.(Max Tegmark, Andrew J. S. Hamilton, et al. 1998). A general band power
estimate pα is a quadratic function of the generic density field n(r) (Max Tegmark,
Andrew J. S. Hamilton, et al. 1998):

pα =
∫ ∫

Eα(r,r′)
n(r)
n̄(r)

n(r′)
n̄(r′)

drdr′, (3.1)

for some real-valued symmetric pair weighting matrix Eα that allows different ranges
of pair of galaxies at r and r′ to be weighted with different weight. Actually it can also
to isolate different ranges of wavenumber k in Fourier space, if we simply do its Fourier
transformation as showed in equation(3.9) The expected value of equation(3.1) is its
average outcome. The expected value is found by calculating a weighted average of its
possible outcomes (see e.g. Heath, Manolopoulou, and Baio 2015), so in expectation
the band power becomes (Max Tegmark, Taylor, and Heavens 1997)

⟨pα⟩=
∫ ∫

Eα(r,r′)
⟨n(r)
n̄(r)

n(r′)⟩
n̄(r′)

, (3.2)

Suppose we have a point process n(r) which is a “Poisson sample” of some continuous
stochastic field 1+ δ (r), that is, the probability that an infinitesimal volume element
δV contains an object is n̄(r)[1+δ (r)]δV . Following Peebles (1980a) we describe the
process by dividing the space into the infinitesimal micro-cells of volume δV which has
a occupation numbers ni = 0 or 1. That is, the statistical average of self-correlator for a
given cell is (Jeong 2010)

⟨n3
i ⟩= ⟨n2

i ⟩= ⟨ni⟩= n̄(ri)δVi, (3.3)

and the correlator for different cells are given by the underlying density contrast as
(Jeong 2010)

⟨nin j⟩i ̸= j = n̄(ri)n̄(r j)δViδVj[1+ ⟨δ (ri)δ (r j)⟩], (3.4)

and so equation(3.3) can be written as

⟨pα⟩= ∑
r ̸=r′

Eα(r,r′)
n̄(r)n̄(r′)

[n̄(r)n̄(r′)δVrδVr′(1+ ⟨δ (r)δ (r′)⟩] (3.5)

+ ∑
r=r′

Eα(r,r′)
n̄(r)n̄(r′)

δVrn̄(r′)δD(r− r′).

This because the assumption that we can describe the process dividing the volume into
infinitesimal micro-cell, allows us to pass from integral on r to summation over the
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micro volume δV , where equation(3.4) holds and so can be substituted, writing the
expectation value in terms of summation over r ̸= r′, but also over r = r′. Developing
equation(3.5) we find

⟨pα⟩= ∑
r ̸=r′

Eα(r,r′)δVrδVr′ + ∑
r ̸=r′

Eα(r,r′)δVrδVr′⟨δ (r)δ (r′)⟩

+ ∑
r=r′

Eα(r,r′)
n̄(r)

δVrδD(r− r′), (3.6)

and so writing everything another time in function of r as in Jeong (2010), it gives

⟨pα⟩=
∫ ∫

Eα(r,r′)d3rd3r′+
∫ ∫

Eα(r,r′)⟨δ (r)δ (r′)⟩d3rd3r′+
∫ Eα(r,r′)

n̄(r)
d3r.

(3.7)
We see that the expectation value is given by the summation of a term that contains
the average of the weight matrix all over the possible pair, one that account for the
correlation function weighted by the matrix and the last one that as the typical behaviour
of the Poissonian shot noise 1/n̄(r). Writing everything in Fourier space we obtain the
result obtained in Max Tegmark, Andrew J. S. Hamilton, et al. (1998)

⟨pα⟩= W(0)+
∫

Wα(k)P(k)
d3k
(2π)3 +bα . (3.8)

The first term is the average of Fourier transform of the weight matrix all over the
possible pairs and is connected to the mean density of the survey, the second contains
the power spectrum convolved with the window function and the third is the Poissonian
noise with its characteristic behaviour 1/n̄(r). The three dimensional window function
is given by (Max Tegmark, Andrew J. S. Hamilton, et al. 1998)

Wα(k) = Êα(k,k′) =
∫

Eα(r,r′)e−ik·re−ik′·r′d3rd3r′, (3.9)

that averaged over all possible directions gives the one dimensional window function:

Wα(k) = k2
∫

Wα(k)dΩk. (3.10)

We interpret (3.8) as probing a weighted average of the power spectrum, with the win-
dow function giving the weights, that depends only on the separation between the direc-
tion r and r′ (note that in the discrete case, as in galaxies surveys, the integral becomes
summation over pairs of pixels). For the Quadratic Estimator of the power spectrum
first we create a data vector q which elements are quadratic functions of the data vector
x (Max Tegmark, Andrew J. S. Hamilton, et al. 1998)

qα =
1
2
(C−1x)T C,αC−1x,

qα =
1
2

xT Eαx,
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with
Eα = C−1C,αC−1, (3.11)

the pair weighting function matrix, that is the derivative of the covariance matrix with
respect to the normalization of the α th band. For Gaussian distributed data the Fisher
information matrix for p is (see e.g. Max Tegmark, Taylor, and Heavens 1997, Vogeley
and Szalay 1996)

Fαβ =−
Æ

∂ 2lnf
∂θi∂θ j

∏
=

1
2

tr[C−1C,αC−1C,β ], (3.12)

and Kamionkowski, Kosowsky, and Stebbins (1997) showed that both the mean and the
covariance of q are:

⟨q⟩= Fp, (3.13)

⟨qqT ⟩−⟨q⟩⟨q⟩T = F, (3.14)

and so an optimal Quadratic estimator of p is given by

p = F−1q, (3.15)

since its covariance is precisely the inverse of the Fisher matrix (Max Tegmark, An-
drew J. S. Hamilton, et al. 1998). This estimator is lossless, that means that it retains
all the cosmological information that are inside the vector x, but it gives a power spec-
trum convolved with the window function (Max Tegmark, Andrew J. S. Hamilton, et al.
1998). This is a problem because as showed by J. A. Peacock and Nicholson (1991)
the window function alter the actual power spectrum, changing its amplitude and shape
making it smoother at low k, as showed in figures(3.1)(3.2), where are plotted the power
spectra for a full sky configuration of particle between redshift z = (1.5,1.8), adopting
the cosmology in table(4.1). In figure(3.1) is plotted the predicted power spectra ob-
tained with CAMB (Lewis and Bridle 2002), while the plots in figure(3.2) are obtained
using equation(1.7). The window function depends on the actual geometry of a survey,
so every power spectrum obtained by a survey data will be convolved with its specific
window function. So how may we account for the fact that the power spectrum obtained
has inside the window function of the survey?

One possibility could be convolve a theory model power spectrum with the same
window function of the survey (see e.g. Percival et al. 2001), in order to make them
comparable, since both are "affected" in the same manner, but this require an high com-
putational cost, since the window function is given by the multiplication of the window
function in the three dimensions W(x) = W(x1)W(x2)W(x3) and this has to be done for
each pair of pixels. Actually another possibility is to use an estimator that gives imme-
diately the deconvolved power spectrum. This is the reason why we are going to present
the Quadratic estimator from (O. Philcox 2020, O. H. E. Philcox 2021), that presented
a method that allows directly the computation of the un-windowed power spectrum,
avoiding the problem of deconvolving it or to convolve a theory model.
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Figure 3.1: The plots shows how the window function affect the power spectrum in Real
Space of a full sky particle configuration at redshift z = (1.5,1.8). The blue line is the
un-convolved power spectrum, while the orange is the convolved one.
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Figure 3.2: The plots shows how the window function affect the power spectrum of the
Kaiser prediction of a full sky particle configuration at redshift z = (1.5,1.8). The blue
line is the un-convolved power spectrum, while the orange is the convolved one.
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3.2 New Quadratic estimator

In this section we apply the "new" Quadratic estimator (O. Philcox 2020,O. H. E.
Philcox and Ivanov 2022) to galaxy survey simulations, so it’s necessary to adopt a
formalism that is suitable for this purpose. The simulation volume is divided into a grid
and each grid cell is characterized by a vector rα that points to the centre of the α-th
pixel. The data-set d is a vector which elements dα are given by the subtraction of the
galaxy density field ng minus a random particle distribution density field nr in each α-th
cell as in Feldman, Kaiser, and John A. Peacock (1994) prescription.

dα = ng(rα)−αnr(rα). (3.16)

The galaxy and random densities are computed after some Mass Assignment Scheme
(MAS) (see section(4.2.1) for details) and α is a normalization coefficient such that
⟨d⟩= 0 (O. Philcox 2020), i.e

α =

∫
drng(r)∫
drnr(r)

.

The vector d can be modeled as the sum of two contributions: a signal m contribution
and a noise n contribution, that satisfy (assuming an uncorrelated noise from signal)
(Max Tegmark, Andrew J. S. Hamilton, et al. 1998)

⟨ddT ⟩= C = ⟨mmT ⟩+ ⟨nnT ⟩= S+N, (3.17)

where S and N are respectively the signal and noise covariances. As for the "old"
Quadratic estimator we can define a data-vector q which elements are quadratic func-
tions of the data raw data vector d (O. Philcox 2020)

q̂QE
α =

1
2

dT H−1C,αH−1d =
1
2

Tr[(H−1C,αH−1)ddT ], (3.18)

where α is referred to the α-th bin, C,α = S,α = ∂S/∂ pα is the derivative of the co-
variance with respect to the specific band-power of interest (it is equal to the deriva-
tive of the signal since the noise has not dependence on the band-power) and H is
a general positive-defined-symmetric pixel weighting matrix. These two matrices are
Npix ×Npix ×Npix. Each element of the vector q is a quadratic functions of the data-set
and contains a weighted average of the original data, with the weight given by H−1 and
refers to a specific pα according to the derivative term.
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In expectation we have

⟨q̂QE
α ⟩= ⟨1

2
Tr[(H−1C,αH−1)ddT ]⟩ (3.19)

=
1
2

Tr[(H−1C,αH−1)⟨ddT ⟩] (3.20)

=
1
2

Tr[(H−1C,αH−1)C] (3.21)

=
1
2

Tr[(H−1C,αH−1)N]+
1
2 ∑

β

pβ Tr[H−1C,αH−1C,β ], (3.22)

Assuming that C = ∑α pαC,α and using equation(3.17).

Now we want to debias (3.19), so we need essentially two terms: one to be sub-
tracted to cancel the first trace noise induced term (with the noise dependency) and the
second to be multiplied to cancel the second trace term that contains the effect of the
weighting matrix (and so of the window function).
So the general quadratic estimator is given by (inverting equation(3.19) to explicit pβ )
(O. Philcox 2020)

p̂QE
α = ∑

β

F−1
αβ

(q̂β − q̄β ), (3.23)

with the multiplicative and subtracting terms (called Fisher and bias terms) given by:

FQE
αβ

=
1
2

Tr[H−1C,αH−1C,β ], q̄α =
1
2

Tr[H−1C,αH−1N]. (3.24)

This estimator is a difference between quantities measured in the actual data catalog
and some uniformly distributed particle sample on which we calculate the Fisher and
bias terms and since these terms contain the noise and window function effect, when
they are subtracted they un-bias the estimator (It will be explained in details in the next
section), so we are free from leading-order of pixelization, binning and non-Poissonian
shot-noise, obtaining a power spectrum estimates that is not convolved with the window
function, with the integral constrain isolated to the first k-bin. The general quadratic
estimator is unbiased for all choices of symmetric and invertible pixel weighting matrix
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H, since in expectation we have (dropping the "QE" index for brevity) (O. Philcox 2020)

⟨p̂α⟩= ∑
β

F−1
αβ

(E[q̂β ]− q̄β ) = ∑
β

F−1
αβ

Å
1
2

Tr[H−1C,β H−1C]− q̄β

ã
, (3.25)

= ∑
β

F−1
αβ

Ç
1
2

Tr[H−1C,β H−1N]+
1
2 ∑

γ

pγTr[H−1C,β H−1C,γ ]− q̄β

å
, (3.26)

= ∑
β

F−1
αβ ∑

γ

pγFγβ , (3.27)

= ∑
β

∑
γ

F−1
αβ

Fγβ pγ , (3.28)

= ∑
γ

δ
K
αγ pγ , (3.29)

⟨p̂α⟩= pα . (3.30)

so the expectation value is independent on the choice of the weight matrix H. The co-
variance matrix of d is given by (O. Philcox 2020)

Cαβ = C(rα ,rβ ) = ⟨[ng −αnr](r)[ng −αnr](r′)⟩, (3.31)

= ⟨ng(r)ng(r′)⟩−α⟨ng(r)nr(r′)⟩−α⟨nr(r)ng(r′)⟩+ (3.32)

α
2⟨nr(r)nr(r′)⟩,
= ⟨ng(r)ng(r′)⟩−2α⟨nr(r)ng(r′)⟩+α

2⟨nr(r)nr(r′)⟩. (3.33)

Assuming Poissonian statistic (Yamamoto, Nakamichi, et al. 2006)

⟨ng(r)ng(r′)⟩= n(r)n(r′)[1+ξ (r,r′)]+n(r)δ (r− r′), (3.34)

⟨nr(r)nr(r′)⟩= α
−2n(r)n(r′)+α

−1n(r)δD(r− r′), (3.35)

⟨nr(r)ng(r′)⟩= α
−1n(r)n(r′), (3.36)

with n(r) = α⟨nr(r)⟩= ⟨ng(r)⟩, we obtain

C(rα ,rβ ) = n(r)n(r′)[1+ξ (r,r′)]+n(r)δ (r− r′)

−2α[α−1n(r)n(r′)]+α
2[α−2n(r)n(r′)+α

−1n(r)δD(r− r′)], (3.37)

and finally

C(rα ,rβ ) = n(r)n(r′)ξ (r,r′)+(1+α)n(r)δD(r− r′) = S(r,r′)+N(r,r′), (3.38)

where we assume that the galaxy density field can be written as ng(r) = n(r)[1+δ (r)]
with δ (r) the overdensity w.r.t. the mean density, which has the correlation function
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ξ (r,r′) = ⟨δ (r)δ (r′)⟩, ignoring the effect of pixellization since already considered
in the estimator (3.23). Considering a signal-uncorrelated noise, also for the "new"
Quadratic code the covariance is given by the sum of the two contribution. Writing the
correlation function in Fourier-space expanding in multipoles via the legendre polyno-
mial P(k, k̂ · r̂′) = ∑Pl(k)Ll(r̂′) it gives (denoting

∫
k = (2π)−3 ∫ dk):

C
(
r,r′

)
= n(r)n

(
r′
)∫

k
eik·(r−r′)

∑
ℓ

Pℓ(k)Lℓ

(
k̂ · r̂′

)
+(1+α)n(r)δD

(
r− r′

)
, (3.39)

always divided in the signal+noise contribution. Assuming Pl(k) = ∑a Θa(k)Pa
l for

some k-bins with bin weight Θa(k) = 1 if k is inside |k|-bin a and zero else, is straight-
forward to find the derivative of the covariance w.r.t. a specific band-power

C,α

(
r,r′

)
= n(r)n

(
r′
)∫

k
eik·(r−r′)

Θa(k)Lℓ

(
k̂ · r̂′

)
, (3.40)

where α refers to a [a, l] pair. These formulae allow the computation of the p vector,
depending on which choice of H one assume. In the next section we will present two
possible choices for the weight matrix H.

3.2.1 Maximum Likelihood estimator

Assuming Gaussian distributed data with ⟨d⟩ = 0, the (gaussian) log-likelihood can be
written as (Elsner and Wandelt 2012)

L [d](p) =−2logL[d](p) = dT C−1(p)d+TrlogC(p)+ const. . (3.41)

Supposing to have a fiducial Power Spectrum, we expand equation(3.41) around the
fiducial band Power Spectrum vector around a fiducial spectrum pfid

L
Ä

pfid +δp
ä
≈ L

Ä
pfid
ä
+δpT

∇pL +
1
2

δpT (
∇p∇p′L

)
δp′, (3.42)

where δp = p−pfid. Assuming pfid is sufficiently close to the true spectrum (such that
Cfid ≈CD ), δp can be estimated by minimizing (3.42) (Young 2019)

∇pL (pfid +δp) = 0, (3.43)

and it gives (O. Philcox 2020):

δp =−[∇p∇p′L ]−1
∇p′L , (3.44)
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so inserting it in the Gaussian likelihood we obtain the the maximum-likelihood estima-
tor for a band-power pα ;

p̂α − p f id
α =−

ñ
∂ 2L

∂ pα∂ pβ

ô−1Å
∂L

∂ pα

ã
, (3.45)

p̂ML
α = pfid

α +
1
2 ∑

β

ï
1
2

Tr[C−1
fid C,αC−1

fid C,β ]

ò−1
(dT C−1C,β C−1

fid d−Tr[C−1
fid C,β ]),

(3.46)

p̂ML
α = pfid

α +∑
β

F−1
αβ

(
q̂β − q̄β

)
. (3.47)

This is just a special case of the general quadratic estimator, with H equal to the Covari-
ance matrix in the fiducial cosmology Cfid . If Cfid is equal to the true data covariance
C, i.e. pfid = p and the underlying density field is Gaussian, the ML solution is optimal
in the sense that it saturates the Cramér-Rao relation. In this case, the covariance of p̂α

is simply the inverse Fisher matrix F−1
αβ

and this feature is called optimality.
Under these ipothesis we show that the ML is an optimal estimator, beginning

fom the definition of the Cramèr-Rao theorem, that states that if an estimator p̂α is
optimal it must satisfy (Max Tegmark, Taylor, and Heavens 1997)

cov
(

p̂α , p̂β

)∣∣
CR bound =

Æ
1
2

∂ 2L [d](p)
∂ pα∂ pβ

∏−1

≡ I −1
αβ

, (3.48)

where the right-hand-side is the inverse Fisher information for negative log-likelihood
L [d](p) =−2 log L[d](p) depending on parameters p and data d. Assuming the Gaus-
sian likelihood of (3.41), evaluated at the true covariance C, the Fisher information is
straightforwardly derived;

Iαβ =

≠
1
2

Tr
î
C−1C,αC−1C,β C−1 (2ddT −C

)ó∑
, (3.49)

Iαβ =
1
2

Tr
î
C−1C,αC−1C,β C−1 (2⟨ddT ⟩−C

)ó
, (3.50)

Iαβ =
1
2

Tr
î
C−1C,αC−1C,β

ó
= C ≡ Fαβ . (3.51)

The ML estimator of equation(3.45) saturates its Cramér-Rao bound. Another very
important observation that can be made is that cov

(
p̂α , p̂β

)
= F−1

αβ
implies also that the

ML estimator is lossless. This imply that all the cosmological information contained
in the simulation and thus in the data-set, is completely transferred in the compressed
q vector and the estimator of equation(3.45) retain all the information contained in this
vector, transferring it to the band-powers estimates and so giving the minimal error
bars possibles in the subsequently parameters inference (Max Tegmark, Andrew J. S.
Hamilton, et al. 1998).
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3.2.2 FKP like matrix
To calculate the Power spectrum in the FKP prescription the galaxies are weighted ac-
cording to the weighting matrix (Feldman, Kaiser, and John A. Peacock 1994) ω(r) =
1/(1+ n̄(r)P(k)), with P(k) a constant power spectrum and n̄(r) some mean density
field varying in space. This weight in the extreme cases:

• when r ≫ 1, n̄(r) is large so the number of galaxies per cell volume is huge, so
is convenient to give equal weight per volume, or equivalently, to weight galaxy
in proportion to 1/n̄(r)) since the error is dominated by the finite number of the
volume cells;

• when r ≪ 1, n̄(r) decreases rapidly, thus the number of galaxies per volume is
low and so the dominant error is the Poissonian one and so is optimal to weight
the galaxies equally.

In our approach we use the slightly modified FKP weighting matrix (O. Philcox 2020)

HFKP
(
r,r′

)
= n(r)n

(
r′
)

PFKPδD
(
r− r′

)
+n(r)δD

(
r− r′

)
, (3.52)

and inverting we find the H matrix for the FKP like approach:

H−1
FKP

(
r,r′

)
=

1
n(r) [1+n(r)PFKP]

δD
(
r− r′

)
. (3.53)

Note that this is not identical to the conventional FKP scheme. Our formalism applies
the weight to the grid directly rather than the particles, and normalizes by n(r) rather
than some survey-averaged quantity; this is necessary to ensure that we recover the
unwindowed power spectrum estimates (O. Philcox 2020).

3.3 The algorithm
We now present how the algorithm works in practice, showing the difference of the
procedure using the Maximum Likelihood H−1 = C−1

FID, and using the FKP like weight
matrix H−1 = H−1

FKP.

3.3.1 Matrices inversion
The most intensive step of the algorithm is to compute Fisher and Bias terms of (3.24).
The non trivial part is to calculate C−1

fid considering that this would imply an inversion
of a N3

pix, so a full form and storage of it is infeasible. Instead of calculating their full
form, rather we calculate their action on a generic pixelized field x(r).

C[x](r)≡
∫

dr′C
(
r,r′

)
x
(
r′
)
, (3.54)
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and using the definition given in equation(3.39) for spectroscopic surveys

C[x](r) = n(r)
∫

k
eik·r

∫
dr′e−ik·r′n

(
r′
)

x
(
r′
)
∑
ℓ

Pℓ(k)Lℓ

(
k̂ · r̂′

)
+(1+α)n(r)x(r),

(3.55)
with Pl(k) is the fiducial Power Spectrum multipoles generated from some fiducial simu-
lations with known cosmology. Expanding Lℓ via spherical harmonic as in (Yamamoto,
Nakamichi, et al. 2006) we obtain

C[x](r) = n(r)∑
ℓ

4π

2ℓ+1

ℓ

∑
m=−ℓ

∫
k

Pℓ(k)eik·rY ∗
ℓm(k̂)

∫
dr′Yℓm

(
r′
)

n
(
r′
)

x
(
r′
)

e−ik·r′

+(1+α)n(r)x(r),
(3.56)

= n(r)∑
ℓ

4π

2ℓ+1

ℓ

∑
m=−ℓ

F−1 [Pℓ(k)Y ∗
ℓm(k̂)F [Yℓmnx] (k)

]
(r)+(1+α)n(r)x(r).

(3.57)

Practically using this formalism the action of the fiducial covariance on a generic den-
sity field is simply a summation of a limited number of Fast Fourier transformation
(hereafter FFT), specifically 1

2(1+ ℓmax)(2+ ℓmax) real-to-Fourier FFT’s using the real
form of the spherical harmonics as in (Hand et al. 2017) that assumes that the fiducial
spectra are non zero for all even ℓ up to ℓmax. Giving the definition in equation(3.56) is
straightforward to find the expression of its derivative

C,α [x](r) = n(r)
4π

2ℓ+1

ℓ

∑
m=−ℓ

F−1 [
Θa(k)Y ∗

ℓm(k̂)F [Yℓmnx] (k)
]
(r). (3.58)

As before it is simply a summation of (2ℓ+1) FFT’s. Note that equation(3.58) is equal
both for the Maximum Likelihood method and for the FKP like (it appears in the Fisher
and Bias terms for both), this is why we dropped the fid subscription. The next step is
to invert the matrix and find C−1

fid and H−1
FKP and now we have to distinguish between the

two methods.

3.3.1.1 Maximum Likelihood estimator

Assuming that the data distribution and the underlying density field are Gaussian the
likelihood distribution of the data is

L [d](p) =−2logL[d](p) = dT C−1
fid (p)d+TrlogCfid(p)+ const. . (3.59)

In the standard practice if we want to adopt the Maximum Likelihood estimator we
need a set of simulations ran with known cosmology, in order to find the fiducial covari-
ance matrix. In the Maximum Likelihood estimator doesn’t appear Cfid, but rather it’s
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inverse, so we calculate the action of the inverse of the covariance matrix on a generic
field C−1

fid d instead of its complete form. The algorithm uses a preconditioned conjugate-
gradient descent method (hereafter CGD) as in Oh, Spergel, and Hinshaw (1999). We
want to numerically solve a generic problem written as C−1

fid x = y where x is a generic
field, but we don’t know the full form of the matrix. So we multiplying this equation for
Cfid

CfidC−1
fid x = Cfidy, (3.60)

and then for some "preconditioner matrix" C̃:

C̃−1x = C̃−1Cfidy. (3.61)

y is found through repeating application of Cfid to data, possible via equation(3.39).
Convergence depends strongly on the choice of C̃ and require that it is easily inverted
and close to Cfid, such that C̃−1C−1

fid = 1+R with all the Eingevalues of R are less than
one. As preconditioner matrix the algorithm uses

C̃(r,r′) = HFKP(r,r′) = n(r)[1+n(r)PFKP]δD(r− r′), (3.62)

with PFKP = 104h−3Mpc3. This is a computationally expensive step since it requires
1
2Nit(1+ ℓmax)(2+ ℓmax) steps.

3.3.1.2 FKP like matrix

This case is much simpler, since as we saw the FKP like matrix is a diagonal matrix
(3.52), so it is straightforwardly inverted

H−1
FKP[x](r) =

x(r)
n(r)[1+n(r)PFKP]

(3.63)

requiring a simple division in configuration space. n(r) is always positive defined,
avoiding the possibility of some infinite value.

3.3.2 Calculating Bias and Fisher terms
In this subsection we show how to compute in practice the Fisher and Bias term. This
step is common to both method, with the only difference that is in the H matrix choice.
We create an uniformly distributed particle sample painting it in a box that has the
same box volume and grid division of our galaxy simulation catalog, utilizing the same
Mass Assigment Scheme. After having chosen a value for the background density in
this "toy" box, we compute the difference between the painted sample and the uniform
background in each cell, obtaining the m vector, that is a list which elements contains
the difference values of each cell as we do for the actual galaxy and random catalogs.



3.3. THE ALGORITHM 69

This is our "toy-simulation" on which we are going to calculate the Bias and fisher
terms as is showed below. The fundamental aspect is that the Fisher and Bias terms are
calculated on this "toy" simulation, because this allow the Fisher and Noise matrices to
be written as expectation values of a pairs of vectors, the only requirement is that the
inverse covariance of this "toy" catalog has to be precisely known and is for this reason
that a uniform catalog is used. These quantities contains the H−1 and C,α matrices that
contain the "window function effect", and so if they are subtracted, a unbiased estimator
is recovered as already showed. In practice the Fisher and Bias terms are calculating
creating each time a new data vector m and calculating the bias and fisher terms on each
Monte Carlo realization and then doing an average on all the realizations of this "toy
catalog", before being subtracted.

First we rewrite the terms in a separable form expliciting the random fields m:

2FQE
αβ

= ⟨mT H−1C,αH−1C,β A−1m⟩ 2q̄α = ⟨mT H−1C,αH−1NA−1m⟩ (3.64)

This is true for any invertible matrix A such that A = ⟨mmT ⟩ and in fact this is the
condition that the uniformly distributed particle sample has to fullfill.

• In each simulation (denoted as m) the terms are so computed:

– Compute:

* H−1m applied to the map via preconditioned CGD using (3.56) for the
Maximum Likelihood estimator or simply using the analytic form for
the FKP like matrix,

* compute NA−1m applied to the map.

– For each band-power α:

* Compute yα = C,α

[
H−1m

]
via (3.58);

* Accumulate the bias contribution 1
2

(
H−1m

)T yαNA−1m;

* Compute yβ = C,β A−1m

* Accumulate the Fisher matrix contribution 1
2yT

αH−1 [yβ

]
from each choice

of β .

3.3.3 Accumulating the estimator
As last step we compute the band-powers estimations equation(3.18) or equation(3.45),
depending on choice of the weighting matrix, utilizing the Fisher and Bias terms ob-
tained in the last step. This part is only matrices operations.



70 CHAPTER 3. QUADRATIC ESTIMATOR



Chapter 4

Results

4.1 The catalog
In this chapter we are going to presents the results of our analysis. First we present
how the catalogs are computed, then we discuss how we implemented our analysis with
the quadratic code and at the end the obtained spectra. The catalogs are created in the
following way:

• CAMB (Lewis and Bridle 2002) is used to produce the initial power spectrum,
considering as cosmological parameters the ones from the Planck 2018 collabo-
ration (N. Aghanim et al. 2020) as showed in table(4.1)

Ωm Ωb ΩΛ h ns
0.31724 0.05081 0.68560 0.67 0.97

Table 4.1: Cosmological parameters used to compute the initial power spectrum, from
Planck 2018 collaboration (N. Aghanim et al. 2020)

• The Dark Matter simulations are ran starting from the computed initial power
spectrum using the MUSIC code (Hahn and Abel 2011). The method uses an
adaptive convolution of Gaussian white noise with a real space transfer func-
tion kernel together with an adaptive multi-grid Poisson solver to generate dis-
placements and velocities following second order Lagrangian perturbation theory
(2LPT). The new algorithm achieves relative errors of order 10−4 for displace-
ments and velocities in the refinement region and thus improves in terms of errors
by about two orders of magnitude over previous approaches. In addition, errors
are localized at coarse-fine boundaries and do not suffer from Fourier-space in-
duced interference ringing. This code uses a second-order Lagrangian perturba-
tion theory (2LPT) for large scale dynamics, while small scales are solved with a

71
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particle mesh (PM) algorithm. The 2LPT basically write the particle positions as
x= q+Ψ with x the initial position, q the final position and Ψ a displacement vec-
tor. The displacement vector Ψ is expanded at second order Ψ = Ψ(1)+Ψ(2)+ ...,
so the equation of motions can be written as (Scoccimarro 1998, Buchert 1994)

∇ ·Ψ(1) =−D1δL(q) ∇ ·Ψ(2) =
1
2

D2 ∑
1̸= j

(Ψ
(1)
i,i Ψ

(1)
j, j −Ψ

(1)
i, j Ψ

(1)
j,i ) (4.1)

where Ψ
(1)
i, j = ∂Ψi/∂Ψ j and D2 ≈ −3/7D2

1Ω
−1/143
m (Buchert 1994) the second

order grow factor for a flat universe with non-zero cosmological constant. So the
particles position is obtained in each snapshot as x = q−D1Ψ(1)+D2Ψ(2).

• The galactic densities are built using the equation(2.62), then each cells is mul-
tiplied by it’s grid volume to get the number counts, since we are multiplying a
density for a volume. The shot noise is added by sampling each cell, so in this
way each cell i ends up with ni galaxies. Finally in each cell are randomly as-
signed Ni galaxies coordinates. For the random catalogue instead is computed the
average background density for the galaxy distribution, then it is integrated with
redshift to compute the density distribution. Basically we got the average number
density and then we compute the cumulative number counts, so we go from ng(z)
to Ng(z) and then we sample the function P(z) = intz

0NG(z) to create the random
catalog. We keep adding random galaxies till the total number of random particles
is equal to 5 times the total number of galaxies.

• LIGER is applied to the simulations in order to create catalogs with the particle
positions shifted as described in chapter(2). As described it takes in input the
Newtonian Dark matter simulations and gives as output the simulation with the
particles shifted. As showed in section(3.3) it computes the potential in each
snapshot solving the Poisson equation in Fourier space

− k2
φ(k) = 4πGρ̄δ , (4.2)

where the overdensities are computed on a cartesian grid using the cloud in cell
particle interpolation, φ is the computed potential and ρ̄ the mean density. As
presented in section(3.3) it doesn’t applies all the shifts at the same time, but
rather it first identify the snapshots within which a given galaxy would cross the
backward light cone of the observer in the absence of metric perurbations and then
calculates and apply the redshift-space displacements considering a few outputs
surrounding this time. Finally, it computes the intersection of the world line of
the galaxy with the straight light cone of the observer in redshift space using
a cubic interpolation. Since as showed in section(3.3) it apply the shift to the
dark matter particle and then recover the galaxy pattern, we need a bias relation.
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As said in section(3.3) LIGER is able to account also for the observer terms in
equation(2.38), equation(2.39) and equation(2.40), but in our analysis the catalogs
are computed avoiding these terms. We reserve an analysis with the observer term
for future works. To pass from the matter density to the galaxy density we use the
bias relation from (Pozzetti et al. 2016)

b(z) = 0.68(z−1)+1.46. (4.3)

The shift equations presented in section(2.2) allows to select with effect we want
to consider and apply the shifts only consider them. It allows to create two cat-
alogs (the catalogs are already avaiable from the previous work of Elkhashab,
Porciani, and Bertacca (2021))

– vRSD: that contains the particle shifted only due to the peculiar velocities of
the galaxies;

– GR: that contains the particle shifted accounting also for the general rela-
tivistic effects presented.

At the end our analysis will be performed on these two types of catalogs, that
mean that we will have two power spectra: one that has the peculiar velocity ef-
fect and one that contains also the general relativistic effects, so even though we
expect they will be enough similar, we want to understand if some differences are
detectable. For both type we run 50 realizations for a full sky survey as showed,
that means that our simulations are restricted in a full sphere layer between spe-
cific redshift. In figure(4.1) we show the projected density field for a 15 h Mpc−1

slice of the full sky catalog at z = (1,1.25). Red spots represents over-density
regions in the sky, on the contrary blue spots under-dense regions. We run our
analysis for two very distant redshift bins, in order to detect some different be-
haviour at variuos distances. The chosen redshift bin are a sphere layer between
z = (0.9,1.1) and z = (1.5,1.8). In figure(4.2) are showed instead some layers
with width 15 h Mpc at z = (1,1.25) of the GR and vRSD simulations and the
Real Space counterpart, that is the catalog without the shifts. Already without
any analysis is possible to appreciate by eye what discussed in the section(1.2).
The galaxy pattern in redshift space (vRSD) presents the described "squashed"
configuration, with respect to the real space, due to the apparent shift due to the
peculiar motion of the galaxies. The GR catalog instead is very similar to the
vRSD one as expected, since it contains both the peculiar velocities and general
relativistic effects, that are presents but their effect on the galaxy pattern is not so
high to be appreciated by eye. This is the first (very qualitative) confirmation that
the expected power spectra will be very similar with a very similar behaviour and
that the differences between the two will be very small.
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Figure 4.1: The projected density field of a full-sky realization mock for z = (1,1.25).
(Relativistic effects in next-generation surveys, Elkhashab Yousry Master thesis, 2019)

4.2 Method

4.2.1 Simulation volume

As said we use the vRSD and GR catalogs from Elkhashab, Porciani, and Bertacca
(2021) and in this section we see the chosen volume inside which run them. As dis-
cussed in section(2.1) and section(2.2) the peculiar velocities and the general relativistic
effects are expected to modify the behaviour of the power spectrum at large scales (see
figure(2.9) and figure(2.10)) so this implies that our analysis is focused on the low k
modes of the power spectrum. It is thus crucial to have the biggest simulation volume
possible, because the higher the volume the lower the modes at which we can push our
analysis, since the lower k modes observable is set by the fundamental frequency (see
section(4.2.3) for a discussion on the fundamental frequency in our analysis). Unfortu-
nately for how the Quadratic estimator algorithm is constructed our analysis cannot be
applied to too low modes. The n(r) quantity that appears in the FKP-like matrix set a
limit to our analysis. It is computed first interpolating the number density of the random
catalog in function of the redshift (or the comoving distance), that is, first the volume
is divided into small redshift bin and second the number density is obtained dividing
the number of random galaxies in that bin by the volume of the bin. The result is an
interpolating function showed in figure(4.3) for the z = (0.9,1.1) case, where on the x
axes there is the comoving distance and on the y axes there is the value of n(r). We see
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Figure 4.2: Three slices with width 15 h Mpc−1 respective of a realization mock in Real
Space, of the vSRD catalog and GR catalog for z = (1,1.25). (Relativistic effects in
next-generation surveys, Elkhashab Yousry Master thesis, 2019)
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that it is a step function since it is restricted to the selected redshift bin and that random
catalog number density decreases with the distance. The interpolating function takes in
input a redshift value and gives as output the value of the random number density (so it
gives non zero value only for redshift between the selected layer). It is applied to a grid
that has in each cell the value of the redshift at that distance cell, in order to obtain a
grid that in each cell has the value of the random density field at that specific redshift.
This means that volume cannot be chosen in an arbitrary way, but it has to be chosen
sufficiently small so that when it is divided in to the grid, each redshift in each cell cor-
respond to a "physical value". This means that if for example we chose a volume bigger
than the Hubble volume, the algorithm trying to assign to each cell a redshift value, it
will give an error for the cells that are in the region higher then the Hubble volume. For
this reason we are restricted in the choice of the simulation volume, and thus we choose
a box volume with Lside = 10 h−1Gpc that in any case is still suitable for our purpose,
since it is enough to study sufficiently large scales. Note that the n(r) that appears in the
covariance matrix and its derivative (see equations (3.56) and (3.40)) is different from
that just explained. It is computed directly from the random catalog grid, in which it
is multiplied for the alpha factor (to normalize the grid to the galaxy catalog) and then
each value is divided for the cell volume, in order to find the density.

Another limit set by the algorithm itself is that due to the presence of the Θa(k)
weight in equation(3.40), that is 1 if k is inside |k|-bin a and zero else, the power
spectrum can be measured only up to the Nyquist frequency kNy, that is kNy = π/Lcell
and set the highest frequency that can be used to properly sample the galaxy distribution
(Falck et al. 2017), since for higher modes the weight is zero. This is not a problem for
us since small scales are out of our interest.

4.2.2 Monte Carlo simulations
As showed in section(3.3) the Fisher and bias terms are calculated averaging over a
several running Monte Carlo simulations and then subtracting it from the estimator to
unbias it. O. Philcox (2020) states that computing these traces via Monte Carlo, it
increases the estimator variance by a factor 

1+
1

Nmc
(4.4)

with Nmc the number of Monte Carlo simulations. The number of simulations suggested
by O. Philcox (2020) to properly account for the window function effect is between 50
and 100. To choose how many Monte Carlo simulations to use we test how the power
spectrum of one realization changes with the number of simulations used. In figure(4.4
is showed the power spectrum of one realizations for the z = (1.5,1.8) redshift bin
after various number of Monte Carlo simulation. As expected the more the number



4.2. METHOD 77

Figure 4.3: Random density field of one realization in function of the comoving distance
for a GR realization at z = (1.5,1.8). This is the n(r) term that appears in equations
(3.56) and (3.40).
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of simulations the more accurate the power spectrum is, converging to the final power
spectrum from which is totally subtracted the window function and bias effects. So for
each realizations we run 100 Monte Carlo simulations, increasing the estimator variance
of …

1+
1

100
≈ 0.5% (4.5)

4.2.3 Dependencies
To recover the actual power spectrum for the catalogs, we find that there are two specific
settings to set in the algorithm, that without them it gives an un-physical or under-
estimated power spectrum. These two settings are:

• kmin: We are interested in the largest scales possible of the power spectrum, so
we tried to set the minimum k mode to kmin = 0, in order to have the first bin
at k = 0.0025 h Mpc−1, since our bin width is set to ∆k = 0.005 h Mpc−1. This
however for some realizations leads to a power spectrum with a negative first bin.
This surely is wrong since the power spectrum can’t be negative by definition.
We overlap this issue setting as kmin a mode barely less than the fundamental
frequency, that is

k f und =
2π

Lbox
= 0.000628 h Mpc−1, (4.6)

so our kmin is set to
kmin = 0.0005 h Mpc−1, (4.7)

in order to be sure that we include the fundamental frequency in our analysis.
Applying this correction the obtained power spectrum is positive at all scales.

• Pixelization effects: In the cosmological simulations we have to paint the galaxy
mass distribution into a discrete grid, assigning to each cell a certain value of the
density field, meaning that it is spread in a discrete way, while in reality (being a
field) it is smooth. As showed in Cui et al. (2008) the discretized number density
contrast can be expressed as

δ
d =

1
N

= ∑
i

nieiri·k −δ
K
K,0, (4.8)

and so the power spectrum is

P(k) = ⟨|δ (k)|2|⟩= ⟨|δ d(k)|2⟩− 1
N

(4.9)
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Figure 4.4: The convergence of the power spectrum of a GR realization at z = (1.5,1.8)
after various Monte Carlo run. Each line is a power spectrum computed after the number
of Monte Carlo simulations showed in the legend. For comparison with plot the kaiser
prediction (blue line)(1.7).
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where 1/N is the shot-noise term related to the discreteness effect. Since the
number of object in a N-body simulations is very high, this method is unfeasible
and so we write the density contrast in Fourier space

δ
f (k) =

1
N ∑

g
n f (rg)eirg·k −δ

K
K,0, (4.10)

where the superscript f represents the FFT and n f (rg) is the convolved density
value on th g− th grid point at the position rg = gH (where g is an integer vector;
H is the grid spacing)

n f (rg) =
∫

n(r)W (r− rg)dr

where W (r) is the Mass Assigment Scheme (MAS). After several steps (Jing
2005) we obtain the final power spectrum estimator

⟨|δ f (k)|2⟩= ∑
n
|W (k+2kNn)|2P(k+2kNn)+

1
N ∑

n
|W (k+2kNn)|2, (4.11)

(note that this form is very similar too equation(4.9). Here W (k) is the Fourier
transform of W (r), kN = π/H is the Nyquist wavenumber and the summation
is over all 3D integers vectors n. The MAS introduces a W 2(k) term both in
the true power spectrum that now is convolved with it and in the shot-noise part.
Obviously the convolved power spectrum is not the true power spectrum, that is
the one that we are interested to measure, so we have to deconvolve the MAS
effect from it. Knowing how is the shape of W (k) is possible to recover the true
power spectrum, by simply dividing the convolved one by the window function
W (k) ( in Fourier space, since in Real space it would be a de-convolution). In
figure(4.5) are showed the most used MAS schemes that are (Jeong 2010): the
Nearest Grid Point (NGP) in solid line, Cloud In Cell (CIC) as dotted line and
Triangular Shaped Cloud (TSC) dashed line. In figure(4.5) is shown how these
three MAS schemes assign the matter field to the grid point. The NGP assign all
the value of the matter field only to a grid cell, so it is a step function centered
in the cell centre, the CIC is a first order distribution that assign the field using a
pyramidal function, and the TSC is a second order distribution (the most accurate)
that has a "bell" shape. The difference is that in the first case the value of the
smooth field is totally assigned to that cell, while in the other cases most of its
value is assigned to the selected cell, but it is spread also in the surrounding cells,
with the value in the other cells that depends on the chosen scheme. TSC is
the most accurate since assign the value to each cell with a smooth second order
distribution, so we use it. The impact of the window function is modeled as

∑
n

W 2(k+2kNn) =
3

∏
i=1

ï
1− sin2

Å
πk
2kN

ã
+

2
15

sin4
Å

πk
2kN

ãò
, (4.12)
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Figure 4.5: A scheme that shows the three most used Mass Assigment Scheme: NGP in
solid line, CIC in dotted line and TSC in dashed line. (Cui et al. 2008)
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and this is the correction that the algorithm applies to the density grid to recover
the actual power spectrum.

In figure(4.6) are shown how these settings change the power spectrum of the same re-
alization. The green power spectrum is the one with only the pixelization correction,
the blue contains only the correction due the pixelization effect and the orange one is
the power spectrum after having applied both corrections. We see that if we don’t ac-
count for the kmin correction (but accounting for the pixelization effect), we obtain a
negative power spectrum at first bin, that is un-physical, while if we don’t account for
the pizelization effect (accounting for the kmin correction) we recover an underestimated
power spectrum. Thus we run our realizations accounting for both corrections recover-
ing the right power spectrum without negative value and with the actual power, showed
as orange line.

4.2.4 FKP Comparison

As shown in section(3.2) for computing the Quadratic estimator we have to select which
choice of the matrix H we want to adopt, in order to compute the Fisher and Bias term

FQE
αβ

=
1
2

Tr[H−1C,αH−1C,β ], q̄α =
1
2

Tr[H−1C,αH−1N], (4.13)

and

q̂α =
1
2

Tr[(H−1C,αH−1)ddT ]. (4.14)

The choice is between the Maximum likelihood estimator with H equal to the covariance
of the used fiducial cosmology

H = Cfid, (4.15)

and the FKP-like estimator with

H = HFKP = n(r)n
(
r′
)

PFKPδD
(
r− r′

)
+n(r)δD

(
r− r′

)
. (4.16)

The ML approach requires significantly more computational expense than the FKP-like
estimate, mainly due to the necessity to invert the fiducial covariance Cfid, while the
inversion of the weight matrix in the latter case is immediate. For this reason we opt for
the FKP-like estimate, that makes our computation faster. The cons of this choice is that
the Maximum likelihood estimator produces minimum variance error bars on the power
spectrum, with a particular improvement on large scales, while the FKP-like is optimal
at smaller scales (although it still gives an un-windowed power spectrum at all scales).
We will investigate the impact of the variance in the next section.
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Figure 4.6: Comparison between the chenging of the power spectrum applying the kmin
setting and the pixelization correction. The power spectra are computed at z = (1.5,1.8)
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We test if the FKP-like estimator actually gives an unwindowed power spectrum
even with higher variance at large scales comparing our results with the power spec-
trum estimate using the normal FKP estimator. The latter measures the galaxy power
spectrum weighting the galaxy according to (J. A. Peacock 1998)

ω(r) =
1

1+ n̄(r)P(k)
, (4.17)

with the differences from our weight matrix already presented in section(3.2.2). We run
the analysis for the power spectra computed with our estimator and the normal FKP
estimator, for 15 realizations of the GR catalog at z = (1.5,1.8). The FKP realizations
are computed with NBODYKIT and clearly it gives a power spectrum convolved with
the window function. In figure(4.7) the blue dots are the power spectrum computed
with the quadratic estimator, the green line the one computed with NBODYKIT and
the orange line is the theory predicted by the kaiser formula (equation(1.7)) without
the window function. As expected the blue dots follow the un-windowed prediction by
kaiser (a part for the first bin that will be discussed in the next section) and they depart
from the power spectrum computed with the FKP estimator since it contains also the
effect of the window function.

4.3 Un-windowed power spectra
We apply the quadratic estimator to the catalogs presented in 4.1, for various redshift
bins. We calculate the monopole of the power spectrum and so as in equation(3.39) the
power spectrum is expanded via Legendre polynomials

P(k, k̂ · r̂′) = ∑Pl(k)Ll(r̂′), (4.18)

where the coefficients are defined as

Pl(k) = (2l +1)
∫ dσk

4π
Ll(r̂′)P(k), (4.19)

with the monopole that corresponds to l = 0. As showed in Raccanelli, Bertacca, Jeong,
et al. (2016) if the α(z) term is note set to zero, that is we are not adopting the flat-sky
approximation, the monopole of the power spectrum in Redshift Space is written as

Ps
0 =

Ç
1+

2
3

β +
1
5

β
2 +

α2

3k2χ2 β
2

å
P(k). (4.20)

Note that as saw in section(1.8) adopting the wide angle formalism will introduce a
dependence on the k modes that brings a phase shift between the Real and Redshift
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Figure 4.7: Comparison between the power spectrum estimates computed with the
Quadratic estimator (blue dots) and the power spectrum estimates computed with the
FKP prescription (green line), compared with the kaiser prediction (orange line) (1.7).
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Space.As said we run our analysis for 50 realizations of the vSRD catalog and 50 re-
alizations of the vRSD catalog for the z = (0.9,1.1) and z = (1.5,1.8) redshift bins.
In figure(4.8) and figure (4.9) are showed the obtained average of all the realizations
of the un-windowed power spectra in each bin. The green line is the kaiser prediction
(equation(1.7)) un-convolved with the window function, the blue and orange dots are
the average un-windowed monopole values obtained with the quadratic estimator pre-
sented in section(3.2) for the GR (blue dots) and vRSD (orange dots) catalogs presented
in section(4.1).

We analyze the results for the z = (1.5,1.8) redshift bin. The first thing that is
immediate to observe is that as anticipated in section(4.1) the power spectra of the GR
and vRSD catalogs are very similar, in fact they present the same behaviour, making
their detachment visible only for scales k < 0.015 h Mpc−1. The vRSD power spectrum
fits very well the predicted un-windowed theory from kaiser, meaning that the power
spectrum obtained with the quadratic estimator actually is not convolved with the win-
dow function. It is easy to see that the estimate in the first bin it has more power than
expected by the prediction prediction. We explain this discrepancy considering that as
suggested in O. Philcox (2020)) the first k bin is affected by the integral constraint. As
showed in Max Tegmark, Andrew J. S. Hamilton, et al. (1998) the integral constraint is
a direct consequence of the fact that in a survey we don’t know the selection function
n̄(r), in fact if this wouldn’t be true, the power spectrum estimation would be simply
the square of the ratio of the observed and expected number of galaxies in our sam-
ple. Since we don’t know n̄(r) a priori, we use the galaxies themselves to normalize
it, thus the density fluctuation automatically vanish at the size of the whole survey. In
equation(1.60) we see that with the presence of the noise bα there is also an additional
term W (0) relative to the integral constraint that should be subtracted for recover an
actual totally un-bias power spectrum. Unfortunately the quadratic estimator can un-
bias the power spectrum estimation from the window function and the noise effects,
but not from the integral constraint, that, as explained, affect only the first bin. We ex-
plain this over-power at very large scales on the first bin also considering this behaviour
as signal of doppler term and wide angle effects, as explained in the next paragraph.
As showed in section(2.1) the estimates for the GR catalog and so the power spectrum
that contains also the general relativistic effects has the same behaviour respect at small
scale, while at large scale the GR power spectrum is amplified. As expected we see
that the two spectra have different behaviour, so it is clearly shown the importance of
accounting for the general relativistic effects for a proper analysis, especially at scales
k < 0.0015 h Mpc−1, as anticipated in section(2.1).

In figure(4.8) is shown instead the z = (0.9,1.1) case both for the GR and vRSD
catalog. As before the first bin is affected by the integral constrain, so it has more power
than expected. Contrary to the previous case we see that in this redshift bin the estimated
monopole for the vRSD catalog agree with the theory only for scales k > 0.020 h Mpc−1
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while for higher scales there is a deviation that over estimate the power. The same
happen to the GR catalog, in fact both catalogs have the same behaviour at all scales.
We interpret this result as signature of the presence of the "Doppler term" explained in
section(1.5). In this section we saw that if we don’t neglect the v/r term, it can affect the
power spectrum at large scales. The green line that is the kaiser prediction uses the flat-
sky approximation, where this term is neglected, while LIGER in computing the shifts
account also for the modification that derives from accounting also for the Doppler term.
In fact we see that as showed in section(1.5) the power spectrum estimates accounting
for the doppler term present an over-power at large scale, with respect to the Kaiser
prediction, that is exactly what we found. Another reason in favour of this explanation is
that the redshift bin in which we observer this discrepancy is the lower one z=(0.9,1.1),
while for the other it appears only at the first bin. In fact also this aspect is in a certain
way expected, since we saw that the lower the redshift the higher the importance of the
doppler term, since it scales with distance. In figure(4.10) are shown the power spectra
from Elkhashab, Porciani, and Bertacca (2021), where a normal FKP weight formalism
is used. The redshift bin of interest are the first and the last, as in our computation. The
dotted blue line is the predicted kaiser power spectrum (as in our plots). We see that
in this case the effect of the window function at large scales is prominent in both bins,
while in our computation since we are free from these effects, we recover the expected
behaviour at large scales, where we have much more power. This shows how crucial is
to be able to avoid the window function effect to study the redshift space distortion and
general relativistic effects at large scales.

As said the vRSD catalog is computed accounting for the Redshift Space Dis-
tortions due to the peculiar velocities of the galaxies, while the GR one is computed
accounting for the Redshift Space Distortions plus the general relativistic effects, so it
is necessary to understand if these effects are measurable, that is, if the two power spec-
tra are "different enough". This means that if we want to understand how significant
are the general relativistic effects we call PGR their partial contribution to the galaxy
power spectrum and the respective counterpart (without general relativistic effects) as
PNOgr = P−Pgr. We then fit the power spectra extracted from our mock catalogues
with the model M = εPgr +PNOgr = P+(ε −1)Pgr with ε that can be either 0 or 1. We
want to understand with how much statistical significance the data favour ε = 0 instead
of ε = 1, that is, how much the data favour the presence or not of the general relativistic
effects to properly fit the model. In order to do this we use a frequentist approach called
"Simple hypotheses". To the ε = 0 hypothesis we assign L1, that is the likelihood of
the data under this hypothesis and instead L2 to the ε = 1 hypothesis. We compute the
likelihood-ratio λ = L1/L2 that will be small if the data favour the ε = 1 hypothesis,
while it will be high if the data favour the ε = 0 one. Assuming Gaussian error each
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Figure 4.8: Top:Power spectrum estimates with the Quadratic estimator for the z =
(0.9,1.1) redshift bin for 50 realizations of the GR catalog (blue dots) and vRSD catalog
(orange dots), compared with the un-windowed kaiser prediction (green line). Bottom:
Likelihood test bewteen the GR and vRSD catalogs.
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Figure 4.9: Top:Power spectrum estimates with the Quadratic estimator for the z =
(1.5,1.8) redshift bin for 50 realizations of the GR catalog (blue dots) and vRSD catalog
(orange dots), compared with the un-windowed kaiser prediction (green line). Bottom:
Likelihood test bewteen the GR and vRSD catalogs.
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likelihood can be written as

L(Mi|d) =
1

(2π)n/2detCi
exp
ï
−1

2
(d−µi)

T ·C−1
i · (d−µi)

ò
, (4.21)

where d is a n-dimensional vector that contains the monopole moments of the power
spectrum extracted from one realization of the GR mock, µi and Ci are the expected
data and covariance matrix under the hypothesis that the model Mi is true. We use M2
as the model referred to the hypothesis used to compute the GR catalog and so µ2 and
C2 are the average power spectrum and covariance matrix of the GR realizations, while
M1 the one referred to the hypothesis used to compute the vRSD catalog and and so µ1
and C1 are the average power spectrum and covariance matrix of the vRSD realizations.
The likelihood-ratio test is (Elkhashab, Porciani, and Bertacca 2021)

λ = 2ln
L(M1|d)
L(M2|d)

= χ
2
2 −χ

2
1 + ln detC2 − ln detC1, (4.22)

with
χ

2
i = (d−µi)

T ·C−1
i · (d−µi) for i=GR, vRSD. (4.23)

If this quantity is positive the data favour M1 while if it is negative M2, that is, if it is
positive the data favour the model without the relativistic effects, while if it is negative
the data favour the model without them. The likelihood-ratio test distribution are shown
in the low panels of figure(4.8) and figure(4.9) with on the x-axes the λ value while in
the y-axes the number of realizations with that value. We see that in the z = (0.9,1.1)
case both the distribution generated under the hypothesis that M1 is true and the one
generated considering M2 true have basically the same λ value distribution, so it is
impossible to distinguish which hypothesis is true and thus in this case the general
relativistic effects can’t be distinguished. Different is the z = (1.5,1.8) case where the
two distributions cover quite different ranges of λ values, in fact the distribution of the
M1 hypothesis has a peak around λ = +5 while the one that consider M2 true has a
peak around λ =−5, so in this case we consider that the general relativistic effects are
distinguishable from the Redshift Space Distortions connected to the peculiar velocities
of the galaxies, so they are detectable. Since the higher the separation between the
histogram the higher the general relativistic effects are detectable, we parametrize the
discrepancy between the histogram in terms of Signal over Noise ratio

S/N =
(m1 −m2)

s1
, (4.24)

where m1 and m2 are the mean of the distribution GR and vRSD distributions, while
s1 is the standard deviation of the GR distribution. We compute the S/N ratio for both
bins, obtaining
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• S/N = 2.05, for the z = (1.5,1.8) redshift bin;

• S/N = 0.57, for the z = (0.9,1.1) redshift bin.

These results are in line with what observed, in fact in the lower redshift bin the S/N is
too high, the distributions are not separated and this means that the general relativistic
effects are not detectable, while in the higher redshift bin the separation of the distri-
butions mean a high S/N ratio and so in this case the effects are separable from the
peculiar velocities of the galaxies.

As last thing we compute an analysis on the errors obtained with the quadratic
estimator. As described in section(1) after inflation the distribution of matter was al-
most Gaussian so we expect that the error at large scale should reproduce the error of
a Gaussian matter distribution. We compute the Gaussian error as in (Max Tegmark,
Andrew J. S. Hamilton, et al. 1998)

σ
2
G ≃ P0(k)

 
2(2π)3

Veff(k)Vk
, (4.25)

where

Veff(k) =
∫

S

ñ
n̄(x)P2

0 (k)
1+ n̄(x)P2

0 (k)

ô2

d3x, (4.26)

is the effective volume probed and Vk si the volume of the k-shell centered around k
with width ∆k and if k ≫ ∆k it is Vk ≡ 4πk2∆k. In figure(4.11) and figure(4.12) are
shown the ratio between the Quadratic estimation errors and the Gaussian error. We see
that in both cases our error are higher than the Gaussian, with a ratio around ≈ 1.25
for the z = (0.9,1.1) and ≈ 6 for the z = (1.5,1.8) bin. This result (especially for the
higher bin) is not expected, since the Gaussian errors computed with equation(4.25)
they are computed assuming a Gaussian distribution, that at these redshift should be a
good approximation and are not affected by the window function effects, so they should
be comparable with the errors from our analysis. Furthermore the higher the redshift
the higher the galaxy distribution should reproduce the Gaussian one, but in our analysis
we see that at higher redshift the error are more different from the Gaussian respect to
the lower redshift. Note also that for the z = (1.5,1.8) bin there is a notable difference
between the ratio of the GR and vRSD error, with the former that are more near to the
Gaussian one. It seems that deconvolving the window function increases the variance of
our estimates and for high redshift bin the an analysis that accounts also for the general
relativistic effects can reproduce better (but not well) the error expected by a Gaussian
overdensity. For comparison we show the error from Elkhashab, Porciani, and Bertacca
(2021) but for different redshift bin. We see that in this case the error (green line) and
the integral constraints (purple line) are way lower than the gaussian one (red one) as
expected at large scales.
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Figure 4.10: Top panel: GR power spectra obtained in Elkhashab, Porciani, and
Bertacca (2021), compared with the kaiser theory, for various redshift bins. Low panel:
Likelihood ratio test of each bin between the GR catalog and the kaiser prediction. (Fig-
ure from (Elkhashab, Porciani, and Bertacca 2021))
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Figure 4.11: Ratio between our error and the Gaussian for the z = (0.9,1.1) redshift bin.

Figure 4.12: Ratio between our error and the Gaussian for the z = (1.5,1.8) redshift bin.
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Figure 4.13: The error (green line) and the integral constraint (purple line) obtained
from Elkhashab, Porciani, and Bertacca (2021), compared with the Gaussian one (red
line). Are shown the z = (1,1.3) and z = (0.9,1.8) redshift bins.



Chapter 5

Conclusion

Redshift-space distortions analyses are a powerful tool in cosmology. Incoming survey
data need more and more accurate estimator in order to fully extract all available in-
formation contained. In the first chapter we showed how the galaxy pattern from Real
to Redshift Space is altered by the Redshift Space Distortions due to the peculiar ve-
locity of the galaxies that alter the observed redshift of a galaxy and so its distance.
Future galaxy surveys will cover very deep and large portion of the sky (Euclid, SKA,
SPHERE etc.) almost approaching the Hubble radius and so can be demonstrated that
also general relativistic effects such as Sachs-Wolfe effect, gravitational and Doppler
lensing and Shapiro-time delay can modify the observed redshift and so the position of
the galaxy. It is crucial to accounts for all these effect to obtain a proper analysis and
as showed also for the inference of cosmological paramteres. In the second chapter we
presented all these effects, explaining how they would affect the power spectrum. The
problem is that these effects are detectable only at very large scale, where the window
function of the survey is dominant, making their analysis impossible. In this work we
investigate if these effects are measurable in absence of the window function effects.
Always in the second chapter we presented the code LIGER, that is able to create sur-
vey map in Redshift space, simply starting from a Newtonian simulation and applying
all the shifts in the galaxy positions a priori. The shift can account both for the Redshift
Space Distortions and the general relativistic effects. Thanks to this we are able to create
two catalogs: vRSD that contains the shift in the galaxy pattern only due to the peculiar
velocity of the galaxy and GR that accounts also for the shifts due to the general rela-
tivistic effects. Our goal is to measure the power spectra for these two catalogs at various
redshift (z = (0.9,1.1) and z = (1.5,1.8)) not convolved with the window function. We
compute the monopole of the power spectrum using a new version of the Quadratic
estimator presented in the third chapter, that is able to compute a un-convolved power
spectrum, unbiasing the estimator subtracting the window function and the bias term
as showed. We run 50 realizations for the GR and vRSD catalog in both redshift. Our
result are shown in the last chapter. We found that the algorithm is very sensible to
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the choice of the kmin (the modes from which the power spectrum is computed) and the
accounting of the pixelization effect. It is able to reproduce the actual power spectrum if
kmin > 0, so we set kmin = 0.005 h Mpc−1, and if we account for the pixelization effects.
without the first condition some realizations present a negative power spectrum, that is
un-physical, while without the second condition, the obtained power spectrum is under-
powered. The correct power spectrum with both the corrections is shown as orange line
in figure(4.6). We showed that the window function effects are deleted through the sub-
traction of the Fisher and Bias term, computed via Monte Carlo simulations. We testes
the convergence of the power spectrum in function of the number of simulations ran
and we found that with 100 Monte Carlo simulations the power spectrum converges to
the un-windowed one, as showed in figure(4.4). The quadratic estimator presents two
possible way to compute the un-windowed spectra, the likelihood analysis and the FKP-
like analysis. For computational reason we chose the second option, and in order to be
sure that it gives an un-windowed spectra we test it against the spectra computed with
the classical FKP estimator with NBODYKIT that clearly contains the windoe function
effect. The result is shown in figure(4.7) for 15 realizations, showing that our estimator
actually differs from the FKP power spectrum, since it is actually free from the win-
dow function effects. In the figure(4.8) and figure(4.9) are shown the estimated power
spectra for the two redshift bins and the likelihood ratio test, used to understand if the
general relativistic effects are detectable The main results can be summarized as follow:

• z = (1.5,1.8) redshift bin:

– The power spectrum for the vRSD catalog is in perfect agreement with the
Kaiser prediction not convolved with the window function, meaning that the
obtained power spectrum is completely un-convoled;

– The power spectrum of the GR catalog has the expected behaviour showed
in section(2.1), since it amplifies the power at large scale due to the presence
of the relativistic effects;

– In both cases the first bin has a very huge power, more then expected. O.
Philcox (2020) shows that it is affected by the Integral Constraint, so he
suggests to do not consider it in the analysis;

– The likelihood ratio test shows that the ratio distribution for the GR and
vRSD catalog are quite far, meaning that in this case the general relativis-
tic effects can be actually distinguished by the the effects induced by the
peculiar velocities of the galaxies;

– The comparison with the Gausssian errors shows that our error are rather
higher than the Gaussian. This result is not expected since the higher the
redshift bin, the more the galaxy configuration should reproduce a Gaussian
one, and thus also its errors.
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• z = (0.9,1.1) redshift bin:

– The power spectrum in this redshift bin presents an over-power estimates at
large scales. Since we are sure that the obtained monopole is not convolved
with the window function (as showed for the z = (1.5,1.8) redshift bin), we
interpret this behaviour at large scales as probing the presence of the doppler
term effects. Our explanation is also supported by the fact that they appear
in the smaller redshift bin, as the wide angle prescription suggests;

– The likelihood ratio analysis in this bins presents two lihelihood ratio dis-
tributions for the two catalogs that are basically the same, meaning that the
presence of the doppler term make the general relativistic effects not distin-
guishable from the peculiar velocities;

– Comparing the errors with the Gaussian errors we found that in this case our
error are still higher then the Gaussian, but less than the other redshift bin.
Another time this is not expected since this is the lowest redshift bin, and
the disagreement should be higher than the higher bin.

The issue of the error remains an open question, but in the future would be interesting
to run the quadratic estimator assuming the maximum Likelihood Estimator presented
in section(3.2.1), that as said at large scale could gives less errors bar. It will be inter-
esting also to run our analysis also for lower redshift bin, for example at z < 0.4, where
the doppler term effects are dominant, extending our analysis also to the dipole and
quadrupole of the power spectrum to have a more complete analysis of the changing in
the power spectrum due to the wide angle effects. Next analyses could be done also for
more complicated survey geometry as for Euclid, in order to be able to make predictions
on what will be actually observable during the mission.
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