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A map to this thesis

The naturalness problem of the Higgs mass has been a major driver of particle physics for the past
decades. However, the absence of signals from the TeV scale at the LHC Runs 1 and 2 has prompted
the field to reconsider its viewpoint. This thesis is inspired by the framework of Neutral Naturalness
(NN), where the hierarchy problem is still solved by symmetry – as in “traditional” approaches –
but the new particles appearing at the TeV scale are rendered neutral under SM QCD, through clever
implementation of discrete symmetries. A phenomenologically important and generic prediction of NN
scenarios is the existence of a QCD-like dark sector that confines around the GeV scale. In this thesis,
we study a dark sector model that features dark pions at the bottom of the hadron spectrum, coupled
to the SM via the Z and Higgs portals. A ultraviolet (UV) completion of this model containing heavy
vector-like fermions has been studied in previous literature. Here we construct and analyze for the
first time a different UV completion of the model, which includes a dark Z 1 vector mixed with the
Standard Model (SM) gauge bosons.

In chapter 1 we review the hierarchy problem, its symmetry-based solutions, and the essential features
of NN models. In chapter 2 we introduce two theoretical tools, chiral perturbation theory (ChPT) and
the electroweak precision tests (EWPT) of the SM, which prove indispensable in the later discussion.
In chapter 3 we outline the properties of confining dark sectors inspired by NN, first starting with the
well-known Fraternal Twin Higgs model, then moving on to the Z portal model that is the main focus
of this thesis. We review the UV completion involving heavy fermions, and illustrate the application
of ChPT to the calculation of dark pion decay rates.

Our original results are presented in chapter 4 and chapter 5. After writing down the Lagrangian of
the Z 1 completion, we derive important bounds from EWPT and Z invisible decays. Then we calculate
the effective decay constant of the CP -odd dark pions in terms of the underlying model parameters,
comparing the results with those found previously in the completion containing heavy fermions. In
addition, we discuss the decays of CP -even dark pions. These results will, hopefully, provide a basis
for future phenomenological studies of the Z 1 model. In chapter 6 we offer our conclusions.
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Chapter 1

Introduction

Thanks to the discovery of the Higgs boson back in 2012 [1, 2], one big unknown of the Standard
Model (SM) has been revealed and our understanding of the fundamental building blocks of nature
has deepened. The SM is a strong candidate for the most successful theory scientists have come up
with thus far: under a radical reductionist point of view, almost all known phenomena in the whole
Universe can be explained by the interactions that particles of the SM have among each other.

However, beneath this optimistic narration of our knowledge, there are several twists in the flow of
reality that we have have not understood yet. We observe phenomena that cannot be described only by
the constituents of the SM: from gravity, to the accelerated expansion of the Universe (dark energy),
but also Dark Matter (DM). Other pressing open problems include: neutrino masses [3,4], the strong
CP problem [5, 6], the matter/antimatter asymmetry [7, 8], and the hierarchy problem of the Higgs
boson. Therefore, the SM is not enough and must be extended in order to explain such phenomena.

Actually, any theory can be thought as an effective theory of a bigger, more general one, as long
as they both reproduce the same physical results under the same circumstances and with the right
assumptions. These theories are related by a physical quantity, called expansion parameter, which
regulates the range of validity of each one. For example, we can write the weight force acting on an
object of mass m as

~Fg “ ´mg r̂ , (1.1)

where g “ 9.81 m{s2 is the acceleration of gravity and r̂ is the unit vector pointing away from the center
of Earth. We could ask ourselves if this law is always valid or, for example, if we see a discrepancy
as we increase our distance from the surface of the Earth. This is in fact the case, so we can assume
that an extension to our theory that includes this effect must exist. We know that such a theory is
Newton’s theory of gravity; it states that the attractive force acting on an object of mass m dislocated
by ~r from an object with mass M is

~Fg “ ´GN
mM

r2
r̂ , r ” |~r | , (1.2)

where GN is Newton’s constant. Hence, we can think of Eq. (1.1) as the effective theory of Eq. (1.2)
and the expansion parameter is the separation r. As long as r is close to the radius of Earth, then
Eq. (1.1) holds, but if we increase the separation between an object and Earth, then we must resort to
Eq. (1.2). Similarly, Newton’s law of gravitation can be thought as the effective theory of Einstein’s
theory of General Relativity (GR). GR can also be ultimately regarded as the effective field theory
(EFT) of its natural but yet unknown extension: quantum gravity.

Usually, in particle physics the expansion parameter is the ratio between the energy scale of the
physical processes one is interested in, and the energy scale Λ (usually referred to as “cutoff”) where
new degrees of freedom (i.e. particles) appear. Historically speaking, we have been able to observe
new phenomena by increasing the energy at which particles are collided; in particular, new physical
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CHAPTER 1. INTRODUCTION

states can be produced and directly detected. What can be the natural cutoff of the SM? We know
that gravity effects become non-negligible at the Planck scale MP « 1018 GeV, suggesting that also
the SM is an EFT of a more fundamental theory that includes quantum gravity.

Even without invoking quantum gravity, it is possible to argue that the SM is not consistent within
itself in the deep ultraviolet (UV) and requires a completion [9]. Hence, it necessarily has to be regarded
as an EFT. We know the value at the Z pole of the measured hypercharge coupling α1 “ g21{p4πq,
where g1 ”

a
5{3 g1 is the usual normalization adopted in Grand Unified Theories. We also know the

expression of the β-function of α1, which at one loop is

dα1

d log µ
“ 41

10

α2
1

2π
, (1.3)

so by running α1 to higher energies we find that it reaches a Landau pole at „ 1041 GeV. This suggests
that the SM is UV-flawed and naturally requires an extension.

Among the aforementioned open questions, in this thesis we focus on the hierarchy problem and (some
of) its possible solutions. We introduce a series of motivated models and explore their phenomeno-
logical consequences. The starting point is to ask ourselves what exactly the hierarchy problem is.
Usually, it is introduced by considering the leading quantum corrections to the Higgs mass in the SM,
which at 1-loop are mostly due to the top quark loop diagram

h h

t

t

“ iM “ ` i
3y2t
8π2

Λ2 ` . . . , (1.4)

where the dots represent sub-leading corrections in the UV cutoff Λ. It is clear that if we push Λ to
big values, such as for instance the Planck scale MP, then the one loop correction needs to be finely
tuned to an enormous level of precision, so that the physical squared mass of the Higgs matches the
experimental value. This certainly appears unnatural.

Naively, one could be tempted to argue that the above effect is related to the way we chose to deal with
divergences in quantum field theory, and is not physical. For example, we could work in dimensional
regularization, parameterize our divergences in terms of 1{ǫ and reabsorb them with the MS scheme.
However, the meaning of Eq. (1.4) is far deeper: there, Λ really serves as a proxy for the mass scale(s)
of the UV completion, to which the Higgs mass is highly sensitive. In fact, we are soon going to
introduce concrete models of new physics where the quadratic Λ2 corrections to the Higgs mass are
removed, and the cutoff is replaced by the physical masses of the new particles. These models are
often referred to as “symmetry-based solutions” of the hierarchy problem.

Assuming this interpretation, we can estimate the energy scale where new particles should appear for
the Higgs mass to be natural, namely, to avoid the necessity for fine tuning. Requiring the radiative
correction to be smaller than the physical Higgs mass we obtain

m2
h,phys Á 3y2t

4π2
Λ2 (1.5)

which translates, given that mh,phys « 125 GeV, into

Λ À
d

4π2

3y2t
mh,phys « 500GeV . (1.6)

This means that for the Higgs mass to be fully natural, we expect new physics to appear at or below
500 GeV. A moderate amount of cancellation could be present in the theory, and allowing for – say –
a tuning of 10%, the expectation for the scale of new physics relaxes to Λ À 1.5 TeV. Even in such
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1.1. SYMMETRY-BASED SOLUTIONS OF THE HIERARCHY PROBLEM

less strict version, this expectation from naturalness provides a very strong motivation to searches for
new particles at colliders. Historically, this has been the key driver of the LHC physics programme.

Before moving on to introduce the symmetry-based soliutions, we note briefly that the naturalness
criterion has showed its strength in the past. The most notable example dates back to 1974 and the
prediction of the charm quark by Gaillard and Lee [10]. In a theory with only up, down and strange
quarks, the mass splitting between the KL and KS is quadratically divergent:

mKL
´mKS

mKL

„ G2
F f

2
K

16π2
sin2 θC cos2 θC Λ2 , (1.7)

with fK “ 114 MeV being the kaon decay constant and θC the Cabibbo mixing angle. Imposing that
the correction is smaller than the experimental value gives Λ ă 2GeV. The divergence is cancelled if we
include in our computation the fourth type of quark, the charm, with the effect of replacing Λ Ñ mc.
The experimental value of the charm mass, mc “ 1.3 GeV, turns out to be perfectly consistent with
the naturalness criterion. Another well-known example is the mass difference between the charged
and neutral pions, which dominantly originates from electromagnetic effects cut off at Λ „ mρ, the
mass of the ρ meson [11].

1.1 Symmetry-based solutions of the hierarchy problem
We now turn to the theoretical constructions that address the largest quantum correction to the Higgs
mass in the SM, originating from the interaction with the top quark, see Eq. (1.4). We are going to
introduce only the minimal ingredients required to understand how these models achieve a cancellation
in the largest, quadratic corrections to the mass of the Higgs.

The first example is given by super-symmetry (SUSY), see e.g. Ref. [12] for a pedagogical introduction.
We add to the SM two complex scalar fields, ũc „ p3,1q´2{3 and q̃ “ pũ d̃qT „ p3,2q1{6 under
SUp3qc ˆ SUp2qL ˆUp1qY . These fields play the role of the top superpartners and have the following
Lagrangian

L “ ´ytqL rHtR ` h.c.´ y2t |ũc|2|H|2 ´ y2t |q̃H|2 , (1.8)

where rH ” iσ2H
˚ and q̃H “ pũ d̃q iσ2pH`, H0qT . By expanding the Higgs doublet in unitary gauge,

i.e. H “ p0, h{
?
2qT with h being the Higgs boson, we obtain the following interaction term

L Ą ´y2t |ũ|2h
2

2
´ p ũ Ø ũc q. (1.9)

The contribution to the Higgs self-energy can then be written, neglecting the masses of the new fields
in first approximation, as

h h

p

k ũ

“ iM “ ´iNcy
2
t

ż
d4k

p2πq4
i

k2
k0 ÞÑik0E“ ´iNcy

2
t

ż
d4kE

p2πq4
1

k2E

“ ´ iNcy
2
t

p2πq4
ż

dΩ4loomoon
2π2

ż Λ

0

dkE kE
Nc“3“ ´ i

3y2t
8π2

Λ2

2
.

(1.10)

From ũc we get an identical correction which, summed with Eq. (1.10), exactly cancels Eq. (1.4).

A different way of cancelling the Higgs quadratic divergences is by introducing vector-like fermions
as partners of the top quark. These are fermions whose left and right-handed components have the

5



CHAPTER 1. INTRODUCTION

same quantum numbers under the SM. By adding to the SM a new field T „ p3,1q2{3 and write the
relevant pieces of the Lagrangian as

L “ ´ytqL rHtR ` h.c.` ytTT
|H|2
2f

´ ytfTT . (1.11)

This is a proxy for Little Higgs [13] and, more generally, composite Higgs [14] scenarios (though in the
latter case, the role that here is played by T is shared by multiple states). Now f has the dimension
of a vacuum expectation value (vev), distinct from the Higgs vev v « 246.2 GeV. By expanding
H “ p0, h{

?
2qT this Lagrangian produces the following interaction

h

h

T

T

“ `i yt
2f

Hence we can draw the correction to the Higgs mass (notice that in this case we must retain the mass
of the new particle, mT “ ytf , in the calculation)

h h

T

“ iM “ ` i
yt

2f
Ncp´1q

ż
d4k

p2πq4 Tr
„

i

{k ´mT


“ . . .

“ ´ i
3y2t
8π2

Λ2 ` . . . ,

(1.12)

where the dots in the second line indicate terms that are subleading for large Λ. We see that this
exactly cancels the quadratic divergence induced by the top loop, Eq. (1.4).

1.2 Changing perspective: Neutral Naturalness, and the Twin Higgs
While extremely simplified, the models described above capture the leading ingredients used to address
the hierarchy problem using continuous symmetries, namely either a spacetime symmetry (SUSY),
or a global symmetry (Higgs as a pseudo-Goldstone boson, characteristic of Little Higgs/Composite
Higgs scenarios). The common prediction of these models is the presence of relatively light top partner
states, either scalar or fermionic, which are charged under SM QCD. These states must be relatively
light because, although the quadratically divergent Λ2 terms are absent from the theory, analogous
radiative corrections exist where Λ is replaced by the masses of the new particles.

QCD-charged particles are produced with sizeable rates at the LHC, but so far the search for their
signals has been unsuccessful. The bounds on these partners have become tighter after Run 1 and
Run 2 of LHC. In particular, as shown in Fig. 1.1, the mass of the stop (SUSY top partner) must
lie above approximately 1.2 TeV for most values of the neutralino mass. New vector-like quarks are
similarly constrained: as shown in Fig. 1.2, fermionic top partners need to be heavier than 1.4 to 1.6
TeV. These experimental results cast doubt about the plausibility of these “classic” models for Higgs
naturalness, and call for different approaches to the problem.

An alternative way to enforce Higgs naturalness, which serves as important inspiration for this thesis,
is to make use of discrete (rather than continuous) symmetries. These discrete symmetries relate
the SM to a new sector of particles, which is endowed with its own gauge interactions but is neutral
under the SM gauge group. For this reason, these type of solutions go under the name of Neutral
Naturalness (NN) models. They represent a more recent development in the area of symmetry-based
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1.2. CHANGING PERSPECTIVE: NEUTRAL NATURALNESS, AND THE TWIN HIGGS
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Figure 1.1: Stop-neutralino mass plane showing the exclusion limits according to the latest results of the ATLAS
experiment at the LHC [15]: the solid (dashed) lines represent the measured (expected) boundaries. In models
with light neutralino rχ0

1
, the stop must be heavier than about 1.2 TeV.

solutions to the hierarchy problem. While their origin dates back to the mid-2000s, with the seminal
papers by Chacko, Harnik, and others [17, 18], a more systematic analysis of NN models has been
undertaken only from „ 2015 onwards [19–29] and their study is still ongoing, especially as far as
the experimental signatures are concerned [30–34]. The phenomenology of NN is, in fact, strikingly
different from classic QCD-charged naturalness, as it will be discussed at length in this thesis.

We now introduce the Twin Higgs models [17], which constitute the best-studied incarnation of NN. In
these theories the Higgs boson is described as a pseudo Nambu-Goldstone particle (pNGB) associated
to the spontaneous breaking at scale f of an extended global symmetry. Minimally, a global SUp4q is
broken to SUp3q, giving rise to 7 Goldstone bosons. Among these 7 degrees of freedom, four make up
the SM-like Higgs doublet, whereas three are eaten to become the longitudinal components of the xW
and pZ bosons in the Twin sector (in this chapter we denote Twin fields with a hat). As it will become
clear momentarily, the key ingredient is a Z2 symmetry that exchanges the SM and Twin sectors.
This Z2 enhances the symmetry of the quadratically divergent part of the radiative Higgs potential,
thus removing the largest impediment to Higgs naturalness. The Twin sector is neutral under all SM
gauge symmetries, including the top partner pt, which cancels the quadratic divergence through the
same mechanism shown in Eq. (1.12). The needed color factor arises from Nd “ 3, where SUpNdq is
the Twin color group, distinct from the SM color group.

We focus on a minimal version of the Twin Higgs where only the fields that are strictly necessary
to solve the hierarchy problem are introduced. The model is known as “Fraternal” Twin Higgs [21].
Suppose to have a complex scalar H transforming in the fundamental representation of an SUp4q
global symmetry, with potential

V “ λ

ˆ
|H|2 ´ f2

2

˙2

(1.13)

such that the vev of xHy breaks the symmetry SUp4q Ñ SUp3q. Out of the 7 resulting pNGBs,
one will be identified with the physical Higgs boson h. The gauge and Yukawa interactions break
explicitly the SUp4q symmetry, under which the SM fields (labeled A) and Twin fields (labeled B) do
not form complete representations. However, they are related by a Z2 exchange symmetry A Ø B. In
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Figure 1.2: Observed (solid) and expected (dashed) 95% CL upper limits on the production cross section of
pairs of vector-like quarks (TT or BB) as a versus their masses, as obtained by different analyses performed by
the CMS experiment at the LHC. Figure taken from Ref. [16].

fact we can decompose the full scalar multiplet as H “ pA,Bq, where A indicates the Higgs doublet
(with the identifications SUp2qA “ SUp2qL and A “ H, in the conventional notation) and B is a new
doublet, charged under the Twin weak interaction SUp2qB. Once the SM and Twin weak interactions
are gauged and the exchange symmetry is imposed, the quadratically divergent contributions to the
Higgs mass coming from the gauge loops cancel. To see this, recall the situation in the SM, where the
following diagrams

h h

W {Z

W {Z

, h h

W {Z W {Z
,

Figure 1.3: Quadratically divergent contributions to the Higgs mass from SM gauge boson loops.

produce a „ p400GeVq2 contribution to the Higgs squared mass for a UV cutoff Λ “ 5TeV. In the
Twin Higgs model, each of A and B receives this type of 1-loop quadratic corrections:

V1-loop “ 9g22Λ
2

64π2
|A|2 ` 9pg22Λ2

64π2
|B|2 ` . . . . (1.14)

Crucially, if we enforce the Z2 symmetry then it follows that g2 “ pg2 (at the high scale Λ), so that
Eq. (1.14) will take the form

V1-loop “ 9g22Λ
2

64π2
|H|2 ` . . . (1.15)

which is accidentally SUp4q invariant. This means that the pNGB masses are insensitive to quadratic
corrections arising from gauge loops. On the other hand, even in the Z2 symmetric limit the gauging
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1.2. CHANGING PERSPECTIVE: NEUTRAL NATURALNESS, AND THE TWIN HIGGS

produces logarithmically divergent corrections to the pNGB masses,

∆V1-loop 9 g42
16π2

log

ˆ
Λ

g2f

˙
p|A|4 ` |B|4q , (1.16)

but these do not pose a problem from a naturalness standpoint up to Λ À 4πf , the scale where a
UV completion of Twin Higgs must eventually kick in. We can therefore say that the Twin Higgs is a
solution to the little hierarchy problem, effective up to a scale Λ in the range from 5 to 10 TeV.

In fact, the logarithmic divergences in Eq. (1.16) could be removed as well, by extending the SM
and Twin sectors to complete multiplets of SUp6q ˆ SUp4q, where the SM and Twin color groups are
embedded in the SUp6q [17]. This implies the appearance of new states with gauge charges under both
sectors and masses in the multi-TeV range, with exotic phenomenology [26]. However, here we do not
attempt such extension, limiting ourselves to a simpler description where logarithmic divergences are
present but not dangerous.

The gauging of Twin hypercharge is not necessary to solve the little hierarchy problem, although it is
possible to include it [17]. For simplicity, here we assume that Twin hypercharge is a global symmetry,
or a gauge symmetry broken at the scale Λ.

Let us now discuss the biggest radiative corrections to the Higgs mass, arising from the top Yukawa
coupling. We introduce a Twin left-handed fermion doublet, pQa, transforming under SUp2qB, as well
as a Twin right-handed singlet fermion pua. Here, a is an index of the Twin color group. These fermions
couple to the B doublet as

L Ą ´ pyt pQBpu . (1.17)
We will soon argue that the Twin color symmetry should be gauged, although at the level of the
present (1-loop) argument it might as well be a global symmetry. The 1-loop corrections to the scalar
potential coming from the top quark and its Twin can be written as

16π2V1-loop “ ´6y2tΛ
2|A|2 ´ 6py2tΛ2|B|2 ` 3y4t |A|4 log

ˆ
Λ2

y2t |A|2
˙

` 3py4t |B|4 log
ˆ

Λ2

py2t |B|2
˙
. (1.18)

The magic of Twin Higgs manifests again: as long as the Z2 enforces yt “ pyt at high scale Λ, the
quadratic corrections arrange into an accidentally SUp4q invariant structure. The logarithmic correc-
tions remain, and constitute an important but acceptable contribution to the potential of the SM-like
Higgs.

A smaller, but still relevant, correction to the Higgs mass arises at two loops, from QCD corrections.
Although the gluons do not couple directly to the Higgs, they do couple to the top and at 2-loop
order they contribute about „ p350GeVq2 to the Higgs mass squared, for a cutoff of 5 TeV. In order
to cancel this contribution we gauge the Twin QCD, obtaining

pδm2
hq2-loop « 3y2tΛ

2

4π4

`
g2s ´ pg2s

˘
. (1.19)

Again, requiring pgs to be (approximately) equal to the SM QCD coupling gs at the UV scale Λ removes
this quadratic correction, allowing for a fully natural Higgs mass. We will return to this aspect in the
next section.

In the Fraternal Twin Higgs model a right-handed Twin bottom quark pb is also present, in order to
cancel anomalies. It couples to the B doublet via

L Ą ´ pyb pQBpb . (1.20)

Here the Z2 symmetry does not need to be enforced, but to avoid introducing a new hierarchy problem
we still require pyb ! yt. In the same fashion, a Twin lepton doublet pL and right-handed Twin tau pτ
are included for anomaly cancellation. Twin fermions of the first two generations are not needed for
Higgs naturalness and are therefore left out of the Fraternal model.

9
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Another important concept to mention is the so-called “vacuum alignment”. The vev that breaks the
global SUp4q can be decomposed as

f2 “ v2A ` v2B . (1.21)
As we already mentioned, 6 pNGBs are eaten up in the spontaneous breakdown of the SM and
Twin electroweak symmetries, leaving as physical scalar degrees of freedom a single pNGB, eventually
associated with the SM-like Higgs boson, and the heavy radial mode of the linear sigma model. An
exact Z2 would imply vA “ vB, leading to the physical Higgs being an equal mixture of A and B, which
is not compatible with Higgs couplings data since only A carries SM quantum numbers. Therefore,
a phenomenologically viable realization requires vA ! vB , by a factor of a few. This means that the
Z2 must be broken, either spontaneously or explicitly, to some extent. Many possible sources of this
breaking have been considered in the literature; see for example Ref. [35] for recent developments.

1.3 The motivation for confinement in the dark sector
In the discussion around Eq. (1.19) we have argued that Twin color should be promoted to a gauge
symmetry, in order to cancel the 2-loop quadratic divergences arising from diagrams involving SM
top and gluon lines. The coupling of Twin QCD should be approximately equal to gs at the scale Λ,
leading to Twin confinement at low energies. This is a general aspect of NN models, essentially all
of which predict that the dark sector confines at a scale not far from the GeV. Given the centrality
of this statement for our work – which focuses on dark hadron phenomenology – here we discuss
the motivation for dark confinement in greater detail, taking again the Fraternal Twin Higgs as our
working example [21].

At one loop, the renormalization group equations for the SM and Twin couplings can be written as

dyt
d logµ

“ 9y3t
32π2

´ ytg
2
s

2π2
;

dpyt
d logµ

“ 9py3t
32π2

´ pytpg2s
2π2

(1.22)

dgs
d logµ

“ ´ 7g3s
16π2

;
dpgs

d logµ
“ ´ 29pg3s

48π2
, (1.23)

whereas the running of the Higgs mass, defining x ” m2
hpµq{µ2, is given by

dx

d log µ
“ ´2x` 3ppy2t ´ y2t q

2π2
. (1.24)

Suppose now that pgs “ 0. Neglecting the running of gs in first approximation, we solve the above
equations for yt and pyt and feed the results into Eq. (1.24), obtaining

m2
hpµq « m2

hpΛq `
„
3y2t g

2
s

8π4
` 3py2t ´ py2t q

4π2


pΛ2 ´ µ2q ´ 3y2t g

2
s

8π4
µ2 log

ˆ
Λ

µ

˙
, (1.25)

which in the IR limit µIR ! Λ is

m2
hpµIRq « m2

hpΛq `
„
3y2t g

2
spΛq

8π4
` 3py2t ´ py2t qpΛq

4π2


Λ2 . (1.26)

Thus, even if yt “ pyt at the UV scale Λ, the running of SM QCD has produced a quadratic divergence
in the Higgs mass. This requires a fine tuning

m2
h,phys

3y2t pΛqg2spΛq
8π4

Λ2

« 0.25 , (1.27)

if the UV cutoff is set to Λ “ 5 TeV for concreteness. The effect can be significantly mitigated if Twin
QCD is gauged. In this case Eq. (1.26) becomes

m2
hpµIRq « m2

hpΛq `
„
3y2t pg2s ´ pg2sqpΛq

8π4
` 3py2t ´ py2t qpΛq

4π2


Λ2 . (1.28)
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1.4. SUMMARY: PARTICLE CONTENT OF THE FRATERNAL TWIN HIGGS
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Figure 1.4: Running of the QCD and Twin QCD coupling constants in the Fraternal Twin Higgs model. We
have set αspΛq “ 0.073 with Λ “ 10 TeV. Note how pαs has a bigger confinement scale, pΛQCD ą ΛQCD.

Hence, even approximate equality of gs and pgs at scale Λ essentially removes this 2-loop source of fine
tuning.

Finally, given gspΛq « pgspΛq we can ask about the confinement scale of Twin QCD. The β-functions
in Eq. (1.23) only differ because the SM and Twin sectors contain different numbers of quarks. We
write, taking for instance SM QCD,

dαs

d log µ
“ ´7α2

s

2π
, (1.29)

where αs “ g2s{p4πq, obtaining for the solutions

αspµq “ αspΛq

1 ´ 7
αspΛq
2π

logpΛ{µq
, pαspµq “ pαspΛq

1 ´ 29

3

pαspΛq
2π

logpΛ{µq
. (1.30)

We know that αspMZq « 0.118 [36], so we run αs up to Λ (fixed to 10 TeV for the sake of example),
obtaining αspΛq « 0.073. Then we impose the condition αspΛq “ pαspΛq and run pαs down to the
infrared. The results are shown in Fig. 1.4, where we find that the confinement scale of Twin QCD
is approximately one order of magnitude larger than for SM QCD. This is a model-specific result,
which follows from the minimal Twin quark content of the Fraternal model; the general lesson is that
indeed the dark and SM QCD dynamics confine at comparable scales. We should also mention that
the above calculation is extremely simplified, being limited to 1-loop running of the couplings and
neglecting threshold corrections. Nevertheless, the qualitative conclusions hold even when a more
accurate analysis is performed.

1.4 Summary: particle content of the Fraternal Twin Higgs
To conclude our Introduction, we summarize the particle content of the Fraternal Twin Higgs model.
Although in the remainder of this thesis we will not focus specifically on this model, several features are
general in NN models and provide important inspiration for the original work presented in chapters 4
and 5. The key features are:

1. A Twin Higgs doublet B, combined with the SM doublet A into H with SUp4q-invariant poten-
tial;

11



CHAPTER 1. INTRODUCTION

2. A Twin electroweak group SUp2qB, whose gauge coupling is approximately equal to the one of
the SM at the UV scale Λ „ 5 to 10 TeV;

3. A Twin top, with Twin top Yukawa that is approximately equal to the one of the SM top at Λ;

4. Twin gluons, responsible for improving Higgs naturalness at the 2-loop level;

5. Additional fields (twin bottom, twin tau, twin neutrinos) which are required for consistency of
the theory, but do not play a role in protecting the Higgs mass.

We stress once more that this is the minimal particle content of the theory. Many extensions and
variations have been considered in the literature. One important aspect is that the Fraternal Twin
Higgs is cosmologically safe, whereas “mirror” models where all SM fields have a Twin counterpart
predict an excessively large number of relativistic degrees of freedom and clash with Cosmic Microwave
Background observations. Nevertheless, solutions to this well-known problem exist [37].

Having completed our first encounter with NN models, in chapter 3 we will turn to the phenomenology
of their confining dark sectors, which are a rather universal feature of this type of approach to the
little hierarchy problem. Before we do that, however, we will spend chapter 2 building some useful
theoretical tools.

12



Chapter 2

Some theoretical tools

Before continuing our discussion of strongly-interacting dark sectors, which are the main focus of this
thesis, we dedicate this chapter to two theoretical tools that will prove indispensable. The first one
is chiral perturbation theory and the second one is the treatment of electroweak precision tests of the
SM.

2.1 Chiral perturbation theory (ChPT)
QCD is the accepted theory of the strong interactions. It is asymptotically free, hence perturbative
calculations are only possible at large momentum transfer. Conversely, QCD becomes strongly coupled
in the infrared, with ΛQCD « 200 MeV. Here lattice calculations are in general required, at large
computational cost. However, if we focus on the dynamics of the lightest degrees of freedom – the
pseudoscalar meson octet – then it is possible to construct ChPT, an effective theory that exploits the
chiral symmetries of the QCD Lagrangian and their systematically controlled breaking. In this EFT,
the lightest pseudoscalar mesons are described as pNGBs. Many excellent reviews of and introductions
to ChPT exist [38,39].

The mass spectrum of the SM quarks spans several orders of magnitude, from 2.2 MeV for the up
quark to 173 GeV for the top [36]. Crucially, three of the quarks are lighter than the confinement
scale of QCD.

mu md ms mc mb mt

2.2 MeV 4.7 MeV 93 MeV 1.3 GeV 4.2 GeV 173 GeV
lighter than ΛQCD heavier than ΛQCD

We now consider only the u, d, s. The QCD Lagrangian can be written as

LQCD “ ´1

4
GAµνG

µν,A `
`
qLi {DqL ` qRi {DqR

˘
´ qLMqR ` h.c. (2.1)

with

Dµ “ Bµ ´ igsT
AGAµ , M “ diagpmu,md,msq , and q “

¨
˝
u

d

s

˛
‚ . (2.2)

Here A is a color index. The kinetic part of the Lagrangian is invariant under a global SUp3qL ˆ
SUp3qR ˆ Up1qV . The quarks transform as follows under the SUp3qL,R ,

#
qL ÞÑ LqL

qR ÞÑ RqR
. (2.3)
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CHAPTER 2. SOME THEORETICAL TOOLS

We observe that the mass term couples left- and right-handed fermions, hence breaking explicitly the
chiral symmetry. In order to render the full Lagrangian formally invariant under chiral transforms,
we promote the mass matrix to a spurion obeying M ÞÑ LMR:.

The QCD vacuum breaks spontaneously the SUp3qL ˆSUp3qR ˆUp1qV symmetry down to SUp3qV ˆ
Up1qV ,

x0|qR,jqL,i|0y “ Λ3
QCDδij (2.4)

where i, j are generation indices. Transforming the quarks according to Eq. (2.3), we obtain

x0|qR,jqL,i|0y ÞÑ x0|qR,jqL,i|0yR:
qjLiq “ Λ3

QCD pLR:qijlooomooon
Σij

. (2.5)

We see that the vacuum condensate is invariant only if L “ R, which means that the symmetry group
is now reduced to SUp3qV . The number of broken generators is 8, leading to 8 Goldstone bosons
according to Goldstone’s theorem. The situation is qualitatively similar when at least two light flavors
are present; the case of only one light flavor is special, as already mentioned, since no Goldstone bosons
are expected. The pNGBs are described by promoting Σ to a field,

Σ “ exp

ˆ
2i
πaT

a

f

˙
, (2.6)

that transforms chirally as Σ ÞÑ LΣR:. The πa are the 8 pNGBs and the T a are the broken SUp3q
generators, whereas f is identified at leading order with the pion decay constant,

x0|jµ5ap0q|πbppqy “ ´ iδabfπp
µ , j

µ
5a “ qγµγ5T

aq , (2.7)

normalized to fπ « 93 MeV.

We now write the first terms of the chiral Lagrangian, starting with the chirally invariant ones. At
the two-derivative level we have

L2 “ f2π
4
TrrpBµΣq:pBµΣqs , (2.8)

while the mass term is (imposing conservation of parity)

LM “ B0f
2
π

2
TrrΣM : `MΣ:s . (2.9)

It can be shown that the new parameter B0 is related to the vacuum condensate as B0f
2
π “ ´ x0|qiqi|0y.

In addition to the 8 pNGBs in our description we retain also the η1 meson, which is not a Goldstone
at finite Nc due to the Up1qA anomaly.1 The Lagrangian then reads

L “ f2π
4
TrrpBµΣq:pBµΣqs ` B0f

2
π

2
TrrΣM : `MΣ:s ´ 1

2
m2

0η
2
0 . (2.10)

The explicit form of Σ is

Σ “ expp2iP{fπq, P “ 1?
2

¨
˚̊
˝

π0?
2

` η8?
6

` η0?
3

π` K`

π´ ´ π0?
2

` η8?
6

` η0?
3

K0

K´ K
0 ´

b
2
3
η8 ` η0?

3

˛
‹‹‚ , (2.11)

where P “ πaT
a ` η0I{

?
6, with πa (a “ 1, . . . , 8) the pNGBs. For the masses of the complex pNGBs

one finds readily

m2
π˘

“B0pmu `mdq ,
m2
K˘

“B0pmu `msq , (2.12)
m2
K0,K0

“B0pmd `msq .
1It is known that including the η1 and its mixing with η is important to obtain phenomenologically viable predictions

for the η, η1 Ñ γγ rates.
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For simplicity, in this thesis we neglect the isospin breaking originating from mu ‰ md, which enters
through the parameter

δI ” md ´mu

md `mu
« 1

3
. (2.13)

Neglecting isospin breaking implies that we do not have mixing between η8 and π0. On the other
hand, the mixing between η8 and η0 is found to be

B0f
2
π

2
TrrΣM : `MΣ:s ´ 1

2
m2

0η
2
0 » ´2B0TrrP 2M s ´ 1

2
m2

0η
2
0

Ą ´ 1

2

`
η8 η0

˘
˜

2
3
B0pm` 2msq 2

?
2

3
B0pm´msq

2
?
2

3
B0pm´msq m2

0 ` 2
3
B0pms ` 2mq

¸ ˆ
η8
η0

˙
.

(2.14)

The above matrix can be diagonalized via the rotation
ˆ
η8
η0

˙
“

ˆ
cos θηη1 sin θηη1

´ sin θηη1 cos θηη1

˙ ˆ
η

η1

˙
, (2.15)

where η and η1 are physical states, with

tan θηη1 “
2

?
2

3
B0pm´msq

m2
η1 ´ 2

3
B0pm` 2msq

“ ´2
?
2pm2

K ´m2
πq

3m2
η1 ´ p4m2

K ´m2
πq , (2.16)

where we used the expressions of the masses for δI Ñ 0,

m2
π “ 2B0m, m2

K “ B0pm`msq . (2.17)

Since the physical mass of η1 is mη1 « 958 MeV, we find that tan θηη1 « ´ 0.353 corresponding, to a
good level of accuracy, to

sin θηη1 « ´1

3
, cos θηη1 « 2

?
2

3
. (2.18)

In the physical basis, the P matrix takes the form

P “ 1?
2

¨
˚̊
˝

π0?
2

` η?
3

` η1
?
6

π` K`

π´ ´ π0?
2

` η?
3

` η1
?
6

K0

K´ K
0 ´ η?

3
` 2η1

?
6

˛
‹‹‚ . (2.19)

2.1.1 Couplings to photons and axion-like particles
Some of the pseudoscalar mesons are charged under electromagnetism (EM), so we now want to include
in ChPT the effects of interactions with the photons. In order to do so, we write the current the photon
couples to at quark level as

j
µ
V “ qLγ

µQLqL ` qRγ
µQRqR , QL “ QR “ Q , (2.20)

where Q “ p2{3,´1{3,´1{3q, implying that we can incorporate the effects of EM into a covariant
derivative acting on the Σ field,

DµΣ “ BµΣ ´ ieAµQLΣ ` ieAµΣQR “ BµΣ ´ ieAµrQ,Σs . (2.21)

Suppose now that an axion-like particle (ALP) is coupled to an axial current made out of quarks, as
we are going to see in Eq. (3.12),

j
µ
A “ qγµγ5cqq , (2.22)

where cq “ diagpcu, cd, csq. Again we are able to write a covariant derivative that includes the coupling
of the ALP to the pNGBs,

DµΣ “ BµΣ ´ i
Bµa
fa

cL
q
Σ ´ i

Bµa
fa

ΣcR
q
, cL

q
“ cR

q
“ cq . (2.23)
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By adding everything together we are therefore able to write

DµΣ “ BµΣ ´ ieAµrQ,Σs ´ i
Bµa
fa

tcq,Σu , (2.24)

which now replaces the spacetime derivative in our ChPT Lagrangian, Eq. (2.10). These results will
be very helpful in describing CP -odd dark pions with GeV-scale mass. For instance, in chapter 3 we
calculate the width for the decay of a CP -odd dark pion into three SM pions, which competes with
pπ Ñ µ`µ´ when mπ̂ À 1 GeV. Above a scale „ 4πfπ ChPT ceases to be a sensible EFT, since the
expansion parameter becomes of order one.

2.2 Electroweak precision tests (EWPT) of the SM
The second tool we are going to need in the analysis of the Z 1 model, is the treatment of precision tests
of the electroweak sector of the SM, which have been extensively performed both at e`e´ colliders, such
as LEP, and hadron colliders, such as the LHC. The observed agreement between the predictions of
the SM, which rely on a few input parameters (for instance α,GF and MZ) and require the calculation
of radiative corrections, and experimental data places important constraints on a variety of models of
new physics. Extension of the SM that contain a Z 1 vector boson are no exception [40].

An important question to address, is how the impact of new physics on EWPT is parametrized. For
the type of Z 1 considered in this thesis, which as we are going to see couples to SM fermions only by
mass or kinetic mixing with SM gauge bosons, a simplified description suffices where all new physics
effects are absorbed in “oblique” corrections (as they are traditionally known) to the self-energies of
the SM vectors [41]. The class of SM extension for which this is possible is known as “universal new
physics”.

The most general 1-loop vacuum polarization can be written as:

Vµ V 1
ν

“ i
`
ΠV V 1pp2qηµν ´ ∆V V 1pp2qpµpν

˘
, (2.25)

where p denotes the external momentum. The vacuum polarizations are coupled to SM fermionic
currents, hence in the limit where the fermion masses are negligible compared to the energy range we
are probing, we find that the terms proportional to ∆V V 1 are negligible because

pµJ light
µ “ f̄pµγµf “ mf f̄f . (2.26)

Four types of vacuum polarization exist, namely V V 1 “ tW`W´,W 3W 3,W 3B,BBu. Assuming the
new physics to be heavier than the electroweak scale, we can expand as follows

ΠV V 1pp2q » ΠV V 1p0q ` p2
dΠV V 1

dp2

ˇ̌
ˇ̌
p2“0loooooomoooooon

Π1
V V 1 p0q

` 1

2
p4

d2ΠV V 1

dpp2q2
ˇ̌
ˇ̌
p2“0looooooooomooooooooon

Π2
V V 1 p0q

` . . . . (2.27)

Therefore we have a grand total of twelve expansion parameters, however, the masslessness of the
photon guarantees that Πγγp0q “ ΠγZp0q “ 0. In addition, we can trade three more parameters for
pg, g1, vq, where v « 246.2 GeV in this thesis. Out of initial twelve parameters, we are thus left with
just seven [42],

pS “ g

g1Π
1
3Bp0q , pT “ Π33p0q ´ ΠW`W´p0q

M2
W

, pU “ Π1
W`W´p0q ´ Π1

33p0q ,

V “ M2
W

2
pΠ2

33p0q ´ Π2
W`W´p0qq , X “ M2

W

2
Π2

3Bp0q , Y “ M2
W

2
Π2
BBp0q , W “ M2

W

2
Π2

33p0q.
(2.28)

16
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It is useful to relate pS, pT and pU to the classic Peskin-Takeuchi oblique parameters [43,44],

pS “ αS

4s2W
, pT “ αT , pU “ ´ αU

4s2W
, (2.29)

where sW is the sine of the weak mixing angle.

It is worth mentioning that we define the oblique parameters to only account for new physics ef-
fects. The most general expression of the vacuum polarizations does contain the sum of SM radiative
corrections and NP effects,

Πtot
V V 1 “ ΠSM

V V 1 ` ΠV V 1 . (2.30)

In chapter 4 we are going to compute the values of the 7 oblique parameters in the Z 1 model, by
integrating out the new particle at tree level.

The EWPT have provided important successes in the past, for instance with the prediction of the
top mass. In particular, the contribution of the third generation SM fermions to the T parameter
reads [43,44]

T “ Nc

16πs2W c
2
WM

2
Z

„
m2
t `m2

b ´ 2
m2
tm

2
b

m2
t ´m2

b

log

ˆ
m2
t

m2
b

˙
mt "mb« Nc

16πs2W c
2
W

m2
t

M2
Z

. (2.31)

As we can see, T depends quadratically on mt and is therefore very sensitive to its value. On the
other hand, the effect given by the Higgs is much milder [43,44],

T « ´ 3

16πc2W
log

˜
m2
h

m2
h,ref

¸
, (2.32)

where mh,ref is a reference value of the Higgs mass. Now T depends only logarithmically mh, hence
giving a much looser constraint. For this reason, only limited information about the Higgs could be
gained from indirect measurements, and its direct discovery and the measurement of its mass have
been a crucial milestone in the progress of particle physics.
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Chapter 3

Confining dark sectors from Neutral
Naturalness

As we saw in chapter 1, a dark copy of QCD that confines at scales not far from the GeV is a generic
prediction of NN models. This opens up a variety of phenomenological signatures, which are of central
importance to this thesis. We begin by reviewing in section 3.1 the situation in the Fraternal Twin
Higgs (FTH) model, where the matter content – which includes at most one light Twin quark, the
pb – does not give rise to pNGBs at the bottom of the hadron spectrum. In this case, the lightest
dark hadron is either a Twin bottomonium or Twin glueball state. We then introduce in section 3.2 a
different model of dark QCD, originally studied in Ref. [32] and inspired by the SUSY NN construction
of Refs. [28, 45], where multiple light dark quarks are present and therefore a set of “dark pions” are
expected to dominate the phenomenology. Finally, in section 3.3 we perform an example calculation
using ChPT, deriving the widths for the decays of the dark pions pπ to three SM pions, for mπ̂ À 1 GeV,
to illustrate the underlying techniques.

3.1 Dark hadron phenomenology in the Fraternal Twin Higgs
The FTH contains only two Twin quarks, among which the Twin top has mass ytf{

?
2 " pΛQCD.

Therefore, at most one quark (the pb) can be light. One-flavor QCD does not give rise to pNGBs;
rather, the hadron spectrum is dominated by quarkonia with masses „ pΛQCD if the Twin bottom
is light, or glueballs if the Twin bottom is heavy. In both cases precise quantitative results require
lattice calculations, which are more available for glueballs [46, 47] than for quarkonia [48]. Here we
necessarily limit ourselves to a brief and qualitative overview.

The spectrum of Twin hadrons, and the associated phenomenology, strongly depend on the hierarchy
between m

b̂
(which is largely a free parameter, except for the loose requirement that pyb does not

introduce a new hierarchy problem) and pΛQCD. If the Twin bottom is heavy, the infrared spectrum
is dominated by glueballs, namely bound states made of only (Twin) gluons. Lattice calculations for
pure-SUp3q glue QCD provide the JPC of the lightest few glueballs and the ratios of their masses to the
confinement scale [47]. Importantly, the lightest glueball, usually called pG0`` , has massm0 « 6.8 pΛQCD
and JPC “ 0``. The fact that pG0`` shares the quantum numbers of the Higgs leads to interesting
phenomenology, as discussed below.

On the other hand, if the Twin bottom mass is small enough, the lightest hadrons are pbpb “bottomo-
nium” states. In analogy to the SM bottomonia we denote the lightest Twin bottomonium, which has
mass „ 2pm

b̂
` pΛQCDq, as pηb (JPC “ 0´`). Above it we find a spin-1 state, pΥ, with JPC “ 1´´.

Next, we expect a 0`` scalar pχb0, which can mix with the Higgs.

The interaction between the SM and the strongly interacting dark sector is mediated, irreducibly,
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by the Higgs. This leads to striking phenomenological signatures that can be probed at particle
accelerators. To sketch these features we assume the Twin leptons are heavier than the Twin hadrons;
this is a consequential choice, implying that the Twin hadrons decay directly to SM particles.

SM Dark sectorh

Figure 3.1: Diagrammatic depiction of the portal between the SM and dark sector in the FTH model.

The first type of communication is through an effective interaction of the Higgs with the Twin gluons,
dominantly mediated by a Twin top loop.

h

pg

pgpt

pt

pt

Figure 3.2: Twin top-induced effective interaction between the physical Higgs and the dark gluons.

Since mh ! 2mt̂, we obtain (see for example Ref. [26])

Leff Ą ´ pαs
12π

v

f2
h pGaµν pGa,µν , (3.1)

which is responsible both for the h Ñ pgpg process, allowing colliders such as the LHC to access the
dark sector, and for the decay of pG0`` , with

cτ pG
0``

« 1 cm
˜
5 GeV
pΛQCD

¸7 ˆ
f

1 TeV

˙4

, (3.2)

valid for 2mτ ă m0 ă MW . This is an important result, showing that the lightest Twin glueball has a
macroscopic decay length. Thus, a typical FTH event consists [49] in a rare decay of the Higgs to Twin
gluons, followed by parton showering and hadronization in the dark sector. The outgoing particles
are a few Twin glueballs. Among them, one pG0`` can travel a macroscopic distance before decaying
to SM particles, giving rise to a displaced signature. Similar considerations apply to the second type
of portal between the SM and Twin sectors, namely the coupling of h to the Twin bottom

Leff Ą ´ pyb?
2

v

f
hpbpb . (3.3)

This interaction mediates Higgs decays to pb pairs, and is also responsible for setting the lifetime of the
pχb0 bottomonium. Rather than delve more deeply into the phenomenology of the FTH, we choose to
make a further step and, in the next section, we discuss a dark QCD sector where more than one light
quark flavor is present. As we are going to show, this leads to a qualitatively different picture due to
the existence of light pNGB modes.
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3.2. TOWARD A THEORY OF DARK PIONS

3.2 Toward a theory of dark pions
The FTH specifically, and the Twin Higgs more generally, are a popular incarnation of NN, but by no
means the only one, as reviewed for example in Ref. [50]. Here we consider another class of confining
dark sector models, characterized by two essential features:

• More than one light dark quark flavors are present, so that pNGBs appear at the bottom of the
hadron spectrum;

• The interaction between the SM and the dark sector is mediated by the Z boson (in addition to
the Higgs boson).

The original motivation for this class of models is a SUSY NN construction, called “tripled top”, that
was built in Refs. [28, 45]. We do not take a top-down approach, however, but prefer to tackle the
problem in a bottom-up perspective. In fact, two classes of UV completions can be envisaged for an
interaction of the form Zψψ between the Z boson and the dark quarks. In the first class, which was
extensively discussed in Ref. [32], the completion contains some heavy dark quarks Q, doublets under
the SM weak interactions, which allow for Yukawa interactions coupling the Q, the light dark quarks
ψ, and the SM Higgs doublet H; this is depicted in the left diagram in Fig. 3.3.1

The second class of models, which has not been discussed before and is the subject of chapters 4 and 5
of this thesis, is shown by the right diagram in Fig. 3.3. Here the Z portal is obtained by mixing
(through mass and/or kinetic terms) the Z boson with a Z 1 vector, the latter being coupled to the
dark quarks at tree level.

f

f̄

Z

ψ

Q

Q

ψ

ψ

ψ

f

f̄

Z Z 1

Figure 3.3: Different UV completions of a Z portal to the dark sector. On the left side we show the model
studied in Ref. [32] and reviewed in this chapter. On the right side we display the Z 1 model discussed for the
first time in chapters 4 and 5.

Let us now review the model containing the heavy fermions Q [32]. The UV Lagrangian reads

´L “ QLYψRH `QR
rYψLH `QLMQR ` ψLωψR ` h.c. , (3.4)

where Y, rY, M and ω are N ˆ N matrices in the flavor space. Following the inspiration from NN,
the masses M of the heavy fermions are expected to be at the TeV scale, since their supersymmetric
partners would play the role of scalar top partners. On the other hand, the masses of the light dark
quarks are smaller than pΛQCD. We assume N ě 2, leading to the expectation of chiral symmetry
breaking and N2 ´ 1 pNGBs, which we call “dark pions” and denote with pπ.

Before we elucidate the details of the model, we sketch the associated phenomenology: owing to the
large Z production rate at the LHC, Z Ñ ψψ decays are expected to be the most important mechanism

1Incidentally, we note that heavy vector-like fermions with the quantum numbers of Q, namely SM electroweak and
dark color charges, also appear in non-SUSY UV completions of the Twin Higgs; in the original model of Ref. [17] these
fermions render finite the Higgs potential, cutting off the residual logarithmic divergences. Their phenomenology has
also been studied in that context [51].
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CHAPTER 3. CONFINING DARK SECTORS FROM NEUTRAL NATURALNESS

of dark sector production. Following dark parton shower and hadronization a number of dark pions
is obtained, which can decay back to the SM with macroscopic lifetimes. As we will describe, some of
the dark pions behave as composite axion-like particles (ALPs), whereas others behave as composite
Higgs-mixed scalars.

pπ1

production vertex

pπ3

pπ2

composite ALP decay

composite scalar decay

composite ALP decay

Figure 3.4: A sketch of dark pion phenomenology, assuming N “ 2. All dark pions typically have macroscopic
lifetimes. The pπ1,3 behave as composite ALPs and the pπ2 as a composite scalar mixed with the Higgs.

From now on we assume N “ 2 light flavors. As a first step, we integrate out the heavy Q to obtain
an effective Lagrangian where the SM is coupled to the light dark quarks. We find

LEFT “ 1

2
ψRY

:M´2Y
“
|H|2i {D ` iγµH:DµH

‰
ψR ` h.c.

` 1

2
ψL

rY:M´2 rY
“
|H|2i {D ` iγµH:DµH

‰
ψL ` h.c.

´ ψLωψR ` ψL
rY:M´1YψR|H|2 ` h.c. .

(3.5)

We now show that this effective Lagrangian is responsible for the decay of dark pions to SM particles.
It is important to note that in our scenario pπ1,3 have JPC “ 0´`, whereas pπ2 has 0´´. The CP -odd
dark pions decay to SM particles via Z boson exchange, whereas the decay of CP -even dark pions is
mediated by the Higgs portal. From Eq. (3.5) we can write down the interaction between the dark
quarks and the Z,

´gZv
2

4

”
ψRY

:M´2YγµψR ` ψL
rY:M´2 rYγµψL

ı
Zµ (3.6)

where gZ ”
a
g2 ` g12. The mass matrix of light dark quarks receives two contributions, i.e. ω ´

rY:M´1Yv2{2, and is diagonalized through unitary transformations ψL,R “ UL,Rψ
1
L,R. After these

transforms, Eq. (3.6) can be rewritten as

´gZ

2

´
ψ

1
RAγ

µψ1
R ` ψ

1
L

rAγµψ1
L

¯
Zµ “ ´gZ

4

3ÿ

q“ 0

!
TrrσqpA ` rAqsjµq ` TrrσqpA ´ rAqsjµ5q

)
Zµ , (3.7)

where σ0 ” I and
A ” v2

2
U

:
RY

:M´2YUR , rA ” v2

2
U

:
L

rY:M´2 rYUL , (3.8)

and
jµq “ j

µ
Rq ` j

µ
Lq , j

µ
5q “ j

µ
Rq ´ j

µ
Lq , j

µ
L,Rq “ ψ

1
L,Rγ

µσq

2
ψ1
L,R . (3.9)

We are now able to rewrite everything in the hadronic basis. In analogy to the SM, we define the dark
pion decay constant fpπ from

x0|jµ5bp0q|pπcppqy “ ´ iδbcfpπp
µ , (3.10)
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where the same normalization used for the SM in Eq. (2.7) has been adopted.

It is possible to integrate out the Z in the static limit to obtain an effective interaction Lagrangian
between the dark pions and the SM fermions f . Only the axial part of the Z current survives, because
pBµpπbqf̄γµf » ´pπbBµpf̄γµfq “ 0, so we get

´g2Zfpπ
8M2

Z

TrrσbpA ´ rAqspBµpπbqf̄γµT 3
Lfγ5f , (3.11)

with T 3
Lf is eigenvalue of the third generator of SUp2qL. This can be framed as an ALP Lagrangian

´Bµa
fa

cf f̄γ
µγ5f ,

1

f
pbq
a

” g2Zfpπ
8M2

Z

TrrσbpA ´ rAqs , cf “ T 3
Lf , (3.12)

where f pbq
a is called the effective decay constant of the (composite) ALP pπb “ a. From this one readily

computes the decay rate into SM fermions,

Γpa Ñ f̄fq “ Nf
c

c2fm
2
f

2πf2a
ma

˜
1 ´ 4

m2
f

m2
a

¸1{2

, (3.13)

where Nf
c is a color factor. Assuming CP conservation, pπ1,3 can decay though the Z portal to SM

states, whereas pπ2 does not because

Trrσ2pA ´ rAqs “ irpA ´ rAq12 ´ pA ´ rAq˚
12s “ 0 , (3.14)

where the hermiticity of A and rA has been used.

For dark pions with GeV scale masses, an important complication arises from the need to describe
exclusive decays to SM hadrons, rather than perturbative decays to SM quarks. An exhaustive analysis
has been performed in Ref. [32], whose results are summarized in Fig. 3.5, where decay widths and
branching ratios are shown for arbitrary ma ă 3 GeV and cf “ T 3

Lf . We see that the decay to µ`µ´,
calculated according to Eq. (3.13), dominates in the region 2mµ ă ma À mη1 . However, hadronic
decays are already important for ma À mη1 and become completely dominant for ma Á 1 GeV. For
energy scales up to the mass of the η1, the calculations are performed using the effective theory of
pNGBs in QCD, namely Chiral Perturbation Theory (ChPT). In section 3.3 we are going to perform
an example calculation of this type, using ChPT. For even larger ALP masses one must resort to
a phenomenological description based on resonance exchange, which will not be treated here in any
detail. Let us now focus on the total decay width shown in Fig. 3.5, and convert it to meters in order
to gain some intuition on the phenomenology. Choosing mπ̂ “ 800 MeV as example, we find

cτπ̂ “ 0.40 m
ˆ
fa

PeV

˙2

, (3.15)

implying that the CP -odd dark pions behave as long-lived particles in accelerator experiments [52].

Similarly to what has been shown until now for pπ1,3, it can be proven that the pπ2 decays to SM particles
though the Higgs portal. Starting from the last line of Eq. (3.5) we can extract the interaction between
the dark light quarks and a single Higgs,

ψ
1
LBψ

1
Rh` h.c. “ 1

2
ψ

1 “
pB ` B:q ` pB ´ B:qγ5

‰
ψ1h , B ” v U

:
L

rY:M´1YUR . (3.16)

The dark quarks have already been rotated to the mass basis. Only the piece containing γ5 between
square parentheses survives and can be written as

´1

2

3ÿ

q“ 0

TrriσqpB ´ B:qsψ1 iσq
2
γ5ψ

1h . (3.17)
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Figure 3.5: A series of graphs depicting the decay behaviors of an ALP with coupling cf “ T 3

Lf to SM fermions.
The top row shows the decay widths, while the bottom row shows the branching ratios. Figures taken from
Ref. [32], to which the reader is referred for further details.

Furthermore, we find

x0|ψ1 iσa
2
γ5ψ

1p0q|pπbppqy “ ´δabfpπ
m2

pπa
Trpmψ1q “ ´δabfpπ pB0 , (3.18)

where mψ1 denotes the diagonal mass matrix of the light dark quarks and pB0 is the dark sector
equivalent of the quantity that already appeared in Eq. (2.9). It can be showed that in a CP -exact
theory the only non-vanishing trace is for σ2, because piσ2q˚ “ iσ2, whereas piσ1,3q˚ “ ´iσ1,3. This
corresponds to the fact that only CP -even dark pions can decay to SM particles via the Higgs portal.
Integrating out the h, we evaluate the decay width of pπ Ñ ff̄ mediated by a single Higgs as

Γppπb Ñ ff̄q “ N
f
c

4π

ˇ̌
TrriσbpB ´ B:qs

ˇ̌2 GF

4
?
2
m2
f

f2π̂
pB2
0mπ̂b

m4
h

´
1 ´ 4m2

f

m2
π̂b

¯3{2

´
1 ´ m2

π̂b

m2
h

¯2
. (3.19)

Similarly to the previous discussion in the ALP case, for CP -even dark pions with GeV-scale masses
the exclusive decays to SM hadronic final states become relevant. This is illustrated in Fig. 3.6, where
the following parametrization has been employed,

´spbq
θ

mf

v
pπbf̄f , s

pbq
θ “

pB0fπ̂

2

TrriσbpB ´ B:qs
m2
h ´m2

π̂b

. (3.20)

For a complete description of the necessary calculations for a Higgs-mixed scalar, the reader is referred
to previous studies [53].
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Figure 3.6: Decay widths (left panel) and branching ratios (right panel) for a light CP -even scalar interacting
with the SM through Higgs mixing. The dot-dashed line at mφ “ 2 GeV indicates the mass where the description
of hadronic decays switches from dispersive methods to a perturbative spectator model, following Ref. [53]. This
figure is taken from Ref. [32].

3.2.1 Constraints from Z and h invisible decays
Equations (3.6) and (3.16) imply that both the Z and Higgs bosons can decay to dark hadron final
states. If we suppose that the dark hadrons are sufficiently long lived to be, in first approximation,
invisible to experiments, we can derive some significant constraints on the parameter space of the
model, by employing existing measurements of the invisible Z and h decay widths.

From (3.6) we can immediately evaluate the decay width of the Z into dark quarks, for which we find

ΓpZ Ñ ψ
1
ψ1q “ NdM

3
Z

96π
?
2GF

!
Tr

”
pY:M´2Yq2 ` pY Ñ rYq

ı )
, (3.21)

where Nd is the number of dark colors. Taking for example M “ MI and imposing that ΓZinv ă 2 MeV
at 95% CL [54], we obtain

M Ç 0.7TeV
˜
NdTrpYY:YY:q ` pY Ñ rYq

3

¸1{4

. (3.22)

A similar calculation can be done for the invisible decays of the Higgs starting from Eq. (3.16). In
this case we have

Γph Ñ ψ
1
ψ1q “ Ndmh

8π
?
2GF

Tr
”
Y:M´1 rYpY:M´1 rYq:

ı
. (3.23)

Assuming again M “ MI and requiring that BRph Ñ invq ă 0.13 at 95% CL [55] we arrive at

M Ç 0.4TeV
˜
NdTrpYY: rY rY:q

3 ¨ 10´4

¸1{2

, (3.24)

where Y „ rY „ 0.1 has been taken as reference value for the Yukawas. Notice that for Y „ rY „ 1

one finds a very strong bound from Higgs decays, M Á 40 TeV. However, this constraint can be easily
loosened by taking a hierarchy between the Yukawas, for instance Y " rY , in which case the leading
bound stems from Z decays and the parameter region with Y „ 1, M „ TeV is still allowed [32].

3.3 Hadronic decays of dark pions: an example ChPT calculation
To illustrate the ChPT techniques involved in the study of GeV-scale dark sector particles, here we
calculate the decay widths for the decays of an ALP into three SM pions, a Ñ 3π. Our starting point
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is the leading ChPT Lagrangian, Eq. (2.10), augmented by the covariant derivative in Eq. (2.24),

TrrpDµΣq:pDµΣqs Ą ´Bµa
fa

8

fπ
TrrcqBµPs , (3.25)

where cq “ diagpcu, cd, csq. Thus, at leading order in P {fπ we obtain a kinetic mixing between the
ALP and the SM pseudoscalar mesons. In fact, we can write

Lkin Ą ´fπ

fa
Bµa

ÿ

P “π0,η,η1

KaP BµP (3.26)

with
Kaπ0 “ cu ´ cd , Kaη “

c
2

3
pcu ` cd ´ csq , Kaη1 “ 1?

3
pcu ` cd ` 2csq . (3.27)

The kinetic mixing is diagonalized at order fπ{fa ! 1 by means of the following field redefinitions [56],

a Ñ a´ fπ

fa

ÿ

P “π0,η,η1

m2
P

m2
a

xaPyP , P Ñ P ` fπ

fa
xaPya , xaPy “ m2

aKaP

m2
a ´m2

P

, (3.28)

where we have defined x. . . y ” 2Trp. . . q. Recall that in this thesis we neglect the isospin breaking
parameter δI “ pmd ´ muq{pmd ` muq, which greatly reduces the complexity of our calculations. In
fact, we can assign to the ALP a Up3q representation [56]

a “ xaπ0yπ0 ` xaηyη ` xaη111yη111 (3.29)
with

π0 “ 1

2
diagp1,´1, 0q , η “ 1?

6
diagp1, 1,´1q , η111 “ 1

2
?
3
diagp1, 1, 2q . (3.30)

In this way we can write Σ as

Σ “ exp

„
2i

ˆ
P

fπ
` a

a

fa

˙
” exp

˜
2i

rP
fπ

¸
. (3.31)

We now want to find an explicit expression for the aπ3 interactions. Expanding the kinetic term of
the ChPT Lagrangian up to OprP3{f3πq, we find

Lkin Ą xaπ0y
3fπfa

`
π`π0BµaBµπ´ ´ aπ0Bµπ`Bµπ´ ´ π`π´BµaBµπ0 ` aπ`Bµπ´Bµπ0 ` h.c.

˘
. (3.32)

Importantly, only terms involving aπ`π`π0 appear, but no apπ0q3 pieces. A similar calculation is
done for the mass term in the Lagrangian, where one needs to expand up to OprP4{f4πq,

Lmass Ą B0mxaπ0y
3fafπ

“
apπ0q3 ` 2aπ`π´π0

‰
. (3.33)

We are ready to evaluate the ALP decay widths. The amplitude for a Ñ 3π0 is read off Lmass ,

iMpa Ñ 3π0q “ i
m2
π

fπfa
xaπ0yΘpmη1 ´maq , (3.34)

where the Heaviside theta function simply indicates that our ChPT description cannot be trusted
above ma „ mη1 . As for a Ñ π`π´π0 , from Eq. (3.32) we derive the Feynman rule

a π`

π´

π0

pa p`

p´

p0

“ i
xaπ0y
3fπfa

”
´ pa ¨ p´ ´ pa ¨ p` ` 2p´ ¨ p` ` 2pa ¨ p0 ´ p´ ¨ p0 ´ p` ¨ p0

ı
Θpmη1 ´maq .

(3.35)
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Figure 3.7: Dalitz plot of a three-body decay, showing the allowed regions of m2

12
and m2

23
. Figure taken from

Ref. [36].

Applying four-momentum conservation and including the contribution from Eq. (3.33), we obtain

iMpa Ñ π`π´π0q “ i
xaπ0y
3fπfa

”
3m2

12 ´m2
a ´ 2m2

π

ı
Θpmη1 ´maq , (3.36)

where we have defined m2
12 “ pp` ` p´q2. The decay widths are given by

Γpa Ñ 3πq “ k

2Sma

ż
|Mpa Ñ 3πq|2dΦ3 , (3.37)

where S denotes a multiplicity factor for identical daughter particles (S “ 1 for a Ñ π`π´π0 and
S “ 3! for a Ñ 3π0). The constant k “ 2.7, which approximately accounts for the important higher-
order corrections, is estimated from ηp1q Ñ 3π data [56]. The differential decay width can be written
as [36]

dΓ “ k|M|2
Sp2πq3 32M3

dm2
12dm

3
23 , (3.38)

where m2
ij “ ppi ` pjq2 and M denotes the mass of the decaying particle. The extrema of integration

are fixed by kinematic constraints and are illustrated in Fig. 3.7. One has

Γ “
ż pM´m3q2

pm1`m2q2
dm2

12

ż pm2
23qmax

pm2
23qmin

dm3
23

k|M|2
Sp2πq3 32M3

(3.39)

with

pm2
23qmin, max “ pM2 ´m2

1 `m2
2 ´m2

3q2
4m2

12

´
˜d

p´m2
1 `m2

2 `m2
12q2

4m2
12

´m2
2 ˘

d
p´M2 `m2

3 `m2
12q2

4m2
12

´m2
3

¸
.

(3.40)

The decay widths are shown in Fig. 3.8 as functions of ma, setting cf “ T 3
Lf so that cu “ ´cd “

´cs “ 1{2 Ñ Kaπ0 “ 1 . Furthermore, we have set m1 “ m2 “ m3 “ mπ “ 140 MeV. For reference,
the decay width into muons has also been depicted. A few comments are in order concerning the
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Figure 3.8: Widths (top) and branching ratios (bottom) for different decay channels open to CP -odd dark
pions, which behave as composite ALPs a. For the computation of the branching ratios we have considered as
total decay width only the sum of the depicted decay modes, neglecting sub-leading contributions coming, for
example, from the ALP decay into e`e´ or γγ.

comparison of our simplified results with the full calculation displayed in Fig. 3.5. First, we see
differences at ma “ mηp1q , which are due to our choice of neglecting isospin breaking originating from
mu ‰ md. In fact, in the full calculation one finds that Eqs. (3.34) and (3.36) both acquire terms
proportional to δI xaηp1qy. Second, taking for example ma “ 800MeV we observe that the ALP decay
width into 3π0 is two orders of magnitude smaller than the one into π`π´π0, whereas in Fig. 3.5
the two differ only by one order of magnitude. The reason for this discrepancy lies again in the
fact that here we have neglected the isospin breaking controlled by δI . Third, we recall that for
ma Á mη1 the ChPT expansion ceases to be meaningful and one must resort to other methods, such
as phenomenological models based on resonance exchange (typically implemented by assuming vector
meson dominance) [32].

This concludes our short review of the model with heavy Q fermions. We are now ready to introduce
and analyze the Z 1 model, which will be the subject of chapters 4 and 5.
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Chapter 4

Z 1 model and constraints

We are now ready to study the model of interest for this thesis, namely the UV completion of the
Z portal to the dark sector that contains a new Z 1 vector. The goal of the present chapter and the
next, is to investigate this model for the first time and compare it with the UV completion involving
heavy fermions, which was presented in section 3.2. Our discussion here will partly follow the classic
work [40], though the results of the calculations are new.1 In the Z 1 model the dark fermions are
charged under a spontaneously broken Up1q1, whereas the SM fermions are assumed to be neutral
under this new symmetry. The mass of the Z 1 originates from the vacuum expectation value of a new
scalar Φ, charged under Up1q1. As a result, the communication between SM and dark sector proceeds
in two ways: 1) through mixing of the Z 1 with the SM electroweak gauge bosons, either of mass or
kinetic type; and 2) through mixing between the SM Higgs h and the radial mode of Φ:

SM Dark sector
Z or γ Z 1

SM Dark sectorh φ

Figure 4.1: Depiction of the possible portals between the SM and the dark sector in the Z 1 model.

The BSM Lagrangian of the model can be written as

L Ą LZ1 ` Lmixing ` LΦ ` Ldark mass , (4.1)

where
LZ1 “ ´1

4
pZ 1
µν

pZ 1µν ` 1

2
xM2
Z1

pZ 1
µ

pZ 1µ ´ gD
ÿ

i

“
ψLiXLiγ

µψLi ` ψRiXRiγ
µψRi

‰ pZ 1
µ , (4.2)

Lmixing “ δxM2 pZµ pZ 1µ ´ sinχ

2
pZ 1
µν

pBµν , (4.3)

1Because we adopt the notation of Ref. [40], here and in chapter 5 we use the Dµ “ Bµ ` igAµ sign convention for
the covariant derivative, differently from the first three chapters. We apologize for this switch in notation.
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LΦ “ ´ζijψLiψRjΦ ` h.c. ´ κΦ˚ΦH:H , (4.4)

and
Ldark mass “ ´mijψLiψRj ` h.c. . (4.5)

The hats over gauge fields denote that these are not yet the physical states, which we are going to
find momentarily by means of field transformations. Several comments are in order. First, we have
not written explicitly some terms, such as for example the SUpNdq-covariant kinetic terms of the
dark fermions. Second, we have written the pZ 1 mass explicitly; we have in mind that it dominantly
arises from the vev of Φ, though we implicitly assume also the existence of a second scalar doublet
H 1, charged under Up1q1, which is responsibile for the mass mixing term δxM2 in Eq. (4.3). In general,
one should perform a more complete analysis that also includes the physical scalar degrees of freedom
belonging to H 1, but this goes beyond our scope here, so we simply assume those modes to be heavy
and decoupled. Third, beside mass mixing we have included a kinetic mixing term, parametrized by
sinχ since its coefficient needs to be smaller than 1 in absolute value to ensure positivity of the kinetic
energy. In the next chapter we are going to show that mass and kinetic mixings play very different
role in the dark sector phenomenology: sinχ cannot mediate the decay of dark pions, whereas δxM2

does. Fourth, in the dark fermion Lagrangian the matrices mij and ζij have structures that depend
on the specific realization, in particular on the Up1q1 charge assignments. Several entries are typically
vanishing in a given model. Once the angular mode of Φ is eaten to give mass to the Z 1, one is left
with a physical scalar φ that mixes with h through the κ quartic coupling in Eq. (4.4). This will also
play a role in dark hadron phenomenology, contributing to the decay of the CP -even dark pions.

4.1 Constraints from EWPT
As a first step in the analysis of our model, we calculate the constraints on the Z 1 model from EWPT.
Since our Z 1 does not couple to SM fermions at tree level, we are dealing with a “universal” type of
new physics, which simplifies the discussion. It should be mentioned that Z 1 vectors are, in general,
not universal.

We have already showed in section 2.2 that, when dealing with heavy new physics, we can parametrize
the deviations from the SM by means of 7 form factors built out of the vacuum polarizations ΠV V 1pp2q
of the SM gauge bosons. Taking as an example the B propagator, we have in the Z 1 model

Bµ Bν “ Bµ Bν ` Bµ Bν
pZ 1 ` . . . , (4.6)

where the dots represent subleading corrections. The Z 1 contributes at tree level, so in order to
evaluate the EWPT parameters we can either proceed diagrammatically, or by integrating out the
Z 1 via the equations of motion. Here we choose the latter. Notice that we cannot assume the static
limit for this exercise, and we find it simpler to work in momentum space. We start by analyzing the
kinetic term in Eq. (4.2),

pZ 1
µν

pZ 1µν mom. spaceñ ´2 pZ 1
µ

`
pµpν ´ p2ηµν

˘ pZ 1
ν , (4.7)

where p is the external momentum. We proceed in the same fashion when dealing with Eq. (4.3),

pZ 1
µν

pBµν mom. spaceñ ´2 pZ 1
µ

`
pµpν ´ p2ηµν

˘ pBν . (4.8)

Thus the relevant pieces of the initial Lagrangian read

L “ 1

2
pZ 1
µ

´
pµpν ´ ηµνp2 ` xM2

Z1η
µν

¯
pZ 1
ν ` δxM2 pZµ pZ 1µ ` sχ pZ 1

µ

`
pµpν ´ p2ηµν

˘ pBν , (4.9)
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where sχ ” sinχ . The stationarity of the total action translates to

δL

δ pZ 1
ν

“ pµpν pZ 1
µ ´ p2ηµν pZ 1

µ ` xM2
Z1η

µν pZ 1
µ ` δxM2ηνρ pZρ ` sχ

`
pνpρ ´ p2ηνρ

˘ pBρ “ 0 , (4.10)

ùñ
´
pµpν ´ p2ηµν ` xM2

Z1η
µν

¯
pZ 1
µ “ ´ δxM2ηνρ pZρ ´ sχ

`
pνpρ ´ p2ηνρ

˘ pBρ . (4.11)

To solve for the pZ 1 field, we use a procedure familiar from the derivation of the Proca propagator.
This leads to

pZ 1
µ “ 1

p2 ´ xM2
Z1

˜
ηµν ´ pµpν

xM2
Z1

¸ ´
δxM2ηνρ pZρ ` sχppνpρ ´ p2ηνρq pBρ

¯

“ 1

p2 ´ xM2
Z1

˜
δxM2 pZµ ` sχ

´
pµp

ρ pBρ ´ p2 pBµ
¯

´ δxM2

xM2
Z1

pµp
ρ pZρ

¸
.

(4.12)

Now we plug this expression back into the initial Lagrangian, paying attention to write everything in
the same basis, since in Eq. (4.3) we have both pZ and pB, where pZ “ pcW xW 3 ´ psW pB. Here pcW and psW
denote respectively the cosine and sine of the weak mixing angle. The effective Lagrangian takes the
form, after dropping terms that can be neglected due to Eq. (2.26),

Leff “ ´1

2
xW 3
µΠ33pp2qxW 3µ ´ 1

2
pBµΠBBpp2q pBµ ´ xW 3

µΠ3Bpp2q pBµ ` . . . , (4.13)

with $
’’’’’’’’&
’’’’’’’’%

Π33pp2q “ ´ 1

p2 ´ xM2
Z1

´
δxM2

¯2

pc2W ,

Π3Bpp2q “ ` 1

p2 ´ xM2
Z1

„
psWpcW

´
δxM2

¯2

` δxM2sχp
2pcW


,

ΠBBpp2q “ ´ 1

p2 ´ xM2
Z1

„´
δxM2

¯2

ps2W ` 2δxM2sχpsW p2 ` s2χp
4


.

(4.14)

We now have all the ingredients to calculate the oblique parameters, for which we find by expanding
in p2

pS “ g

g1Π
1
3Bp0q “ ´pcW

psW

«
psWpcW

pδxM2q2
xM4
Z1

` sχpcW
δxM2

xM2
Z1

ff
, (4.15)

pT “ Π33p0q ´ ΠW`W´p0q
M2
W

“ pc2W pδxM2q2

M2
W

xM2
Z1

, (4.16)

pU “ Π1
W`W´p0q ´ Π1

33p0q “ ´ pc2W
pδxM2q2

xM4
Z1

, (4.17)

V “ M2
W

2
pΠ2

33p0q ´ Π2
W`W´p0qq “ pc2WM2

W pδxM2q2
xM6
Z1

, (4.18)

W “ M2
W

2
Π2

33p0q “ pc2WM2
W pδxM2q2
xM6
Z1

, (4.19)

X “ M2
W

2
Π2

3Bp0q “ ´M2
W

˜
sχpcW δxM2

xM4
Z1

` psWpcW pδxM2q2
xM6
Z1

¸
, (4.20)
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Y “ M2
W

2
Π2
BBp0q “ M2

W

xM2
Z1

˜
psW δxM2

xM2
Z1

` sχ

¸2

. (4.21)

Notice that in this model we have simply ΠW`W´pp2q “ 0. We have boxed the 4 corrections that have
been shown [41] to be sufficient to describe heavy universal new physics. The remaining 3 parameters
have the same symmetries as some of the previous 4, but are subleading: for instance,

| pU | »
˜
M2
W

xM2
Z1

¸
pT ! pT . (4.22)

Having calculated the oblique parameters, we now aim to set constraints on the Z 1 parameter space
from EWPT data. To do so we construct a χ2 fit, following closely Ref. [42]. While this is a relatively
old study, the electroweak fit has not changed dramatically since then, so their results conveniently
suffice to gain some initial insight on the problem. Calling p the theoretical parameters of the model,
we build the χ2 as follows,

χ2ppq “
ÿ

X

pXthppq ´Xexpq2
σ2X

, (4.23)

where the various quantities are defined [42] in the equation

R ¨

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

pS
pT
pU
V

W

X

Y

δCq
δǫb
δǫq

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

looooomooooon
Xth

“ 10´3

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.54l ´ 0.04

0.08l ` 0.13

0.21l ` 0.41

0.72l ` 0.16

´0.33l ´ 0.36

0.16l

´0.12l ´ 0.9

´0.31l ´ 5.6

0.18l ´ 0.4

0.66l ´ 26

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

looooooooooooomooooooooooooon
Xexp

˘ 10´3

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.21

0.43

0.5

0.54

0.75

1.2

1.5

2.0

8.7

18

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

looooooomooooooon
σX

, (4.24)

where l ” logpmh{MZq « 0.32 (Ref. [42] was published well before the Higgs discovery, so mh was left
as a free parameter in their analysis), and

R “ 10´3 ¨

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´404 353 ´133 173 137 ´753 276 4 18 27

´245 ´19 492 ´747 30 ´37 280 15 ´40 ´235

´16 208 146 ´152 ´724 ´224 ´407 319 33 260

´222 691 ´76 5 ´120 550 285 ´129 55 216

´17 ´330 177 ´36 114 ´31 273 ´12 1 876

3 232 ´7 ´283 303 ´118 ´589 ´581 ´175 209

´42 ´68 132 31 ´44 ´37 ´66 ´288 939 ´33

´203 ´200 350 375 ´445 ´9 126 ´587 ´282 ´124

´642 ´381 ´575 ´219 ´161 147 ´112 ´41 9 11

519 0 ´458 ´341 ´329 ´199 376 ´337 ´1 2

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

. (4.25)

These results were obtained from a fit to LEP1 and LEP2 data [42]. We include in the theoretical pre-
diction our results for the 7 oblique parameters. This formalism also accounts for the (non-universal)
vertex corrections δCq, δǫb and δǫq, which however vanish in our setup. We then use Eqs. (4.23)
and (4.24) to build χ2pδxM2, xMZ1 , sinχq. The allowed regions of our input parameter are those satis-
fying

χ2 ´ χ2
min ď χ2

critical , (4.26)
where χ2

min is the minimum of the χ2 distribution and χ2
critical is a critical value that depends on the

chosen confidence level and on the number of degrees of freedom. In our case we are going to fix sinχ
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Figure 4.2: Allowed regions of the δxM versus xMZ1 parameter space at 95% CL. We have chosen to show results
for different values of sinχ, corresponding to different colors.

to representative values, hence χ2
critical “ 5.99 for 95% CL and two degrees of freedom. The results

are shown in Fig. 4.2, where δxM is plotted versus xMZ1 , showing the allowed regions at 95% CL. We
assume δxM2 ą 0 for concreteness. This is a first original result of our work, showing quantitatively
how large δxM2 can be as a function of the heavy Z 1 mass, while remaining consistent with EWPT.
We notice that varying sinχ has a moderate impact on the constraint. We conclude this part by
mentioning that the opposite situation where the Z 1 is light – lighter than the SM Z – is also very
interesting, and not experimentally ruled out. However, it requires an ad-hoc treatment of EWPT
that goes beyond the scope of this thesis. We leave such study as a promising direction for future
research.

4.2 Constraints from Z invisible decays

Other constraints on the model come from invisible decays of the Z boson, if we make the reasonable
assumption that most of the produced dark hadrons leave the experimental apparatus undetected.
In order to calculate the width for Z decay to dark fermions, we perform the diagonalization of the
vector fields to the mass eigenstate basis. This will lead us to identify the physical spin-1 fields Z1

and Z2, the former of which corresponds to the observed Z boson.

First we focus on the kinetic terms and perform the following field redefinition,
˜

pBµ
pZ 1
µ

¸
“

ˆ
1 ´ tanχ

0 1{ cosχ

˙ ˆ
Bµ
Z 1
µ

˙
. (4.27)
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Next, we remove the mixing of the massive bosons through a rotation,
¨
˝
Aµ
Zµ1
Zµ2

˛
‚ “

¨
˝
1 0 0

0 cos ξ sin ξ

0 ´ sin ξ cos ξ

˛
‚

¨
˝
Aµ
Zµ
Z 1
µ

˛
‚ “

¨
˝

pcW psW 0

´psW cos ξ pcW cos ξ sin ξ

psW sin ξ ´pcW sin ξ cos ξ

˛
‚

¨
˝
Bµ
W 3
µ

Z 1
µ

˛
‚ . (4.28)

Putting all together we are able to relate the hatted basis p pAµ, pZµ,xZ 1
µq with the pAµ, Zµ1, Zµ2q basis,

¨
˝
Aµ
Zµ1
Zµ2

˛
‚ “

¨
˝
1 0 pcW sinχ

0 cos ξ ´psW cos ξ sinχ` sin ξ cosχ

0 ´ sin ξ `psW sin ξ sinχ` cos ξ cosχ

˛
‚

¨
˚̋

pAµ
pZµ

xZ 1
µ

˛
‹‚ (4.29)

which can be inverted to obtain
¨
˚̋

pAµ
pZµ

xZ 1
µ

˛
‹‚ “

¨
˝
1 ´pcW sin ξ tanχ ´pcW cos ξ tanχ

0 cos ξ ` psW sin ξ tanχ ´ sin ξ ` psW cos ξ tanχ

0 sin ξ{ cosχ cos ξ{ cosχ

˛
‚

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon
L

¨
˝
Aµ
Zµ1
Zµ2

˛
‚ . (4.30)

The mixing angle has the expression

tan 2ξ “ ´2 cosχpδxM2 ` psW sinχxM2
Zq

xM2
Z1 ´ cos2 χxM2

Z ` ps2W sin2 χxM2
Z ` 2psW sinχδxM2

. (4.31)

Having removed all the mixing terms in Eq. (4.3), we now look at the interaction Lagrangian between
the fermions and the physical vectors Z1 and Z2. Recall that our original Lagrangian was

L “ 1

2
xM2
Z

pZµ pZµ ` 1

2
xM2
Z1

pZ 1
µ

pZ 1µ ` δxM2 pZ 1
µ

pZµ ´
ÿ

f

g

pcW
pZµf̄γµ

˜
T 3
Lf ´ 2ps2WQf

2
´
T 3
Lf

2
γ5

¸
f

´ e
ÿ

f

f̄Qfγ
µf pAµ ´ gD

ÿ

i

`
ψLiXLiγ

µψLi ` ψRiXRiγ
µψRi

˘ pZ 1
µ ,

(4.32)

where kinetic terms are understood. Going to the mass eigenstate basis,

L “ 1

2

`
A Z1 Z2

˘
¨
˝
0

M2
Z1

M2
Z2

˛
‚

¨
˝
A

Z1

Z2

˛
‚ ´

´
eJem gZ pJZ gDJD

¯
L

¨
˝
A

Z1

Z2

˛
‚ , (4.33)

where MZ1
“ MZ . Notice that the interactions of the photon are not modified with respect to the

SM,
LQED “ ´ef̄QfγµfAµ . (4.34)

The interaction between the dark currents and the physical Z is now

L Ą ´ sin ξ

cosχ
gDJ

µ
DZ1µ . (4.35)

As a last step, we need to go to the mass eigenstate basis for the dark fermions, as well. Performing
unitary transforms that take us to the physical states, labeled ψ1, we obtain

J
µ
D “ ψLXLγ

µψL ` ψRXRγ
µψR ÞÑ ψ

1
L U

:
LXLULloooomoooon
X1

L

γµψ1
L ` ψ

1
R U

:
RXRURloooomoooon

X1
R

γµψ1
R

“ ψ
1 X1

L ` X1
R

2loooomoooon
X1

V

γµψ1 ` ψ
1 X1

R ´ X1
L

2loooomoooon
X1

A

γµγ5ψ
1 ,

(4.36)
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where we have adopted a matrix notation in dark flavor space. The Feynman amplitude for Z1 Ñ ψ
1
iψ

1
j ,

where i, j denote flavor indices, reads

iM “ ´i sin ξ
cosχ

gD upq1q
`
X1
V γ

µ ` X1
Aγ

µγ5
˘
ij
vpq2qǫµppq (4.37)

and by neglecting the masses of the dark quarks and summing over all flavors we arrive at

ΓpZ1 Ñ ψ
1
ψ1q “ Ndg

2
D

12π

sin2 ξ

cos2 χ
MZ1

Tr
“
X1
V pX1

V q: ` X1
ApX1

Aq:‰

“ Ndg
2
D

24π

sin2 ξ

cos2 χ
MZ1

Tr
“
XLpXLq: ` XRpXRq:‰

“ Ndg
2
D

24π

sin2 ξ

cos2 χ
MZ1

ÿ

i

pX2
Li `X2

Riq ,

(4.38)

where Nd is the number of dark colors. In the last step, we have used the fact that in the initial basis
the Up1q1 charge matrices can be taken as diagonal and real. Incidentally, we see how the decay width
does not depend on the rotation matrices UL,R: this result was to be expected, since we are summing
over all dark quarks. From the above result we extract a constraint on the mixing angle ξ. Making
the safe approximation that the kinetic mixing parameter is small, cosχ « 1, and recalling that the
BSM invisible decay width of the Z must be less than 2 MeV [54], we find

ξ ă 2.3 ˆ 10´2

c
3

Nd

1

gD

bř
ipX2

Li `X2
Riq

. (4.39)

This is another quantification of the allowed size of the mixing between Z and Z 1, which can be
compared to the results of our EWPT analysis. As reference values, we have fixed Nd “ 3 (inspired
by Neutral Naturalness ideas), and order one values for the Up1q1 charges and gauge coupling. Our
discussion of constraints on the Z 1 model has come to a conclusion. In the next chapter, we take a
closer look at the dark pion phenomenology expected in this setup.
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Chapter 5

Dark pions in the Z 1 model

In this chapter we investigate the phenomenology of the dark pions in the Z 1 model introduced in the
previous chapter. We assume N “ 2 light flavors of dark quarks, the minimal choice for pNGBs to
be present in the theory. At the qualitative level the dark pion properties are similar to the heavy
fermion model reviewed in section 3.2, but the details of the mediation are different: the CP -odd
pions can be viewed as ALPs coupled to the SM by the Z – Z 1 portal, while the CP -even pions are
light scalars connected to the SM via the h – φ portal. In section 5.1 we derive the expression of the
effective decay constant for the CP -odd dark pions, f pbq

a , which is one of the significant results of this
thesis. In section 5.2 we discuss the properties of the CP -even pions.

5.1 The Z – Z 1 portal for CP -odd dark pions

The first question we ask, is what expression the effective decay constant f pbq
a takes in the Z 1 model,

and how it compares to the result found in the heavy fermion model, Eq. (3.12). To derive the answer
we integrate out both Z1 and Z2 at tree level, obtaining an effective Lagrangian valid at the relevant
energy scale E „ mπ̂ ! MZ1,2

.

ψ

ψ

f

f̄

Z1,2 ùñ

f

f̄

ψ

ψ

Figure 5.1: Diagrams illustrating the process of integrating out Z1,2, producing effective 4-fermion interactions.

Solving the EOM and plugging back into the initial Lagrangian, we obtain

Leff “ ´1

2

´
eJem gZ pJZ gDJD

¯
L

¨
˝
0

M´2
Z1

M´2
Z2

˛
‚LT

¨
˝
eJem

gZ pJZ
gDJD

˛
‚ . (5.1)

Since we are interested in four-fermion operators of the f̄fψψ type, we only keep the JD ˆJSM pieces,

Leff Ą ´gDJD
#
L32

M2
Z1

´
L12eJem ` L22gZ pJZ

¯
` L33

M2
Z2

´
L13eJem ` L23gZ pJZ

¯ +
(5.2)
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Furthermore, recalling the discussion around Eq. (3.11), it is sufficient to retain the following terms,

Leff Ą 1

2
gDgZT

3
Lf f̄γ

µγ5f

˜
L32L22

M2
Z1

` L33L23

M2
Z2

¸
JD . (5.3)

We still need to simplify the sum in parentheses. By making use of the definitions of the Lij in
Eq. (4.30), we find

L32L22

M2
Z1

` L33L23

M2
Z2

“
´ sin ξ cos ξ

`
M2
Z1

´M2
Z2

˘
` psW tanχ

`
M2
Z1

cos2 ξ `M2
Z2

sin2 ξ
˘

cosχM2
Z1
M2
Z2

“ ´ δxM2

cos2 χM2
Z1
M2
Z2

, (5.4)

where in the last step we have made use of the exact relations

M2
Z1

cos2 ξ `M2
Z2

sin2 ξ “ xM2
Z , pM2

Z1
´M2

Z2
q sin ξ cos ξ “ δxM2

cosχ
` xM2

ZpsW tanχ . (5.5)

In summary, so far we have obtained

Leff Ą ´ 1

2
gDgZT

3
Lf f̄γ

µγ5f
δxM2

cos2 χM2
Z1
M2
Z2

JD . (5.6)

The last step consists in replacing the axial part of JD with TrpσbX1
Aqfπ̂Bµpπb, following the same

algebraic manipulations we performed around Eq. (3.7). The end result is

Leff Ą ´ 1

2
gDgZ TrpσbX1

AqfpπBµpπb T 3
Lf f̄γ

µγ5f
δxM2

cos2 χM2
Z1
M2
Z2

, (5.7)

which matches Eq. (3.12) with cf “ T 3
Lf and

1

f
pbq
a

“ 1

2
gDgZ TrpσbX1

Aqfpπ
δxM2

cos2 χM2
Z1
M2
Z2

. (5.8)

This is one of our main results. We observe that the interaction vanishes when δxM2 Ñ 0. In other
words, we find that kinetic mixing does not mediate the decay of the dark pions. With a little thought,
we realize this was expected [57]: kinetic mixing only affects the transverse modes of gauge fields, and
exchange of a single transverse vector cannot mediate the decay of a pion (another way to say this, is
that pµ

`
pµpν ´ p2ηµν

˘
“ 0).

5.1.1 Comparing the two UV completions
Let us briefly compare the result we have just found for the Z 1 completion to the one for the completion
including heavy fermions, Eq. (3.12). Assuming the traces over dimensionless matrices are Op1q, we
find the parametric estimates ˆ

1

fa

˙

fermions
„ Y 2fpπ

M2
(5.9)

for the heavy fermion model, where M denotes the mass scale of the Q states and we have set rY “ 0

for simplicity, whereas in the Z 1 model
ˆ

1

fa

˙

Z1

„ gDgZfpπ
M2
Z2

δxM2

M2
Z

. (5.10)
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If we now assume gDgZ „ Y 2, which is quite reasonable since we expect all of these to be Op1q
couplings, we find that for the same scale of new physics MZ2

„ M the ratio of effective decay
constants is

pfaqfermions

pfaqZ1
„ δxM2

M2
Z

. (5.11)

Recalling the bounds from EWPT presented in Fig. 4.2, we conclude that fa needs to be slightly larger
in the Z 1 completion, by a modest amount. For instance, for MZ2

“ 1 TeV the 95% CL constraint
from EWPT is δxM2{xM2

Z ă 0.30. The situation changes if the Z 1 is light but, as already mentioned,
we leave a discussion of that regime to future work.

5.1.2 A concrete example model
To gain some additional insight, we write down a concrete model with N “ 2 dark flavors. The Up1q1

charges are chosen as follows, #
X1L “ X1R ” X1

X2L “ X2R ” X2

. (5.12)

This automatically makes the theory anomaly-free. We also assume that the scalar Φ has charge
XΦ “ X1 ´X2, so that the following dark Yukawa Lagrangian is invariant under Up1q1,

L “ ´y1ψ1Lψ2RΦ ´ y2ψ2Lψ1RΦ
˚ ` h.c. . (5.13)

Furthermore, taking m “ diagpm1, m2q, the total mass Lagrangian can be written in matrix form as

L
tot
mass “ ´

`
ψ1L ψ2L

˘ ˆ
m1 y1Φ

y2Φ
˚ m2

˙

looooooomooooooon
h

ˆ
ψ1R

ψ2R

˙
` h.c. . (5.14)

In general, all the entries of the matrix h are complex quantities. We then ask ourselves how many
of the 4 complex phases that appear in this matrix can be reabsorbed by field redefinitions. It is easy
to see that after 3 entries are made real by rephasing the fermion fields, the freedom at our disposal
is exhausted. This leaves us, in general, with one physical CP -violating phase. We should also note
that, unless one quark is massless [5], the dark sector suffers from a strong CP problem analogous to
the one of the SM. Here we do not tackle this aspect, simply disregarding the CP -violating phase of
dark QCD.

For simplicity, we make a further simplification and assume y2 “ 0, which guarantees CP conservation
of the Lagrangian. In this case the (real) mass Lagrangian reads

xhy “
ˆ
m1 y1vΦ
0 m2

˙
, (5.15)

which can be diagonalized to M via orthogonal transformations,

M “ R:pθLq xhyRpθRq , (5.16)

where
Rpθq ”

ˆ
cos θ ´ sin θ

sin θ cos θ

˙
. (5.17)

In order to evaluate the dark pion decay constant in Eq. (5.8) we need the expression of the matrix
X1
A ,

X1
A “ 1

2

„
Rp´θRq

ˆ
X1

X2

˙
RpθRq ´Rp´θLq

ˆ
X1

X2

˙
RpθLq



“ X1 ´X2

4

ˆ
cos 2θR ´ cos 2θL sin 2θL ´ sin 2θR
sin 2θL ´ sin 2θR cos 2θL ´ cos 2θR

˙
,

(5.18)
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from which the traces are evaluated,

Trrσ1X1
As “ 1

2
pX1 ´X2q psin 2θL ´ sin 2θRq , (5.19)

Trrσ2X1
As “ 0 , (5.20)

Trrσ3X1
As “ 1

2
pX1 ´X2q pcos 2θR ´ cos 2θLq . (5.21)

We find a zero trace for pπ2 because the model preserves CP , and CP -even dark pions cannot decay
through the Z – Z 1 portal.

To better illustrate our findings, we consider two specific sub-cases of Eq. (5.15) that produce simple
analytical results:

• (m2 “ 0) In this case one quark is massless1. Paying attention to some subtleties in the diago-
nalization of the mass matrix, which require in some parameter regimes to alter the definition
of the rotation matrices with respect to the one given above, we find

Trrσ1X1
As “ sgnpy1vΦ ´m1q pX1 ´X2q m1y1vΦ

m2
1 ` y21v

2
Φ

, (5.22)

Trrσ3X1
As “ ´ pX1 ´X2q y21v

2
Φ

m2
1 ` y21v

2
Φ

. (5.23)

We see that the effective decay constants of pπ1 and pπ3 are similar if m1 „ y1vΦ is realized.

• (m2 “ m1) Again we must pay attention to perform the correct diagonalization of the mass
matrices. The result is

Trrσ1X1
As “ 0 , (5.24)

Trrσ3X1
As “ ´ pX1 ´X2qd

4m2
1

y21v
2
Φ

` 1

.
(5.25)

In this scenario, the decay of pπ1 via the Z – Z 1 portal is accidentally forbidden.

5.2 The h – φ portal for CP -even dark pions
In the Z 1 model, the CP -even dark pions (namely pπ2, in the N “ 2 scenario with CP conservation)
decay to the SM by mixing with the Higgs boson and the radial mode φ of the Up1q1-charged complex
scalar Φ, which in unitary gauge reads Φ “ vΦ ` φ{

?
2. It is important to stress that in this thesis

we assume the physical degrees of freedom belonging to the second Higgs doublet H 1 (which carries
nonzero Up1q1 charge, in order to generate δxM2) to be heavy and decoupled. Our starting point is
Eq. (4.4), which we repeat here for convenience,

LΦ “ ´ ζijψLiψRjΦ ` h.c. ´ κΦ˚ΦH:H . (5.26)

The term proportional to κ is responsible for a mass mixing between the Higgs boson h and φ, which
is diagonalized by a rotation with angle

tan 2θs » 2
?
2κvΦv

m2
h ´m2

φ

. (5.27)

The rotation of h and φ results in an interaction between the physical Higgs field and the dark quarks,

L Ą ´ ζij?
2
sin θsψLiψRjhphys ` h.c. , (5.28)

1Note that in this case the strong CP problem of dark QCD would be automatically solved.
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which mediates Higgs decay to dark fermions, with

Γphphys Ñ ψψq » Ndmh

16π
Trpζζ:q sin2 θs . (5.29)

The branching ratio of the Higgs invisible decays must be smaller than 0.13 at 95% CL [55], yielding
the bound2

NdTrpζζ:q sin2 θs ă 2 ˆ 10´4 . (5.31)
At energies E ! mh,mφ, it is possible to integrate out the h and φ, leading to an effective Lagrangian
coupling dark fermions and SM fermions,

Leff Ą ´yf

2
sin θs cos θs

˜
1

m2
φ

´ 1

m2
h

¸
pζijψLiψRj ` h.c.qf̄f . (5.32)

After moving to the mass eigenbasis for the dark fermions, we obtain

Leff Ą ´ yf

2
?
2

sin θs cos θspm2
h ´m2

φq
?
2m2

hm
2
φ

”
ψ

1 `
Cs ` C:

s ` pCs ´ C:
sqγ5

˘
ψ1

ı
f̄f , (5.33)

with
Cs “ U

:
LζUR . (5.34)

Finally, we translate the result to the hadronic basis. Since a 2 ˆ 2 anti-hermitian matrix can be
decomposed as

Cs ´ C:
s “ ´

3ÿ

q“ 0

Tr
“
iσqpCs ´ C:

sq
‰ iσq

2
, (5.35)

we obtain a coupling

´
pB0fpπκvΦv
2m2

hm
2
φ

yf?
2
Tr

“
iσbpCs ´ C:

sq
‰

pπbf̄f . (5.36)

To conclude, we specialize the above results to the concrete example model presented in section 5.1.2.
In the unitary gauge, where the angular mode of Φ has been eaten by the Z 1, we can identify

ζ “
ˆ
0 y1
y2 0

˙
. (5.37)

In our assumed limit y2 “ 0, CP is conserved. Therefore, the only non-vanishing trace is the one
associated with pπ2. In the two simple cases we discussed before, we find

• (m2 “ 0)
Tr

“
iσ2pCs ´ C:

sq
‰

“ sgnpy1vΦ ´m1q 2y1m1b
y21v

2
Φ `m2

1

; (5.38)

• (m2 “ m1)
Tr

“
iσ2pCs ´ C:

sq
‰

“ ´ 4y1m1b
y21v

2
Φ ` 4m2

1

. (5.39)

These results conclude our first look at the Z 1 model. While a lot more remains to be done, they will
provide the basis for future investigations of this scenario and of the associated phenomenology, both
in the regime where the Z 1 is heavy, as assumed here, and in the yet-unexplored regime where the Z 1

is light.
2If mφ ă mh{2 (which is not likely to be verified in the parameter regions considered in this thesis, but may happen

if the Z 1 is light), the κ term in Eq. (5.26) also mediates the h Ñ φφ decay, whose width is

Γph Ñ φφq “
κ2v2

32πmh

˜
1 ´ 4

m2
φ

m2
h

¸1{2

. (5.30)
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Chapter 6

Conclusions

The discovery of the Higgs boson in 2012 marked the start of a new era for particle physics. It
completed the SM, but at the same time it exacerbated the naturalness problem of its scalar sector. If
the SM is coupled to new dynamics at some high energy scale – which appears unavoidable, given the
many open questions the SM does not have an answer for – then the Higgs mass is highly sensitive to
large quantum corrections and can be made as small as experimentally observed only at the price of
fine tuning.

Robust solutions to this naturalness (or hierarchy) problem, based on symmetry principles, have been
known for decades. While very different from each other, both classes of these “traditional” solutions
(namely SUSY and compositeness, the latter invoking a description of the Higgs as pNGB) shared
a central phenomenological prediction: new particles carrying QCD color should be found below the
TeV. The LHC Runs 1 and 2 (as well as the initial portion of Run 3) have searched extensively for
such states but have come back empty-handed, pushing the bounds on QCD-charged new particles
into the 1.2 TeV to 1.5 TeV range depending on the specific realization, as we reviewed in chapter 1.

The lesson we have learned from these developments, is that an adjustment in perspective is likely
necessary. In this thesis we have adopted a conservative point of view: perhaps the big picture we
have built concerning the hierarchy problem and its symmetry-based solutions is correct, but we have
missed some important details of the concrete realization. The Neutral Naturalness (NN) framework
materializes this approach, by building models where the new particles appearing at the TeV are not
charged under QCD color (and sometimes, under any of the SM gauge symmetries). This ameliorates
significantly the naturalness of the Higgs mass, allowing the top partners to be quite light without
conflicting with any experimental constraints from the LHC.

As we discussed in chapter 1, the best-known example of NN model is the Twin Higgs, where the Higgs
boson appears as one of the pNGBs arising from an SUp4q{SUp3q spontaneous symmetry breaking at
scale f „ TeV. A discrete symmetry exchanging the SM and Twin sectors ensures the cancellation
of the quadratic corrections to the Higgs mass. Logarithmic corrections do not cancel, but are kept
to an acceptable level for a solution to the little hierarchy problem up to Λ À 4πf . Importantly, 2-
loop naturalness arguments suggest that Twin QCD should be a gauge symmetry, and that it should
confine at a scale not far from that of SM QCD, namely around the GeV scale. This is a powerful, and
generic, prediction of NN: in this framework, we expect a dark QCD to exist around the GeV scale.
A set of portal interactions, including at least the Higgs boson, can allow us to access the dark sector
and potentially give rise to spectacular signals, if some of the dark hadrons decay back to the SM.

In chapter 2 we introduced some useful theoretical prerequisites, namely chiral perturbation theory
and the electroweak precision tests (EWPT) of the SM. Then, in chapter 3 we presented the main ideas
about confining dark sectors. At first, we introduced the concrete dark QCD setup that is realized
in the Fraternal Twin Higgs model (namely a minimal implementation of the Twin Higgs, where the
first two generations of the SM are not twinned) and the most salient features of its phenomenology.
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However, we also observed that the space of NN-motivated or -inspired dark sectors is far wider,
and moved on to present a different class, which is the main subject of this thesis. It consists of
models where the dark sector contains N ě 2 dark flavors, so that pNGB pseudoscalar mesons sit
at the bottom of the dark hadron spectrum, and the interactions between the SM and dark sectors
are mediated by the Z boson (in addition to the Higgs boson). This scenario found its inception in
a complete NN model (based on accidental SUSY of the mass spectrum), but is considered here in a
bottom-up approach, without specifically requiring a solution to the little hierarchy problem. It can
be UV-completed in two ways: either by invoking heavy fermions carrying both SM electroweak and
dark QCD color charges, or by introducing a Z 1 vector that mixes with the SM gauge bosons.

After reviewing the first class of UV completion in chapter 3, and highlighting the use of ChPT tech-
niques in extracting phenomenological predictions for light new particles coupled to the SM quarks,
in chapter 4 we introduced the second class of UV completions, which has not been studied previously
in the literature and is the main novelty of this thesis. We wrote down the model Lagrangian and pro-
ceeded to calculate the constraints on the parameter space that stem from EWPT. We also evaluated
the constraints arising from Z invisible decays, which apply in large regions of parameter space, as
the dark pions tend to be rather long lived compared to the length scales of accelerator experiments.
We found that, in the region of TeV-scale Z 1 we are interested in here, EWPT constraints require the
mixing mass term δxM2 À p100 GeVq2. Our analysis allows one to easily derive precise bounds, for
any values of the model parameters.

In chapter 5 we discussed the properties of dark pions in the Z 1 model. In particular, we calculated
the value of the effective decay constant f pbq

a for the CP -odd dark pions, which decay via the Z – Z 1

portal. As expected on general grounds, we found that only mass mixing mediates this decay, whereas
kinetic mixing does not contribute. We also discussed the key features of the CP -even dark pions,
whose decay is mediated by the SM-like h and by the radial mode φ of the complex scalar that gives
the Z 1 its mass.

The original results we presented in chapter 4 and chapter 5 only scratch the surface in the analysis
of the Z 1 UV completion of the Z portal. Nevertheless, we hope they will provide a useful basis for
future studies. We conclude by mentioning some aspects that we believe deserve future attention. The
first is a study of the phenomenological signatures of the model, focusing especially on the interplay
between Z decays to “dark jets” made of dark pions at LHC Run 3 and beyond, and searches for
rare decays of B mesons at Belle II. The second is a discussion of the regime where the Z 1 is light –
possibly lighter than the Z. This requires a dedicated analysis of EWPT that has, to our knowledge,
not appeared yet in the literature. While it goes beyond the scope of this thesis, we view it as an
interesting avenue for future research.
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