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S U M M A RY

The project has the aim to develop a C++ software for a robot vehicle in a
real time system for management the communication between the CAN bus
and ROS. During development test measure the efficacy, in terms of time and
messages exchanged, several versions of software to test the communication
via CAN bus the libraries provided by the PC manufacturer. In addition, it has
also been tested software solutions that use, with different combinations, mu-
tex and condition variables during the phases of sending and receiving. From
the analysis of the experiments it has been found that, for this architecture, the
most efficiently communication via CAN bus has been obtained using mutex
and condition variables during the sending of the CAN message.
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1
I N T R O D U C T I O N

Autonomous vehicle is capable of sensing its environment and navigating
without human input and the ATV (all terrain vehicle) project has transformed
an electronic four-wheel vehicle in a robot which, autonomously, is able to fol-
low a person who walks in front of it and drive by itself without the human
control [1][2]. The motivation behind this idea is to help a person to carry peo-
ple or carriage transportation, may it be luggage, boxes, groceries, etc. This
idea also proves to be very useful for handicap/disabled applications, or also
for driving the vehicle with a remote control like smartphone. This work is
a part of the ATV project to equip with sensors and actuators which enable
the higher level system to control ATV’s motions and therefore enable two
autonomous main actions: follow a user and avoid obstacles in real time in
outdoor environment. In order for the autonomous vehicle to achieve these
features, the system is implemented with a combination of computer vision,
distance sensors and controls software algorithm.
The aim of this thesis is to develop the C++ code written for the robot car with
the purpose of interfacing the communication between the CAN bus with
odometry-based motion measurement and localisation, and the software for
planning trajectory via ROS.
Data detected from car’s sensor are sent through the interface of this software
to planning controller trajectory layer which generates a path and sends the
information of angle of steering and speed to the vehicle.
The overview of autonomous vehicles has been done in the first chapter where
it is defined the robot car, its history of the past, present and the future of them,
the technology and benefits. The chapter number two introduce and describe
in detail the CAN bus and the protocol J1939, both adopted for this project.
Entering into the project, the hardware chapter describes the components of
the vehicle that allow the car to be autonomous. The fourth chapter focus on
the software used, it explains the communication with ROS framework and an-
alyzes and exposes the libraries used for developing the communication with
the CAN bus and the tools used in the ROS frameworks, in addition in this
chapter is discussed the geometry of the car involves the use of the geometry
of Ackerman. The developed software is described in the fifth chapter. The
experiments and the results obtained for developing the software are exposed
in the 6th chapter and different versions of the software have been tested for
discover which version allows the best management of communication. The
experiments investigates whether the presence of condition variables produce
positive or negative effects. The conclusion of the experiments are in the sev-
enth and last chapter and concludes that the presence of variable conditions,
for this system, allow a good performance of exchanging messages in the pres-
ence of them only in the functions of sending message with the CAN bus.
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2
A U T O N O M O U S V E H I C L E S

2.1 introduction

An autonomous vehicle is defined as a passenger vehicle that drives by it-
self. An autonomous vehicle is an unmanned vehicle with some level of au-
tonomy build in front teleoperations to fully intelligent systems. Unmanned
aerial vehicles (UAVs), unmanned surface vehicles (USVs), unmanned under-
sea vehicles (UUVs) and unmanned ground vehicles (UGVs) have some level
of autonomy build in and it is common to call them with the acronym "AV"
to refer to all such autonomous vehicles. A autonomous vehicles (also called
driverless, driver-free, self-driving, autopiloted or robot) is a self-piloted vehi-
cle that does not require an operator to navigate and accomplish its tasks. A
fully autonomous car can be defined as a car which is able to perceive its en-
vironment, decide what route to take to its destination and drive it. With the
recent develop of technology and robotics allow significant changes to travel
in ground, air and submarine without the need for human supervision or op-
eration, everyone in the car could be a passenger, or it could even drive with
no occupants at all [3].

2.2 levels

National Highway Traffic Safety Administration (NHTSA), in 2013, released a
five-tiered system for automated vehicle classification [4]:

• No automation (Level 0) - The driver is in complete and sole control of
the primary vehicle controls over steering, braking and throttle, although
vehicle may provide warnings, at all times.

• Function-specific Automation (Level 1): Automation at this level involves
one or more specific control functions. For example of specific control
functions, such as cruise control, lane guidance, electronic stability con-
trol, automated parallel parking or pre-charged brakes, where the vehicle
automatically assists with braking to enable the driver to regain control
of the vehicle or stop faster than possible by acting alone. Drivers are
fully engaged and responsible for overall vehicle control (hands on the
steering wheel and foot on the pedal at all times).

• Combined Function Automation (Level 2): Automation of multiple and
integrated control functions, such as adaptive cruise control with lane
centering and traffic jam assistance. Drivers are responsible for moni-
toring the roadway and are expected to be available for control at all
times, but under certain conditions can disengaged from vehicle opera-
tion (hands off the steering wheel and foot off pedal simultaneously).
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• Limited Self-Driving Automation (Level 3): Vehicles, at this level of au-
tomation, enable the driver to cede full control of all safety-critical func-
tions under certain traffic or environmental conditions and in those con-
ditions to rely heavily on the vehicle to monitor for changes in those
conditions requiring transition back to driver control. Drivers are not ex-
pected to constantly monitor the roadway, but with sufficiently comfort-
able transition time. The Google car is an example of limited self-driving
automation.

• Full Self-Driving Automation (Level 4): Vehicles can perform all driving
functions and monitor roadway conditions for an entire trip. Driver will
provide destination or navigation input, but is not expected to be avail-
able for control at any time during the trip, so the vehicle can operate
with occupants who cannot drive and without human occupants.

2.3 history

For 125 years the automotive industry has been a force for innovation and
economic growth. Now, in the early decades of the 21 st century, the new tech-
nologies and the innovation is speeding up the entry of self-driving vehicles
in the daily life.
Autonomous vehicles have existed as prototypes and demonstration vehicles
since the 1960s.
In 1962 Robert Fenton, Pioneer of autonomous vehicle, with his team at the
Ohio State University built the first automated vehicle (Figure 1), which is also
believed to be the first land vehicle to have a computer [5]. Fenton had his self-
driving cars stay on course by following a current-carrying wire laid down
in the center of the roadway. A large protuberance packed with electronics to
sense the current stuck out from the bumper of his early models.

Figure 1: First test model of an autonomous car in the 1960s
Image from http://theinstitute.ieee.org/people/achievements/the-drivers-

behind-autonomous-vehicles
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In 1977 Tsukuba Mechanical engineering lab built the first self-driving vehi-
cle. The car achieved the speeds of up to 30 km per hour by tracking white
street markers for up to 50 meters.
In 2004 DARPA’s Grand Challenge was launched with the goal of demonstrat-
ing AV technical feasibility by navigating a 150-mile route. While the best team
completed just over seven miles, one year later five driverless cars successfully
navigated the route. In 2007, six teams finished the new Urban Challenge,
with AVs required to obey traffic rules, deal with blocked routes, and maneu-
ver around fixed and moving obstacles, together providing realistic every-day-
driving scenarios.

Nowdays, the recent high profile demonstrations by automobile manufac-
turers and university research groups, and by Google, have intensified interest
in the technology. A fully autonomous vehicle capable of completing an entire
journey on public roads without any human interaction has already been re-
alised (Figure 2). In 2012 in California and Nevada, Google’s engineers have
already tested self-driving cars on more than 300.000 kilometers in public high-
ways and roads. Google’s cars not only record images of the road, but their
computerized maps view road signs, find alternative routes and see traffic
lights before they’re even visible to a person.

Figure 2: Google’s driverless car, a modified Toyota Prius
Image from en.wikipedia.org/wiki/Google_driverless_car

Auto manufacturers are running to keep up. Semi autonomous features are
now commercially available, including adaptive cruise control (ACC), lane de-
parture warnings, collision avoidance, parking assist systems and on-board
navigation.

Companies as KPMG, CAR, Google, Nissan, Volvo, General Motors, Ford,
Volkswagen/Audi, Nissan, Toyota, BMW, Volvo, Cadillac, and Mercedes-Benz
(which, like car2go, is a subsidiary of Daimler) have all begun testing these sys-
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tem driveerless and AVs probably will be driving on our streets and highways
within the next decade.

2.4 research

Other important research gaps have been identified, with broad topic areas
outlined at the 2013 Road Vehicle Automation Workshop, [6] as follows:

• Automated commercial vehicle operations

• Cyber security and resiliency

• Data ownership, access, protection, and discovery

• Energy and environment

• Human factors and human-machine interaction

• Infrastructure and operations

• Liability, risk, and insurance

• Shared mobility and transit

• Testing, certification, and licensing

• V2X communication and architecture

2.5 benefits

Technology in AVs will brings advantages for the daily life and many advan-
tages for the security during in according with [7] and [8].

The new technologies could provide solutions to safe drive and to some of
our most unmanageable social problems like the high cost of traffic crashes
and transportation infrastructure, the large amount of hours wasted in traffic
jams and the wasted urban space given over to parking lots.

• Crash elimination: Autonomous vehicles technology have the potential
to dramatically reduce crashes. System failure may remain a possibility,
but convergence also implies a multitude of redundant systems that can
substitute for one another and yield safe operation even when failures
occur.

• Travel Time Dependability: Anticipated travel time is the most useful in-
formation to support trip decisions and assess the operational status of
a transportation network, and convergence provides the opportunity to
eliminate, or at least substantially reduce, uncertainty in travel times.
Non recurrent congestion can account for as much as 30 percent of the
delay faced by drivers.
In addition, with unpredictable traffic patterns, traffic congestion can oc-
cur at any time of day.
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With the surface transportation network composed of self- driving vehi-
cles linked electronically and via communications, the intelligent trans-
portation system of the future will be able to provide each vehicle with
a reliable and predictable path from origin to destination.

• Improved Energy Efficiency: In an autonomous vehicle transportation
system, vehicles will navigate far more efficiently than current human
operators do.
The inefficiency of human-driven vehicles leads to considerable conges-
tion at high traffic volumes and frequent traffic jams.
Moreover historically vehicle safety driver and passenger safety espe-
cially has focused on crash worthiness. This shift means that at some
point, self-driving vehicles will no longer require significant amounts of
structural steel, roll cages, or air bags, among other safety features and
with the result of having vehicles significantly lighter and more energy
with the result of increase fuel efficiency and reduce pollution emissions.

• Driver comfort: Let and trust in a autonomous vehicle reduce the stress
of driving and allow motorists to rest or work while travelling.

• Cost: Increased safety, may reduce many common accident risks and
therefore crash costs and insurance premiums.
Increased road capacity, reduced costs.
May allow platooning (vehicle groups travelling close together) , nar-
rower lanes, and reduced intersection stops, reducing congestion and
roadway costs. Also more efficient parking, reduced costs.

• Society: May provide independent mobility for those too young to drive,
the elderly, the disabled and non drivers.

2.6 technology

A significant portion of robotics research involves developing autonomous car-
like robots. This research is often at the forefront of innovation and technology
in many areas.

Today’s researchers are using sensors and advanced software together with
other custom-made hardware in order to assemble autonomous cars.

Although the prototypes seem to be very successful, a fully autonomous
car that is reliable enough to be on the streets has not been constructed yet.
While better hardware is being developed there are important limitations on
the artificial intelligence side of the research. It would be fair to say that the
future of the autonomous cars mostly depends on the development of better
artificial intelligence software.

There are at least four important technology trends shaping the next gener-
ation of vehicles [9]:

• An increase in machine to machine communications, Figure 3;

• The development of in-vehicle infotainment systems;
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Figure 3: Shows self-driving applications plotted along two dimensions: the degree of
autonomy and the degree of cooperation

Image from www.kpmg.com

• The increased collection and use of vehicle data, especially geolocation
data;

• Vehicular automation;

The fourth trend, vehicular automation, GPS uses a large amount of IT to
make vehicles autonomous or semi autonomous. The most famous example
of this type of technology is Google’s self driving car. These vehicles use tech-
nologies such as video cameras, radar sensors, lasers and ultrasonic sensors, as
well as detailed maps and GPS to detect other cars and obstacles and navigate
on the road [10], Figure 4.

Figure 4: Placement of Hardware
Image from www2.ece.ohio-state.edu
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Autonomous cars need to do basically two things: find their way and drive.
For achieves these two targets driverless vehicles require equipment and services[12]:

• Automatic transmissions.

• Diverse and redundant sensors (optical, infrared, radar, ultrasonic, lidar
and laser) capable of operating in diverse conditions (rain, snow, un-
paved roads, tunnels, etc.) for obtain the complete map of its surround-
ing area including the objects and the travel path defined in that area:

– Radar sensors: Radar sensors are mainly used to detect various ob-
stacles.

– Cameras: Currently used for distinguishing the lanes and backup
assistance, but as the image processing software gets more devel-
oped, the importance of cameras on board will increase.

– Image-processing software currently can detect traffic signs and
lights, lane stripes, and other objects.

– Ultrasound Sensor: Currently ultrasound sensors are mainly used
for detecting obstacles in front and back of the car while manually
or automatically parking the car.

– Laser range Finder (Lidar): Lasers that spin in order to constantly
take horizontal distance measurements.

• Wireless networks. Short range systems for vehicle to vehicle communi-
cations, and long range systems to access to maps, software upgrades,
road condition reports and emergency messages.

• Navigation including GPS systems and special maps.

– GPS Units: Global Positioning System is used for determining a
car’s location by getting input from satellites.

• Accelerometer: Helps with navigation of the car when the signal received
from GPS devices are poor.

• Wheel Sensor: Also used in Stability and Anti Lock braking systems,
another use of the wheel sensors is to keep track of vehicle’s location
when the GPS systems are temporarily unavailable due to poor signals.

• Automated controls (steering, braking, signals, etc.).

• Servers, software and power supplies with high reliability standards.

• Additional testing, maintenance and repair costs for critical components,
such as automated testing and cleaning of sensors.

2.7 estimated cost

One barrier to large-scale market adoption is the cost of AV platforms. Google’s
robotic cars have about $150,000 in equipment including a $70,000 LiDaR
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(Light Detection and Ranging) system [11]. The costs of autonomous vehi-
cle will take into account the require of a variety special equipment, includ-
ing sensors, communication, computers, controls technology and software for
each car, which, for avoiding the system failures could be fatal to both vehicle
occupants and other road users, all these critical components will need high
manufacturing, installation, repair, testing and maintenance standards, similar
to aircraft components and so will probably be relatively expensive. Currently
all the equipment cost tens of thousands of euro, but, as with electric vehicles,
they will become cheaper with mass production.

2.8 transform car in autonomous vehicle

Most autonomous vehicle projects made use of stock cars and modified them
adding hardware to create a robot cars. Transform a normal car in a au-
tonomous car is possible buying a conversion kit, for example from compa-
nies like Kairos Autonomi, Torc Robotics, Gnius, Ruag Defence’s Vero, Israel
Aerospace Industrie, Asi Robots etc., that can transform any steered vehicle
into an autonomous unmanned ground vehicle. The kits include all comput-
ing modules, localisation module, and relevant software in charge of process-
ing sensor data and autonomous decision making that make autonomous op-
erations possible. Kairos Autonomi developed its kit to provide by-wire capa-
bilities to manned vehicles. The core of the system is made of an electronic
unit, a steering ring, and actuators for brake, throttle and transmission. Nu-
merous other utility modules are available such as video server, power over
Ethernet, analog and digital input/output, while the roof mount can include
GPS, camera, inertial unit, Ethernet radio, etc. Sahar, projected from Israel
Aerospace Industrie’s Lahat Division, is a system that transforms remote de-
vices into autonomous combat engineering systems to reduce unexploded ord-
nance disposal and mine-clearance personnel exposure. The high level of ac-
curacy required, and the heavy data and information flow exchanged with
the operator slow down the use of remotely controlled robots. Able to per-
form autonomous driving and autonomous manipulator operations, the Sahar
can handle the whole route clearance process including environmental terrain
mapping, surveillance, road blocks removal and bomb disposal. The accuracy
of manipulator operations are based on real-time sensors and mapping, that
provide superior performances compared to operations based on camera pic-
tures.

2.9 atv

Many companies and organizations are spending a lot of time and money
developing autonomous vehicles for numerous applications. ATV (All Terrain
Vehicle) project has the purpose to built a low cost autonomous vehicle control
system with the task to automatize an all terrain vehicle to follow a person who
walks in front itself, avoid obstacles interpreting the environment by gathering
informations from its sensors and keep the correct distance. ATV has been
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equipped with sensors and actuators that enable higher level system to con-
trol ATV’s motions and therefore enable autonomous actions. These should
include steering and speed control, odometry-based motion measurement and
localisation.
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3
C A N B U S A N D J 1 9 3 9

3.1 controller area network (can)

CAN bus communication for in-vehicle networks is very widespread because
it is simple, efficient and robust. CAN, which stands for Controller Area Net-
work, is a low-level serial data communication protocol for embedded real-
time applications internationally standardized by International Standardiza-
tion Organization (ISO). The Controller Area Network was developed in the
mid 1980s by Bosch GmbH, to provide a cost-effective communications bus
for automotive applications, but is used also in factory and plant controls, in
robotics, medical devices and also in some avionics systems. The communica-
tion between controllers, sensors and actuators uses CAN bus that allows all
devices to be connected with any other device on a common serial bus.
CAN is a fine solution for embedded control systems because of its simple im-
plementation, light protocol management, wide data consistency, the possibil-
ity of assigning priority to messages and guaranteed maximum latency times.
Also, there are built-in features for error detection (CRC, parity and framing
error checks), signalling with automatic retransmission of corrupted messages,
detection a possible permanent failures of nodes and automatic switching off
the defective nodes. Another main advantages of using CAN technology as
a field-bus is reduced wiring (CAN requires only two wires between nodes)
and it allows to reduce production cost. The standard of CAN has been devel-
oped with the objective to have an asynchronous multi-master serial data bus
that uses Carrier Sense Multiple Access / Collision Resolution (CSMA/CR) to
determine access to the bus with bit-oriented synchronization.

3.2 features of can

The CAN protocol has the following features.

3.2.0.1 Multimaster

When the bus is free, all of the units connected to it can start sending a mes-
sage (multimasters). The unit that first started sending a message to the bus
is granted the right to send (CSMA/CR method *1 ). If multiple units start
sending a message at the same time, the unit that is sending a message whose
ID has the highest priority is granted the right to send.

3.2.0.2 Message transmission

In CAN protocol all messages are transmitted in predetermined format. When
the bus is unoccupied, all units connected to the bus can start sending a new
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message. If two or more units start sending a message at the same time, their
priority is resolved by an identifier (hereafter the ID). The ID does not indicate
the destination to which a message is sent, but rather indicates the priority
of messages in which order the bus is accessed. If two or more units start a
message at the same time, contention for the bus is arbitrated according to
the ID of each message by comparing the IDs bitwise. The unit that won the
arbitration (i.e., the one that has the highest priority) can continue to send,
while the units that lost in arbitration immediately stop sending and go to a
receive operation.

3.2.0.3 System flexibility

The units connected to the bus have no identifying information like an ad-
dress. Therefore, when a unit is added to or removed from the bus, there is no
need to change the software, hardware, or application layer of any other unit
connected to the bus.

3.2.0.4 Communication speed

Any communication speed can be set that suits the size of a network. Within
one network, all units must have the same communication speed. If any unit
with a different communication speed is connected to the network, it will gen-
erate an error, hindering communication in the network. This does not apply
to units in other networks, however.

3.2.0.5 Remote data request

Data transmission from other units can be requested by sending a "remote
frame" to those units.

3.2.0.6 Error detection, error notification, and error recovery functions

All units can detect an error (error detection function). The unit that has de-
tected an error immediately notifies all other units of the error simultaneously
(error notification function). If a unit detects an error while sending a message,
it forcibly terminates message transmission and notifies all other units of the
error. It then repeats retransmission until the message is transmitted normally
(error recovery function).

3.2.0.7 Error confinement

There are two types of errors occurring in the CAN: a temporary error where
data on the bus temporarily becomes erratic due to noise from outside or for
other reasons, and a continual error where data on the bus becomes contin-
ually erratic due to a unit’s internal failure, driver failure, or disconnections.
The CAN has a function to discriminate between these types of errors. This
function helps to lower the communication priority of an error-prone unit in
order to prevent it from hindering communication of other normal units, and
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if a continual data error on the bus is occurring, separate the unit that is the
cause of the error from the bus.

3.2.0.8 Connections

The CAN bus permits multiple units to be connected at the same time. There
are no logical limits to the number of connectable units. However, the number
of units that can actually be connected to a bus is limited by the delay time
and electrical load in the bus. A greater number of units can be connected by
reducing the communication speed. Conversely, if the communication speed
is increased, the number of connectable units decreases.

3.3 iso layers

As described in the official Bosch specification document [13], the main proto-
col features covers only the Physical and Data link layers. The CAN protocol
has been standardized by ISO, so that there are several ISO standards for CAN
such as ISO11898 and ISO11519-2. ISO11898 is a standard for high-speed CAN
communication and ISO11519, instead, is a standard for low-speed CAN com-
munication with maximum speed 125 kbps.

Image from
en.wikipedia.org/wiki/OSI_model

Figure 5: ISO OSI model

Later, ISO provided its own specification of the CAN protocol, with addi-
tional details on the implementation of the physical layer, it defines how bits
are encoded into (electrical or electromagnetic) signals with defined physical
characteristics, to be transmitted over wired or wireless links from one node
to another.

3.3.1 Physical layer

The Physical Layer is the basic hardware required for a CAN network, i.e. the
ISO-11898-2 electrical specifications. It converts 1 and 0 into electrical pulses

21



leaving a node, then back again for a CAN message entering a node. The pro-
tocol defines for this layer the manner also the bit timing, bit encoding, and
synchronization procedures. Although the other layers may be implemented
in software or in hardware as a chip function, the Physical Layer is always
implemented in hardware [14]. ISO-11898-2 specifies a line topology, with in-
dividual nodes connected using short stubs, Table 1.

Bus Length (m) Signaling Rate (Mbps)

40 1

100 0.5

200 0.25

500 0.10

100 0.05

Table 1: Bus length and signaling rate

However, at lower data rates, potentially much longer lines are possible. In
addition, are specified also termination, isolation and stress protection of the
cable.

The higher layer protocols such as CANopen [15] and DeviceNet defines
the specific hardware required for implementation, including bus wire and
connectors, Figure 6.

Figure 6: CAN bus: 9-Pin D, CAN Bus Pin Out

3.3.2 Data-link layer

The Data-link layer is responsible for transferring messages from a node to
the network without errors. It handles bit stuffing and checksums, and, after
sending a message, waits for acknowledgment from the receivers [14].

There are two sublayers that are particularly relevant in this layer: Logical
Link Control (LLC) and Medium Access Control (MAC) sublayers, Figure 7.
The LLC sublayer provides all the services for the transmission of a stream of
bits from a source to a destination. In particular, it defines services for data
transfer and for remote data request, conditions upon which received mes-
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sages should be accepted, including message filtering and mechanisms for re-
covery management and flow management (overload notification). The MAC
sublayer is considered the kernel of the CAN protocol specification. The MAC
sublayer is responsible for message framing, arbitration of the communication
medium, acknowledgment management, error detection and signalling.

Figure 7: The layered ISO 11898:1993 standard Architecture

3.4 technology

The CAN controller determines the level of a bus by potential difference in
two wires that comprise the bus with a logic high as the recessive state and
a logic low as the dominant state. On a single CAN bus any node can trans-
mit data and it is allowed to every node to listen and transmit at the same
time, when two or more nodes attempting transmission, messages are trans-
mitted one after another according to their priority. The CAN controller of
each node monitors the bus as it transmits and, consequently, can detect if
another node wins arbitration. If the bus is active (a node is transmitting or
has just finished transmission), the other nodes will not attempt transmission.
If, when the bus is idle (for at least the length of the interframe spacing), and
more than one node begins transmission, arbitration occurs transparently and
nondestructively. Nondestructive arbitration means that the node winning ar-
bitration can simply continue transmission of its message without any other
node having interfered with the message transmission. The highest priority
message has an arbitration field of the highest number of dominant bits: it
will transmit a dominant bit first, while the other nodes are transmitting reces-
sive bits. Also known as the identifier (ID), the arbitration field prioritizes the
messages on the bus. All nodes transmit a single dominant bit when starting
a message. This is the start of message (SOM) bit. Any node just listening will
see bus activity and will not attempt to start a transmission until the current
packet is complete. So the only possibility for collision is between nodes that
simultaneously send a SOM bit. These nodes will remain synchronized for the
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duration of the packet or until one of them backs off. After the SOM bit, the
arbitration field is transmitted. If multiple nodes start transmitting at the same
time, then the node with the message with the higher numeric CAN Identifier
will win arbitration and continue to send its message. The other nodes will
cease transmitting and must wait until the bus becomes idle again before at-
tempting to re-transmit their messages after the current message is completed.
In this second attempt, the next highest value arbitration field will take control
of the bus. All nodes transmit a single dominant bit when starting a message.
The highest priority message always gets through, but at the expense of the
lower-priority messages. Thus, CAN’s real-time properties are analogous to
the properties of a preemptive real-time kernel on a single processor. In both
cases, the goal is to ensure that the highest-priority work gets completed as
soon as possible. The CAN standard does not indicate the meaning of those
bits, but the many higher-level protocols that sit on top of CAN do define
them. For example, the J1939 standard allows one portion of the bits to be a
destination address, since the CAN protocol itself specifies a source address
for all packets, but doesn’t mandate a destination address. This is quite rea-
sonable since much of the traffic on an automotive bus consists of broadcasts
of measured information, which is not destined for one specific node.

3.4.1 Types of Frames

The data and the remote frames come in two frame formats: standard and
extended. The standard format has a 11-bit ID (CAN 1.0, 2.0A (standard CAN))
and the extended format has a 29-bit ID (2.0B (extended CAN)).

Frame types, roles and user settings of each frame are in these list.

• Data frame: the frame is used by the transmit unit to send a message to
the receive unit. User setting necessary.

• Remote frame: the frame is used by the receive unit to request trans-
mission of a message that has the same ID from the transmit unit. User
setting necessary

• Error frame: when an error is detected, this frame is used to notify other
units of the detected error. User setting unnecessary.

• Overload frame: it is used by the receive unit to notify that it has not
been prepared to receive frames yet. User setting unnecessary.

• Interframe space: used to separate a data or remote frame from a preced-
ing frame. User setting unnecessary.

3.4.1.1 Data Frame

CAN bus protocol uses asynchronous data transmission design. The transmit-
ted data is sent in a data frame, which is controlled by start and stop bits at
the beginning and end of each transmission.
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3.4.1.2 Remote Frame

This frame is used by the receive unit to request transmission of a message
from the transmit unit. The remote frame consists of six fields. The remote
frame is the same as a data frame except that it does not have a data field.
The differences between a Data Frame and a Remote Frame is that the RTR bit
is transmitted as a dominant bit in the Data Frame and recessive in Remote
Frame and Remote Frame there is not Data Field.

3.5 j1939

The J1939 protocol is an application layer built on top of the CAN standard
developed by the Truck & Bus Control and Communications Network Sub-
committee of the Society of Automotive Engineers (SAE). J1939 is one of three
major CAN high level protocols, with the other two being ISO 15765 and
CANopen.
The J1939 standard is used in many applications, including automotive, agri-
cultural and construction equipment. Planned for use in light, medium and
heavy-duty trucks, it is also now being used in conventional passenger vehi-
cles.
SAE J1939 defines five layers of the seven-layer OSI network model and in-
cludes the Controller Area Network (CAN) 2.0b specification (using only the
29-bit / extended identifier) for the physical and data-link layers (the session
and presentation layers are not part of the specification).

Figure 8: Scheme of levels of communication

J1939 is a high level messaging protocol that defines how communication be-
tween different ECUs (Electronic Control Units) occurs on a vehicle’s physical
CAN bus. In J1939 each CAN node is referred to as an Electronic Control Unit
(ECU). Every ECU has at least one node address. In certain applications ECUs
have multiple node addresses in the same electronic assembly.

Extended frame format, with 29 identifier (ID) bits, is shown in Table 2.
In Figure 9 and in Table 3, the detailed structure of Frame format.

3.5.1 ID

The SAE J1939 ID field consist of 3-bit Priority Field (Priority), reserved (R),
data page (DP), PDU Format, PDU Specific and Source Address.
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Field name Length (bits) Purpose

SOF, Start Of Frame 1 Denotes the start of frame
transmission

ID, Identifier 29 Identifier for the data which
also represents the message
priority

RTR, Remote Transmis-
sion Request

1 Select the type of frame.
(0) Data Frame, (1) Remote
Frame

Control field 6 Specifies the number of bytes
of data to follow (0-8)

Data Field 0...8 bytes Data to send

CRC Field 16 Error-detecting code

ACK 2 Acknowledgement

EOF, End Of Frame 7 Must be recessive (1)

Table 2: Frame format of J1939

Figure 9: Detailed structure of Frame format

• Priority: First three bits represent priority during arbitration process and
aids to ensure the messages with higher importance to be sent/received
before lower priority messages. Provides eight priority levels:

– A value of 0 (000) = highest priority;

– A value of 8 (111) = lowest priority;

• PDU Format: If the message contains the destination address of a spe-
cific device (PDU1), then PDU Format has a number between 0 and 238.
Instead, if PDU Format is intended to all devices, broadcast message
(PDU2), the assigned number is in the ranges of 240-254. For destination
specific, only 239 can be used for manufacturer-specific assignments. For
broadcast, 255 is available for manufacturer-specific assignments.

• PDU Specific: The definition of this field is based on value of the PDU
Format field. If PDU Format is intended for a specific device (less than
239), PDU Specific is interpreted as the address of that specific device. In
this case, the PDU Specific field is referred to as the Destination Address
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FIELD NAME MAIN FIELD
NAME

LENGTH
(bits)

PURPOSE

SOF, Start of frame SOF 1 Denotes the start of frame
transmission

Priority ID 3 Sets the message’s priority
on the network

R, Reserved ID 1 Reserved for future use. This
field should be set to zero

DP, Data page ID 1 Used to expand the max-
imum number of possible
messages 10

PDU Format, Protocol
Data Unit Format

ID 8 Used to determine if the mes-
sage is intended for a specific
device on the network or if
the message is intended for
the entire network.

PDU Specific, Protocol
Data Unit Specific

ID 8 The definition of this field is
based on value of the PDU
Format field.

Source Address ID 8 Address of the device placing
the message on the bus.

RTR, Remote transmis-
sion request

RTR 1 Select the type of frame.
(0) Data Frame, (1) Remote
Frame

IDE, Identifier exten-
sion bit

Control Field 1 Declaring if 11 bit message
ID or 29 bit message ID is
used. Dominant (0) indicate
11 bit message ID while Re-
cessive (1) indicate 29 bit mes-
sage

CR Control field 1 Reserved bit (it must be set to
dominant (0), but accepted as
either dominant or recessive)

DLC, Data length code Control field 4 Number of bytes of data (0-8
bytes)

Data field Data field 0-64

(0-8
bytes)

Data to be transmitted
(length in bytes dictated by
DLC field)

CRC CRC field 15 Cyclic redundancy check

CRC delimiter CRC field 1 Must be recessive (1)

AS, ACK slot ACK field 1 Transmitter sends recessive
(1) and any receiver can as-
sert a dominant (0)

AD, ACK delimiter ACK field 1 Must be recessive

EOF, End Of Frame EOF 7 Must be recessive (1)

Table 3: Frame format of J1939
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field. If PDU Format is intended for all devices (greater than or equal to
240), PDU Specific is interpreted as a Group Extension field. This group
extension is used to increase the number of possible broadcast messages.

• Source Address: Identify the address of the device that transmitted the
current message.

Figure 10: A complete structure of the frame format, ID and PNG
Image from www.esd-electronics-usa.com

3.5.2 Group Number

A parameter group number is a set of parameters belonging to the same topic
and sharing the same transmission rate. PGN (Parameter Group Number) is a
18-bit number and it is composed with Extended Data, Data Page, PDU Format
and PDU Specific, other 6 bits set to 0 for form a 3 bytes, [16] , Figure 10. There
are two types of Parameter Group Numbers:

• Global PGNs identify parameter groups that are sent to all (broadcast).
Here the PDU Format, PDU Specific, Data Page and Extended Data Page
are used for identification of the corresponding Parameter Group. On
global PGNs the PDU Format is 240 or greater and the PDU Specific
field is a Group Extension.

• Specific PGNs are for parameter groups that are sent to particular devices
(peer-to-peer). Here the PDU Format, Data Page and Extended Data Pare
are used for identification of the corresponding Parameter Group. The
PDU Format is 239 or less and the PDU Specific field is set to 0.

In the figure below, Figure 11, is summarized the two types of PDU.
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Figure 11: PDU Format and PDU Specific

3.6 atv’s can architecture

Figure 12 shows the ATV’s CAN architecture. Two EPEC controller (Steering
and Odometry, and Accelleration Pedal and Dashbord) are connected with
Acrosser via CAN bus using the J1939 protocol.

Figure 12: ATV’s CAN network topology
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4
H A R D WA R E

4.1 vehicle

The all-terrain-vehicle is the Polaris Ranger EV type number R12RC08FA, Fig-
ure 13. The choice of an electric vehicle has been made because it allows
the control of the speed with the only use of electronics devices and with-
out adding any mechanical component.

Figure 13: Polaris Ranger EV
Image from www.polaris.com

The vehicle has a electric motor, AC-Induction Motor.

4.2 sensor

An electronic sensor is an electronic device used to measure a physical quantity
and convert it into an electronic signal.

4.2.1 Angle of steering

IFM RM9000 [17] is the multiturn encoder to providing the steering shaft po-
sition, Figure 14.

4.2.2 Speed

The 102HA [18] is the shaft encoders used for measuring the speed of the
vehicle.
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Figure 14: Encoder RM9000

Image from www.ifm.com

4.3 control unit

Epec 5050,Figure 15, is the control unit designed for machine control applica-
tions and uses a 32-bit microcontroller running at 128 MHz clock frequency
[19]. Four CAN interfaces have been used for the communication between all
the I/O devices.

Figure 15: EPEC 5050

Image from www.epec.fi

4.4 embedded system

An embedded system is a computer system with a dedicated function within
a larger mechanical or electrical system with real-time computing constraints.
The embedded system used in this project is the Acrosser model AIV-HM76V0FL
[20], Figure 16. This system has a Intel i7 eight core processor and uses CAN
Bus to allow the communication with the control unit.
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Figure 16: Acrosser AIV-HM76V0FL
Image from www.acrosser.com

4.5 lidar

Velodyne Lidar, Inc. (Morgan Hill, CA, USA), a manufacturer of high defini-
tion LiDAR (Light Detection and Ranging) sensors, has introduced the HDL-
32E [21] a remote sensing method that uses light in the form of a pulsed laser
to measure ranges (variable distances) to the objects. The LIDAR (Figure 17)
provides additional positional data, but also is able to identify other cars, bicy-
cles, pedestrians and road hazards. LiDAR sensor is equipped with 32 rotating
lasers and 32 rotating sensors which scans the environment around sending
out laser pulses with real-time updates of 20 Hz and deliver 360 degree views.
Each 905-MHz, "eye-safe" laser is fanned out, offset enough that the coverage
area reaches the ground, but also close enough to provide centimeter resolu-
tion at distances from 1 meter to 80 or 100 meter (typical accuracy of +/- 2cm
at 10 Hz). A view from Lidar’s scan during the development of the project can
be seen in the Figure 18.

4.6 bumblebees xb3

The Bumblebee XB3 (Figure 19) is a 3-sensor multi-baseline IEEE-1394b (800Mb/s)
stereo camera. Stereoscopic vision is a technique for reconstruction the three-
dimensional position of objects observed from two or more simultaneous views
of a scene in the vicinity of autonomous systems. Mobile robots can take ad-
vantage of a stereo vision system as a reliable and effective way to extract
a huge range informations from the environment. 3D stereo displays finds
many applications in entertainment, information transfer and automated sys-
tems. Stereo vision is highly important in fields such as robotics, to extract
information about the relative position of 3D objects.

Other advantages of using a stereo vision system are [22]:

• cheap solution for 3D reconstruction of an environment.
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Figure 17: Lidar
Image from www.velodyne.com

Figure 18: View from Lidar’s scan
Image from ATV project

• passive sensor and thus it does not introduce interferences with other
sensor devices (when multiple sensors are present in the environment.

• easily integration with other vision routines, such as object recognition
and tracking.
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Figure 19: Bumblebee XB3

Image from ww2.ptgrey.com

4.7 kvaser leaf light hs

The Kvaser Leaf Light [23] supports full speed USB interface for CAN with
high performance. Kvaser Leaf Light is a reliable low cost product. Loss free
transmission and reception of standard and extended CAN messages on the
CAN bus is transmitted with a time stamp precision of 100 microseconds.

Figure 20: Kvaser Leaf Light HS
Image from www.kvaser.com

4.8 network architecture

The network architecture is showed in Figure 21. In the lower level the two
EPAC controller communicate each other and with Acrosser through CAN /
SAE J1939. The upper level the communication has done by Ethernet/ROS
connecting Acrosser with laptop for high level control, sensor pc and WLAN
access point.
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Figure 21: ATV’s network architecture
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5
C O M M U N I C AT I O N

5.1 ros

ROS (Robot Operating System) is a open source operating system for con-
trolling robotic components. With a large a set of libraries, ROS is used for
creating programs that communicate efficiently, and with a flexible and sim-
ply data structures. ROS provides standard operating system services such as
hardware abstraction, low-level device control, implementation of commonly
used functionality, message-passing between processes and package manage-
ment. In Figure 22 has shown the level of ROS is in the same level of the
application and it is the interface between hardware and IPC (Inter-Process
Communication).

The fundamental concepts of the ROS implementation are nodes, messages,
topics and services [24].

• Nodes: A node is an instance of an executable and can be a sensor, actu-
ator, processing or monitoring algorithm.

• Messages: A message is a typed data structure made up with primitive
types like (integer, floating point, boolean, etc.), arrays of primitives and
constants. Nodes communicate with each other by passing messages.

• Topic: A topic is a asynchronous data transport system based on a sub-
scribe/publish system and is identified by a name. One or more nodes
are able to publish data (messages) to a topic and one or more nodes can
read data on that topic. Data is exchanged asynchronously by means of
a topic and via a service.

• Services: A services allows to communicate nodes each other with a syn-
chronously communication. With service nodes are able to send a request
and receive a response.

ROS starts with the ROS master. Master allows to all other ROS instances
(nodes) to find and talk each other, a node which wants to send a message
to another node needs simply asking to master to send the message without
specifying any address.

Examples of Topic and Services are in Appendix B.

5.1.1 Topic

A node sends a message publishing it to a given topic. A node that is inter-
ested in a certain kind of data will subscribe to the appropriate topic. There
may be multiple concurrent publishers and subscribers for a single topic and a
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Figure 22: ROS’s level

single node may publish and/or subscribe to multiple topics. In general, pub-
lishers and subscribers are not aware of each others existence. The messages
published in a topic are called msg. Msg are simple text file which describe
the fields of a ROS message with a field type and field name per line, and they
are stored in the ’msg’ directory of a package. The field types available are:

• int8, int16, int32, int64 (plus uint*)

• float32, float64

• string

• time, duration

• other msg files

• variable-length array[] and fixed-length array[]

5.1.1.1 Publisher node

In Appendix B Listing 7 a publisher, called "talker", sends a message.

5.1.1.2 Subscriber node

In this example in Listing 8 a subscriber receipts messages over the ROS sys-
tem.
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5.2 service

Service is used for synchronous transactions and it is defined by a string name
that identifies the name of the service. In the service there is the subscriber
which sends the request and the client which returns an answer. A srv file,
stored in the ’srv’ directory of a package, describes the service. Srv files are
just like msg files, except they contain two parts: a request and a response. The
two parts are separated by a ’- - -’ line. Listing 9 is an example of a srv file
called AddTwoInts.

In Listing 10 and Listing 11 there are two examples of service subscriber node
and service writing node.

5.3 can library

Sending and receiving messages via CAN bus has been done using the C++
library of HM76V0FL ARV6005Lib.h, provided from Acrosser, for using the
CAN bus port which allows to interface with CAN bus subsystem.

The functions of the library permit:

• Send the CAN packages over the CAN bus.

• Receive the CAN packages via the CAN bus hardware interface.

• Set and get the BAUD rate.

• Set and get the CAN package filter to selectively receive CAN packages
with specific ID.

• Set and get the mask bits to selectively make some filter bits take effect.

• Get the version information of the CAN Bus firmware.

5.3.1 CAN message format

The CAN packet will be sent or receive in the CAN bus from the software is
a variable of type CanMsg with the fields id, id_type, length and data. In Ap-
pendix A Listing 1 the structure of CAN messages used during the exchange
of information between the Acrosser and CAN bus.

id:

This field holds the ID information of the CAN packet. In a ’Standard Data
Frame’ CAN packet, the ID field consists of 11 bits of binary digitals.
In an ’Extended Data Frame’ CAN packet, the ID field consists of 29 bits of
binary digitals. CAN packet can be a ’Standard Data Frame’ packet or an ’Ex-
tended Data Frame’ packet is determined by the ’id_type’ field in the CanMsg
variable.
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id_type:

This field identifies if CAN packet is a ’Standard Data Frame’ CAN packet,
Listing 2, or a ’Extended Data Frame’ CAN packet, Listing 3.

data[8]:

’data’ field is an 8-byte long array, the range of this field ’length’ is 0 - 8 and it
is filled with effective data.

length:

This field identifies the number of data bytes in the field ’data[8]’.

5.3.2 sendCanMessage

The prototype of the function sendCanMessage receive as parameter the ad-
dress of the variable of type CanMsg. The function returns the result of the
operation, zero if the operation has not completed with successful otherwise
a number different from zero. In Listing 4 the definition of the function send-
CanMessage.

5.3.3 getCanMessage

The prototype of the function getCanMessage receives as parameter the ad-
dress of the variable of type CanMsg and a integer number that represents
the amount of CAN messages that the function will get from the CAN bus.
The function returns the result of the operation, zero if the operation hasn’t
completed with successful otherwise a number different from zero. In Listing
4 the definition of the function getCanMessage.

5.4 ackermann

5.4.1 Ackermann geometry

The vehicle is supported on four wheels on two axles, the robot keeps the rear
wheels straight and turns the front. As can be seen in Figure 23, the angle they
have to forward such wheel is not the same, so has been used the geometry of
Ackermann.

The linear velocity of the robot, v, is corresponding to point center of the rear
axle and the angle of steering associated to the center of the front axle is called
θ. The coordinate zero is the middle of rear shaft. From these two data and the
geometry are enough to calculate the forward speeds and angles of the two
wheels. For the front wheels used triangles rectangles formed by the center of
the wheel, the center of the rear wheel same side and the center of rotation CR.
The lengths of both legs are known, one being a wheelbase S and the other is
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Figure 23: Ackermann geometry
Image from http://en.wikipedia.org/wiki/Ackermann_steering_geometry

the turning radius of the point rear axle center by adding or subtracting half
the length of shaft L. The turning radius of the robot, θ is extracted from

tan(θ) = S
R

The following equations indicate the turning angle of the front wheel left inner
wheel θi and right outer wheel θo:

tan(θi) =
S

R−L
2

tan(θo) =
S

R+L
2

Should be take into account the particular case that the turning radius is
infinite, means that the robot does not rotate. It is the simplest case, since it
implies that the all wheel angle is zero and that the linear velocity of all the
dots is the same, so that the solution to the problem is found. The angular
velocity would be zero.
For all other cases, we can calculate the angular velocity of the robot,

ω = θ̇

From the linear velocity of the rear center point and the radius of gyration at
the same point, using:

ω = v/R

5.4.2 AckermannDrive Message

In ROS system the information of steering and speed for a vehicle using Acker-
mann steering are exchanged with messages AckermannDrive.msg defined by
ROS Ackermann steering group [25]. In Appendix B Listing 6 the structure of
the AckermannDrive.msg used for exchange messages between Acrosser and
planner trajectory controller.
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6
I M P L E M E N TAT I O N

6.1 introduction

The main program, called communication, allows the communication between
CAN bus and ROS. For this project has been realized the C++ class, called Can-
Bus, which allows to manage the information from and to the CAN bus. com-
munication uses ROS framework and the library ARV6005Lib.h which grants
the communication with CAN bus. The other application developed is start-
Communication and it has two purposes, the first one is to launch communi-
cation and the second one is synchronize the restart of communication when
CAN bus is blocked. Before the test and the integration of the software with
the vehicle, has been developed a software that emulates the CAN commu-
nication. This program, called testCanCommunication.exe allows to exchange
CAN messages, has been developed in C# and uses the library of Kvaser Leaf
Light HS.

6.2 startcommunication

startCommunication launchs communication when it starts and also when it re-
ceives the signal via ROS service from communication that the process will
terminate, so another communication process will be launched. It is necessary
uses two different threads because the process communication and the process
startCommunication must work in parallel. With this solution ROS service ad-
vertiseService in startCommunication is able to catch the signal from the ROS
service serviceClient in communication which sends the notice that itself will be
terminated. Without the use of the thread for opening new terminal, there is
the freezing of the calling process which restarts after the closing of the created
window, with this wrong configuration the signal from ServiceClient can not
be caught and handled because ServiceServer is frozen and the mechanism
of synchronism does not work. The eventual use of Publisher and Subscriber
involve the loose of the notice, especially the first communication, at the ex-
pense of reliability and velocity. From this consideration it is necessary the use
of the Service instead of the Publisher and Subscriber, because it is required a
synchronization between the two processes.
The source of startCommunication is in Appendix C Listing 26.

6.3 communication

The main software must exchange the arriving messages via vehicle’s CAN
bus, send them to the platform ROS and vice versa. There are two thread
dedicated each one for reading and sending the message from and to CAN
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bus. The manage of the messages in writing or in reading must be done in
parallel because the communication with ROS can be a variable time.
The source of startCommunication is in Appendix C in Listing 27.

6.4 can.cpp

In CAN.cpp file there are the function used for the communication with the
CAN bus and ROS. The function readDataFromCan reads data from CAN
bus and with the received values sets parameters of angle of steering and
speed of the variable ackermannMsg, a second function readCANmessageTh-
read aims to send cyclically the variable ackermannMsg to ROS with a topic.
The function readDataFromRos reads data from ROS and sends the parame-
ters of speed and angle of steering via CAN bus. restartCommunication is the
function that synchronizes the restart of the application when CAN bus is not
able to work anymore.
The source of startCommunication is in Appendix C Listing 28.

6.5 can.h

The header file defines the class CanBus used in communication and the defini-
tion of the enum EnumTypeMsg used during the reading of the CAN message.
The source of startCommunication is in Appendix C Listing 29.

6.6 parametercar .h

In the header file there are the constant variables used inside the programs
like CAN communication parameters, vehicle’s proprieties, ROS frequencies
and maximum waiting time for a CAN communication. The source of parame-
terCar.h is in Appendix Listing 30.

6.7 cansimulator .exe

CANsimulator.exe has been developed on Windows platform because the Kvaser’s
libraries for using the device Kvaser Leaf Light HS are available for Windows.
The program opens and closes the connection with CAN bus and allows to
send and receive one or multiple CAN messages showed in the console of the
C# .NET Framework.
In Figure 24 the screenshot of the CANsimulator.exe.
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Figure 24: Window of the program CANsimulator.exe
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7
E X P E R I M E N T S A N D R E S U LT S

7.1 experiments

The experiments test multiple version of software. In each one of them have
been analyzed the performance, in terms of time and amount of messages ex-
changed, using one or two function for send the message of steer and speed
through the CAN bus . The experiment in the laboratory uses a program which
sends 10000 Ackermann messages from ROS to CAN bus through the soft-
ware in testing and measure the efficiently of software comparing the RMS,
minimum and maximum time of receiving and sending (speed and angle of
steering) messages through the CAN bus and counts the number of missed
messages. The code C++ uses two thread that read and write from the CAN
bus with the function getCanMessage() and sendCanMessage() from the li-
brary ARV6005Lib.h provides from Acrosser company. The documentation
about these two functions do not explain how they works when the CAN
bus is busy. The results obtained are in Table 16 and are synthesized using a
root mean square in Table 17.

7.2 groups

The different versions of software are divided in four groups. The first, the
second and the third groups use two sendCanMessage() functions for send-
ing the command of velocity and angle of steering, the fourth group, instead,
use just once the sendCanMessage() functions for sending both messages. In
first group the mutex and the condition variable are shared between the two
sendCanMessage() functions for sending the messages to CAN bus, the sec-
ond group do not share the mutex for sending functions and then there are
two variable conditions and two whiles, third one do not use any mutex and
the last one use just one mutex and one condition variable for the only send-
CanMessage() function. In each group there are experiments with the use of
mutex for sendCanMessage() and readCanMessage(), mutex only for sendCan-
Message(), mutex only for readCanMessage() and without mutex.
The abbreviations in Table 4 allow to identify the typology experiment. 1

In the following tables are summarized the different combinations of soft-
ware used.

1 In the Table 5, 1REC_S-2SEND_CMy_W, using the the abbreviations it’s possible to identify that
the receiving function (REC) uses one single function for receive CAN message (1), getCanMes-
sage , and sets the condition variable true or false if the CAN bus is busy or not (S). The sending
function (SEND) uses two (2) functions sendCanMessage() for sending two CAN messages and
a share condition variable is used (CMy) for wait for the while (W) until the CAN bus get free.
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Table 4: Abbreviation of typology of code

Abbreviations Meaning

REC Receive function

SEND Send function

# Number of call function for receive or send CAN messages

S Set variable condition

W Wait variable condition

CMy Variable condition is present and it’s associate to one while,
CommonMutexYes

CMn Variable condition is present and it’s associate to two
whiles, CommonMutexNo

Table 5: 1REC_S-2SEND_CMy_W

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1 1

Common mutex (CM) / yes

Wait condition (W) no yes

Set condition (S) yes no

Group 1: two sendCanMessage() functions are in the same mutex, Table 5,
Table 6 and Table 7. The codes associated to the respective tables are in Ap-
pendix C Listing 13 and 16, Listing 14 and 17, Listing 15 and 18.

Group 2: two sendCanMessage() functions are in separated mutex, Table 8,
Table 9 and Table 10. The codes associated to the respective tables are in Ap-
pendix C Listing 13 and 19, Listing 14 and 20, Listing 15 and 21.

Group 3: two sendCanMessage() functions and mutex are not used, Table 11

and Table 12. The codes associated to the respective tables are in Appendix C
Listing 13 and 22, Listing 13 and 23.

Group 4: the software use once the function sendCanMessage() for sending
both steer and speed commands, Table 13, Table 14 and Table 15. The codes as-
sociated to the respective tables are in Appendix C Listing 13 and 24, Listing 14

and 23, Listing 15 and 25.

7.3 codes and versions

The codes in Appendix C are the relevant parts of the various versions of the
code. In Listing 12 there are the variables that belong to class CanBus used
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Table 6: 1REC_W-2SEND_CMy_S

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1 1

Common mutex (CM) / yes

Wait condition (W) yes no

Set condition (S) no yes

Table 7: 1REC_WS-2SEND_CMy_WS

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1 1

Common mutex (CM) / yes

Wait condition (W) yes yes

Set condition (S) yes yes

Table 8: 1REC_S-2SEND_CMn_W

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1 1

Common mutex (CM) / no

Wait condition (W) no yes yes

Set condition (S) yes no no

Table 9: 1REC_W-2SEND_CMn_S

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1 1

Common mutex (CM) / no

Wait condition (W) yes no no

Set condition (S) no yes yes
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Table 10: 1REC_WS-2SEND_CMn_WS

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1 1

Common mutex (CM) / no

Wait condition (W) yes yes yes

Set condition (S) yes yes yes

Table 11: 1REC_-2SEND

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1 1

Common mutex (CM) / /

Wait condition (W) no no no

Set condition (S) no no no

Table 12: 1REC_-1SEND

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1

Common mutex (CM) / /

Wait condition (W) no no

Set condition (S) no no

Table 13: 1REC_S-1SEND_W

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1

Common mutex (CM) / /

Wait condition (W) no yes

Set condition (S) yes no
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Table 14: 1REC_W-1SEND_S

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1

Common mutex (CM) / /

Wait condition (W) yes no

Set condition (S) no yes

Table 15: 1REC_WS-1SEND_WS

RECEIVE SEND

Function Can Steer Speed

Number getCanMessage() 1 /

Number sendCanMessage() / 1

Common mutex (CM) / /

Wait condition (W) yes yes

Set condition (S) yes yes

for all the software version tested and the following codes in Appendix C
are the different codes version of receiving and for sending used for the the
experiment.

7.4 results

The results of the experiments and their RMS values are, respectively, in Ta-
ble 16 and Table 17. In Table 17 there are the code of the experiment, values
collected for the phase of sending and receiving CAN messages and the total
time of the experiment. For the receiving phase there are the minimum and
maximum time used for receive the message, the number of messages arrived
via CAN bus and RMS time of receiving messages. In the sending phase there
are the minimum and maximum time used for sending the messages, the num-
ber of CAN packets unsuccessfully send out from function sendCanMessage
and RMS time of sending messages. 2

2 In tables 16 and 17 are not present the columns about CAN packet unsuccessfully received
because the result of the operation of receiving get zero number of failures.
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Analyzing the stats of 10000 CAN messages sent from the sending side are
observed the following results.
Comparing the minimum time used for sending messages, the fourth group
with a unique call for sending both messages is the fastest, 0.003 seconds, in-
stead of the first, second and third group which send both messages in two
different function obtaining the minimum time of 8 milliseconds.
The results obtained from the experiments show also that the minimum time
of the CAN communication is very low and does not vary so much. The
RMS value of maximum time of sending CAN communication it’s around
0.6 seconds. The highest values for this parameter has been obtained with
1REC_S_2SEND_CMn_W (0.89 seconds), the lowest with 56ms there are 1REC_1SEND
and 1REC_W_1SEND_S. With 0.51 seconds the RMS average is lowest value
of maximum time of sending communication and it’s has been collected with
1REC_W_1SEND_S.
The number of received messages from CAN bus vary a lot between the dif-
ferent type of tests. A large number of messages receive enable to have an
updated status of the system. The 1REC_S_2SEND_CMn_W allows to have a
good updates status of the system receiving average 49953 messages, instead
with 1REC_W_1SEND_S receive 9999 messages that is the lowest value.
The RMS time of receiving data from CAN bus has been calculate for each of
all messages received from the CAN bus. The lowest and the better value has
been obtained with 1REC_W_1SEND_S, 0.29 ms. The highest value instead
with 1REC_S_1SEND_W, 43.67 seconds.
Considering the maximum time employ for sending both messages through
CAN bus, the 1REC_S_1SEND_W uses 192.35ms (4.7 seconds).
1REC_W_1SEND_S instead is the fastest with 0.5 seconds. The RMS send-
ing time follows the results of the maximum time, in fact also in this case
1REC_W_1SEND_S is the best with 23 ms and a overall time of work of 2 min-
utes and 51 seconds, and 1REC_S_1SEND_W is the worst with 254 ms with a
total amount of time work of 21 minutes and 37 seconds.
Considering the type of communication in CAN bus, sending or receiving,
and considering the use of the variable condition, it can done the following
observations:

• REC_W:
The receiving function that waits the CAN bus is free from the utilization
of sending function and it causes a delay of reception of the CAN mes-
sages. The frequency of sending messages is three - four times lower than
the frequency of receiving messages, this results is a lower amount of in-
coming messages, but a more elevated number of outgoing messages.

• SEND_W:
The condition variable in the sending function cause the wait that the
receive operation ends. The large number of messages to receive results
in a considerable increase of the average time for sending messages via
CAN bus.
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Table 16: Results of the experiment

RECEIVE SEND

Code
Min

ms

Max

ms

Number

Msg

RMS

ms

Min

ms

Max

ms
Err

RMS

ms

Time

min:sec

1REC_S_2SEND_CMy_W 4 509 29554 31 8 509 2 58 5:29

1REC_S_2SEND_CMy_W 1 319 30149 32 8 403 0 61 6:49

1REC_S_2SEND_CMy_W 1 1104 30032 35 8 692 8 64 6:44

1REC_W_2SEND_CMy_S 3 609 29905 34 8 692 3 63 6:40

1REC_W_2SEND_CMy_S 1 607 30222 33 8 592 3 62 6:51

1REC_W_2SEND_CMy_S 1 805 30008 34 8 806 7 64 6:44

1REC_WS_2SEND_CMy_WS 1 610 50417 41 8 2190 7 196 17:10

1REC_WS_2SEND_CMy_WS 1 601 49050 40 8 1723 10 191 16:30

1REC_WS_2SEND_CMy_WS 1 605 49990 40 8 1855 9 190 18:42

1REC_S_2SEND_CMn_W 1 889 50338 40 8 1758 8 191 17:11

1REC_S_2SEND_CMn_W 1 907 50762 41 8 2840 9 198 17:26

1REC_S_2SEND_CMn_W 1 903 48738 41 8 1989 2 187 16:18

1REC_W_2SEND_CMn_S 8 604 30478 34 8 677 7 64 6:58

1REC_W_21SEND_CMn_S 5 605 30091 34 8 646 6 65 6:49

1REC_W_2SEND_CMn_S 8 607 30585 35 8 686 9 66 6:02

1REC_WS_2SEND_CMn_WS 9 628 44653 40 8 3216 5 179 18:35

1REC_WS_2SEND_CMn_WS 1 610 47174 40 8 2675 7 180 15:24

1REC_WS_2SEND_CMn_WS 2 600 46723 40 8 4190 7 190 15:13

1REC__2SEND 1 595 30984 33 8 686 3 67 6:20

1REC__2SEND 1 604 31424 34 8 652 1 68 7:32

1REC__2SEND 4 605 31121 33 8 702 6 66 6:21

1REC_1SEND 4 603 20410 38 3 685 4 56 6:52

1REC_1SEND 4 596 20297 38 3 650 3 56 6:52

1REC_1SEND 2 603 20259 38 3 686 6 57 6:55

1REC_S_1SEND_W 4 601 46553 44 3 3244 5 230 21:37

1REC_S_1SEND_W 1 583 50255 45 3 3599 9 261 23:46

1REC_S_1SEND_W 1 603 49698 44 3 6682 5 270 22:27

1REC_W_1SEND_S 4 603 20410 38 3 685 4 56 2:28

1REC_W_1SEND_S 4 596 20297 38 3 650 3 56 3:00

1REC_W_1SEND_S 2 603 20259 38 3 686 6 57 2:59

1REC_WS_1SEND_WS 4 505 48795 44 3 1800 4 227 22:55

1REC_WS_1SEND_WS 1 590 43183 44 3 2189 7 194 19:45

1REC_WS_1SEND_WS 1 570 38480 43 3 1400 4 171 16:07
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Table 17: RMS values of the experiments

RECEIVE SEND

Code
Min

ms

Max

ms

Number

Msg

RMS

ms

Min

ms

Max

ms
Err

RMS

ms

Time

min:sec

1REC_S_2SEND_CMy_W 2.4 725.6 29912 32.7 8 547.8 4.7 61.0 5:41

1REC_W_2SEND_CMy_S 1.9 680.0 30045 33.6 8 702.1 4.7 63.0 5:45

1REC_WS_2SEND_CMy_WS 1.0 605.3 49822 40.3 8 1932.6 8.7 192.35 17:30

1REC_S_2SEND_CMn_W 1.0 899.7 49953 40.6 8 2244.4 7.05 192.0 16:18

1REC_W_SEND_CMn_S 7.1 605.3 30385 34.3 8 669.8 7.44 65.0 5:43

1REC_WS_2SEND_CMn_WS 5.3 612.7 46196 40.0 8 3418.3 6.4 183.0 16:25

1REC_2SEND 2.4 601.3 31176 33.3 8 680.3 3.92 67.0 6:24

1REC_1SEND 3.4 600.6 20322 38.0 3 673.8 4.51 56.3 5:53

1REC_S_1SEND_W 2.4 595.7 48862 44.3 3 4765.3 6.6 254.2 21:37

1REC_W_1SEND_S 3.0 512.0 9999 38.0 3 505.6 4.36 57.5 2:51

1REC_WS_1SEND_WS 2.4 556.1 43689 43.6 3 1824.9 5.20 198.6 19:41

• REC_W & SEND_W:
The phase of reading and writing can never be overlapped. Their alter-
nation causes an increase in the RMS time for sending and receiving
messages.

• REC & SEND:
The non-use of condition variables allows the access and the use of the
CAN bus mode completely randomly. The RMS time for sending and
receiving messages is low.

54



8
C O N C L U S I O N

The software developed for communication between the CAN bus and ROS
enables the exchange of information between the two interfaces and allows to
restart the program if the functions for communication with the CAN bus stop
working. To understand and improve the functions from libraries for commu-
nication with the CAN bus, it has been made some experiments using different
version of software with condition variables. Analyzing data from the exper-
iments, it results the use of the variable condition for sending a message via
CAN bus causes its waiting if the phase of reading is running, but being the
receiving messages three or four time more frequently than sending message,
this induce the decreasing of the RMS time of the sending messages. Consider-
ing informations coming from the vehicle same importance as those directed
toward the vehicle and considering the frequency of read messages from the
CAN bus much higher than the frequency of the messages sent to the CAN
bus, from the experimental data and assessments done, it has been decided
to use the version of code 1REC_W_1SEND_S ( Table 14, Listing 14 and List-
ing 23) that uses a condition variable in the receiving function which waits
that the CAN bus is free from the utilization of sending function.

The software, using a communication ROS, is able to receive the commands
to drive the vehicle (angle of steering and speed) from any node that belongs
to the network ROS. In this project, the vehicle is driven by the planner con-
troller (Lidar, stereo camera and the algorithm in a dedicated pc). One of future
projects is to develop an algorithm for controlling the vehicle through a smart-
phone which, connected to the wireless network of the vehicle, allows to drive
the car.
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A
C O M M U N I C AT I O N

a.1 can library

Definition of the structure of CanMsg message used from the functions de-
clared ARV6005Lib.h for the communication via CAN bus.

Listing 1: CAN message format

1 // TYPE DEFINITION
typedef unsigned char u8;
typedef unsigned long u32;

struct CanMsg {
6 u32 id;

u8 id\_type;
u8 length;
u8 data[8];

}

Declaration of variable canMsg of type CanMsg and parameter setting the
parameter id_type in ’Standard Data Frame’.

Listing 2: CAN message type standard data frame

struct CanMsg canMsg;
canMsg.id_type = STD_ID; // A ’Standard Data Frame’ packet

Declaration of variable canMsg of type CanMsg and parameter setting the
parameter id_type in ’Extended Data Frame’.

Listing 3: CAN message type extended data frame

struct CanMsg canMsg;
canMsg.id_type = EXT_ID; // A ’Extended Data Frame’ packet

Definition of the function sendCanMessage.

Listing 4: prototype of function sendCanMessage

i32 sendCanMessage(struct CanMsg *msg);

Definition of the function getCanMessage.

Listing 5: prototype of function getCanMessage

i32 getCanMessage(struct CanMsg *buf, int size);
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a.2 ackermanndrive message

Structure of AckermannDrive.msg.

Listing 6: AckermannDrive.msg

float32 steering_angle # desired steering angle (radians)
float32 steering_angle_velocity # desired rate of change (radians/s)
float32 speed # desired forward speed (m/s)

4 float32 acceleration # desired acceleration (m/s^2)
float32 jerk # desired jerk (m/s^3)
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B
R O S

b.1 topic

ROS programs to publish messages.

Listing 7: ROS: publisher

//includes all the headers necessary to use the most common public pieces
// of the ROS system.
#include "ros/ros.h"

5

//includes the std_msgs/String message.
#include "std_msgs/String.h"

int main(int argc, char **argv)
10 {

/**
* The ros::init() function needs to see argc and argv so that it can perform
* any ROS arguments and name remapping that were provided at the
* command line.

15 * The third argument to init() is the name of the node.
*
* You must call one of the versions of ros::init() before using any other
* part of the ROS system.
*/

20 ros::init(argc, argv, "talker");

/**
* NodeHandle is the main access point to communications with the ROS
* system.

25 * The first NodeHandle constructed will fully initialize this node, and the last
* NodeHandle destructed will close down the node.
*/

ros::NodeHandle n;

30 /**
* The advertise() function is how you tell ROS that you want to
* publish on a given topic name. This invokes a call to the ROS
* master node, which keeps a registry of who is publishing and who
* is subscribing. After this advertise() call is made, the master

35 * node will notify anyone who is trying to subscribe to this topic name,
* and they will in turn negotiate a peer−to−peer connection with this
* node. advertise() returns a Publisher object which allows you to
* publish messages on that topic through a call to publish(). Once
* all copies of the returned Publisher object are destroyed, the topic

40 * will be automatically unadvertised.
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*
* The second parameter to advertise() is the size of the message queue
* used for publishing messages. If messages are published more quickly
* than we can send them, the number here specifies how many messages to

45 * buffer up before throwing some away.
*/

ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1);

/**
50 * This is a message object. You stuff it with data, and then publish it.

*/
std_msgs::String msg;

msg.data = "Text to send";
55

/**
* The publish() function is how you send messages. The parameter
* is the message object. The type of this object must agree with the type
* given as a template parameter to the advertise<>() call, as was done

60 * in the constructor above.
*/

chatter_pub.publish(msg);

return 0;
65 }

The subscriber example show how to receive messages on a given topic.

Listing 8: ROS: subscriber

#include "ros/ros.h"
#include "std_msgs/String.h"

/*
4 * This is the callback function that will get called when a new

* message has arrived on the chatter topic
*/

void chatterCallback(const std_msgs::String::ConstPtr& msg)
9 {

ROS_INFO("I read: [%s]", msg−>data.c_str());
}

int main(int argc, char **argv)
14 {

/**
* The ros::init() function needs to see argc and argv so that it can perform
* any ROS arguments and name remapping that were provided at the
* command line. For programmatic remappings you can use a different

19 * version of init() which takes remappings directly, but for most
* command−line programs, passing argc and argv is the easiest
* way to do it. The third argument to init() is the name of the node.
*
* You must call one of the versions of ros::init() before using any other

24 * part of the ROS system.
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*/
ros::init(argc, argv, "listener");

/**
29 * NodeHandle is the main access point to communications with the ROS

* system.
* The first NodeHandle constructed will fully initialize this node, and the last
* NodeHandle destructed will close down the node.
*/

34 ros::NodeHandle n;

/**
* The subscribe() call is how you tell ROS that you want to receive messages
* on a given topic. This invokes a call to the ROS

39 * master node, which keeps a registry of who is publishing and who
* is subscribing. Messages are passed to a callback function, here
* called chatterCallback. subscribe() returns a Subscriber object that you
* must hold on to until you want to unsubscribe. When all copies of the
* Subscriber object go out of scope, this callback will automatically

44 * be unsubscribed from this topic.
*
* The second parameter to the subscribe() function is the size of the message
* queue. If messages are arriving faster than they are being processed, this
* is the number of messages that will be buffered up before beginning to

49 * throw away the oldest ones.
*/

ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);

/**
54 * ros::spin() will enter a loop, pumping callbacks. With this version, all

* callbacks will be called from within this thread (the main one). ros::spin()
* will exit when Ctrl−C is pressed, or the node is shutdown by the master.
*/

ros::spin();
59

return 0;
}

b.2 service

.srv file defines the request and response data structures for services in ROS.
In Listing 9 an example of service structure.

Listing 9: ROS: AddTwoInts.srv

int64 A
int64 B
−−−

4 int64 Sum

In Listing 10 the subscribers of the service.
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Listing 10: ROS: Service Subscriber node

1 #include "ros/ros.h"
/*
* beginner_tutorials/AddTwoInts.h is the header file generated from the srv file that

we created earlier.
*/
#include "beginner_tutorials/AddTwoInts.h"

6 /*
* This function provides the service for adding two ints, it takes in the request and

response type defined in the srv file and returns a boolean.
Here the two ints are added and stored in the response. Then some information

about the request and response are logged. Finally the service returns true when
it is complete.

*/
bool add(beginner_tutorials::AddTwoInts::Request &req,

11 beginner_tutorials::AddTwoInts::Response &res)
{

res.sum = req.a + req.b;
ROS_INFO("request:x=%ld,y=%ld", (long int)req.a, (long int)req.b);

16 ROS_INFO("sending back response:[%ld]", (long int)res.sum);
return true;

}

int main(int argc, char **argv)
21 {

ros::init(argc, argv, "add_two_ints_server");
ros::NodeHandle n;

/*
* Here the service is created and advertised over ROS.

26 */
ros::ServiceServer service = n.advertiseService("add_two_ints", add);
ROS_INFO("Ready to add two ints.");
ros::spin();

31 return 0;
}

In Listing 11 the service writing node.

Listing 11: ROS: service Writing the Client Node

#include "ros/ros.h"

3 #include "beginner_tutorials/AddTwoInts.h"
#include <cstdlib>

int main(int argc, char **argv)
{

8 ros::init(argc, argv, "add_two_ints_client");
if (argc != 3)
{

ROS_INFO("usage: add_two_ints_client X Y");
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return 1;
13 }

ros::NodeHandle n;
/*
* This creates a client for the add_two_ints service. The ros::ServiceClient

18 object is used to call the service later on.
*/
ros::ServiceClient client = n.serviceClient<beginner_tutorials::AddTwoInts>
("add_two_ints");

23 /*
* Here we instantiate an autogenerated service class, and assign values
into its request member. A service class contains two members, request
and response. It also contains two class definitions, Request and
Response.

28 */
beginner_tutorials::AddTwoInts srv;
srv.request.a = atoll(argv[1]);
srv.request.b = atoll(argv[2]);

33 /*
* This actually calls the service. Since service calls are blocking, it will return
once the call is done. If the service call succeeded, call() will return
true and the value in srv.response will be valid. If the call did not
succeed, call() will return false and the value in srv.response will be invalid.

38 */
if (client.call(srv))
{

ROS_INFO("Sum: %ld", (long int)srv.response.sum);
}

43 else
{

ROS_ERROR("Failed to call service add_two_ints");
return 1;

}
48

return 0;
}
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C
C O D E S A N D V E R S I O N S

Common variable inside the class CanBus used in the object variable canBus-
Communication.

Listing 12: Variables

boost::mutex mtxCANbusBusy;
boost::condition_variable condCANbusBusy;
bool CANbusBusy = false;

Codes with the different version of receiving function:

Listing 13: 1REC_S, one function for receiving the CAN message and a set of the
variable condition CANbusBusy

canBusCommunication.CANbusBusy = true;
2 result = getCanMessage(&canPkgReceive, 1);

canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();

Listing 14: 1REC_W, one function for receiving the CAN message and a while which
checks the variable condition CANbusBusy

1 while(canBusCommunication.CANbusBusy == true)
canBusCommunication.condCANbusBusy.wait(lock);

result = getCanMessage(&canPkgReceive, 1);

Listing 15: 1REC_WS, one function for receiving the CAN message, a while which
checks the variable condition CANbusBusy and a set of the variable condi-
tion CANbusBusy

while(canBusCommunication.CANbusBusy == true)
2 canBusCommunication.condCANbusBusy.wait(lock);

canBusCommunication.CANbusBusy = true;
result = getCanMessage(&canPkgReceive, 1);
canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();

Codes with different version of sending function:

Listing 16: 2SEND_CMy_W, two function for sending the CAN messages and a
unique while which checks the variable condition CANbusBusy

while(canBusCommunication.CANbusBusy == true)
canBusCommunication.condCANbusBusy.wait(lock);

3 result = sendCanMessage(&canBusCommunication.msg2send[STEER]);
...
result = sendCanMessage(&canBusCommunication.msg2send[SPEED]);
...
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Listing 17: 2SEND_CMy_S, two function for sending the CAN messages and a set of
the variable condition CANbusBusy

canBusCommunication.CANbusBusy = true;
result = sendCanMessage(&canBusCommunication.msg2send[STEER]);
...

4 result = sendCanMessage(&canBusCommunication.msg2send[SPEED]);
...
canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();

Listing 18: 2SEND_CMy_WS, two function for sending the CAN messages, a unique
while which checks of the variable condition CANbusBusy and a set of the
variable condition CANbusBusy

while(canBusCommunication.CANbusBusy == true)
canBusCommunication.condCANbusBusy.wait(lock);

3 canBusCommunication.CANbusBusy = true;
result = sendCanMessage(&canBusCommunication.msg2send[STEER]);
...
result = sendCanMessage(&canBusCommunication.msg2send[SPEED]);
...

8 canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();

Listing 19: 2SEND_CMn_W, two function for sending the CAN messages, two differ-
ent while which checks the variable condition CANbusBusy

1 while(canBusCommunication.CANbusBusy == true)
canBusCommunication.condCANbusBusy.wait(lock);

result = sendCanMessage(&canBusCommunication.msg2send[STEER]);
...
while(canBusCommunication.CANbusBusy == true)

6 canBusCommunication.condCANbusBusy.wait(lock);
result = sendCanMessage(&canBusCommunication.msg2send[SPEED]);
...

Listing 20: 2SEND_CMn_S, two function for sending the CAN messages, two different
set of the variable condition CANbusBusy

canBusCommunication.CANbusBusy = true;
2 result = sendCanMessage(&canBusCommunication.msg2send[SPEED]);

...
canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();
...

7 canBusCommunication.CANbusBusy = true;
result = sendCanMessage(&canBusCommunication.msg2send[SPEED]);
...
canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();
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Listing 21: 2SEND_CMn_WS, two function for sending the CAN messages, two dif-
ferent while which check the variable condition CANbusBusy and two
different set of the variable condition CANbusBusy

while(canBusCommunication.CANbusBusy == true)
canBusCommunication.condCANbusBusy.wait(lock);

canBusCommunication.CANbusBusy = true;
4 ...

result = sendCanMessage(&canBusCommunication.msg2send[STEER]);
...
canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();

9 while(canBusCommunication.CANbusBusy == true)
canBusCommunication.condCANbusBusy.wait(lock);

canBusCommunication.CANbusBusy = true;
...
result = sendCanMessage(&canBusCommunication.msg2send[SPEED]);

14 ...
canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();

Listing 22: 2SEND, two function for sending the CAN message

result = sendCanMessage(&canBusCommunication.msg2send[STEER]);
...
result = sendCanMessage(&canBusCommunication.msg2send[SPEED]);

4 ...

Listing 23: 1SEND, one function for sending the CAN message

1 result = sendCanMessage(canBusCommunication.msg2send,2);

Listing 24: 1SEND_W, one function for sending the CAN messages and a while which
checks the variable condition CANbusBusy

while(canBusCommunication.CANbusBusy == true)
canBusCommunication.condCANbusBusy.wait(lock);

result = sendCanMessage(canBusCommunication.msg2send,2);

Listing 25: 1SEND_WS, one function for sending the CAN messages, a while which
checks the variable condition CANbusBusy and a set of the variable condi-
tion CANbusBusy

while(canBusCommunication.CANbusBusy == true)
2 canBusCommunication.condCANbusBusy.wait(lock);

canBusCommunication.CANbusBusy = true;
result = sendCanMessage(canBusCommunication.msg2send,2);
canBusCommunication.CANbusBusy = false;
canBusCommunication.condCANbusBusy.notify_one();
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D
I M P L E M E N TAT I O N

d.1 startcommunication.cpp

The program startCommunication allows to launch and restarts the file commu-
nication.

Listing 26: startCommunication.cpp

#include "ros/ros.h"
#include <atv_acrosser/killApp.h>
#include <boost/thread/thread.hpp>

4

void openNewTerminal();
bool notificationKilledProcess(atv_acrosser::killApp::Request &req,
atv_acrosser::killApp::Response &res);

void receiveKillCommunication(int argc, char **argv);
9

boost::mutex mtxTerminal;
boost::mutex::scoped_lock lock (mtxTerminal);
boost::condition_variable condTerminal;

14

/* It proves the presence of terminal window that execute the process
communication */
bool existTerminal = false;

19

/******************************************************************
* @function: openNewTerminal
* Thread opens a new terminal and executes the communication
* program. It also remains waiting status on the condition variable

24 * to launch again the process communication.
*******************************************************************/
void openNewTerminal()
{

int statusSystem = 0;
29

/*Open the first terminal with communication program*/
existTerminal = true;
statusSystem = system("gnome−terminal −x ./communication");
printf("\nTERMINAL OPENED STATUS: %d", statusSystem);

34

/* Infinite while, there will be always a condition variable
which wait a signal from a killed process.
When the the condition variable will be awake from a killed process,
it will open a new terminal and execute the communication

39 program and wait again another signal from a killed process */
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while(1)
{

/*Condition variable, wait to be awake after the killed process */
while(existTerminal == true)condTerminal.wait(lock);

44

/*Open a new terminal and execute the communication process */
statusSystem = system("gnome−terminal −x ./communication");
printf("\nTERMINAL OPENED STATUS: %d", statusSystem);
if(statusSystem < 0)

49 printf("\n PROBLEM TO OPEN THE NEW WINDOW DURING THE
RESTARTING OF THE SOFTWARE communication");

}
}

54 /******************************************************************
* @function: receiveKillCommunication
* Thread waits the communication with communication process via
* ROS service in case the process communication needs to
* terminate. When receive the notice from the service the

59 * function notificationKilledProcess is called.
*******************************************************************/
void receiveKillCommunication(int argc, char **argv)
{

ros::init(argc, argv, "");
64 ros::NodeHandle n;

//Here the service called "restartCommunication" is created and
//advertised over ROS.
ros::ServiceServer service = n.advertiseService
("restartCommunication", notificationKilledProcess);

69 ros::spin();
}

/******************************************************************
* @function: notificationKilledProcess

74 * This function has called each time that ROS service answers from
* the communication creating * a syncronization with it.
* The function will change in false the value of the variable
* existTerminal and wake up the * condition variable condTerminal
* with the scope of open a new terminal and execute the process

79 * communication.
********************************************************************/
bool notificationKilledProcess(atv_acrosser::killApp::Request &req,
atv_acrosser::killApp::Response &res)

{
84 ROS_INFO("PID KILLED %ld", (long int)req.pid2Kill);

/* set to false the variable existTerminal, it means there aren’t
open terminal with running communication */

existTerminal = false;
/* wake up the condition variable condTerminal */

89 condTerminal.notify_one();
return true;

}
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94 int main(int argc, char **argv)
{
boost::thread openNewTerminal_Thread(&openNewTerminal);
boost::thread receiveKillCommunication_Thread(
&receiveKillCommunication, argc, argv);

99

openNewTerminal_Thread.join();
receiveKillCommunication_Thread.join();

return 0;
104 }

d.2 communication

The program communication is the principle file and calls the thread read-
CANmessageThread and sendCANmessageThread for the interaction with the
CAN bus and ROS.

Listing 27: communication.cpp

1 #include "atvAcrosser/CAN.h"

int main(int argc, char **argv)
{

6 /*************************** THREAD *************************/
CanBus canBusCommunication;
//from CAN 2 ROS
boost::thread tReadCANmessageThread(&CanBus::readCANmessageThread,
&canBusCommunication, argc, argv, boost::ref(canBusCommunication));

11

//from ROS 2 CAN
boost::thread tSendCANmessageThread(&CanBus::sendCANmessageThread,
&canBusCommunication, argc, argv, boost::ref(canBusCommunication));

16 tReadCANmessageThread.join(); //from CAN 2 ROS
tSendCANmessageThread.join(); //from ROS 2 CAN
return 0;

}

d.3 ./can.cpp

Can.cpp defines the function of the CanBus. These function allows the com-
munication with CAN and ROS.

Listing 28: CAN.cpp

#include "../include/atvAcrosser/CAN.h"
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#include <atv_acrosser/killApp.h>

using namespace std;
5

/* Class initialization */
CanBus::CanBus()
{
CANbusBusy = false;

10

/*
initialization of the parameters used and interpreted by EPEC after
sending them by CAN bus*/
/* STEER*/

15 msg2send[STEER].id =0x18AD0500;
msg2send[STEER].id_type = EXT_ID;
msg2send[STEER].length = 3;
msg2send[STEER].data[0] = 0x00;
msg2send[STEER].data[1] = 0x00;

20 msg2send[STEER].data[2] = 0x01;

/* SPEED_SET */
msg2send[SPEED_SET].id =0x18FD4300;
msg2send[SPEED_SET].id_type = EXT_ID;

25 msg2send[SPEED_SET].length = 8;
msg2send[SPEED_SET].data[0] = 0x00;
msg2send[SPEED_SET].data[1] = 0x00;
msg2send[SPEED_SET].data[2] = 0xD0;
msg2send[SPEED_SET].data[3] = 0x00;

30 msg2send[SPEED_SET].data[4] = 0x00;
msg2send[SPEED_SET].data[5] = 0x00;
msg2send[SPEED_SET].data[6] = 0x00;
msg2send[SPEED_SET].data[7] = 0x00;

35 /* SPEED_STOP */
msg2send[SPEED_STOP].id =0x18FD4300;
msg2send[SPEED_STOP].id_type = EXT_ID;
msg2send[SPEED_STOP].length = 8;
msg2send[SPEED_STOP].data[0] = 0x00;

40 msg2send[SPEED_STOP].data[1] = 0x00;
msg2send[SPEED_STOP].data[2] = 0xD0;
msg2send[SPEED_STOP].data[3] = 0x00;
msg2send[SPEED_STOP].data[4] = 0x00;
msg2send[SPEED_STOP].data[5] = 0x00;

45 msg2send[SPEED_STOP].data[6] = 0x00;
msg2send[SPEED_STOP].data[7] = 0x00;

/* GEAR */
msg2send[GEAR].id =0x18FA5700;

50 msg2send[GEAR].id_type = EXT_ID;
msg2send[GEAR].length = 1;
msg2send[GEAR].data[0] = 0x06;
}
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55 /* Class destroyer */
CanBus::~CanBus(){}

/******************************************************************
60 * @function: readDataFromCan

* Read data from CAN bus.
* Interprets the type of the message and updates the variable
* ackermannMsg with the value updated.
******************************************************************/

65 void CanBus::readDataFromCan(ackermann_msgs::AckermannDrive
&ackermannMsg, CanBus &canBusCommunication)
{
//temporary variable for put the value read from CAN bus
struct CanMsg canPkgReceive;

70 memset((void *)&canPkgReceive, 0, sizeof(canPkgReceive));

while(1)
{
boost::mutex::scoped_lock lock (canBusCommunication.mtxCANbusBusy);

75 //the condition variable doesn’t allow to access to CAN bus till
//the sending function has finished to send the message through the
CAN bus
while(canBusCommunication.CANbusBusy == true)

canBusCommunication.condCANbusBusy.wait(lock);
80

//call the funcion for get CAN message
boost::thread function_caller(::getCanMessage, &canPkgReceive,1);
//if the function getCanMessage doesn’t terminate before
//DELAY_MAX_READ_CAN_MESSAGE ms, this program must be

85 //restarted.
//it’s necessary this control because happen that CAN bus stops
// running and it’s necessary restart the program to resume CAN bus

if (!function_caller.timed_join(boost::posix_time::milliseconds
90 (DELAY_MAX_READ_CAN_MESSAGE)))

{
restartCommunication();
}

95 //the message from CAN bus is interpreted and stored in the
//variable ackermannMsg

switch (canPkgReceive.id)
{

100 case SPEED_MESUREMENT:
{
float speed = 0; // mm/s −> millimeters, not meters
//low byte: resolution: 0.001 m/s/bit
speed = canPkgReceive.data[0] * 0.001;

105 //upper byte: resolution: 0.256 m/s/bit
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speed += canPkgReceive.data[1] * 0.256;
if(canPkgReceive.data[7] == 0x40)speed *= −1;
ackermannMsg.speed = speed;
break;

110 }

case STEERING_POSITION:
{
int position;

115 position = canPkgReceive.data[0];
position += canPkgReceive.data[1] * 256;
//rad
ackermannMsg.steering_angle = atan(LENGHT_VEHICLE*
(position− STEERING_DEFAULT_POSITION) /

120 (RESOLUTION_CURVATURE_CONVERSION ) );
break;
}

}

125 }//while(1)
}

/******************************************************************
130 * @function: readCANmessageThread

* Thread − send to ROS topic the ackermannMsg readed
* Periodically the function readDataFromCan is called to update
* the values of ackermannMsg from * CAN bus and published them
* via ROS.

135 *******************************************************************/
void CanBus::readCANmessageThread(int argc, char **argv, CanBus
&canBusCommunication)
{
//show the firmware version, it’s also used for checking if the CAN

140 //bus works
canShowFwVersion();

//ros initialization
ros::init(argc, argv, "");

145 ros::NodeHandle nodePlannerController;
//create a ros::Publisher which is used to publish on a topic called "fromCan2Ros"
ros::Publisher msgPublic = nodePlannerController.advertise
<ackermann_msgs::AckermannDrive>("fromCan2Ros", 1);

ros::Rate loop_rate(ROS_SEND_MESSAGE_FREQUENCE_HZ); //Hz
150

//call the thread readDataFromCan
boost::thread threadReadDataFromCan(&CanBus::readDataFromCan,
boost::ref(ackermannMsg),

boost::ref(canBusCommunication));
155

while (ros::ok())
{
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//The publish() function is how you send messages.
//The parameter is the message object.

160 msgPublic.publish(ackermannMsg);
ros::spinOnce();
loop_rate.sleep();

}

165 threadReadDataFromCan.join();
}

/******************************************************************
* @function: readDataFromRos

170 * The function is called periodically from the subscribe of the
* topic "fromRos2Can" and read the * ackermann_msgs received via
* ROS.
* The messaged received include steering and speed values are
* adapted for sending via CAN bus.

175 *******************************************************************/
void CanBus::readDataFromRos(const ackermann_msgs::AckermannDrive::
ConstPtr& msg, CanBus &canBusCommunication)
{

// the values of speed and steer are read and adapted to be
180 //correctly interpreted by the EPAC

int steer = ( tan (msg−>steering_angle) *
RESOLUTION_CURVATURE_CONVERSION / LENGHT_VEHICLE ) +
STEERING_DEFAULT_POSITION;
struct CanMsg msgSteeringdirection;

185 canBusCommunication.msg2send[STEER].data[0] = (unsigned char)
((steer) & 0xFF); //select lower byte
canBusCommunication.msg2send[STEER].data[1] = (unsigned char)
(((steer) & 0xFF00) >> 8); //select higher byte

190 int absSpeed = (int) fabs(msg−>speed * 1000);
canBusCommunication.msg2send[SPEED_SET].data[0] =
(unsigned char)(absSpeed & 0xFF); //select lower byte
canBusCommunication.msg2send[SPEED_SET].data[1] =
(unsigned char)((absSpeed & 0xFF00) >> 8); //select higher byte

195 canBusCommunication.msg2send[SPEED_SET].data[7] =
(msg−>speed >= 0 )?0x40:0x00;
boost::mutex::scoped_lock lock (canBusCommunication.
mtxCANbusBusy);
canBusCommunication.CANbusBusy = true;

200

boost::thread function_caller(::sendCanMessage,
canBusCommunication.msg2send,2);
//if the function sendCanMessage doesn’t terminate before
//DELAY_MAX_SEND_CAN_MESSAGE ms, this program must be

205 //restarted
if (!function_caller.timed_join(boost::posix_time::
milliseconds(DELAY_MAX_SEND_CAN_MESSAGE)))

{
restartCommunication();
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210 }
//set to false the boolean variable that rappresent the status
//of the CAN bus and alert the condition variable that
//the CAN bus is available for a possible read

canBusCommunication.CANbusBusy = false;
215 canBusCommunication.condCANbusBusy.notify_one();

}

/******************************************************************
220 * @function: sendCANmessageThread

* Thread − read from ROS topic "fromRos2Can"
* Periodically the function readDataFromRos is called read data
* from ROS and send them to CAN.
*******************************************************************/

225 void CanBus::sendCANmessageThread(int argc, char **argv, CanBus
&canBusCommunication)
{
//ros initialization
ros::init(argc, argv, "sendCANmessageThread");

230 ros::NodeHandle n;
ros::Rate loop_rate(ROS_READ_MESSAGE_FREQUENCE_HZ); //Hz
//The subscribe() call the ROS master node for communicate that
//the function wants to receive ROS messages from the topic
//"fromRos2Can"

235 ros::Subscriber sub = n.subscribe<ackermann_msgs::AckermannDrive>
("fromRos2Can", 1, boost::bind(readDataFromRos, _1,
boost::ref(canBusCommunication)));
while (ros::ok())

{
240 ros::spinOnce();

loop_rate.sleep();
}

exit(1);
245 }

/******************************************************************
* @function: restartCommunication

250 * Kill the program
* There is a syncronous communication with the program
* startCommunication via ROS with a service.
* ./restartCommunication signal to startCommunication that the
* process must die, when get the feedback from

255 * ./restartCommunication it proceed to kill itself.
******************************************************************/
void CanBus::restartCommunication()
{

260 int argc = 0;
char** argv;
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//ros initialization
ros::init(argc, argv, "talker");
ros::NodeHandle n;

265

//creates a client for the killApp service
ros::ServiceClient client = n.serviceClient<atv_acrosser::
killApp>("killCAN");
atv_acrosser::killApp srv;

270 //get the name of the pid
srv.request.pid2Kill = getpid();
if (client.call(srv))
{

//when receive the feedback from the
275 ROS_INFO("Sum: %ld", (long int)srv.response.pidKilled);

exit(0);
}
else

ROS_ERROR("Failed to call service killCAN");
280 }

/******************************************************************
* @function: canShowFwVersion
* Show the version of the firmware version

285 * If there are some problem for getting the firmware version
* there are some problems in * the CAN communication and then
* then communication must be restarte calling the function
* restartCommunication().
******************************************************************/

290 void CanBus::canShowFwVersion()
{

PicInfo picInfo = {0};

int result = getCanFwVer(&picInfo);
295

if(!result) {
cout << picInfo.info;

} else {
restartCommunication();

300 }

return;
}

d.4 ./can.h

The header include the definition of the class CanBus.

Listing 29: CAN.h

//=================================
2 // include guard

#ifndef __CAN_H_INCLUDED__
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#define __CAN_H_INCLUDED__

//=================================
7 // define

enum EnumTypeMsg { STEER, SPEED_SET, SPEED_STOP, GEAR };
//=================================
// included dependencies
#include "../include/atvAcrosser/parameterCar.h"

12 #include "ackermann_msgs/AckermannDrive.h"
#include <boost/thread/thread.hpp>
#include "ros/ros.h"
#include <stdio.h>
#include "ARV6005Lib.h"

17

//=================================
// class
class CanBus{

22 private:
boost::mutex mtxCANbusBusy;
boost::condition_variable condCANbusBusy;
bool CANbusBusy;

27 CanMsg msg2send[2];

ackermann_msgs::AckermannDrive ackermannMsg;

static void restartCommunication();
32 static void canShowFwVersion();

static void readDataFromCan(
ackermann_msgs::AckermannDrive &ackermannMsg,
CanBus &canBusCommunication);

37 static void readDataFromRos(
const ackermann_msgs::AckermannDrive::ConstPtr& msg,
CanBus &canBusCommunication);

//this function is used when I send just one message in
42 //the CAN bus

//static void readDataFromRos(
//const ackermann_msgs::AckermannDrive::ConstPtr& msg);

public:
47 CanBus();

~CanBus();
void readCANmessageThread(int argc, char **argv,
CanBus &canBusCommunication);

void sendCANmessageThread(int argc, char **argv,
52 CanBus &canBusCommunication);

//
};
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#endif // __CAN_H_INCLUDED__

d.5 ./parametercar .h

Definition of the constants parameters .

Listing 30: parameterCar.h

//=================================
// include guard
#ifndef __PARAMETERCARH_INCLUDED__

4 #define __PARAMETERCARH_INCLUDED__

//CAN communication parameters
#define AUTOMATION_STATUS 0x18FF2004ULL
#define SPEED_MESUREMENT 0xCF02205ULL

9 #define STEERING_POSITION 0xCAC0005ULL

//VEHICLE communication steering parameter
#define STEERING_DEFAULT_POSITION 32128

#define STEERING_MAX_RANGE 4000 //bits
14 #define STEERING_MAX_GRADE 70 //grads

//VEHICLE parameters
#define LENGHT_VEHICLE 1.85 //m
//resolution curvature: 0.25km^−1/bit

19 #define RESOLUTION_CURVATURE 4

#define CONVERSION_m2Km 1000

#define RESOLUTION_CURVATURE_CONVERSION
RESOLUTION_CURVATURE*CONVERSION_m2Km

24

//ROS frequencies parameters
#define ROS_SEND_MESSAGE_FREQUENCE_HZ 100 //Hz
#define ROS_READ_MESSAGE_FREQUENCE_HZ 100 //Hz

29 //maximum waiting time for a CAN communication
#define DELAY_MAX_SEND_CAN_MESSAGE 5000 //ms
#define DELAY_MAX_READ_CAN_MESSAGE 5000 //ms

#endif // __PARAMETERCARH_INCLUDED__
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U S E R G U I D E

• Start ROS Master from console editing roscore.

• startCommunication:

– Open a new console.

– cd catkin_ws/devel/lib/atv_acrosser

– sudo su

– ./startCommunication
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