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Abstract

Formula Student is an international engineering competition where stu-

dent teams design, build, and race small formula-style race cars. The

competition provides a platform for students to apply their engineering

knowledge in a practical, hands-on project and involves various disci-

plines such as mechanical, electrical, and computer engineering. One

category of this competition is Driverless. This competition challenges

student teams to design, build, and program autonomous vehicles that

can navigate and compete in various dynamic and static events without

a human driver.

This thesis focuses on building a localization and mapping system for

the Formula Student team from the University of Padova, RaceUp. The

main goal is to transition the algorithms from a simulator environment

to a real-world setup. The focus of this work is on vehicle sensorization,

visual perception algorithms, and simultaneous localization and mapping

(SLAM).

The SLAM process is typically divided into two main parts: the front-

end, which involves sensor data collection and feature extraction, and the

back-end, which focuses on optimizing the vehicle’s estimated trajectory

and the map of its surroundings.

The evaluation of the pipeline was conducted using real-world data ob-

tained by equipping sensors onto the vehicle and traversing the track. By

employing a blend of contemporary and traditional methodologies, we

analyze data generated by the stereo camera to localize the colored cones

outlining the track. The derived positions of the cones subsequently feed

into critical modules of the vehicle, including the control system and the

SLAM pipeline.
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Chapter 1

Introduction

Self-driving cars are emerging as a transformative technology with the potential

to revolutionize transportation. As urban populations grow and traffic congestion

increases, traditional methods of mobility are becoming less efficient and more

unsustainable. Self-driving cars offer a promising solution to these challenges by

enhancing road safety, reducing traffic congestion, and improving transportation

efficiency.

Many fields can benefit from self-driving cars. Autonomous vehicles can

streamline supply chains and delivery services, improving efficiency and reduc-

ing costs. In addition, Self-driving buses and shuttles can provide efficient and

reliable public transportation solutions. In the field of agriculture, autonomous

tractors and machinery can enhance precision farming, increasing productivity

and reducing labor costs.

The development of self-driving cars has made significant strides in recent

years. Significant progress has been made in sensor technology, artificial intelli-

gence, and machine learning, enabling self-driving cars to perceive and interpret

their environment accurately. LiDAR, radar, cameras, and GPS systems are

being integrated to provide comprehensive situational awareness.

1.1 Problem statement

The design of a self-driving vehicle requires encountering several factors, from

arranging hardware components to developing complex software systems. For

an autonomous vehicle to navigate independently in unfamiliar situations, it re-

quires various interconnected modules, and the ones we are going to focus on are

perception, localization, and mapping. Naturally, the entire software stack would
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be ineffective without a properly mounted set of sensors on the vehicle.

Perception in autonomous vehicles is analogous to human senses, as it involves

collecting information from the surrounding environment. This ability to perceive

the nearby world is fundamental to autonomous navigation. Perception data is

used to determine whether there are obstacles in the vehicle’s path, whether the

road curves, or remains straight. Perception, as the initial stage of the self-driving

pipeline, forms the backbone of the entire system. Reliable perception provides

high-quality input to SLAM, while noisy perception hinders the overall system’s

performance.

SLAM [1] stands for simultaneous localization and mapping and is arguably

the most extensive component of the self-driving pipeline. The SLAM problem

revolves around estimating the map of the environment while simultaneously

localizing the vehicle within that map. As a result, it possible to determine the

pose of the vehicle relative to the world and the associated uncertainty of that

estimate.

As previously mentioned, there are numerous scenarios where autonomous

driving technologies can be applied. One such scenario is the world of car rac-

ing. In this work, we will focus on a driverless racing event that is part of the

Formula Student competition. This project is specifically developed for RaceUp

[2], the Formula Student team of the University of Padova. Over the past 17

years, RaceUp has participated in both national and European-level races with

electric and combustion vehicles. With competitions increasingly shifting towards

driverless formats, there is now a pressing need for a reliable driverless system to

compete in racing events.

In general, designing a vehicle capable of competing at a high-level event

is far from simple. It requires seamless integration of numerous components to

ensure the complex system functions effectively in dynamic situations. Moreover,

redundancy in modules is essential to ensure fault recovery capabilities. Racing

scenarios demand a fast processing computing system that is lightweight and has

low power consumption, adding further complexity to the design process.

If we consider specifically the RaceUP Driverless case, the project is particu-

larly challenging not only from a technical point of view but also because:

• the autonomous car prototype is modified every year with changes con-

cerning the kinematics of the car, low-level software structure, and sensors

related to each component of the car.

• the choice of sensors to be mounted on the vehicle is constrained to univer-
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sity funds, weight of sensor, and power consumption;

• sensor shape and mounting position affects the design of aerodynamics and

weight distribution, so all these aspects need to be discussed with the mem-

bers belonging to many different departments;

• being this project the first concept of driverless vehicle at all, it is a learn-

by-doing activity for everyone.

Given that Formula Student may not be widely recognized outside of those

directly involved in the field, the following section will offer an overview of this

event, with a specific focus on the Driverless category.

1.2 Formula Student

Formula Student (also known as Formula SAE, organized by the Society of Au-

tomotive Engineers) is a prestigious student competition founded in 1981. The

competition challenges university students to design, build, and race a prototype

single-seater, high-performance Formula-style race car. These cars are tailored to

participate in nationally and internationally recognized racing events.

Formula-style vehicles are characterized by their open-wheeled design, single

seat, open cockpit, and four wheels that are not aligned in a straight line [3]. Par-

ticipating in Formula Student is a comprehensive challenge as it requires students

to conceive, design, fabricate, develop, and compete with their cars.

Teams are composed exclusively of university students from diverse back-

grounds, providing knowledge across various fields from all around the world (see

figure 1.1). Essential skills for the competition include mechanical, electrical, and

software engineering, as well as economics, management, and marketing.

Each team must build their own cars in compliance with a series of official

rules that define specific characteristics of the chassis and safety conditions for the

races. Adhering to these regulations also enhances the problem-solving capabili-

ties of future engineers, who will seldom have total freedom in their professional

projects.

Historically, Formula Student started with the development of a combustion

vehicle with a traditional thermal motor. In 2010, an electrical division was

introduced, requiring teams to also provide fully electrically-powered prototypes.

In 2017, the German Formula Student committee initiated the Driverless division,

aiming to design self-driving vehicles capable of completing all events without
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Figure 1.1: All participants at Formula Student Germany 2023 [4]

human driver assistance or remote control. An example of these driverless cars

is presented in figure 1.2.

From this point forward, all references to Formula Student will implicitly

refer to the driverless race car, as this thesis focuses on designing and developing

components of an autonomous racing system. The information provided pertains

to the 2024 competition, as stated in the official documents [3] at the time of

writing.

Specific regulations concerning both the car and the track have been estab-

lished to ensure the safety of all participants. According to the Formula Student

Germany Competition Handbook 2024 [3], tracks will be marked with colored

cones: blue on the left side, yellow on the right, small orange on the entry and

exit lanes, and large orange before and after the start, at the finish, and time-

keeping points (see figure 1.3). Cones along the driving direction will be no more

than 5 meters apart, and specific zones will be marked with colored paint.

Before the competition begins, each vehicle undergoes a Technical Inspection

to ensure rule compliance. For the autonomous system, this includes providing

data sheets for all perception sensors and documentation certifying their compli-

ance with local legislation. The Remote Emergency System, a remote-controlled

module on the vehicles that activates emergency behaviors, is also verified. This
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Figure 1.2: Example of a fully sensorized driverless formula student car made by AMZ team [5]

system is activated if:

• the autonomous vehicle seems to be out of control;

• the vehicle gets visibly damaged (mechanically or electrically);

• the minimum average speed during the track drive event is not respected

(2.5 m/s for the first three laps, and 3.5 m/s for the following ones);

• the presence on the track of something/someone not allowed to be there.

Other inspections include a tilt test, to check the wheels’ contact with the

ground and the presence of fluid leaks. A rain test for the safety of the electrical

system in case of adverse weather conditions.

If the Technical Inspection has been successfully completed, the prototype is

then judged according to two types of tests: static events, to rate cost analysis,

business presentation, and engineering design capabilities of the participants, and

dynamic events for the performance and technical reliability.

A brief overview of the two evaluation events is provided now, together with

the official track configuration for the racing events, when available:

1. STATIC EVENTS
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Figure 1.3: Official Driverless competition cones.

Business Plan Presentation: teams must deliver a comprehensive business

model to convince potential investors or partners of the project’s profitabil-

ity.

Cost and Manufacturing : this event evaluates the team’s ability to make

cost-effective decisions during manufacturing, including make-or-buy choices.

Teams must submit detailed Cost Report Documents for every material and

component used in the vehicle.

Engineering Design: in this event teams explain their design choices and

highlight features, concepts, or methods that add value to the vehicle

2. DYNAMIC EVENTS

Skidpad : an eight-shaped track, figure 1.4, consisting of two pairs of con-

centric circles, has to be cleared twice. This means that the vehicle must

perform two laps around each circle, as well as autonomously enter and exit

from the test area.

Acceleration: the track here is a simple straight line with specific length

and width, figure 1.5, delimited by a starting and a finish line. The event

consists of an acceleration test from a standing start. The primary metric

that is used for evaluating this event is the taken time to complete the track.

Autocross : the autocross track does not have a fixed layout, but it is de-

signed adhering to predefined constraints on the length, width, and number

of curves and straight sections. The goal is to complete two runs consisting

of one lap each, in the minimum possible time. The evaluation is obtained
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Figure 1.4: Skidpad track configuration.

Figure 1.5: Acceleration track configuration.
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according to the completion of the aforementioned laps and to the compar-

ison between the elapsed time and the maximum allowed time.

Trackdrive: this event is only for the driverless cup and consists of a closed

loop circuit, shorter than the ones described above, designed according to

some constraints. Teams have to complete ten laps, counted by the vehicle

itself: this means that there will be no explicit signals or indications on the

track, implying that the autonomous system must be able to keep track of

the completed laps. Points received in this test depend on the number of

completed laps, and on the individual elapsed time.

During dynamic events, penalties can be assessed in many different cases.

The most relevant for the self-driving category are knocking over cones, going

outside the track with all four wheels and not re-entering within a certain time, or

stopping in an unsafe manner, meaning outside of the specified area, for example.

1.3 Thesis objectives and outline

The aim of this thesis is to transition the work already completed on the simulator

[6] to the real world. The simulator platform used for this project is EUFS, where

the complete SLAM algorithm has been implemented and tested. Transitioning

from a simulation environment to the real world can be challenging due to:

• many noise factors not being considered in the simulator. These noises

affect both perception (changes in light exposure, unattended objects in

the scene, changes in calibration due to car movements, etc.) and localiza-

tion (different wheel slip on various surfaces, error margins on each sensor,

asynchronous sensors);

• In the real world, each sensor (such as wheel encoders, steering sensors,

cameras, IMUs, etc.) requires a software driver that ensures real-time per-

formance;

Beginning with a literature review (in chapter 2) of scientific papers and

articles related to autonomous racing scenarios, the state-of-the-art solutions em-

ployed by other Formula Student teams were identified and analyzed. Special

attention was given to the various sensor configurations and the different ap-

proaches proposed for addressing the mapping problem.
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Chapter 5 details the initialization phase of the project, which involves ac-

quiring a comprehensive real-world dataset following the proper sensorization of

an official Formula Student car. Real sensors were mounted on the prototype in

a manner closely replicating the setup used in simulation. Additionally, a set of

sensor drivers were developed to synchronize incoming data and ensure real-time

storage of the received information.

As the front-end of Simultaneous Localization and Mapping, a perception

module has been implemented to utilize images from a pair of stereo cameras.

The visual cone detection pipeline employs a deep learning approach, using a fine-

tuned version of YOLOv7 [7] to obtain bounding boxes around the landmarks

in the stereo camera images. Preliminary qualitative results will be presented in

Chapter 6.

In Chapter 7 we will focus on the final choice for the SLAM back-end system:

a graph-based approach. This approach involves the mathematical optimiza-

tion of spatial constraints linking vertices of a graph. A detailed explanation of

this implementation is provided by introducing g2o as the framework for graph

optimization, the anti-Ackerman steering system and its integration into the mo-

tion model, a nearest-neighbor data association algorithm, and the loop closure

techniques used to tackle the difficulties of loop closure in a real-world racing

environment. And finally, the results will be presented by comparing the real-

world performance with the simulator environment performance. The simulator

is considered to be a benchmark for the evaluation of real-world performance.
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Chapter 2

Related work

The competitive nature of Formula Student makes it challenging to find scientific

literature specific to this application, as most teams are reluctant to publish their

work or share their research with competitors. Additionally, publicly available

papers often describe earlier versions of the race cars used in previous seasons.

Another effective way to become familiar with the work done in this field is

to attend competitions and observe the cars in action on the tracks. Direct

observation can provide valuable insights into the practical implementation of

various technologies and strategies used by different teams. In addition, more

precise and detailed information about the systems used in race cars can be found

directly on the websites of the involved universities or teams. This is because most

of the work in this field is not published as formal research.

Despite these challenges, analyzing available works can provide valuable in-

sights into the fundamental algorithms and setups currently used by other par-

ticipants. For new teams entering the competition, starting with simpler yet

effective systems is likely the best approach.

In [6], Tonin from the University of Padova introduces a pipeline for SLAM in

the EUFS simulator [8], utilizing two approaches in graph SLAM optimization:

global optimization of the entire graph and incremental local optimization. In the

first approach, the entire graph is optimized at once, while in the second, opti-

mization occurs after a certain number of edges are added. The results presented

in this work demonstrate a significant improvement in the accuracy of localization

and mapping within the simulator environment while the optimization is done

incrementally.

In [9] the team from Beijing university introduces a LiDAR-vision method

for detecting the traffic cones. Their sensor positioning is interesting due to the
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positioning of the LiDAR under the nose of the car, making the focus of the emit-

ted rays to be on the cones. Also for navigation they use a combination of GPS

and INS (Inertial Navigation System) which provides high-accuracy positioning

critical for vehicle localization, especially during the second lap when the vehicle

relies on pre-mapped trajectories. In addition, they use a complementary filter

for coupling GPS-INS data with LIDAR odometry to enhances overall positional

accuracy.

In [10], the KIT team utilizes a redundant sensor suite with three cameras

and four LiDARs for robust environment perception. This multi-sensor approach

helps mitigate the limitations of any single sensor and improves the overall re-

liability of the system. The paper highlights the presence of two independent

pipelines for processing camera and LiDAR data. This redundancy ensures that

the system can function even if one sensor encounters issues. In addition, a CNN-

based approach has been used to detect bounding boxes of the cones. For the

SLAM pipeline, they also use an Extended Kalman Filter, with (x, y, θ) as pa-

rameters. Data association is handled using the renowned Joint Compatibility

Branch and Bound (JCBB) [11] algorithm.

In [12], the Austrian team TUW from Wien developed a prototype that does

not use a LIDAR but instead relies on a planar laserscanner along with the other

standard sensors like a camera, IMU, and GPS. Similar to other teams, their

perception module employs a mixed approach to leverage both track images and

laserscan points. The perceived data is then used as input for an Extended

Kalman Filter implementation to construct the map of the track.

In [13], [14], and [15], the AMZ team from ETH Zurich presents Gotthard

and Pilatus, their cars used in the 2018-2021 seasons. These papers show that

the sensor setup remained largely consistent over the years, with the exception

of an additional LIDAR added in 2019, placed on the main hoop alongside the

cameras. Regarding the perception module, both systems integrate a camera-

based cone detection pipeline with a LIDAR-based one. For the visual pipeline,

both cars use a version of YOLO as the detector, while the LIDAR is also utilized

to recognize color through intensity data analysis. In terms of the SLAM module,

a significant change occurred from the 2018 car to the 2019 car: they switched

from a particle filter algorithm, FastSLAM 2.0 [16], to graphSLAM [17].

Finally, the MIT Driverless team, as detailed in [10], uses a YOLO-based

pipeline to detect cones but does not provide extensive information about the

rest of their system.
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Recent advancements in visual SLAM (V-SLAM) have shown promise in im-

proving the performance and reliability of autonomous race cars. For instance,

ORB-SLAM, a well-known V-SLAM algorithm, has been adapted for use in high-

speed scenarios. ORB-SLAM utilizes oriented FAST and rotated BRIEF (ORB)

features to achieve real-time performance, robustness, and accuracy in large-scale

environments [18]. This algorithm’s ability to handle dynamic and changing en-

vironments makes it highly suitable for Formula Student applications.

Graph-based SLAM methods, such as g2o, have introduced efficient opti-

mization techniques for large-scale SLAM problems. g2o (General Graph Opti-

mization) provides a flexible framework for optimizing nonlinear error functions,

which is crucial for accurate and scalable SLAM [19]. This method is particularly

beneficial for maintaining high accuracy in extensive and complex racing tracks.

To gain a broader understanding of potential approaches worth further study,

it can also be beneficial to consult the numerous theses written by university

students about their prototypes. However, it’s important to remember that theses

are not published or officially reviewed works, so the information they contain

needs to be carefully verified.

The main contribution of this thesis is the development of a real-world simul-

taneous localization and mapping (SLAM) module based on graph optimization,

while focusing on both the front-end (visual perception) and back-end (local-

ization and mapping optimization), specifically designed for the SG-05 RaceUp

electric car.
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Chapter 3

Theoretical background

This chapter explores the foundational concepts and methodologies underpinning

the development of a robust autonomous localization and mapping system. The

theoretical background is divided into two primary sections: Visual perception

and SLAM (Simultaneous Localization and Mapping).

The visual perception section addresses the initial stage of the autonomous

driving pipeline, which is crucial for understanding the vehicle’s surroundings.

We will first discuss the fundamental principles of how cameras work, introducing

the pinhole camera model as the basis for various camera systems in computer

vision. Then the key tasks in achieving a 3D representation of the environment,

such as calibration and triangulation, are explained in detail. Calibration involves

extracting intrinsic and extrinsic parameters of the cameras to ensure accurate

image representation and depth estimation. Triangulation is then used to derive

the 3D positions of objects from the stereo images, which is crucial for tasks like

3D reconstruction and obstacle detection.

The SLAM section explores the widely studied problem in robotics of en-

abling a system to navigate autonomously in an unknown environment. It begins

by defining the core components of SLAM: the state vector, control vector, land-

mark location, and observation vector. These components are used to formulate

the SLAM problem, which involves estimating the vehicle’s position and the map

of its surroundings simultaneously. We then explain two problems: the obser-

vation model and the motion model. The observation model translates sensor

measurements into environmental data, while the motion model describes how

the vehicle’s state evolves over time. Together, these models update the vehicle’s

state and the world map as the vehicle moves and detects new landmarks. The

discussion then focuses on graph-based SLAM, one of the three main approaches
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to addressing the SLAM problem, alongside Kalman filters and particle filters.

The mathematical formulation of graph-based SLAM is presented, illustrating

how the problem can be represented by a graph where nodes correspond to the

robot’s poses and edges define constraints between these poses.

3.1 Visual Perception

In the domain of simultaneous localization and mapping (SLAM), two primary

components are commonly distinguished: the front-end and the back-end. The

front-end handles sensor data processing to determine the robot’s present position

and map environmental landmarks. More specifically, in our scenario, we focus

on identifying spatial relations and associations among landmarks, particularly

the cones on the track.

While humans use their senses while driving a car, autonomous robots rely

on sensors for gathering information about the surrounding environment. In this

project, the sensor used for sensing the environment to make a map of the track,

are stereo cameras.

Before investigating the principle of stereo vision, it worth mentioning the

theory behind how cameras work. A camera is a device containing an image

sensor that converts light reflected by objects into current signals, ultimately

producing an image. The basic camera model, known as the pinhole camera

model, depicted in figure 3.1, represents the projection of light rays onto the

sensor through a small aperture, mimicking the behavior of the human eye. This

model forms the foundation for various camera systems, serving as a fundamental

concept in the field of computer vision and imaging technology.

A stereo system, a common setup in computer vision and robotics, consists

of two or more usually identical cameras rigidly mounted and capturing the same

scene from different perspectives. This configuration enables the system to per-

ceive depth information by exploiting the geometric principles of triangulation.

By correlating corresponding points in the images captured by each camera, the

system can calculate the disparity between them, which directly relates to the

depth of the scene. This depth estimation capability is essential for tasks such

as depth mapping, 3D reconstruction, obstacle detection, and environment per-

ception in various applications, including autonomous driving, augmented reality,

and robotics.

To achieve a 3D representation of landmarks in the surrounding environment,
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Figure 3.1: The pinhole camera model, with added virtual image plane.

two main tasks must be completed: calibration and triangulation.

The primary objective of calibration is to extract the intrinsic and extrinsic

parameters of the cameras. However, it’s crucial to conduct denoising and undis-

tortion before proceeding with calibration. The intrinsic parameters include the

focal length, optical center, and distortion coefficients, which are unique to each

camera and necessary for accurate image rectification and 3D reconstruction.

The extrinsic parameters define the spatial relationship between the cameras,

including their relative position and orientation.

As the first step, we should conduct mono camera calibration for each camera

to extract the intrinsic parameters. This involves capturing images of a known

calibration pattern, such as a checkerboard, from various angles and distances.

Specialized software then analyzes these images to compute the camera’s intrinsic

parameters, correcting for lens distortion and ensuring accurate image represen-

tation.

After mono camera calibration, we proceed with stereo camera calibration to

determine the extrinsic parameters. This process involves capturing synchronized

images from both cameras of the same calibration pattern and calculating the

relative transformation between the cameras. This transformation is essential

for accurate triangulation, as it allows the system to map points in one camera’s

image to the corresponding points in the other, enabling precise depth estimation

and 3D representation of the scene.

Triangulation is a crucial technique used to derive the 3D position of an object
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point from two or more images taken from different viewpoints. Once the cameras

are calibrated, triangulation can be performed using the intrinsic and extrinsic

parameters obtained during calibration. The steps for triangulation include:

• Feature Matching: Identify corresponding points in the images taken by

the stereo cameras. This involves finding points in one image that match

points in the other image, typically using feature detection and matching

algorithms;

• Compute the disparity, which is the difference in the positions of the cor-

responding points in the two images. Disparity is inversely proportional to

the depth of the point in the scene—the greater the disparity, the closer the

object is to the cameras;

• Use the disparity information and the known baseline distance (the dis-

tance between the two cameras) to calculate the depth (z-coordinate) of

the points. The depth can be calculated using the formula:

z =
f.B

d
(3.1)

where z is the depth, f is the focal length of the cameras, B is the baseline

distance between the cameras, and d is the disparity.

• 3D Point Reconstruction: Combine the depth information with the intrinsic

parameters to reconstruct the 3D coordinates (x, y, z) of the points in the

scene. This involves back-projecting the 2D points in the image plane to

3D space using the calculated depth.

3.2 Simultaneous Localization And Mapping

(SLAM)

SLAM, which stands for simultaneous localization and mapping, is a widely stud-

ied problem in robotics. It is applicable whenever a system needs to navigate

autonomously in an unknown environment. To achieve its goal, the robot must

construct an accurate model of its surroundings and the trajectory it is following.

Additionally, it must be capable of localizing itself within the created map.
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To achieve these goals, the robot uses its sensors to observe the world and

gather information about the scene, such as identifying landmarks. These land-

marks are then used to create a map and serve as reference points for localization.

To formally define the problem [1], at each time instant t, we can define:

• xt: the state vector describing the current position and orientation of the

vehicle;

• ut: the control vector to move from state xt−1 to state xt;

• mi: the vector describing the i-th landmark location;

• zt: the observation of the landmarks at time t.

According to this notation, the SLAM problem can be stated as

P (xt,m|z0:t,u0:t) = P (xt, |z0:t,u0:t)P (m|x0:t, z0:t), (3.2)

where writing 0 : t denotes the series of the specified values until time t.

The probability distribution derived from the observations and control inputs

up to time t, along with the vehicle’s initial state, represents the joint posterior

density of both the landmark locations and the vehicle’s state at time t.

From Equation 3.2, it is evident that simultaneous localization and mapping

(SLAM) comprises two sub-problems: the observation model and the motion

model.

The former outlines how sensor measurements translate into the environment,

defining the likelihood of a specific observation given the known locations of both

the vehicle and landmarks:

P (zt, |xt,m), (3.3)

The latter represents the evolution of the system over time, describing how

the previous state and control inputs influence the new state:

P (xt, |xt−1,ut), (3.4)

In summary, the vehicle state and the world map undergo continuous updates

as the vehicle moves: new landmarks, detected through sensors, are checked for

association with existing ones on the map. If a positive match is found, the two

landmarks are associated. Otherwise, the new landmark is added to the map.
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The current state-of-the-art relies on three main approaches to address the

SLAM problem: Kalman filters, particle filters, and graph-based methods. This

thesis focuses solely on the third approach. Below, the mathematical formulation

of graph-based SLAM will be formally presented, as detailed in [17].

The simultaneous localization and mapping problem can be represented by

a graph, where nodes correspond to the robot’s poses at various time points,

and edges define constraints between these poses. By utilizing different sensors,

environmental observations are collected and used to create these constraints.

Figure 3.2: Mathematical configuration of the graph used to represent the SLAM problem.

A common graph configuration for the SLAM problem is depicted in figure

3.2. Each pair of vertices xi and xj is connected by an edge according to the

measurement zij. The expected measurement ẑij is the prediction of the mea-

surement zij given a configuration for the nodes xi and xj. The ellipsoid around

zij in figure 3.2 is the information matrix Ωij, representing the uncertainty that

we have on the measurement.

Finally, the error encoded in the edges will be defined as follows :

eij(xi,xj) = ẑij − zij, (3.5)

In general, it represents the difference between the expected measurement and

the actual measurement.

Defining C as the set of pairs of indices for which an observation exists, the

goal of the SLAM back-end optimizer is to minimize

F (x) =
∑

(ij)∈C

eTijΩijeij (3.6)
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in order to find the optimal configuration of the nodes x∗ such as

x∗ = argmin
x

F (x) (3.7)
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Chapter 4

Test environment

In the process of developing any complex system, in our case a self-driving car,

there should be platforms to allow safe and repeatable testing. In this chapter, we

will discuss two main tools used for testing in this project: Virtual simulator

and Test mule.

When developing a Formula Student Driverless car, it is imperative to first

rigorously test all systems and components within a dedicated simulator designed

specifically for this purpose. This approach offers numerous benefits that are

crucial to the success and safety of the project.

Using a simulator allows for comprehensive testing of the car’s algorithms and

systems in a controlled and repeatable environment. This ensures that all sce-

narios, including edge cases and potential failure points, can be explored without

the risk of damaging the vehicle or endangering the team. The simulator repli-

cates real-world conditions, enabling developers to fine-tune the car’s responses

to various dynamic situations, such as different track layouts and obstacles.

A crucial advantage of simulation is the availability of ground truth data,

which is essential for proper benchmarking and algorithm evaluation. Ground

truth data provides an accurate reference that can be used to measure the per-

formance of various algorithms, such as perception, localization, and mapping.

This allows us to precisely evaluate the accuracy and reliability of the systems,

ensuring that they meet the necessary performance standards.

Another vital feature of simulation is sensor simulation. This allows for real-

istic modeling and calibration of the car’s sensors, such as LiDAR and cameras.

By simulating these sensors, developers can test how the car perceives its envi-

ronment and ensure that the sensor data is accurately interpreted by the car’s

systems. Sensor simulation also helps in calibrating the sensors, which is essential
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for maintaining the precision and reliability of the car’s perception system.

Simulation also offers significant benefits in terms of scalability and rapid

testing. Changes to the car’s design or software can be quickly implemented and

tested in the simulator, allowing for rapid prototyping and iteration. This accel-

erates the development process, enabling the team to test multiple configurations

and algorithms in a short period. The scalability of simulation means that exten-

sive testing can be conducted without the limitations and costs associated with

real-world testing.

In addition to simulation, the use of a test mule is a vital component in the

development of a Formula Student Driverless car. A test mule is a simplified

version of the vehicle that is not intended for competition and does not need to

adhere to the stringent rules and regulations governing the final competition car.

This approach offers several critical advantages that enhance the development

process.

Firstly, having a test mule allows for practical, real-world testing of the car’s

systems and components. While simulations provide a controlled environment for

initial testing, real-world conditions can introduce variables and challenges that

are difficult to replicate virtually. A test mule bridges this gap by allowing devel-

opers to observe how the car’s systems perform under actual operating conditions,

thereby providing invaluable insights into the car’s behavior and performance.

The simplified nature of the test mule makes it an ideal platform for iterative

testing and development. Without the constraints of competition rules, the test

mule can be modified and adjusted more freely, enabling rapid prototyping and

experimentation.

Moreover, the use of a test mule helps to identify and resolve potential issues

early in the development process. By testing components such as sensors, actu-

ators, and control systems on the test mule, developers can detect and address

problems before they are integrated into the more complex and expensive com-

petition vehicle. This proactive approach reduces the risk of encountering critical

failures during the later stages of development or during competition.

Additionally, a test mule provides an invaluable opportunity for the team to

practice and refine their testing and debugging procedures. This includes honing

their skills in data collection, analysis, and troubleshooting, which are essen-

tial for diagnosing and solving issues efficiently. The experience gained through

working with the test mule can significantly improve the team’s preparedness and

confidence when dealing with the final competition car.
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Figure 4.1: An example of simulated car and track in EUFS simulator.

4.1 EUFSSIM

As discussed earlier in section 1.2, Formula Student competitions adhere to a spe-

cific structure where the track layout consists of colored cones arranged according

to the rules. For this project, we chose the EUFS simulator [8], developed by the

Edinburgh University Formula Student team, among several available simulators

tailored for Formula Student purposes.

The EUFS simulator, or eufs sim, is an advanced simulation tool designed to

aid Formula Student driverless teams in developing and testing their autonomous

vehicle software. Utilizing the Gazebo simulator and ROS, eufs sim allows for

comprehensive testing on preset, rule compliant tracks as well as randomly gen-

erated tracks to simulate the dynamic events encountered in real competitions.

The simulator is highly configurable, enabling users to select various vehicle mod-

els, weather conditions, sensor setups, and command modes, which is essential

for realistic and robust testing of autonomous systems. In figure 4.1, it can be

seen an example of a simulated track, with a custom car model inserted.

Another outstanding characteristic of this simulator is its compliance with

2020 rules of competition. This simulator also considers the car states as shown

in 4.2. This scheme defines the conditions for switching between different car

states. For instance, if the Emergency Brake System is activated, the Autonomous

System enters the emergency state, deactivating both the Ready To Drive and

the Tractive System.

Two key customization features of the simulator that were particularly useful

for our project are track generation and the ability to customize the car model. As
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Figure 4.2: Scheme of the states used in the EUFS simulator.

we will discuss in chapter 5, we use a specific layout for our real data acquisition.

This simulator allows us to replicate the same layout in the simulation environ-

ment. Additionally, it is possible to customize your vehicle by incorporating both

the CAD model of the car and its kinematic model.

4.2 Test mule

After the first developing phase has been successfully tested in the simulator, the

next step in the development pipeline is to proceed with the test mule mentioned

earlier. Having a test mule is crucial before proceeding with the actual racing

car. It allows for practical, real-world testing and experimentation, enabling quick

modifications and early issue resolution without risking damage to the primary

car.

The selected platform for the test mule is one of the first RaceUp racing

cars, MG-03 depicted in figure 4.3, which participated in various competitions in

Germany and Italy in the year 2007.

The powertrain for this car was initially a combustion engine, but to align

the car’s control system more closely with the actual racing car, it was converted

to an electric drivetrain.
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Figure 4.3: RaceUp MG03, modified to be the test mule

Additionally, the entire braking system was redesigned to incorporate an ac-

tuated braking and emergency brake system. The new braking system includes

a linear actuator connected to an air valve that releases air pressure from an air

tank when a braking command is received.

Moreover, the steering system was upgraded by adding an actuator, a poten-

tiometer to measure the steering angle, and an Arduino to control the actuator for

achieving the desired angle. And finally, the wheels are equipped with encoders

for odometry estimation.

Regarding the sensorization of the test mule, a pair of cameras have been

mounted on a rigid support, as shown in Figure 4.4, and are used as a stereo

pair.
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Figure 4.4: Flir cameras mounted on test mule
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Chapter 5

Real data acquisition

As the main goal of this thesis is to transfer all the work done in the virtual

simulator to a real scenario, we need to acquire real data. Testing in the real world

and running the car around a physical circuit requires teamwork and collaboration

from various engineers, including mechanics, electricians, powertrain technicians,

and safety personnel. All of this has been made possible thanks to the efforts of

my teammates at the RaceUp Electric team [2].

The car used for this data acquisition was SG-e 05 (fig. 5.1) electric single-

sitter.

Figure 5.1: Vehicle used for real data acquisition: SG-e 05 RaceUp electric.
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In this case, we did not use a test mule, ensuring that the dataset is as

realistic as possible for the actual competition car. For this reason, during the

sensor installation on the car, it was not possible to make holes in the monocoque

or change the car’s setup. The sensor supports had to be easily assembled and

disassembled without causing any damage to the car.

In the following sections, we will first discuss the structure of the car and

the sensorization procedure. Next, we will provide information about the dataset

itself. Finally, after noticing the need for an updated sensor suite through testing,

we will present the new sensor setup used to replace the previous one.

5.1 About the car

SG-e 05 car features four electric motors and each wheel is equipped with an

encoder. The data from these encoders is used to calculate the speed of the car,

by taking into account the radius of the wheels and the revolutions per second.

The steering system of the car is also equipped with a steering angle sensor.

Based on the readings from this sensor and understanding of it’s kinematics (an

anti-Ackermann model in this case), we can calculate the angle of the front wheels

at each moment.

All components of the car communicate with the Central Processing Unit

(CPU) through CAN (Controller Area Network) communication. The CPU is

responsible for processing the readings from the sensors, that will be then used

for dataset acquisition. To access this data from the computing setup, we need

to use a CAN Interface, which in our case we used Kvaser BlackBird v2 (fig 5.2).

In addition to this device, a ROS node has been implemented to read and parse

data from Kvaser, following the structure of the CAN messages.

5.2 Car sensorization

The first consideration when building an autonomous car, is to decide what sen-

sors to use. The choices made were strongly constrained by the availability of

the budget. Initially, sensors were borrowed from other projects. As the budget

increased later on, the sensors were upgraded to higher quality and more robust

versions. Detailed explanations of these upgrades are provided at the end of this

chapter.

For top teams with substantial budgets and years of development experience,
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Figure 5.2: Kvaser BlackBird v2

critical factors in selecting and positioning sensors in the car are aerodynamics

and weight distribution or reduction. Figure 5.3 shows the car sensitization from

one of the top teams in the category, KA-Racing, which integrated only a LiDAR

on top of the nose of the car.

Figure 5.3: KIT24, KA-Racing

Here it is presented the list of the sensors used for the data acquisition cam-

paign (fig 5.4):

• Velodyne VLP16 16-channels LIDAR

• Bumblebee2 RGB stereo camera
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(a) Velodyne VLP16 LIDAR
(b) Bumblebee2 stereo camera

(c) XSens MTi IMU (d) UBlox M8P GPS module

Figure 5.4: The complete set of sensors installed in the car.
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• XSens MTi Inertial Measurements Unit (IMU)

• two M8P RTK-GPS modules from UBlox

In order to mount the sensors on the car, it is needed to design the support

structure to securely integrate them on the car. Three main considerations should

be taken into account while designing the support:

• Official Formula Student Regulations: These rules include regulations that

must be followed in the car design, such as the requirement for an external

envelope that must enclose the vehicle and all its components;

• Mechanical and Technical Constraints: The shape and design of the cars

are already fixed and should not be altered. For instance, no holes can

be made in the monocoque, and the shape of the main hoop must not be

changed;

• Maximization of Effectiveness: The setup should be designed to maximize

the performance of each sensor such as cameras, LiDAR, and IMU.

Considering the points mentioned above, the sensor should be placed within

the car frame, should not obstruct the driver’s sight, and should not be mounted

on weak components. Additionally, sensor vibrations should be minimized, and

the field of view for LiDAR and stereo cameras should be maximized. The optimal

position for mounting the sensors is selected to be on the main hoop of the car,

above the driver’s head as shown in figure 5.5.

Based on this positioning, the support shown in Figure 5.6 has been designed.

The plate for the stereo camera and IMU has been designed to be parallel to the

ground, while the LiDAR is angled 5 degrees downward to maximize its field of

view for detecting cones.

5.3 Dataset

To collect the data with this setup, a track has been made according to the layout

shown in figure 5.7

The dataset has been collected using ROS Bags. Three bags have been

recorded, with each bag containing data from the track being traced three laps.

Due to the substantial amount of information to record and the high dy-

namics of the situation, the primary focus is on real-time storage requirements.
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Figure 5.5: Sensors support mounted on the main hoop

Minimizing the delay between data production and storage is crucial to prevent

data loss during acquisition.

To ensure immediate data retrieval, every ROS node handling a sensor had its

scheduler priority set to 99, indicating real-time processing. For efficient storage

without any slowdown, an empty data folder was mounted in the Random Access

Memory (RAM) and used as temporary storage. Additionally, to further reduce

the delay in data saving, camera images were saved in greyscale instead of RGB.

5.4 Updated setup

As the final part of this chapter, a new sensor setup and embedded computing

system have been designed and built for future improvements. This new setup

is based on the experiences gained with the previous setup, mentioned in section

5.3.

As for the computing system, a custom build embedded computer has been
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Figure 5.6: The support designed for mounting the LiDAR, stereo camera, and IMU on the main
hoop.

Figure 5.7: Track layout

developed by us. This configuration includes:

• CPU: 12 core AMD Ryzen 9

• GPU: GeForce RTX 4060

• RAM: 96GB DDR5

• Operating System: Linux Ubuntu 20.04

The final assembly of this system is presented in figure 5.8.

In the context of sensor setup, we were not satisfied with the performance

of the Velodyne VLP16 16-channel LiDAR (due to its low resolution) and the

Bumblebee2 RGB stereo camera (due to its low-quality detection at long ranges).

As a result, the LiDAR was replaced with an Ouster OS1 64-channel model, and

a custom stereo camera was built by pairing two FLIR Blackfly S mono cameras.
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Figure 5.8: Embedded computing system

All these sensors were assembled on a rigid support (fig 5.9) and mounted on

the main hoop (fig 5.10), as before, because the results from the previous sensor

positioning were satisfactory.

Figure 5.9: New sensors mounted on a rigid support
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Figure 5.10: Positioning new sensors on the main hoop
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Chapter 6

Front-end

The front-end in SLAM (Simultaneous Localization and Mapping) is responsible

for processing raw sensor data to extract meaningful information that can be

used for localization and mapping. It is a crucial component because it directly

influences the quality and reliability of the features and measurements fed into

the SLAM system.

In the context of Formula Student competitions, most teams use a combina-

tion of LiDAR and stereo cameras as their perception sensors. In this thesis, we

focused on developing a perception module using stereo cameras due to the high

cost and limited accessibility of LiDAR. The setup of the stereo camera has been

discussed in details in chapter 5.3.

In the first part of this chapter, we will focus on image-based cone detection

using the well-known YOLO object detector. Next, we will discuss the stereo

matching module and introduce the experiments and results from this section.

We will then address the limitations of the sensor and the approaches to solve

them.

6.1 Deep Vision-based cone detection

As the initial step in the pipeline, the system processes images captured by the

cameras. In this context, a fine-tuned version of YOLOv7 [7]. YOLO is a cutting-

edge real-time object detection algorithm known for its remarkable speed and

accuracy. This version of YOLO is trained entirely on the MS COCO dataset

without relying on pre-trained weights, allowing it to learn from a diverse set of

object categories and scenarios.

In order to use the YOLOv7 model in the context of Formula Student com-
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(a) Cone detection (b) segmentation

Figure 6.1: Example of data from FSOCO dataset

petition, we fine-tuned the general-purpose model with the FSOCO dataset [20].

The contributors to this dataset include several teams and the data includes

images of real racing scenes, framed during driverless events or test sessions. Ex-

amples of this dataset are shown in figure 6.1. Annotations involve both bounding

boxes and instance segmentation, provided for 11572 and 1517 images, respec-

tively. The reasons for choosing this dataset include:

• it is a free publicly available dataset;

• it contains both real and simulated dataset, that are in the domain in which

our detector needs to operate;

• the dataset is fully annotated

• images from different scenarios with different cameras from many different

teams;

• they include different lighting conditions which is important as we don’t

know the weather condition during the competition.

To qualitatively evaluate the performance of the trained model, we used a

test set acquired by our setup (which has been explained in chapter 5). This test

set includes challenging conditions such as direct sunlight, requiring the model to

be highly robust for accurate detection. Our results show promising performance

across all scenarios. The results are shown in figures 6.2 and 6.3 and it can be
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(a) Left image. (b) Right image.

Figure 6.2: Fine-tuned YOLO v7 performance in a normal scenario.

(a) Left image. (b) Right image.

Figure 6.3: Fine-tuned YOLO v7 performance while there is direct sunlight.

seen that the detection module detects all the cones even in a scenario when there

is over exposure of sunlight.

6.2 Stereo matching

Stereo matching is the process of finding correspondences between pixels in a pair

of stereo images to estimate depth information. This process is fundamental in

stereo vision systems, where two cameras capture images from slightly different

viewpoints, mimicking human binocular vision. The goal of stereo matching is

to determine the disparity (difference in pixel positions) between corresponding

points in the left and right images, which can then be used to compute the depth

of objects in the scene.

In this techniques, 3 steps should be performed:

• Rectification: Before matching, stereo images are rectified to align them
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Figure 6.4: Green dots are centers estimated in the left image and red dots are centers estimated
in the right image.

horizontally. This ensures that corresponding points lie on the same epipo-

lar line, simplifying the matching process;

• Disparity calculation: Disparity is the horizontal shift between correspond-

ing points in the left and right images. The greater the disparity, the closer

the object is to the cameras;

• Depth calculation: Depth is inversely proportional to disparity. It can be

calculated using the camera parameters using the formula: z = (f ∗ b)/d

where f is the focal length and b is the baseline of the camera and d is the

disparity.

In order to perform the stereo matching, we need to detect some common

features in the left and right images. In our case, we should consider the cones as

feature. We implemented two approaches to address this. In the first approach,

only the centers of the bounding boxes are considered for matching, as shown in

figure 6.4. At the first glance, this approach seems easy to implement, robust to

underexposure and overexposure problems, and computationally fast. However,

this approach has a fundamental issue: the center of the bounding box in the left

image does not necessarily represent the same part of the cone in the right image.

In other words, it can happen that the algorithm matches two points in the left

and right image that are different.

To address the previous problem, a segmentation component has been added

to the module to extract the features accurately. Using this segmentation, we

consider the top point of each cone as the feature to be matched with the other
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Figure 6.5: Top of each cone considered to be the features to be matched. Green dots are tips in
the left image and red dots are tips in the right image.

image. Figure 6.5 shows the performance of our segmentation on returning the

top point of each cone.

At this stage we will have the 2-dimensional image coordinates and the dis-

parity related to each cone. Using a perspective transformation based on the cal-

ibration data we can project each point from the image frame into 3-dimensional

space in the camera frame.

During our initial quantitative evaluation, a limitation of our sensor became

apparent: the disparity we obtain is not fine-grained enough. As a result, even a

small displacement of one pixel between the two cones leads to an error of almost

half a meter in the final positioning. The way to address this issue is to use a

stereo camera that is better suited for this type of task, as it has been discussed

in chapter 5.3.
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Chapter 7

Back-end building blocks

In the field of robot navigation, particularly in our Formula Student driverless

scenario, having an accurate map and precise localization within that map is

essential. When there is no prior knowledge of the environment and no external

reference systems like GPS, SLAM (Simultaneous Localization and Mapping)

has become the preferred solution for addressing the challenges of localization

and mapping. As previously mentioned, SLAM is divided into two sub-problems:

front-end and back-end. In Chapter 3, we discussed the front-end, and in this

chapter, our focus will shift to the back-end.

The back-end part of SLAM involves refining the robot’s state using sensor

information and creating a map that accurately represents the environment. As

elaborated further in this chapter, one approach to formulate this problem is

through a graph structure, where nodes represent the pose estimates or landmark

locations and edges define the constraints between these poses and landmarks.

This method is known as graph-based SLAM [17].

In this chapter we first start by introducing the SLAM problem as a graph

structure and we talk about how the representation of the problem is handled

in a graph. Then we present the algorithm implementation by mentioning the

framework used, the optimization techniques, the motion models, and data asso-

ciation. And at the final part of the chapter we demonstrate the results obtained

by this implementation.

7.1 Graph-Based SLAM

Graph-based Simultaneous Localization and Mapping (SLAM) systems rely on

optimizable structures that encode the relationships between various state vari-
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Figure 7.1: Detailed GraphSLAM architecture used to fuse landmark observations with car posi-
tions into a coherent map and pose within the map.

ables and measurements. The construction of these graphs is crucial for the

accurate estimation of both the vehicle’s trajectory and the environment’s map.

In Figure 7.1, we illustrate a general scheme of how graph-based SLAM oper-

ates. In the ego-motion estimation part, sensor readings from wheel encoders and

the steering sensor are provided to the motion model where the data is processed

to find the state of the car and the odometry constraints. The resulting output

from the motion model is then used to update the current state of the car. Si-

multaneously, in the mapping part, observations are given to the cone detection

module (see Chapter 6) and then passed to the data association algorithm, which

is responsible for matching new observations with previous ones. Next, based on

both odometry and landmark constraints, the pose graph will be optimized and

the localization and mapping will be updated.

This mapping and localization is formulated as a graph structure by nodes

representing the vehicle poses (x, y, θ), where θ is the orientation, and environ-

mental landmarks (x, y) coordinates. Edges represent the transformation between

two consecutive car poses xi and xj, as well as the transformation between each

pose and the observed landmarks from that state. This graph structure, known

as a factor graph, is depicted in Figure 7.2.

In more detail, the steps for processing the incoming data are as follows:
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Figure 7.2: The factor graph structure used to formalize the back-end problem.

• Odometry Information Processing: a new pose node is created and inserted

into the factor graph whenever a new car state is computed. The car state

is characterized by its position and orientation at a specific time instant.

Then, edges connecting two consecutive pose vertices are added to the

graph. These edges are characterized by their relative spatial transfor-

mation.

• Landmark Insertion: at the beginning of the process, when there are no

edges or nodes in the graph, all observed cones are directly inserted into the

graph, and an edge is added between the initial pose and these observations.

In the subsequent steps, for each new cone observation, the data association

algorithm is called to determine whether the cone corresponds to an existing

cone or not. Based on the output of the data association, an edge is added

between the new observation and the current pose, or between the current

pose and the associated existing cone.

In the transition from a simulated environment to the real world, we en-

countered several challenges. One significant challenge is dealing with noisy data

from the front-end. As depicted in Figure 7.1, observations from the front-end are

crucial because several other parts of the graph-based SLAM depend on them.

Initially, in the simulator, ground truth data was used to populate the graph, en-

suring that the system worked correctly in an ideal scenario. However, in the real

world, uncertainties and noise should be managed by limiting the range of cone

detection and using covariance matrices to handle uncertainties. Another prob-

lem we encountered was synchronizing information from the perception pipeline

with the car’s odometry data to estimate the vehicle’s current pose and the po-
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sitions of the observed cones. To ensure efficiency, incoming data is subject to

discretizing continuous time signals into fixed time intervals or better known as

time quantization. By aligning sensor readings to these fixed time intervals, it

becomes easier to integrate and process the data in a consistent manner.

One other point to consider during the construction of the factor graph is the

separation between data collection and graph construction:

• Data Collection: this step involves gathering sensor measurements of the

perceived environment and storing them for later processing;

• Graph Construction: this involves converting the collected data into a

mathematical formulation to build an optimizable structure representing

the SLAM problem.

A simple approach is employed to manage data collection during the opti-

mization phase, which alters the graph structure. Any incoming data received

during this phase is held in a pending state until the optimization process is

complete, thus avoiding concurrency issues that could result from simultaneous

modifications to the graph structure.

7.2 Algorithm implementation

The estimated trajectory of a vehicle in SLAM often diverges from its actual

path due to sensor noise and accumulated drift over time, as shown in figure 7.3.

These discrepancies result in errors in the estimated positions of both the vehicle

and the landmarks. Optimization in SLAM aims to minimize these estimation

errors by establishing mathematical constraints between graph vertices and lever-

aging motion and measurement models. In this section we will talk about the

implementation of this optimization.

Before delving into the specifics of the implemented SLAM algorithm, it’s

essential to introduce the library used for factor graph optimization. This will

provide a foundational understanding of the tools and techniques employed in

the optimization process.

7.2.1 g2o framework

g2o [19], is an open-source C++ framework for optimizing graph-based nonlin-

ear error functions. g2o has been designed to be easily extensible to a wide
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Figure 7.3: Why we need to optimize: landmarks being observed at different positions along the
robot’s trajectory [21].

range of problems and a new problem typically can be specified in a few lines

of code. The current implementation provides solutions to several variants of

SLAM and bundle adjustment. A wide range of problems in robotics as well as

in computer-vision involve the minimization of a non-linear error function that

can be represented as a graph. The overall goal in these problems is to find the

configuration of parameters or state variables that maximally explain a set of

measurements affected by Gaussian noise.

In this thesis, g2o is employed to create, manage, and optimize the factor

graph, which includes the 2D positions of cones and the 2D poses of the car.

g2o offers different data types for the purpose of SLAM. The g2o data types

used for graph construction in this thesis include g2o::VertexPointXY which is

used for the landmark nodes, g2o::VertexSE2 which is use for the car 2D pose

nodes, g2o::EdgeSE2 which is used for odometry edges, and g2o::EdgeSE2PointXY

which is used for observation edges.

7.2.2 Graph optimization

A graph in graph-based SLAM needs optimization to ensure that the estimated

positions of the robot and the map features (landmarks) are as accurate and

consistent with the sensor data as possible. Graph optimization may be necessary

for various reasons, including:

• Measurement Uncertainty: Sensor measurements used to build the graph
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(e.g., odometry, laser scans, camera images) are inherently noisy. Without

optimization, the initial estimates of the robot’s path and the map may be

inaccurate due to this noise;

• Accumulative Errors: As the robot moves and continuously updates its

position based on odometry or other relative measurements, small errors

accumulate over time. This can lead to significant discrepancies between

the estimated and actual positions if not corrected;

• Loop Closure: When the robot revisits a previously mapped area (a loop

closure event), the new measurements can be used to correct past trajec-

tory and map errors. However, integrating these new measurements into

the existing map requires adjusting the previous estimates to ensure global

consistency;

• Nonlinear Relations: The relationships between robot poses and landmarks

are nonlinear. Optimization methods are designed to handle these non-

linearities effectively, finding the best estimates that minimize the overall

error;

• Global Consistency: Ensuring that all the poses and landmarks in the map

are consistent with each other and with all the measurements taken through-

out the robot’s journey requires a global optimization approach. This helps

in reducing discrepancies across different parts of the map.

Two different strategies for graph optimization have been studied and tested

in the simulator environment, as explored by Alessandra Tonin[6]. In this work,

these strategies are adapted with minimal changes for real-world scenarios.

• Global optimization: In the global optimization approach, the optimization

function is called only once, after completing one lap. This occurs when the

initial indicator cones (big orange cones, as explained in section 1.2) are de-

tected by the front-end system. The entire graph is optimized at this point,

ensuring that all pose and landmark nodes are adjusted simultaneously to

minimize overall estimation error;

• Incremental optimization: The incremental optimization approach performs

local optimization at regular intervals, specifically after a certain number

of pose nodes have been inserted into the graph. This technique focuses on

optimizing a defined neighborhood of nodes, adjusting only the most recent
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part of the trajectory and corresponding landmarks. After completing a lap,

a global optimization is performed, similar to the global-only approach.

The Levenberg-Marquardt algorithm has been selected for both global and

local optimizations. Also a block solver is coupled with the optimizer to resolve

the linearized system. This choice is quite common for addressing non-linear

optimization problems as it strikes a balance between the Gauss-Newton method,

which is faster but less robust , and the gradient descent procedure, known for

being more robust but slower.

When transitioning from a simulated environment to real-world application,

the performance of the SLAM system exhibits notable differences due to two

primary factors:

• Increased Noise: Real-world scenarios introduce significant noise in both

landmark detection and odometry estimation. Sensor readings are subject

to various inaccuracies and disturbances that are not present in a controlled

simulator environment;

• Computational Constraints: In the real world, computational resources are

limited. The detection module, which includes cone detection using YOLO

and transforming the detections into the world frame, requires approxi-

mately 230 milliseconds to process each image, in our current computation

system. This processing time introduces latency and affects the overall

performance of the SLAM system.

Additionally, due to the inaccurate depth estimation for distant cones, many

of the detections are discarded. As a consequence, the number of landmark

nodes added to the graph at each timestamp is considerably fewer than the one

of simulator so there would be fewer edges (constraints) between each position

node and landmark nodes. As we can expect in this situation, local optimization

will not perform the same way as the simulator and it would be more sensitive

to noise. Therefore, this thesis will primarily focus on global optimization, with

consideration for incremental optimization for future improvements.

7.2.3 Anti-Ackerman steering and Motion model

Ackermann steering geometry is designed to ensure that all wheels track correctly

when a vehicle turns, meaning the inside wheel turns more sharply than the out-

side wheel during a turn to reduce tire scrubbing and improve handling stability.
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However, in some racing setups or specialized vehicles, it is more common to use

”anti-Ackerman” steering. We also utilized this steering system in the RaceUp

SG-05 vehicle for our real-world experiments. Anti-Ackerman setups adjust the

steering geometry so that the outside wheel turns more sharply than the inside

wheel during a turn. This can be used to achieve specific handling characteristics,

such as improved cornering grip or stability under certain conditions.

In Ackerman and anti-Ackerman geometry, the relationship between the steer-

ing angles δinside and δoutside (steering angles of the inside and outside wheels,

respectively) is given by:

tan(δinside) =
L

Rinside

(7.1)

tan(δoutside) =
L

Routside

(7.2)

where:

• L: Wheelbase of the vehicle (distance between the front and rear axles);

• Rinside: Radius of the turn for the inside wheel;

• Routside: Radius of the turn for the outside wheel.

In Ackerman Rinside < Routside while for the anti-Ackerman Rinside > Routside

meaning that in the anti-Ackerman the outside wheel turns more sharply than

the inside wheel.

In this thesis the system has been specifically designed for RaceUp SG-05

racing car. The data coming from the steering sensor is transformed into final

wheel angle based on the following formula:

Rcar = 1163 ∗ 0.01273 ∗ δsteering ∗ π/18 (7.3)

where:

• Rcar is the turning radius of the car;

• δsteering is the steering wheel angle from sensor readings.

Now that we have established the steering system model, we can integrate it

into the overall motion model of the vehicle:
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ẋ = v ∗ cos θ

ẏ = v ∗ sin θ

v̇ = a

δ̇ = ϕ

θ̇ = v/W ∗ tan δ

(7.4)

where x, y are the vehicle 2D position coordinates in map frame, v is the

linear velocity, θ is the vehicle orientation angle, a is the linear acceleration, δ is

the steering angle, ϕ is the steering angle velocity, and W is the wheelbase.

Finally, the new state at time t + 1 can be computed, updating the current

state at time t according to the kinematic model of the system:

xt+1 = xt + ẋ ∗ dt

yt+1 = yt + ẏ ∗ dt

θt+1 = θt + θ̇ ∗ dt

vt+1 = vt + v̇ ∗ dt

δt+1 = δt + δ̇ ∗ dt

(7.5)

where dt is the time passed between sensor readings.

One important point regarding the velocity v is that calculating this value

accurately is complex, as relying solely on wheel encoders is insufficient due to

wheel slips. However, in this work, a simple averaging of the speeds from the

four wheels has been used for velocity estimation. In the future, this part can

be improved by integrating GPS and IMU data for a more accurate velocity

estimation.

7.2.4 Data association

In many real-world applications where SLAM techniques are employed, land-

marks are not identifiable, and the total number of landmarks cannot be known

a priori. Therefore, a process—typically probabilistic—is required to associate

observations with existing landmarks in the map or create new ones when ob-

servations do not match any of the existing landmarks. This process, known as

data association, is one of the most challenging problems in SLAM or localization.

Effective data association involves matching sensor observations with correspond-

ing landmarks in the environment, correctly associating measurements with the
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correct state, initializing new tracks, and detecting and rejecting spurious mea-

surements. Successful data association is crucial for maintaining an accurate and

consistent map and for correctly estimating the robot’s trajectory.

In the simulator environment, data association can be handled more easily due

to the existence of ground truth data. However, in the real-world environment,

it remains a complex problem due to reasons such as:

• Noisy Sensor Measurements: Sensor noise can lead to incorrect matches

between observations and landmarks;

• Ambiguity: Similar features or repetitive patterns in the environment can

cause confusion in matching observations to landmarks;

• As the number of landmarks and observations grows, the complexity of

finding correct associations increases.

Approaches to data association methods can be broadly classified into Bayesian

and non-Bayesian approaches.

Bayesian approaches use probabilistic models to represent the uncertainty in

sensor measurements and landmark position. They typically involve updating

belief disributions over possible associations based on new observations. These

methods include Particle filters and Kalman filters which are commonly used

methods in SLAM.

On the other side we have non-Bayesian methods which do not expicitly model

uncertainties probabilities. Instead, they rely on deteministic criteria to match

observations to landmarks. These methods are often simpler and computationally

more efficient. One common non-Bayesian approach is Nearest Neighbor(NN)

filtering.

In the context on this project, the selected approach is Nearest Neighbor(NN)

filtering. The idea behind this approach is to match each observation to the closest

landmark based on the chosen distance metric, in our case Euclidean distance.

In our scenario, when a cone is detected, it is compared with all the existing

landmark nodes in the graph. It is then linked to the closest one, provided their

distance falls below a specified threshold.

Despite its simplicity and efficiency, Nearest Neighbor filtering has several dis-

advantages. For instance, in environments with many similar feature, NN filtering

can make incorrect matches. Also this method does not handle uncertainties ex-

plicitly, making it less robust in dynamic or highly uncertain environments.

54



To propose an improvement for the future and addressing the limitations

of the Nearest Neighbor filtering, a more sophisticated approach can be using

Mahalanobis distance.

7.2.5 Loop closure

Loop closure is a critical component in Simultaneous Localization and Mapping

because it significantly enhances the accuracy and consistency of the generated

map and the estimated trajectory of the robot. The key reasons for the impor-

tance of loop closure are:

• as a robot navigates through its environment, small error in odometry and

sensor reading accumulate over time, leading to drift in the estimated tra-

jectory and landmark positions. Loop closure helps to correct these accu-

mulated errors by recognizing when the robot return to a previously visited

location, as shown in figure 7.4;

• ensuring the the map remains consistent is crucial for long-term navigation.

Loop closure adjusts entire map to align newly detected features with the

previously mapped features, ensuring that overlapping regions are correctly

matched and integrated;

• by recognizing previously visited locations, the robot can re-localize it-

self within the map more accurately, reducing the uncertainty in its posi-

tion. This is particularly useful in large-scale or feature-sparse environments

where odometry alone may not suffice for accurate localization.

From a theoretical point of view, loop closure involves the following steps:

• Step 1: The system identifies that the robot has returned to a previously

visited area. This is often achieved using feature matching techniques where

current observations are compared with stored observations to find corre-

spondences;

• Step 2: A loop closure is detected and a new constraint is added to the

SLAM problem. This constraint is formulated as an edge in the factor

graph, connecting the current pose to a previous pose, which in our case is

the initial position of the car;
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Figure 7.4: Example of loop closure.

• Step 3: Optimize the full system by incorporating the loop closure con-

straint into the existing graph of the poses and landmarks. This is done by

Levenberg-Marquardt algorithm. The goal is to minimize the overall error

in the graph considering the new loop closure constraint and the existing

constrains (e.g., odometry and landmark observations).

Mathematically, the loop closure constrain can be represented as:

eij(xi, xj) = (X−1
j , Xi)Zij (7.6)

where:

• xi and xj are the poses involved in the loop closure

• Zij is the measured relative transformation between these poses

• Xi and Xj are the transformation matrices representing the poses

• the error function eij quantifies the difference between the predicted and

measured transformations.

Moving from theory to practise, in the scenario of Formula Student Driverless

competitions, we have challenges matching the distinctive features like corners

and edges using algorithms such as [22], SURF [23], and ORB [24]. The reason

for this is the presence of large untextured areas and the ambiguity of the cones.

As the solution, we perform a simple approach, made possible by the infor-

mation we have about the layout of the competitions. Since it is established

that large orange cones mark the beginning of the track, once we identify them
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Figure 7.5: Example of a scenario where big orange cones are observed but optimization should not
be called.

an odometry edge is added between the current pose and the initial pose of the

graph. This approach operates under the assumption that the large orange cones

are exclusively located at the track’s starting line.

This method works perfectly in a simulated environment because the process

is repeatable and consistent each time the car completes a lap, allowing us to

know exactly when to add the final edge and perform loop closure and optimiza-

tion. However, in the real world, this remains challenging because it is uncertain

that the car will be in the same place every time the large orange cones are ob-

served. The solution is to make data association more robust. Whenever the data

association algorithm detects previously observed large orange cones, we perform

loop closure. With our current data association algorithm, this requires adding

more conditions for loop closure, such as ensuring the orange cones are within

a certain distance from the car or verifying that a specific pattern of four big

orange cones is observed by the front-end. An example of such scenario that may

mislead the system to loop closure is presented in the figure 7.5.

7.2.6 ICR motion constraint

The Instantaneous Center of Rotation (ICR) motion constraint refers to the point

around which a vehicle is momentarily rotating. For wheeled robots, particularly

those with non-holonomic constraints (i.e., they cannot move sideways) as shown

in figure 7.6, this concept helps with understanding the expected motion of the

robot [25]. By incorporating the ICR motion constraint into SLAM, we can

enhance the accuracy of the robot’s trajectory estimation by enforcing realistic

57



Figure 7.6: Simple representation of ICR.

motion constraints.

In the context of Formula Student racing cars, the ICR constraint is par-

ticularly important due to the high-speed dynamics and precision required in

racing scenarios. These cars exhibit non-holonomic motion, meaning they pre-

dominantly move forward and backward, with limited lateral motion. The ICR

motion constraint ensures that the vehicle’s motion model accurately reflects its

physical capabilities, leading to more precise trajectory and map estimates.

The trajectory of the race car can be decomposed into a sequence of consecu-

tive displacements around the ICR. This trajectory can be parameterized by the

radius of curvature ρ and the traveled angle ω. Radius of curvature ρ is the vector

connecting the center of the rear axle of the car with the ICR. It is collinear with

the rear axle itself. The traveled angle ω is the angle between the vector ρ and

the vector connecting the ICR with the center of the front axle.

From the implementation point of view, an edge has been defined base on the

equation 7.7 and added to the graph.

eicr(xt, xt+1) =
[
ḋx− dx, ḋy − dy

]′
(7.7)

where:

• dx and dy are the computed relative motion between the two poses;

• ḋx and ḋy are the expected motion values;

In this way, while optimizing the graph the solutions that are infeasible based

on this constraint will be discarded.

58



7.3 Evaluation on simulator and real world

In this section, we present some results comparing the same SLAM implemen-

tation in both simulated and real-world environments. We will first discuss the

results achieved in the simulator by Alessandra Tonin [6], and then compare them

with the real-world performance. The evaluation is conducted on the same track

layout in both the simulator and real-world scenarios.

Unfortunately, due to the competitive nature of the Formula Student com-

petition, there are no available SLAM module implementations specific to the

Formula Student Driverless scenario. As a result, there are no other benchmarks

available for comparison. However, we will use the results from the simulator as

a benchmark for this thesis.

In the first part, we will discuss the approach for obtaining ground truth data,

which is crucial for both qualitative and quantitative evaluations. Following this,

we will briefly review the results from the simulator and then present the results

from the real-world implementation. Finally, we will explore possible approaches

to achieving similar results in the real world as those obtained in the simulator.

7.3.1 Ground Truth

Ground truth refers to the accurate, real-world measurements of the environment

and the robot’s trajectory, serving as a benchmark for comparison with the SLAM

system’s estimates.

In the simulator environment, all necessary ground truth data is provided by

the simulator. This includes the ground truth positions of the cones in the world

frame and the car’s trajectories.

However in the real world we need to find a solution for obtaining the ground

truth cones and car trajectories. The approach for the cone ground truth is to

use a drone and take aerial photos from the track. Then the camera on the

drone have been calibrated by taking pictures of a checkerboard and then using

softwares such as AutoCalib [26] and Kalibr [27] [28] [29]. In addition, four cones

have been put on the four corners of the track as reference points. The exact

distance between these cones are known and by exploiting this information we

can get the ground truth cones from the aerial images. In the last step, all the

cones in the image have been annotated manually and then transformed from the

image frame to the camera frame using the information from the calibration of

the camera. Figure 7.7 shows the acquired aerial image.
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Figure 7.7: On the left, aerial view of our track and on the left the annotations of the cones.

For trajectory ground truth, the idea is to use a DGPS. Differential GPS

(DGPS) involves using two GPS receivers: one stationary reference receiver and

one mobile receiver (such as on the car). The stationary receiver is placed at a

known fixed location, while the mobile receiver is attached to the moving vehicle.

The reference GPS receiver is positioned at a precisely known location. Since

its position is fixed and known, any deviations in its GPS readings are due to

satellite signal errors. The reference station calculates the error in its position

by comparing the GPS-received position with its known fixed position. It then

broadcasts these error corrections to the mobile receiver. And finally the mobile

receiver uses the correction data from the reference station to adjust its own

position readings, significantly reducing the overall error.

However, this method has not been used for two reasons:

• according to the rules of Formula Student competition, it is forbiden to send

any signals to the car. In this type of DGPS, a signal will be continuously

sent to the car for position correction so as a consequence it will not be

possible to use this technique;

• the cost for this sensor is high and due to the reason that it is not possible

to use it in the competitions, the team prefers to not spend the resources

on this tool;

7.3.2 Experiments and results

In this section, we will present the results from both the simulator and real-

world implementations. The results from the simulator serve as a benchmark

for the real-world implementation, with the goal being to improve the real-world
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performance to match the simulator’s results. It is important to note that, to

ensure realistic comparisons, the same kinematic model of the car and the same

track layout were used in both the simulator and real-world implementations. In

addition, the car sensor positions are the same in both simulator and real-world

experiment.

Before presenting the results, it is important to mention that in the images,

green dots represent the discretized poses of the vehicle, while red dots represent

the mapped cones, expressed in the map reference frame.

Simulator results

There are two primary reasons for presenting the results from the simulator. First,

it ensures that the algorithm implementations work correctly in the ideal condi-

tions of the simulator, without random noises and unwanted changes, and with

the possibility for repetition. The ultimate goal of presenting the simulator results

is to establish a benchmark for the real-world implementation. This benchmark

allows us to understand the capabilities of our graph-SLAM implementation,

guiding our efforts to improve the real-world implementation to achieve similar

results. It is important to mention that all the results achieved in the simulator

were obtained by Alessandra Tonin [6].

In this experiment, the implementation includes motion integration as ex-

plained in section 6.2, Instantaneous Center of Rotation (ICR) as an additional

constraint, ideal data association, loop closure, and global-only graph optimiza-

tion. Ideal data association means that observed cones are tested for association

with already mapped ones using the ideal ground truth coordinates provided by

the simulator. Additionally, global-only graph optimization indicates that the

optimization is performed only after a complete lap is traced by the car.

Starting with the first experiment, global-only optimization, the results are

shown in the figure 7.8. The improvement of mapping and localization is clear

after the loop closure. Main part of this improvement is due to the loop closure

algorithm, which allows to reduce the drift that was accumulated in the trajectory.

The overlay with the ground truth track isn’t very important for evaluating map

quality because the misalignment is due to a small difference in reference frames.

What’s important is that the trajectory’s shape is maintained, showing successful

convergence.
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(a) Before optimization (b) After optimization

Figure 7.8: EXP1: map and optimization results

Real world results

In this section, we will present the results from our real-world tests. It is im-

portant to note that the core algorithms implemented in both the simulator and

real-world scenarios are the same, allowing for a meaningful comparison.

Starting with the initial experiment, we perform the localization and mapping

without any optimization, loop closure, or data association. As you can see

in figure 7.9, the mapping is very noisy and contains many redundant cones.

However, the key point is that the cones follow the trajectory of the car.

In the next experiment, shown in Figure 7.10, data association is applied.

As before, the green dots indicate the estimated poses of the car, while the red

dots show the estimated cones’ position while performing data association. It is

easily noticeable that the data association significantly improves the quality of

the mapping by removing the redundant cones from the map.

The following and final step is to perform global optimization. Figure 7.11

shows the localization and mapping after the loop closure. Comparing Figure

7.10 (before loop closure) and Figure 7.11 (after loop closure), it is clear that the

trajectory has improved and the loop has been closed. However, the mapping

is not perfectly aligned with the ground truth (points in blue) due to the low

quality of the front-end performance. To support this claim, we conduct two

experiments.

The estimates of the cones positions depend on many different factors. Due to

a non-perfect calibration and a low-resolution camera, the landmark constraints

produced by the front-end made generated this misalignment. In fact, using only
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Figure 7.9: Localization (green dots) and mapping of the landmark detections (blue, yellow, and
orange dots) without any data association. The presentation is in the world frame.
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Figure 7.10: localizations(green dots) and landmark detections(red dots) with data association ap-
plied. It presentation is in the world frame

the pose and the loop closure proved to be a more effective solution. In the first

experiment, we remove the edges between the landmarks and car poses, thereby

ignoring their constraints on the graph optimization. As it can be seen in the

figure 7.12, the loop is perfectly closed showing that low quality of the front-end

was responsible for noisy results.

In the second experiment, we replace the ideal data association in the simu-

lator with a real data association. This means that, instead of using the ground

truth cone positions as the reference for data association, we use the cones de-

tected by the detection module to choose the reference for each data association.

As expected, this introduces more inaccuracy in the mapping, but it provides a

good example of how it affects the quality of loop closure and optimization. As it

is clear in the figure 7.13, the mapping and localization quality decreases signif-

icantly compared to the result from 7.8. This demonstrates that improving the

front-end is essential to obtain both robust and accurate estimates of the car’s

poses and the map.
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Figure 7.11: Global optimization performed with loop closure after finishing one lap. Blue dots
represent the ground truth cone positions, green dots the localizations, and red dots
the landmark detections.
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(a) Before optimization

(b) After optimization

Figure 7.12: Performing loop closure without landmark edges
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(a) Before optimization (b) After optimization

Figure 7.13: Realistic data association map and optimization results in simulator environment
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Chapter 8

Conclusion and future works

In this thesis, we outlined the process of implementing a localization and mapping

system for a Formula Student racing car. We discussed the challenges and re-

quirements for transitioning this algorithm from a virtual environment to the real

world by detailing the sensorization of the car and the integration of these sensors

onto the actual vehicle. Additionally, we described the dataset acquired to facil-

itate this transition from the simulator environment to the real world. We then

explained the techniques used in the visual perception component and presented

the results from the detection module. Finally, we presented the graph-SLAM as

the back-end block for the SLAM problem, reviewed the implementation details,

and compared the results achieved in the simulator as a benchmark with the

results obtained using real-world data.

This thesis was the beginning and an initial step toward the long journey

of developing a self-driving car. There are many details and topics that can be

added or improved upon in future work. As the first step, the current software

pipeline should be updated with the new sensor setup. This updated setup would

enhance the robustness and accuracy of detection by allowing improvements in

the perception module. Next, the LiDAR should be integrated into the system

by fusing the point clouds from the LiDAR with the detections from the camera.

Finally, data association can be improved by replacing the Euclidean distance

with the Mahalanobis distance.
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