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ABSTRACT 

Over the past 15 years Genome-Wide Association Studies (GWAS) have produced a huge amount of 

data on genetic loci associated with quantitative traits, including food intolerance and other 

digestive disorders. Usually, the variants identified by GWAS are not directly responsible for the 

phenotype, but they happen to be near the causative allele, at least in some of the haplotypes 

present in the population. Therefore, the contribution of a variant can be weak, depending on its 

actual association with the causative allele. Furthermore, quantitative traits are typically resulting 

from the contribution of several genes, each with a small impact to the final phenotype. 

The aim of this project is to analyze public GWAS and other genetic data to extract useful 

information about variants involved in food intolerance and digestive disorders with a particular 

focus on Crohn's disease. In particular, the study will make use of a set of about 2100 variants 

included on an Illumina custom array designed by BMR Genomics. Algorithms for the calculation of 

polygenic risk scores will be defined for the variants associated with Crohn's disease and will be 

tested on a genotyped population. 

 

Negli ultimi 15 anni i Genome-Wide Association Studies (GWAS) hanno prodotto un'enorme 

quantità di dati sui loci genetici associati a tratti quantitativi, tra cui l'intolleranza alimentare e 

altri disturbi digestivi. Di solito, le varianti identificate dai GWAS non sono direttamente 

responsabili del fenotipo, ma si trovano vicino all'allele causale, almeno in alcuni degli aplotipi 

presenti nella popolazione. Pertanto, il contributo di una variante può essere debole, a seconda 

della sua effettiva associazione con l'allele causale. Inoltre, i tratti quantitativi sono tipicamente il 

risultato del contributo di diversi geni, ciascuno con un piccolo impatto sul fenotipo finale. 

L'obiettivo di questo progetto è analizzare GWAS pubblici e altri dati genetici per estrarre 

informazioni utili sulle varianti coinvolte in intolleranze alimentari e patologie del tratto 

gastrointestinale, con particolare attenzione al morbo di Crohn. In particolare, lo studio si avvarrà 

di un set di circa 2100 varianti incluse in un custom array Illumina disegnato da BMR Genomics. Gli 

algoritmi per il calcolo del polygenic risk score saranno definiti per le varianti associate al morbo 

Crohn e saranno testati su una popolazione genotipizzata. 
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1. INTRODUCTION 

  

1.1  Inflammatory bowel disease 

Inflammatory bowel disease (IBD) is a term that describes a chronic inflammation affecting the 

gastrointestinal tract. IBDs are mainly divided into ulcerative colitis (UC) and Crohn’s disease (CD). 

They present similar symptoms, including weight loss, abdominal pain, diarrhea and rectal 

bleeding. Inflammatory bowel disease is most often diagnosed during young adulthood and 

adolescence. Infact, about a quarter of patients with IBD are diagnosed before age 20 years and 

there is a rising incidence in pediatric patients (Rosen et al. 2015)1. 

 

1.1.1  Main differences between ulcerative colitis and Crohn’s disease 

Although both diseases concern mainly the gastrointestinal tract with a variety of extraintestinal 

manifestations (mainly osteopenia/osteoporosis, arthritis, spondylitis, erythema nodosum, iritis 

and uveitis), they present some differences. 

Crohn’s disease can potentially interests all the gastrointestinal tract but most commonly involves 

the terminal ileum and colon. Ulcerative colitis is limited to the colon and always interests the 

rectum. Sometimes it’s difficult to distinguish the two diseases, especially when Crohn’s disease is 

limited only to the colon. CD produces discontinuous lesions of the walls with the potential 

formation of stenosis and/or fistulae. Instead UC leads to less deep but continuous damages and 

those lesions are limited to the colon mucosa. At the chronic stage, CD presents more severe 

symptoms than UC. Some of which are continuous vomiting, loss of appetite, fatigue, fever, 

abscess, bowel obstruction, painful diarrhea and severe abdominal pain.  

 

1.1.2  Causes of the disease 

Genetic and environmental factors are thought to play a role, but specific triggering events are yet 

to be identified. Podolsky and colleagues suggest that the pathogenicity in IBD depends on various 

factors: microflora of the intestine, patient’s susceptibility and mucosal immunity (Podolsky D. K. 

2002)2.  

Infact, it is demonstrated that patients with CD or UC are characterized by an alteration of 

microbial flora composition. An example of this dysbiosis was published by Marteau and 
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colleagues, showing that E. coli and Bacteroidetes were higher in patients with inflammatory 

bowel disease (Marteau P. et al. 2004)3. Some common pathogenic bacteria that may be involved 

in IBD are Salmonella, Campylobacter, Yersinia, Shigella, Aeromonas and the already mentioned E. 

coli. Some strains of Bifidobacterium and Lactobacillus are protective against IBD and have an 

important role in prevention (Marteau P. et al. 2004)3. Moreover, Prideaux  and colleagues 

showed that other factors like diseases, ethnicity and geography have strong effects on the 

composition and diversity of the gut microbiota. So those elements may be critical in shaping 

emerging patterns of IBDs (Prideaux L. et al. 2013)4. Even considering these correlations between 

microflora and inflammatory bowel disease, there is still no result that attests how the 

microorganisms are directly involved in the development of the diseases.  

Furthermore intestinal permeability plays a crucial role for the development of inflammatory 

bowel disease. A defective mucosal barrier leads them to the exposition to luminal content and 

triggers an immunological response. This promotes the characteristic inflammation found in 

ulcerative colitis and Crohn’s disease. 

Another important factor in IBD regards nutrition and our eating habits. Infact, diets rich in sugars 

and fatty acids compounds and poor in vegetal fibers greatly increase the prevalence of 

inflammatory bowel diseases (Thornton J. R. et al. 1979)5. Diet has also an important impact on 

microbial composition, the integrity of intestinal barrier and host immunity. Infact, the excessive 

intake of specific food groups like fat and sugars may promote gut dysbiosis. This leads to an 

alteration of gut barrier, immune response and tissue damage and can have a role in the 

development of IBD (Roncoroni L. et al. 2022)6. Moreover, Pedersen and colleagues demonstrated 

that a diet with low levels of FODMAPs (Fermentable, Oligosaccharides, Disaccharides, 

Monosaccharides and Polyols) can reduce gastrointestinal symptoms in IBD patients, generally 

improving quality of life (Pedersen N. et al. 2017)7. 

Furthermore, Corrao demonstrated that smoking and oral contraception increases the risk of 

developing UC and CD while breastfeeding in infancy is protective against IBD (Corrao G. et al. 

1998)8. In particular, smoking increases the amount of CD4+ T cells that are part of the white 

blood cells, promoting the interferon gamma proinflammatory proteins release in the lungs. In a 

second moment they will move to the intestine, causing inflammation. 
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1.1.3  Genetic of IBD 

As previously mentioned, genetics play an important role in IBD susceptibility. Some of the most 

important genes for Crohn’s disease and ulcerative colitis are listed below (Younis N. et al. 2020)9. 

  

- NOD2 (nucleotide binding oligomerization domain containing 2): the first gene that has 

been associated with Crohn’s disease. It encodes a protein with six leucine-rich repeats 

(LRRs) and two caspase recruitment domains (CARD). In the immune response the encoded 

protein recognize the muramyl dipeptide (MDP) derived from the lipopolysaccharides of 

the bacterial cell membrane and activate the NFKB protein (Lauro M.L. et al. 2016)10; 

 

- ATG16L1 (autophagy related 16 like 1): the respective protein is part of a protein complex 

that is necessary for autophagy: the process responsible for the degradation of intracellular 

components in lysosomes (Hamaoui D. et al. 2022)11; 

 

- IL10 (interleukin 10): encodes for a protein primarily produced by monocytes: an important 

cytokine for immunoregulation and inflammation. This protein enhances B cells survival, 

proliferation and antibody production. It is also able to stop NF-kappa B activity and down-

regulates the expression of Th1 cytokines and costimulatory molecules on macrophages 

(Steen E. H. et al. 2019)12; 

 

- IL10RA (interleukin 10 receptor subunit alpha): encodes a receptor for interleukin 10. The 

protein regulates the synthesis of proinflammatory cytokines by the mediation of the 

immunosuppressive signal of interleukin 10. Moreover, this receptor promotes survival of 

progenitor myeloid cells with the phosphorylation of JAK1 and TYK2 kinases (Al-Abbasi F. A. 

et al. 2018)13; 

 

- IL10RB (interleukin 10 receptor subunit beta): the encoded protein is part of the cytokine 

receptor family . The coexpression of this and IL10RA proteins are required for IL10-

induced signal transduction (Ahn D. et al. 2020)14; 
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- IRGM (immunity related GTPase M): this gene encodes a member of the p47 immunity-

related GTPase family. It is important for in innate immunity response by the autophagy 

regulation in response to intracellular pathogens (Nath P. et al. 2020)15; 

 

- LRRK2 (leucine rich repeat kinase 2): member of the leucine –rich repeat kinase family. The 

protein is largely expressed in cytoplasm and also associates with the mitochondrial outer 

membrane. Mutations in LRRK2 have been identified as a genetic risk factor for both 

sporadic and familial Parkinson's disease (Zhang X. et al. 2023)16; 

 

- PTPN2 (protein tyrosine phosphatase non-receptor type 2): this gene encodes for a 

member of the protein tyrosine phosphatase  (PTP) family which protects the IEC barrier 

from inflammation-induced disruption and regulates macrophage functions (Spalinger M. 

R. et al. 2020)17; 

 

- IL23R (interleukin 23 receptor): the protein encoded by this gene and the protein encoded 

by IL12RB1 (interleukin 12 receptor subunit beta 1)  are both subunits of the receptor 

IL23A/IL23. This protein associates with janus kinase 2 and binds to transcription activator 

STAT3 in IL23A signaling (Subhadarshani S. et al. 2021)18; 

 

- CDH1 (cadherin 1): encodes a cadherin, a calcium-dependent cell-cell adhesion protein. 

Loss of function of this gene is thought to contribute to cancer progression by increasing 

proliferation, invasion and metastasis. (Hansford S. et al. 2015)19; 

 

- HNF4α (hepatocyte nuclear factor 4 alpha): the encoded protein is a nuclear transcription 

factor which binds DNA as a homodimer, controlling in this way the expression of several 

genes (ie. hepatocyte nuclear factor 1 alpha which encodes for a transcription factor that 

regulates the expression of several hepatic genes). This gene may play a role in the 

development of the liver (Yu Y. et al. 2022)20. 

 

Genes IBD-related often encodes for proteins involved in innate or adaptive immunity and this 

highlights the possible correlation between genetic factors and inflammation. 
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Those genes, as all the genes of all genomes, can have permanent changes in the DNA sequence 

caused by mutations and or inherited from a parent. 

The next chapter demonstrates the importance of the genetic variants of the listed genes and how 

they are related to Crohn’s disease. For this reason DNA sequencing plays a crucial role to study 

genetics of complex diseases like IBDs. 

 

1.2  Genome-Wide Association Studies 

A common way to study the relation between genetic variants and a specific trait/disease is 

achieved by testing hundreds of thousands of variants across many genomes to find those 

statistically associated with the trait/disease through a Genome-Wide Association Study (GWAS). 

‘A Genome-Wide Association Study (abbreviated GWAS) is a research approach used to identify 

genomic variants that are statistically associated with a risk for a disease or a particular trait’ 

(Hutter C. M. National Human Genome Research Institute, 2023)21. The first study was published 

in 2005 and the GWAS Catalog29 is now including 6499 publications, reporting 539949 top 

associations. So, GWAS strategy is based on a high throughput screening approach. These are 

complex and financially demanding studies because they require the typing of hundreds of 

thousands of gene loci in tens of thousands of patients. Since the loci responsible for genetic 

characteristics are not known a priori, GWAS generally do not aim at causative loci, i.e. directly 

responsible for genetic characteristics, but only at the identification of indirect associations. 

 This method can give information about genotype-phenotype correlations by testing for 

differences in the allele frequency of genetic variants between individuals from the same 

geographical area. Even if genetic loci listed in GWAS are informative on association but not on 

causation about pathological mechanisms, it allows the study of complex genetic diseases like CD.  

Moreover, variants associated with the disease and causative variants can be in linkage. As an 

example of this, a Genome-Wide Association Study implicated the IL-12/IL-23 pathway in the 

development of Crohn’s disease (Luo Y. et al. 2017)22. Infact, interleukin 12 and 23 are important 

cytokines with a crucial role in the regulation of tissue inflammation. This study and the biology of 

IL-12/IL-23 influenced the development of therapeutic strategies and clinical trials in IBD 

(Moschen A. R. et al. 2019)23.  

Therefore, Genome-Wide Association Studies  constitute one of the most relevant strategies of 

post-genomics research and are at the basis of the discovery of new genetic biomarkers. 
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1.2.1  Conducting GWAS 

The first step is to select the population. This is important because very large sample sizes allow to 

identify reproducible genome-wide associations. Software like Genetic Power Calculator30 can be 

used to define the correct sample size. There are a lot of public resources available, for example 

the UK Biobank31, that provides access to large cohorts with both genotypic and phenotypic 

information. This data source is cheaper and more rapid than assembling de novo a dataset to 

conduct a GWAS. To avoid false positives, the population substructure can be considered including 

different ethnicities in the same study. Moreover, it should be considered that not all human 

populations and subpopulations have the same haplotype structure. 

Another important point of GWAS is genotyping:  the detection of small genetic differences 

between individuals’ genotypes and a reference genome that can lead to major changes in 

phenotype, in our case a pathological phenotype. Human bead arrays are the ideal method for 

genotyping thousands of individuals for millions of known variants with relatively lower cost 

compared to other whole genome sequencing methods. The latter are composed by a very large 

set of molecular probes placed on a solid surface that can bind a complementary sequence of 

fragmented DNA of an individual. This allows to identify single nucleotide polymorphisms (SNPs) 

and to find genetic variants of each individual. Each genetic locus makes such a small contribution 

to disease susceptibility and this is the reason why there is a need to expand as much as possible 

the number of the analyzed SNPs. 

 Another common technique for genotyping is the whole genome sequencing (WGS), a method 

that leads to the determination of nearly the entirety of the DNA sequence of an individual’s 

genome at a single time.  This strategy allows to include rare variants in our study: alternative 

forms of a gene with a minor allele frequency (MAF) of less than 1%. This is advantageous when 

rare variants make a substantial contribution to the trait of interest. 

After genotyping we will have the  individual ID numbers, coded family relations between 

individuals, sex, phenotype information and genotype calls for all called variants (Uffelman E. et al. 

2021)24. All this information is necessary as input to conduct GWAS, but only after some quality 

control (QC)  steps, including removing variants that are not in Hardy-Weinberg (HW) equilibrium. 

The latter is a model in population genetics according to which in an ideal population there is 

equilibrium between allelic and genotypic frequencies between consecutive generations. In 

particular, a variant is in HW equilibrium if the frequency of observed genotypes of the variant in a 

population can be derived from the observed allele frequencies (Uffelman E. et al. 2021)24. Other 
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important quality control steps to filter the input GWAS data expect the removal of SNPs that are 

missing in some individuals, the removal of eventual genotyping errors and the assurance that 

phenotypes correspond to the possessed genetic data. The latter is often done with a comparison 

between sex based on the X and Y chromosomes and the self reported sex of the individuals (“sex 

check”).  After QC, variants are subjected to phasing and imputation. The first one, allows to 

estimate which of the genotyped alleles derive from the maternal or paternal allele. The second 

leads to attribute missing genotypes with tools like IMPUTE232, MACH33, Beagle 4.134, Minimac435  

and SHAPEIT236, which even give a score for the quality of the imputation (INFO), useful for next 

post GWAS analysis. An haplotype is a set of DNA variants along a single chromosome that tend to 

be inherited together. Imputation needs a reference haplotype panel like TOPMed37. Then a 

principal component analysis (PCA) is conducted to identify and exclude possible outliers. 

Population stratification is the presence of genetically distinct subpopulations that differ in their 

mean phenotypic values and as we already said it should be considered in this step to avoid false 

positives.  

 

1.2.2  Association testing  

At this point we can finally test the associations between variants and phenotype. To reach this 

aim regression models are used. In our case the phenotype is binary (presence or absence of 

Crohn’s disease), so a logistic regression model is used, which means that will be estimates the 

probability of the disease based on a specific dataset of independent variables. In statistics there 

are explanatory variables and response variables. Explanatory variables explain the variation in the 

response variable, but some other variables may exist that also affects the response variables: the 

covariates. In this case, sex, age and ancestry can be considered as covariates to increase 

statistical power. 

If the phenotype is continuous (ie. body mass index or bloody pressure) a linear regression model 

is used. Those statistical methods won’t be discussed, but it is important to highlight that in 

logistic regression model a “logit link function” is used. This one is a function that converts a linear 

combination of covariate values into probabilities. 

After the association analysis, the effect size (beta or ES) of each variant will be obtained. This is an 

estimation for the association of each genetic marker with the trait of interest. When this estimate 

refers to a risk factor and quantifies the increased odds of having a disease per risk allele count, 
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this is called odds ratio (OR). The latter is an important element for the future calculation of the 

polygenic risk score (PRS) and this will be discussed in chapter 1.4. 

Next step of GWAS can be the “genome-wide meta analysis” and it serves to increase again the 

sample size. It is carried out analyzing together data from multiple cohorts and applying on them 

the same standardized quality control pipelines. Another optional point can be the replication of 

GWAS increasing again the sample size with the aim to obtain more generalizable results. 

 

 

Fig. 1 | Overview of steps for conducting GWAS (Uffelmann E. et al. 2021)24 
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1.2.3  Summary statistics 

After a Genome-Wide Association Study we will have a primary outcome called summary 

statistics. These contain some useful data for future analyses in which them will be also called 

“base data”. First of all, those files show a list of SNP IDs, namely the main way to identify SNPs 

that passed GWAS quality control steps and associated to the disease. This nomenclature starts 

with “rs”, which means “reference SNP”, and this abbreviation is followed by a number that 

uniquely identifies a specific single nucleotide polymorphism. The second information always 

given from summary statistics is the location of the SNP on the genome followed by the genomic 

build. Those coordinates integrate the rd IDs and complete the basic information on the SNPs that 

passed all the quality control steps and filters of GWAS.  

Then the possible alleles and the strand are listed. There is an “effect allele” which usually is the 

less frequent of all the possible alleles and the one that gives the disease or the considered trait, 

and a “non-effect allele”. The latter is often considered protective against the analyzed 

phenotype. In some cases even the “effect allele” can be protective for the trait, and this will be 

reported in literature after GWAS.  

In summary statistics there are always effect sizes (beta) or odds ratio that gives a numerical value 

to the association between the SNP and the disease. In addition to those values, even P-value and 

standard error are listed for each rs. The first one is a number that identifies the SNPs that are 

closer to the causal variants and their possible convergence in biological pathways. A causal 

variant is a single nucleotide polymorphism that is responsible for a particular trait or disease and 

is related to P-value: the higher is this number, the closer the SNP will be to the causal variant. 

Instead, standard error describes the accuracy with which our sample distribution represents the 

analyzed population. It is calculated with the square root of the standard deviation (a measure of 

how much the value deviates from the average) divided by the number of samples. The latter and 

the minor allele frequency (MAF) are usually the last information given in summary statistics. MAF 

represents the frequency at which the less common allele occurs in the population. It is calculated 

dividing the alleles positive for the variant by the total number of alleles screened. This value gives 

us an idea on the presence of the variant associated with the disease in the population. In the end, 

in summary statistics are reported the imputation information score, usually listed under the 

heading “INFO”. A common way to represent the results of a GWAS is the Manhattan plot, in 

which the results of the associations between traits or diseases are graphically distinguished for 

their position (x-axes) and for the decimal logarithm of their P-value (y-axes). 
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Table 1 | Example of summary statistics derived  from GWAS (Zorina-Lichtenwalter L. et al. 2023)25 

 

 

1.3  Genotyping 

In addition to summary statistics, information on the genotype of individuals  of interest are 

needed to compute a polygenic risk score (PRS) and they will be the “target data” of the next 

analysis. 

Molecular genetics is one of the sectors in which the technological innovations of recent years 

have had the greatest impact. The sequencing of the entire human genome costs over one 

hundred million euros in the early 2000s, when it was first carried out, while now it can be 

obtained for less than one thousand euros, even from BMR Genomics38. These technological 

advances open up new application perspectives which, according to many analysts, are having a 

great effect on medical diagnostics. 

Infact, thanks to the knowledge emerging from GWAS, diagnostic Beadchips  has realized and 

those allows  to identify causative loci, directly responsible for the characteristics of interest. In 

this regard, Illumina39 has created a Beadchip called "Infinium Global Diversity Array with 

Cytogenetics-8"40 which includes many loci of clinical interest. In addition, Illumina39 offers the 

possibility to create “Custom BeadChips”, relevant in this project, to identify variants in defined 

loci. Taking advantage of this possibility, BMR Genomics38 realized a custom chip called 

“Chrysalus” which contains more than 2000 SNPs related to nutrition traits and pathological 

conditions.  This technology  allows to obtain information about specific variants for each 

individual of interest and to conduct bioinformatic analyses. 

chr Bp 

location 

SNP ID Other 

allele 

Effect 

allele 

MAF beta Standard 

error 

p_value INFO 

10 88766 rs55896525 T C 0.945194 0.077287 0.07638 0.31161116 0.91642 

10 90127 rs185642176 T C 0.913977 -0.105855 0.05986 0.0769786 0.98473 

10 90164 rs141504207 G C 0.916561 -0.129943 0.06263 0.03800844 0.92349 

10 94263 rs184120752 A C 0.974493 0.0394445 0.10739 0.71339818 0.95929 
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1.4  Polygenic risk score 

Summary statistics derived from the association testing are very important for the post-GWAS 

analyses made in silico using further data from external resources and the individuals haplotypes. 

Polygenic risk score (PRS) computation is one of them. PRS is a numeric value that predicts an 

individual’s genetic predisposition for a certain trait or disease. It is being explored for potential 

clinical application in personalized medicine such as predicting disease risk, tailoring treatment 

approaches or implementing preventive measures. It can be applied to a wide range of traits or 

diseases including common complex conditions  like cardiovascular diseases, diabetes and 

psychiatric disorders. Each variant derived from Genome-Wide Association Studies has a different 

small effect on the trait in question and this is represented by the effect size taken from summary 

statistics. The weighted sum of the effects of an individual genetic variant gives the polygenic risk 

score. Infact, the basic equation for the PRS of an individual j is: 

 

PRSj = ∑ 𝛽𝑖𝑁𝑖 ∗ 𝑑𝑜𝑠𝑎𝑔𝑒𝑖𝑗 

 

where N is the number of SNPs in the score, 𝛽𝑖 is the effect size (beta) of variant 𝑖 and 𝑑𝑜𝑠𝑎𝑔𝑒𝑖𝑗 is 

the number of copies of SNP 𝑖 of individual j. Therefore for this calculation we should have “base 

data”, represented by summary statistics, and “target data” in which we find information about 

individuals genotypes and phenotypes. To manipulate those complex data files, there are a range 

of software tools but this thesis is focused on PLINK (v1.90 beta)41, the most commonly used one. 

With those software we can filter data with some basic quality control (QC) steps. 

 

1.4.1  Quality control of base data 

Public base data files are usually compressed to reduce storage space requirements. So first you 

have to make sure that the downloaded file is not corrupted and contains all the needed 

information for the PRS computation. The second thing to check is the genome build: target and 

base data must be on the same genome build. If not, tools like LiftOver42 can be used across the 

datasets. After those primary filters, you can proceed with the real quality control passage. As 

already said, PLINK41 can be useful and it groups them in one single step. In this phase, SNPs with 
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low values of MAF and INFO are removed from the dataset to increase statistical power and to 

avoid false positives. Usually, rs with MAF < 0.01 and INFO < 0.8 are filtered. Then “strand flipping” 

is recommended (here or during QC of target data) if there are SNPs with mismatching alleles to 

obtain their complementary. PLINK41 also automatically removes non-resolvable mismatching 

SNPs. 

In base data duplicate variants can be reported and these rs must be removed, because most of 

the PRS software do not work with duplicate SNPs. Usually it is assumed that there are no 

overlapping samples between datasets. In addition, if the base and target data were produced 

with different genotyping chips, we don’t know the chromosome strand used for either and it will 

be unknown if the base and target data are referring to the same allele. Then it is not possible to 

pair-up the alleles of ambiguous SNPs across the datasets and only non ambiguous rs must be 

retained.  

 

1.4.2  Quality control of target data 

The aim of this section is to ensure that all individuals and variants included in the study have high 

quality data. As already said for GWAS, even sample size is also important to obtain reliable results 

and for this reason Choi suggests performing PRS analyses on target data of at least 100 

individuals (Choi S. W. et al. 2020)27. 

After checking that the target data file has not changed during possible local transfers, quality 

control steps should be performed. As already mentioned, PLINK41 groups them in a single 

passage, removing SNPs with low MAF, low genotyping rate, out of Hardy-Weinberg Equilibrium 

and filtering out individuals with low genotyping rate (Marees A. T. et al. 2017)28. With this step 

we remove from our analysis possible genotyping errors, SNPs that are missing in a high part of 

analyzed subjects and individuals who have a high rate of genotype missingness. The next check 

regards the heterozygosity rates of individuals which could indicate DNA contamination or high 

levels of inbreeding when it’s value is too big or too low. So first highly correlated SNPs are 

removed. This “pruning” passage is usually done in PLINK41 filtering rs with Linkage Disequilibrium 

(LD) r2 higher than 0,25 (Marees A. T. et al. 2017)28. Then, after computing heterozygosity rates, 

with the help of R commands Marees suggest to remove individuals with F coefficients (estimates 

for assessing heterozygosity) that are more than 3 standard deviation units from the mean 
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(Marees A. T. et al. 2017)28. Even target data requires the removal of possible duplicate SNPs and a 

filter of the closely related individuals. 

Another thing that can lead to invalid results is mislabeling or misreporting samples. To recognize 

them, a sex check-is usually performed as already said for GWAS. 

 

1.4.3  PRS computation 

At this point, various files should have been generated: 

- The post-quality control summary statistics file; 

- The filtered genotype file; 

- The file in which are listed SNPs that passed QC steps; 

- A file with filtered samples; 

- The phenotype file; 

- An eventual file that contains the covariates of the samples. 

In addition, if the effect size relates to disease risk and is given as an odds ratio (or beta for 

continuous traits), the PRS is computed as a product of ORs. This calculation can be simplified 

transforming ORs in their natural logarithm so polygenic risk score can be computed using a 

summation. Even in this case, and for the next steps PLINK41 can be useful, for example to simplify 

clumping. Linkage disequilibrium (LD) measures non-random association between alleles at 

different loci at the same chromosome in a population. Inter alia, SNPs are in LD when the 

frequency of association of their alleles is higher than expected with random assortment. 

Clumping is important to retain only weakly correlated SNPs and simultaneously maintaining those 

that are most associated with the phenotype. 

At this point, with the transformed base data file, the file containing SNP IDs and their 

corresponding P-values, a file in which we put different P-value for inclusion of SNPs in the PRS, 

we can finally compute the polygenic risk score, generating a number of files which matches the 

number of P-value thresholds of the last file. 
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In particular, to compute PRS, PLINK41 uses the following formula:  

 

PRSj = 
∑ 𝑆𝑖 𝑁𝑖 ∗𝐺𝑖𝑗𝑃∗𝑀𝑗  

 

where 𝑆𝑖 is the effect size of the variant 𝑖; 𝐺𝑖𝑗 is the number of effect alleles observed in sample 𝑗; 

the ploidy of the sample is 𝑃 (for human is 2); 𝑁 is the number of SNPs included in PRS; and 𝑀𝑗 is 

the number of non-missing SNPs observed in sample 𝑗.  

In conclusion, it is possible to approximate the “best fit PRS” to select the polygenic risk score that 

explains the highest phenotypic variance. To do this, we can perform a regression between PRS 

calculated at a range of P-value thresholds using R43. 
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2. AIMS 

 

A custom chip Illumina39 called “Chrysalus” has been realized by BMR39 Genomics. It contains 

more than 2000 variants related to various specific traits predominantly related to nutrition or 

pathological conditions related to inflammatory bowel disease. The objective of this thesis are to: 

- identify between the SNPs of the custom array which can be related to inflammatory 

bowel diseases with a particular focus on Crohn’s disease; 

 

- test those listed molecular markers on a wide range of samples and verify the relative 

probe efficiency and call rate; 

 

- find other possible SNPs that could be included in a future update of Chrysalus to improve 

the reliability of the system; 

 

- explore the possibility to extend the project and analyze GWAS data with the help of 

PLINK41. To reach this aim, various GWAS datasets related to inflammatory pathological 

conditions of the gastrointestinal tract should be evaluated. Moreover, those data will be 

used for a first polygenic risk score computation, which will be improved in future studies. 
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3. MATERIAL AND METHODS 

 

3.1  CD-related SNPs and new molecular markers 

“Chrysalus” is an Illumina39 custom array realized by BMR39 Genomics which contains 2036 

different SNPs (3000 total SNPs, 964 duplicates). Those molecular markers have been selected for 

their specific associations with particular traits or phenotypes such as  food intolerance, lipid and 

carbohydrates metabolism, oxidative stress, inflammation and Crohn’s diseases (SNPs selected 

from: Sazonovs A. et al., Large-scale sequencing identifies multiple genes and rare variants 

associated with Crohn’s disease susceptibility26, 2022; Younis N. et al., Inflammatory bowel 

disease: between genetics and microbiota9, 2020; 

https://genportal.tellmegen.eu/results/diseases/60/053 ) 

Sometimes SNPs are not exclusively related to a single disease and can be linked to other traits. So 

the first step is to identify which of those variants have been associated with Crohn's disease in 

previous studies. For this purpose, some online databases such as NCBI44 and SNPedia45 were 

consulted to spot those variants. An initial “operative list” of SNPs CD-related was created which 

contains for each probe: 

- rs ID; 

- chromosome in which the variant is located; 

- SNP position; 

- gene symbol and name; 

- variant function; 

- risk alleles; 

- diseases associated to the variant; 

- other useful comments such as the risk increase of a specific genotype for Crohn’s disease 

development; 

- references about studies in which the variant is associated with CD. 

Those information are required for the next analyses on polygenic risk score.  

With the same online databases (SNPedia45 and NCBI44), some other variants have been identified. 

Those SNPs will be included in the update of the ‘Chrysalus’ custom Beadchip array, so a list of  

“new molecular markers” was created with the same format of the previous table.  

 



21 

3.2  Infinium workflow 

Chrysalus bead chip, which contains 3000 probes (2036 SNPs related to nutrition traits and 

pathological conditions and 964 duplicates/triplicates of “highly required SNPs” selected on the 

basis of BMR Genomics39 and customers exigencies), has been used by BMR Genomics39 to 

genotype 792 individuals by following Illumina Infinium protocol (see 6.3). All reagents are 

contained in Infinium DNA analyses assay kit and every kit allows to process 48 samples using two 

Beadchips.  The workflow starts with DNA extraction from buccal swabs using Mag-Bind Blood & 

Tissue DNA HDQ 96 Kit following  the attached protocol (see 6.2) and with a whole genome 

amplification performed according to the Infinium protocol. After the PCR reaction, the product of 

amplification is incubated overnight for 20/24 hours. Then a robust endpoint fragmentation is 

conducted on amplified DNA with restriction enzymes followed by alcohol precipitation and 

resuspension of fragments for the hybridization step. The resuspended DNA is loaded on the bead 

chip, each containing 24 samples. The latter is composed of microwells containing two identical 

probes (one for each allele) per fluorescently labelled bead type. Then hybridization of samples 

occurs in 17/24 hours. The following step is the extension with DNA polymerase and biotin-

labelled or dinitrophenol-labelled dideoxynucleotides of samples previously annealed to locus-

specific probes on Beadchip. If the probes don't match loci present in samples, no extension 

occurs. Staining allows the detection of the loci of interest exploiting the streptavidin-

biotin/dinitrophenol (DNP) matrix formation. Biotin-labelled guanine and cytosine are associated 

with streptavidin with green fluorescence and anti-streptavidin-biotin. Dinitrophenol-labelled 

thymine and adenosine are instead recognized by anti-DNP that give red fluorescence and anti-Ab-

DNP. 
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Fig. 2 | Staining with streptavidin-biotin and anti-DNP-anti-Ab-DNP 

 

Intensity of the beads fluorescence is detected after placing the Beadchip in the iScan46. The latter 

is a scanner that uses lasers to excite labels and then takes an image. At this point genotypes are 

called automatically by Genome-Studio (v. 2.0.5)47 by the different type and intensity of 

fluorescences. This software generates a final report which contains even call rates, information 

about quality of signals and the status of every probe related to Hardy-Weinberg equilibrium. 
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Fig. 3 | Overview of Infinium workflow 

 

 

 

3.3  GWAS dataset selection and quality control 

Future analyses require the selection of GWAS summary statistics which contains information 

about the Chrysalus SNPs associated with IBDs. To obtain this dataset, some online publicly 

available databases have been browsed (gwasATLAS48, GWAS Catalog29, GWAS Central49, PLCO 

Atlas50 and FINNGEN51). The selection of this summary statistics is based on the completeness and 

quality of information required for PRS computation. In particular SNP IDs, base pairs locations, 

the chromosomes, effect and non effect alleles, minor allele frequency (MAF), betas, standard 

errors, p-values  and INFOs have been checked and evaluated for SNPs of interest. 

Then, various quality control steps have been applied on the selected dataset using awk 

command, filtering rs for effect allele frequencies (keeping rs with MAF >  0.01), INFO (filtering out 

SNPs with INFO < 0.8)  and eliminating  duplicates and ambiguous SNPs. 
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3.4  Quality control of target data  

In this step the command line program PLINK (v. 1.90 beta)41 has been used in Linux terminal, so 

first input files (.bim, .bed and .fam) have been created using Plink Input Report Plug-in (v. 2.1.4)52 

for Genome-Studio47 and the --make-bed command in PLINK41. To select just the list of rs 

associated with CD previously created (see 3.1 CD-related SNPs and new molecular markers) the 

option --extract is used. Then a first quality control step filtered SNPs and individuals using some 

PLINK41 commands and setting various thresholds taken from literature (Choi S. W. et al. 2020)27. 

In particular  the PLINK41 functions are: 

 

⮚ --maf 0.01 : to prevent genotyping errors, SNPs with minor allele frequency lower than 

0.01 are eliminated from the list; 

 

⮚ --hwe 1e-6 : removed rs with low P-value (less than 1𝑒−6) from the Hardy-Weinberg 

Equilibrium Fisher’s exact or chi-squared test; 

 

⮚ --geno 0.01 : excluded SNPs that are missing in a high fraction of individuals (more than 

1%); 

 

 

⮚ --mind 0.01 : excluded individuals who have a high rate of genotype missingness (more 

than 1%) removing samples with low genotype calls. 

 

Then pruning is performed, filtering out any SNPs with Linkage Disequilibrium 𝑟2higher than 0.25 

and, after estimating  heterozygosity rates represented by F-coefficient (--het command in 

PLINK41), individuals with F-values that are more than 3 standard deviations (SD) from the mean 

are removed with R (v. 4.2.3)43. This step prevents high levels of heterozygosity (indication of low 

sample quality) and low levels of heterozygosity (may be due to inbreeding). 

So a final target dataset has been created which is represented by 3 files with the PLINK41 output 

format (.bed, .bim, .fam). 
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3.5  PRS computation 

PRS is computed as a product of ORs (or Beta for continuous traits). To simplify this calculation, 

the natural logarithm of the Betas is calculated using R43 so that the PRS can be computed using 

summation instead (and can be back-transformed afterwards). Then clumping, which 

preferentially retain only weakly correlated SNPs but preferentially retaining the SNPs most 

associated with CD,  has been performed with the following commands and parameters found in 

literature (Choi S. W. et al. 2020)27: 

 

⮚  --clump-p1 1 : P-value threshold (1 is selected such that all SNPs are include for clumping) 

for a SNP to be included as an index SNP; 

 

⮚  --clump-r2 0.1 : removing rs having 𝑟2 higher than 0.1 with the index SNPs; 

 

⮚  --clump-kb 250 : SNPs within 250kb of the index SNP are considered. 

 

After the generation of the clumped file, index rs IDs have been extracted and another file (.txt) 

containing  different P-value thresholds for the inclusion of SNPs in the PRS with the following  

content: 

 

IBD.0.5.profile 0 0.5 

IBD.0.4.profile 0 0.4 

IBD.0.3.profile 0 0.3 

IBD.0.2.profile 0 0.2 

IBD.0.1.profile 0 0.1 

IBD.0.05.profile 0 0.05 

IBD.0.001.profile 0 0.001 

 Values indicated in this last file are inclusive so for example the 0.1 threshold will include even 

eventual SNPs with P-value equal to 0.1. 

At this point the --score command in PLINK41 generated seven files, one for each threshold 

considered, in which there are PRS values for each sample. 
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4. RESULTS 

 

The initial research step led to identifying 75 variants in Chrysalus associated with Crohn's disease 

(Table 2).  

rs ID CHR POSITION GENE SYMBOL 

rs1004819 1 67204530 IL23R 

rs10889677 1 67259437 IL23R 

rs11209026 1 67240275 IL23R 

rs11465804 1 67236843 IL23R 

rs17436816 1 6144101 CHD5 

rs2201841 1 67228519 IL23R 

rs2274910 1 160882256 ITLN1 

rs2476601 1 113834946 PTPN22, AP4B1-AS1 

rs2641348 1 119895261 ADAM30 

rs3024493 1 206770623 IL10 

rs3024505 1 206766559 NA 

rs4655215 1 19811221 NA 

rs6426833 1 19845367 NA 

rs6679677 1 113761186 PHTF1 

rs7554511 1 200908434 C1orf106 

rs76418789 1 67182913 IL23R 

rs80174646 1 67242472 IL23R 

rs1260326 2 27508073 GCKR 

rs148746268 2 25382703 DTNB 
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rs ID CHR POSITION GENE SYMBOL 

rs17229679 2 198696033 LOC105373831 

rs2241880 2 233274722 ATG16L1, SCARNA5 

rs35667974 2 162268127 IFIH1 

rs3749171 2 240630275 GPR35 

rs780094 2 27518370 GCKR 

rs3197999 3 49684099 MST1 

rs9307388 4 113154532 ANK2 

rs1000113 5 150860514 IRGM 

rs10045431 5 159387525 ENSG00000249738 

rs12521868 5 132448701 C5orf56 

rs13361189 5 150843825 IRGM 

rs1992660 5 40414965 PTGER4 

rs2188962 5 132435113 C5orf56 

rs4958847 5 150860025 IRGM 

rs56167332 5 159400761 NA 

rs1049526 6 32981027 BRD2 

rs1799964 6 31574531 TNF, LTA, 

LOC100287329 

rs2301436 6 167024500 FGFR1OP 

rs28701841 6 106082455 PRDM1 

rs6908425 6 20728500 CDKAL1 

rs1800795 7 22727026 IL6, LOC541472 
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rs ID CHR POSITION GENE SYMBOL 

rs4728142 7 128933913 NA 

rs10758669 9 4981602 near JAK2 

rs141992399 9 136365140 DNLZ, CARD9 

rs4263839 9 114804160 TNFSF15 

rs4986790 9 117713024 TLR4 

rs10748781 10 99523573 near LINC01475, NKX2-

3 

rs2104286 10 6057082 IL2RA 

rs224136 10 62710915 NA 

rs61839660 10 6052734 IL2RA 

rs7915475 10 62621908 ZNF365 

rs102275 11 61790331 TMEM258 

rs174535 11 61783884 MYRF 

rs1793004 11 20677383 NELL1 

rs630923 11 118883644 CXCR5 

rs694739 11 64329761 LOC102723878 

rs7927894 11 76590272 NA 

rs3184504 12 111446804 SH2B3 

rs3764147 13 43883789 LACC1 

rs35874463 15 67165360 SMAD3 

rs104895438 16 50711745 NOD2 

rs2066844 16 50712015 NOD2 
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rs ID CHR POSITION GENE SYMBOL 

rs2066845 16 50722629 NOD2 

rs2066847 16 50729868 NOD2 

rs2076756 16 50722970 NOD2 

rs5743293 16 50729868 NOD2, CYLD-AS1 

rs72796367 16 50728860 NOD2 

rs9889296 17 34243528 NA 

rs35018800 19 10354167 TYK2 

rs602662 19 48703728 FUT2, LOC105447645 

rs6017342 20 44436388 NA 

rs6062496 20 63697746 TNFRSF6B, RTEL1-

TNFRSF6B 

rs2836754 21 38919816 LOC400867 

rs762421 21 44195678 NA 

rs1569414 22 45331684 FAM118A 

rs2143178 22 39264824 NA 

 

Table 2 | Variants of Chrysalus associated to Crohn’s disease (NA means that rs is located in the 

intergenic region in NCBI44); SNPs selected from: Sazonovs A. et al., Large-scale sequencing 

identifies multiple genes and rare variants associated with Crohn’s disease susceptibility26, 2022; 

Younis N. et al., Inflammatory bowel disease: between genetics and microbiota9, 2020; 

https://genportal.tellmegen.eu/results/diseases/60/053. 

 

 

 

 

 

https://genportal.tellmegen.eu/results/diseases/60/053
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Moreover 33 “new variants” not currently in the chip have been identified and listed below (Table 

3).  

rs ID Chromosome Position Gene 

rs10489629 1 67222666 IL23R 

rs11209032 1 67274409 IL23R 

rs12037606 1 172929262 NA 

rs7517847 1 67215986 IL23R 

rs1343151 1 67253446 IL23R 

rs1495965 1 67287825 NA 

rs1800872 1 206773062 IL19, IL10 

rs3024496 1 206768519 IL10 

rs10210302 2 233250193 ATG16L1 

rs77981966 2 43550825 THADA 

rs9858542 3 49664550 BSN 

rs143431075 4 172130730 GALNTL6 

rs1992662 5 40393750 PTGER4 

rs2631367 5 132369766 SLC22A5 

rs6596075 5 132406536 IBD5 

rs17234657 5 40401407 NA 

rs1050152 5 132340627 SLC22A4 

rs9469220 6 32690533 NA 

rs7753394 6 137764111 NA 

rs7807268 7 148560956 IL23R 

rs6601764 10 3820350 NA 

rs10761659 10 62685804 NA 

rs3135932 11 117993348 IL10RA 

rs33995883 12 40346884 LRRK2 

rs2201840 15 24899980 SNRPN, SNHG14 

rs17221417 16 50705671 NOD2 

rs41450053 16 50722629 NOD2 

rs1728785 16 68557327 ZFP90 

rs10431923 16 68805360 CDH1 
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rs ID Chromosome Position Gene 

rs2542151 18 12779948 PTPN2 

rs7234029 18 12877061 PTPN2 

rs8111071 19 45804148 RSPH6A 

rs2834167 21 33268483 IL10RB 

 

Table 3 | List of variants associated to Crohn’s disease that potentially could be updated in 

Chrysalus (NA means that the respective gene is not reported in NCBI44) 

 

Genotyping 792 european healthy individuals with Chrysalus and the Infinium protocol, relative 

probe efficiency and call rate have been tested and listed for each SNP (indicated with the name 

assigned by Genome-Studio47) related to Crohn’s disease (Table 4). In this result, duplicated SNPs 

are still conserved because quality control steps of target data will remove them in a next phase.  

 

            

Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

1 rs1004819 782 0.8837 

1 rs10889677 784 0.8815 

1 rs11209026 758 0.8352 

1 rs11209026_IlmnDup1 743 0.8112 

1 rs11209026_IlmnDup2 752 0.8283 

1 rs11465804 784 0.9296 

1 rs11465804_ilmndup1 781 0.9203 

1 rs11465804_ilmndup2 783 0.9234 

1 rs17436816 747 0.7111 
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Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

1 rs2201841.2_F2BT 772 0.8442 

1 rs2274910 782 0.9344 

1 rs2476601 784 0.9062 

1 rs2641348 783 0.8924 

1 rs3024493.1_F2BT 771 0.9456 

1 rs3024493.2_F2BT 784 0.7898 

1 rs3024505 786 0.8625 

1 rs4655215 784 0.9379 

1 rs4655215_ilmndup1 784 0.9401 

1 rs4655215_ilmndup2 785 0.9415 

1 rs6426833 772 0.8526 

1 rs6679677 770 0.8998 

1 rs7554511 784 0.9323 

1 rs76418789 771 0.9096 

1 rs76418789_ilmndup1 781 0.9176 

1 rs76418789_ilmndup2 778 0.9176 

1 rs80174646 781 0.9155 

2 rs1260326.1_F2BT 780 0.6090 
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Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

2 rs148746268 745 0.7027 

2 rs17229679 776 0.8500 

2 rs17229679_ilmndup1 776 0.8457 

2 rs17229679_ilmndup2 752 0.8191 

2 rs2241880 783 0.8587 

2 rs35667974 786 0.8698 

2 rs35667974_ilmndup1 787 0.8838 

2 rs35667974_ilmndup2 788 0.8655 

2 rs3749171 735 0.6868 

2 rs780094 783 0.8200 

3 rs3197999 779 0.7421 

4 rs9307388 772 0.8829 

5 rs1000113 780 0.9062 

5 rs1000113_ilmndup1 780 0.8997 

5 rs1000113_ilmndup2 777 0.8997 

5 rs10045431 781 0.8504 

5 rs12521868 787 0.8450 

5 rs13361189 781 0.7882 
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Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

5 rs1992660 773 0.8731 

5 rs2188962_ilmndup1 748 0.7612 

5 rs2188962_ilmndup2 727 0.6227 

5 rs2188962 723 0.6250 

5 rs4958847 777 0.8311 

5 rs56167332.2_F2BT 771 0.8791 

5 rs56167332.2_F2BT_ilmndup1 770 0.9753 

5 rs56167332.2_F2BT_ilmndup2 775 0.9234 

6 rs1049526 785 0.7988 

6 rs1799964 763 0.8027 

6 rs2301436 782 0.7856 

6 rs28701841 775 0.8686 

6 rs28701841_ilmndup1 773 0.8667 

6 rs6908425 777 0.8951 

7 rs1800795 785 0.8437 

7 rs1800795_IlmnDup1 785 0.8453 

7 rs1800795_IlmnDup2 784 0.8419 

7 rs4728142 771 0.7975 
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Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

7 rs4728142_ilmndup1 765 0.7640 

7 rs4728142_ilmndup2 778 0.8104 

9 rs10758669.2_F2BT 775 0.9044 

9 rs141992399.1_F2BT 774 0.9023 

9 rs141992399.1_F2BT_ilmndup1 767 0.9176 

9 rs141992399.2_F2BT 761 0.8430 

9 rs141992399.2_F2BT_ilmndup1 766 0.8492 

9 rs141992399.2_F2BT_ilmndup2 766 0.8451 

9 rs4263839 778 0.7796 

9 rs4263839_ilmndup1 780 0.7842 

9 rs4263839_ilmndup2 780 0.7731 

9 rs4986790.1_F2BT 774 0.8212 

9 rs4986790.2_F2BT 772 0.8785 

10 rs10748781.1_F2BT 774 0.6371 

10 rs10748781.1_F2BT_ilmndup1 773 0.6406 

10 rs10748781.1_F2BT_ilmndup2 779 0.5818 

10 rs10748781.2_F2BT 781 0.6573 

10 rs10748781.2_F2BT_ilmndup1 780 0.6552 
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Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

10 rs10748781.2_F2BT_ilmndup2 781 0.6673 

10 rs2104286 781 0.8912 

10 rs224136.1_F2BT 768 0.9070 

10 rs224136.2_F2BT 757 0.8618 

10 rs61839660 778 0.8162 

10 rs61839660_ilmndup1 771 0.8052 

10 rs61839660_ilmndup2 777 0.8269 

10 rs7915475 786 0.9100 

10 rs7915475_ilmndup1 783 0.9147 

10 rs7915475_ilmndup2 782 0.9080 

11 rs102275 773 0.7897 

11 rs174535.1_F2BT 767 0.9158 

11 rs174535.2_F2BT 770 0.8145 

11 rs1793004.3_F2BT 762 0.8497 

11 rs630923 777 0.9116 

11 rs630923_ilmndup1 780 0.9144 

11 rs630923_ilmndup2 778 0.9256 

11 rs694739 779 0.7954 
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Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

11 rs7927894 777 0.9285 

12 rs3184504.2_F2BT 785 0.9323 

13 rs3764147 784 0.8828 

15 rs35874463 785 0.8202 

15 rs35874463_ilmndup1 784 0.8207 

15 rs35874463_ilmndup2 786 0.8186 

16 rs104895438.1_F2BT 751 0.8925 

16 rs104895438.1_F2BT_ilmndup1 749 0.8750 

16 rs104895438.1_F2BT_ilmndup2 764 0.8698 

16 rs104895438.2_F2BT 772 0.9096 

16 rs104895438.2_F2BT_ilmndup1 774 0.9062 

16 rs104895438.2_F2BT_ilmndup2 777 0.9035 

16 rs2066844 742 0.8562 

16 rs2066844_ilmndup1 717 0.5713 

16 rs2066845.1_F2BT 774 0.9422 

16 rs2066845.1_F2BT_ilmndup1 770 0.9296 

16 rs2066845.1_F2BT_ilmndup2 759 0.9179 

16 rs2066845.2_F2BT 778 0.9368 
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Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

16 rs2066845.2_F2BT_ilmndup1 785 0.9425 

16 rs2066845.2_F2BT_ilmndup2 787 0.9188 

16 rs2066847 779 0.8890 

16 rs2076756 764 0.8273 

16 rs5743293 788 0.8904 

16 rs5743293_ilmndup1 788 0.8779 

16 rs5743293_ilmndup2 785 0.8917 

16 rs72796367 777 0.8834 

16 rs72796367_ilmndup1 778 0.8090 

16 rs72796367_ilmndup2 777 0.8745 

17 rs9889296 785 0.9384 

17 rs9889296_ilmndup1 786 0.9321 

17 rs9889296_ilmndup2 746 0.7407 

19 rs35018800 783 0.7796 

19 rs35018800_ilmndup1 783 0.7796 

19 rs35018800_ilmndup2 784 0.7864 

19 rs602662 765 0.7675 

20 rs6017342 777 0.9270 
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Chromosome rs IDs Calling Rate  Signal quality 

(GenTrain Score) 

20 rs6017342_ilmndup1 782 0.9361 

20 rs6017342_ilmndup2 779 0.9359 

20 rs6062496 779 0.9026 

20 rs6062496_ilmndup1 778 0.8936 

20 rs6062496_ilmndup2 778 0.8968 

21 rs2836754 770 0.8259 

21 rs762421 780 0.8139 

22 rs1569414 778 0.7933 

22 rs2143178 762 0.7922 

22 rs2143178_ilmndup1 773 0.9083 

22 rs2143178_ilmndup2 769 0.8644 

 

Table 4 | Calling rate per rs (on the 792 total samples) and signal quality (reported as GenTrain 

Score from Genome-Studio47) for each IBD variant and eventual duplicates present in Chrysalus 

 

Various public summary statistics from different Genome-Wide Association Studies have been 

checked to select the one that contains as many Chrysalus SNPs associated with IBDs as possible. 

The dataset that has been selected is from Zorina-Lichtenwalter’s GWAS (Zorina-Lichtenwalter K. 

et al. 2023)25 in which is estimated the genetic risk shared across 24 different chronic pain 

conditions, including Crohn’s disease. 

This dataset contains 11 323 612 SNPs associated with the traits and for each rs is reported the 

variant ID, chromosome, base pair location, effect and non effect allele, minor allele frequency, 

beta, standard error, P-value and the value of INFO. 

https://pubmed.ncbi.nlm.nih.gov/?term=Zorina-Lichtenwalter+K&cauthor_id=37219871
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 Fig. 4 | First ten lines of summary statistics (from Zorina-Lichtenwalter K. et al. 2023)25 

 

To create a base dataset for PRS computation, rs have been filtered as discussed in 3.3 GWAS 

dataset selection and quality control. At the end of this step there are 9 582 415 SNPs in the final 

base data file. In the dataset there’s no duplicate rs or SNPs with MAF or INFO values below the 

imposed thresholds so only ambiguous SNPs have been removed. 

Then quality control steps on target data have been applied and with proper PLINK41 commands (–

mind, –geno, –hwe and –maf) 113 variants and 616 individuals passed those filters. Moreover, 58 

highly correlated SNPs have been removed with pruning. So the final target dataset, which is 

grouped in 3 PLINK41 input files (.fam: the sample information file; .bim: extended variant 

information file; .bed: binary biallelic genotype table), contained 616 individuals and 55 variants. 

Then the polygenic risk score is finally computed and seven different files have been generated, 

one for each threshold of P-value previously mentioned (see 3.5 PRS computation).  

 

https://pubmed.ncbi.nlm.nih.gov/?term=Zorina-Lichtenwalter+K&cauthor_id=37219871
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 Fig. 5 | Output of the PRS computation on the first 45 individuals that passed QC steps of target 

data for the threshold of P-value from 0 to 0.5. FID: family ID, IID: sample ID, PHENO: phenotype 

value (-9 means that in this case it is unknown), CNT: number of non-missing alleles used for 

scoring (represents twice the number of variants included in the considered threshold), CNT2: sum 

of named allele counts (each ScoreFile line names a variant, and only one of its two alleles), SCORE: 

PRS value. 
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5. DISCUSSION AND CONCLUSIONS 

 

The results that this first polygenic risk score calculation test for Crohn’s disease gave are similar 

for all SNPs P-value thresholds considered. In particular, as we can see in part of the results 

presented below (Fig. 6-12), SCORE value is included between 0.01 and 0.04. 

 

 

  

 Fig. 6 |  PRS calculated with SNPs having P-value between 0 and  0.5 (first ten samples) 

 

 

 Fig. 7 |  PRS calculated with SNPs having P-value between 0 and  0.4 (first ten samples) 
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 Fig. 8 |  PRS calculated with SNPs having P-value between 0 and  0.3 (first ten samples) 

 

 

 Fig. 9 |  PRS calculated with SNPs having P-value between 0 and  0.2 (first ten samples) 

 

 

 Fig. 10 |  PRS calculated with SNPs having P-value between 0 and  0.1 (first ten samples) 
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 Fig. 11 |  PRS calculated with SNPs having P-value between 0 and  0.05 (first ten samples) 

 

 

 Fig. 12 | PRS calculated with SNPs having P-value between 0 and  0.001 (first ten samples) 

 

This primary result represents the relative risk to develop Crohn's disease for each genotyped 

individual. The analyzed population is probably made up of healthy individuals even if we don’t 

have any information on the phenotype. Since every trait/disease has its own PRS range of value, 

we can’t yet give an interpretation of the obtained PRS values. In other words, with this first 

genetic and statistical test we can’t say when a sample is considered at high or low risk for CD 

development and we still can not interpret the obtained values. In addition, since IBDs are 

multifactorial diseases, genetics has a relative influence on the final phenotype of each person. For 

this reason, to investigate the role of genetics in IBDs, a PRS evaluation on CD patients must be 

done and compared to the PRS of healthy people. This would highlight the influence of the genetic 

factor on every individual and in general for the development of the considered disease. In 
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addition, this analysis would give more information on the relative weight of each considered SNP 

for the onset of IBDs. 

The presented workflow can also be optimized and improved in the future to obtain even more 

reliable scores which surely can’t be used for CD diagnosis, but that could help to prevent disease 

by individuating the most susceptible individuals on the genetic level. For example, this method 

can gain more statistical value with the introduction of more quality control steps on the target 

dataset, such as the sex-check, the eliminations of too closely related individuals and with the 

strand flipping that would help to keep even more SNPs associated to CD that PLINK41 would 

automatically remove (mismatching SNPs). Another important gain of statistical power could be 

carried by the selection of an even more wide and accurate summary statistics file from GWAS to 

be used as a reference dataset for the PRS computation. The same GWAS is important for both 

defining the sample size and the population that should be genetically similar to the population 

genotyped in our laboratory. Moreover, the addition of even more CD-associated SNPs in 

Chrysalus chip will help to improve and refine the polygenic risk score computation. Another 

important future aim for BMR Genomics38 regards the creation of a first functional report based 

on the previously identified SNPs that describe the genetic profile for each individual and the 

relative risk for the development of Crohn’s disease. For this purpose the implementation of a 

more accurate PRS will play an important role to develop a product that will investigate the 

genetics of each individual and explain it in “user friendly” terms. 

Moreover, the exploration of other PRS dedicated programs such as PRSice-254 and LDpred-2 

(implemented in R package bigsnpr)55 will help to compare various ways to obtain the score and to 

choose the best fitting one for our analyses. 
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6. SUPPLEMENTARY MATERIAL 

 

6.1    Full list of commands 

 

BASE DATA QC 

 

#check integrity of the file 

gunzip -c GCST90129433_buildGRCh37.tsv.gz | head 

 

#total SNPs listed in summary statistics 

gunzip -c GCST90129433_buildGRCh37.tsv.gz | nl | tail -10 

 

#filtering SNPs: MAF and INFO 

gunzip -c GCST90129433_buildGRCh37.tsv.gz | awk 'NR==1 || ($6 > 0.01) && ($10 > 0.8) {print}' | 

gzip > MAF.INFO.gz 

 

#checking the number of SNPs  

gunzip -c MAF.INFO.gz | nl | tail -10 

 

#filtering repeated SNPs 

gunzip -c MAF.INFO.gz | awk '{seen[$3]++; if(seen[$3]==1){print}}' | gzip - > nodup.gz 

 

#checking the number of SNPs 

gunzip -c nodup.gz | nl | tail -10 

 

#filtering ambiguous SNPs 

gunzip -c nodup.gz | awk '!( ($4=="A" && $5=="T") || ($4=="T" && $5=="A") || ($4=="G" && 

$5=="C") || ($4=="C" && $5=="G")) {print}' | gzip > basedata.QC.gz 

 

#checking the number of SNPs 

gunzip -c basedata.QC.gz | nl | tail -10 
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TARGET DATA QC 

 

#needed files: output files from Genome-Studio47 (.ped and .map format) 

 

 

#generation of PLINK input files 

./plink --ped 740.ped --map 740.map --extract snplistdaestrarreprova.txt --make-bed --out 

target.IBD 

 

 

#standard QC  

./plink --bfile target.IBD --maf 0.01 --hwe 1e-6 --geno 0.01 --mind 0.01 --write-snplist --make-just-

fam --out target.QC 

 

 

#pruning 

./plink --bfile target.IBD --keep target.QC.fam --extract target.QC.snplist --indep-pairwise 200 50 

0.25 --out target.pruned.QC 

 

 

#estimation of heterozygosity rates (F coefficient) 

./plink --bfile target.IBD --extract target.pruned.QC.prune.in --keep target.QC.fam --het --out 

target.het.QC 

 

 

#filtering SNPs with heterozygosity rates with more than 3 DS from the mean 

     ##starting R 

R   

     ##read in the EUR.het file, specify it has header 

dat <- read.table("target.het.QC.het", header=T)    

     ##calculate the mean 

m <- mean(dat$F) 
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     ##calculate the SD      

s <- sd(dat$F)   

     ##get any samples with F coefficient within 3 SD of the population mean 

valid <- subset(dat, F <= m+3*s & F >= m-3*s) 

     ##print FID and IID for valid samples  

write.table(valid[,c(1,2)], "target.valid.sample", quote=F, row.names=F)  

     ##exit R 

q()    

 

 

#generating a final dataset 

./plink --bfile target.IBD --make-bed --keep target.valid.sample --exclude 

target.pruned.QC.prune.out  --extract target.QC.snplist --out targetdataset.QC  

 

 

POLYGENIC RISK SCORE 

#needed files: 

##targetdataset.QC.bed 

##targetdataset.QC.bim 

##targetdataset.QC.fam 

##QCedbasedata.gz 

 

 

#updating effect size (OR) 

     ##starting R 

R    

     ##reading the QCedbasedata file 

dat <- read.table(gzfile("QCedbasedata.gz"), header=T) 

     ##transforming betas 

dat$BETA <- log(dat$beta) 

     ##printing the table 

write.table(dat, "QCedbasedata.Transformed", quote=F, row.names=F) 
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     ##exit R 

q()  

 

 

#clumping 

./plink --bfile targetdataset.QC --clump-p1 1 --clump-r2 0.1 --clump-kb 250 --clump 

QCedbasedata.Transformed --clump-snp-field variant_id --clump-field p_value --out EUR 

 

 

#estaction of index SNP IDs: 

awk 'NR!=1{print $3}' EUR.clumped >  EUR.valid.snp 

 

 

#for PRS computation: we need three files: 

 

    ##The base data file: QCedbasedata.Transformed 

 

    ##A file containing SNP IDs and their corresponding P-values  

 

awk '{print $3,$9}' QCedbasedata.Transformed > SNP.pvalue 

 

    ##A file (rangelist.txt) containing the different P-value thresholds for inclusion of SNPs in the PRS 

with the following format: 

 

IBD.0.5.profile 0 0.5 

IBD.0.4.profile 0 0.4 

IBD.0.3.profile 0 0.3 

IBD.0.2.profile 0 0.2 

IBD.0.1.profile 0 0.1 

IBD.0.05.profile 0 0.05 

IBD.0.001.profile 0 0.001 
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#PRS computation 

./plink \ 

    --bfile targetdataset.QC \ 

    --score QCedbasedata.Transformed 3 5 8 header \ 

    --q-score-range rangelist.txt SNP.pvalue \ 

    --extract EUR.valid.snp \ 

    --out PRS 

 

6.2   Extraction protocol 

The full extraction protocol of the Mag-Bind Blood & Tissue DNA HDQ 96 Kit followed to extract 

DNA from buccal swabs can be downloaded at: 

https://ensur.omegabio.com/ensur/contentAction.aspx?key=Production.3572.S2R4E1A3.2019020

7.67.4686935 

 

6.3  Infinium HD Assay Ultra Protocol 

The full Infinium HD Assay Ultra Protocol can be found at: 

https://support.illumina.com/content/dam/illumina-

support/documents/documentation/chemistry_documentation/infinium_assays/infinium-hd-

ultra/11328087_RevB_Infinium_HD_Ultra_Assay_Guide_press.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://ensur.omegabio.com/ensur/contentAction.aspx?key=Production.3572.S2R4E1A3.20190207.67.4686935
https://ensur.omegabio.com/ensur/contentAction.aspx?key=Production.3572.S2R4E1A3.20190207.67.4686935
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