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A B S T R AC T

Deep learning models are being increasingly used in precision medicine thanks to
their ability to provide accurate predictions of clinical outcome from large-scale
datasets of patient’s records. However, in many cases data scarcity has forced the
adoption of simpler (linear) feature extraction methods, which are less prone to over-
fitting. In this work, we exploit data augmentation and transfer learning techniques
to show that deep, non-linear autoencoders can in fact extract relevant features
from resting state functional connectivity matrices of stroke patients, even when
the available data is modest. In particular, we used the Human Connectome Project
(HCP) which is a large and high-quality dataset to learn latent representation of
healthy patients. The latent representations extracted by the autoencoders can then
be given as input to regularized regression methods to predict neurophsychological
scores, outperforming recently proposed methods based on linear feature extraction.
Additionally, we study the impact of the cross validation set-up for each model, and
we examined the quality of the predictive maps obtained by back-projecting the
regression weight, to display the most predictive RSFC edges.

Keywords— Resting state networks, Functional connectivity, Deep learning, Feature
extraction, Predictive modeling, Neurophysiological Score
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1
I N T R O D U C T I O N

The rise of neuroimaging in the last years has provided physicians and radiologist with the
ability to study the brain with unprecedented ease. Resting-state functional magnetic
resonance imaging (RSfMRI) is a widely used neuroimaging tool that measures sponta-
neous fluctuations in neural blood oxygen-level dependent (BOLD) signal across the whole
brain in the absence of any controlled experimental paradigm. fMRI data is a commonly
used technique by cognitive scientists for investigating the brain activity patterns during
different visual tasks and discovering the mechanisms underlying many neurological diseases
[1].

Analyses of RSfMRI data have demonstrated temporal correlations in the blood oxygen
level–dependent (BOLD) signal of widely separated brain regions. These so-called resting-
state functional connectivity (RSFC) networks are posited to reflect intrinsic representa-
tions of functional systems commonly implicated in cognitive function [2]. One important
goal of current neuroimaging research is to associate individual RSFC with behavioral scores.
However, establishing relationships between resting-state brain activity and cognitive or clin-
ical scores is still a difficult task, in particular in terms of prediction as would be meaningful
for clinical applications [3]. Research efforts in fMRI are shifting focus from studying spe-
cific cognitive domains like vision, language, memory, and emotion to assessing individual
differences in neural connectivity across multiple whole-brain networks [4]. Siegel, Ramsey,
Snyder, Metcalf, Chacko, Weinberger, Baldassarre, Hacker, Shulman, and Corbetta [5] show
that visual memory and verbal memory deficits are better predicted by functional connec-
tivity than by lesion location, and visual and motor deficits are better predicted by lesion
location than functional connectivity.

One fundamental issue, often found in this studies, is the so-called small-n-large-p.
The number of subjects frequently ranges from tens to hundreds, whereas the number of
features (namely voxels) to be analysed can add up to millions. This negatively affects
the statistical power of any experiment performed [6, 7], since without pre-selecting the
‘most relevant’ features and effectively discarding redundant features plus noise, a predictive
machine learning model has a marked risk of ‘overfitting’. Therefore, a fundamental step
before applying a model in neuroimaging studies is to reduce the dimensionality of the data.
With the arrival of the deep learning paradigm, it has become possible to extract high-level
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2 introduction

abstract features directly from MRI images that internally describe the distribution of data
in low-dimensional manifolds.

Machine Learning (ML) is one of the most exciting and rapidly expanding fields within
computer science, that it have gained prominence for the analysis of RSfMRI data providing
an alternative analytical approach for estimating neuroanatomical alterations [8]. Rather
than being explicitly programmed for a certain task, machine learning systems are able
to find relevant data, discover patterns and predict the outcome of the input data [6].
Unsupervised machine learning methods have proven promising for the analysis of high-
dimensional data with complex structures, making it evermore relevant to rs-fMRI. A vast
majority of literature on machine learning for rs-fMRI is devoted to unsupervised learning
approaches. Unlike task-driven studies, modelling resting-state activity is not straightforward
since there is no controlled stimuli driving these fluctuations [8].

As already mentioned, Rs-fMRI data is highly dimensional and several feature extraction
method can be perform in order to reduce the dimensionality of the data. Such limitation can
be partially addressed by exploiting linear dimensionality reduction techniques such as Prin-
cipal Component Analysis (PCA), Independent Component Analysis (ICA), or sparse coding
in combination with regularized regression methods. Previous studies has already been im-
plemented in order to address this problem: Calesella, Testolin, De Filippo De Grazia, and
Zorzi [9] studied the impact of regularization in combination with different dimensionality
reduction techniques, to establish which method can be more effective to build predictive
models of behavioral outcome from RSFC of patients with stroke. Nevertheless, the choice
of the dimensionality reduction technique is non-trivial because it can affect performance of
the predictive model ([9, 10]).

In particular, PCA works by finding the direction of the greatest variance in the dataset and
represents each data point by its coordinates along each of these directions [11]. However,
this method is essentially a linear transformation and cannot extract nonlinear structures
modeled by higher than second-order statistics [12]. In order to overcome the nonlinear
dimensionality reduction, an autoencoder (AE) can be implemented which can learn non-
linear transformations with a non-linear activation function and multiple layers. AEs are a
neural network based alternative for generating reduced feature sets through nonlinear input
transformations. They have been used for feature reduction of RS-FC in several studies
[8]. AEs can also be used in a pre-training stage for supervised neural network training,
in order to direct the learning towards parameterspaces that support generalization. This
technique was shown, for example, to improve classification performance of Autism and
Schizophreniausing RSFC [13, 14]. Notice that if the autoencoder is comprised of a simple
fully connected encoder and decoder with a squared loss objective, it performs dimension
reduction equivalent to PCA. However, the non-linearity activation functions often allows
for a superior reconstruction when compared to simple PCA.
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Previous studies using autoencoder as a feature extraction method for psychiatric neu-
roimaging have already been implemented. Pinaya, Mechelli, and Sato [15] extracted fea-
tures from structural MRI scans of the HCP dataset using a convolutional AE; Huang, Hu,
Zhao, Makkie, Dong, Zhao, Li, and Liu [16] use a deep convolutional autoencoder to extract
high level features of task-fmri data using the HCP dataset; GENG and Xu [17] used an
autoencoder as a dimensionality reduction process using rs-FMRI data set of patients with
major depressive disorder (MDD).

The application of deep learning to build accurate predictive models from functional
neuroimaging data is often hindered by limited dataset sizes, which is often referred in
terms of ML as curse of dimensionality. One way to deal with this problem is to used
data augmentation techniques to increase the number of images in our dataset. Another
solution is to implement transfer learning techniques, that allows one to take knowledge
learned about one deep learning problem and apply it to a different, yet similar learning
problem.

In this work, we show that better performance can be achieved by exploiting the represen-
tational power of non-linear dimensionality reduction techniques, namely, deep autoencoders
[18]. Nevertheless, the application of such powerful deep learning models is often hindered
by the limited size of clinical datasets. In this work we propose to mitigate this issue using
two complementary approaches: data augmentation, which allows to significantly expand
the sample size by combining/distorting existing samples, and transfer learning, which al-
lows to exploit additional large-scale datasets (in our case, from the Human Connectome
Project [19]) containing functional connectivity data in order to pre-train the autoencoder.

The proposed approach is validated on a reference dataset containing functional connec-
tivity matrices of stroke patients [5]. The features extracted by the autoencoder are used
as predictors of the corresponding neurophsychological scores (language, spatial memory
and verbal memory) by means of regularized linear regression methods. The latter can limit
multicollinearity and overfitting, which makes them particularly suitable for the analysis of
neuroimaging data (for a recent review, see [20]).The performance of our method is bench-
marked against other popular dimensionality reduction methods based on PCA, ICA and
sparse coding, showing promising results. Additionally, the quality of the predictive maps
obtained by back-projecting the regression weight to display the most predictive RSFC edges
are examined for every model. Finally, the impact of the augmentation of the dataset are
further studied.



2
T H E O R Y

In this section, basic concepts of resting-state fMRI are review. Afterwards, the theory of the
models used as features extraction for the stroke rs-FMRi dataset are presented. Specifically,
we will present the theory of Principal Component Analysis (PCA), Independent component
Analysis (ICA) and several types of autoencoders (AE). Finally, the regularized regression
used as predictors of the language behavioral scores are introduced.

2.1 resting-state fmri

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique that
consisted on measuring the differences in resonances of different materials while in the
presence of a strong magnetic field. In the setting of neuroscience, MRI is often used to
image the inside of the brain while it is performing basic functions like hearing a tone,
or pressing a button, or even at rest. This flavor of MRI is appropriately referred to as
Functional MRI, or fMRI [21].

Functional magnetic resonance imaging (fMRI) is a non invasive technique for measur-
ing brain activity with an excellent spatial resolution (few millimeters for an imager 3 T).
This method essentially measures the differences in resonances of brain tissue based on
functionally-dependent levels of blood oxygen. This is commonly referred to as the Blood-
Oxygen-Level-Dependent (BOLD) signal (Figure 2.1).

At the microscopic level, a neuron consists of a cell body (soma) that receives input
through dendrites and passes action potentials through their axons to other cells. These
microscopic processes in turn result in a localized increase in blood flow leading to an in-
crease in local oxygen consumption in brain tissue, slightly increasing the concentration
of deoxyhemoglobin in blood. Oxygenated and deoxygenated blood has different magnetic
properties. As a result, the above causes a BOLD signal increase. Thus, the magnitude of
the BOLD signal change therefore depends on the change in the concentration of deoxy-
hemoglobin that results from the imbalance between the increase in oxygen consumption
and the increase in blood flow [22] (Figure 2.2). To help us interpret changes in resting
state functional connectivity, it is useful to have an understanding of how increases in ex-
citatory input to a population of neurons lead to a localized increase in blood flow. The
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2.1 resting-state fmri 5

Figure 2.1: The BOLD signal is an indirect measure of neuronal activity that is mediated
by a slow increase in local oxygenated blood flow that takes several seconds
to peak. The standard form of the hemodynamic response function is shown.
From stimulus onset, the BOLD signal takes approximately 5 seconds to reach
its maximum (taken from [23]).

Figure 2.2: Hemodynamic effects contributing to the BOLD signal during activation (taken
from [21])

active process that links this postsynaptic activity to increased blood flow and volume to
the region is called neurovascular coupling, and this process mediates the signal measured
in resting state fMRI. Therefore, neurovascular coupling is a term that describes the effects
of several complex chemical processes that involve all the different types of cells that exist
in a population of neurons [23, 24].

fMRI data is acquired by repeated imaging of the brain while the subject or patient
executes a task or receives a sensory stimulus during repeated epochs separated by periods
of rest. This data is analyzed by correlating the measured time-varying BOLD signal in each
image location with a predicted BOLD signal, obtained by convolving the known function
representing the stimulus with a Hemodynamic Response Function (HRF) modeling the delay
in the vascular response. The general idea of fMRI signal processing is depicted in Figure



6 theory

Figure 2.3: Convolution of the predicted activity curve of the fMRI experiment with a hemo-
dynamic response function (HRF), producing the so-called predicted response
(Taken from [25])

2.3: the process starts by convolving the predicted activity curve of the fMRI experiment,
with a hemodynamic response function (HRF), producing the so-called predicted response.
Each voxel contains a time-varying BOLD signal. Signals that match the predicted response
(that is the modeled change in the BOLD signal) are identified as activation related to
stimulus and can be processed for statistical analysis [25]. However, before entering the
statistical analysis, it has to be ensured that the data is artifact and noise free. Hence
several preprocessing steps has to be done [25]:

1. slice scan timing correction,
2. head motion correction,
3. distortion correction
4. spatial and temporal smoothing of the data

Locations in the brain where this correlation is statistically significant are considered to
exhibit a neuronal response to the task or stimulus, and thus to be involved in its cognitive
processing [23, 24].

Functional connectivity is typically defined as the observed temporal correlation (or other
statistical dependencies) between two neurophysiological measurements from different parts
of the brain. For resting state fMRI this definition means that functional connectivity can
inform us about the relationship between BOLD signals obtained from two separate re-
gions of the brain. Parcel can be used as nodes to approximate brain networks as graphs.
The underlying assumption is that if two regions show similarities in their BOLD signals
over time, they are functionally connected. Many different methods exist to look at such
similarities, the simplest way to investigate similarity between two signals is by looking at
their timeseries correlation using Pearson’s correlation coefficient. Correlation ranges from
–1 (perfect negative correlation) to +1 (perfect positive correlation), where 0 indicates no
relationship on average between two signals. Therefore, the connectivity is the way in which
brain regions communicate with one another and information is passed from one brain area
to the next. To investigate it, the similarity of the BOLD signals is measured from different
brain regions, because if the signals are similar, this is likely to mean that the regions are
passing on information from one region to the other (i.e., there is connectivity) [23, 24].
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In order to study connectivity, we often look at spontaneous fluctuations in the signal,
when there are no specific cognitive demands for the subject (so-called resting state scans).
Using spontaneous fluctuations allows us to investigate similarity between regions when it is
not biased by any specific task. As such, resting state fMRI has emerged as a valuable way
to study brain connectivity [23, 24]. The procedure of RSfMRI for the subject is relatively
easy, and in any case non-demanding, compared to task fMRI since only remaining calm
inside the MRI scanner for about 10 minutes is required, trying not to think anything in
particular[22].

2.2 feature extraction methods

For a given dataset with n data points or records and p features, high−dimensional data is
observed when the number of features p is higher than the number of records n, as p > n

[26]. Neuroimaging data is highly dimensional i.e. it has a large number of features in each
image. Some studies use whole feature set from brain images, but a common practice is to
reduce the number of features since many features may not contribute. As a result, feature
reduction techniques are used to remove redundant predictor variables and experimental
noise, a process which mitigates the curse-of-dimensionality and small-n-large-p effects [27].

Dimensionality reduction is the process of taking data in a high dimensional space and
mapping it into a new space whose dimensionality is much smaller [28]. This is an essential
step before training a machine learning model to avoid overfitting and therefore improving
model prediction accuracy and generalization ability.

Figure 2.4: Comparison of feature selection, PCA, and clustering as dimension reduction
schemes on an arbitrary data matrix. The former two methods reduce the di-
mension of the feature space, or in other words the number of rows in a data
matrix. However, the two methods work differently (taken from [29])

There are several ways to reducing the data dimension of a dataset (Figure 2.4):
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1. Feature selection: Feature selection is a process in which a subset of the fea-
tures’space is chosen according to its relevance to the output of the classifier. The
ultimate goal is to extract the most effective subset of features and to remove redun-
dant irrelevant information. [26].

2. Feature extraction: Feature-extraction or feature-reduction techniques identify a
new subset of features that are transformed or combined from the original feature
space to obtain a more significant set of features. Feature-extraction methods can
be linear or non-linear. Principal component analysis (PCA) is one such common
technique.

3. Clustering: reduces the dimension of the data/number of data points, or equivalently
the number of columns in the input data matrix. It does so by finding a small number
of new averaged representatives or “centroids” of the input data, forming a new data
matrix whose fewer columns (which are not present in the original data matrix) are
precisely these centroids.

In the present work, we are going to focus only on features extraction techniques such
us Principal Component Analysis (PCA) and Independent Component Analysis (ICA).

Lowering the number of features to reduce computational effort is an essential concept
in feature extraction. In these methods, the reduction is performed by applying a linear
transformation to the original data. That is, if the original data is in Rd and we want to
embed it into Rn (n < d) then we would like to find a matrix W ∈ Rn,d that induces
the mapping x −→ Wx. A natural criterion for choosing W is in a way that will enable a
reasonable recovery of the original x [28]. It should be point out that these techniques are
unsupervised, therefore no label are required, which is a common scenario in many rs-fmri
images.

Nowadays, modern deep architectures can be used that allow determining latent features,
while reducing the number of features for further processing and keeping the relevant infor-
mation at the same time. In particular, we are interested in undercomplete autoencoders
that learn a representation z which is smaller than the original input x. This architecture
is contrary to overcomplete autoencoders, in which the representation of the data is higher
dimensional than the number of input features. Also, undercomplete autoencoders are more
common, because once we learned the compressed representation, the computational effort
for further processing is reduced in comparison to the original input and the overcomplete
representation [30]. On the other hand, autoencoders are non-linear and can learn more
complicated relations between visible and hidden units. They can also be stacked, which
makes them even more powerful.

In the following, the theory of linear features extraction techniques, such as Principal
Component analysis and Independent component analysis, as well as non-linear techniques
are introduced in depth.
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2.2.1 Principal Component analysis

Principal Component analysis (PCA) is feature extraction technique meant to reduce the
dimensions of the dataset. The compression and the recovery are performed by linear trans-
formations and the method finds the linear transformations for which the differences between
the recovered vectors and the original vectors are minimal in the least squared sense [28].

Let x1,x2, ...xm be m vectors in Rd. The aim is to find the recovery matrix W ∈ Rn,d

where n < d that induces a lower dimensionality representation of x by mapping x −→ Wx ∈
Rn. In PCA, the compression matrix W and the recovering matrix U ∈ Rd,n are founded
so that the total squared distance between the original and recovered vectors is minimal;
namely, we aim at solving the problem:

argmin
W∈Rn,d,U∈Rd,n

m∑
i=1
||xi −UWxi||22 (2.1)

In particular, the solutions (U ,W ) of Equation 2.1 are such that the columns of U are
orthonormal and W = UT , therefore we can rewrite it as:

argmin
U∈Rd,n:UTU=I

m∑
i=1
||xi −UUTxi||22 (2.2)

Equation 2.2 can be rewritten after some elementary algebraic manipulation as:

argmax
U∈Rd,n:UTU=I

trace
Ç
UT

m∑
i=1

xix
T
i U

å
(2.3)

Let A =
∑m
i=1 xix

T
i be the covariance matrix, and let u1, ...,un be nbe n eigenvectors of

the matrix A corresponding to the largest n eigenvalues of A. Then, the solution to the PCA
optimization problem given in Equation 2.3 is to set U to be the matrix whose columns
are u1, ...,un and to set W = UT . The eigenvectors and eigenvalues of a covariance (or
correlation) matrix represent the “core” of a PCA: The eigenvectors (principal components)
determine the directions of the new feature space, and the eigenvalues determine their
magnitude. In other words, the eigenvalues explain the variance of the data along the new
feature axes.

2.2.2 Independent Component Analysis

Independent component analysis (ICA) is an algorithm that performs decomposition impos-
ing that the resulting components must be independent. Let x1,x2, ...xn be n observable
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variables. We assume that they can be modelled as linear combinations of hidden (latent)
variables sj , j = 1, ...m with some unknown coefficients aij :

xi(t) =
m∑
j=1

aijsj ∀i = 1, ..,n (2.4)

The fundamental point is that we observe only the variables xi, whereas both the coeffi-
cients, aij , and the independent components, si, are to be estimated or inferred. The main
breakthrough in the theory of ICA was the realization that the model can be made identifi-
able by making the unconventional assumption of the non-Gaussianity of the independent
components.

2.2.2.1 Fast ICA

Entropy is the basic concept of information theory. The entropy of a random variable can
be interpreted as the degree of information that the observation of the variable gives. The
more “random”, i.e. unpredictable and unstructured the variable is, the larger its entropy. In
this work, we will use the FastICA algorithm. FastICA is a block fixed point iteration algo-
rithm based on negative entropy, or negentropy, as a non-gaussianity measure. Fixed-point
algorithms converge faster than adaptive algorithms [6]. For a random vector y, negentropy
can be defined as:

J(y) = H(ygauss)−H(y) (2.5)

where ygauss is a Gaussian random variable of the same covariance matrix as y, and H is
the entropy function. Negentropy is always non-negative, and it is zero if and only if y has
a Gaussian distribution The FastICA defines negentropy using the function:

J(y) ∼ [E{G(y)} −E{G(ν)}]2 (2.6)

where we assume that y is of zero mean and unit variance, ν is a Gaussian variable sharing
the same mean and variance, and G(x) can be any non-quadratic function. Many functions
have been proposed, common choices are G(x)1 = (1/a1)log(cosh(a1x)) with 1 < a1 < 2
or G(x)2 = exp(−x2/2) [31]. With these measures, we can compute the derivatives of
these functions by:

g1(x) = tanh(a1x) (2.7)

g2(x) = xexp(−x2/2) (2.8)
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The algorithm for the one-unit version of FastICA can be defined [31] as:
1. Choose an initial (e.g. random) weight vector w.
2. Let w+ = E{xg(wTx)} −E{g′(wTx)}w
3. Let w = w+/||w+||
4. If not converged, go back to 2
The algorithm considers that the values of w converge when their dot product is close to

1, that is, they are pointing in the same direction.

2.2.3 Autoencoder

The autoencoder is an unsupervised neural-network based approach for learning latent rep-
resentations of high-dimensional data. It encodes the input data into a lower dimensional
representation (latent space), which is then decoded to reconstruct the input.

It consists of two parts:
1. Encoder: It translates the original high-dimension input into the latent low-

dimensional code. The input size is larger than the output size.
2. Decoder: The decoder network recovers the data from the code, likely with larger

and larger output layers.
Traditionally, autoencoders were used for dimensionality reduction or feature learning [32].
An autoencoder whose code dimension is less than the input dimension is called undercom-
plete. Learning an undercomplete representation forces the autoencoder to capture the most
salient features of the training data [33]. The idea is that the bottleneck serves as a feature
extractor of the input data.

Let’s consider a basic auto-encoder with a single hidden layer, n neurons in the in-
put/output layers and m neurons in the hidden layer. The model takes an input x ∈ Rn

and first maps it into the latent representation h ∈ Rm by using an encoding function
h = gφ(x) = σ(Wx + b) with parameters φ = {W , b}, where σ(·) denotes the activation
function of the neurons, W denotes the connection weights and b denotes the neurons’ bi-
ases. Afterwards, a reconstruction of the input x′ is obtained through the decoder function
x′ = fθ(h) = σ(W ′h + b′) with θ = {W ′, b′}, as shown in Figure 2.5.

The two parameter sets are usually constrained to be of the form W ∈ Rn,m = WT ∈
Rm,n (weight sharing), using the same weights for encoding the input and decoding the
latent representation [35]. The parameters (θ,φ) are learned together to output a recon-
structed data sample same as the original input, x ≈ fθ(gφ(x)), or in other words, to learn
an identity function. There are various metrics to quantify the difference between two vec-
tors, such as cross entropy when the activation function is sigmoid, or as simple as MSE
loss:
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Figure 2.5: Undercomplete AE: The AE reduces the dimensionality in each layer of the
encoder (Taken from [34])

LAE(θ,φ) = 1
n

n∑
i=1

(x(i) − fθ(gφ(x(i))))2 (2.9)

The autoencoder can be seen as a non-linear extension of PCA. In fact, a simple autoen-
coder which consist of only one linear layer with a linear activation function is compared
with the same one with a non-linear activation function and a PCA model [35]. Autoen-
coders with nonlinear encoder functions and nonlinear decoder functions can thus learn a
more powerful nonlinear generalization of PCA.

2.2.4 Convolutional Autoencoders (CAE)

Fully connected AE ignore the image structure. Convolutional Autoencoder (CAE) is a
variant of Convolutional Neural Networks that are used as the tools for unsupervised learning
of convolution filters. They are generally applied in the task of image reconstruction to
minimize reconstruction errors by learning the optimal filters. CAE differs from conventional
AEs as their weights are shared among all locations in the input, preserving spatial locality
[35]. The reconstruction is hence due to a linear combination of basic image patches based
on the latent code. For a mono-channel input x the latent representation of the k−th feature
map is given by [35]:

hk = σ(x ∗W k + bk) (2.10)
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where the bias is broadcasted to the whole map, σ is an activation function, and ∗ denotes
a convolution. The reconstruction is obtained using:

y = σ(
∑
k∈H

hk ∗ Ŵ k + c) (2.11)

where c reprent the bias per input channel. H identifies the group of latent feature maps;
Ŵ identifies the flip operation over both dimensions of the weights [35]. The cost function
to minimize is the mean squared error (MSE):

E(σ) = 1
2n

n∑
i=1

(xi − yi)2 (2.12)

The parameters W and b are founded by minimizing the loss function. In order to learn
hierarchical latent representations, several AEs can be stacked together thus forming a deep
neural network [35].

2.2.5 Autoencoder: Overcomplete case

An overcomplete autoencoder is an autoencoder which has an equal or larger number of
hidden units (latent space z) than input units. This type of network architecture gives the
possibility of learning greater number of features, but on the other hand, it has potential to
learn the identity function and become useless [36]. Additional constraints must be imposed
so that most hidden units are enforced to be close to zero. Recently, it has been observed
that when representations are learnt in a way that encourages sparsity, improved performance
is obtained on classification tasks [37]. Additionally, the sparsity constraint is expected to
be advantageous in this context because it encourages representations that may disentangle
the underlying factors controlling the variability of MRI images [36].

In particular, two sparsity approaches are implemented in this work:
1. L1 normalization: Regularized autoencoder instead of preserving the encoder and

decoder shallow and the code size small, uses a loss function that encourages the
network to prevent from just copy its input to its output. The loss function worked
by penalizing activations of hidden layers so that only a few nodes are encouraged to
activate when a single sample is fed into the network. L1 regularization adds “absolute
value of magnitude” of coefficients and tends to shrink the penalty coefficient to zero.

2. k-sparse autoencoder [37]: in the latent space only the k highest activities are kept,
rather than reconstructing the input from all of the hidden units. This selection step
acts as a regularizer that prevents the use of an overly large number of hidden units
[37].
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2.3 regularized regression

Consider the usual linear regression model, given p predictors x1, ...,xp, the response y is
predicted by:

ŷ = β̂0 + x1β̂1 + ... + xpβ̂p (2.13)

A model fitting procedure produces the vector of coefficients β̂ =
(
β̂0, ..., β̂p

)
. For

example, the ordinary least squares (OLS) estimates are obtained by minimizing the residual
sum of squares [38]. Therefore its objective is to find the plane that minimizes the sum of
squared errors (SSE) between the observed and predicted response:

min
ß
SSE =

n∑
i=1

(yi − ŷi)2
™

(2.14)

Under "nice" condition, OLS works fine, but with real data, OLS often does poorly in
both prediction and interpretation. Penalization techniques have been proposed to improve
it in which now a penalty parameter (P) a penalty term is added in the objective function:

min
{
SSE + P

}
(2.15)

Regularized regression puts constraints on the magnitude of the coefficients and will
progressively shrink them towards zero. Ridge regression [39] is an example that controls the
coefficients by adding λ∑p

j=1 β
2
j (known also as Tikhonov regularization) to the objective

function. The least absolute shrinkage and selection operator (lasso) model [40], is an
alternative to ridge regression that has a small modification to the penalty in the objective
function. Rather than the L2 penalty, the L1 penalty λ∑p

j=1|βj | is used in the objective
function. Whereas the ridge regression approach pushes variables to approximately but not
equal to zero, the lasso penalty will actually push coefficients to zero.

Although the lasso has shown success in many situations, it has some limitations. For
example, in the "large p, small n" case ( few samples n compared to many predictors p),
the LASSO selects at most n variables before it saturates. Also if there is a group of highly
correlated variables, then the LASSO tends to select one variable from a group and ignore
the others. To overcome these limitations, we can make use of a generalization of the ridge
and lasso models which is the elastic net [41], which combines the two penalties:

min
(β0,β)

Ä
y− β0 −XTβ

ä2
+ λ

Å1
2 (1− α)β2 + α |β|

ã
, (2.16)
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Therefore, the elastic-net loss function requires two free parameters to be set, namely
the λ and α parameters. The parameter α controls the type of shrinkage, with important
consequences for the properties of the estimation method. The penalty parameter λ controls
the amount of shrinkage [42]. Lasso (α = 1 ) has an l1 penalty on the parameters and
performs both parameter shrinking and variable selection. The other end, α = 0 , gives
Ridge regression with a l2 penalty on the parameters, which does not have the variable
selection property.



3
M AT E R I A L S A N D M E T H O D S

3.1 datasets

The main dataset used in our study consists of 132 resting-state functional connectivity
(RSFC) matrices from symptomatic stroke patients, taken from previous studies [5, 9].
The patients underwent a 30-minute-long RS-fMRI acquisition, 1–2 weeks after the stroke
occurred. Several scores were taken during the neuropsychological assessment: here we focus
on language, verbal memory and spatial memory indexes, which are available for a subset
of 119 subjects. In this dataset, twenty-one patients were excluded for hemodynamic lags
and 11 patients and 4 controls were excluded for excessive head motion [5]. After exclusion,
100 stroke patients and 27 age-matched controls were studied. RSFC data represent the
connectivity between brain regions that share functional properties and can be expressed as
a symmetric matrix. In our case, the matrix of each subject is of size 324× 324; following
common practice [9], the data is vectorized by only considering the upper triangular matrix.
Null values were converted to zero.

In order to implement a transfer learning approach, we also used as dataset the Human
Connectome Project [19], consisting of RSFC matrices of 1050 healthy subjects.

In the following subsections, a brief discussion about the pre-processing of the data
implemented by Siegel, Ramsey, Snyder, Metcalf, Chacko, Weinberger, Baldassarre, Hacker,
Shulman, and Corbetta is presented.

3.1.1 Neuropsychological assessment for the stroke dataset [5]

The behavioral scores were obtained from previous studies done by Siegel, Ramsey, Snyder,
Metcalf, Chacko, Weinberger, Baldassarre, Hacker, Shulman, and Corbetta [5], in which
they provide scores for the motor, language, attention, memory, and visual domain. The
experimental set-up that they have done was the same for all patients. In the language
domain, the Boston diagnostic aphasia examination (BDAE) test was used in order to
examine the comprehension, expression and reading skills. In the memory domain, the Brief
Visuospatial Memory Test (BVMT) was used to asses the spatial recall and recognition test
and the Hopkins Verbal Learning Test (HVLT) to asses verbal skills.

16
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3.1.2 Parcellation (Regions of Interest) for the stroke dataset [5]

The cortical parcellation was also obtained from previous studies [5] and it was based on
Gordon, Laumann, Adeyemo, Huckins, Kelley, and Petersen. The parcellation includes 324
regions of interest (159 left hemisphere, 165 right hemisphere) (Figure 3.1). The original
parcellation includes 333 regions, and all regions less than 20 vertices (approximately 50
mm2) were excluded.

Figure 3.1: The 324 region on interest parcellation from [43]. Regions are color coded by
RSN membership (Taken from [5]).

3.1.3 Functional Connectivity processing for the stroke dataset [5]

The Functional connectivity matrices from [5], were obtained by computing between each
parcel using Fisher z-transformed Pearson correlation 3.2. The Fisher Z-Transformation is
a way to transform the sampling distribution of Pearson’s so that it becomes normally
distributed. Connectivity for any parcel that fell within the boundaries of the lesion was
removed from univariate analyses and set to zero for multivariate models.

Figure 3.2: Average Fisher z-transformed FC matrices are shown for stroke patients exclud-
ing regions that overlap lesions (Taken from [5]).
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3.2 feature extraction methods

Our main focus is to test different variants of deep autoencoders in their ability to extract
useful features from RSFC data, and compare their performance with standard linear di-
mensionality reduction methods [9]. The models are compared based on its reconstruction
error which correspond to the mean squared error between the original image and the recon-
structed one. During the unsupervised feature extraction process, the entire dataset (n=132)
was used regardless of the availability of neuropsychological scores.

3.2.1 Principal Component analysis

Prior performing PCA is necessary to standardize the data in order to avoid biased results.
This leads with data that is centerized with zero mean and variance one. This is done by
using the predefined function StandardScaler from sklearn that standardize features by
removing the mean and scaling to unit variance. Principal Component analysis is performed
by using the function PCA from the library sklearn which performs linear dimensionality
reduction using Singular Value Decomposition of the data to project it to a lower dimensional
space.

3.2.2 Independent Component Analysis

ICA performs the decomposition step by imposing the constraint that the resulting compo-
nents must be independent. In this work we used the FastICA algorithm from sklearn,
which is a block fixed-point iteration algorithm based on negative entropy as a non-
gaussianity measure, which converges faster than adaptive algorithms [6]. As in the case of
PCA, data is first standardized.

3.2.3 Autoencoders

The data is divided intro train, validation and test set by using the predefined function
train_test_split of sklearn. In this work we considered from simple AE to more
advance architectures. After training them, the bottleneck layer provides as the features
extracted of the data.

3.2.3.1 One-layer autoencoder

First of all, a simple one linear layer autoencoder is performed in keras as shown in
figure 3.3a (Lin AE-model). Adam optimizer with learning rate 1e − 3 is used and the
loss function is given by the mean squared error setting the ’mse’ flag in the optimizer.
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The same model is performed but using LeakyReLU as a non-linear activation function
(Figure 3.3b (NonLin AE-model)). No hyperparamenter search is performed.

(a) With linear activation function (b) With non linear activation function

Figure 3.3: Model architecture of an architecture consist on one layer.

3.2.3.2 Convolutional autoencoder

Figure 3.4 presents the architecture of the Deep Convolutional Autoencoder performed
(CAE-model), which takes as input the vectorized matrix of the fMRI dataset. As it can
be observed, the encoder consist on 3 convolutional layers follow by 2 fully connected ones,
whereas the decoder is simply the inverse. In order to overcome vanishing gradient problem
and "dying ReLU" problem, the Leaky Rectified Linear activation function was used, allowing
models to learn faster and perform better. Mean Square Error was used as loss function and
Adam as Optimizer. Furthermore, dropout was used as a regularization.

As framework, the code was written using PyTorch and PyTorch Lightning which
is an open-source Python library. Moreover, in order to optimize the hyperparameter search
of the model, Optuna [44] was used. Table 3.1 presents the hyperparamter search space.
Furthermore, Optuna [44] uses the pruning algorithm. Pruning is a technique used in
machine learning and search algorithms to reduce the size of decision trees, by removing
sections of the tree that are non-critical and redundant to classify instances. Pruning in
Optuna automatically stops unpromising trials at the early stages of the training.

In this work, we consider the overcomplete and the undercomplete case of the convolu-
tional autoencoder. In particular, we use two sparsity approaches:

• CAE-L1: Overcomplete convolutional autoencoder with the same architecture as
shown in Figure 3.4 with a latent space of 200 and L1 regularization search-space
equal to 0.0001, 0.001, 0.01, 0.1, 1, 4,
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Figure 3.4: Schematic representation of the workflow and the Deep Convolutional Autoen-
coder used.

• CAE-k: Overcomplete convolutional autoencoder with the same architecture as shown
in Figure 3.4 with a latent space of 200 using k-sparcity as constrained with search-
space k = 10, 30, 60, 90.

Curse of dimensionality:

Deep convolutional neural networks performed remarkably well, but these networks are
heavily reliant on big data to avoid overfitting. To build useful Deep Learning models,
the validation error must continue to decrease with the training error. Given the limited
size of our clinical dataset, we thus devised two approaches in order to promote a better
generalization of the CAE during the feature extraction process.

Data Augmentation is a very powerful method, which consists in combining and dis-
torting each training sample in order to provide a more representative distribution as input
to the autoencoder [45]. The augmented data will represent a more comprehensive set of
possible data points, thus minimizing the distance between the training and validation set,
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Hyperparameter Range

Conv1 [8,16,32, 64, 128]

Conv2 [8,16,32, 64, 128]

Conv3 [8,16,32, 64, 128]

fc [8,16,32, 64, 128]

learning rate (1e-5 - 1e-4)

dropout (0 - 1)

weight decay (1e-5 - 1e-2)

Table 3.1: Hyperparamters search space learned using Optuna

as well as any future testing sets [45]. In particular, a mixup augmentation is performed
that consist on a random convex combination of raw inputs (CAE-AUG-model):

x̂ = λxi + (1− λ)xj

where xi and xj are raw input vectors and λ are values sampled from the Beta distribution.
Following previous work [46], the choice of the parameters λ ∈ [0, 1] was distributed
accordingly to λ ∈ Beta(α,α) for α ∈ (0, inf). In the mix-up, the samples to be combined
are chosen randomly from all available images. Isaksson, Summers, Raimondi, Gandini,
Bhalerao, Marvaso, Petralia, Pepa, and Jereczek-Fossa tested the utility of the mix-up
data augmentation technique for a medical image segmentation task using 100 MRI
scans and observed an improvement when α = 0.5. Although our dataset could be
slightly different, the decided to use the same α value for consistency. The size of the
extended dataset is now ∼ 7000

Another solution, is provided by Transfer Learning (CAE-TL-model) that describes
a process in which a model is trained on one dataset and subsequently applied to another
dataset. Transfer learning refers to machine learning techniques that focus on acquiring
knowledge from related tasks to improve generalization in the tasks of interest. A DL
model that has been pre-trained on a large, openly available fMRI dataset, generally
requires less training data and time, and achieves higher decoding accuracies, when com-
pared to a model variant with the same architecture that is trained entirely from scratch.
The Human Connectome Project database is used in order to explore the benefits of TL.
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The same architecture as shown in Figure 3.4 is implemented. Afterwards, the model is
trained using the stroke dataset but keeping freeze the convolutional layers (Figure 3.5).

Figure 3.5: Schematic representation of the transfer learning approach.

3.2.4 Getting deeper on Augmentation techniques:

Given the remarkable performance of the CAE trained using data augmentation and transfer
learning, a series of additional simulations are explored in order to see how the size of
the augmented dataset could impact model performance, and whether a combination of
augmentation and transfer learning might further improve the accuracy. We thus designed
four additional training regimens:

1. Aug(15000): Similarly as before, the CAE is trained with synthetic images obtained
via the mix-up strategy; however this time the size of the augmented stroke dataset
is increased to ∼ 15000 samples (i.e., twice the size used previously);

2. TL-Aug: The CAE is first trained over the HCP dataset, as done before for the
Transfer Learning scenario. The model is then also trained on the initial augmented
stroke dataset (∼ 7500 samples);

3. AugTL-Aug: The CAE is first trained over synthetic HCP data obtained by applying
the same mix-up augmentation strategy (∼ 6000 samples). The model is then also
trained on the initial augmented stroke data (∼ 7500 samples);
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4. AugTL-Stroke: The CAE is first trained over synthetic HCP data obtained by ap-
plying the same mix-up augmentation strategy (∼ 6000 samples). The model is then
also trained on the original stroke dataset.

It should be point out that in this case there hasn’t been an exhaustive hyper-parameter
search due to lack of time. Instead of searching the hyper-parameter with 50 trials using
Optuna, only 5 trials have been done.

3.3 regularized regression

The feature sets extracted by each method were then used as regressors for the prediction of
the neuropsychological scores. Note that only the subjects with available score were kept in
this phase. Recall the optimization function of the ElasticNet in Equation 2.16. The tuning
parameters λ and α can be chosen by k-fold cross validation. Moreover, Leave-One-Out
Cross validation (LOOCV) was used in where the number of folds equals the number of
instances in the data set, therefore at N separate times, the function approximator is trained
on all the data except for one point and a prediction is made for that point (Figure 3.6).
The combination of hyper-parameters leading to the model with lowest MSE was selected
as the “best model”.

Figure 3.6: Schematic display of LOOCV. A set of n data points is repeatedly split into a
training set (shown in blue) containing all but one observation, and a validation
set that contains only that observation (shown in beige). The test error is then
estimated by averaging the n resulting MSE’s. The fistr training set contains all
but observation 1, the second training set contains all but observation 3, and so
forth. Taken from [48].

3.3.1 Cross-validation setup

In the standard LOOVCV, however, selection of the best model is based only on the test
error, which could lead to optimistically biased model performance. One approach to over-
coming this bias is to nest the hyperparameter optimization procedure under the model
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selection procedure. This is called double cross-validation or nested cross-validation and is
the preferred way to evaluate and compare tuned machine learning models. The nested
CV has an inner loop CV nested in an outer CV. The inner loop is responsible for model
selection/hyperparameter tuning (similar to validation set), while the outer loop is for error
estimation (test set). The algorithm is as follows [49] (Figure 3.7):

1. Divide the dataset into K cross-validation folds at random.
2. For each fold k = 1, 2, ·,K: outer loop for evaluation of the model with selected

hyperparameter
a) Let test set be fold k
b) Let trainval-set be all the data except those in fold k
c) Randomly split trainval-set into L folds
d) For each fold l = 1, 2, ·L (inner loop):

i. Let validation-set be fold l
ii. Let training-set be all the data except those in test or validation set
iii. Train with each hyperparameter on trainining-set, and evaluate it on

validation-set. Keep track of the performance metrics.
e) For each hyperparameter setting, calculate the average metrics score over the L

folds, and choose the best setting.
f) Train a model with the best hyperparameter on trainval. Evaluate its perfor-

mance on test-set and save the score for fold k.
3. Calculate the mean score over all K folds, and report as the generalization error.

Figure 3.7: Schematic display of Nested cross validation. we have two loops. The inner loop
is basically normal cross-validation with a search function. Though the outer
loop only supplies the inner loop with the training dataset, and the test dataset
in the outer loop is held back. Taken from: https://mlfromscratch.com/
nested-cross-validation-python-code/

https://mlfromscratch.com/nested-cross-validation-python-code/
https://mlfromscratch.com/nested-cross-validation-python-code/
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A drawback of this approach is that it can lead to the choice of different models across
the CV loops: to produce the final model of the n-LOO procedure, three measures of central
tendency were used for choosing the optimal hyper-parameters, namely mean (n-average
condition), median (n-median condition) and mode (n-mode condition) [9].

3.3.2 Model comparison criterion

To evaluate the regression model obtained, the most commonly known metrics are used:

1. R-squared (R2): the proportion of variation in the outcome that is explained by the
predictor variables. In multiple regression models, R2 corresponds to the squared cor-
relation between the observed outcome values and the predicted values by the model.
The Higher the R-squared, the better the model. This is obtained by calculating:

R2 = 1− RSS

TSS
(3.1)

where RSS is the sum of squares of residuals and the TSS is the total sum of squares.
2. Mean Squared Error (MSE): defined as Mean or Average of the square of the

difference between actual and estimated values
3. Bayesian information criterion (BIC): is a criterion for model selection among a

finite set of models. It is based, in part, on the likelihood function, and it is closely
related to Akaike information criterion (AIC). The BIC statistic is calculated for logistic
regression as follows:

ln(n)k− 2ln(L̂) (3.2)

being L̂ the value of the maximum of the likelihood function, n the number of samples
and k the number of parameters in the model.

3.4 back-projecting

Finally, for each method, the optimal regression coefficients were back-projected in the
original space, by means of linear transformation through the features’ weights, and restored
in a symmetric matrix for the PCA-model and ICA-model, whereas for the autoencoder
models, we use the decoder in order to obtained its back-projection. This provides a map
that displays the predictive edges in the resting state networks.
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R E S U LT S A N D D I S C U S S I O N

4.1 feature extraction

The feature extraction methods were first assessed based on their reconstruction error,
which is given by the mean square error between the original data and the reconstructed
one. Since the techniques used are unsupervised, all the dataset (n=132) was used at this
stage regardless of the availability of the score.

Figure 4.1: Reconstruction error obtained for the several models against the latent
space/number of components.

Figures 4.1 shows the reconstruction error against the number of components/latent
space. As expected, the larger the number of components/latent space, the better the
reconstruction error. In particular it can be observed, that the convolutional autoencoder
trained directly to the stroke dataset is the one with the worst reconstruction error. This can
be because of the fact that many samples (generally O(3)) are needed to train deep convo-
lutional architectures, highlights the importance of increasing the variability of the training

26
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distribution in order to improve the quality of the features extracted by complex convolu-
tional architectures. Furthermore, Figure 4.2 shows the best and the worst reconstruction
samples of the convolutional autoencoder trained directly to the stroke dataset.

Figure 4.2: Best and worst reconstructed samples of the strokes samples obtained by apply-
ing the convolutional autoencoder trained with the original dataset with latent
space equals to 10, 50, 90.

Convolutional autoencoder samples applied to the augmentated dataset (obtained by
mix-up strategy as explained in Section 3) are shown in 4.3. It should be point out that
even if the model was trained with a larger dataset (around ∼ 7000 samples generated by
augmentation techniques), the reconstruction error shown in Figure 4.1 correspond to the
mean square error between the stroke samples only. On the other hand, samples obtained
after applying transfer learning are shown in Figure 4.4.

Figure 4.3: Best and worst reconstructed samples of the strokes dataset obtained by the
convolutional autoencoder trained with synthetic data with latent space equals
to 10, 50, 90.
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Figure 4.4: Best and worst reconstructed samples of the strokes dataset obtained by the
convolutional autoencoder by applying transfer learning using the HCP dataset
with latent space equals to 10, 50, 90.

Figures 4.5 and 4.6 presents the original and their correspond reconstructed samples via
PCA and ICA respectively with the lowest reconstruction error. In general, it can be seen that
the two methods performs quite similar. This assumption can also be observed by noticing
that the Reconstruction error behaves similarly as shown in Figure 4.1. In particular, it can
be seen that ICA is able to better reconstructed samples with smaller details than the PCA.
It should be mentioned that PCA and ICA are much faster than autoencoders.

Figure 4.5: Best and worst reconstructed samples obtained by PCA using 10, 50, 90 com-
ponents.
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Figure 4.6: Best and worst reconstructed samples obtained by ICA using 10, 50, 90 compo-
nents.

On the other hand, it should be worth mentioning that the 1−layer linear AE gives similar
reconstruction error as PCA (Figure 4.1) which is no surprising due to the intrinsic similarity
between PCA and a simple autoencoder. In particular, it can be observed that even when
using the 1−layer nonlinear AE, the reconstruction errors are consistent with the other
methods. Samples of of reconstructed images with the lowest reconstruction error for these
two methods are shown in Figure 4.7 and Figure 4.8.

Figure 4.7: Best and worst reconstructed samples obtained by an autoencoder consist of
one linear layer with latent space equals to 10, 50, 90.



30 results and discussion

Figure 4.8: Best and worst reconstructed samples obtained by an autoencoder consist of
one layer with a non linear activation function (LeakyReLU) with latent space
equals to 10, 50, 90.

4.2 regularized regression

Table 4.1 presents the metrics obtained by predicting the neurophysiological scores avail-
able: Language, Spatial Memory, and Verbal Memory, using the traditional and
non−traditional methods already mentioned. Notice that each of the features were first
standardized, since this highly affected the performance of the model. Additionally, Table
4.2 presents the metrics in the overcomplete-regime of the deep-learning methods as ex-
plained in Section 2.2.5. Notice that the latent space in this case was 200 which is greater
than the available input data for all types of neurophysiological scores.

Concerning the metrics obtained for the language score, it can be observed from Table
4.1, that PCA performs better when comparing with the MSE error and R2 with all rest
models, though the margin is fairly small. However, Table 4.2 shows that the predictions
obtained by using the features from the applying transfer learning in the overcomplete case
with a k-sparsity constrained were exactly leading the same results as PCA. On the other
hand, the convolutional autoencoder applied to the stroke dataset directly is the one leading
to the worst results.

In order to have a better visualization, Figure 4.9a presents the methods sorted by lowest
MSE error and highest R2 using language as neurophysiological score. As already stated,
PCA−based model and overcomplete transfer with k-sparsity were the ones providing the
best values. On the other hand, the metrics obtained when using the features from the
one-single-layer AE, and the convolutional autoencoder are the worst ones. In particular, it
can be noticed that in the overcomplete regime using k-sparsity as constraint leads to better
accuracies than using L1 regularization, same as Makhzani and Frey [37] claimed in their
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Method R2 MSE BIC Optimal α Optimal λ Fold NZ

PCA 0.522 0.478 492.696 0.001 0.221 65 65

ICA 0.510 0.490 350.616 0.25 0.087 35 35

Lin AE 0.428 0.572 322.987 0.25 0.06 20 20

NonLin AE 0.500 0.504 356.65 0.75 0.004 30 30

CAE 0.425 0.575 623.703 0.25 0.005 90 90

CAE-AUG 0.504 0.498 420.68 0.5 0.06 50 43

CAE-TL 0.444 0.555 453.777 0.001 0.034 50 50La
ng

ua
ge

Sc
or

e
(n

=
94

)

PCA 0.214 0.786 299.91 1 0.087 40 23]

ICA 0.240 0.750 395.69 0.001 0.56 55 55

Lin AE 0.267 0.733 411.831 0.001 0.559 50 50

NonLin AE 0.259 0.741 456.077 0.001 0.221 60 60

CAE 0.265 0.735 390.323 0.5 0.014 10 45

CAE-AUG 0.330 0.65 315.349 0.5 0.087 40 29

CAE-TL 0.309 0.691 407.289 0.75 0.001 50 50Sp
at

ia
lS

co
re

(n
=

77
)

PCA 0.318 0.682 362.837 1 0.034 40 40

ICA 0.273 0.727 380.762 1 0.043 55 43

Lin AE 0.246 0.754 296.648 0.5 0.152 30 23

NonLin AE 0.262 0.738 368.885 0.75 0.014 40 40

CAE 0.271 0.729 759.03 0.001 0.7 60 60

CAE-AUG 0.398 0.607 315.57 1 0.0432 40 24

CAE-TL 0.393 0.61 301.58 0.75 0.014 20 17Ve
rb

al
Sc

or
e

(n
=

77
)

Table 4.1: Regression Metrics in the prediction of neuropsychological scores as a function
of the feature extraction method obtained for the different feature extraction
methods by applying ElasticNET with LOOCV. The value of the optimized para-
meters (λ, α, and k) and the number of non-zero features (NZ) are also reported.
R2: percentage of variance explained. MSE mean squared error, BIC Bayesian
information criterion. Minimum MSE value, Minimum BIC value
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Method R2 MSE BIC Optimal α Optimal λ Reg/k NZ

CAE-L1 0.441 0.559 1120.703 1 0.002 0.1 200

CAE-k 0.459 0.551 653.553 0.75 0.05 90 96

TL-k 0.523 0.479 579.394 0.25 0.031 90 80
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CAE-k 0.280 0.720 490.7 0.75 0.034 60 60

TL-k 0.310 0.690 237.755 1 0.115 30 7
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CAE-k 0.340 0.65 352.46 1 0.05 30 29

TL-k 0.404 0.605 278.276 1 0.051 60 17

Ve
rb

al
Sc

or
e

Table 4.2: Regression Metrics in the prediction of neuropsychological scores as a function
of the feature extraction method obtained for the overcomplete version of the
methods with latent space of size 200 by applying ElasticNET with LOOCV. The
value of the optimized parameters (λ, α, and k) and the number of non-zero
features (NZ) are also reported. R2: percentage of variance explained. MSE
mean squared error, BIC Bayesian information criterion.

work. In general, it can be observed that the deep learning approach performs similar or
worst than the conventional method in the language domain.

Figure 4.9b presents the BIC-metric obtained for the methods in the language domain.
Interestingly, the autoencoder with asingle linear layer is often the one achieving the lowest
BIC value, suggesting that such architecture is particularly useful to select a few represen-
tative components from the data distribution. Although PCA provides the lowest MSE

metric, it gives a a high BIC-value. Moreover, the overcomplete - transfer learning model
with k-sparsity as constraints leads to higher BIC value than PCA.

Regarding the Spatial Memory score, it can be observed from Figure 4.10a that the deep-
learning methods for feature extraction performs better than the traditional ones (PCA and
ICA). Moreover, PCA and ICA-based models are the ones leading to the worst results. In
particular, the CAE-AUG was the one with the lowest MSE value. Similarly as in the case
of language score, it can be observed that the k−sparsity constrain, in the overcomplete
convolutional autoencoder, was leading to better performances than the undercomplete case
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Figure 4.9: Metrics obtained using language score as neurophysiological value.

for transfer learning (TL) and the convolutional autoencoder (CAE) case. Once again the
results obtained by the convolutional autoencoder directly applied to the stroke dataset
did not perform correctly. Moreover, PCA-model and one-layer AE with linear and non
linear activation function achieve similar metrics, which is no surprise since these two modes
should perform similarly [33].Surprisingly, when observing the BIC-values in Figure 4.10b
the overcomplete-k Transfer Convae and the PCA are the methods leading to the lowest
value.
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Figure 4.10: Metrics obtained using spatial memory score as neurophysiological value.
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Finally, Figure 4.11a presents the MSE and R2 values obtained for verbal memory score.
Similarly as in the case of spatial memory, the deep-learning models were the ones leading
to better accuracies, in fact, once again the augmentated were the one leading to the
lowest MSE error, following by the transfer learning methods in the undercomplete and
overcomplete case with k-sparcity constraint. The worst models are the simplest one (Linear
AE, Non Linear AE, CAE). The lowest BIC values were also obtained from the DL-methods
as it can be observed from Figure 4.11b. Similar as what happen with the spatial score, PCA
provides better BIC-values than the ICA-model.
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Figure 4.11: Metrics obtained using verbal memory score as neurophysiological value.

Figure 4.12 presents the optimal α and λ obtained for each model and neurophysiolog-
ical score. Recall that λ controls the overall level (intesity) of regularization. As it can be
observed, the λ parameter are usually small. On the other hand, it can be seen that the α
value mainly takes the two extremas:

• α ∼ 0, which correspond to a Ridge regression;
• α ∼ 1, which correspond to a Lasso penalization;
• mixed-up α ∼ 0.75 (only happen in few cases).

Finally, Figure 4.13 presents the best total components in the fold and the number of non-
zero features in them. It can be observed that the one layer convolutional autoencoder with
linear and non linear activation function are the ones with lowest number of components in
the language domain. Notice that this are also the ones providing the lowest BIC value. In the
spatial domain, a similar behavior happens with PCA, whereas in the verbal memory domain
it happen with the one layer convolutional autoencoder with linear activation function.
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Figure 4.12: α and λ Elastic Net parameters obtained for the different models.
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(b) Spatial memory score.
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Figure 4.13: Fold used and number of non-zero features (nz). The circles represents the
percentage of each of the folders used (i.e. nz/Fold).
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The results showed that the deep learning models have similar performances in general
than the traditional methods (ICA and PCA) on the resting-state fMRI dataset in the
Language domain. However, this is not the case in the Spatial memory and Verbal memory
domain, in which these models are better. In particular, the CAE-AUG model was the one
leading to the best results when using the Spatial and Verbal memory as scores, with a
considerable margin over the other methods. Such remarkable performance is approached
also by the CAE trained using Transfer Learning.

4.2.1 Getting deeper on Augmentation techniques

Figure 4.14: Reconstruction error for each augmentated dimensionality reduction method
as a function of the number of extracted features.

As it was observed from Table 4.1, the augmentation techniques provides an improvement
in the metrics due to the extension on the dataset. Figure 4.14 presents the reconstruction
error obtained for the several augmentated methods. The errors are comparable to that
achieved previously by the simpler Data Augmentation technique (Figure 4.1), suggesting
that also in these cases we achieve very good reconstructions. Samples of reconstructed
images for these methods are shown in Figures 4.15, 4.16, 4.17 and 4.18.
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Figure 4.15: Best and worst reconstructed samples obtained by Aug(15000) with latent
space 10, 50, 90.

Figure 4.16: Best and worst reconstructed samples obtained by TL-Aug with latent space
10, 50, 90.

Figure 4.17: Best and worst reconstructed samples obtained by AugTL-Aug with latent
space 10, 50, 90.
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Figure 4.18: Best and worst reconstructed samples obtained by AugTL-Stroke with latent
space 10, 50, 90.

However, one should notice that indeed the dataset is now more correlated than before,
in fact, the similarity among image i and j was calculated as:

similarity[i, j] = 1− spatial.distance.cosine(i, j) (4.1)

where spatial.distance.cosine(i, j) stands for the function provided by scipy that represents
the cosine distance between u and v and is defined as:

1− u · v
‖u‖2‖v‖2

.

The mean value of the similarity matrix obtained by applying Equation 4.1 leads to an
increase of ∼ 20%− 31% of the correlation among the images. However, the training loss
and the validation loss are still similar, meaning that no underfit is observed on the data.
Notice that the only set that was augmentated was the training set, whereas the validation
and test set were remain the same with no changes.

Table 4.3 presents the results of the prediction metrics obtained by using as regressors the
features for the augmentated techniques. Figure 4.19a presents the MSE and R2 values
obtained for the several methods in the language domain. Recall that, the best models
obtained in Table 4.1 were the ones corresponding to the overcomplete transfer with k
sparcity and the PCA-based model with a MSE equal to 0.48. As it can be observed, the
transfer learning-model applied to augmentation stroke dataset was the one providing a
dropped of ∼ 7% of the MSE and a increase of the same amoung for the BIC-value.
Following up, the transfer learning technique trained initially with the augmentated HCP
dataset and then transfer to the augmentated stroke dataset also exhibits a lower MSE.

Figure 4.19b shows the prediction metrics obtained by the several augmentation tech-
niques in the spatial memory domain. As in the previous domain 4.10a the augmenta-
tion techniques provides better accuracy than the traditional methods. In fact, the transfer
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Method R2 MSE BIC Optimal α Optimal λ Fold NZ

TL- Aug 0.555 0.445 283.634 0.001 0.031 20 20

Aug(15000) 0.514 0.486 420.68 0.5 0.06 50 43

AugTL-Stroke 0.468 0.532 432.587 1 0.016 60 46

AugTL-Aug 0.534 0.456 420.68 0.5 0.06 50 43

La
ng

ua
ge

Sc
or

e

TL-Aug 0.395 0.565 367.205 0.5 0.098 70 42

Aug(15000) 0.359 0.581 569.703 0.001 0.05 15 85

AugTL-Stroke 0.282 0.718 380.29 0.001 0.811 40 40

AugTL-Aug 0.234 0.766 246.493 1 0.159 55 9
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TL-Aug 0.469 0.541 357.279 0.75 0.083 70 37

Aug(15000) 0.410 0.589 569.703 0.001 0.05 15 85

AugTL-Stroke 0.420 0.580 242.202 1 0.159 45 8

AugTL-Aug 0.427 0.571 238.96 1 0.083 25 8
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Table 4.3: Regression Metrics in the prediction of neuropsychological scores as a function of
the feature extraction method obtained for the augmentated models by applying
ElasticNET with LOOCV. The value of the optimized parameters (λ, α, and k)
and the number of non-zero features (NZ) are also reported. R2: percentage
of variance explained. MSE mean squared error, BIC Bayesian information
criterion

learning-model applied to augmentation stroke dataset was the one with the lowest MSE-
score, dropping the value about ∼ 30% with respect to the PCA-model, and ∼ 15% with
respect to the ICA-model. Moreover, the R2 value increased significantly (∼ 66%) with
respect to the PCA and ICA-models.

Finally, Figure 4.19c shows the prediction metrics obtained by the several augmentation
techniques in the verbal memory domain. In this domain it can be observed that increasing
the size of the dataset provides better accuracy, than all the remain methods. In particular,
as before, the transfer learning-model applied to augmentation stroke dataset was the one
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with the lowestMSE-score. In fact, with respect to the PCA-based model theMSE value
dropped ∼ 20%, and ∼ 27% with respect to the ICA-based model. Furthermore, the R2

value gained about 47% with respect to the PCA and ICA-models.

The larger accuracy gains for memory scores can be explained by the fact that prediction
of language scores is likely close to ceiling. Memory has a more distributed neural basis
and the prediction of deficits from structural lesions is relatively poor compared to other
behavioral domains [50, 51]. Therefore, predicting memory scores represents an important
benchmark for RSFC-based machine learning methods.

In general, Regression results reported in Table 4.3 clearly show that these improved
data augmentation and transfer learning regimens further boosted the model’s performance,
both in terms of MSE and R2. All regimens generally enhance the CAE accuracy, however
the most striking improvement is given by the TL-Aug regimen, which reaches significantly
better performance compared to all methods previously investigated, establishing a new
state-of-the-art for the stroke-prediction task. Interestingly, this improved model achieves
such accurate predictions by relying, on average, on fewer components compared to other
methods, which might be particularly relevant to improve interpretability of the resulting
model.
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Figure 4.19: MSE and R2 sorted in the all domain for the augmentated cases

Additionally, in the language score it can be observed from Table 4.3 that the TL-Aug
model not only provies the lowest MSE but also the lowest BIC value in the language
domain. Moreover, the AugTL-Aug gets the lowest BIC-value in the spatial memory and
the verbal memory domains, suggesting that such architecture is particularly useful to se-
lect a few representative components from the data distribution. Once again, this values
corresponds to the lowest NZ for each model.

Finally, the α-values obtained in Table 4.3, shows something similar as before, either α
is one or zero (purely Ridge or purely Lasso), or some intermediate value.
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4.3 maps of predictive functional connectivity edges

Figure 4.21 presents the backpropagation of the optimal regression coefficients for all do-
mains. In order to have a better comparison, Figure 4.20 shows the confusion matrix obtained
by computing cosine similarity between the images obtained sorted by least MSE. First of
all, it should be notice that the back-projection in the language and the verbal memory
domain of PCA is highly correlated to the ICA model. In the language domain, all the
models are quite similar with ranges going from ∼ [0.4− 0.9]. Additionally, CAE-AUG and
AUG(15000) were similar to the ICA-based model.

In the Spatial domain, it can be observed that the backprojective maps obtained from the
CAE-TL and the CAE-AUG are the lest similar ones, providing negative values. The most
similar predictive maps are between TL-Aug and AugTL-Aug. The same behavior can be
observed in the memory domain. In fact, once again the CAE-TL maps are the least similar
among the others, and this is evident when observing Figure 4.21.

(a) Language score. (b) Spatial memory score. (c) Verbal memory score.

Figure 4.20: Confusion matrix obtained by computing the similarity among each predictive
map obtained by back-projecting the regression coefficients.
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(a) Language score.

(b) Spatial memory score.

(c) Verbal memory score.

Figure 4.21: Maps of predictive functional connectivity edges obtained by back-projecting
the regression coefficients.
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4.4 cross-validation setup and model estimation

Figures 4.22 and 4.23 presents a comparison of the MSE and BIC value obtained by
a a standard cross-validation scheme (LOOCV) with a nested cross-validation approach
(NLOOCV) in the spatial domain. In both cases, it can be observed that the n-mode
condition is leading to the same values as in the case of LOOCV. A slightly variance in
the mean value obtained in the n-mean and n-median case can be found in contrast to
the LOOCV-scheme. In particular this is more notorious when observing the BIC-values,
specifically when dealing with the overcomplete convolutional autoencoder with k-sparsity
and the transfer model. However, this results are consistent with the ones obtained by Cale-
sella, Testolin, De Filippo De Grazia, and Zorzi [9], in which they compared the R2 and
BIC values in the language domain for the same dataset. This disparity of the n-mean and
n-median was explained due to the high susceptibility of the mean to outliers, so that major
departures from the distribution of the selected parameters could drive the mean toward the
outlier values [9].

Figure 4.22: MSE differences across the CV schemes for each feature extraction method

Figure 4.23: BIC differences across the CV schemes for each feature extraction method in
the spatial domain.
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To sum up, in the spatial memory domain, the effect of the nested CV scheme upon
model performance is the same one obtained as in the LOOCV-scheme when working with
the n-mode condition. However, the n-mean and n-median leads to higher/lower values same
as Calesella, Testolin, De Filippo De Grazia, and Zorzi [9] but with negligible difference. In
conclusion, the LOOCV setup allows us to obtain an optimal selection of the parameters of
the model with the main advantage of time-complexity.



5
C O N C L U S I O N S

In this work we investigated whether deep autoencoders could extract relevant features
from resting state functional connectivity data of stroke patients, which can successively
be used to build predictive models of neuropsychological scores. We implemented a variety
of autoencoder architectures, ranging from simple, one-layer linear networks to more so-
phisticated convolutional versions exploiting several layers of non-linear processing. In order
to deal with the issue of data scarcity, which is known to affect the performance of deep
learning models, we also explored data augmentation and transfer learning techniques. The
autoencoder’s performance was benchmarked against other conventional approaches, such
as Principal Componenty Analysis (PCA) and Independent Component Analysis (ICA).

The different methods were first evaluated in terms of their reconstruction error. In gen-
eral, all methods achieved similar reconstruction error, though the autoencoders trained
using data augmentation obtained slightly better accuracy. The quality of the features ex-
tracted by different methods was then assessed based on their capacity to serve as predictors
for neuropsychological scores of the patients in three cognitive domains (i.e., language, spa-
tial memory, and verbal memory). To this aim, the extracted features were given as input
to regularized regression models, and performance was evaluated in terms of coefficient of
determination, mean squared error and Bayesian information criterion. Results showed that
the performance of the basic autoencoders was overall comparable to that of traditional
methods (ICA and PCA). However, more sophisticated convolutional architectures trained
using data augmentation and transfer learning achieved a much higher performance, with
considerable gains of 7% (language), 66% (spatial memory) and 47% (verbal memory) with
respect to the previously reported state-of-the-art methods [9].

In conclusion, our results demonstrate the great potential of deep learning models for the
analysis of multi-dimensional neuroimaging data even in cases with limited data availability,
which is often considered a critical limitation in clinical studies. Future work should aim at
further consolidating our findings, for example by systematically evaluating the performance
of deep learning models on the prediction of other neuropsychological and behavioral scores.
Moreover, a key research frontier would be to design and implement advanced visualization
techniques in order to interpret the features extracted by non-linear dimensionality reduction
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methods, which could provide valuable insights to the clinicians for the design of more
effective rehabilitation protocols.



A
A P P E N D I X

In this section, we will present the hyperparameters obtained for the autoencoders in order
to obtain better performances

a.1 hyperparameter tuning

Hyperparameter optimization simply consist on searching the best set of hyperparameters
that gives the best version of a model on a particular dataset. The optimal hyperparamenters
obtained for each model by means of Optuna [44] are present in the next subsections. It
should be point out that this plays a key role in achieving better performances of the model.

a.1.1 CAE

When working with deep learning models, in order to achieve good performances, large
dataset are needed. As already mentioned, the stroke dataset consist of only 132 patients,
therefore, the impact of applying K − fold cross validation is study in terms of perfor-
mances and time. After assessing the number of folds to used, the best hyperparameters
are presented.

Figure A.1a presents the learning curve for the convolutional autoencoder without using
cross validation. As it can be observed, after the 50 epoch, the validation loss remains in
a plateau without improving its value whereas the train loss still decrease. This behaviour
is refer as overfitting. Large dataset helps us avoid overfitting and generalizes better as it
captures the inherent data distribution more effectively, however, the stroke dataset available
is small. Therefore, cross validation is used to tune the hyperparameters in order to avoid
this behaviour. The major advantage of any form of cross-validation is that each result is
generated using a classifier which was not trained on that result.

In order to determine the number of folds to use, the performances of None, 5, 40 and
119 (-LOOCV-) folds are compared. Figures A.1b, A.1c and A.1d presents the learning
curves for the model when using cross validation by means KFold with K = 5, 40, 119
respectively. It can be observed that the mean value of the validation decreases as well as
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the mean value of the training loss when only using 5 folds. In general a similar behavior of
the learning curves can be observed when working with the different folds.

(a) N folds = 1 (b) N folds: 5

(c) N folds: 40 (d) N folds: 119

Figure A.1: Learning curves for the convolutional autoencoder.

Additionally, in order to asses the optimal number of folders, the time complexity on
performing the Kfold cross validation are considered. Table A.1 presents the time complexity
for each number of folds. As expected, the larger the number of folder, the more iterations
to performed and therefore the more times it takes. Moreover, 50 trials are performed for
each model to find the optimal hyperparameters for the several latent space [10, 90] in
steps of 5. Therefore, in order to get a good generalization of the data, without increasing
too much the time complexity, 5 folds are used to tune the hyperparameters in the model
since, as it was already shown in Figure A.1, five folds were enough in order to get a good
generalization of the problem and overcome overfitting issues as shown in Figure A.1a.

Nº folds 0 5 40 119

Time [min] ∼ 4 ∼ 18 ∼ 236 ∼ 5700

Table A.1: Time complexity against number of folds.
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Table A.2 present the optimal hyperparameters obtained for the best latent space obtained
for each of the regression metrics1, after 50 trials for the convolutional autoencoder model
present in Figure 3.4 using 5-Kfold cross validation. As it can be observed, Adam was
the best optimizer to used in all cases, therefore, in the following sections we will restrict
ourselves only to that one. Dropout and weight decay are two forms of regularization. As
it can be observed from Table A.2, dropout plays an important role in this model with
non-zeros values allowing generalization. However, weight decay values are usually quite
small (∼ 1e−5 − 1e−5) and it plays a relevant role when SGD optimizer is used.

Table A.2: Optimal hyperparameter values for CAE-model found by minimizing the mean
of the validation loss of 5-Kfold by means of Optuna [44]

Latent Space Conv1 Conv2 Conv3 dropout fc lr opt weight

Language 90 128 128 16 0.36 64 0.002 Adam 0.00001

Spatial memory 45 128 32 16 0.091 128 0.0002 Adam 0.00002

Verbal memory 60 128 32 32 0.111 128 0.0005 Adam 0.00008

a.1.2 CAE-TL

Figure A.2a presents the learning curves of the convolutional autoencoder learnt by using
the Human Connectome Project (HCP) dataset. As it can be observed, the validation
and training losses converge to a similar value. Therefore, no overfitting is observed, as it
was previously seen from Figure A.1a, and no cross validation is applied since the dataset
is already quite exhaustive. On the other hand, Figure A.2b presents the validation and
training losses obtained after applying transfer learning to the original dataset using the
pre-trained convolutional autoencoder. In contrast of what happened with the convolutional
autoencoder applied directly to the stroke dataset (figure A.1) the model converges faster
(in earlier number of epochs) achieving similar performances.

1 Dropout values, learning rates and weight decays values were rounded in all models to proper
display the tables
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(a) (b)

Figure A.2: (a) Learning curves for the convolutional autoencoder with latent space equal
to 90 trained with the Human Connectome Project dataset. (b) Learning curves
obtained after applying transfer learning to the original stroke dataset from the
HCP one with latent space equal to 90.

Table A.3 presents the hyperparameters obtained for the best latent space obtained for
each of the regression metrics for the CAE-TL-model. Additionally, A.4 presents the optimal
hyperparameters of the same model apply to the stroke dataset with frozen convolutional
trainable part.

Table A.3: Optimal hyperparameter values for CAE-TL-model found by minimizing the val-
idation loss by means of Optuna [44], using the HCP dataset

Latent Space Conv1 Conv2 Conv3 dropout fc lr opt

Language 50 16 32 128 0.411 64 0.0001 ’Adam’

Spatial memory 50 16 32 128 0.411 64 0.0001 ’Adam’

Verbal memory 20 64 128 128 0.226 64 0.0004 ’Adam’
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Table A.4: Optimal hyperparameter values for CAE-TL-model found by minimizing the val-
idation loss by means of Optuna [44], using the stroke dataset.

Latent Space fc lr

Language 50 8 0.0009

Spatial memory 50 8 0.0009

Verbal memory 20 16 0.0002

a.1.3 CAE-AUG

Table A.5 presents the hyperparameters obtained for the best latent space obtained for each
of the regression metrics for the CAE-AUG-model.

Table A.5: Optimal hyperparameter values for CAE-AUG-model found by minimizing the
validation loss by means of Optuna [44], using the stroke dataset.

Latent Space Conv1 Conv2 Conv3 dropout fc lr opt

Language 50 16 8 16 0.105 128 0.0014 ’Adam’

Spatial memory 40 16 32 32 0.243 128 8.7e-05 ’Adam’

Verbal memory 40 16 32 32 0.243 128 8.7e-05 ’Adam’

a.1.4 AUG (15000)

Table A.6 presents the hyperparameters obtained for the best latent space obtained for each
of the regression metrics for the AUG(15000)-model.
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Table A.6: Optimal hyperparameter values for AUG(15000)-model found by minimizing the
validation loss by means of Optuna [44], using the stroke dataset.

Latent Space Conv1 Conv2 Conv3 dropout fc lr opt

Language 50 16 8 128 0.297 8 0.006 ’Adam’

Spatial memory 15 32 64 32 0.48 32 0.0005 ’Adam’

Verbal memory 15 32 64 32 0.48 32 0.0005 ’Adam’

a.1.5 Aug-Stroke

Table A.7 presents the hyperparameters obtained for the best latent space obtained for each
of the regression metrics for the Aug-stroke-model apply on the HCP dataset. Additionally,
A.8 presents the optimal hyperparameters of the same model apply to the stroke dataset
with frozen convolutional trainable part.

Table A.7: Optimal hyperparameter values for Aug-Stroke-model found by minimizing the
validation loss by means of Optuna [44], using the HCP dataset.

Latent Space Conv1 Conv2 Conv3 dropout fc lr opt

Language 60 16 32 32 0.59 ’fc 64 1.76e-05 ’Adam’

Spatial memory 40 16 64 64 0.501 32 0.003 ’Adam’

Verbal memory 45 8 128 16 0.59 64 0.001 ’Adam’

Table A.8: Optimal hyperparameter values for Aug-Stroke-model found by minimizing the
validation loss by means of Optuna [44], using the stroke dataset.

Latent Space fc lr

Language 60 32 0.0002

Spatial memory 40 16 0.005

Verbal memory 45 64 0.005
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a.1.6 Aug-Aug

Table A.9 presents the hyperparameters obtained for the best latent space obtained for each
of the regression metrics for the Aug-Aug-model apply on the HCP dataset. Additionally,
A.10 presents the optimal hyperparameters of the same model apply to the stroke dataset
with frozen convolutional trainable part.

Table A.9: Optimal hyperparameter values for Aug-Stroke-model found by minimizing the
validation loss by means of Optuna [44], using the HCP dataset.

Latent Space Conv1 Conv2 Conv3 dropout fc lr opt

Language 50 64 128 128 0.44 16 0.001 ’Adam’

Spatial memory 55 64 8 64 0.16 64 0.001 ’Adam’

Verbal memory 25 8 16 128 0.103 32 6.58e-05 ’Adam’

Table A.10: Optimal hyperparameter values for Aug-Stroke-model found by minimizing the
validation loss by means of Optuna [44], using the stroke dataset.

Latent Space fc lr

Language 50 128 0.0042

Spatial memory 55 128 0.00015

Verbal memory 25 64 0.0006
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