
UNIVERSITÀ DEGLI STUDI DI
PADOVA

Dipartimento di Ingegneria dell’Informazione - DEI
Corso di Laurea Magistrale in Ingegneria Informatica

SNNAP: Solver-based Nearest Neighbor

for Algorithm Portfolios

Laureando: Marco Collautti

Relatore: Correlatori:
Prof. Matteo Fischetti Dr. Yuri Malitsky

Prof. Barry O’Sullivan

Anno Accademico 2012-13

A Mamma e Papà
e ai miei fratelli

Abstract

The success of portfolio algorithms in competitions in the area of com-
binatorial problem solving, as well as in practice, has motivated interest
in the development of new approaches to determine the best solver for the
problem at hand. Yet, although there are a number of ways in which this
decision can be made, it always relies on a rich set of features to identify
and distinguish the structure of the problem instances.

In this thesis, however, it is firstly shown how not all the features in
the problem have the same relevancy. Then it is presented how one of the
most successful portfolio approaches, ISAC, can be augmented by taking into
account the past performance of solvers as part of the feature vector. Testing
on a variety of SAT datasets, it is here proved how the new formulation
continuously outperforms an unmodified/standard version of ISAC.

This thesis presents a novel strategy that tackles the prob-
lem of algorithm portfolios applying machine learning techniques
and improves a state-of-the-art portfolio algorithms approaches
(ISAC).

Starting from the basic assumptions behind the standard ISAC method-
ology that the given collection of features can be used to correctly identify
the structure of each instance, an important step has been to be able to
improve clustering, grouping together instances that prefer to be solved by
the same solver. It has been created, and here is presented, a methodology
to redefine the feature vector including past performance of the solvers. The
final result is named SNNAP: Solver-based Nearest Neighbor for Algorithm
Portfolios which is here presented.

I

Acknowledgements

The work for this thesis has been carried out at Cork Constraint Com-
putation Centre (4C) at the department of Computer Science of University
College of Cork (Ireland) since January 2013. First of all I will be forever
grateful to the Erasmus program that gave me the opportunity to spend 10
amazing months of my life in another european country. I will forever thank
all the people that I met in Ireland: you made my adventure something that
I will remember forever. I truly believe in our generation: the future will be
in our hands; we accepted the challenge of a united European Community
and to all of you I truly wish to be the successful managers of the future.

In Cork I had the opportunity to be, for the first time, in a research group
and I would like to thank Professor Barry O’Sullivan that, despite his very
busy agenda, accepted me to work with him and to be part of his great group.
I want to thank my supervisor Professor Matteo Fischetti that although
the distance gave me continuous support and encouragements. The biggest
thank is addressed to Doctor Yuri Malitsky that, despite the titles, has been
the real supervisor for this work. With your infinite patience and guidance
you helped me in a topic that was completely obscure to me at the beginning.
When you accepted me as a student you truly accepted a challenge and with
your directions you showed me what really means doing research and how
much you care about it. I truly wish you a brilliant academic career: you
deserve it! I will be, moreover, thankful to all the people that welcomed me
in 4C: a great place where you can work towards excellent results as much
as a place where you can have fun with the colleagues.

I want to thank any person that dedicated me a little piece of his time
reading this thesis helping me to correct every mistake I made.

I want to thank every person with which I spent my time in University:
it has been a hard path but you made it funnier and easier. Some of you
pushed me studying more than what I would have done, some of you gave
me the spirit of competition, some of you accepted me to join their groups
for some projects even if we didn’t know much each other before that and
the spirit of collaboration that I found has been incomparable. I don’t want
to list the names here: you know who you are, and in a list I should choose
for an order but in reality you are all equals to me.

On the other hand there is one person that I have to mention: thank

III

you Giovanni Di Liberto! We spent an amazing year together in Cork: we
learned together how to live on our own thousands of kilometers from home.
Thanks for the chats: we have been able to build our futures and, hopefully,
to pursue our dreams; I wish you all the best with your career in academia!

IV

Contents

Abstract I

Acknowledgements III

1 Introduction 1
1.1 Thesis Outline . 3

2 Related Work 5
2.1 The Algorithm Selection Problem 5
2.2 Instance-Oblivious Algorithm Selection 6
2.3 Instance-Specific Algorithm Selection 7

2.3.1 SATzilla . 7
2.3.2 CPHydra . 8
2.3.3 ISAC . 9
2.3.4 3S . 11
2.3.5 SATzilla 2012 . 11
2.3.6 Parallelization . 12

2.4 Summary . 13

3 Description of the Scenario 15
3.1 The Satisfiability Problem . 15

3.1.1 Description of the Dataset 16
3.2 The Maximum Satisfiability Problem 19

3.2.1 Description of the dataset 20
3.3 Predictive Models . 21
3.4 Clustering . 22

3.4.1 Kmeans . 23
3.4.2 Gmeans . 24
3.4.3 Hierarchical Clustering 25
3.4.4 K -nearest neighbors 27

3.5 Chapter Summary . 28

V

CONTENTS

4 Feature Filtering 29
4.1 Used techniques . 30

4.1.1 Correlation-based Filters 30
4.1.2 Measures Based on Information Theory 31

4.2 Experimental Results . 31
4.3 Chapter Summary . 38

5 Refining the Feature Vector 39
5.1 Weighted Distance Metric . 39
5.2 Extending the Feature Space 41
5.3 Analysis . 43
5.4 Chapter Summary . 45

6 SNNAP: Solver-based Nearest Neighbor for Algorithm Port-
folios 47
6.1 Algorithm . 48

6.1.1 Choosing the Distance Metric 50
6.2 Numerical Results on SAT . 52

6.2.1 Tuning the parameters for SNNAP 55
6.3 Numerical Results on MaxSAT 58
6.4 Chapter Summary . 61

7 Implementation of the software 63
7.1 Overview . 63
7.2 Installation . 65
7.3 Running the Software . 66
7.4 Notes . 69
7.5 Sample Output . 70

8 Conclusion 73
8.1 Future Work . 74

Bibliography 76

VI

List of Figures

3.1 Clustering of the RAND dataset accordingly to x -means and
gmeans . 26

4.1 Performance of ISAC on SAT considering different numbers
of features . 36

4.2 Performance of ISAC on SAT considering different feature
filtering and clustering techniques 37

5.1 Scatter Plot on HAND for learning a distance metric 42

6.1 How varying the size of the neighborhood and the number of
solvers considered affects performance of SNNAP on SAT . . 57

6.2 Used solvers by ISAC and SNNAP on MaxSAT 60
6.3 How varying the size of the neighborhood and the number of

solvers considered affects performance of SNNAP on MaxSAT 61

VII

List of Tables

4.1 Results of feature filtering applied to ISAC on SAT 33
4.2 Results of feature filtering applied to ISAC on SAT selecting

the k most promising features 34

5.1 Results of extending the feature space in ISAC on SAT. . . . 44

6.1 Erroneous prediction in SNNAP. 51
6.2 Statistics of the four datasets coming from SAT 52
6.3 Results of SNNAP on SAT 53
6.4 Instances solved vs. not solved in SNNAP and ISAC 55
6.5 Frequencies of solver selections for VBS, ISAC and SNNAP . 56
6.6 Erroneous evaluation taking into account too many solvers in

SNNAP . 58
6.7 Results of SNNAP and ISAC on MaxSAT 59

VIII

List of Algorithms

1 Istance-Specific Algorithm Configuration 10
2 k -Means Clustering Algorithm 24
3 g-means Clustering Algorithm 25
4 Solver-based Nearest Neighbor for Algorithm Portfolios . . . 49

IX

Chapter 1

Introduction

In the computational complexity theory it is supposed (under the as-
sumption that P 6= NP) that for many types of problems there is not an
algorithm that is able to solve all their instances in polynomial time. In this
case the quest of an algorithm that is able to solve the biggest number of
instances in the smallest time is an active field of research worldwide. For
this kind of hard problems (NP-hard) algorithms able to solve the instances
are known but, unfortunately, they may run on an instance for an exponen-
tial amount of time in order to find a solution. Problems that fall under
the NP-complete class are, for example: boolean satisfiability (SAT), knap-
sack problem, hamiltonian path problem, travelling salesman. NP-complete
problems, moreover, have the interesting feature that each one can be trans-
formed into any other NP-complete problem in polynomial time.

In the same field of research are known the combinatorial problems: they
consist of finding an optimal object from a finite set of objects and in many
such cases exhaustive search is not feasible.

In the last 20 years for solving those kind of problems have been intro-
duced techniques that are called portfolio algorithms, an idea that comes
from economics. It is well known in two of the biggest communities (con-
straint programming (CP) and satisfiability (SAT)) that in most of the cases
there is not a single solver that is always the best for all the instances. In-
stead solvers tend to vary greatly among different problems excelling on a
particular set of instances while offering subpar performance on everything
else.

In many real contexts research groups and companies have released dif-
ferent solvers for the purpose of solving the same problem but often instances
of the same problem may exhibit different properties. For this reason solvers
have complementing strengths and weaknesses and where one solver might
exhibit bad performance, another will excell. It is no longer the case where
one solver is able to achieve the best performance over all the others in
all cases and algorithm portfolios exploit this situation trying to choose the

1

most appropriate one specifically for the problem instances at hand.
This kind of framework relies heavily on how these portfolio techniques

make the selection, a decision that can be made in many different ways.
These different techniques are closely related to the field of Algorithm Se-
lection [1] which is responsible for identifying the most suitable algorithm
for solving a problem. One approach can be to train a regression model to
predict the performance of each solver, selecting the expected best one [2, 3].
Alternatively, a ranking approach can be used over all solvers [4]. It is also
possible to train a forest of trees, where each tree makes a decision for every
pair of solvers, deciding which of the two is likely to be better, selecting the
one voted upon most frequently [5]. Research has also been conducted on
creating a schedule of solvers to call in sequence rather than committing to
a single one [6, 7]. An overview of many of these approaches is presented
in [8]. Yet regardless of the implementation, portfolio-based approaches have
been dominating the competitions in satisfiability (SAT) [6, 2], constraint
programming (CP) [7], and quantified Boolean formulae (QBF) [9] and still
represent an active research field.

One of the most successful portfolio techniques is referred to as Instance-
Specific Algorithm Configuration (ISAC) [10]. Originally the approach was
demonstrated to outperform the then reigning regression-based approach,
SATzilla, in the SAT domain [2], as well as a number of other existing
portfolios [11]. The approach was later embraced by the 3S solver which
won 2 gold medals in the 2011 SAT competition [12]. ISAC’s applicability
has also been demonstrated in other domains such as set covering (SCP)
and mixed integer (MIP) problems [10].

This thesis starts from the willingness of further improving the standard
ISAC methodology. The original idea has been to improve it by applying
feature filtering and studying how different feature filtering approaches can
affect the performance of the methodology. ISAC assumes that all features
are equally important, but there is no reason why this assumption should
be considered always true especially in settings with more than a hundred
features. Moreover the hope of feature filtering is also to help the used clus-
tering technique in order to achieve a sort of perfect grouping by removing
noisy and disruptive features, which means finding a clustering of the space
where instances in the same cluster prefer to be solved by the same solver.

Feature filtering has only been the starting point of the work and has
proven to be beneficial to ISAC but yet the original purpose of perfect
clustering has been far to be achieved. In particular clustering in most of
the cases is used with the euclidean distance metric, but there is no reason to
believe that this is always the best to use. For this reason different techniques
aimed at learning a new distance metric have been studied. Even if this path
didn’t lead to an improvement in the performance an insight on the direction
to be followed has been gained. In particular has been possible to analyse
techniques that let the model take into account the past performance of the

2

1.1 Thesis Outline

solvers on the instances of the training set.
Combining different predictive methods and taking into consideration

the recorded performance of the solvers on the known instances, SNNAP
has been introduced. Given a new instance SNNAP is able ot predict a
subset of solvers that are going to perform consistently better than others.
This approach redefines the feature vector to automatically encode the de-
sired objective of having similar instances in the same cluster. However,
unlike feature landmarking [13, 14] where the evaluation of multiple simple
algorithms provides insight into the success of more complex algorithms,
SNNAP tackles a domain where a problem needs to only be evaluated once,
but highly efficiently. After this part, using a custom defined distance metric
and switching to a nearest neighbors approach, SNNAP is able to group to-
gether instances that prefer to be solved by the same solvers with the result
of a major improvement over the standard ISAC methodology.

The results presented by this thesis have also been published with a
paper [15] in the proceedings of the ECML conference 2013 [16]. The paper
has been presented in the 2013 edition of the conference which has been
held in Prague in September 2013. Since the beginning of the work for
the thesis, moreover, there has been the willingness to contribute to the
community releasing the software hoping to promote further development
and comparisons with existing and future portfolio methodologies. For this
reason and with the precise scope to contribute with an open source software
the code for SNNAP (plus a re-implementation of ISAC) has been released
under the LGPL licence and is downloadable from [17].

1.1 Thesis Outline

This thesis presents a novel strategy that tackles the prob-
lem of algorithm portfolios applying machine learning techniques
and improves a state-of-the-art portfolio algorithms approaches
(ISAC).

Starting from the basic assumptions behind the standard ISAC method-
ology that the finite collection of features for each instance can be used to
correctly identify its structure, the first step has been to try to understand
if all the features are always essential applying different filtering techniques.
Adding then the aim to improve clustering, grouping together instances that
prefer to be solved by the same solver it has been created a methodology to
redefine the feature vector including past performance of the solvers. The
final result has been SNNAP: Solver-based Nearest Neighbor for Algorithm
Portfolios which is here presented.

This dissertation starts in Chapter 2 where is presented an overview of
the most important state-of-the-art methodologies in the field of algorithm
portfolios. Chapter 3, then, presents an overview of common algorithms

3

1.1 Thesis Outline

and definitions used throughout the thesis as well as a description of the
used datasets and the problems they come from. The first trial to improve
the standard ISAC methodology is presented in Chapter 4 applying dif-
ferent feature filtering techniques to clustering. Chapter 5 describes some
attempts to refine the feature vector in order to include past performances
of the solvers in the portfolio. Chapter 6 then is responsible of introducing
the novel methodology called SNNAP validating its results on two different
problems: SAT and maxSAT. At the end Chapter 7 presents how the re-
leased software has been implemented as well as a short guide to how to use
it.

4

Chapter 2

Related Work

It is becoming increasingly recognized in the constraint programming
(CP) and satisfiability (SAT) communities that there is no single best solver
for all problems. Instead solvers tend to excel on a particular set of instances
while offering subpar performance on everything else. This observation has
led to the pursuit of approaches that, given a collection of existing solvers,
attempt to select the most appropriate one for the problem instances at
hand. The way in which these portfolio solvers make the selection, however,
varies greatly. Being that the work presented here is focused on improving
the way this choice is made it is worth describing what are current solutions
to this problem.

2.1 The Algorithm Selection Problem

Many optimization problems can be solved using several algorithms,
therefore with different performances. Considering the set of all possible
instances of a problem, it has long been recognized that there is no single
algorithm or system that will achieve the best performance in all cases. An
important result has been proved by the famous No Free Launch Theorem
(NFL) [18] that states that no single algorithm can be expected to perform
optimally over all instances. This phenomenon is of great relevance among
algorithms for solving NP-Hard problems, because of the high variability
from instance to instance of a problem. Starting from the observation that
different solvers have complementary strengths and weaknesses and so they
show different behaviours on different problem instances, the ideas of run-
ning multiple solvers in parallel or to select one solver based on the features
of a given instance were introduced. These approaches have been named
algorithm portfolios [19, 20, 21, 7]. Portfolio research is an active research
topic nowadays as shown in [22], with more than 150 papers and counting.

In the last years there have been many different softwares that imple-
ment the idea of algorithm portfolios. One of the biggest success stories is

5

2.2 Instance-Oblivious Algorithm Selection

that of SATzilla [21], which combines existing Boolean Satisfiability (SAT)
solvers and has, for about five years, dominated various categories of the
SAT competition [12]. Another similar approach has been applied to the
Constraint Programming area (CP) by CP-Hydra [7] where a portfolio of
CP solvers won the CSP 2008 Competition.

In the context of algorithm portfolios the ideal solution would be to be
able to consult a hypothetical oracle that is able to predict perfectly which
is going to be the best algorithm to solve a given problem instance, and then
to use it to solve the instance.

The Algorithm Selection Problem, as first described by John R.Rice in
1976 [1] and as presented by [19], has three main aspects that must be
tackled:

• The selection of the set of features of the problem that might be in-
dicative of the performance of the algorithm;

• The selection of the set of algorithms (often referred as solvers) that
together allow to solve the largest number of instances of the problem
with the highest performance;

• The selection of an efficient mapping mechanism that permits to select
the best algorithm to maximize the performance measure.

The features definition must be unique for all the instances of the same
problem. Furthermore, it is of extreme importance that they highlight the
differences between distinct instances.

The set of algorithms (often referred as portfolio) can be exploited using
several techniques that can be grouped into instance-oblivious and instance-
specific algorithm selection.

2.2 Instance-Oblivious Algorithm Selection

Given a representative set of problem instances (training set), instance-
oblivious algorithm selection is the first approach that can be thought to
be applied. It attempts to identify the solver or the combination of solvers
resulting in the best average performance on all the training data. After
the training phase, for each approach of this type the execution follows the
same rules independently from the particular instance that is going to be
solved.

A trivial solution is to measure the solving time on the training set,
and then to use the algorithm that offers the best (eg. arithmetic mean,
geometric mean, or median) performance. This approach can be called Best
Single Solver (BSS) and will be one of the approaches that is going to be used
as a comparison of the performance of the presented methodologies. This

6

2.3 Instance-Specific Algorithm Selection

approach has the drawback of solving many instances with an algorithm
that is not the best for them.

A more elaborated solution consists in trying to solve each new instance
with a sequence of algorithms, each one with a particular time-limit. The
training phase has the aim to identify these sequences of solvers and to assign
them the execution time-limit. This approach is called sequential portfolio.

Finally, a third example is the scheduling technique. The execution fol-
lows similar rules to an operative system scheduler. Therefore, the training
phase consists in finding an optimal sequence of solvers and a duration for
each one of them, with the aim of maximizing the performances.

One of the main drawbacks of instance-oblivious algorithm selection is
ignoring the specific instances, solving each new instance in the same way. As
already claimed, and will later be demonstrated, there is no single algorithm
or system that will achieve the best performance in all the instances of a
certain problem [18]. Therefore, in order to obtain a technique that performs
better than any of the algorithm in the portfolio, the idea is to select the
solver that should perform better on the specific instance.

2.3 Instance-Specific Algorithm Selection

The main idea behind Instance-Specific Algorithm Selection, idealisti-
cally, uses an oracle that knows which is the best algorithm for the current
instance. Several different techniques (mainly coming from machine learn-
ing approaches) have been developed to simulate this oracle, all based on
the common assumption that instances prefer different solvers accordingly
to the variations and similarities in their structures. Therefore, it is possi-
ble to construct a vector of features that aims to represent these structural
differences and permits to realize a mapping mechanism between instances
and best solving algorithm.

2.3.1 SATzilla

SATzilla [21, 23, 2] is an example of an algorithm portfolios approach
applied specifically to the propositional satisfiability problem (SAT). Over-
all, since its initial introduction in 2007, SATzilla has won medals at the
2007 and 2009 editions [12].

The approach is based on a simple idea: given a new instance, forecast
the log runtime of each solver using the ridge regression. A regression-based
training technique assumes that the expected performance of a solver can be
modeled by some function of the instance features. It is then possible to run
the algorithm with the best predicted performance. Therefore, SATzilla uses
a well-defined set of features specific for the SAT problem. The approach
can be divided in two phases: training process and testing process.

7

2.3 Instance-Specific Algorithm Selection

In the first part the features are filtered using forward selection (that
tries to select the most important features), then they are expanded using
all the quadratic combinations of the reduced feature set. This operation is
called quadratic basis function expansion and it is useful to add additional
pairwise product features that could describe better a nonlinear function.
Finally it is performed again the forward selection on the extended set of
features. The training phase finds also the two algorithms that solve the
largest number of instances, if each is given a 30 seconds timeout. The iden-
tified algorithms will be used as pre-solvers. These pre-solvers will be run
for a short amount of time before features are computed, in order to en-
sure good performance on very easy instances. The importance of applying
pre-solving lies in the possibility of decreasing the risk of making a mistake
when solving easy instances. Finally a ridge regression model is trained on
the training instances not solvable by the pre-solver to predict the log of the
runtimes of the algorithms in the portfolio.

The testing process consists of executing the SATzilla strategy on the
test istances. In particular, the pre-solvers are executed sequentially. When
an instance is unsolved, its features are computed and then SATzilla predicts
the expected runtime of each solver. Finally it runs the solver with lowest
predicted runtime.

An issue of this approach is that it requires prior knowledge about the
relationship between features and performance and that it relies heavily on
the quality of the predictions. Furthermore the time predictions are not
accurate, but in the case of the SAT competition they were accurate enough
to distinguish between good and bad solvers.

2.3.2 CPHydra

CPHydra [7] is an algorithm portfolios approach for Constraint Satisfac-
tion Problems (CSP). The idea is to attempt to schedule solvers to maximize
the probability of solving an instance within the allotted time. Given a set
of training instances and a set of available solvers, CPHydra collects infor-
mations on the performance of every solver on every instance. When a new
instance needs to be solved, its features are computed and the k -nearest
neighbors are selected from the training set. The problem then is set as a
constraint program, that tries to find the sequence and duration in which
invoking the solvers so as to yield the highest probability of solving the
instance.

CPHydra makes use of Case-Based Reasoning (CBR) which is a machine
learning methodology that adopts a lazy learning approach and contains no
explicit model of the problem domain. In this context past examples are
called cases and each case is made up of a description of a past example
or experience and its respective solution. The full set of past experiences
encapsulated in individual cases is called the case base.

8

2.3 Instance-Specific Algorithm Selection

The most fundamental element of any CBR system is the case base.
In CPHydra, cases contain the feature values describing a particular CSP
problem instance.

The CBR methodology can then be broken down into four distinct
phases:

1. Retrieval : To begin a query case is produced. Using its features the
case base is searched and the most similar cases to the present problem
are retrieved (using a k -nn approach);

2. Reuse: CPHydra doesn’t simply supply a prediction but also a sched-
ule describing how long each solver should run. The previous phase of
retrieval returns the set of solver times for each of the k most similar
problem instances found in the case base. This information is then
used to generate a solver schedule;

3. Revision: During this phase the proposed solution is evaluated. This
process involves running each of the solvers found in the previous phase
for the proportion of time allocated by the scheduler and determining
if the problem is successfully solved by at least one of the solvers within
its allocated time slot. If at least one solver solves the problem instance
within its time slot then the schedule is deemed a success;

4. Retention: Normally once a satisfactory solution has been determined
the problem description and solution are added to the case base. How-
ever in CPHydra the solution attached to each case and the solver
times are only indirectly used to produce a solution. In order to cre-
ate a complete case that could be retained each solver would have to
run until it solved the problem instance or timed-out.

The effectiveness of the approach was demonstrated when CPHydra won
the CSP Solver Competition in 2008, but also showed the difficulties of the
approach since the dynamic scheduling program only used three solvers and
a neighborhood of 10 instances.

2.3.3 ISAC

ISAC [10], Instance-Specific Algorithm Configuration, combines a con-
figuration method and unsupervised learning obtaining a high performance
algorithm selection method. ISAC can apply a pure solver portfolio ap-
proach in which the training instances are clustered accordingly to their
normalized features. For each cluster, then, ISAC determines the overall
best algorithm. At runtime, instead, it determines the closest cluster and
tackles the input with the corresponding solver.

9

2.3 Instance-Specific Algorithm Selection

Algorithm 1 Istance-Specific Algorithm Configuration

1: function ISAC-Train(T, F,A)
2: (F̄)← Normalize(F)
3: (k,C, S)← Cluster(T, F̄)
4: for all i = 1, . . . , k do
5: BSi ← FindBestSolver(T, Si, A)
6: end for
7: return (k,C,BS)
8: end function

1: function ISAC-Run(x, k, C,BS)
2: j ← FindClosestCluster(k, x, C)
3: return BSj(x)
4: end function

Although ISAC can be used also as parameter configurator in this thesis
when mentioning ISAC only the pure solver portfolio capabilities will be
considered. For this reason it is described in more details here.

The fundamental principle behind ISAC is that instances with similar
features are likely to have commonalities in their structure, and that there
exists at least one solver that is best at solving that particular structure.
Therefore the approach works as presented in Algorithm 1. In the training
phase, ISAC is provided with a list of training instances T, their correspond-
ing feature vectors F, and a collection of solvers A.

First, the computed features are normalized so that every feature ranges
in [-1,1]. This normalization helps keep all the features at the same or-
der of magnitude, and thereby avoids the larger values being given more
weight than smaller values. Using these normalized values, the instances
are clustered. The ultimate goal of clustering is to bring instances together
that prefer to be solved by the same solver. Although any clustering ap-
proach can be used, in practice g-means (which will be described in details
in Section 3.4.2) is employed in order to avoid specifying the desired number
of clusters. Once the instances are clustered, an additional step has been
added to merge all clusters smaller than a predefined threshold into their
neighboring clusters. The final result of the clustering is a set of k clusters
S, and a set of cluster centers C. To each cluster then is assigned a single
solver, which is usually the one that has best average performance on all in-
stances in that cluster. When the procedure is presented with a previously
unseen instance x, ISAC assigns it to the nearest cluster and runs the solver
designated to that cluster on the instance x.

In practice, this standard version of ISAC has been continuously shown
to perform well, commonly outperforming the choice of a single solver on all

10

2.3 Instance-Specific Algorithm Selection

instances. In many situations ISAC has even outperformed existing state-
of-the-art regression-based portfolios [11]. However, the current version of
ISAC also accepts the computed clustering on faith, even though it might
not be optimal or might not best capture the relationship between problem
instances and solvers. It also does not take into account that some of the
features might be noisy or misleading. One possible solution to this problem
will be evaluated in Chapter 4.

2.3.4 3S

SAT Solver Selector (3S) [6, 24] is an approach developed after the ISAC
methodology that has dominated the sequential portfolio solvers at the SAT
Competition 2011 where it won gold medals in the CPU-time category on
random and crafted instances. 3S combines solver scheduling and clustering.
Instead of using a static clustering approach it uses a dynamic clustering
technique: the k -nearest neighbors (k -NN). In essence the decision for a new
instance is based on prior exprience in the k most similar cases. It means
that the first thing to be done is to identify which k training instances are
the most similar to the one given at runtime, and then choose the solver that
worked the best on these k training instances. Moreover 3S try to learn a
schedule of solvers for a pre-solver that maximizes the number of instances
solved quickly. To compute the static schedule offline and to select the long-
running solver online, 3S combines lowbias nearest neighbor regression with
integer programming optimization.

After having applied the k -NN approach 3S computes a schedule that
defines the sequence of solvers, along with individual time limits, given a
new test instance.

A main issues of 3S is that the solvers working in the scheduler pre-
solver (10% of the solving timeout) work independently, without passing
information among them. Another problem regards the choice of the long
run solver, that can’t be corrected if sub-optimal during the solving process.
Similar problems are common also to other approaches like ISAC and have
been addressed in [25].

2.3.5 SATzilla 2012

The original SATzilla approach has been modified in order to partecipate
to the SAT competition of 2012. In practice they propose [26] to train trees
to compare each pair of solvers. At the end the approach selects the solver
accordingly to a majority vote.

In the training phase SatZilla 2012 finds the best pre-solver. Than a
cost sensitive classification model (decision forest) is trained for every pair
of solvers in the portfolio, predicting which solver is going to behave better
on a given instance. In the following testing phase the pre-solver is let

11

2.3 Instance-Specific Algorithm Selection

running on the given instance. If it is not successful the features of the
instance are computed and then from the classification models previously
built for every pair of solvers the expected winners are compared and, at the
end, the solver that is expected to be winning more frequently is selected
for solving the instance.

Being that a decision forest is trained for every pair of solvers in the
portfolio the main issue behind Satizlla 2012 is that it doesn’t scale well
when the number of solvers increases.

2.3.6 Parallelization

In the last years it has become a standard to have, even for personal
uses, machines with multiple cores (4, 8, or more). It has so started the idea
to apply algorithm selection in parallel environments.

One idea might be to execute all the solvers in parallel, one for every core
of the used machine. The problem now becomes to select p solvers that, as a
set, will solve the biggest number of instances. Possible different approaches
that try to augment the basic 3S algorithm can be found in [25]. To the
problem of scheduling there is the added constraint of a time limit for each
processor. The objective of parallelization is still to minimize the number
of uncovered instances but now there is the additional constraint of mini-
mizing the total CPU time of the schedule. Moreover an issue might come:
the solvers used in the portfolios might be parallel algorithms themselves.
Adding to this the fact that some solvers might have different parameteri-
zation the problem now is to schedule efficiently a potential infinite set of
different solvers.

Starting from the idea behind 3S it is useful to note that the problem of
solving the biggest number of instances can no longer be solved by simply
choosing the one solver that solves most instances in time; it is needed, now,
to decide how to integrate the newly chosen solvers with the ones from the
static schedule.

The problem of finding a parallel solver scheduling is then set as an
Integer Programming (IP) problem that can have more than 1.5 million
variables which can’t be solved exactly during the execution phase. For this
reason the problem is solved heuristically by not considering some variables.

A major issue behind parallelization is that identical processors to which
each solver can be assigned introduce symmetries that can hinder optimiza-
tion since equivalent schedules will be considered multiple times by a sis-
tematic solver.

Another issue is that is not clear how different solvers running at the
same time should share information among them, and which type of infor-
mation is worth being shared.

The application of parallelization to the problem of algorithm selection
is interesting and is an active field of research but it goes beyond the scope

12

2.4 Summary

of this thesis, while it may be a future development for it.

2.4 Summary

This chapter describes the actual research scenario around the problem
of algorithm portfolio. It has been described how the problem can be tackled
in two different ways: instance-obliviously and instance-specifically. In par-
ticular have been described in greater details the approaches of the second
area as the approach here presented (SNNAP) specifically starts from the
willingness of analysing and improving ISAC, which belongs to the category
of instance-specific.

The area of algorithm selection is an active field and in this chapter
have been presented the most advanced techniques that have been shown
empirically to provide significant improvements in the results. Each ap-
proach, however, also has a few drawbacks. Instance-oblivious, for example,
assumes that all problem instances can be solved optimally by the same
solver, a result clearly in constrast with the No Free Lunch (NFL) theorem.
Instance-specific, on the other hand, has the drawback of heavily rely only
on the set of features to determine the best solver to use for each instance.

13

2.4 Summary

14

Chapter 3

Description of the Scenario

The purpose of this thesis was to validate the performance of SNNAP
using the satisfiability (SAT) domain. SAT is one of the most fundamental
problems in computer science. This NP problem is interesting both for
its own sake and because other NP problems can be encoded into SAT
and solved by the same solvers. Since it is conceptually simple, significant
research efforts have been put in developing sophisticated algorithms with
highly-optimized implementations. Furthermore there is a competition, the
SAT competition [12], that incentives researchers to tackle this problem
offering visibility to the best developed solvers. In chapter 6, moreover, will
be introduced benchmarks of SNNAP also on a slightly different problem:
the Maximum Satisfiability Problem (MaxSAT).

This chapter has been used for describing the scenario in which SNNAP
operates: the datasets used will be described as well as the problems from
which they come from. Finally, SNNAP makes use of a number of predictive
models, the most prevalent of which will be defined.

3.1 The Satisfiability Problem

The satisfiability problem (SAT) has been the first known problem proved
to belong to the NP-complete class. That means that there is no known
algorithm that is able to efficiently solve all instances of SAT, and it is gen-
erally believed (under the famous assumption that P 6= NP) that no such
algorithm exists.

Instances of SAT are boolean expression written using only AND, OR,
NOT operators, literals and parentheses. A literal is either a variable or
the negation of a variable. For example x1 is a positive literal while x̄1 is a
negative literal. A clause, instead, is the disjunction (OR) of literals (e.g.
x̄1 ∨ x2 ∨ x̄3) and the conjunction (AND) of clauses is called expression.

The question now is: given the expression, is there some assignment
of TRUE and FALSE values to the variables that will make the entire

15

3.1 The Satisfiability Problem

expression true? A formula of propositional logic is said to be satisfiable if
there is an assignment of logical values that makes the formula true. The
propositional satisfiability problem (PSAT), which decides whether a given
propositional formula is satisfiable, is of central importance in various areas
of computer science, including theoretical computer science, algorithmics,
electronic design automation and verification.

The simplest variant of this problem that is NP-complete is represented
by the 3CNFSAT : each clause has exactly three literals and the overall
expression is the conjunction (AND) of an arbritrary number of clauses. It
can, on the other hand, be proved that if each clause has only 2 literals then
the problem is no more NP-complete.

3.1.1 Description of the Dataset

The satisfiability (SAT) domain was selected to test the proposed method-
ologies due to the large number of diverse instances and solvers that are
available. Four datasets are used in this thesis, each of which has been taken
from SAT competitions from 2006 to 2012 inclusive [12]. The instances have
been divided in four datasets containing 2140, 735, 1098 and 4243 instances
divided, respectively, as follows:

RAND: instances have been generated at random;

HAND: instances are hand-crafted or are transformations from other NP-
Complete problems;

INDU: instances come from industrial problems;

ALL: instances are the union of the previous datasets.

It has been chosen to rely on the standard set of 115 features that have
been embraced by the SAT community [2]. Specifically, for the computatin
of the features it has been used the feature code made available by UBC1.
However, being that has been observed that the features measuring com-
putation time are unreliable, those 9 features have been discarded from the
dataset. The employed features are here listed:

Problem Size Features:

1-2 Number of variables and

clauses in original

formula: denoted v and c, re-
spectively

3-4 Number of variables and

clauses after simplification

with SATElite: denoted v’ and

c’, respectively
5-6 Reduction of variables and

clauses by simplification:
(v-v’)/v’ and (c-c’)/c’

7 Ratio of variables to

clauses: v’/c’
Variable-Clause Graph Features:

8-12 Variable node degree

1http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

16

3.1 The Satisfiability Problem

statistics: mean, variation
coefficient, min, max and en-
tropy

13-17 Clause node degree statistics:
mean, variation coefficient,
min, max and entropy

Variable Graph Features:

18-21 Node degree statistics:
mean, variation coefficient,
min and max

22-26 Clustering Coefficient:
mean, variation coefficient,
min, max and entropy

Clause Graph Features:

27-31 Node degree statistics:
mean, variation coefficient,
min, max and entropy

32-36 Clustering Coefficient:
mean, variation coefficient,
min, max and entropy

Balance Features:

37-41 Ratio of positive to

negative literals in each

clause: mean, variation coef-
ficient, min, max and entropy

42-46 Ratio of positive to

negative occurrences of

each variable: mean, varia-
tion coefficient, min, max and
entropy

47-49 Fraction of unary, binary

and ternary clauses

Proximity to Horn Formula:

50 Fraction of Horn clauses

51-55 Number of occurrences in

a Horn clause for each

variable: mean, variation co-
efficient, min, max and entropy

Local Search Probing Features,

based on 2 seconds of running

each of SAPS and GSAT:

56-65 Number of steps to the

best local minimum in a

run: mean, median, variation
coefficient, 10th and 90th per-
centiles

66-69 Average improvement to

best in a run: mean and
coefficient of variation of im-
provement per step to best so-
lution

70-73 Fraction of improvement

due to first local minimum:
mean and variation coefficient

74-77 Coefficient of variation

of the number of unsatisfied

clauses in each local

minimum: mean and variation
coefficient

Clause Learning Features

(based on 2 seconds of running

Zchaff rand):

78-86 Number of learned clauses:
mean, variation coefficient,
min, max, 10%, 25%, 50%,
75% and 90% quantiles

87-95 Length of learned clauses:
mean, variation coefficient,
min, max, 10%, 25%, 50%,
75% and 90% quantiles

Survey Propagation Features:

96-104 Confidence of survey

propagation: For each vari-
able, compute the higher
of P (true)/P (false) or
P (false)/P (true). Then com-
pute statistics across variables:
mean, variation coefficient,
min, max, 10%, 25%, 50%,
75% and 90% quantiles

105-113 Unconstrained variables:
For each variable, compute
P (unconstrained). Then com-
pute statistics across variables:
mean, variation coefficient,
min, max, 10%, 25%, 50%,
75% and 90% quantiles

Lobjois Branch and Bound

Algorithm Selection:

114-115 Branch and Bound Performance

Prediction: Mean depth over
variables and log number of
nodes over variables

Employed features vary greatly in the meaning and they cover aspects as:
local search probing, based on 2 seconds of running each of SAPS and GSAT
(two stochastic local search algorithms for solving SAT); then is taken into
consideration the calculation of statistics regarding clause learning gath-
ered in 2-second runs of Zchaff rand [27] where is measured the number

17

3.1 The Satisfiability Problem

of learned clauses. Furthermore are considered features covering informa-
tion such as the number of variables, the number of clauses, the average
number of literals per clause, the proportion of positive to negative literals
per clause, the proximity of the instance to a Horn formula2, the number
of clauses with one, two or three variables. A SAT instance can be con-
verted to three different graph representations: the Variable-Clause Graph
(VCG), the Variable Graph (VG) and Clause Graph (CG). For example the
Variable-Clause Graph is a bipartite graph with a node for each variable, a
node for each clause, and an edge between them whenever a variable occurs
in a clause. For each of the graph representations are recorded various node
degree statistics (for example some features are related to the diameter of
the graph associated to the expression where for each node in the variable
graph it is possible to compute the longest and shortest path between it
and any other node and report the statistics across all nodes). Finally, the
runtimes of 29 of the most current SAT solvers have been recorded, many of
which have individually shown very good performance in past competitions.
Specifically, are used:

• clasp-2.1.1 jumpy

• clasp-2.1.1 trendy

• ebminisat

• glueminisat

• lingeling

• lrglshr

• picosat

• restartsat

• circminisat

• clasp1

• cryptominisat 2011

• eagleup

• gnoveltyp2

• march rw

• mphaseSAT

• mphaseSATm

• precosat

• qutersat

• sapperlot

• sat4j-2.3.2

• sattimep

• sparrow

• tnm

• cryptominisat295

• minisatPSM

• sattime2011

• ccasat

• glucose 21

• glucose 21 modified.

Each of the solvers was run on every instance with a 5,000 second time-
out. After that instances that could not be solved by any of the solvers
within the allotted time limit have been removed. Have further been re-
moved instances that were deemed to be too easy, i.e. those where the best
10 solvers could solve the instance within 15 seconds. This resulted in the
final datasets comprising of 1949 Random, 363 Crafted, and 805 Industrial
instances, i.e. 3117 instances in total.

Throughout this thesis the results will be evaluated comparing them to
three benchmark values:

• Virtual Best Solver (VBS): This is the lower bound of what is achiev-
able with a perfect portfolio that, for every instance, always chooses
the solver that results in the best performance;

2Where clauses have at most one positive literal.

18

3.2 The Maximum Satisfiability Problem

• Best Single Solver (BSS): This is the desired upper bound, obtained
by solving each instance with the solver whose average running time
is the lowest on the entire dataset;

• Instance-Specific Algorithm Configuration (ISAC): This is the pure
ISAC methodology obtained with the normal set of features and gmeans
clustering.

The results will always lie between the VBS and the BSS with the
ultimate goal to improve over ISAC. Results will be divided according to
their dataset.

3.2 The Maximum Satisfiability Problem

The Maximum Satisfiability Problem (maxSAT) is similar to the stan-
dard SAT problem: it starts from a boolean expression and it tries to deter-
mine what is the maximum number of satisfiable clauses. It is considered
the optimization problem of SAT. There is not the requirement that all the
clauses in the expression are satisfied all at the same time: it aims to find
the biggest number of clauses satisfied under the same variables assignment.
MaxSAT is a NP-hard problem, so it is not known an efficient algorithm to
solve it.

As a result of its NP-hardness large size maxSAT instances (as well as
large instances of other hard problems) might not be solved in a reasonable
amount of time, and typically solvers make use of approximation algorithms
and heuristics.

A maxSAT instance could be identified as belonging to one of four dis-
tinct categories:

• Standard maxSAT (is the problem of determining the maximum num-
ber of clauses, of a given Boolean formula, that can be satisfied by
some assignment);

• Weighted maxSAT (given a set of weighted clauses returns the maxi-
mum weight which can be satisfied by any assignment);

• Partial maxSAT (returns the maximum number of clauses which can
be satisfied by any assignment of a given subset of clauses while the
rest of the clauses must be satisfied);

• Weighted partial maxSAT (asks for the maximum weight which can be
satisfied by any assignment, given a subset of weighted clauses. The
rest of the clauses must be satisfied).

Formally a weighted clause is a pair (C,w), where C is a clause and w is
a natural number or infinity, indicating the penalty for falsifying the clause

19

3.2 The Maximum Satisfiability Problem

C. A weighted partial MaxSAT formula is a multiset of weighted clauses
ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)} where the first
m clauses are soft and the last m’ are hard. The set of variables occurring
in a formula ϕ is noted as var(ϕ).

A (total) truth assignment for a formula ϕ is a function I : var(ϕ) →
{0, 1} that can be extended to literals, clauses, SAT formulas. For MaxSAT
formulas are defined as I({(C1, w1), . . . , (Cm, wm)}) =

∑m
i=1wi(1 − I(Ci)).

The optimal cost of a formula is cost(ϕ) = min{I(ϕ) | I : var(ϕ) →
{0, 1}} and an optimal assignment is an assignment I such that I(ϕ) =
cost(ϕ). In the partial maxSAT problem an instance is composed by hard
and soft clauses (to the soft clauses is assigned also a weight) and a variable
assignment is asked to satisfy all hard clauses while maximising the sum of
weights of the satisied soft clauses.

3.2.1 Description of the dataset

The dataset that will be used in this thesis will deal with partial MaxSAT
problems. Every weighted partial MaxSAT instance has been translated into
an equivalent weighted partial MaxSAT instance where all the soft clauses
are unit. At this point a subset of the SAT features of the resulting formula
are used. In particular are considered features describing statistics in the
Variable-Clause Graph, the ratio between positive and negative literals, the
number of clauses with one, two or three literals and the proximity to a
Horn formula (including the fraction of Horn clauses and the number of
occurences in a Horn clause for each variable). To this set, moreover, have
been added as additional features the number of soft clauses for partial
MaxSAT instances, and the distribution of the weights for weighted partial
MaxSAT instances. The total number of used features is 37 and are here
listed:

Problem Size Features:

1-2 Number of variables and

clauses

3 Ratio of soft variables to

clauses

4-7 Statistics about soft

variables: mean, standard
deviation, min, max

8 Ratio of variables to

clauses

Variable-Clause Graph Features:

9-13 Variable node degree

statistics: mean, stan-
dard deviation, min, max and
spread

14-18 Clause node degree statistics:
mean, standard deviation,
min, max and spread

Balance Features:

19-23 Ratio of positive to

negative occurrences of

each variable: mean, stan-
dard deviation, min, max and
spread

24-28 Ratio of positive to

negative literals in each

clause: mean, standard devi-
ation, min, max and spread

29-31 Fraction of unary, binary

and ternary clauses

Proximity to Horn Formula:

32-36 Number of occurrences in

a Horn clause for each

variable: mean, standard de-
viation, min, max and spread

37 Fraction of Horn clauses

20

3.3 Predictive Models

Using a set of solvers that have participated in the last MaxSAT com-
petitions [28], the dataset has been compiled registering the running times
of 14 of them:

• QMaxSat-g2

• pwbo2.0

• QMaxSat

• PM2

• ShinMaxSat

• Sat4j

• WPM1

• wbo1.6

• WMaxSatz+

• WMaxSatz09

• akmaxsat

• akmaxsat ls

• iut rr rv

• iut rr ls

Furthermore what is especially engaging about the MaxSAT evaluations,
is that there is no single solver that dominates on every category. Instead,
there are a number of competing techniques each of which excels on a dif-
ferent benchmark. This is the ideal scenario for constructing a portfolio
approach.

3.3 Predictive Models

The main question addressed in this study is: given an instance of a NP-
complete problem (SAT for example), how is possible to select the algorithm
to use (from the available ones in the portfolio) in order to solve the instance
and solve it in the smallest amount of time? It is both interesting solving
the biggest number of instances possible, both to solve them in the smaller
time possible.

One way in which this problem can be tackled (extensive description of
possible solutions has been given in Chapter 2) is using predictive models.
A predictive model (a classifier) is the process by which a model is crafted to
be able to best predict a given outcome. In order to build such a system the
features of the problem are analysed and used. Usually the interesting part
is identifying to which of a set of categories a new observation (instance)
belongs (the category with which each instance is going to be classified, in
this case, is the name of the best solver to solve it). For achieving this
result the model is first presented with a training set of data containing
observations whose category membership is known. The testing set, instead,
is a set of instances whose category membership is to be guessed using the
observations on the training set and the model previously built.

It is common practice in the field of machine learning to consider clas-
sification as supervised learning (learning where a training set of correctly-
identified observations is available) or unsupervised learning, like clustering,
where the examples given to the classifier are unlabeled and the procedure
tries to find some sort of hidden structure in the data.

When a new predictive model is created, the main interest relies in hav-
ing an idea of how well the model will behave on real data and is not trivial

21

3.4 Clustering

to understand how good a model is or why a given model should be pre-
ferred over another one. For this reason it is useful to evaluate in some way
its performance in order to try to understand how the model will perform
on previously unseen datas: how many predictions will be correct? Conse-
quently a random subset of the training set is taken and its instances are
used pretending that their category memberships are unknown. Then the
real categories are compared to the predicted ones. In order to avoid over-
fitting it is never suggested to predict the category of an instance that has
been used also to train the model: the point is that the model should be
able to predict well previously unseen instances. For this reason before the
training phase the available dataset is split into two subsets: training set
and testing set. However this approach has two main issues:

• In order to train a good model, it is sought to have as many training
instances as possible;

• In order to get a good idea of how well the model behaves in practice,
it is sought to have a large test set.

Obviously the two requirements contrast each other, so one common
solution is to use a Cross-Fold Validation approach: the dataset is split in
n parts (usually n = 10); the model is then trained using only n - 1 folds,
and the remaining fold is used as testing set. The process is repeated n
times, each time choosing a different fold as testing set. The n results, then,
from the different folds can be averaged to produce a single estimation. The
advantage of this method is that all observations are used for both training
and testing, and each instance is used for testing exactly once.

In the case of the work done for this thesis, then, each experiment has
been repeated 10 times to decrease the bias of the estimates. In the ex-
periment moreover are presented both the average and the PAR-10 perfor-
mance3.

3.4 Clustering

Clustering, that is used by ISAC, is the typical example of unsupervised
learning : while supervised learning methods are intended for classification
problems, clustering is used for descriptive problems. Clustering is the task
of grouping set of instances in subsets (clusters) in a way that instances in
the same subset present some kind of similarity.

Clustering could be achieved using different techniques, each one with
different results. Each approach differs from the others in the notion of

3PAR10 score is a penalized average of the runtimes: for each instance that is solved
within 5000 seconds (the timeout threshold), the actual runtime in seconds denotes the
penalty for that instance. For each instance that is not solved within the time limit, the
penalty is set to 50000, which is 10 times the original timeout.

22

3.4 Clustering

what is a cluster and in the distance metric used. Clustering groups data in-
stances into smaller groups in such a way that similar instances are grouped
together, while different instances belong to different groups. The instances
are thereby organized into an efficient representation that characterizes the
population being sampled. Formally, the clustering structure is represented
as a set of subsets C = C1, . . . , Ck of S, such that: S = ∪ki=1Ci and
Ci ∩ Cj = ∅,∀i 6= j. Consequently, any instance in S belongs to exactly
one and only one subset [29].

Since clustering is the task of grouping similar instances, some sort of
measure that can determine whether two objects are similar or dissimilar is
required. Commonly the euclidean distance between instances is used, eval-
uated in the feature space; in addition to this, being that different features
might have a different range a pre processing is often required, in order for
all the features to have the same importance in determining the distance
between instances.

Evaluating the quality of clustering is not a simple task and as such a
number of quality indices have been developed. For example a criteria might
be the one of measuring the compactness of the clusters looking at the intra-
cluster homogeneity, the inter-cluster separability or a combination of these
two. Indices of this kind are, for example, Sum of Squared Error (SSE),
Minimum Variance Criteria and Scatter Criteria [29].

From the many clustering techniques available the developed software
gives to the user, when using the ISAC methodology, the chance to choose
among:

• X -means (a variant of k -means);

• gmeans;

• hierarchical clustering.

3.4.1 Kmeans

One of the most used clustering method is Lloyd’s k -means [30]. The idea
behind the proposed methodology (presented in Algorithm 2) is to start from
k random points in the feature space. These points represent the centers of
the k clusters. The algorithm works alternating two phases: the first step
assigns each instance to a cluster according to the shortest distance to one
of the k points that were chosen. The second step, instead, updates the k
centers, calculating the new ones as the mean of all the instances belonging
to that cluster.

k -means is one of the most used clustering techniques for its simplicity
and easiness of implementation. Unfortunately the main drawback is that
the user has to pre-specify in advance the number of clusters that he is
interested to have.

23

3.4 Clustering

Algorithm 2 k -Means Clustering Algorithm

1: function k-means(X, k)
2: Choose k random points C1, . . . , CK from X
3: while Not done do
4: for all i = 1, . . . , k do
5: Si ← {j : ‖Xj − Ci‖ ≤ ‖Xj − Cl‖ ∀l = 1, . . . , k}
6: Ci ← 1

|Si|
∑

j∈Si
Xj

7: end for
8: end while
9: return (C, S)

10: end function

XMeans

X -means has been introduced in [31] with the main purpose of using
k -means but without having to specify in advance the number of clusters.
This algorithm is the one used in the developed software.

It runs k -means on the input data with an increasing k (up to a chosen
upper bound), and then chooses the best value of k based on a Bayesian
Information Criterion (BIC). The technique searches the space of cluster lo-
cations and the number of clusters in an efficient way trying to optimize the
measure given by the BIC. The BIC statistic used by X -means has been for-
mulated to maximize the likelihood for spherically-distributed data. Thus,
in general, it overestimates the number of true clusters in non-spherical data.

3.4.2 Gmeans

gmeans has been proposed in [32] as a clustering technique, extension of
k -means, with the explicit purpose of automatically selecting the best value
for k. The assumption behind the choice of k is that a good cluster is a
cluster that exhibits a Gaussian distribution around the cluster center. The
Algorithm (presented in Algorithm 3) has been personally implemented in R
following the original publication and a Matlab code released by its author.
In practice gmeans runs k -means with increasing k in a hierarchical fashion
until the test accepts the hypothesis that the data assigned to each cluster
are more gaussian than before.

The gmeans algorithm starts with a small number of k -means centers (1
at the beginning), and then grows the number of centers. At each iteration
the algorithm splits into two those centers whose data appear not to come
from a Gaussian distribution (this is checked applying the Anderson-Darling-
Test [33]). Between each round of splitting, k -means is run on the entire
dataset and all the centers to refine the current solution. gmeans repeatedly
makes decisions based on a statistical test for the data assigned to each
center. For this purpose gmeans splits the cluster in two by running 2-

24

3.4 Clustering

Algorithm 3 g-means Clustering Algorithm

1: function g-means(X)
2: k ← 1,i← 1
3: (C, S)← kMeans(X, k)
4: while i ≤ k do
5: (C̄, S̄)← kMeans(Si, 2)
6: v ← C̄1 − C̄2, w ←

∑
v2i

7: yi ←
∑
vixi/w

8: if Anderson-Darling-Test(y) failed then
9: Ci ← C̄1, Si ← S̄1

10: k ← k + 1
11: Ck ← C̄2, Sk ← S̄2
12: else
13: i← i + 1
14: end if
15: end while
16: return (C, S, k)
17: end function

means clustering (k -means with k = 2). All points in the cluster can be
projected onto the line that runs through the centers of the two sub-clusters,
obtaining a one dimensional distribution of points. gmeans now checks if
this distribution is normal using the Anderson-Darling-Test. If the current
cluster does not pass the test then is split into the two previously computed
clusters, and the process is continued with the next cluster.

In Fig. 3.1 can be seen the differences of clustering by comparing x -
means and gmeans. To project the data into a visualizable space (3D) PCA
has been employed [34]. gmeans detects 8 different clusters while xmeans 4.
Even though a correct answer doesn’t exist, it seems that gmeans is able to
separate better the datas and this is of particular importance in algorithm
selection as clusters with too many instances might lead to non optimal
choices (too close to instance-oblivious).

3.4.3 Hierarchical Clustering

The third type of clustering available to the user is Hierarchical Clus-
tering. This method constructs the clusters by recursively partitioning the
instances in either a top-down or bottom-up fashion [29]. Can be one of the
following:

• Agglomerative: Each instance, at the beginning, represents its own
cluster. Then clusters are merged until the desired cluster structure is
reached;

25

3.4 Clustering

Figure 3.1: Clustering of the RAND dataset accordingly to x -means and
gmeans. Feature vectors have been projected into 3D using PCA.

(a) Clustering accordingly to x -means

(b) Clustering accordingly to gmeans

26

3.4 Clustering

• Divisive: Each instance initially belongs to one cluster. Then the
cluster is divided into sub-clusters, which are successively divided into
their own sub-clusters. The process continues until the desired cluster
structure is reached.

The result of the hierarchical clustering is a dendogram4 representing
the nested grouping of the instances. A clustering of the data is obtained
by cutting the dendogram at a specified level.

In order to decide which clusters should be combined or split, a measure
of dissimilarity between sets of instances is required. Usually this is achieved
by use of an appropriate distance metric (generally Euclidean) function d,
and a linkage criterion which specifies the dissimilarity of sets as a function
of the pairwise distances of instances in the sets. Typical linkage functions
between the set of instances in cluster A and cluster B are:

• Single-link : min{d(a, b) : a ∈ A, b ∈ B}

• Complete-link : max{d(a, b) : a ∈ A, b ∈ B}

• Average-link : 1
|A||B|

∑
a∈A

∑
b∈B d(a, b)

One main drawback of hierarchical clustering is that it is computationally
expensive because it has to calculate the distance between every pair of
instance in the dataset.

3.4.4 K -nearest neighbors

The predictive model used by SNNAP is called K -nearest-neighbors (k -
NN) and can be thought as a type of dynamic clustering. It is an algo-
rithm for classifying instances basing the decision on the k closest training
instances in the dataset. The k -NN algorithm is one of the simplest algo-
rithm in all machine learning: an instance is classified by a majority vote
of its neighbors, with the instance being assigned to the class most common
amongst its k nearest neighbors.

The training instances are vectors in the feature space, each with a class
label. The training phase of the algorithm consists only of storing the feature
vectors and class labels of the training samples. In the classification phase, k
is a user-defined parameter, and a previously unseen instance is categorized
by assigning the label which is most frequent among the k training samples
nearest to that point. A commonly used distance metric for continuous
variables is Euclidean distance, even though in SNNAP a custom distance
metric has been defined.

4A tree diagram where the leaves are the instances and the internal node are the clusters
to which they belong.

27

3.5 Chapter Summary

3.5 Chapter Summary

This chapter has the aim to make the reader confident with the most
important concepts that are used throughout the thesis. SNNAP is a tool
that applies machine learning techniques in order to forecast the solver to
be used in solving the presented instances; consequently the used techniques
has been here introduced, with an exhaustive overview of clustering as it has
been the starting point of the work. Each clustering technique has his own
strengths and weaknesses: k -means is the most used one due to his simplicity
and its fastness. Unfortunately to the users is asked to set an appropriate
number of desired clusters. For addressing this issue two approaches have
been proposed: X -means and gmeans, with the second shown to provide
better performance than the first (this statement will also be proved in
algorithm selection problems in Chapter 4). Hierarchical clustering, instead,
has the main issue of being computationally expensive because it has to
calculate the distance between every pair of instance in the dataset. On the
other hand hierarchical clustering has the advantage that any valid measure
of distance can be used in a straightforward way.

In addition to the description of what predictive models are, this chapter
presents the settings to which SNNAP is applied: SAT and maxSAT prob-
lems. It is given an extensive explanation of what these problems are as well
as a description of the employed datasets and their features.

28

Chapter 4

Feature Filtering

The first objective of this work has been to analyse and implement var-
ious feature filtering techniques applied to the original ISAC methodology.
The current standard version of ISAC assumes that all features are equally
important. But as was shown in [35], this is often not the case, and it is
possible to achieve comparable performance with a fraction of the features,
usually also resulting in slightly better overall performance. The original
work presented in [35] only considered a rudimentary feed-forward selec-
tion. In this work, instead, more common and powerful filtering techniques
are going to be used. An extensive description of feature filtering methods
can be found in [36].

The main purpose of feature filtering is dimensionality reduction: the
starting point is a complete dataset (e.g. the SAT dataset has 115 features)
and the purpose is to find a way to filter out features that have little chance
to be useful in the analysis of data. Generally these kind of filters are based
on some kind of performance evaluation metric calculated directly from the
data.

In this case the feature filter is a function returning a relevance index
J(S|D) that estimates, given the data D, how relevant a given feature sub-
set S is for the task Y (usually classification). Relevance indices may be
computed for individual features Xi, i = 1, . . . , N , providing indices that
establish a ranking order J(Xi1) ≤ J(Xi2) . . . ≤ J(XiN). At the end the
features that have the lowest ranks are filtered out. The point now remains
to define what relevant means. A feature X is relevant in the process of
distinguishing class Y = y from others if and only if for some values X = x
for which P (X = x) > 0 the conditional probability P (Y = y|X = x) is
different from the unconditional probability P (Y = y). In addition to this a
good feature should not be redundant, i.e. it should not be correlated with
other features already selected.

Now that is clear what means to filter features, and why it is useful,
what needs to be specified is the classification problem that is going to be

29

4.1 Used techniques

tackled: for this purpose are going to be kept the features that are good
predictors of which solver is going to be the best on each instance.

The various feature filtering techniques used are going to return a value
between 0 and 1 indicating how relevant the features are. With these values
three things can be done:

• Select the k most promising features;

• Select the best x percent features;

• Select a subset of features which are significantly better than other.

4.1 Used techniques

In the developed software four different feature filtering techniques are
provided and the FSelector R package [37] has been used:

• Chi Squared;

• Information Gain;

• Gain Ratio;

• Symmetrical Uncertainty.

4.1.1 Correlation-based Filters

Correlation coefficients are perhaps the simplest approach to feature rel-
evance measurements. They can deal also with continuous features that, in
this way, don’t need a pre-discretization.

Contingency Tables defined for pairs of nominal features X,Y are fre-
quently analysed to determine correlations between variables. They con-
tain the numbers of times Mij = N(yi, xj) objects with feature values
Y = yj , X = xi appear in a database. m training samples may be divided
into subsets of Mij samples that belong to class yi, i = 1 . . .K and have a
specific feature value xj ; summing over rows of the Mij matrix marginal
distribution Mi· of samples over classes is obtained, while summing over
columns distribution M·j of samples over distinct feature values xj is ob-
tained. The strength of association between variables X,Y is usually mea-
sured using χ2 (chi squared) statistics:

χ2 =
∑
ij

(Mij −mij)
2/mij where mij = Mi.M.j/m

Here mij represents the expected number of observations assuming X,Y
independence.

30

4.2 Experimental Results

Actually in the FSelector package is not used the usual Chi Squared
index but the Cramer’s V coefficient (φc), based on the chi squared index,
where

φc =

√
χ2

N(k − 1)

Here N is the grand total of observations and k is the number of rows
or number of columns depending on the smaller between them.

4.1.2 Measures Based on Information Theory

Information theory indices are most frequently used for feature evalu-
ation and in particular are based on the concept of entropy. Information,
which is the negative of entropy, is defined as

H(Y) = −
K∑
i=1

P (yi) log2 P (yi)

where P (yi) = mi/m is the fraction of samples x from class yi, i =
1 . . .K. Information contained in the joint distribution of classes and fea-
tures, summed over all classes, gives an estimation of the importance of the
feature, where the information contained in the joint distribution is defined
as:

H(Y,X) = −
∑
i

K∑
j=1

P (yj , xi) log2 P (yj , xi)

In case of continuous features, for information theory based indices, it is
necessary to discretize them. At this point are easily defined the remaining
feature filtering functions used in the developed software:

• information gain: H(Y) +H(X)−H(Y,X)

• gain ratio: H(Y)+H(X)−H(Y,X)
H(X)

• symmetrical uncertainty: 2 · H(Y)+H(X)−H(Y,X)
H(Y)+H(X)

It is commonly believed that the gain ratio is a stable evaluation and
the symmetrical uncertainty has a low bias for multivalued features.

4.2 Experimental Results

The first thing tried to understand the potentiality of feature filtering
has been to test it applied to the original ISAC methodology (and thus to
clustering). The software has been developed in R and in order to apply
different feature filtering techniques has been used the FSelector package.

31

4.2 Experimental Results

The results, presented in Table 4.1 have been organized based on the dataset
used and based on the scoring function used. Here BSS is the approach of
solving all the instances in the testing set with the solver that have the
best performance on the whole training set; VBS, instead, is an oracle that
solves each instance in the testing set with its own best solver. The columns,
together with the percentage of not solved instances, report both the average
running time, both the average PAR10 (a penalized average of the runtimes:
for each instance that is solved within the timeout threshold, the actual
runtime in seconds denotes the penalty for that instance, instead for each
instance that is not solved within the time limit, the penalty is set to 10 times
the original timeout). In parenthesis are reported the standard deviations.
The averages and the standard deviations are calculated from executing the
experiments 10 times.

Restricting the filtering approaches to find the best 15 features, it can
be seen in Table 4.1 that the results are highly dependent on the dataset
taken into consideration.

For the random dataset there is no major improvement due to using
just a subset of the features. Yet it is possible to achieve almost the same
result as the original ISAC by just using a subset of the features calculated
using the gain.ratio function, a sign that not all the features are needed. It
can then be observed that the improvements are more pronounced in the
hand-crafted and industrial datasets. For them, the functions that give the
best results are, respectively, chi.squared and gain.ratio, but in the latter
the result is almost identical to the one given by chi.squared.

Instead of fixing the desired number of features that should remain after
filtering, it is possible (using an appropriate function in the package FSe-
lector) to select a subset of features whose score is significantly better than
the score of the others. The results are presented in Table 4.2 and the fea-
ture filtering functions used are the one that proved to be the best on each
dataset. Using this approach the number of features left is dependent on the
dataset: for the RAND dataset the number of left features is 5, for HAND
53, for INDU 33 and for ALL only 3. The results obtained with this different
setting are slightly worst than the ones just outlined. Except for the HAND
dataset the average running times are generally slower and is possible to
claim that this approach selects not enough, or too many (depending on the
dataset), features.

In general it doesn’t seem that there is some kind of pattern helping
to deduce which features are more important than others but relevant fea-
tures are frequently (depending on the dataset) the one related with survey
propagation (SP), Variable-Clause graph (VCG) and Clause Learning (CL).

VCG features are a group of features responsible for describing a SAT
instance as a graph. The graph is bipartite with a node for each variable, a
node for each clause, and an edge between them whenever a variable occurs

32

4.2 Experimental Results

Table 4.1: Results on the SAT benchmark, comparing the Virtual Best
Solver (VBS), the Best Single Solver (BSS), the original ISAC approach
(ISAC) and ISAC with different feature filtering techniques: “chi.squared”,
“information.gain”, “symmetrical.uncertainty” and “gain.ratio”.

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
chi.squared 1081 (42.23) 7318 (492.7) 14 (1)
information.gain 851.5 (32.33) 5161 (390) 8.7 (0.8)
symmetrical.uncertainty840.2 (13.15) 4908 (189.5) 8.76 (0.4)
gain.ratio 830.3 (21.3) 4780 (210) 9 (0.4)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
chi.squared 1544 (37.8) 11771 (435) 23.5 (0.9)
information.gain 1641 (38.9) 12991 (443) 24.3 (0.9)
symmetrical.uncertainty1686 (27.3) 13041 (336) 25.7 (0.7)
gain.ratio 1588 (43.7) 12092 (545) 22.4 (1)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
chi.squared 708.1 (25.3) 3252 (218) 5.8 (0.4)
information.gain 712.6 (7.24) 2578 (120) 4.3 (0.3)
symmetrical.uncertainty716.4 (16.76) 2737 (150) 4.4 (0.3)
gain.ratio 705.4 (19.9) 2697 (284) 4.1 (0.6)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved

BSS 2015 (0) 4726 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
chi.squared 1078 (29.7) 7051 (414) 11.79 (0.8)
information.gain 1157 (18.9) 7950 (208) 15 (0.4)
symmetrical.uncertainty1195 (28.7) 8067 (341) 15.6 (0.7)
gain.ratio 1111 (17.4) 6678 (225) 13.39 (0.5)
VBS 353 (0) 353 (0) 0 (0)

in a clause. Relevant features are related to statistics on the degree1 of the
variable and clause nodes, giving a clue that information as how many times
a node is connected to others are important (it means how many times a
variable appears in different clauses). In the random dataset, interesting,

1The degree of a vertex in a graph is the number of edges incident to the vertex.

33

4.2 Experimental Results

Table 4.2: Results on the SAT benchmark, comparing the Virtual Best
Solver (VBS), the Best Single Solver (BSS), the original ISAC approach
(ISAC) and ISAC with feature filtering using the “Select the k most promis-
ing features” approach.

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
most promising features1025 (8.3) 6646.8 (46) 12.5 (0.5)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
most promising features1500 (32.7) 11521.6 (264) 22.8 (0.6)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
most promising features794 (5.1) 3248.3 (164.2) 5.4 (0.7)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved

BSS 2015 (0) 4726 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
most promising features1132 (13) 7125 (94.9) 13.3 (0.7)
VBS 353 (0) 353 (0) 0 (0)

are considered relevant features related to clustering in the Clause Graph
(where the graph has nodes representing clauses and an edge between two
clauses whenever they share a negated literal).

Survey propagation features come from an estimate of variable bias in
a SAT formula bases on probabilistic inference [38]. In particular it is esti-
mated the probability that each variable is required to be true or false, or
is unconstrained. Those features appear to be important as they are crucial
in determining the structure of an instance and its relatively hardness.

The last group of important features is the one related with clause learn-
ing and they are especially significant in the ALL dataset. Those features
are based on 2 seconds of running Zchaff rand [27]. What is measured is the
number of learned clauses and the length of the learned clauses after every
1000 search steps, computing statistics over the resulting vectors. These
features are highly dependent on the hardness of an instance, as the survey
propagation features, and this might be a reason why they are selected as
important during filtering.

34

4.2 Experimental Results

On the other side it might be interesting to look if there are some group
of features that are less likely to be selected in feature filtering. General
features as the one related to the number of variables and clauses seem not
to be important in the description of the instances. The same considera-
tion applies to balance features: the one describing the ratio of positive to
negative literals per clause, the ratio of positive to negative occurrences of
each variable and the fraction of unary, binary and ternary clauses. Another
group of features in general not selected with filtering are the one related to
the proximity to the Horn formula.

As can be seen in Fig. 4.1 it has been tried to understand how the
number of features considered can affect the results of ISAC. Depending on
which one of the four datasets considered the results are different but the
performances seem to be better under the assumption of using only 10 or
40 features, especially for the HAND and INDU datasets which were the
two datasets where feature filtering helped the most to improve. Moreover
for all the datasets increasing the number of features over 50-60 causes the
performances to decay. This behaviour was an expected behaviour as it
proves that increasing the number of features considered, and then using all
of them, is not necessary.

In Fig. 4.2 are reported the different runtimes on the four datasets ac-
cordingly to the reported feature filtering function and clustering technique
used. For the first time is available a numerical comparison between differ-
ent clustering techniques and gmeans results (except for the hand-crafted
dataset) to be the best approach to use. Another interesting thing that can
be easily noted is that, in general, what affects the most the performance
is not the feature filtering function used but the clustering technique. Is
useful to keep in mind that in the hand-crafted dataset gmeans doesn’t pro-
vide the best results while in Chapter 6 it will be presented SNNAP that in
this dataset, instead, achieves the biggest improvement among all the used
datasets.

The advantages in using gmeans over the other clustering techniques are
many. For example it is not needed to specify the number of desired clusters
which is, in the majority of the cases, unknown in advance. Also Xmeans
gives the same possibility but as seen in our experiment, and as presented
in the original paper [32], gmeans often shows better results. Hierarchical
clustering, on the other hand, needs to have specified the number of clusters,
resulting in a less attractive choice.

It has to be noted, moreover, that even if in the HAND dataset gmeans
didn’t prove to have the best result, its performances are not much worst
than the best performances obtained. In HAND the best result obtained by
gmeans is only the 8% worst thant the best achieved (XMeans): even if it
didn’t prove to be the best, the gap to be closed is not that big. Among
other three datasets INDU has been the one where gmeans obtained the
smallest gain (6% better than the best obtained by Xmeans). On the other

35

4.2 Experimental Results

Figure 4.1: The variation of the performances considering different numbers
of features.

hand in RAND and ALL gmeans has been the best being able improve by
a factor of 15% and 22%.

36

4.2 Experimental Results

Figure 4.2: How clustering techniques and feature filtering functions affect
performances.

(a) RAND dataset (b) HAND dataset

(c) INDU dataset (d) ALL dataset

37

4.3 Chapter Summary

4.3 Chapter Summary

The results outlined in this chapter clearly show that not all features
are necessary for clustering, and that it is possible to improve performance
through the careful selection of the features or, at least, to obtain similar
results. However, it can also be observed that the improvements can some-
times be minor, and are dependent on the filtering approach used and the
dataset it is evaluated on. In the RAND and ALL datasets the results after
feature filtering were comparable with the original approach: a positive sign
being that using a smaller feature space can result in a quicker and easier
analysis letting the user concentrate on other sides of the problem. The
situation is even better with the other two datasets were the performances
have been significantly improved.

These considerations are positive and promising as let the user concen-
trate on a smaller subset of the problem: dealing with only a few features
is more manageable, easier and quicker than having to deal with more than
a hundred.

38

Chapter 5

Refining the Feature Vector

As previously seen feature filtering gave promising results: using just
a subset of the original features it has been possible to achieve the same
(or slightly better) performances as using the full feature space. The next
step has been to try to exploit better the feature space in order to tackle a
wickness of how ISAC works: it has been noted that in the same cluster it
is possible to find instances that are very similar in the feature space but
very different when it comes to compare the performances of the solvers.
The aim of clustering applied to this problem should be to be able to group
together instances that show similar performances among the solvers. In
this way the solver assigned to each cluster whould have optimal results
with, idealistically, all the instances in the cluster. The case in which all
the instances in the same cluster prefer to be solved by the same solver, and
this is true for all the detected clusters, will be called perfect clustering.

The first thing tried has been to create a technique that would redefine
the distance metric used (euclidean) by ISAC in order to include, in some
way, the knowledge of the solver’s performance in the calculation. Being that
clustering works by constantly evaluating the distances among instances and
grouping together the closest ones, the idea, described in this chapter, has
been to learn a new distance metric hoping that, when it comes to calculate
the distance between two instances, the ones that prefer to be solved by the
same set of solvers are put near each other in the space.

5.1 Weighted Distance Metric

While the original version of ISAC employs Euclidean distance for clus-
tering, there is no reason to believe that this is always the best distance
function to use for the problem. As an alternative it is possible to think
to learn a weighted distance metric, where the weights are tuned to match
the desired similarity between two instances. For example, if two instances
have the same best solver, then the distance between these two instances

39

5.1 Weighted Distance Metric

should be small. Alternatively, when a solver performs very well on one
instance, but poorly on another, it might be desirable for these instances to
be separated by a large distance.

One of the first thing that has been tried has been to use linear regression.
Given a target numeric variable Y and a set of numeric input variables
(features) Xi, linear regression tries to learn weights wi such that Y can be
approximated as

∑
iwiXi. Given two instances a and b their distance can

be expressed as

d(a, b) =

√∑
i

wi(Xia −Xib)
2

When wi = 1,∀i then the distance is, by definition, the euclidean dis-
tance. In the case presented here, instead, through linear regression is in-
teresting to find different weights to see if it is possible to achieve better
results. Using different weights wi means accepting the possibility that not
all the features should have the same importance when evaluating the dis-
tance between instances: the assumption behind euclidean distance is that
all the features contribute with the same importance to determine the dis-
tance (and this is the reason why before applying clustering all the features
should be normalized so that every feature ranges in the same interval, usu-
ally [-1,1]). The purpose of learning a new distance metric, instead, is to
understand if it is possible to give to some features more importance than
others.

What remains next is to define the target variable Y , which represents
the desired distance that is wanted among instances. Many trials have been
made, for example if sa is the solver with the best performance on instance a
and sb is the solver with the best performance on instance b and r is a given
function that, given in input an instance and a solver returns the runtime
of that solver on the instance, then is possible to define their distance (it is
going to be the Y of the linear model) as

d(a, b) =
√

(r(a, sa)− r(b, sa))2 + (r(a, sb)− r(b, sb))2

In this way it is going to be measured how much the performance are pe-
nalized if for solving instance a the best solver of instance b is used and vice
versa, thus grouping together instances that prefer to be solved by the same
solvers.

The procedure followed to learn the distance metric is the following (still
considering Xi as the numeric input variables):

• Select n instances at random (for example n = 50);

• Create a table with
(n
2

)
rows and a number m of columns equal to the

number of features;

40

5.2 Extending the Feature Space

• For every combination i, j of the n chosen instances compute the vector
of m components calculated as (Xia −Xib)

2. For all i and j store the
result in a row of the table;

• For every row of the table attach a new component (called Y) with
the desired target value;

• Now is possible to run a linear regression model that will calculate the
most appropriate coefficient wi for predicting the target variable Y.

After this calculation the linear regression model will return the most
appropriate weights wi which can be used in a prediction phase when it is
needed to know the distance between two instances. Unfortunately, even if
it has been tried to define different target variables Y the results have been
very poor.

One reason of the unsuccess of this approach is the difficulty by which
linear models are able to describe such a function. As can be seen in Fig. 5.1
on the x axes there is the actual distance between instances (the actual value
of the target variable Y), while on the y axes there is the predicted distance
evaluated applying the weights learned from the linear model (it would be
expected to see the points following the red line, as it indicates almost
perfection in the predicting phase). It is easy to see that the two measures
almost never agree, so if two instances are supposed to be close each other
they might be put far away by the just learned distance metric.

In addition to what has already been said there are also some other
reasons behind the bad performance: firstly, while it is known that some
instances should be closer or farther from each other, the ideal magnitude
of the distance cannot be readily determined; secondly, the effectiveness of
the distance function depends on nearly perfect accuracy in the prediction
phase since any mistake can distort the distance space (it is not known
how the distance function should behave, if in addition to this there are
errors in the prediction phase the resulting function is far away from the
ideal one); thirdly, the exact form of the distance function is not known. It
is, for example, acceptable that even though two instances share the same
best solver, they should nevertheless be allowed to be in opposite corners
of the distance space. It is not necessary that every instance preferring the
same solver is placed in the same cluster, but instead is better to avoid
contradictory preferences within the same cluster.

5.2 Extending the Feature Space

Due to these complications, other methodologies for refining the feature
vector have been proposed. Specifically (going against the principle of fea-
ture filtering) it has been proposed to extend the usual feature vector. The

41

5.2 Extending the Feature Space

Figure 5.1: Scatter plots of Linear Model on HAND dataset

experiments done in this direction, even if the results haven’t been satisfy-
ing, will help in the creation and development of SNNAP. The main idea
behind this is that for achieving the perfect clustering the performances of
the solvers in the portfolio should be, in some way, taken into consideration
when calculating the distance between instances.

One possibility for achieving this goal is to take, for each instance, the
vector describing the performances of the solvers in the portfolio and to
scale these runtimes between -1 and +1. In this setting, for each instance,
the best performing solver is assigned a value of -1, while the worst per-
forming is assigned to 1. Everything in between is scaled accordingly. This
new vector is attached to the normal feature vector giving a space with a
bigger dimensionality. The clustering, then, is done on this new extended
feature space, using the Euclidean distance metric. This approach is easily
applicable to the training instances: those for which the performances for
the solvers are known. Unfortunately in the tesing set those performances

42

5.3 Analysis

are unknown and for solving this issue it has been decided to set those new
features to 0 as a mid point.

In Table 5.1 are represented the results. Here BSS is the approach of
solving all the instances in the testing set with the solver that have the
best performance on the whole training set; VBS, instead, is an oracle that
solves each instance in the testing set with its own best solver. The columns,
together with the percentage of not solved instances, report both the average
running time, both the average PAR10 (a penalized average of the runtimes:
for each instance that is solved within the timeout threshold, the actual
runtime in seconds denotes the penalty for that instance, instead for each
instance that is not solved within the time limit, the penalty is set to 10 times
the original timeout). In parenthesis are reported the standard deviations.
The averages and the standard deviations are calculated from executing the
experiments 10 times.

It can be easily seen that the performance of this approach (called Norm-
Times ISAC) have been really poor: never comparable with the running
times of the normal ISAC. The main reason was that in extending the fea-
ture space too many solvers have been taken into consideration during the
computation of the new features, thus putting too many constrains in the
distance calculation.

As an alternative, with better results, it has been considered that match-
ing the performance of all solvers is too constraining. Implicitly ISAC as-
sumes that a good cluster is one where the instances all prefer the same
solver. For this reason it has been decided to take into account only the per-
formance of the best two solvers per each instance. This was accomplished
by extending the normal set of features with a vector of new features (one
per each solver), and assigning a value of 1 to the components corresponding
to the best two solvers and 0 to all the others. In the testing set, since are
not known which are the best two solvers before hand, all the new features
are set to the constant value of 0. As can be seen in Table 5.1, depending on
which of the four datasets was used different results were achieved (this ap-
proach is called bestTwoSolv ISAC): it can be observed a small improvement
in the hand-crafted and industrial datasets, while for the other two datasets
the results were almost the same as the pure ISAC methodology. This can
be taken as a good news as, at least, performances weren’t weakened.

5.3 Analysis

The first idea presented in this chapter has been developed with a precise
scope: ISAC showed some issues as it comes to evaluating the quality of
the discovered clusters. It is highly probable that in the same cluster are
put instances which show completely different level of hardness in terms of
solving: this doesn’t come as a good news as ISAC relies heavily on the

43

5.3 Analysis

Table 5.1: Results on the SAT benchmark, comparing the Best Single Solver
(BSS), the Virtual Best Solver (VBS), the original ISAC approach (ISAC),
the ISAC approach with extra features coming from the running times:
“NormTimes ISAC” has the normalized running times while “BestTwoSolv
ISAC” takes into consideration just the best two solvers per each instance.

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
NormTimes ISAC 1940 (9.1) 15710 (133.2) 30 (1.1)
BestTwoSolv ISAC825.6 (5.7) 4561 (87.8) 8.1 (0.2)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
NormTimes ISAC 1853 (37) 14842 (310.7) 28.3 (1.3)
BestTwoSolv ISAC1725 (29.2) 13884 (124.4) 26.5 (0.8)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
NormTimes ISAC 934.3 (5.4) 5891 (187.8) 10.8 (1.4)
BestTwoSolv ISAC750.5 (2.4) 2917 (157.3) 4.7 (0.4)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2015 (0) 4727 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
NormTimes ISAC 1151 (13.2) 6923 (170.6) 12.5 (0.8)
BestTwoSolv ISAC1019 (11.5) 6484 (172.3) 11.9 (0.3)
VBS 353 (0) 353(0) 0 (0)

descriptivity of the features in order to find a hidden structure that should
be revealed with clustering. In Chapter 4 has been tried to see if filtering
non relevant features might help the procedure improving the quality of
clustering. This has been the first approach but, obviously, not the only one
possible. The main quest has been to answer to the question: is it possible
to help in some way clustering?

The idea of learning a new distance function has been promising but
it didn’t prove to be beneficial: the general assumption behind euclidean
distance (all features have the same importance) is the opposite of the idea
behind feature filtering (there are some features more important than oth-
ers). Unfortunately the obtained results didn’t prove the hypothesis but,
nevertheless, it doesn’t have to be considered a dead end. The reason why

44

5.4 Chapter Summary

the approach failed has to be looked in the difficulty of setting an appro-
priate target variable Y that is able to describe the wanted relationship
among instances. It is unknown how two instances should relate themselves
when they show similar performances: it is not obvious that they should
be close together. And even if the assumptions behind Y were correct it
has been found that the hard part is to be able to predict the distance us-
ing a linear regression model. The reason why has been chosen to rely on
linear regression is that is an easy and quick model. Once the weights wi

have been learnt is just a matter of pluggin them in when evaluating the
distance among instances. In case of using a more complex predictive model
the results might be more precise but the calculation would be much slower,
which is simply not feasible in settings with thousands of instances.

The second tried approach dealed with directly extending the feature
space with some information coming from the performance of the solvers.
The drawbacks of this technique are two-fold. Firstly, the performance of
the solvers is not available prior to solving a previously unseen test instance
and for this reason some decision has to be made in order to deal with those
missing values in previously unseen instances. Secondly, even in the case in
which the new added features are helpful in determining a better clustering,
there is usually a large number of original features that might be resisting
the desired clustering. At last is not known how to actually extend the
features vector: here have been presented two possibilities but, obviously,
they are not the only ones.

It would be interesting here to study and develop some techniques that
would be able to analyse the current clustering and create some ad-hoc
features with the precise scope of modifying grouping of the instances and
moving them from cluster to cluster.

Yet even though these extensions to the feature vector did not provide
a compelling case to be used instead of the vanilla ISAC approach, they
nonetheless supported the assumption that by considering solver perfor-
mances on the training data it is possible to improve the quality of the
overall clustering. This has inspired the Solver-based Nearest Neighbor ap-
proach that will be described in the next chapter.

5.4 Chapter Summary

Taking an approach completely on the opposite side respect to the pre-
vious chapter this one is related to the exploration of different techniques
for extending the feature space instead of reducing it. The ultimate goal is
adding new features in a way to help clustering to achieve a perfect group-
ing: the one in which instances that prefer to be solved by the same set
of solvers are grouped together in the same cluster or, at least, where are
avoided contradictory preferences within the same cluster.

45

5.4 Chapter Summary

Even if it has not been possible to significantly improve the performance
of the standard ISAC methodology at the end of the chapter has been pre-
sented a technique that shows that is possible in some way to help clustering:
furthermore this technique, or even better the idea behind it, is the starting
point for the development of the here presented SNNAP methodology.

46

Chapter 6

SNNAP: Solver-based
Nearest Neighbor for
Algorithm Portfolios

It is important, at this point, to have in mind what is the ultimate
goal: the only way to improve the vanilla ISAC methodology is to tweak
the system in order to achieve a better clustering that will help to find the
optimal solvers for solving the instances. Getting a better clustering means
that is highly wanted to have a grouping of the instances such that all the
instances in one cluster prefer to be solved by the (idealistically) exact same
solver, or at least the loss in performance in solving one instance with the
chosen solver is small.

There are two main takeaway messages from extending the feature vec-
tor with solver performances as seen before. First, the addition of solvers
performance can be helpful, but the inclusion of the original features can be
disruptive for finding the desired cluster. Second, it is not necessary to find
instances where the relation of every solver is similar to the current instance.
It is, in general, enough to just know the best two or three solvers for an
instance. Using these two ideas is here introduced SNNAP [15], presented
and described in Algorithm 4.

The methodology moves from what has been proposed before because
clustering will not be used anymore in favour of a k -NN approach (that
can be seen as dynamic clustering). Every instance will be solved using
the best solver among its k nearest instances in the training set. Moreover
random forests will also be used [39]. Random forests are machine learning
methods that make their decisions based on the results of a set of decision
trees constructed at random.

47

6.1 Algorithm

6.1 Algorithm

The starting point is a dataset composed by a list of training instances
T. The dataset can be split in two parts, where each row corresponds to
one instance: the first part is represented by the features vectors F, while
the second part by the running times R of every solver in the portfolio. For
example in the RAND (SAT) dataset the input is a table (dataset) with 1949
rows and 144 columns of which the first 115 are features and the remaining
29 are runtimes.

The second thing has been to scale the running times of the solvers on
one instance so that the scaled vector will have a mean of 0 and unitary
standard deviation. Doing so, for every instance, every solver that behaves
better than one standard deviation from the mean will receive a score less
than -1, the solvers which behaves worse than one standard deviation from
the mean a score greater of 1, and the others will lie in between. This scaling
is done for every instance in the training set. This kind of scaling has been
crucial in helping the following phase of prediction. As it is obvious at this
point the model will not be trained to predict the actual run times, but
will be trained to predict just when a solver will perform much better than
usual.

The following phase is responsible for training a single model PM for
every solver in the portfolio to predict the expected performance on a given
instance. This means that based on the features of the instances of the
training set m models (in the SAT competition m = 29 as the number of
available solvers) are trained for the purpose of being able to predict the
performance of all the solvers on the testing set. The employed predictive
model are random forests. These models for being trained need in input
the training instances T, their features F and their scaled running times R̄.
Earlier has been claimed that such models are difficult to train properly since
any misclassification can result in the selection of the wrong solver. In fact,
this was partly why the original version of ISAC outperformed these types
of regression-based portfolios. Clusters, on the other hand, provide better
stability of the resulting prediction of which solver to choose. However, here,
the purpose is not to use the trained models to predict the single best solver
to be used on each instance but the goal is just to know which set of solvers
are going to behave better on a particular instance compared to the other
solvers in the portfolio. Here using the scaled running times instead of the
actual running times makes no difference, the best solver will still have the
lowest (scaled) running time.

The second phase is the one related to the prediction part: given a
previously unseen instance SNNAP wants to predict which solver will be
the best to solve it. The procedure is presented with a previously unseen
instance x, the prediction models PM (one per each solver) previously built,
the training instances T, their running times R (and the scaled version R̄),

48

6.1 Algorithm

Algorithm 4 Solver-based Nearest Neighbor for Algorithm Portfolios

1: function SNNAP-Train(T, F,R)
2: for all instances i in T do
3: R̄i ← Scaled(Ri)
4: end for
5: for all solver j in the portfolio do
6: PMj ← PredictionModel(T, F, R̄)
7: end for
8: return PM
9: end function

1: function SNNAP-Run(x, PM, T,R, R̄, A, k)
2: PR← Predict(PM,x)
3: dist← CalculateDistance(PR, T, R̄)
4: neighbors← FindClosestInstances(dist, k)
5: j ← FindBestSolver(neighbors,R)
6: return Aj(x)
7: end function

the portfolio of solvers A and the size of the desired neighborhood k. The
procedure first uses the prediction models to infer the performances PR of
the solvers on the instance x, using its originally known features. With this
step the algorithm will have a vector of dimension m (the number of solvers)
and in each bucket there will be a prediction about the performance of the
solver on the instance. SNNAP then continues to use these performances to
compute a distance (as will be described later) between the new instance and
every training instance (the result of this calcualtion is a matrix with one
row and |T | columns, each bucket will have the distance between instance x
and each instance in the training set), selecting, then, the k nearest among
them. The distance calculation takes into account only the scaled running
time of the instances of the training set and the predicted performances PR
of the different solvers on the instance x. At the end the instance x will be
solved using the solver that behaves better (measured as the average running
time) on the k neighbors previously chosen.

It is worth highlighting again that the procedure is not trying to predict
the actual running times of the solvers on the instances but, after scaling,
predicts a ranking among the solvers on a particular instance: which will
be the best, which the second best, etc. Moreover, as shown in the next
section, is not necessary learning a ranking among all the solvers, but just
among a small subset of them, specifically for each instance which will be
the best n solvers, with n a small number (typically from 2 to 4).

49

6.1 Algorithm

6.1.1 Choosing the Distance Metric

The k -nearest neighbors approach is usually used in conjunction with
the weighted Euclidean distance; unfortunately the Euclidean distance does
not take into account the performances of the solvers in a way that is helpful
to the purpose of SNNAP. The message that can be taken from the previous
chapter is that it is possilbe to intelligently use the performances of the
solvers in the grouping phase, so that the performance of the approach can
be significantly improved.

The issue behind the euclidean distance is that it takes into account only
the features of the instances, but they don’t give any clue on the solving
times. Instead of the usual Euclidean distance what is needed is a distance
metric that takes into account the performances of the solvers. Moreover
recalling that the SNNAP procedure has a predicting phase where it tries to
predict a ranking among solvers on a particular instance is crucial that the
chosen distance metric would allow the possibility of making some mistakes
in the prediction phase without too much prejudice on the overall perfor-
mances. Thus the metric should be trained with the goal that the k -nearest
neighbors always prefer to be solved by the same solver while instances that
prefer different solvers are separated by a large margin.

Given two instances a, b and the running times of the m algorithms in the
portfolio A on both of them Ra1 , . . . Ram and Rb1 , . . . Rbm , SNNAP identifies
which are the best n solvers on each (Aa1 , . . . Aan) and (Ab1 , . . . Abn) and
define the distance between a and b as a Jaccard distance:

1− |intersection((Aa1 , . . . Aan), (Ab1 , . . . Abn))|
|union((Aa1 , . . . Aan), (Ab1 , . . . Abn))|

Using this definition two instances that will prefer the exact same n
solvers will have a distance of 0, while instances which prefer completely
different solvers will have a distance of 1. Moreover, using this kind of
distance metric it is no longer important making small mistakes in the pre-
diction phase: even if the ranking between the best n solvers is switched the
distance between two instances will remain the same. In the experiments, in
general, has been set arbitrarly n = 3, as with higher values the performance
degrades.

Previous attempts

Before coming up with the idea of the just defined distance metric other
possibilities have been tried but, unfortunately, they didn’t give the expected
results.

One idea that was supposed to give good results was based on the fol-
lowing assumption: if a solver solves an instance in 2 seconds it is not much
different than solving it in 9 seconds, as well 300 seconds is more or less

50

6.1 Algorithm

Table 6.1: Example of an erroneous prediction.

S1 S2 S3 S4 S5

a 13 5100 5100 15 87
b 256 5100 5100 200 787

equivalent to 800 seconds. The runtimes can be divided per order of mag-
nitude, stating that solvers are equivalent in case they are able to solve one
instance in the same order of magnitude of time.

At this point assume that it is known that the fastest solver on a par-
ticular instance solves it in order of 102, for this purpose it can be said
that is equivalent to solve it with another solver that is able to solve it in
the same order of magnitude of time. Given that at this point are known
(in the training set) all the solvers that solve a particular instance in the
lowest order of magnitude (it is not important whether it is 100, 101, . . .)
those solvers can be used to define the distance metric as defined before (as
a Jaccard distance).

As before there is also a predicting phase, given that in the testing set is
not possible to know the actual running times of the solver on the instances:
it is sufficient to be able to predict the order of magnitude in which a solver
will solve the instance. This task may seems easy: the categories to be
predicted are only five (100, 101, 102, 103 and “timeout”). Unfortunately the
classes are highly unbalanced, with the vast majority of instances in the
103 and “timeout” categories. This means that just predicting everything
to be in the majority class gives a high accuracy1 (∼ 80− 85%). Moreover
with this kind of distance metric even the smaller mistakes in the predicting
phase cause two instances that should be close each other to fall far away in
the space.

Here is just a small example that shows the drawbacks of an erroneous
prediction with this approach. Assume that the dataset has 5 solvers Si and
there are two instances: a and b. Table 6.1 gives the running times of the
solvers on the two instances (5100 are timeouts).

For instance a the best solvers are S1 and S4, that are exactly the same
as for instance b, so using the Jaccard distance the distance between a and
b is 0, even if the magnitude between the two instances are different (101 for
a and 102 for b). Suppose now that instance b has never been seen before
so SNNAP has to predict the performances of the solvers. Unfortunately
the predictive models make one small mistake and predict the following
magnitude for instance b: (102, 101, ”timeout”, 102, 102), so the magnitude
of solver S2 is uncorrect. Now the distance between a and b is 1, exactly
the maximum distance possible. With the distance metric used by SNNAP,

1Predictions correctly made.

51

6.2 Numerical Results on SAT

instead, (and considering only the best three solvers) the distance is 0.5, so
a better estimate.

6.2 Numerical Results on SAT

In the carried experiments (for the SAT datasets), using the Jaccard
distance metric, for each instance it is sufficient to know which are the n best
solvers. In the prediction phase, as already stated, are used random forests
which achieved high levels of accuracy: as seen in Table 6.2 the accuracy
levels are 91, 89, 91 and 91% (respectively RAND, HAND, INDU and ALL
datasets) of the predictions. These percentages have been calculated in
the following manner: there are 29 predictions made (one per each solver)
per each instance, giving a total of 5626, 1044, and 2320 predictions per
category. The accuracy is then defined as the percentage of matches between
the predicted best n solvers and the true best n. To compute the accuracy it
is useful to think of two matrices (one the real matrix and one the predicted
matrix). Both matrices are binary: filled with zeroes and ones. Here ones
represent entries corresponding to the top three solvers per each instance,
and zeroes are for everything else. The accuracy is then the percentage of
cells with the same value in the two matrices.

As seen before is not important to be able to make those predictions
with nearly perfection: the achieved accuracies are precise enough for the
scope.

Table 6.2: Statistics of the four datasets used: instances generated at
random “RAND”, hand-crafted instances “HAND”, industrial instances
“INDU” and the union of them “ALL”.

RAND HAND INDU ALL

Number of instances considered 1949 363 805 3117
Number of predictions 5626 1044 2320 9019
Accuracy in the prediction phase 91% 89% 91% 91%

Having tried different parameters has been choosen arbritrarly to take
into consideration only the performance of just the n = 3 best solvers in
the calculation of the distance metric and a neighborhood size of k = 60.
Choosing a larger number of solvers may lead to a loss in the results. This
is most likely due to scenarios where one instance is solved well by just a
limited number of solvers, while all the others time out.

In Table 6.3 are reported the results. Here BSS is the approach of solving
all the instances in the testing set with the solver that have the best perfor-
mance on the whole training set; VBS, instead, is an oracle that solves each
instance in the testing set with its own best solver. The columns, together

52

6.2 Numerical Results on SAT

Table 6.3: Results on the SAT benchmark, comparing the Best Single Solver
(BSS), the original ISAC approach (ISAC), the SNNAP approach (SNNAP)
(also with feature filtering) and the Virtual Best Solver (VBS)

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
SNNAP 791.4 (15.7) 4119 (207) 7.3 (0.2)
SNNAP + Filtering723 (9.27) 3138 (76.9) 5.28 (0.1)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
SNNAP 1063 (33.86) 6741 (405.5) 12.4 (0.4)
SNNAP + Filtering995.5 (18.23) 6036 (449) 10.5 (0.4)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
SNNAP 577.6 (21.5) 1776 (220.8) 2.6 (0.4)
SNNAP + Filtering540 (15.52) 1630 (149) 2.4 (0.4)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2015 (0) 4727 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
SNNAP 744.2 (14) 3428 (141.2) 5.8 (0.2)
SNNAP + Filtering692.9 (7.2) 2741 (211.9) 4.5 (0.1)
VBS 353 (0) 353 (0) 0 (0)

with the percentage of not solved instances, report both the average running
time, both the average PAR10 (a penalized average of the runtimes: for each
instance that is solved within the timeout threshold, the actual runtime in
seconds denotes the penalty for that instance, instead for each instance that
is not solved within the time limit, the penalty is set to 10 times the original
timeout). In parenthesis are reported the standard deviations. The averages
and the standard deviations are calculated from executing the experiments
10 times.

In this case the best improvement, as compared to the standard ISAC,
is achieved in the Hand-crafted dataset. Not only are the performances
improved by a factor of 40%, but also the percentage of unsolved instances
is halved; this also has a great impact on the PAR10 evaluation. It is
interesting to note that the hand-crafted dataset is the one that proves to
be most difficult, in terms of solving time, while being the setting in which

53

6.2 Numerical Results on SAT

is achieved the most improvement.
A significant improvement is also achieved, although lower than that

with the Hand-crafted dataset, on the Industrial and ALL (∼ 25% and
27%) datasets. Here the number of unsolved instances was also halved. In
the random dataset has been accomplished the lowest improvement but, yet,
it was possible to overtake significantly the standard ISAC approach.

Interesting, as seen in chapter 4, the Hand-crafted dataset was the only
one were gmeans didn’t prove to be the best clustering technique to use.
Being that, on the opposite side, SNNAP produced the best improvement
in this dataset, is possible to conclude that ISAC, with gmeans, is not able
to exploit at its best the feature space of those instances.

Being that feature filtering achieved promising results with ISAC it has
been tried to apply feature filtering also to SNNAP and the results are
shown in Table 6.3. Feature filtering is again proving beneficial, significantly
improving the results for all our datasets and giving, again, a clue that not
all 115 features are essential. Results in the table have been reported only
for the more successful ranking function (gain.ratio for the Random dataset,
chi.squared for Hand-crafted and Industrial and the overAll dataset).

These consistent results for SNNAP are encouraging. In particular, it
is clear that the dramatic decrease in the number of unsolved instances is
highly important, as they are a key in lowering the average and the PAR10
scores. This result can also be observed in Table 6.4, where are presented the
percentage of instances solved/not solved by each approach. In particular
the most significant result is achieved, again, in the HAND dataset where
the number of instances not solved by ISAC, but solved by SNNAP is 17.4%
of the overall instances, while the number of instances not solved by SNNAP
but solved by ISAC is only 3.3%. This difference is also considerable in the
other three datasets. Deliberately, it has been chosen to show this matrix
only for the version of ISAC and SNNAP without feature filtering as it offers
an unbiased comparison between the two approaches, as has been shown that
ISAC does not improve significantly after feature filtering.

Another useful statistic is represented by the number of times that an
approach is able to select the best solver for a given instance. In the random
dataset SNNAP is able to select the best solver for 39% of the instances, as
compared with 35% for ISAC. For the Hand-crafted dataset those values are
25% and 17%, respectively, for the Industrial 29% and 21%, respectively,
and for the ALL 32% and 26%, respectively. These values suggest that
ISAC is already behaving well on the RAND dataset and, for this reason,
the improvement achieved with this new approach is smaller in that case,
while the improvement is more significant in the other three datasets. These
results also show that there is still room for further improvement.

Continuing in the analysis of the results it is useful to analyse the fre-
quencies with which the solvers are chosen by the three strategies for the
SAT dataset: the Virtual Best Solver (VBS), the Best Single Solver (BSS),

54

6.2 Numerical Results on SAT

Table 6.4: Matrix for comparing instances solved and not solved using
SNNAP and ISAC for the four datasets: RAND, HAND, INDU and ALL.
Values are in percentages.

RAND
SNNAP \ISAC Solved Not Solved

Solved 89.4 3.3
Not Solved 2.5 4.8

HAND
SNNAP \ISAC Solved Not Solved

Solved 70.2 17.4
Not Solved 3.3 9.1

INDU
SNNAP \ISAC Solved Not Solved

Solved 93.9 3.5
Not Solved 0.9 1.7

ALL
SNNAP \ISAC Solved Not Solved

Solved 85.8 8.4
Not Solved 2.4 3.4

ISAC and SNNAP. Table 6.5 presents the frequency with which each of
the 29 solvers in the portfolio were selected by each strategy, highlighting
the best single solver (BSS) for each category. In this table is clear that
ISAC tends to favor selecting the Best Single Solver, instead of choosing the
Virtual Best Solver (VBS). This is particularly visible in the Hand-crafted
dataset: the BSS (15) is chosen only in 8% of the instances by the VBS,
while it is the more frequently chosen solver by ISAC. Note also that in the
ALL dataset the VBS approach never chooses the BSS, while this solver is
one of the top three chosen by ISAC. On the other hand, the more often a
solver is chosen by the VBS, the more often it is chosen by SNNAP. This big
discrepancy between the VBS and BSS in this dataset is one of the reason for
the poorer performance of ISAC and one of the reasons for the improvement
observed when using SNNAP.

6.2.1 Tuning the parameters for SNNAP

Until now has been decided to arbitrarly decide to consider only 3 solvers
in the evaluation of the Jaccard distance metric and to use a k -nn approach
with a fixed k = 60 independently on the dataset used.

The developed software, instead, gives to the user the possibility to find
automatically which is the best setting for those two parameters. Trivially
are tried all the combinations of the two parameters inside a fixed range
(e.g.: from 2 to 10 solvers and with k between 20 and 120).

Interestingly, as shown in Fig. 6.1 the size of the neighborhood doesn’t
affect significantly the performance for SNNAP: with a fixed number of
solvers the performances remain comparable with different values of k. The
behaviour is specially visible in the two datasets with the biggest number

55

6.2 Numerical Results on SAT

Table 6.5: Frequencies of solver selections for VBS, ISAC and SNNAP. Re-
sults are expressed as percentages and entries with value < 0.5 have been
reported as ’-’. In bold the top three solvers for each approach are iden-
tified. Reported are also the Best Single Solver (BSS) for each dataset.
Solvers are: 1: clasp-2.1.1 jumpy, 2: clasp-2.1.1 trendy, 3: ebminisat, 4:
glueminisat, 5: lingeling, 6: lrglshr, 7: picosat, 8: restartsat, 9: circmin-
isat, 10: clasp1, 11: cryptominisat 2011, 12: eagleup, 13: gnoveltyp2, 14:
march rw, 15: mphaseSAT, 16: mphaseSATm, 17: precosat, 18: qutersat,
19: sapperlot, 20: sat4j-2.3.2, 21: sattimep, 22: sparrow, 23: tnm, 24: cryp-
tominisat295, 25: minisatPSM, 26: sattime2011, 27: ccasat, 28: glucose 21,
29: glucose 21 modified.

R
A
N
D

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

B
S
S

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1
0
0

-
-

V
B

S
-

-
-

-
-

-
-

-
-

-
-

1
7

6
1
9

2
-

-
-

-
-

3
1
8

5
-

-
4

2
4

-
-

IS
A

C
-

6
1

-
-

-
-

-
-

-
-

8
-

2
0

-
1
2

-
-

-
-

-
-

-
-

-
-

5
2

-
-

S
N

N
A

P
-

5
-

-
-

-
-

-
-

-
-

3
1

2
7

2
2

-
-

-
-

0
1
2

4
-

-
2

4
1

-
-

H
A
N
D

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

B
S
S

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1
0
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

V
B

S
-

3
1

2
2

1
7

-
1

1
3

4
-

5
7

8
1

3
2

-
1

7
1
0

5
3

1
6

3
2

2
IS

A
C

-
2
2

2
1

1
1

2
-

-
1

-
2

-
1

4
0

-
-

-
-

-
-

2
6

-
-

-
-

-
-

-
S
N

N
A

P
-

1
0

1
1

1
-

-
-

-
3
2

-
-

-
1

2
5

-
-

-
-

-
2

4
-

4
-

1
9

-
-

-

IN
D
U

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

B
S
S

-
-

-
-

1
0
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

V
B

S
-

5
1

3
1
5

8
3

2
5

4
4

-
-

-
3

1
1

9
-

-
-

-
-

4
5

-
-

2
0

3
IS

A
C

-
1

-
1

3
1

5
-

-
6

-
1
7

-
-

-
-

-
-

5
-

-
-

-
-

-
2

-
-

3
2

-
S
N

N
A

P
-

1
-

1
3
8

-
-

-
-

-
2

-
-

-
4

1
-

1
9

-
-

-
-

-
4

-
-

-
2
9

-

A
L
L

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

B
S
S

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1
0
0

-
-

-
-

-
-

-
-

-
-

-
-

-
V

B
S

-
2

-
1

4
2

2
1

1
3

2
1
1

4
1
3

3
-

1
3

-
-

3
1
3

4
2

1
3

1
5

5
1

IS
A

C
-

6
1

1
1
4

-
-

-
2

-
-

2
-

1
2

5
1
2

-
-

-
-

-
4

-
4

-
2

3
1

2
-

S
N

N
A

P
-

5
-

1
1
0

-
-

-
-

3
-

2
1

1
8

2
5

-
3

-
-

-
1
1

2
3

-
2

2
4

4
3

56

6.2 Numerical Results on SAT

Figure 6.1: How varying the size of the neighborhood and the number of
solvers considered affects performances.

(a) RAND dataset (b) HAND dataset

(c) INDU dataset (d) ALL dataset

57

6.3 Numerical Results on MaxSAT

of instances (RAND and ALL), while for the other two datasets the plots
show that it is better choosing a size of the neighborhood less than 70-90
instances.

The performances, on the other hand, are much more affected by the
variation in the number of solvers used in the calculation of the distance
metric. This behaviour could be explained analysing the dataset: most
of the instances are solved by a small number of solvers while the others
are in time-out. As a silly example consider the two instances in Tab. 6.6:
if considering only 3 solvers their distance is 0. If instead the number of
solvers to be considered is increased to 4 then their distance become 3/7(for
instance a all the solvers are then considered as S1, S2, S6, S7 have equal
performances). On the opposite side than before, here, the datasets affected
the most by the variations in the number of solvers are the RAND and ALL.

Table 6.6: Erroneous evaluation taking into account too many solvers.

S1 S2 S3 S4 S5 S6 S7

a 5100 5100 103 657 1430 5100 5100
b 5100 5100 1 37 22 766 5100

6.3 Numerical Results on MaxSAT

In this section are going to be presented the results on a different dataset:
the instances come from the problem of Maximum Satisfiability (MaxSAT)
which has been presented in chapter 3.

Initially the dataset is composed by 2679 instances, 38 features each and
the recorded running times of 14 solvers; the instances that remain after
that the ones deemed too easy and the ones not solved by any solver have
been filtered out are 2162.

The results of ISAC and SNNAP on this dataset are presented in Tab. 6.7.
Here BSS is the approach of solving all the instances in the testing set with
the solver that have the best performance on the whole training set; VBS,
instead, is an oracle that solves each instance in the testing set with its
own best solver. The columns, together with the percentage of not solved
instances, report both the average running time, both the average PAR10
(a penalized average of the runtimes: for each instance that is solved within
the timeout threshold, the actual runtime in seconds denotes the penalty for
that instance, instead for each instance that is not solved within the time
limit, the penalty is set to 10 times the original timeout). In parenthesis are
reported the standard deviations. The averages and the standard deviations
are calculated from executing the experiments 10 times.

The feature filtering function used has been chi.squared, the size of the

58

6.3 Numerical Results on MaxSAT

neighborhood for SNNAP has been set to 25 and the number of solvers
considered is 2.

Compared to previous results the first thing to note is that the number
of instances non solved by the approaches is very small (between 1 and 5
instances); this is caused by the really good performances of the solvers
in the portfolio. Moreover, it is worth to be reminded, instances deemed
too hard (not solved by any solver) or too easy have been deleted from the
dataset.

Also for MaxSAT the gain obtained by using SNNAP compared to ISAC
is significant but, on the opposite hand, feature filtering doesn’t prove to be
significantly beneficial (in ISAC is even worst). The reason has to be looked
in the fact that the instances in the dataset have already few features (38 in
MaxSAT compared to more than a hundred in SAT).

Table 6.7: Results on the MaxSAT benchmark, comparing the Best Single
Solver (BSS), the original ISAC approach (ISAC) (also with feature filter-
ing), the SNNAP approach (SNNAP) (also with feature filtering) and the
Virtual Best Solver (VBS)

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 891.9 (0) 891.9 (0) 0 (0)
ISAC 276 (4.9) 278 (6.8) 0.1 (0.1)
ISAC + Filtering 333.2 (18.5) 333.2 (18.5) 0.1 (0.1)
SNNAP 148.1 (9.7) 159.4 (22) 0.1 (0.2)
SNNAP + Filtering155.1 (11) 181.1 (21) 0.2 (0.2)
VBS 87.54 (0) 87.54 (0) 0 (0)

As done previously with SAT is it useful to compare the used solvers
by ISAC and SNNAP. The analysis is presented in Fig. 6.2. The Best
Single Solver for this dataset is ShinMaxSat. It is clear as even in this
case ISAC tends to select the BSS too often (is the most preferred solver
by the approach), while SNNAP is able to differentiate itself and the most
selected solver is PM2. PM2, moreover, is the most selected solver by the
VBS (26.2% of the instances), while ShinMaxSat is selected in the 25.1%
of the cases. ISAC is able to select the VBS for the 37.6% of the instances
while SNNAP succeeds in the 45.4% of the cases. These higher percentage
compared to SAT are also one of the reason of the low number of unsolved
instances.

As presented in Fig. 6.3 it is clear that also for MaxSAT the most in-
fluencing parameter in SNNAP is the number of solvers considered, with a
clear predominance of low values. Moreover for the size of the neighborhood
is to be preferred to keep the number of instances lower than 50-60.

59

6.3 Numerical Results on MaxSAT

Figure 6.2: Used solvers by ISAC and SNNAP on instances of MaxSAT.

(a) ISAC

(b) SNNAP

60

6.4 Chapter Summary

Figure 6.3: How the performance of SNNAP are affected varying the pa-
rameters in MaxSAT.

6.4 Chapter Summary

In this chapter has been presented SNNAP: Solver-based Nearest Neigh-
bor for Algorithm Portfolios a novel methodology that tries to improve the
state of the art in the field of Algorithm Portfolios. The presented approach
starts from the willingness of improving the basic assumptions behind the
standard ISAC technique which relies entirely on the provided features.
SNNAP, instead, tries to include past performances of solvers for helping
the decision of the solver to be used on a particular instance. The basic
assumption (based on the observation of ISAC performances) is that the
standard feature vector is not enough descriptive in the choice of the solver
to be used: instances that prefer to be solved by the same solver need to be
close together in the space so that a clustering approach could group them.

Combining different machine learning techniques has been shown how is
possible to predict which solvers are going to behave well on a particular
instance and basing the decision on the k nearest instances is possible to
chose one to solve it.

The beneficial effects of SNNAP have been proved on different datasets
coming from different NP-hard problems: four datasets from SAT and one

61

6.4 Chapter Summary

from MaxSAT, showing how has been possible to outperform the standard
ISAC methodology.

62

Chapter 7

Implementation of the
software

The paper describing SNNAP has been presented at ECML 2013 [16]
and accepted for publication in the conference’s proceedings. The impact
of scientific research, however, is many time limited by the irreproducibility
of the results. For promoting further developments in the area of algorithm
portfolios and for encouraging the use of SNNAP from other research groups
a goal of the thesis has always been to release the code through an open souce
licence (LGPL).

It has been released the developed code as well as the datasets used
for the experiment. The aim of releasing the code, moreover, gave further
incentives focussing on maximum clarity of the documentation, on the pro-
gramming style (including comments) and on the easiness of the installation
and execution of SNNAP.

The software is downloadable from [17].

7.1 Overview

The software has been entirely developed in R 1 and has been succesfully
tested with the versions 3.0.0 and 2.15.1.

The code is implemented for giving to users the possibility to try two
algorithm portfolios approaches: ISAC and SNNAP, with the possibility
to apply feature filtering. In particular the implementations of the two
approaches are the one described in [24, 15]. Even though in this thesis
many more techniques have been described only the most successful have
been released.

The released software allows the users to apply SNNAP to their datasets,
and in turn compare the results with ISAC, the performance of the best

1http://www.r-project.org/

63

7.1 Overview

single solver, and the virtual best performance that can be achieved by a
portfolio approach. The code is made available under the LGPL2 license in
hopes of helping promote further development and comparisons with existing
and future portfolio methodologies.

The provided code is an R script that performs different algorithm port-
folios techniques:

• SNNAP;

• SNNAP with feature filtering;

• ISAC;

• ISAC with feature filtering;

• Best Single Solver (BSS);

• Virtual Best Solver (VBS).

The software can be downloaded as a zip file and it is structured in
folders:

• SNNAP/ : Main Directory;

– src/ : The folder with the actual code for SNNAP, ISAC and
gmeans;

– data/ : The folder containing the dataset;

– results/ : The folder where the results will be saved;

– optimalParam/ : The folder where the optimal parameters for
SNNAP will be saved.

The main file is called SNNAP.R, is an R script, and is placed in the
src folder. At the beginning it contains a line which defines a vector called
“approaches” which is responsible for the declaration of which approaches
should be executed among the available ones.

The script gives the user the possibility of changing amongst different
clustering techniques (for ISAC), as well as the feature filtering ranking
function.

The scoring functions available are (FSelector [37] package used):

• chi.squared ;

• information.gain;

• gain.ratio;

2http://opensource.org/licenses/LGPL-3.0

64

7.2 Installation

• symmetrical.uncertainty.

while the clustering approaches among which users can chose are:

• gmeans;

• XMeans [40];

• hclusterpar [41].

The source code for gmeans is provided as it has been implemented in
R and is placed in the src folder.

7.2 Installation

The software makes use of different external R libraries that should be
installed in the computer (as well as a recent version of R). In particular
these libraries are:

• nortest : for executing a normality test in gmeans;

• foreach: for letting the parallel execution of each fold of the script;

• doMC : for exploiting the multicore capabilities of the machine;

• lattice: used for plotting a 3D surface with the optimal parameters for
SNNAP;

• FSelector : used for feature selection;

• RWeka: for the XMeans clustering technique;

• amap: for the hierarchical clustering technique;

• randomForest : used in SNNAP for predicting the performances of
solvers.

Each library should be installed following the instructions at http://

cran.r-project.org/doc/manuals/r-release/R-admin.html#Installing-packages

. For example, if connected to internet is sufficient to type the following
command in an R console:

install.packages("[Name of the package]")

e.g.:

install.packages("amap")

65

7.3 Running the Software

To make the installation of the additional packages quicker and easier to
the user in the main directory of SNNAP there is a file called config.R that
can be executed typing in a terminal (the current/working directory should
be the main directory of SNNAP):

R CMD BATCH --vanilla config.R

or its content may be copied and pasted into an R console. The script will
install the required packages.

7.3 Running the Software

The software has been developed giving to the user the maximum cus-
tomisation in terms of the approaches that should be run and with which
setting of the parameters. Some of the paramaeters are set at the beginning
of the source of code of SNNAP, others are thought as parameters to be
given in input to the software while executing it. In particular it has been
used the package optparse [42] to manage those arguments.

To execute the software the user should open a terminal inside the di-
rectory src; a typical command to execute the script is:

Rscript SNNAP.R [options] file.features file.times [optional file

with test instances]

e.g.:

Rscript SNNAP.R [options] ../data/SAT/HAND.features ../data/SAT/HAND.times

For having an overview of the arguments is sufficient to type:

Rscript SNNAP.R --help

which will return the following list of arguments:

• -r RANKING, –ranking=RANKING : The ranking function to use for
applying feature filtering [default chi.squared];

• -c CLUSTERING, –clustering=CLUSTERING : The clustering tech-
nique to use [default gmeans];

• -t TIMEOUT, –timeout=TIMEOUT : The timeout used when the
dataset has been built [default 5000];

• -n NAME, –name=NAME : The suffix name for output files (output-
[name].txt, log-[name].txt, important features-[name].txt) [default empty];

• -s SEED, –seed=SEED : The seed to use [default 12345];

66

7.3 Running the Software

• -k KNN, –knn=KNN : The size of the neighborhood for the k-nn
[default 60];

• -d DISTANCE, –distance=DISTANCE : The number of solvers to con-
sider in the evaluation of the distance metric [default 3];

• -g, –giveTesting : If TRUE the script will expect as last parameter the
name of a file containing instances to be considered as testing set (no
k-fold cross validation);

• -h, –help : Show this help message and exit.

Some arguments are mandatory (like the path to the files with features
and times) and others not. A description of every argument is presented
here:

• [Ranking] Is the ranking function to be used for feature filtering.
Should be one of:

– chi.squared;

– information.gain;

– gain.ratio;

– symmetrical.uncertainty.

For feature selection, each instance is assigned a class based on the
solver that performs best on it. In practice, it is recomended using
chi.squared ;

• [Clustering] Is the clustering technique to be used with ISAC. Should
be one of:

– gmeans;

– XMeans;

– hclusterpar.

In practice, it is highly recommended to use gmeans;

• [Timeout] Is the value of the timeout used when the dataset has been
built. This is used when computing the number of instances that
timeout, as well as the PAR10 score. Here PAR10 is a penalized
average, where each timeout is recorded as having taken 10 times the
timeout;

• [Name] Is a string that will be part of the files that are created for
printing the results of the script. In the folder results/SAT will be
created three different files:

67

7.3 Running the Software

1. output-[Name].txt ;

2. log-[Name].txt ;

3. important features-[Name].txt.

The three files have, respectively, the output with the results of the
script, the log, and the name of the important features as selected by
the feature filtering technique applied to SNNAP;

• [Seed] The seed to be used;

• [KNN] The size of the neighborhood for the SNNAP approach;

• [Distance] The number of solvers to be considered in the evaluation of
the distance metric by SNNAP;

• [GiveTesting] If set to TRUE the script will expect as last parameter
the name of a file containing instances to be considered as testing set
(no k-fold cross validation);

• [File.Features] The path to the file containing the feature values for
each instance. Each line of the feature file states the unique name
of the instance followed by a list of features that were computed for
this instance. This file should be comma delimited and each instance
should have the same number of numeric features. For an example,
look at the included files in the data folder.

<instance name 1>, <feature 1>, <feature 2>, . . . <feature n>
<instance name 2>, <feature 1>, <feature 2>, . . . <feature n>
.

The first line of this file should be the header, where the first col-
umn is represented as “instance”, and the rest are used to define the
appropriate features name;

• [File.Times] The path to the file containing the running times of the
solvers on each instance. Each line of the performance file states the
unique name of the instance followed by a list of performances for each
solver in the portfolio. This file should be comma delimited and each
instance should have the same number of solver evaluations which are
in the same order. For an example, look at the included files in the
data folder.

<instance name 1>, <solver 1>, <solver 2>, . . . <solver n>
<instance name 2>, <solver 1>, <solver 2>, . . . <solver n>
.

68

7.4 Notes

The first line of this file should be the header, where the first col-
umn is represented as “instance”, and the rest are used to define the
appropriate solver;

• [Optional file with test instances] this file will be considered only in
case the parameter giveTesting has been set to TRUE. It lets to specify
which instances in the dataset should be considered as unique testing
set. All other instances will be considered as training set. The file
should be composed of as many rows as the number of instances we
want to consider as testing set. Each row should only contain one
name of one instance that should be considered in the testing set. For
example:

<instance name 1>
<instance name 2>
<instance name 3>
. . .

7.4 Notes

The parameters regarding the size of the neighborhood and the number
of solvers to be considered in SNNAP are heuristically set based on the users
experience. However, if (at line 96) the parameter findOptimalParam of the
file SNNAP.R is manually set to TRUE then SNNAP will perform an auto-
matic evaluation of the optimal parameters for the size of the neighborhood
and the number of solvers to be considered. For the size of the neighborhood
the value considered are those between minNN and maxNN by steps of 5,
while for the number of solvers to use between minSolv and maxSolv (these
four variables can be set to custom values in the file SNNAP.R).

The results of this evaluation is a matrix that will be saved in the folder
optimalParam as a .rData file; moreover in the same folder there will also
be a 3D surface plot with the results (like the plots in Fig. 6.1). For every
combination of size of neighborhood and number of solvers will be saved the
average running time of the SNNAP approach.

By default the script performs a n-fold cross validation with n = 10, and
each fold is spawned as a different thread on the machine. The dataset is
randomly split in n parts and every time 1 of these parts is choosen as the
testing set while the remaining n − 1 are considered as training set. This
framework is repeated n times, in a way that each instance is considered
exactly once in the testing set. The results are then reported as the overall
average runtimes among all the instances solved by the solver chosen by the
specific portfolio technique.

69

7.5 Sample Output

7.5 Sample Output

The output of the software on the provided data should look like:

[1] "../data/SAT/HAND.features"

[1] "../data/SAT/HAND.times"

[1] "gmeans"

[1] "gain.ratio"

[1] 5000

Seed: 12345

Number of instances: 363

Number of features: 115

Number of solvers: 29

Number of test instances per fold: 36

Number of solvers to compare: 10

PAR AVG NS CL NF

virtualBestSolver 401.1489 401.1489 0 0.0 115

FFSNNAP 6735.8460 1036.0395 46 0.0 56.8

SNNAP 6786.9096 1077.1029 46 0.0 115

FFISAC 12239.3633 1601.8979 86 2.7 56.8

ISAC 14722.7830 1858.8718 104 3.6 115

bestSingleSolver 15934.0166 2080.5732 112 0.0 115

The first lines give information about some of the parameters used as:
the path to the input files, the clustering technique used, the feature filtering
ranking function, the time-out value, the seed used and a few properties of
the dataset.

The table with results automatically orders the algorithms based on
the reported PAR10 score, starting with the lower bound on the achiev-
able performance (virtualBestSolver). Moreover are displayed the following
statistics3:

• PAR: is the penalized average of the runtimes: for each instance that
is solved within the timeout threshold the actual runtime in seconds
denotes the penalty for that instance. For each instance that is not
solved within the time limit the penalty is set to 10 times the original
timeout;

• AVG : the standard average of runtimes;

3Note that the number of clusters and the number of features are fractional because the
reported results are averaged over the n folds that were run for cross-validation. Moreover
for feature filtering in this example was used the approach to select a subset of features
which are significantly better than other (so not a fixed number)

70

7.5 Sample Output

• NS : the number of not solved instances;

• CL: the average number of clusters (only for ISAC);

• NF : the number of features used by the approach (so for approaches
with feature filtering this number is less than the number of total
features available).

71

7.5 Sample Output

72

Chapter 8

Conclusion

This thesis presents a novel methodology called SNNAP (Solver-based
Nearest Neighbor for Algorithm Portfolios) that proposes a new technique
to tackle the problem of algorithm selection. It is accepted the theory stat-
ing that for a given problem it doesn’t exist a single solver that is good
for all the instances and so techniques to best select the solver to solve a
particular instance have been studied. The possibility to develop such a
successful approach starts from an in-depth analysis of one of the state-of-
the-art software: ISAC (Instance-Specific Algorithm Configuration). ISAC
is a successful approach for tuning a wide range of solvers for SAT, MIP,
set covering, and others. This approach assumes that the features describ-
ing an instance are enough to group instances so that all instances in the
cluster prefer the same solver. Yet there is no fundamental reason why this
hypothesis should hold.

The basic assumptions behind ISAC have been here analysed and strength-
ened: a major result has been to be able to show that actually not all the
features are always necessary for tackling the problem of algorithm portfo-
lio. Some of them are more important and using just a subset it has been
proved that is possible to achieve similar (or slightly better) performances.
The same idea of having a ranking among features has been studied ap-
proaching the same problem from a different perspective: modifying the
distance metric used in conjunction with clustering. Even though it didn’t
give good results it gave interesting ideas in the possibility of extending the
used feature space to help guide the clustering process.

Using predictive models it is shown how is possible to predict with a high
accuracy which solvers are going to be the best on each instance. Using this
information and creating a custom distance metric Solver-based Nearest
Neighbors (SNNAP) has been crafted: using k-nearest neighbors SNNAP is
able to assign to previously unseen instances the solver to use and it is able
to significantly outperfom an unmodified version of ISAC.

The benefit of the SNNAP approach over ISAC is that the cluster for-

73

8.1 Future Work

mulated by the k-NN comprises of instances that are more similar to the
new instance, something that ISAC assumes but has no way of enforcing.
Additionally, a very important point, the new approach is not as sensitive to
incorrect decisions by the predictive model. For example, it does not matter
if the ranking of the top n solvers is incorrect, any permutation is accept-
able. Furthermore, even if one of the solvers is incorrectly included in the
top n, the k-NN generates a large enough training set to find a reasonable
solver that is likely to work well in general.

This synergy between prediction and clustering that enforces the de-
sired qualities of the clusters is the reason why SNNAP consistently and
significantly outperforms the traditional ISAC methodology. Consequently,
this thesis presents a solver portfolio for combinatorial problem solving that
out-performs the state-of-the-art in the area.

8.1 Future Work

With this work it has been given an initial insight on how SNNAP can
improve ISAC and from here many other possibilities can be developed.
SNNAP has been proved to be successful only on two datasets and a major
work could be done on top of it in order to improve it even more: for sure
the releasing of the software under the LGPL licence has been done looking
into this direction.

One of the first problem that might be addressed will be: is it possible,
and how, to combine SNNAP and tuning? ISAC before addressing the
problem of algorithm portfolios has been developed with the explicit intent
to be able to automatically tune a software specifically on top of the instances
that have to be solved. One possibility has been not only to assign to each
cluster one solver, but also a parameterization of it that could lead to the
best performances available. SNNAP unfortunately doesn’t rely on a static
definition of clustering, but uses k -nn: the extension of tuning to this setting
is not obvious but, nevertheless, less interesting.

The second thing regards how feature filtering is applied. It has already
been stated that feature filtering has to be set as a classification problem: in
SNNAP it has been chosen to label each instance with the name of the best
solver to solve it. It would be important to understand if this is best way to
tackle the problem and see if other ideas might apply better to it. It might
be the case in which an instance is labeled with the name of a solver even
if the second best solver is slower just by few seconds. Obviously in this
setting each one of the label would be correct, so it should be investigated
how to behave in such a situation.

Another idea may relate to the problem of feature learning and genera-
tion: it is generally known how the clusters (in ISAC, for example) should
look like: the instances in the same cluster should have similar performances

74

8.1 Future Work

with the same solvers. It might be useful to create a framework that is able,
analysing the current clusters, to create some ad-hoc features that are able
to modify the space in a way that instances that need to be close each other
but are far in the original feature space are grouped together. The idea is
similar to the one presented in Chapter 5 when the feature space has been
extended including the solvers performances. This time, instead of directly
using the performances, the features should be learned automatically basing
the creation on the current clusterisation.

In this thesis, moreover, the benchmarks are compared only with the
standard version of ISAC; future work should be able to compare them to
a newest version of ISAC as well as with SATzilla 2012 and 3S.

In summary, this thesis lays out the groundwork for a novel methodol-
ogy for addressing the problem of algorithm portfolios: SNNAP. Hopefully
further research will expand it and improve it even more.

75

8.1 Future Work

76

Bibliography

[1] John R. Rice. “The Algorithm Selection Problem”. In: Advances in
Computers 15 (1976), pp. 65–118.

[2] Lin Xu et al. “SATzilla: Portfolio-based Algorithm Selection for SAT”.
In: CoRR (2011).

[3] Bryan Silverthorn and Risto Miikkulainen. “Latent Class Models for
Algorithm Portfolio Methods”. In: AAAI (2010).

[4] Barry Hurley and Barry O’Sullivan. “Adaptation in a CBR-Based
Solver Portfolio for the Satisfiability Problem”. In: ICCBR (2012).

[5] Lin Xu et al. SATzilla2012: Improved Algorithm Selection Based on
Cost-sensitive Classification Models. SAT Competition. 2012.

[6] Serdar Kadioglu et al. “Algorithm Selection and Scheduling”. In: CP
(2011), pp. 454–469.

[7] Eoin O’Mahony et al. “Using Case-based Reasoning in an Algorithm
Portfolio for Constraint Solving”. In: AICS (2008).

[8] Lars Kotthoff, Ian Gent, and Ian P. Miguel. “An Evaluation of Ma-
chine Learning in Algorithm Selection for Search Problems”. In: AI
Communications (2012).

[9] Luca Pulina and Armando Tacchella. “A self-adaptive multi-engine
solver for quantified Boolean formulas”. In: Constraints 14.1 (2009),
pp. 80–116.

[10] Serdar Kadioglu et al. “ISAC –Instance-Specific Algorithm Configu-
ration”. In: ECAI (2010), pp. 751–756.

[11] Yuri Malitsky and Meinolf Sellmann. “Instance-Specific Algorithm
Configuration as a Method for Non-Model-Based Portfolio Genera-
tion”. In: CPAIOR (2012), pp. 244–259.

[12] SAT Competitions. http://www.satcompetition.org/.

[13] Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier.
“Meta-Learning by Landmarking Various Learning Algorithms”. In:
ICML (2000).

77

BIBLIOGRAPHY

[14] Hilan Bensusan and Christophe Giraud-Carrier. “Casa Batlo is in Pas-
seig de Gracia or landmarking the expertise space”. In: ECML (2000).

[15] Marco Collautti et al. “SNNAP: Solver-Based Nearest Neighbor for
Algorithm Portfolios”. In: ECMLPKDD (2013), pp. 435–450.

[16] European Conference on Machine Learning and Principles and prac-
tice of Knowledge Discovery in Databases 2013. http://www.ecmlpkdd2013.
org/.

[17] Download SNNAP. http://www.dei.unipd.it/~collautt/downloads.
html, http://4c.ucc.ie/~ymalitsky/downloads.html.

[18] David H. Wolpert and William G. Macready. “No free lunch the-
orems for optimization”. In: IEEE TRANSACTIONS ON EVOLU-
TIONARY COMPUTATION 1.1 (1997), pp. 67–82.

[19] Carla P. Gomes and Bart Selman. “Algorithm portfolios”. In: Artif.
Intell. 126.1-2 (2001), pp. 43–62.

[20] Kevin Leyton-Brown et al. “Boosting as a Metaphor for Algorithm
Design”. In: CP (2003), pp. 899–903.

[21] Lin Xu et al. “The Design and Analysis of an Algorithm Portfolio for
SAT”. In: CP (2007), pp. 712–727.

[22] Algorithm Selection literature summary. http://4c.ucc.ie/~larsko/
assurvey/.

[23] Lin Xu et al. “SATzilla: Portfolio-based Algorithm Selection for SAT”.
In: J. Artif. Intell. Res. (JAIR) 32 (2008), pp. 565–606.

[24] Yuri Malitsky et al. “Non-Model-Based Algorithm Portfolios for SAT”.
In: SAT (2011), pp. 369–370.

[25] Yuri Malitsky et al. “Parallel SAT Solver Selection and Scheduling”.
In: CP (2012), pp. 512–526.

[26] Lin Xu et al. “Evaluating Component Solver Contributions to Portfolio-
Based Algorithm Selectors”. In: SAT (2012), pp. 228–241.

[27] Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. “Zchaff2004: An
Efficient SAT Solver”. In: SAT (Selected Papers (2004), pp. 360–375.

[28] MaxSAT Competition. http://maxsat.ia.udl.cat/introduction/.

[29] Lior Rokach and Oded Maimon. “Clustering Methods”. In: The Data
Mining and Knowledge Discovery Handbook (2005), pp. 321–352.

[30] Stuart P. Lloyd. “Least squares quantization in PCM”. In: IEEE
Transactions on Information Theory 28.2 (1982), pp. 129–136.

[31] Dan Pelleg and Andrew W. Moore. “X-means: Extending K-means
with Efficient Estimation of the Number of Clusters”. In: ICML (2000),
pp. 727–734.

78

BIBLIOGRAPHY

[32] Greg Hamerly and Charles Elkan. “Learning the K in K-Means”. In:
NIPS (2003).

[33] T. W. Anderson and D. A. Darling. “Asymptotic Theory of Certain
Goodness of Fit Criteria Based on Stochastic Processes”. In: Annals
of Mathematical Statistics 23 (1952), pp. 193–212.

[34] J Shlens. “A tutorial on principal component analysis. Version 3.01
Systems Neurobiology Laboratory”. In: Salk Institute for Biological
Studies on line: http://www. snl. salk. edu/˜ shlens (2009).

[35] Christian Kroer and Yuri Malitsky. “Feature Filtering for Instance-
Specific Algorithm Configuration”. In: ICTAI (2011), pp. 849–855.

[36] Wlodzislaw Duch and Google Duch. “Filter Methods”. In: Feature
extraction, foundations and applications (2004), pp. 89–118.

[37] FSelector R package. http://cran.r-project.org/web/packages/
FSelector/index.html.

[38] Eric I. Hsu et al. “Probabilistically Estimating Backbones and Variable
Bias: Experimental Overview”. In: CP (2008), pp. 613–617.

[39] Leo Breiman. “Random Forests”. In: Machine Learning (2001), pp. 5–
32.

[40] RWeka R package. http://cran.r-project.org/web/packages/
RWeka/index.html.

[41] Amap R package. http://cran.r-project.org/web/packages/
amap/index.html.

[42] OptParse R package. http://cran.r-project.org/web/packages/
optparse/index.html.

79

