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Sommario

L’attuale velocità di espansione dell’universo è parametrizzata dalla costante di Hubble. Questa
quantità può essere determinata sia “localmente”, attraverso misurazioni di redshift e distanza di
eventi nell’universo recente (come le supernove), sia “globalmente”, dalla storia del modello cos-
mologico che si può dedurre dai dati della radiazione cosmica di fondo (CMB). Questi due metodi
conducono a risultati diversi di circa 5 sigma. L’obbiettivo di questa tesi è quello di studiare i
principi teorici e le quantità fisiche alla base delle due misurazioni. Riguardo la misura locale,
esaminiamo il modello cosmologico standard e i concetti di distanza e di redshift usati nel dia-
gramma di Hubble. Riguardo la misura globale, studiamo come le perturbazioni cosmologiche si
sono generate durante l’inflazione, come esse si manifestano nelle anisotropie della CMB e come la
CMB può essere usata per dedurre i parametri cosmologici, tra cui la costante di Hubble.

Abstract

The current expansion rate of the universe is parameterized by the Hubble constant. This
quantity can be measured either ”locally”, from the redshift-distance measurements of events in
the late universe (such as supernovae) or “globally”, from the integrated cosmological history that
can be inferred from the Cosmic Microwave Background (CMB) radiation data. These two methods
lead to different results at approximately the 5 sigma level. The goal of the thesis is to review the
theoretical framework and the physical quantities at the basis of the two measurements. Concerning
the local measurement, we review the standard cosmological model and the concept of luminosity
distance and redshift used in the so called Hubble diagrams. Concerning the global measurement,
we study how cosmological perturbations are generated during inflation, how they imprint the CMB
anisotropies, and how the CMB can be used to infer cosmological parameters such as the Hubble
constant.
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1 INTRODUCTION

1 Introduction

The best-fitting theory for describing the statistics of the universe on large scales is known as the
standard cosmological model. It is commonly referred to as Λ cold dark matter (ΛCDM) model since
it is a model in which the matter is mostly cold and dark (namely collisionless and with no elec-
tromagnetic interactions), and in which the current majority of the universe energy density behaves
like vacuum energy (or cosmological constant) which drives the current accelerated expansion of the
universe observed for the first time in 1998 (see refs. [10] and [20]). It provides a good agreement
with the datasets currently available just exploiting six free-parameters (usually: Hubble constant H0,
baryon fractional density Ωb, matter fractional density Ωm, curvature fluctuation amplitude As, scalar
spectral index ns, optical depth τ). One of the most significant successes of the model is the predic-
tion of the existence and structure of the cosmic microwave background (CMB), moreover the CMB
temperature and polarization measurements can be used to compare the ΛCDM model against data
and provide an estimation of the six parameters [7]. The numerous successes of the ΛCDM model,
along with technological advancements that allow for increasingly accurate measurements, motivate
progressively in-depth studies. On one hand the ΛCDM contains vast areas of ignorance especially
regarding inflation, dark matter and dark energy, on the other hand some tensions have emerged
between recent observations and ΛCDM model predictions (for example the ∼ 5σ Hubble tension [1]
and the ∼ 5σ CMB dipole tension [21]). For these reasons there is currently active research into many
aspects of the ΛCDM model.
The Hubble tension, that we mentioned above, is widely acknowledged as one of the most urgent
problem in the current cosmology. It concerns the discrepancy (∼ 5σ) between the two currently
most accredited measurements of the Hubble constant H0. The first one (early measurement) is pro-
vided by the Planck collaboration and it is based on the CMB measurement of Planck spacecraft
(H0 = 67.4± 0.5 km

sec Mpc , [7]), the second one (late measurement), instead, is given by SH0ES (Super-
novae, H0, for the Equation of State of dark energy) project (started in 2005) through measuring the
distance-redshift relation of nearby celestial bodies (z < 1) such as supernovae (H0 = 73.2±1.3 km

sec Mpc ,
[8]). Since the estimate provided by the Planck collaboration heavily relies on the entire history of
the cosmological model unlike the other one which depends only on recent cosmology, if the origin
of the tension can not be attributed to a systematic error, then this would be the evidence of new
physics beyond the current cosmological model. For this reason numerous researchers are attempting
to modify the ΛCDM model in order to resolve or alleviate the various tensions (for example, by
adding an early dark energy component or modifying the theory of gravity, [1]).
The aim of this thesis is to describe the theoretical framework underlying the two different measure-
ments of the Hubble constant. At the beginning, we will present the aspects of the cosmological model
that will be necessary for this purpose, initially studying the uniform background of the universe (its
geometry and composition) and then introducing inhomogeneities in it (perturbing the metric, the
stress-energy-momentum tensor, and the Einstein equations at first order). Subsequently, regarding
the ”Late measurement”, we study in detail the Hubble diagram and the Hubble law, while regarding
the ”Early measurement” we present how the primordial perturbations are produced during inflation,
how they propagate until recombination, and finally, how they influence the anisotropies in the cosmic
microwave background radiation.

Notation and conventions:

We will use natural units (c = ~ = kB = 1) and the metric signature will be (+−−−). Regarding the
indices: Greek indices (µ, ν, ...) run from 0 to 3, Latin indices (i, j, ...) will stand for spatial coordinates
and we will use Einstein summation convention.
Moreover, the subscript 0 indicates that the quantity is evaluated at the present time t0 (es: a0 :=
a(t0)), the dot above a quantity indicates the derivative with respect to time t (es: ȧ := da/dt), and
the prime symbol indicates the derivative with respect to the conformal time τ (es: a′ := da/dτ).
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2 THE COSMOLOGICAL MODEL

2 The cosmological model

In this section we will summarize the main features of the current cosmological model (the Λ cold
dark matter model), which will be essential for the following chapters. This section follows ref. [3]
(also refs. [4] and [5] can be useful).

2.1 Geometry and dynamics

The standard cosmological model is built on the cosmological principle (the modern Copernican prin-
ciple), which states that the universe is isotropic and homogeneous at large scales. On the basis of
this principle, and on the validity of Einstein general relativity, we can constrain the form of the
4-dimensional metric to one dependent on just a parameter k (the curvature) and a function of time
a(t) (the scale factor):

ds2 = dt2 − a2(t)

[
dx2 + k

(x · dx)2
1− kx2

]
= dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]

= dt2 − a2(t)
[
dχ2 + S2

k(χ)dΩ
2
]

(1)

where

Sk(χ) :=





sinhχ if k = −1

χ if k = 0

sinχ if k = +1

= χ+O
(
χ3

)
and dΩ2 := dθ2 + sin2 θdφ2 (2)

This is called the Friedmann–Lemâıtre–Robertson–Walker (FLRW) line element. It is expressed in
the standard Cartesian coordinates x, in the spherical polar coordinates (r, θ, φ) and in the spherical
coordinates (χ, θ, φ) where dχ := dr√

1−kr2
.

It is possible to fix the normalization of the scale factor (which, indeed, is not a physical quantity) so
to have k ∈ {0,±1} or a0 = 1. The coordinates x are called comoving coordinates and the so called
“proper” physical distance at a fixed time t between a point at the orgin and one at radial coordinate
r is therefore:

dP := a(t)

∫ r

0

dr̃√
1− kr̃2

ur = aχur (3)

Finally dm := aSk(χ)ur is called metric distance. For two fixed comoving observer, one finds:

vP :=
d

dt
dP =

d

dt

[
a(t)

∫ r

0

dr̃√
1− kr̃2

]
ur = H(t)dP (4)

where H(t) := ȧ/a and vP is the physical velocity. This expression evaluated at t = t0 is called the
Hubble law, and H0 the Hubble constant.
It is possible to associate a redshift z := λr/λe−1 to every light signal that we receive, constructed from
the ratio between the received and the emitted wavelength. Using the FLRW metric and the general
relativity formula for the gravitational redshift, we can demonstrate [3], respectively, (associating λr
to the wavelength λ0 observed today) that: 1 + z = a0/a and z ∼ |v| ∼ H0dP (for nearby
objects).
The convenience of using the variable z is that, unlike x or dP , it is an observable (namely, a quantity
that can be directly measured). We can relate it to two other observable quantities, introduced to
quantify our spatial distance form a cosmological object:

❼ the luminosity distance, defined as dL :=
√

F
4πL where L is the absolute luminosity (energy

emitted per second) of a cosmic source and F is the observed flux (energy per second per
receiving area) from the earth. It is possible to demonstrate [3] that dL = dm(1 + z);

❼ the angular distance, defined as dA := D
δθ where D is the physical size of a cosmic object and δθ

is the angular size measured from earth, and since D = a(te)Sk(χ)δθ therefore dA = dm
1+z .
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2.1 Geometry and dynamics 2 THE COSMOLOGICAL MODEL

To determine the time evolution of these distances we can employ the Einstein equations:

Gµν = 8πGTµν − Λgµν (5)

where Λ is the cosmological constant, Tµν is the stress-energy-momentum (s.e.m.) tensor for all
the fields present in the universe and Gµν is the Einstein tensor that is built from the Levi Civita
connection of the metric Γλ

µν in the following way:

Gµν := Rµν −
1

2
gµνR , Rµν := Rσ

µσν , R := Rµ
µ

Rλ
σµν := ∂µΓ

λ
σν − ∂νΓ

λ
σµ + Γλ

µρΓ
ρ
νσ − Γλ

νρΓ
ρ
µσ , Γλ

µν :=
1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν) (6)

where gµν is the metric of the universe and gµν is its inverse.
We evaluate the Einstein tensor for a FLRW geometry. We then choose the s.e.m. that approximates
our universe best at the (large) scales in which the cosmological principle is valid, namely the s.e.m.
tensor of a motionless perfect fluid i.e. Tµ

ν = (ρ + P )UµUν − Pδµν , with Uµ = (1, 0, 0, 0)T the
4−velocity, ρ the energy density, and P the pressure of a perfect fluid in its rest frame.
At this point we can derive the scale factor differential equations writing the nontrivial components
of the Einstein equations, as well as a conservation law ∇µT

µ
ν = ∂µT

µ
ν +Γµ

µλT
λ
ν −Γλ

µνT
µ
λ = 0 (that

also follows from the Einstein equations):

∇µT
µ
0 = 0 =⇒ ρ̇+ 3H(ρ+ P ) = 0 (continuity equation) (7)

G0
0 = 8πGT 0

0 − Λg00 =⇒ H2 =
8πG

3
ρ− k

a2
+

Λ

3
(I Friedmann equation) (8)

Gi
i = 8πGT i

i − Λgii ∀i =⇒ ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(II Friedmann equation) (9)

As already mentioned, these three equations are not independent, and one can for example obtiain
the last one by differentiating the second equation 8 with respect to time, and then employing the
first and second equation.
To solve these equations it is necessary to know the value of ρ(t) and P (t); neglecting interactions
between the different species of matter (baryons, photons, neutrinos, ...), we can write ρ(t) and P (t)
as the sum of all matter components contributes. As we will see better in the next subsection, it is
possible to relate them into the equation of state ρ = wP , where w is constant and takes the value
w = 0 if the source is non-relativistic (dark matter, baryons, ...), w = 1

3 if the source is relativistic
(photons, neutrinos, gravitons, ...) and w = −1 if the source is vacuum energy. Thus if we use the
equation of state into the continuity equation we can find the a dependence of ρ for each species at
every time: ρ ∝ a−3(1+w). From this it follows that for most of its history the universe was dominated
by a single component, furthermore, comparing these dependencies with the observed values of the
energy densities of the individual sources, we can find that the universe was dominated first by
radiation, then matter and finally dark energy (see Figure 1). For each of these period the others
non-dominant components can safely be ignored and hence, neglecting also the curvature (according
to current estimates [7], Ωk(t0) := −k/(a20H2

0 ) = 0.001± 0.002), we can integrate the first Friedmann

equation and find that a ∝ t
2

3(1+w) for the radiation or matter domination period.
Finally, we need to include a source to account for the current stage of accelerated expansion. We
can assume (see [7]) that this source is a vacuum energy (which acts as a cosmological constant)
characterized by w = −1, and leading to a ∝ tHt (integrating the first Friedmann equation). Indeed,
it is possible to describe the cosmological constant as if it were a fluid with energy density ρΛ = Λ

8πG and
pressure PΛ = −ρΛ. In this way we can simplify the Friedmann equations replacing the cosmological
constant with a new matter component that behaves like a dark energy component. Moreover if we
define the critical density as the the density which would required in order to make the geometry of
the universe flat at a time t (i.e. ρc(t) = 3H2

8πG) hence it is possible to rewrite the first Friedmann
equation in the following way:

1 = Ω + Ωk =

[
∑

i

Ωi +ΩΛ

]
+Ωk with Ωi/Λ(t) =

ρi/Λ

ρc
, Ωk = − k

a2H2
(10)

where the index i runs through all the matter contents in the universe.
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2.2 Thermal history 2 THE COSMOLOGICAL MODEL

Figure 1: Evolution of energy densities in the universe. Data from ref. [7] and ref. [9].

2.2 Thermal history

The early universe was filled by different types of particles that interacted with each other as described
by the Standard Model of partcle physics. When particles exchange energy and momentum efficiently,
they reach thermal equilibrium end we can use the results of statistical mechanic to study the evolution
of their number density n, energy density ρ and pressure P . In particular, it is possible to establish if
the interactions are efficient, and hence thermal equilibrium is reached by comparing the rates of these
interactions Γ := nσv (where v is the average velocity density of the particles and σ is the interaction
cross section, that we can estimate through the perturbative method of Feynman diagrams) with the
expansion rate H. For Γ > H the interactions are effective, while in the opposite regime the particles
decouple from each other.
At early times the most of the particles were in thermal equilibrium with the others and so in that
period the distribution f(p) assumes the following form [3]:

n =
g

(2π)3

∫
d3pf(p) , ρ =

g

(2π)3

∫
d3pf(p)E(p) , P =

g

(2π)3

∫
d3pf(p)

|p|2
3E(p)

with f(p) =
1

e(E(p)−µ)/T ± 1
, E(p) =

√
m2 + |p|2 (11)

Where g is the number of internal degrees of freedom of that species, f(p) is the Fermi-Dirac (+1) and
Bose-Einstein (-1) distribution and µ := −T ( ∂S

∂N )U,V is the chemical potential (which satisfies µ
T ≪ 1

ans so can be neglected in the present discussion).
In the relativistic limit, T ≫ m, the three integrals give [3]:

n =
ζ(3)

π2
gT 3

{
1 for bosons
3
4 for fermions

ρ =
π2

30
gT 4

{
1 for bosons
7
8 for fermions

P =
1

3
ρ (12)

while in the non-relativistic limit, , T ≪ m, they give:

n = g

(
mT

2π

)3/2

e−m/T , ρ ≃ mn , P ≃ nT ≪ ρ (13)

This justifies the equation of state w = 1/3 (respectively w = 0) for a relativistic (respectively, non
relativistic) perfect fluid that we have employed in the previous section. More generally, it can be shown
that the equations of state are satisfied even without assuming thermal equilibrium. Furthermore we
can see that in the non-relativistic limit, when the temperature drops below the particle mass, the
density is exponentially suppressed. We interpret this process as the annihilation of particles and
anti-particles in the reaction x+ x̄→ γ+ γ, which is no longer compensated by the opposite reaction.

5



2.3 Cosmological perturbation theory 2 THE COSMOLOGICAL MODEL

We can now write the energy density of all the relativistic species as a function of their temperatures
Ti (we indicate with just T the temperature of the photons and all the particles in thermal equilibrium
with them):

ρ =
∑

i

ρi =
π2

30
g⋆(T )T

4 , with g⋆(T ) =
∑

i=bos

gi

(
Ti
T

)4

+
7

8

∑

i=fer

gi

(
Ti
T

)4

(14)

where we have introduced the effective number of relativistic degrees of freedom g⋆(T ). This result is
useful also to find an approximated tread of the universe temperature decrease in function of time.
Indeed using the I Friedmann equation and neglecting the subdominant non-relativistic component,
we can find the following relation between temperature and time:

T ≃ 1.5g
−1/4
⋆

(
1 sec

t

)1/2

MeV (15)

Another important thermodynamic quantity is the entropy S and its comoving density s = S/V . It
is possible to show [3], through thermodynamic relations and the continuity equation, that s = ρ+P

T

and that d
dtS = 0, moreover for the previous considerations it follows that:

s =
∑

i

ρi + Pi

Ti
=

2π2

45
g⋆S(T )T

3 , with g⋆S(T ) =
∑

i=bos

gi

(
Ti
T

)3

+
7

8

∑

i=fer

gi

(
Ti
T

)3

(16)

Here we have defined the effective number of degrees of freedom in entropy g⋆S(T ). In the figure
below 2 it is possible to see the evolution of g⋆(T ) (solid line) and g⋆S(T ) (dotted line) in a numerical
integration that assumes the Standard Model particle content. The figure also shows the temperatures
at which a specific species annihilates and thus the effective number of degrees of freedom experience
a rapid drop.

Figure 2: Evolution of relativistic degrees of freedom g⋆(T ) assuming the Standard Model particle content.
Figure taken from ref. [3].

2.3 Cosmological perturbation theory

So far, we have treated the universe as perfectly homogeneous. To understand the formation and evolu-
tion of CMB and large scale structure (LSS), we have to introduce inhomogeneities (δgµν , δρ, δP, δU

µ).
This significantly complicates the computations since, unlike Maxwell equations, Einstein equations
are nonlinear. We can however exploit the fact that inhomogeneities are small at large scales (as
testified by the fact that the CMB temperature anisotropies are of the order of δT

T ∼ 10−5). This
allows to set-up a pertrubative scheme in which Einstein equations are written and solved order by
order in the perturbations. We discuss here only the linearized order, which is enough to explain the
main characteristics of the CMB physics.
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2.3 Cosmological perturbation theory 2 THE COSMOLOGICAL MODEL

2.3.1 Perturbations of the metric

We use conformal time τ , related to the physical time t used in eq. 1 by dτ = dt/a(t), and we focus
our attention to a flat FLRW geometry. The most general set of perturbations of this geometry reads:

gµν = ḡµν + δgµν ds2 = a2(τ)
[
(1 + 2A)dτ2 − 2Bidx

idτ − (δij + hij)dx
idxj

]
(17)

with A, Bi and hij functions of space and time, and hij = hji since the metric must be symmetrical.
It is extremely useful to perform a scalar-vector-tensor (SVT) decomposition of the perturbations.
The SVT decomposition follows from Helmholtz theorem and makes possible to decompose the 10
degrees of freedom of linearized perturbations of the FRW metric (eq. 17) into components according
to their transformations under spatial rotations, in particular: four scalar fields (4 · 1 = 4 d.o.f.), two
divergence-free spatial vector fields (2 · 2 = 4 d.o.f.), and a traceless, symmetric and divergence-free
spatial tensor field (1 · 2 = 2 d.o.f.).
What justifies this complex procedure and makes the SVT decomposition so powerful is the fact that
the Einstein equations for scalars, vectors and tensors do not mix at linear order and can therefore be
treated separately. Therefore, the decomposition (A, Bi, hij) → (A, B, C, E, B̂i, Êi, Êij) will be:

Bi = ∂iB + B̂i , hij = 2Cδij + 2∂〈i∂j〉E + ∂(iÊj) + 2Êij (18)

∂〈i∂j〉E :=

(
∂i∂j −

1

3
δij∇2

)
E , ∂(iÊj) :=

1

2

(
∂iÊj + ∂jÊi

)
(19)

with ∂iB̂i = ∂iÊi = ∂iÊij = Êi
i = 0.

When we define these functions we have to choose a particular spacetime coordinates (τ,x) to pa-
rameterize them, making a different choice of coordinates (or gauge choice) Xµ → X̃µ = X̃µ(X) can
change the metric and so the values of the perturbation functions. Indeed the Einstein theory ensures
invariance of the interval ds2 under any spacetime reparametrizations:

ds2 = gµν(X)dXµdXν = g̃αβ(X̃)dX̃αdX̃β , gµν(X) =
∂X̃α

∂Xµ

∂X̃β

∂Xν
g̃αβ(X̃) (20)

Once we apply this reparametrization to the perturbed geometry (eq. 17), we deduce that not all the
10 perturbation parameters are physically independent quantities. In order to remove the ambiguity
and to make easier the treatment it is necessary to choose and fix a gauge choice.
Since we are interested in a first order expansion we can consider an infinitesimal coordinates transfor-
mation Xµ → X̃µ = Xµ + ξµ(τ,x) and the relative SVT decomposition ξ0 = T, ξi = Li = ∂iL+ L̂i.
Using this transformation in equation 20 we can find how the parameters of perturbed metric trans-
form [3]:

A→ Ã = A− T ′ −HT , Bi → B̃i = Bi + ∂iT − L′
i , hij → h̃ij = hij − 2∂(iLj) − 2HTδij (21)

where H := a′/a = aH. And in terms of the SVT decomposition we get:

A→ A− T ′ −HT , B → B + T − L′ , B̂i → B̂i − L̂′
i (22)

C → C −HT − 1

3
∇2L , E → E − L , Êi → B̂i − L̂i , Êij → Êij (23)

where H := a′/a is the Hubble parameter in conformal time. It is possible to define special combi-
nations of metric perturbations that do not transform under a change of coordinates. These are the
Bardeen variables [12]:

Ψ := A+H(B−E′)+(B−E′) , Φ := −C−H(B−E′)+
1

3
∇2E , Ψ̂i := Ê′

i−B̂i , Êij (24)

Concerning the scalar perturbations, we can use the freedom in the gauge functions T and L to set
two of the four scalar metric perturbations to zero (this is called gauge fixing). The choice to set
B = E = 0 is called the Newtonian gauge and it gives the metric:

ds2 = a2(τ)
[
(1 + 2Ψ)dτ2 − (1− 2Φ)δijdx

idxj
]

with Ψ = A, Φ = −C (25)

7



2.3 Cosmological perturbation theory 2 THE COSMOLOGICAL MODEL

where we have ignored the non-scalar perturbations. Furthermore, as we will see better later, Ψ plays
the role of the gravitational potential and the absence of anisotropic stress implies Ψ = Φ.
In this dissertation we will use only the Newtonian gauge.

2.3.2 Perturbations of the stress-energy-momentum tensor

Analogously to what we did for the geometry (δgµν), we now perturb the s.e.m. tensor (δTµν). We
strart from the s.e.m. tensor for a single species, introducing δρ, δP, δUµ (functions of space and
time) i.e. the perturbations of the homogeneous universe parameters ρ̄, P̄ , Ūµ (functions of time).
In this way the s.e.m. tensor at first order of perturbation becomes:

δTµν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )(δUµŪν + ŪµδUν)− δPδµν −Πµν (26)

with Πµν = Πνµ and Π0
0 = Π0

i = Πi
i = 0 (the 00 entry, the 0i entries an the spatial trace can always

be absorbed into a redefinition of δρ, δUi, δP respectively).
The 4-velocity Uµ = Ūµ + δUµ has norm +1, namely, UµUµ = +1. At the background level this
implies Ūµ = a−1δµ0 . At the perturbative level, this gives rise to:

gµνU
µUν = 1

1st order
=====⇒ δgµνŪ

µŪν + 2ŪµδUµ = 0 =⇒ δU0 = −Aa−1 (27)

Defining δU i := a−1vi, we obtain Uµ = a−1(1 − A, vi)T . Using this result in equation 26 we finally
find:

δT 0
0 = δρ , δT i

0 = qi , δT 0
i = −[qi + (ρ̄+ P̄ )Bi] , δT i

j = −δPδij −Πi
j (28)

where we have defined qi := (ρ̄+ P̄ )vi, the momentum density.

The total s.e.m. tensor is obtained by summing the contributions of all species (photons, baryons,
dark matter, ...), Tµν =

∑
I T

I
µν . This gives:

δρ =
∑

I

δρI , δP =
∑

I

δPI , qi =
∑

I

qiI , Πij =
∑

I

Πij
I (29)

The velocities do not add, but the momentum densities do. At this point it is possible to proceed as
done with the metric perturbations.
Applying the SVT decomposition to the perturbations:

δρ , δP , vi = ∂iv + v̂i , qi = ∂iq + q̂i , Πij = ∂〈i∂j〉Π+ ∂(iΠ̂j) + Π̂ij (30)

Evaluating how perturbations transform under the infinitesimal coordinate transformation ξ0 =
T, ξi = Li = ∂iL+ L̂i:

δρ→ δρ− T ρ̄′ , δP → δP − T P̄ ′ , vi → vi +L′
i , qi → qi + (ρ̄+ P̄ )L′

i , Πij → Πij (31)

And finally defining gauge invariant quantities, as the comoving gauge density:

∆ :=
δρ+ ρ̄′(v +B)

ρ̄

Newtonian gauge−−−−−−−−−−→ ∆ =
δρ+ ρ̄′v

ρ̄
(32)

Above we used our gauge freedom to set two of the scalar metric perturbations to zero (Newtonian
gauge). Alternatively we could use the gauge fixing in the matter sector, for example setting δρ = 0
(uniform density gauge) or q = 0 (comoving gauge).
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2.3 Cosmological perturbation theory 2 THE COSMOLOGICAL MODEL

2.3.3 Linearized evolution equations

Having found the expression for δgµν and δTµν , we can obtain the perturbed Einstein equation δGµν =
8πGδTµν through the linearization of equations 6. Since, in this dissertation, we are interested only
in scalar fluctuations (first-order vector perturbations are not generated during inflation and tensor
modes are negligible), we consider only their contribution in the expression of δgµν and δTµν , therefore
we will find Einstein Equation as a function of Ψ, Φ, δρ, δP, v, Π. As we did in the first subsection
we start by computing the continuity equation:

∇µ δT
µ
0 = 0 =⇒ δ′ + 3H

(
δP

δρ
− P̄

ρ̄

)
δ = −

(
1 +

P̄

ρ̄

)
(∇ · v − 3Φ′) (33)

∇µ δT
µ
i = 0 ∀i =⇒ v′ + 3H

(
1

3
− P̄

ρ̄

)
v = − ∇δP

ρ̄+ P̄
−∇Ψ (34)

where δ := δρ/ρ̄ and v = ∇v.
These two expressions are the linearized general relativity generalization of, respectively, the continuity
∂tρ = ∇ · (ρv) and Navier–Stokes equations (v ·∇) · v = −1

ρ∇P + ν∇2v −∇Φ.

δGij = 8πGδTij i 6= j =⇒ ∂〈i∂j〉(Ψ− Φ) = 8πGa2 ∂〈i∂j〉Π (35)

The anisotropic stress Πij is negligible in the early universe, and we can disregard it [3]. Therefore
Π = 0 =⇒ ∂〈i∂j〉(Ψ − Φ) = 0 =⇒ Ψ = Φ . In the absence of anisotropic stress there is then
only one gauge-invariant degree of freedom in the metric. In the following we will write all equations
in terms of Φ.

δG00 = 8πGδT00 =⇒ ∇2Φ− 3H(Φ′ +HΦ) = 4πGa2δρ (36)

δG0i = 8πGδT0i ∀i =⇒ Φ′ +HΦ = −4πGa2(ρ̄+ P̄ )v (37)

eq. 36 + eq. 37 =⇒ ∇2Φ = 4πGa2ρ̄∆ (38)

δGii = 8πGδTii ∀i =⇒ Φ′′ + 3HΦ′ + (2H′ +H
2)Φ = 4πGa2δP (39)

We can notice that equation 38 represents the linearized generalization of Poisson equation ∇2Φ =
4πGρ of Newtonian gravity.
Finally it is important to notice that this set of equations is consistent but redundant. Indeed Einstein
equations imply continuity equations (Bianchi identity) and, obviously, equation 36 plus equation 37
imply equation 38.

2.3.4 Initial conditions from inflation

Einstein equations (zeroth and first order) govern the evolution of the background physical quantities
and their perturbations during the universe evolution. However, to compute these quantities, we
need to know their initial conditions. By initial condition here we mean their values at the end
of inflation, and at the beginning of he standard ”hot big-bang era”. We denote this time as tin.
Concerning the background quantities (studied in the first subsection), we used the value of parameters
(like Ωmat, Ωrad, H...) evaluated at present time t = t0, and rescaled back to tin. To study the
evolution of perturbations, instead, we have to use the value of them right after inflation at t = tin. In
this dissertation we discuss how inflation provides the initial conditions for the perturbations in the
following era. The simplest predictions of inflation are [3]:

❼ the perturbations follow a Gaussian statistics;

❼ primordial perturbations are almost scale-independent;

❼ the initial matter fluctuations were adiabatic fluctuations (namely there is only one independent
scalar degree of freedom);

❼ for adiabatic perturbations all the predictions for the metric and s.e.m tensor perturbations can
be given in terms of a single curvature perturbation ζ(tin,x).

9



2.3 Cosmological perturbation theory 2 THE COSMOLOGICAL MODEL

Regarding the first two statements, they will be useful dealing with the CMB measures in the next
section, and so in that chapter we will go into detail.
Concerning adiabatic fluctuation, they are a particular type of matter perturbations where the local
state of matter (ρ, P, v, ...) at some spacetime point (τ, x) of the perturbed universe is the same as in
the background universe at some slightly different time τ + δτ(x), where δτ is the same for all species.
Namely, using the density perturbation of a species I as an example:

δρI(τ,x) := ρ̄I(τ + δτ(x))− ρ̄I(τ) ≈ ˙̄ρIδτ(x) (40)

Since δτ(x) is the same for all species I, using continuity equation and the equation of state:

δτ =
δρI
ρ̄′I

=
δρJ
ρ̄′J

=⇒ δI
1 + wI

=
δJ

1 + wJ
(for all species I and J) (41)

with δI,J := δρI,J/ρ̄I,J the fractional density contrast.
We notice that all matter perturbations at τ = 0 can be characterized by a single degree of freedom
δτ(x) and that the total density perturbation is dominated by the species that is dominant in the
background since all the δI are comparable.
The complement of adiabatic perturbations are isocurvature perturbations, characterized by:

SIJ :=
δI

1 + wI
− δJ

1 + wJ
(42)

which can be sourced in multi-field inflation (which is a possibility that we do not consider in this
dissertation).
Concerning the curvature perturbation that we have chosen to employ (we could represent the initial
conditions in another way), it is a scalar field defined as:

ψ := C − 1

3
∇2E (43)

It can be related to the three-dimensional Ricci scalar R(3), associated with the spacial part of the
perturbed metric (eq. 17) −a2(δij + hij): a

2R(3) = −4∇2ψ (for the proof see [3]).
The mode ψ is not a gauge-invariant quantity, anyway it represents the value of two gauge-invariant
expressions (see eq. 22, 23, 30) when computed in the comoving gauge (B = q = 0), or in the uniform
density gauge (δρ = 0). Specifically:

❼ comoving curvature perturbation: R := C − 1

3
∇2E +H(B + v)

❼ uniform energy density curvature perturbation: ζ := C − 1

3
∇2E −H

δρ

ρ′

Working whit R in Newtonian gauge we obtain:

R = −Φ+Hv =⇒ R = −Φ− H(Φ′ +HΦ)

4πGa2(ρ̄+ P̄ )
(44)

where we have used equation 37 in order to eliminate the peculiar velocity in favour of the gravitational
potential and its time derivative. Moreover, if a single component dominates the universe and the
perturbations are adiabatic, we can use the first Friedmann equation and the equation of state to find:

R = −Φ− 2

3(1 + w)

(
Φ′

H
+Φ

)
(45)

We want to prove that the curvature perturbation is conserved on large scales and for adiabatic
perturbations. Therefore differentiating eq. 44 with respect to τ we obtain:

−4πGa2(ρ̄+ P̄ )R′ = 4πGa2HδPnad +H
P̄ ′

ρ̄′
∇2Φ with δPnad := δP − P̄ ′

ρ̄′
δρ (46)

10



2.3 Cosmological perturbation theory 2 THE COSMOLOGICAL MODEL

where non-adiabatic pressure δPnad vanishes for adiabatic fluctuations in a mixture of fluids that obey
the equation of state ρ = wP . Therefore:

−4πGa2(ρ̄+ P̄ )R′ = H
P̄ ′

ρ̄′
∇2Φ =⇒ −4πGa2(ρ̄+ P̄ )R′ = −H

P̄ ′

ρ̄′
k2Φ (47)

Φ(x, τ), R(x, τ), ... −→ Φ(k, τ), R(k, τ), ... (48)

where the arrows right hand side is the Fourier representation of the differential equation, performed
via:

Φ(x, τ) =
1

(2π)3

∫

R3

d3k Φ(k, τ) eik·x (49)

This representation corresponds to identify a scalar field (in this case Φ(x, τ)) as a continuous sum
(integral) of plane wave solution, each one caracterized by the constant comoving wavevector k, called
modes. Each mode is “weighted” by a suitable coefficient (in this case Φ(k, τ)) that expresses its
magnitude and phase. We often employ this representation in the following sections.
If we now consider R(k, τ) and Φ(k, τ) related to modes with small k = |k| (k ≪ H, superhorizon
modes), we can obtain that R ∼ Φ (we will prove it in the next subsection) and therefore, using eq.
47, that:

H
2
R
′ ∼ Hk2R =⇒ d lnR

d ln a
∼

(
k

H

)2

∼ 0 (superhorizion) (50)

Therefore, since k represent the inverse of the characteristic comoving length of the mode (k = 1/λ)
and H represent the inverse of the characteristic conformal time of the universe expansion (H = 1/τ̃),
this equation is the formalization of the concept that large-scale perturbations are not modified until
the different regions of the mode becomes casually connected (k ∼ H =⇒ λ ∼ cτ̃ , horizon crossing).
To resume, any mode of interest for observations today was outside the Hubble radius if we go back
sufficiently far into the past. Inflation sets the initial condition for these superhorizon modes through
the curvature perturbation, which is frozen until it re-enters inside the horizon.
Finally, it is possible to demonstrate (see [17]) that ζ and R are equal at superhorizon scales (to first
order in the perturbations). Specifically:

ζ = R− 2

9(1 + w)

(
k

H

)2

Ψ =⇒ ζ ∼ R (superhorizion) (51)

Therefore, the initial perturbative conditions generated by inflation, which are well described in terms
of ζ, coincide with those of R since all modes were outside the horizon at the end of inflation. Hence,
also ζ is constant at superhorizon scales (for adiabatic perturbations).

2.3.5 Evolution of gravitational potential

In this last subsection we want to derive the behavior of the gravitational potential from τ = τin to
recombination, this behavior is governed by Einstein equations. Through eq. 36, eq. 39 and the two
Friedmann equations, converted to conformal time τ (using H = H/a and Ḣ = H

′/a2 −H
2/a2), we

can find a closed form evolution equation for the gravitational potential:

Φ′′ + 3(1 + w)HΦ′ − w∇2Φ = 0 =⇒ Φ′′ + 3(1 + w)HΦ′ + wk2Φ = 0 (52)

where the arrow right hand side is the Fourier representation.
Concerning, instead, initial condition of this differential equation Φ(x, τin), they can be derived from
the initial conditions of the curvature perturbation parameter that, as we have said before, it is the
most convenient way to represent the evolution of inflation perturbations at time τ = τin. Since we
are studying Φ and R at time τ = τin we can assume that all modes are superhorizon (k ≪ H). In
this situation equation 52 imply Φ′ = 0 =⇒ Φ(τ) = const. . Moreover, this and eq. 45 imply:

R = −5 + 3w

3 + 3w
Φ =⇒ R = −3

2
ΦRD = −5

3
ΦMD (superhorizion) (53)

11



2.3 Cosmological perturbation theory 2 THE COSMOLOGICAL MODEL

Since at τ = τin the universe was radiation dominated, so Φ(τin) = −2
3R(τin). Therefore, in addition

to the initial conditions, this implies that superhorizon modes of gravitational potential are constant
all the time except during radiation-matter transition where they decrease by a factor of 9/10.
Concerning subhorizon modes (k & H), we have to solve eq. 52 for radiation domination and matter
domination era separately:

❼ In the radiation era, w = 1/3, we get:

Φ′′
k +

4

τ
Φ′
k +

k2

3
Φk = 0 =⇒ Φk(τ) = Ak

j1(x)

x
+Bk

n1(x)

x
, x :=

kτ√
3

(54)

where the functions j1(x) and n1(x) are the spherical Bessel and Neumann functions:

j1(x) :=
sinx

x2
− cosx

x
=
x

3
+O

(
x3

)
, n1(x) := −cosx

x2
− sinx

x
= − 1

x2
+O (1) (55)

By setting the initial conditions (Bk = 0 since n1 → −∞ for x → 0, and Φk(τin) = −2
3Rk(τin)

as we have seen before) we find that:

Φk(τ) = −2Rk(τin)

(
sin(x− xhc)− (x− xhc) cos(x− xhc)

(x− xhc)3

)
(all scales, w = 1/3) (56)

with xhc := (kτhc)/
√
3 and τhc the conformal time at the horizon crossing of the perturbation

k = H(τhc).

❼ In the matter era, w = 0, instead the evolution of the potential is:

Φ′′ +
6

τ
Φ′ = 0 =⇒ Φ ∝

{
const.

τ−5 ∝ a−5/2
=⇒ Φ = const. (all scales, w = 0) (57)

where we have disregarded the decaying mode Φ ∝ τ−5.

Figure 3 shows the evolution of the gravitational potential, from a numerical simulation, for three
mode of different wavelength λ = k−1. As predicted, the potential is constant while the modes are

Figure 3: Numerical solutions for the linear evolution of the gravitational potential. We recall that keq = H(teq),
where ”eq” refers to the radiation-matter transition. From top to bottom, the modes shown re-enter the horizon,
respectively, during the matter-dominated era, at radiation-matter equality, and during the radiation-dominated
era. Figure taken from ref. [3].

outside the horizon. The mode shown with k < keq enter the horizon during the matter era, and
therefore its amplitude is constant all the time ecxept for the suppression of a 9/10 factor during the
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3 THE HUBBLE TENSION

radiation-matter transition. The two other modes shown re-enter the horizon at the radiation-matter
equality or during the radiation era. Their amplitude decrease as τ−2 ∼ a−2 during the radiation era,
while their size is smaller or comparable to that of the horizon. The resulting amplitudes of these
modes at the start of the matter era are therefore strongly suppressed as compared to that of the larger
scale modes, that re-enter the horizon during the matter era. During the matter era the potential is
constant on all scales.

3 The Hubble tension

The previous chapter describes the basis of the Λ cold dark matter (ΛCDM) model. Nowadays, and
in the past 30 years, it was the most important and widespread model and for this reason it is often
called standard cosmological model. It is the simplest one that provides a good agreement with the
datasets we have (including also Planck measurements). It makes several assumptions (all of them
verified by measurements) and depends on only 6 fixed parameters. All the other physical quantities
can be calculated from these. Some important assumptions of the model are: the presence of the
cosmological constant (dark energy with w = −1) that drives the current accelerated expansion, the
presence of non-relativistic (cold) dark matter that explains the large scale structure (LSS) we observe,
the presence of a flat universe k = 0 (the current estimate is Ωk = 0.001± 0.002, [7]).
While we have already considered the first two statements in the previous chapter, the last one can be
used to simplify some equations we have derived. Indeed, since the universe is flat and it is possible
to neglect the radiation density shortly some time after radiation matter equality, the Friedmann
equation 8 is simplified and we can find an analytic solution of the scale factor for the relatively late
universe composed of matter and dark energy:

a(t) = a0

[
(1− ΩΛ)

ΩΛ

]1/3
·
[
sinh

(
3

2

√
ΩΛH0t

)] 2
3

, t≫ tRM equality ∼ 60 kyr (58)

where the time axis origin is set at the singularity a(0) = 0 (where the solution is acually invalid).
As we have seen in the introduction, the ΛCDM model is currently under intense investigation [1], and
the ∼ 5σ Hubble tension is one of the problems (see Figure 4). Indeed we have two main measurements
of the Hubble constant H0 that are in ∼ 5σ mutual disagreement. The one obtained from the CMB
(including the most recent one by Placnk [7]) is called the ”early measurement”. On the contrary,
the one inferred from physical events (such as supernovae) through distance and redshift measures in
the local universe (including that provided by SH0ES Collaboration [8]) is called ”late measurement”.
Both of the two measurements that characterize the Hubble tension are based on the same ΛCDM
model, but they are influenced by its behavior in different epochs.
Armed with the concepts and results outlined in the previous sections, in the following sections we
will briefly discuss the basic theoretical aspects of both measurements.

Figure 4: Some H0 measurements form the 2000s to now. Figure taken from ref. [13].
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3.1 Late measurement 3 THE HUBBLE TENSION

3.1 Late measurement

The best established and most direct method to measureH0 locally comes from measuring the distance-
redshift relation of nearby celestial bodies (z < 1). Indeed, as we show in eq. 62, H0 represent the
first order relation between the luminosity distance and the redshift (both defined in the first section).
In particular, the measures of distance are obtained by building a “distance ladder” (characterized by
several methods used to estimate the distance of object at different scales of distance, each rung of
the ladder provides information that can be used to determine the distances at the next higher rung).
In 2005 the SH0ES (Supernovae, H0, for the Equation of State of dark energy) project is started, this
collaboration implements this method in order to estimate H0. The last estimate, in agreement with
the previous ones, is H0 = 73.2± 1.3 km

sec Mpc [8].
In order to estimate the Hubble constant from the distance-redshift relation it is necessary to generalize
the Hubble law (eq. 4) such that it relates two observable quantities, namely the luminosity distance
and the redshift, that we can infer by measuring the radiation that comes from celestial bodies.
In the context of the ΛCDM model (Ωk = 0), using the definition of luminosity distance and the

substitution a → z (1 + z = a0
a(t) =⇒ dt = − a2

a0ȧ
dz) we can find the analytic dependence of the

distance on the redshift:

dL(z) = a0(1 + z)χ = a0(1 + z)

∫ t0

te(z)

dt

a(t)
= (1 + z)

∫ z

0

dz̃

H(z̃)
(59)

where H(z) = H0

√
Ωr(1 + z)4 +Ωm(1 + z)3 +ΩΛ (from the Friedmann equations).

Neglecting the radiation component (an excellent approximation well after the matter radiation equal-
ity, namely for these local measurements) we can also compute the integral:

dL(z) =
(1 + z)

√
1 +R

H0

[
(1 + z)Hgeom

(
−R(1 + z)3

)
−Hgeom(−R)

]
(60)

with R :=
1− ΩΛ

ΩΛ
, and Hgeom(x) := 2F1(

1

3
,
1

2
,
4

3
;x) is the hypergeometric function:

2F1(a, b, c; z) :=
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (a)n :=

{
1 if n = 0

a(a+ 1)(a+ 2) · · · (a+ n− 1) if n > 0

Figure 5: Luminosity distance (eq. 59) and its I and II order approximations (eq. 62), data from [7] and [9]. The
vertical lines represent the maximum distance reached by E. Hubble in the discovery of the universe expansion [6]
and by A.G Riess in the discovery of the acceleration of this expansion [10].

The first two derivatives of the luminosity distance with respect to the redshift read:

∂dL(z)

∂z
=
dL(z)

1 + z
+

1 + z

H(z)
,

∂2dL(z)

∂z2
=

2H(z)− (1 + z)H ′(z)
H(z)2

(61)
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where H ′(z) =
ȧ

a0
− äa

a0ȧ
=

ȧ

a0
(1 + q) and q := − äa

ȧ2
is the deceleration parameter.

We use these two derivatives in the Taylor expansion:

dL(z) =
c

H0

[
z +

1− q0
2

z2 +O
(
z3
)]

(62)

where we also reintroduced the speed of light c.
Figure 5 compares the analytical solution dL(z) (eq. 60) with the first and second order approximations
(eq. 62). The vertical lines represent the maximum distance reached by E. Hubble in the discovery of
the universe expansion [6] and by A.G Riess in the discovery of the acceleration of this expansion [10].

3.2 Early measurement

The cosmic microwave background (CMB) radiation was accidentally discovered by Arno Penzias
and Robert Wilson in 1965 [14]. It is composed of an almost uniform and isotropic electromagnetic
radiation that permeates all the space around us, its frequency spectrum corresponds to that emitted
by a perfect black body at a temperature T = (2.72548± 0.00057)K [9]:

I(ν) dν =
2hν3

c2(e
hν

kT − 1)
dν (63)

After its discovery, the CMB has been the subject of numerous studies and in 1992, in particular,
a precise measurement of the temperature, as well as on the the anisotropic deviations from it was
measured for the first time from space by COBE DMR instrument [15]. This anisotropy, as well as
the polarization of the same radiation, has nowadays been measured with great precision by Planck
satellite [7] and it is estimated to be of the order of δT/T ∼ 10−5. The statistics of these data have
been and are being extensively studied to derive information regarding the geometry, composition, and
initial conditions of the universe. In particular, it is used to estimate the six cosmological parameters
such as the Hubble constant H0. The last estimate is H0 = 67.4± 0.5 km

sec Mpc [7].
Small variations in the CMB temperature across the sky, reflect spatial variations in the density
of the primordial plasma, δρa := ρa − ρa, and related perturbations of the spacetime geometry,
δgµν := gµν−gµν (see previous section). This deviation from the homogeneous universe, that manifests
itself at the time of recombination (z ∼ 1100) at the order of δT/T ∼ 10−5, and which seeds the Large
Scale Structures (LSS) that we can observe nowadays (with a significantly more pronounced density
contrast), is believed to have originated during the inflationary period. According to the inflationary
theories, the exponential growth of the scale factor during inflation caused quantum fluctuations of
the inflaton field to be stretched to macroscopic scales, and to ”freeze in” upon leaving the horizon
(when k ∼ (aH)−1). As we also discussed in the previous section, these fluctuations re-enter inside
the horizon in the following radiation and matter domination eras, and this sets the initial conditions
for the anisotropies in the cosmic microwave background and for the distribution of matter in the
universe. This concept is summarized in Figure 6.
Since the fluctuations are believed to arise from inflation, such measurements can also set constraints
on parameters within inflationary theory.
In the next subsections we discuss the establishment of the CMB anisotropies, following refs. [11]
and [18]. For simplicity, we consider a flat universe.

3.2.1 Anisotropy from inhomogeneity

Here we discuss how an inhomogeneity in the universe radiation density during recombination (z ∼
1100) leads to an anisotropy in the radiation that we measure nowadays from Earth (z = 0). Indeed,
after electrons and protons recombination, the photons stop to scatter with them, and propagate al-
most freely until they reach our detectors. Therefore, it follows that an inhomogeneity (in the density
and in the temperature) in the last scattering surface (the shell at the right distance from the Earth
such that photons emitted at the time of decoupling are now received) causes the production of pho-
tons with energies different from the average, which propagate until they reach us. Variations of the
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3.2 Early measurement 3 THE HUBBLE TENSION

Figure 6: Evolution of perturbations (described by curvature perturbations) from their production during
inflation to their detection today. Figure taken from ref. [3].

energy of the arrival photons can be also caused by time varying inhomogeneities of the geometry on
which these photons propagate, through the so called integrated Sachs-Wolfe effect.
Before we start, it is important to stress that this whole process is stochastic. The perturbations are
produced stochastically while sub-horizon during inflation (following a nearly Gaussian statistics with
zero mean and scale-invariant variance). Therefore, although their subsequent evolution is a classical
and deterministic process, the anisotropy of the CMB is a stochastic phenomenon. In other words,
any physical information must be inferred from the statistical properties of the CMB temperature
distribution. In particular, assuming the distribution to be Gaussian with zero mean, all its statistical
information is contained in the two-point correlation function. This function quantifies the tempera-
ture correlation between any two-point in space. Assuming statistical homogeneity and isotropy, this
correlation depends only on the distance between the two-point.
Let T (n̂) be the CMB temperature distribution measured from the direction n̂ of our sky, and let T
be its average over the whole celestial sphere. The quantity Θ(n̂) := (T (n̂) − T )/T represents the
anisotropy distribution, with vanshing mean. In this context a harmonic description is more efficient
than a real space description, and the appropriate harmonics are the spherical harmonics (the eigen-
functions of the Laplace operator on the sphere that form a complete basis for scalar functions on it):

Θ(n̂) =
∑

lm

ΘlmYlm(n̂) (64)

Given the definition of Θ(n̂), we have that Θ00 = 0.
Furthermore, for statistically isotropic fluctuations (i.e. 〈Θ(n̂)Θ(n̂′)〉 = f(n̂ · n̂′)), the ensemble
average of the temperature fluctuation coefficients Θlm satisfies:

〈Θ∗
lmΘl′m′〉 = δll′δmm′Cl =⇒ Cl = 〈|Θlm|2〉 = 1

2l + 1

l∑

m=−l

|Θlm|2 (65)

with Cl being the power spectrum coefficients.
If we temporarily disregard for simplicity the integrated Sachs-Wolfe effect, under the instantaneous
recombination approximation, the angular temperature fluctuation distribution is simply a projection
of the spatial temperature fluctuation in the last scattering surface at the recombination:

Θ(n̂) =

∫
dD Θ(x)δ(D −D∗) (66)

16



3.2 Early measurement 3 THE HUBBLE TENSION

where D =
∫
dz/H is the comoving metric distance, D∗ denotes the distance a CMB photon travels

from recombination, and Θ(x) := (T (x)− T )/T is the spatial temperature fluctuation at recombina-
tion. Note that the cosmological redshift does not appear in the temperature fluctuation since the
background and fluctuation redshift alike.
We can decompose Θ(x) in Fourier modes as in eq. 49. Since Θ(x) fluctuations are statistically
homogeneous and isotropic (i.e. 〈Θ(x)Θ(x′)〉 = f(|x − x′|)), the two-point function of the Fourier
coefficients Θ(k) is described by the power spectrum P (k):

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k − k′)P (k) = (2π)3δ(k − k′)P (k) (67)

with (2π)3 a normalization factor. Since P (k) = P (k):

〈Θ(x)Θ(x)〉 =
∫

d3k

(2π)3
P (k) =

∫ ∞

0
d(ln k)

k3P (k)

2π2
=

∫ ∞

0
d(ln k)∆2

Θ(k) (68)

with ∆2
Θ(k) := k3P (k)/(2π2).

To relate this to the amplitude of the angular power spectrum, we have to expand equation 66 in
Fourier modes. Therefore, applying the Dirac delta function:

Θ(n̂) =

∫
dD

∫
d3k

(2π)3
Θ(k)eik·(Dn̂)δ(D −D∗) =

∫
d3k

(2π)3
Θ(k)eik·(D∗n̂) (69)

The Fourier modes themselves can be expanded in spherical harmonics with the relation:

eik·(D∗n̂) = 4π
∑

lm

iljl(kD∗)Y
∗
lm(k̂)Ylm(n̂) (70)

where jl are the spherical Bessel functions (mentioned in the previous section). Extracting the multi-
pole moments from eq. 69 and 70, we obtain:

Θlm =

∫
d3k

(2π)3
Θ(k)4πiljl(kD∗)Ylm(k̂) (71)

Finally:

〈Θ∗
lmΘl′m′〉 = δll′δmm′4π

∫ ∞

0
d(ln k)j2l (kD∗)∆

2
Θ(k) (72)

Assuming a slowly varying power spectrum ∆2
Θ(k) (as we will see better later) we can take it out of

the integral and evaluate it at the peak of the Bessel function kD∗ ≈ l. The remaining integral gives∫∞
0 d(lnx) j2l (x) = [2l(l + 1)]−1, hence:

Cl ≈
2π

l(l + 1)
∆2

Θ(l/D∗) (73)

Therefore, we have seen that it is possible to relate the Cl coefficients (estimated from measurements
of T (n̂) using equations 64 and 65) to the parameter ∆2

Θ(k) evaluated at the time of ricombination.
The purpose of the next paragraphs will be to find how generic scale-invariant power spectrum of
primordial curvature perturbations at the beginning of the universe ζ(k, 0):

∆2
ζ(k) ∼ const. with 〈ζ(k, 0)∗ζ(k′, 0)〉 = (2π)3(2π2/k3)δ(k − k′)∆2

ζ(k) (74)

turns into the power spectrum of temperature ∆2
Θ(k). In other words, we will find the classical and

deterministic transfer function T (k) such that:

Θ(k) = T (k) ζ(k) =⇒ ∆2
Θ(k) = T 2(k)∆2

ζ(k) (75)

Indeed, as we said in the previous section, the statistics of the primordial adiabatic pertrubations is
fully described by that of the curvature mode ζ.
Finally, since the transfer function T (k) depends on the behavior of the cosmological model from the
end of inflation to the present time (and therefore on parameters such as Ωm, ΩΛ, ...), and since
the power spectrum ∆ζ(k) depends on the inflationary model (and its related parameters), thus it
is possible to test a generic cosmological theory (such as the standard ΛCDM model) and determine
its parameters by fitting the power spectrum Cl obtained from the cosmic microwave background
radiation. The fit of the ΛCDM model performed by Planck collaboration is shown in Figure 7.
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Figure 7: Temperature power spectrum (temperature-temperature correlation) from recent measurements from
Planck mission. Dl := [l(l + 1)/(2π)]Cl where Cl is the one defined in this dissertation multiplied by the square
of the background temperature today T . The base ΛCDM theoretical spectrum best fit is plotted in light blue
in the upper panel. Figure taken from ref. [7].

3.2.2 Transfer function

The cosmological principle of statistical isotropy refers to one specific frame, which we denote as CMB
rest-frame. Violation of isotropy is observed in any other frame. The largest anisotropy measures in
the CMB is actually not of cosmological origin, but it is due to the peculiar motion of the solar system
in the CMB rest-frame. Consider a photon entering our detectors from a direction n̂. In the rest
frame of the CMB it has momentum p = −pn̂. Due to the relativistic Doppler effect, the observed
momentum is:

pobs(n̂) =
p

γ(1− n̂ · v) = p (1 + n̂ · v +O
(
v2
)
) since p = (2π)ν (76)

with v the Solar System velocity relative to the CMB rest frame such that |v| ≪ 1 (v ∼ 370 km/s [16]).
Since the CMB has a blackbody spectrum, we can relate the change in the observed momentum of
photons to a change in the observed temperature (using that νpeak ∝ T ):

ΘDop(n̂) =
Tobs(n̂)− T

T
=
pobs(n̂)− p

p
= n̂ · v = v cos θ (77)

up to O
(
v2
)
terms that we disregard. Therefore, to leading order in v, the Doppler effect contributes

only to the coefficient of the spherical harmonic Y10 =
√

3
4π cos(θ) : ΘDop

10 =
√

4π
3 v, where we have

directed the z−axis along the direction of v. Hence, it only impacts the value of C1, which was
excluded from the fit in Figure 7.
Let us trace the life of a photon (Xµ(λ)) after decoupling. In doing so, we now include also the
integred Sachs-Wolfe effect that we disregarded in the above discussion. In the absence of additional
non-gravitational forces, freely-falling particle (massive or massless) in a curved spacetime moves along
geodesics:

P ν∇νP
µ = P ν

(
∂Pµ

∂xν
+ Γµ

νρP
ρ

)
= 0 (78)

with Pµ the four-momentum of the particle. In particular, this equation for massive particles can be
obtained extremizing the action of a free particle in a curved spacetime (see [3]):

S[Xµ(λ)] = −m
∫ B

A
ds = −m

∫ λB

λA

√
gµν(X)ẊµẊνdλ (79)
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while the massless case coincides with the m→ 0 limit of the massive particle case.
If we initially consider only the flat background metric in the calculation of the Christoffel symbols,
then we obtain (since ∂iP

µ = 0):

P 0dP
µ

dt
= −Γµ

αβP
αP β =⇒ p ∝ 1

a
(80)

with p the momentum of the particle (p = E for massless particle and p = γmv for massive particle).
Since the effect of the background metric acts identically on both pobs(n̂) and p, the observable Θ(n̂)
is not influenced by the expansion of the universe that occurs during the photon trajectory. At this
point it is necessary to calculate the geodesic equation in the inhomogeneous universe to first order
in perturbation theory. Using conformal time and the Newton gauge, defined in the previous section,
we obtain (see [11]):

d

dτ
ln (ap) = −dΨ

dτ
+
∂(Ψ + Φ)

∂τ
(81)

where d
dτ represents the total derivative of ln(a(τ)p(τ)) and Ψ(τ,X i(τ)) with respect to conformal

time, while ∂
∂τ represents the partial derivative of (Ψ + Φ) with respect to conformal time.

In the absence of the source terms on the right hand side, this implies p ∝ a−1. The inhomogeneous
source terms describe how photons lose or gain energy as they move out of or into potential wells.
Working in the idealised approximation of instantaneous recombination (at conformal time τ∗ of last
scattering), we can integrate the geodesic equation along a line of sight and so relate the observed
CMB temperature anisotropies (at conformal time τ0) to the fluctuations at recombination:

ln(ap)0 = ln(ap)∗ + (Ψ∗ −Ψ0) +

∫ τ0

τ∗

dτ
∂

∂τ
(Ψ + Φ) (82)

Using that ap ∝ aT (1+Θ), a0T 0 = a∗T ∗ and Taylor-expanding the logarithms to first order in Θ, we
find:

Θ0 = Θ∗ + (Ψ∗ −Ψ0) +

∫ τ0

τ∗

dτ
∂

∂τ
(Ψ + Φ) (83)

The term Φ0 only affects the monopole perturbation, so it is unobservable and therefore dropped from
the equation. Moreover, the fractional temperature perturbation at last scattering can be expressed
in terms of the density contrast of photons, δγ := (ργ − ργ)/ργ , as:

Θ∗ =
1

4
(δγ)∗ (84)

since ργ ∝ T 4, as we showed in eq. 12. Hence:

Θ0 = (
1

4
δγ +Ψ)∗ +

∫ τ0

τ∗

dτ
∂

∂τ
(Ψ + Φ) (85)

So far, we have ignored the motion of the electrons at the surface of last scattering, the inclusion of
which leads to:

Θ(n̂) =

(
1

4
δγ +Ψ+ n̂ · ve

)

∗
+

∫ τ0

τ∗

dτ (Ψ′ +Φ′) (86)

with ve the electrons velocity at the time of the last scattering surface (LSS) measured in the rest
frame of the observer.
Each term on the right hand side has the following physical interpretation:

❼ the term 1
4δγ is the intrinsic temperature variation over the background LSS;

❼ the term Ψ arises from the gravitational redshift that the photons experience when climbing out
of a potential well at last scattering. The combination (14δγ +Ψ) is often called the Sachs-Wolfe
(SW) term;

❼ the n̂ · ve is the Doppler effect due to the electrons motion at the LSS;
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❼ finally, the
∫
dτ (Ψ′ + Φ′) term is called integrated Sachs-Wolfe (ISW) term and describes the

effect of gravitational redshifting from evolution of the potentials along the line of sight between
τ∗ and τ0. During matter domination era Ψ′ ≈ Φ′ ≈ 0 (as we showed in eq. 35 and 57) and this
term vanishes.

Figure 8 illustrates the contributions that each of the terms in eq. 86 makes to the power spectrum
of the CMB temperature anisotropies. We see that the integrated Sachs-Wolfe (ISW) contribution is
subdominant. For this reason we will neglect it in the following discussion.

Figure 8: Contributions of the various terms in eq. 86 to the power spectrum of CMB anisotropies. Figure
taken from ref. [11].

The equation 86 highlights terms that we had not specified or that we had ignored in determining the
expression for Cl factors (eq. 73). Therefore, if we proceed with the generalization:

Θ(x, τ∗) −→
(
1

4
δγ +Ψ+ n̂ · ve

)

∗
(87)

where we have neglected the ISW term, the formula for the Cl factors (without going into the details
of the proof) changes as follows [19]:

CL = 4π

∫ ∞

0
d(ln k)j2l (kD∗)∆

2
Θ(k) −→ CL = 4π

∫ ∞

0
d(ln k)T 2

l (k)∆
2
ζ(k) (88)

with: Tl(k) := TSW (k)jl(kD∗)+TD(k)j
′
l(kD∗) , TSW :=

(14δγ +Ψ)∗
ζ(k, τin)

, TD := − (ve)∗
ζ(k, τin)

(89)

where TSW (k) and TD(k) are the transfer functions that defines how the curvature perturbation (ζ)
at time τ = τin evolve into density, gravitational and velocity perturbations (δγ , Φ, ve) at the time of
recombination τ∗.
Finally, since both the Bessel function jl(kD∗) and its derivative j′l(kD∗) act almost like delta functions
and map the Fourier modes k to the harmonic moments l ∼ kD∗, we can find the generalization of
eq. 73:

Cl ≈
2π

l(l + 1)

[
T 2
SW (k) + T 2

D(k)
]
∆2

ζ(k)

∣∣∣∣
k∼l/D∗

(90)

where we have dropped the cross term TSW (k)TD(k) because it is negligible.
Without going into detail about inflation theories, they predict the shape of the curvature perturba-
tions power spectrum ∆2

ζ(k) (for more details see [2] or [11]):

∆2
ζ(k) = As

(
k

k∗

)ns−1

with k∗ := − 1

τ∗
(91)
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where As is called curvature fluctuation amplitude and ns scalar spectral index. Given that recent
measurements have estimated ns = 0.965 ± 0.004 [7], we can state that the scale invariance approx-
imation ∆2

ζ(k) ∼ const. is verified. Therefore, the only quantities in equation 90 that significantly
modulate the Cl factors are the transfer function TSW and TD. In the next section, we will discuss
the evolution effects that determine the dominant transfer function TSW and hence the CMB power
spectrum.

3.2.3 Cosmic sound waves and imprints in the CMB

As the inflaton decays and reheats the universe, the inflaton primordial perturbations (δφ) turn into
matter and radiation perturbations (δTµν

γ , δTµν
baryons, ...). The latter, along with the corresponding

metric perturbations (δgµν), remain frozen until the horizon crossing, when the interactions between
photons and matter result in oscillatory amplitudes of the perturbations, known as baryon acoustic
oscillations (BAO). In the early universe, electrons and baryons (mostly protons) are strong coupled
to each other via Coulomb scattering, at the same time electrons and photons interact via Thomson
scattering. Hence the baryon acoustic oscillations are fluctuations in the density of the electron-baryon
fluid caused by acoustic density waves. This tight coupling persists until recombination (at redshift
z ∼ 1100, during the matter dominated era), when free electrons and protons combine into neutral
hydrogen, and photons start to stream freely.
Figure 9 shows how different scales of primordial perturbations influence the CMB temperature power
spectrum.

Figure 9: Effect of different scales of primordial perturbations on the CMB temperature power spectrum. Figure
taken from ref. [19].

Perturbations on too large scales (k < c−1
s (aH)

∣∣
∗, where cs is the sound speed of the photon-baryon

fluid that we define in this subsection) remain frozen until shortly before recombination, and there-
fore do not have enough time to perform BAO, resulting in a nearly constant power spectrum (zone
I). Perturbations on intermediate scales (c−1

s (aH)
∣∣
∗ < k < kD

∣∣
∗, with kD a characteristic damping

scale) instead develop BAO and generate a spectrum with oscillations (zone II). Fnally, modes that
correspond so scales smaller than the photon mean free path (k > kD

∣∣
∗) are strongly damped by

the photon diffusion (this is known as Silk damping [24]). This leads to an exponential decay of the
power spectrum (zone III). In particular, the effect of exponential damping can be represented as [19]:
T (k) −→ e−k2/k2

DT (k) with kD = 2π/λD, λD =
√
τλC , λC = (neσTa)

−1 where ne is the electron
density and σT is the Thomson cross section. The quantity λC is the comoving mean free path, and
λD is the comoving diffusion length in the time τ .
If our task is to compute the transfer functions TSW (k) and TD(k) in eq. 89, this requires us to
solve the coupled fluctuation equations of photons, electrons, baryons and dark matter in a perturbed
spacetime (dark energy is negligible at those times).
In this subsection we examine the physical processes involved in the formation of the acoustic peaks
and we explain their sensitivity to the six parameters of the ΛCDM model (universe energy content,
expansion rate, ...). Our treatment will be approximate and qualitative (further details can be found
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in [19]).
By combining the continuity equation and the Navier-Stokes equation for photons, in particular sub-
stituting the divergence of equation 34 into the derivative (with respect to conformal time) of equation
33 using δP/δρ = P̄ /ρ̄ = 1/3, we obtain:

δ′′γ − 1

3
∇2δγ =

4

3
∇2Ψ+ 4Φ′′ (92)

This equation is valid only during the radiation domination era, when δP/δρ = P̄ /ρ̄ = 1/3. If we
take into account the interaction between photons and baryons during the early phase of the matter
domination era, this equation generalizes to [19]:

δ′′γ +
HR

1 +R
δ′γ − c2s∇2δγ =

4

3
∇2Ψ+ 4Φ′′ +

4HR

1 +R
Φ′ (93)

with:

c2s :=
1

3(1 +R)
, R :=

3

4

ρb
ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
(94)

where R is the ratio of the momentum densities of baryons and photons, while cs is the sound speed
of the photon-baryon fluid. In the last relation, the scale factor is normalized to one today. Eq. 93
is a key relation for the CMB phenomenology. The various terms in this euqation have the following
intepretation: δ′γ is a ”friction” term due to the expansion of the universe; ∇2δγ is the pressure term;
∇2Ψ is the gravity term; finally, Φ′′, Φ′ arise from time dilatation [11].
In practice, the equations describing the many coupled fluctuations in the primordial plasma have to
be solved numerically. Anyway we can solve equation 93 by making several (more or less justified)
approximations. Our goal is to understand the main features of the CMB power spectrum.
Defining Θ := 1

4δγ+Ψ (following the previous chapter convention), considering Ψ ≈ Φ (valid in absence
of anisotropic stress Π), neglecting the time dilation terms Φ′, Φ′′, and imposing ργ ≫ ρb =⇒ R≪ 1
(true during radiation domination era), the equation 93 simplifies significantly:

Θ̈− c2s∇2Θ = 0 (95)

where the solutions in the Fourier space are:

Θ(k, τ) = Ak cos(cskτ) +Bk sin(cskτ) (96)

imposing the initial conditions in terms of the curvature perturbation [19], we obtain:

Θ(k, τ) = 3ζk cos(cskτ) (97)

where we have approximated the conformal time at the horizon crossing equal to zero τhc ∼ 0 (valid
for sufficiently small wavelengths). It follows, by definition 89, that:

TSW (k) =
Θ(k, τ∗)
ζk

= 3 cos(cskτ∗) (98)

Since the CMB power spectrum is proportional to the square of the transfer function, its peaks occur
at multiples of a fundamental scale kn = nk∗ with n ∈ N, k∗ := π/s∗ and s∗ := csτ∗ ∼ τ∗/

√
3

(the sound horizon at recombination). Reminding that in eq. 90 the transfer function is evaluated
in k ∼ l/D∗, the fundamental scale k∗ becomes a characteristic angular scale by simple projection:
l∗ = k∗D∗ ∼ 2πτ0/τ∗, where D∗ = τ0 − τ∗ ∼ τ0 (in a flat universe). Assuming a purely matter
dominated universe after recombination, we have τ ∝ a1/2 and therefore we find:

l∗ ∼ 2π

(
τ0
τ∗

)
∼ 2π

(
a0
a∗

)1/2

∼ 2π

(
z∗
z0

)1/2

∼ 2π

(
1100

1

)1/2

∼ 200 −→ θ∗ :=
2π

l∗
∼ 2◦ (99)

It is important to note how this value l∗ coincides with the value of l corresponding to the first peak in
Figure 7. Therefore, with this simplified treatment, we manage to determine the fundamental angular
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scale of the power spectrum. However, this result is based on the assumptions that dark energy is
negligible and that the universe is flat. Angular distances (as D∗ in θ∗ = s∗/D∗) are indeed very
sensitive to the current dark energy component ρΛ(t0) and to the geometry of the universe k. In fact
dA = dm/(1 + z) = a0Sk(χ)/(1 + z) with Sk(χ) (defined in eq. 2) depending on k, in particular Sk(χ)
increases as k decreases (R sin(x/R) < sinx < x < sinhx < R sinh(x/R) for x ≪ 1 and 0 < R < 1
the curvature radius). Moreover Sk(χ) increases also when χ increases and, in the flat universe
approximation, eq. 59 leads to χ = a−1

0

∫ z
0 dz̃/H(z̃). Therefore the angular distance is sensible to the

duration of the period (in terms of red-shift z) where the value of H−1 is big, and so the duration of the
recently dark energy dominated era (the Hubble parameter decreases during matter and radiation eras
and is constant during dark energy era). Hence increasing the value of ρΛ(t0) increases the duration
of dark energy dominated era and so the Hubble parameter H(z) stops decreasing sooner, this implies
that the value of χ and the angular distance decrease. Since l∗ = 2π/θ∗ = (2πD∗)/s∗, it follows that
the power spectrum shifts on left as k or ρΛ(t0) increases. These considerations can be compared and
verified with the simulations in the two top figures of Table 1. It is this dependence between angular
distance and these two parameters that allows us to extract the values of the dimensionless current

time parameters Ωkh
2 ∝ −k = Ωk(a

2
0H

2
0 ) and ΩΛh

2 ∝ ρΛ = ΩΛ
3H2

0
8πG , with h := H0/(100

km
sec Mpc).

Table 1: The CMB power spectrum as a function of the following cosmological parameters: Ωk, ΩΛ, Ωbh
2,

Ωmh
2. Figure taken from ref. [19].

As mentioned, the simplified treatment discussed so far neglects the energy density of baryons. In
reality, before recombination, the universe undergoes the radiation-matter equality where the value of

23



3.2 Early measurement 3 THE HUBBLE TENSION

R increases until it can no longer be neglected (since baryons constitute a non-negligible fraction of
the matter energy density):

R :=
3

4

ρb
ργ

∝ a =⇒ R(τ) =
3

4

Ωb

Ωm

a(τ)

a(τeq)
=⇒ R(τ∗) ∼ 0.15

3

4

a(τ∗)
a(τeq)

∼ 0.15
3

4

zeq
z∗

∼ 0.35

(100)
If we now consider the same assumptions that lead equation 93 to the form 95 but this time neglecting
the friction term δ′γ , assuming R ∼ 1, and using 4/3 = 4c2s(1 +R), equation 93 becomes:

d2

dτ2
(Θ +RΨ)− c2s∇2(Θ +RΨ) = 0 (101)

which improves over eq. 95. Following the same steps lading from eq. 95 to its solution, eq. 97, the
”improved” eq. 101 is solved by:

Θ(k, τ) = 3ζk cos(cskτ)−RΨ(k) =⇒ TSW (k) = 3 cos(cskτ∗)−
RΨ(k)

ζk
(102)

Since the CMB power spectrum is proportional to the square of the transfer function, the negative
shift of the Θ function solution caused by baryons leads to odd and even peaks in the CMB having
unequal heights, in particular it increases the odd peaks (for which the cosine assumes the minimum
value −1), while it increases the even peaks (for which the cosine assumes the maximum value +1),
see Figure 10. The effect of the presence of baryons can be visualized in the bottom left figure of Table
1. The relative heights of the CMB spectrum therefore provide a measure of the baryon density Ωbh

2.

Figure 10: Acoustic oscillations with baryons. Solution of eq. 101 with k = k3 = 3k∗ , Ψ(k) > 0 and ζk > 0
(solid line), and its absolute value (dashed line).

Now, let us discuss the effect of the terms proportional to time derivatives of the gravitational potential
Φ ≈ Ψ that we have neglected above. The gravitational potential oscillates inside the horizon during
the radiation dominated era, generating a ”driving force” in eq. 93. This enhances the amplitude
of the combination Θ for the modes that entered the horizon during the radiation dominated era
(typically l & 100). This enhancement is strongest at matter-radiation equality [19]. Decreasing the
matter density shifts equality to later times, placing it closer to recombination, therefore resulting in
a greater enhancement. This is visible in bottom left panel of Table 1. From this effect, we can derive
the ratio between the matter and radiation energy densities, and therefore, the present value of the
matter density of the universe Ωmh

2 (as Ωγh
2 is fixed by the observed CMB temperature [9]).

Naturally, the CMB power spectrum depends on the initial conditions at the end of inflation τin (see
eq. 90). Therefore, if we assume the standard inflation scenario characterized by a single scalar field,
and thus we assume that the curvature perturbations power spectrum ∆2

ζ(k) takes the form in eq. 91,
then fitting the CMB data can obviously determine the values of the curvature fluctuation amplitude
As and scalar spectral index ns.
Finally, regarding the Hubble constant, above we saw that the last scattering surface angular distance
D∗ is proportional to h−1, indeed D∗ ∝

∫ z
0 dz̃/H(z̃) ∝ h−1. It is also possible to show that the ratio

24



4 CONCLUSION

θ∗ = s∗/D∗ can be well fit by a function of Ωmh
3 [23] (see also [22]). This can be combined with the

value of Ωmh
2, determined by the height of the peaks discussed above, to give the value of h, namely

the Hubble constant H0.

4 Conclusion

The Hubble constant is a fundamental cosmological parameter that quantifies the current rate of ex-
pansion of the universe. It describes how quickly galaxies are moving away from each other due to
the expansion of the universe (namely, at the net of their peculiar motion). In this thesis, we have
reviewed the theoretical framework underlying the two currently most prominent methods to measure
the Hubble constant. These two methods are called ”local” and ”global”, since they rely, respectively,
on the measurements of events in the late universe, and the measurement of the CMB, that is sensitive
to the full cosmological evolution.
To review the theory underlying the two methods, we discussed basic notions of the standard cos-
mological model. We first investigated the evolution of the universe under the approximation of
homogeneity and isotropy (the so called cosmological principle, which appears to be well respected
on average at large scales), solving the Einstein equations in the three different stages experienced by
the universe (radiation, matter, and dark energy domination). Then, we introduced the cosmological
perturbations theory, focusing on first order scalar perturbations and determining the equations for
the evolution of the perturbative parameters of metric and matter (in Newtonian gauge). Finally, we
saw how these perturbations manifest themselves at the end of inflation assuming a standard inflation
scenario generated by a single scalar field.
Regarding the local measurement, we examined how the luminosity distance of an astronomical event
is related to the redshift we observe and how the Hubble constant can be extracted from the Hubble
diagram. Concerning the global measurement, we discussed how CMB anisotropies arise from inho-
mogeneities in the universe at the time of recombination, how to extract statistical information from
the CMB data to the temperature power spectrum, and how this spectrum depends on both the shape
of the initial perturbations at the end of inflation and their propagation (represented by the transfer
function) within a perturbed universe. Subsequently, we derived the various terms characterizing the
transfer function and we examined, at a qualitative and approximate level, how the cosmological pa-
rameters value (including the Hubble constant) influences the transfer function and hence the CMB
power spectrum, demonstrating that a fit of the latter can determine the six free parameters of the
ΛCDM model.
Currently, the two methods provide results that disagree with each other at about the 5σ level. This
Hubble tension is one of the main open problems in current cosmology. This makes it a central topic
in the current scientific debate, both to search for possible systematic errors in the two measurements
(particularly, in the local one [25]) and to deepen our knowledge in possible new physics explanation
that might modify the current standard cosmological model [1].
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