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Abstract

Bayesian Networks are probabilistic graphical models that encode in a com-
pact manner the conditional probabilistic relations over a set of random variables.
In this thesis we address the NP-complete problem of learning the structure of a
Bayesian Network from observed data. We first present two algorithms from the
state of the art: the Max Min Parent Children Algorithm (MMPC), Tsamardinos
et al. [3], which uses statistical tests of independence to restrict the search space
for a simple local search algorithm, and a recent complete Branch and Bound
technique, de Campos and Ji [5]. We propose in the thesis a novel hybrid al-
gorithm, which uses the constraints given by the MMPC algorithm for reducing
the size of the search space of the complete B&B algorithm. Two different statis-
tical tests of independence were implemented: the simple asymptotic test from
Tsamardinos et al. [3] and a permutation-based test, more recently proposed by
Tsamardinos and Borboudakis [13]. We tested the different techniques for three
well known Bayesian Networks in a realistic scenario, with limited memory and
data sets with small sample size. Our results are promising and show that the
hybrid algorithm exhibits a minimal loss in score, against a considerable gain in
computational time, with respect to the original Branch and Bound algorithm,
and that none of the two independence tests consistently dominates the other in
terms of computational time gain.



0. CONTENTS

Sommario

Le Reti Bayesiane sono modelli grafici probabilistici che cofificano in maniera
compatta le relazioni di dipendenza su di un insieme di variabili aleatorie [1]. In
questa tesi ci occupiamo del problema NP-Completo di apprendere la struttura
di una rete da dei dati osservati. Descriviamo per prima cosa due algoritmi dallo
stato dell’arte: l’algoritmo Max Min Parent Children (MMPC) (Tsamardinos et
al. [3]) che usa test statistici di indipendenza per restringere lo spazio di ricerca
per un semplice algoritmo di ricerca locale, e un algoritmo completo basato su
Branch and Bound (de Campos e Ji [5]). In questa tesi proponiamo un nuovo
algoritmo ibrido che usa i vincoli creati da MMPC per ridurre lo spazio di ricerca
per l’algoritmo completo B&B. Due diversi test sono stati implementati: un sem-
plice test asintotico da Tsamardinos et al. [3] e un test basato su permutazioni più
recentemente proposto da Tsamardinos e Borboudakis [13]. Abbiamo sperimen-
tato le diverse tecniche per tre reti ben conosciute in uno scenario realistico, con
memoria limitati e scarsità di dati. I nostri risultati sono promettenti e mostrano
una minima perdita nella qualità a fronte di un considerevole guadagno in tempo
computazionale, e nessuno dei due test ha dominato l’altro in termini di guadagno
di tempo.
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Chapter 1

Introduction

Since uncertainty appears to be an unavoidable aspect of most real-world ap-
plications, many problems in different fields such as medicine, biology and other
domains have been tackled with the probabilistic approach of Bayesian Networks.
Bayesian Networks are graphical models that represent conditional dependencies
over a set of random variables in a compact and intuitive way [1]. It is not dif-
ficult to understand why Bayesian Networks have become a popular topic in the
last few years.

A Bayesian Network is completely determined by a directed acyclic graph
(DAG), whose nodes correspond to the random variables under analysis and
whose edges correspond to probabilistic dependencies among the variables, and
by the probability distribution of each node.

How to build a Bayesian Network is a challenging task. In some cases, both
the underlying structure and the probability distributions can be built with the
help of an expert of the domain, whose knowledge may be however incomplete
or biased. In many cases experts don’t exist at all. The problem we consider is
thus the automatic learning of the best Bayesian Network given a set of observed
data.

Several scoring functions have been proposed in literature to asses the quality
of a Bayesian Network structure: some of the most notable are the Akaike In-
formation Criterion (AIC) [6], the Bayesian Information Criterion (BIC)[7] and
the Bayesian Dirichlet (BD) [8].

Given a scoring function, the problem of searching the best BN structure is
known to be NP-complete [9] and the number of DAGs with n nodes has been
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1. INTRODUCTION

shown to be O(n!2(n2)) [10]. Exact methods exist but they take time and memory
exponential in the number of variables, and are thus limited to small settings.
The alternative may consist in the use of heuristic search algorithms, which do not
guarantee to find the real optimum. Other approaches, like the PC algorithm [11],
rely on statistical tests to find independencies between variables and in a second
phase orient the edges to build the DAG. Instead than searching in the space
of all possible DAGs, some algorithm explore the space of Bayesian Networks
equivalence classes [12].

To overcome all these computational problems, hybrid approaches have also
been proposed in recent years. In 2006, Tsamardinos et al. proposed a hybrid
method [3], Max Min Parent Children (MMPC), which exploits independence
tests to retrieve the probable sets of parents and children for every variable in
the domain and then performs a heuristic search restricted to these sets. In 2010,
Tsmardinos and Borboudakis extended in [13] the MMPC algorithm, providing
it with more precise tests for small data set based on random permutation of the
data.

In 2008 Perrier et al. [14] experimented the use of the 2006 MMPC algorithm
in the context of dynamic programming.

Recently, de Campos and Ji presented a new complete algorithm, which can
be considered the state-of-the-art in complete search [4][5]. The method is based
on a Branch and Bound technique, coupled with a relaxation of the problem
and a set of theorems whose application allows to limit the search space. The
algorithm is specifically designed to benefit from user-defined constraints on the
possible network structures.

In this thesis, we decided to evaluate the benefits and drawbacks of hybridizing
the B&B algorithm of de Campos and Ji with both the 2006 [3] and 2010 [13]
versions of the MMPC algorithm. Complete algorithms, with enough resources,
always find the best solution. On the other hand, heuristic procedures tend to get
stuck on not optimum solutions; the MMPC procedure were realized to restrict
the search space in an attempt to avoid such local optima [13]. However, we
are not assured that, in an non-ideal scenario, the statistical test at the base of
MMPC will not exclude the best solution from the search space.

Restricting the search space for a complete algorithm with MMPC can thus
provide a predictable gain in time and memory, but the effect on the solution are
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1.0

not trivial. The performance of the two hybrid algorithms is assessed in terms of
required computational resources and of quality of the final solution.

We choose for our experiments three well known Networks, already used by
Tsamardinos et al. in [3], but with much smaller sample sizes and with limitations
in the available amount of memory and computational time, to test the hybrid
algorithms in a realistic scenario. Experimental results show that, when combined
with the B&B algorithm of de Campos and Ji, both versions of the MMPC
algorithm result in a substantial gain in computational time, against a limited
loss in solution quality. Furthermore, the two hybrid algorithms have smaller
memory requirements and are thus able to process larger networks in our limited
resources scenario. Interestingly enough, however, none of the two consistently
dominates the other.

The remainder of the thesis is organized as follows. We first recall the main
definitions of Probability Theory in Chapter 2, along with some key concepts. In
Chapter 3 we give the definition of Bayesian Networks and Bayesian Networks
most important properties. We introduce also equivalence classes and the related
algorithms. In Chapter 4 we introduce Bayesian Network structure learning and
explain in detail the topics related to our work. Thus in Chapter 5 we present
extensively the most important previous works for our experiments. Finally, in
Chapter 6 we fully describe the idea behind our work, the algorithms used and
implementations, and we report and discuss our experimental results. In Chapter
7 we present our conclusions, along with some proposals for future work.
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Chapter 2

Probability Theory

Before defining formally Bayesian Network, we need to recall a series of concepts
and rules of probability theory. This chapter is meant to be just a fast overview
on the subject. We will follow for most of definitions and the order of topics the
introduction of Bishop’s book on machine learning [15].

2.1 Definitions

Probability is the key concept in the field we are considering. Imagine to toss
a perfect coin many times: experience tells us that, if the tries are enough, the
number of tails (or cross) will result to be around 50%. In a similar way, if
we roll an ideal balanced dice many times, we expect to obtain the face "1"
approximately 1/6 of the tries.

On the other hand, if most of the times we roll a particular dice we obtain
a "1", we will suspect the dice has been loaded to cheat games. But how many
rolls we should take before we can be certain that we just didn’t have bad luck?
Intuitively something around ten rolls is not enough; maybe a thousand sounds
safer. Moreover, after obtaining a good number of observations, i.e. the fractions
of "1" on the total of tries, we will have a rough idea of our chances of obtaining
that particular result at every roll. Formally we can define probability in as
follows:

Definition 2.1 (Probability). We define the probability of an event to be the
fraction of times that event occurs out of the total number of trials, in the limit
that the total number of trials goes to infinity [15].

6



2.1 DEFINITIONS

We can also define a probability space as follows:

Definition 2.2 (Probability Space). Given a process or experiment whose results
occur randomly, a probability space is a triple (Ω, F, P ) where Ω is the set of all
possible outcomes, F is a set of events and each event is a set containing zero or
more outcomes, and P a function from events to probability levels.

The sentence "rolling a dice we obtain 1" is an event. Events are sets of
outcomes in an experiments, and subsets of the sample space Ω, which is the set
of all possible outcomes we are considering in a given context. The probability
of the sample space is by definition 1, while the probability of the empty event is
0. The probability of all disjoint events in a sample space must sum to 1.

If we call the event of obtaining "1" rolling a dice as D = 1, we write the
probability of D = 1 as:

P (D = 1) = 1/6

In an ideal dice we have

P (D = i) = 1/6 ∀i = 1, ..., 6

and in general, no matter how loaded are the faces:

6∑
i=1

P (D = i) = 1

Instead of events we usually prefer to speak of random variables. We recall
here the definition [16]

Definition 2.3 (Random Variable). Let (Ω, F, P ) be a probability space and
(E, ε) a measurable space. Then an (E, ε)-valued random variable is a function
x : Ω→ E which is (F, ε)-measurable .

Random variable can be continuous or discrete. In the example of dices, we
can define a discrete random variable x which can take the values {1, 2, 3, 4, 5, 6},
each one corresponding to a face of the dice and with a probability associated to
each. Of course the equation

∑6
i=1 P (x = i) = 1 is still valid. In the discrete

case, we can define for a variable x a function px, called probability mass function,
that gives the probability that a discrete random variable is exactly equal to some
value. In the general case

∑
∀i px(i) = 1, where i are the possible values for the

variable (which can be finite ore not).

7



2. PROBABILITY THEORY

Suppose now we have two random variable x and y. The probability that
x will take the value a and y will take the value b is written P (x = a, y = b)

and is called the joint probability of x = a and y = b [15]. We can define the
joint probability mass function for two ore more variable, simply following the
definition. We will a notation of the kind: px,y(a, b).

We recall that two variable are said to be independent if and only if

P (x = a, y = b) = P (x = a)P (y = b) ∀a, b

2.2 Fundamental Rules

Let consider now a different situation. Suppose we have 4 balls in a box, two
red and two blue. The probability of picking a blue or a red ball from the boxes
without looking in the box is equal.

We write as usual P (x1 = b) = (x1 = r) = 0.5, indicating with x1 the random
variable representing this first extraction from the box, and with b and r the
two possible outcomes. Now suppose we extract a second ball from the box,
without putting back the first: the probabilities of randomly choosing a red ball
are determined by the number of red balls still in the box, i.e. by the color of the
first ball extracted. The probability is in fact conditioned by the outcome of the
first event [15]. We indicate the second extraction with a new random variable,
x2, and we write the conditioned probability of picking a red or blue ball given
the fact that we first extracted a blue one as follows:

P (x2 = r|x1 = b) = 2/3

P (x2 = b|x1 = b) = 1/3

The calculation is simple: if the first extraction was blue, we have now two red
balls and only one blue remaining. In the same way, if we first picked a red ball,
and only one red is remaining on the three:

P (x2 = r|x1 = r) = 1/3

P (x2 = b|x1 = r) = 2/3

It’s easy to see that the previous four equations define a probability mass function
on the variable x2 conditioned on x1. We will use in similar cases the notation

8



2.2 FUNDAMENTAL RULES

px|y(a|b), where x and y are the considered variables and a and b the value as-
sumed.

So far we have been quite careful to make a distinction between a random
variable, such as the die x, and the values that the random variable can assume,
for example 1 for the corresponding dice face. Thus the probability that x takes
the value 1 is denoted P (x = 1). Although this helps to avoid ambiguity, it leads
to a rather cumbersome notation, and in many cases there will be no need for
such pedantry.

Instead, following a common praxis, we may simply write p(x) to denote
a distribution over the random variable x, or p(1) to denote the distribution
evaluated for the particular value 1, provided that the interpretation is clear
from the context.

With this more compact notation, we can recall the two well known funda-
mental rules of probability theory. The first one is called sum rule, or law of total
probability [15]

Sum Rule

p(x) =
∑
y

p(x, y) (2.1)

Sometimes all the values for a joint probability mass function can be hard to
find, and maybe we know the conditioned probability. In such cases the equation
known as product rule [15] can be useful:

Product Rule

p(x, y) = p(y|x)p(x) (2.2)

From the product rule, together with the symmetry property p(x, y) = p(y, x),
we immediately obtain the following relationship between conditional probabili-
ties [15]:

Bayes’ Theorem

p(y|x) =
p(x|y)p(y)

p(x)
(2.3)

Bayes’ theorem plays a central role in machine learning, and as the name suggests
and as we will see later is fundamental for the definition of Bayesian Networks.

Using 2.2, we can also re-write the sum rule as follow:

p(x) =
∑
y

p(x, y) =
∑
y

p(x|y)p(y)

9



2. PROBABILITY THEORY

We can view the denominator in Bayes’ theorem as being the normalization con-
stant required to ensure that the sum of the conditional probability on the left-
hand side of 2.3 over all values of y equals one.

2.3 Probability Densities and Distributions

As we mentioned, random variables can be, roughly speaking, discrete or con-
tinues. Until now, we only considered in our examples discrete variables, like
the ones representing dices or coloured balls. Of course we could be interested
in more complex and continues phenomena. We could consider as example the
results of clinical analysis, the temperature and humidity in a room, etc. It’s
important to note that due the digital nature of machine learning we will need to
discretize and quantize our data anyway. We recall here some definitions [15] for
both continues and discrete variable to set the notation and help the expositions
in the following chapters.

In general, we say that a probability distribution is a function that describes the
probability of a random variable taking certain values. In the discrete domain the
probability distribution is characterized by the probability mass function, which
is simply a function associating each possible value that can be assumed by the
variable with a certain level of probability.

In the continue cases, instead of a mass function we associate to a variable x
a probability density function p, where p is a non-negative Lebesgue-integrable
function for which:

P (x ∈ (a, b)) =

∫ b

a

p(x)dx

and satisfies the conditions:
p(x) ≥ 0∫ +∞

−∞
p(x)dx = 1

The distribution F for a continuous variable takes the form of a cumulative dis-
tribution function defined by

F (z) =

∫ z

−∞
p(x)dx

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and

10



2.4 EXPECTATIONS

continuous variables. For instance, if x and y are two real variables, then the sum
and product rules take the form:

p(x) =

∫
p(x, y)dy

p(x, y) = p(y|x)p(x)

2.4 Expectations

We recall now the concept of expectations of random variables. We first give
the general definition of expectation. Given a continuous random variable x, the
expected value of x or expectation of x, denoted by E[x], is defined as Lebesgue
integral

E[x] =

∫ +∞

−∞
xp(x)dx (2.4)

The average value of some function g(x) under the probability distribution p(x)

is called expectation of g(x) , will be denoted by E[g] and is given by

E[g] =

∫ +∞

−∞
g(x)p(x)dx (2.5)

In the discrete case, the definitions are exactly the same, but we use sums instead
of integrals. 2.4 and 2.5 become then

E[x] =
∑
x

xp(x) (2.6)

E[g] =
∑
x

g(x)p(x) (2.7)

The expectation E[x] is also called mean of x and is often indicated with µ,
while

√
E[(x− µ)2] = σ is called standard deviation, σ2 is called variance.

11



2. PROBABILITY THEORY

2.5 Important Distributions

We recall here some important distributions that will be used in the following
chapters

2.5.1 Normal Distribution

The Normal or Gaussian distribution is a continuous probability distribution that
has a bell-shaped probability density function, known as the Gaussian function
or informally the bell curve:

p(x, µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2

where parameter µ is the mean and σ2 is the variance. The distribution with
µ = 0 and σ2 = 1 is called the standard normal distribution or the unit normal
distribution.

2.5.2 χ2 Distribution

The χ2
df or chi-squared distribution with k degrees of freedom is the distribution

of a sum of the squares of k independent standard normal random variables.
Formally, if x1, x2, ..., xk are k independent, standard normal random variables,
then

Q =
k∑
i=1

x2
i ∼ χ2

df (k)

The cumulative distribution function for χ2
df (k) can be written as:

F (x, k) =
γ(k

2
, x

2
)

Γ(k
2
)

where Γ(z) is the gamma function and γ(z, w) is the lower incomplete Gamma
function.

12



2.6 BAYESIAN PROBABILITIES

2.5.3 Dirichlet Distribution

The Dirichlet distribution (after Johann Peter Gustav Lejeune Dirichlet), is a fam-
ily of continuous multivariate probability distributions parametrized by a vector
α of positive reals. The Dirichlet Distribution of order K ≥ 2 with parameters
α1, α1, ..., αk > 0 has a probability density function given by

p(x1, x2, ..., xk, α1, α2, ..., αk) =
1

B(α)

k∏
i=1

xαi−1
i

where B(α) is a normalization factor, x1, ..., xk > 0 and x1 + x2 + ...+ xk < 1.

2.5.4 Multinomial Distribution

The Multinomial Distribution models the outcomes from an experiment that
consists of n statistically independent repeated trials, each one with a discrete
number of possible outcomes xi. On any given trial, the probability pi that a
particular outcome will occur is constant.

2.6 Bayesian Probabilities

Recalling the example of coloured balls in a box, calculating the probability of
extracting a blue or a rad ball is straightforward, and is based uniquely on the
number of favourable events (picking one of the two red, no matter which one)
on the total number of possibilities.

This assuming that all the balls are indistinguishable at touch and there is no
greater possibility of picking a particular one . If we have a dice, for example, and
we suspect that it is not a fair one, i.e. one of the faces has been loaded to increase
the probability, we can simply roll it many times and use the frequencies of each
face to determine an approximation of the distribution for that particular dice.
Of course, the more we repeat the experiments, the better our approximation will
be.

So far we have viewed probabilities in terms of the frequencies of random, re-
peatable events. We shall refer to this as the classical or frequentist interpretation
of probability [15]. Probability on the other hand can be used in a different way,
as a measure of uncertainty. Consider an uncertain event , for example whether
the moon was once in its own orbit around the sun, or whether the Arctic ice cap

13



2. PROBABILITY THEORY

will have disappeared by the end of the century. These are events that can’t be
repeated numerous times in order to define a notion of probability as we can do
for a simple dice . In some circumstances we can have however an idea, or some
indication.

"If we now obtain fresh evidence, for instance from a new Earth observation
satellite gathering novel forms of diagnostic information, we may revise our opin-
ion on the rate of ice loss. Our assessment of such matters will affect the actions
we take, for instance the extent to which we endeavour to reduce the emission of
greenhouse gasses. In such circumstances, we would like to be able to quantify
our expression of uncertainty and make precise revisions of uncertainty in the
light of new evidence, as well as subsequently to be able to take optimal actions
or decisions as a consequence. This can all be achieved through the elegant, and
very general, Bayesian interpretation of probability" [15].

To understand how, we need to return on the box with coloured balls. Suppose
that at the beginning there are three blue balls and only two red. We know that
the probability of getting a red ball at first extraction is simply 2/5 = 0.4. If
we call x1 and x2 the variables associated to the first and second extraction
respectively, we can also easily calculate the probability P (x1 = r, x2 = r) of tow
consecutive red extraction In fact using the product rule:

P (x1 = r, x2 = r) = P (x2 = r|x1 = r)P (x1 = r) =
1

4
∗ 2

5
= 0.1

where again we found P (x2 = r|x1 = r) = 1/4 simply considering that after one
red ball has been extracted, only one remain on the total of four.

What now if we are asked to find P (x1 = r|x2 = r), namely the probability
of having picked at the first try a red ball, knowing that also the the second
extraction was red? First we find P (x2 = r) using the sum rule:

P (x2 = r) = P (x2 = r|x1 = r)P (x1 = r) + P (x2 = r|x1 = b)P (x1 = b)

= 1/4 ∗ 2/5 + 2/4 ∗ 3/5 = 0.4

Now we can use the Bayes Theorem to easily give the solution:

P (x1 = r|x2 = r) =
P (x2 = r|x1 = r)P (x1 = r)

P (x2 = r)
=

1/4 ∗ 2/5

1/4
= 0.4

We give that simple example to introduce a very important terminology. If
we had asked which ball had been chosen at the first pick, before being told

14



2.6 BAYESIAN PROBABILITIES

the colour of the second extraction, then the most complete information we have
available is provided by the probability P (x1 = r). That’s what’s called prior

probability because it is the probability available before we observe the second
extraction. Once we are told that also the second ball was red, we can use the
theorem to compute the probability P (x1 = r|x2 = r), which we call posterior
probability, because it is the probability obtained after we have observed the
second extraction.

The identical approach can be used for much more complicated cases and in
the context of the Bayesian approach to probability, i.e. using probability to
quantify uncertainty.

Imagine for example we have collected a certain number of coordinates in
the space, and we try to recover a model for a supposed underling function. Or
maybe we want to automatically build a classifier to distinguish two classes of
objects with a certain number of attributes. In every case, we can capture our
assumption about the model M, before observing the data, in the form of a prior
probability P (M). Using again the bayes theorem, we can evaluate a new and
much more significant state of uncertainty on the model given the contribution
of the data D:

P (M |D) =
P (D|M)P (M)

P (D)
(2.8)

We have already observed how the denominator can be seen just as a normal-
izing factor. The quantity P (D|M) on the right-side of the equation will have
much more importance. It can be seen as a function of the model and we call
it likelihood function. It expresses how probable the observed data are for
different settings of the parameters of the model M.

Given all these definitions and considerations, we can state the theorem in
words [15]

posterior ∝ likelihood x prior (2.9)

As we will see in details for Bayesian Network, what we want to obtain in
many cases is a model which is the best model fitting some observed data. In
order to do that, we can try to maximize the posterior probability. Finding a way
to express P (M |D) can be troublesome. An easier way is exploit 2.9 and try to
maximize the right side of the equation instead.
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2. PROBABILITY THEORY

Giving a mathematical form to a prior probability is sometimes considered
a stretch [15], by consequence often it will be simply considered equal for all
possible models. In this case we have what is called a non-informative prior and
the problem reduces at finding the parameters that maximize only the likelihood
function.

We will explain in successive chapter how to mathematically express all the
elements specifically in the domain of Bayesian Network; specifically, the model
we want to learn is the structure of the network, which represents the relations
of conditional dependence between a set of random variables, while the observed
data consist in a certain number of entries, each one containing a value for each
variable in the problem.

In the next chapters we will gradually explain the problem and the solutions
proposed in literature. However, it should be intuitive why finding an expression
for the likelihood is normally easier than trying the same operation directly on
the posterior.
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Chapter 3

Bayesian Networks

3.1 Definition

Bayesian Networks are probabilistic graphical models used to represent in a com-
pact manner probabilistic relations between random variables [1]. It will become
apparent that they are very convenient representations for both human users
comprehension and mathematical proprieties.

Before we further extend the definition, we recall some notions about graphs.
A Directed Acyclic Graph, or DAG, is a couple (VG, EG) , where VG is a set of
vertices or nodes and EG is a set of edges or arcs connecting the edges: EG can
be considered as a subset of VGxVG. Being the graph directed, we will represent
an edge between two nodes v1, v2 ∈ VG with an arrow: v1 → v2; v1 is said to be
a parent of v2, meanwhile v2 is a child of v1.

We call a path on the graph a sequence of vertices such that from each of its
vertices there is an edge to the next vertex in the sequence. A node v1 is called
ancestors of a node v2 if there exists a path between v1 and v2, starting at v1.
Similarly v2 is a descendant of v1.

Acyclic means that cycles in a DAG are not possible: a cycle is intuitively
defined as a path between a node and itself. Two nodes in a graph are said to
adjacent if there is an arc connecting them, and a set of nodes for wich every pair
of nodes is adjacent is called clique. We will denote the set of adjacent nodes of
a node x, also called neighbours of x, with Nx.
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3. BAYESIAN NETWORKS

Formally a Bayesian Network can thus be defined as follows [17]:

Definition 3.1 (Bayesian Network). A Bayesian Network B is a triple (G,X,Ξ),
where

• G is a Directed Acyclic Graph

• X is a (finite) set of Random Variables

• Ξ is a collection of Conditional Mass Functions

In a Bayesian Network the number of nodes of the graph G, also called struc-
ture of the network, is equal to the number of random variables in X, or in
symbols |VG| = |X|, and every node of G corresponds to a different variable in
X. In other words every node in the structure of the network represents graph-
ically one of the random variables belonging to X; for this reason we will either
refer to nodes and variables unless the context does not require otherwise. For
simplicity, we will consider only discrete random variables.

The third element of a Bayesian Network is a collection Ξ of conditional mass
functions, one for each variable xi ∈ X, which take the form p(xi|Πi), where
Πi is the set of parents of the variable in the graph G. As it naturally follows
from these definitions, Bayesian Networks respect the following propriety, called
Markov Condition [17]:

Definition 3.2 (Markov Condition). Any node (or variable) in a Bayesian Net-
work B is conditionally independent of its non-descendants, given his parents.

In summary, a Bayesian Network represents a joint probability distribution
over a collection of n random variables; we can explicit that distribution using
the following simple passages [8]. First, given a topological order of the variables,
we use the chain rule of probability to write:

p(x1, ..., xn) =
n∏
i=1

p(xi|x1, ..., xi−1) (3.1)

Given the topological order of the variables we can affirm that Πi ⊆ {x1, ..., xi−1},
and applying Markov Condition we now that Πi renders xi and {x1, ..., xi−1} con-
ditionally independent. That is,
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p(xi|x1, ..., xi−1) = p(xi|Πi) (3.2)

Finally combining 3.1 and 3.2 we obtain

p(x1, ..., xn) =
n∏
i=1

p(xi|Πi) (3.3)

It’s important to stress that the conditional independences observed in the
distribution of a network are not accidental properties of the distribution, but
instead due to the structure of the network. This is asserted by the faithfulness
condition below [18][19][20]:

Definition 3.3 (Faithfulness). If all and only the conditional independences true
in the distribution p are entailed by the Markov condition applied to G, we will say
that p and G are faithful to each other. Furthermore, a distribution p is faithful
if there exists a graph, G, to which it is faithful.

To fully understand the definitions we make a simple example.

Example 3.1. We consider a set of three discrete random variables. The variables
are R "RAIN", S "SPRINKLER" and G "GRASS WET" ; R can be either
"true" if today it rained or "false" if not; similarly S is "true" if the sprinkler has
been activated, and G is "true" if the grass is wet. Intuitively, if today it rains,
probably the sprinkler will not be activated, while the event "the grass is wet"
depends on both the rain and the artificial irrigation. We can imagine a Bayesian
Network coding the relations between the variables (figure 3.1)

Each one of the three variables is assigned in fig. 3.1 to a node, and the
edges are built respecting the relations we explained in words. The tables near
each node contains the mass probability functions for the corresponding variable
conditioned by its parents.

We can note that the node "RAIN" does not have any parents, thus the table
contains only the two probabilities relative to the only two possible states for the
variable ("true" or "false"); being the structure of a Bayesian Network acyclic
at least one node must be without parents. "SPRINKLER" has only one parent
and the relative probability table contains four elements, while "GRASS WET",
having two parents, has 8 different probabilities. Of course every line in the
tables must sum to 1. We can derive the joint probability distribution vary easily
applying 3.3:
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3. BAYESIAN NETWORKS

Figure 3.1

p(R, S,G) = p(R)p(S|R)p(G|R, S)

3.2 Applications

Given the definition it should be clear how Bayesian Networks can be an useful
toll to model phenomena in the dominion of uncertainty. We give now, before
we proceed further, a fast overview on the practical use of Bayesian Networks .
More informations can be found in [2] [21] [22] .

Part of the popularity of Bayesian Networks, as we already pointed out, must
stem from their visual appeal, as it makes them amenable to analysis and modi-
fication by experts. However, as a Bayesian network is a joint probability distri-
bution, any question that can be posed in a probabilistic form can be answered
correctly and with a level of confidence. Some examples of these questions are:

• Given some effects, what were the causes?

• How should something be controlled given current readings?

• In the case of causal Bayesian networks, what will happen if an intervention
is made on a system?
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Many of the original applications were in the medical field and to some ex-
tent, this is the domain where Bayesian network applications dominate today. In
medicine, Bayesian networks have been primly used to build system for diagnosis
[23] [24]; a very important network is the ALARM network developed by Bein-
lich et al. [25], which was used for the monitoring of patients in intensive care
situations. It is often treated as a gold-standard network, as it is reasonably well
connected and has enough nodes to be a challenging, but still achievable problem
for many Bayesian network algorithms that we will study in next chapters.

Bayesian networks can be very useful in predicting the future based on current
knowledge; in other words a domain of application is forecasting and classification
(some examples in [26] and [27]). Some applications have been attempted also in
the field of control as in [28]. It is also important the use for modelling for human
understanding, for example in the field of biology [29].

3.3 Equivalence

As we will see, equivalence between network structures has an important role in
the automatic learning of Bayesian Network

Suppose we have the following network, a simplified version of the example in
figure 3.1:

Then consider the following network:

What is the difference between the two?
Obviously, from a strictly cause/effect point of view, building a network that

models the distribution of the two variables, defining the probability of the event
"it rained" given that "the grass is wet" may not be the first choice. However,
the information given in both cases is exactly the same.

We can prove it easily; first we write the joint probability distribution:

p(G,R) = p(R)p(G|R)
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Now, we apply Bayes Theorem

p(G|R) =
p(G)p(R|G)

p(R)

We then replace p(G|R) in the previous equation and we obtain

p(G,R) = p(R)
p(G)p(R|G)

p(R)
= p(G)p(R|G)

which is exactly the joint probability distribution we would have directly written
for the second network. The two network structures represent the same rela-
tions between the variables, and that can be naturally used as a definition of
equivalence. Formally [12]

Definition 3.4 (Equivalence). Two DAGs G and G′ are equivalent if for ev-
ery Bayesian Network B = (G,X,Ξ), there exists a Bayesian Network B′ =

(G′, X,Ξ′) such that B and B′ define the same probability distribution, and vice
versa.

In other words, two structures are equivalent if every probability distribution
encoded by one structure can be encoded by the other, and vice versa [8], which
is exactly the process we followed at the beginning of this section. We examine
now an other example, a bit more complex, in order to be able to do some further
consideration.

Example 3.2. We consider again a set of three discrete random variables, x1, x2

and x3. We start with the following structure:

Figure 3.2

we then write the joint probability distribution and apply Bayes theorem to
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the part relative to the arc x1 → x2:

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2)

= p(x1)
p(x1|x2)p(x2)

p(x1)
p(x3|x2)

= p(x2)p(x1|x2)p(x3|x2)

Observing the last equation we can see that what we have done is nothing more
than reverting the arc. As a matter of fact the we could write exactly the same
distribution observing the following structure:

Figure 3.3

Now, we can continue applying again the theorem to the last arc:

= p(x2)p(x1|x2)p(x3|x2)

= p(x2)p(x1|x2)
p(x2|x3)p(x3)

p(x2)

= p(x3)p(x1|x2)p(x2|x3)

Again we obtained a distribution that can be represented by a new graph

Figure 3.4
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Considering that all the equations we wrote are equals it is easy to verify that
graphs in figures 3.2, 3.3 and 3.4 are all equivalent to each others simply reading
the definition 3.4. But what can we say about the following network?

Figure 3.5

We can try to proceed exactly like we did in the first passage, trying to revert
x2 → x3 in 3.2 this time:

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2)

= p(x1)p(x2|x1)
p(x2|x3)p(x3)

p(x2)

=
p(x1)p(x3)

p(x2)
p(x2|x1)p(x2|x3)

Unfortunately, the distribution we desired is p(x1)p(x3)p(x2|x1, x3), which is
generally different from the last equation we obtained. Problem is, at this stage we
can’t assume for sure that 3.5 is not equivalent to the precedent graphs, because
we can’t be sure we are not missing some mathematical passage that would be
able to give us the equation are looking for . . .

To better formalize the concept of equivalent networks, and specifically the
process we have followed in example 3.2, we recall a theorem from [8]:

Theorem 3.1 (Chickering, 1995). Let G1 and G2 be two Bayesian Network struc-
tures, and R be the set of edges by witch G1 and G2 differ in directionality. Then,
G1 and G2 are equivalent if and only if there exists a sequence of |R| distinct arc
reversals applied to G1 with the following proprieties:

1. After each reversal, the resulting network structure contains no directed
cycles and is equivalent to G1

24



3.3 EQUIVALENCE

2. After all reversals, the resulting network structure is identical to G2

3. If x → y is the next arc to be reversed in the current network structure,
then x and y have the same parents in both network structures, with the
exception that x is also a parent of y in G1

We can note that we followed the rules in our example, but they are not really
useful. More importantly, checking the equivalence at every passage can be quite
impractical for large networks. There exists a far easier way to check equivalence,
but before we need to give a couple of new definitions.

First, we give the definition of the skeleton of a network structure:

Definition 3.5 (Skeleton). Given a DAG G = (E, V ), his skeleton is the undi-
rected graph G′ = (E ′, V ) where the set of vertices V is the same in both G and
G′, and E ′ is obtained taking every edge from E and ignoring the directionality.

The other element we need is a particular structure formed by three variable
in a graph and called V-structure:

Definition 3.6 (V-structure). Given a DAG G = (E, V ), three nodes x, y, z ∈ V
form a v-structure if x and y are not adjacent and E contains the arcs x→ z and
y → z.

We can now enunciate a simple characterization of equivalent structures de-
rived by Verma and Pearl [30]

Theorem 3.2 (Verma, Pearl 1990). Two DAGs are equivalent if and only if they
have the same skeletons and the same v-structure.

We can immediately apply the theorem 3.2 to example 3.2: all the networks
there have the same skeleton, but the graph in figure 3.5 is exactly made by a
single v-stucture which is not in the others structures, thus the last network is not
equivalent to the first three. We consider an other case, just a bit more complex
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Example 3.3. We start considering the following DAG (a); his skeleton (b) is a
simple graph built taking every node of (a) and adding an undirected edge at the
position of every directed arc on (a)

Figure 3.6: A network (a) and his skeleton (b)

We notice a v-structure in graph (a) formed by the arcs x→ z and y → z. It
is important to stress that the triple (x, z, w) does not form a v-structure: in fact
the node x and z are adjacent. The following networks are built using the same
skeleton (b) directing the arcs in different ways, being only careful of not adding
cycles:

Figure 3.7: Two networks with identical skeleton but different v-structure

The graph in figure (c) differs from the original graph only for the direction
of a single edge but does not have any v-structure, while structure (d) has two
arcs inverted but presents the same v-structure (x, y, x) we found in (a). It’s
immediate to conclude that (a) end (d) are equivalent, (d) and (a) are not.
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3.4 EQUIVALENCE CLASSES - PDAGS

3.4 Equivalence Classes - PDAGs

In some cases the number of Bayesian Network in a domain being equivalent to
each others is large, thus it can be useful to do not consider the classical repre-
sentation for structures, given by DAGs, and try to use some form of Equivalent
Class.

First, we will say that a directed edge x → y is compelled in G if for every
DAG G′ equivalent to G, x → y exists in G′. For any edge e in G, if e is not
compelled in G, then e is reversible in G; that is, there exists some DAG G′

equivalent to G in which e has opposite orientation.

To represent classes, it has been proposed [12] [31] the use of Partially Directed
Acyclic Graphs, in short PDAGs. A PDAG is a graph that contains both directed
and undirected edges. It is acyclic in the sense that it contains no directed cycles,
while the definitions of clique, adjacent nodes, v-structure and skeleton are in
practice identical to those already given for the DAGs. For equivalence classes
we will use the following definition

Definition 3.7 (Equivalence Class). Given a PDAG P and a DAG G, we will
define the class represented by P as Class(P ) and we will say that G ∈ Class(P )

if and only if G and P have the same skeleton and the same set of v-structures.

From Theorem 3.2 it follows that a PDAG must contain a directed edge for
every edge forming a v-structure, and an undirected edge for every other edge,
uniquely identifies an equivalence class. In truth there may be many PDAGs
corresponding to the same class: a DAG itself can be seen as a PDAG, and can
be taken to represent his own class.

To avoid this ambiguity, we need to pick completed PDAGs, or CPDAGs in
short, to represent classes [12]. A completed PDAG is a PDAG consisting of a
directed edge for every compelled edge in the equivalent class, and an undirected
edge for every reversible edge. CPDAGs have an interesting propriety: in fact
not every PDAG represents a class of DAGs.

If a DAG G has the same skeleton and the same set of v-structure as a PDAG
P , and if every directed edge in P has the same orientation in G, we say that G is a
consistent extension of P : PDAGs without consistent extension by definition does
not have any DAG G in their class [12]. CPDAG on the other hand always have
at least one consistent extension; more importantly, from theorem 3.2 if follows
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that given an equivalent class of Bayesian Network structures, the CPDAG for
that class is unique [12].

Example 3.4. Here we have a DAG and the corresponding CPDAG. It’s easy to
see that in this case only two DAGs belong to the same equivalence class.

Figure 3.8: A structure (left) and the CPDAG representing its equivalence class
(right)

Knowing the definition is not enough to pass from a DAG to the corresponding
CPDAG. We describe in the following sections two algorithms. The first is used
to pass from an acyclic graph to its equivalence class representative, and it will be
called DAG-TO-CPDAG. Vice versa the second build from a PDAG a consistent
extension, if exists, and it will be called PDAG-to-DAG.

3.4.1 DAG-to-CPDAG

Different algorithms have been described to build from a DAG the corresponding
CPDAG; Verma and Pearl in 1992 and Meek in 1995 [32], presented rule-based
algorithms that can be used to implement DAG-to-CPDAG.

The idea of these implementations is as follows. First, we undirect every
edge in a DAG, except for those edges that participate in a v-structure. Then,
we repeatedly apply one of a set of rules that transform undirected edges into
directed edges.

The rules “fire” by matching local patterns of undirected and directed edges
in the given graph. Meek [32] proves that the transformation rules are sound
and complete. That is, once no rule matches on the current graph, that graph
must be a completed PDAG. Andersson et al. in 1997 [33] provided a similar
rule-based algorithm, except that edges from a DAG are undirected by matching
patterns of edges.
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Here instead we quote from [12] an algorithm computationally efficient first
provided by Chickering in [34], which when given a DAG with |E| edges runs in
time O(|E|). The algorithm label all the edges in the DAG as either compelled
or reversible. Given the labelling, following the definition building the CPDAG
is immediate. We present all the pseudo-code of the algorithm in the follow-
ing pages. To facilitating the reading every step of the procedure is presented
separately.

The first operation needed will be a topological sort of nodes, which we present
the pseudo-code in algorithm 1. The second step, algorithm 2, will be to order the
edges in the graph. The pseudo-code to label the edges as compelled or reversible
is then the following presented in algoritthm 5. The pseudo-code for the DAG-
to-CPDAG procedure is obvious and is given at the end for completeness.

Algorithm 1: Order Nodes

Data: DAG G
Result: nodes of G in topological order
L = Empty list (it will contain the sorted elements)
S = Set of all nodes with no incoming edges
while S is not empty do

remove a node n from S
insert n into L
for node m with an edge e from n to m do

remove edge e from the graph
if m has no other incoming edges then

insert m into S
end

end

end

if graph has edges then
return error (graph has at least one cycle)

end

else
return L (a topologically sorted order)

end
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Algorithm 2: Order Edges

Data: DAG G
Result: an order for edges of G
use ORDER-NODES on G
Set i = 0

while there are unordered edges in G do
y = lowest ordered NODE that has an unordered EDGE incident to it
x = highest ordered NODE for which x→ y is not ordered
label x→ y with order i
i = i+ 1

end

Algorithm 3: Label Edges

Data: DAG G
Result: edges of G labelled as "compelled" or "reversible"
use ORDER-EDGES on G
label every edge of G as "unknown"
while there are "unknown" edges in G do

x→ y = lowest ordered unknown edge
for every edge w → x labelled "compelled" do

if w is not a parent of y then
Label x→ y and every edge incident into y with "compelled"
continue while

end

else
Label w → y "compelled"

end

end

if there exists z → y such that z 6= y and z is not a parent of x then
Label x→ y and all "unknown" edges incident into y with "compelled"

end

else
Label x→ y and all "unknown" edges incident into y with "reversible"

end

end
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Algorithm 4: DAG-TO-CPDAG

Data: DAG G
Result: complete PDAG C representing G
C = empty graph with same nodes than G
use LABEL-EDGES on G
for each edge x→ y in G do

if x→ y is "compelled" then
Add x→ y in P

end

else
Add x− y in P

end

end

return C
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3.4.2 PDAG-to-DAG

The algorithm we consider for the inverse operation is due to Dor and Tarsi [35].
The procedure is used to build from a PDAG a consistent extension. We recall
that there can be many consistent extensions for a PDAG, each one belonging
to the same equivalence class. Some PDAG however don’t have any consistent
extension, while Complete PDAGs always have one.

The algorithm is general and can be applied to any PDAG. If the PDAG is
not representative of any directed acyclic graph, the algorithm will find it. We
recall that we use Nx to denote the neighbours of x and Πx the parents of x.

Algorithm 5: PDAG-TO-DAG

Data: PDAG P
Result: a consistent extension G of P
G = empty graph with same nodes than P
for each directed edge y → x in P do

Add y → x in G
end

while there are nodes in P do
select x such that
- x has not outgoing edges
- if Nx is not empty, Nx ∪ Πx is a clique
if no such node is found then

return error (P has not a consistent extension)
end

for each undirected edge y − x in P do
insert y → x in G

end

remove x and all incident edges from P
end

return G

At every step a variable without "children", i.e. without outgoing directed
edges, is selected. The variable must also meet the condition that if there exist
any adjacent node, the set Nx ∪ Πx must be a clique. If at any point of the
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algorithm such x does not exist, the PDAG doesn’t admit a consistent extension.
Chickering in [12] give a loose upper bound on the complexity of a simple

implementation of the algorithm. If we give in input a PDAG with |V| nodes
and |E| edges, for each node x, we can determine if its neighbours and parents
form a clique in O(|Nx∪Πx|2) time. For each edge that is removed, we need only
check the endpoints to see if their neighbours and parents now form a clique; if
Nx ∪ Πx is a clique for some node z in P at any step of the algorithm, this set
must remain a clique after each edge removal in the algorithm. If |Nx ∪ Πx| is
bounded above by some constant k then we can implement the algorithm in time
O(|V |k2 + |E|k2).

Of course this upper bound may not be good if k is near or in the order of the
number of nodes in the network. However Chickering observes that in practice
the graphs used are reasonably sparse.

3.5 Clarification on the notation

We use lower-case letters to indicate both variables and nodes. Often we numerate
the variable on the domain when it’s too big to use different letters, for example
for a domain of 5 variables we will use x1, x2, ..., x5. A unique order of the variables
is not consistent with all the possible networks in the domain, but if the context
require precise order we will suppose that if xn is a parent of xm then n < m in
the order. We will denote the parent set of a variable xn simply with Πn instead
of Πxn to lighten the notation.

In the context of discrete random variables we will denote with ri the number
of values the variable xi can take. Similarly, we will denote the degrees of freedom
of the parent set of a variable with

qi =
∏
xl∈Πi

rl

With Πi = j we will mean that the parents of var. i assume the jth pattern of
values on the possible total qi.
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Chapter 4

Structural Learning - Overview

4.1 Definition of the problem

We consider now the central problem of our study: the automatic learning of
Bayesian Structure from observed data. We defined Bayesian Network and their
components in previous chapter, but we did not formulate a fundamental ques-
tion: how do we build a Bayesian Network? If we know an expert of the topic,
we can ask him or her to incorporate his knowledge in a network. The problem is
most of times this knowledge will not be enough or precise, and there are topics,
like genetics, where we do not have any previous knowledge at all.

The alternative is try to build the network from the observed data. With data
we usually mean a set of entries or samples, each one is in turn a set of values,
one for each variable in the domain, taken from the same observation.

For example, if our domain is medical analysis, we will consider a certain
number of random variables, one for each biological parameter we are considering
(like cholesterol, number of white blood cells, etc. ); every entry in our data
set will contain a value for every parameter from a different patient. We make
a simple example on how we consider data to be organized. Suppose we are
considering the domain of the network exposed in 3.1, our data will be made of
daily observation of the three simple events (rain, sprinkler and wet grass), and
it can be represented in a table:
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Sample N Rain Sprinkler Wet Grass

1 T F T

2 F F F

3 F T T

4 F T F

5 T T T

6 F F F

... ... ... ...

In this case the variables are binary, but much more complex cases are possible.
Sometimes there will be missing values: this is a vast topic itself and will not be
covered here, so we will suppose to have complete data.

Building a network consist in two different problems: determinate the struc-
ture of network and the parameters, or the set Ξ of conditional mass functions.
Usually the second is a minor problem and when the structure is defined it comes
easily; many structure learning algorithms estimate parameters as part of their
process. In general the parameters that are learned in a Bayesian network depend
on the assumptions that are made about how the learning is to proceed.

We are now going to concentrate our attention on structural learning. Learn-
ing the structure of a Bayesian network can be considered a specific example of
the general problem of selecting a probabilistic model that explains a given set of
data and it has been proven to be NP-hard by Chickering [9]. Indeed, a simple
look at the number of possible DAGs for a given number of nodes will indicate
the problem is hard: the number of all possible DAGs with n nodes has been
shown to be O(n!2(n2)) [10] !
We should remember that a priori we don’t even know the number of edges, nei-
ther their orientation: the only constraint is that the structure must be an acyclic
graph.

Despite the complexity results, various techniques have been developed to
render the search tractable. All techniques however are usually regrouped in
three main approaches [2]

• A constraint-based approach that uses conditional independences identified
in the data
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• A score and search approach through the space of Bayesian network struc-
tures

• A dynamic programming approach

As we will see for the previous works presented in the next chapter, the bound-
aries between groups are not always clear and many hybrid methods have been
proposed. In the next sections we will briefly describe the characteristics of the
three different main approaches. We will outline in detail the topics we will need
in the next chapters.

4.2 Conditional Independence

A possible approach to learn the graph of a Bayesian Network is the use of
statistical tests to recover the skeleton of the network structure and then orient
the edges. A well known method is the PC algorithm by Spirtes and Glymour[11].

In general, to recover the skeleton of a network we need to identify the de-
pendencies between the variables. In Bayesian Networks every variable/node is
independent from its non descendants given its parents: it is not only necessary
to consider two variables at a time, we will potentially need to consider also a set
of possible neighbours for the variables.

Formally, given two variables x and y and a set of variable z, we want to
verify the hypothesis x and y are independent given the set z, i.e P (x, y|z) =

P (x|z)P (y|z). We indicate this assumption as Ind(x, y|z), and the opposite as-
sumption (i.e. dependence) as Dep(x, y|z).

We can resume what said so far with the following theorem [19]:

Theorem 4.1 (Spirtes, Glymour and Scheines ). In a faithful BN (G,X,Ξ)there
is an edge between the pair of nodes x, y ∈ X iff Dep(x, y|z) for all possible z.

4.2.1 Statistical Tests of Independence

Generally speaking, a statistical hypothesis test is a method of making decisions
using data. In statistics, a result is called statistically significant if it is unlikely
to have occurred by chance alone, according to a pre-determined threshold prob-
ability, the significance level. The phrase "test of significance" was coined by
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Ronald Fisher: "Critical tests of this kind may be called tests of significance, and
when such tests are available we may discover whether a second sample is or is
not significantly different from the first" [36].

In frequency probability the test is done on a so called null-hypothesis, which
typically corresponds to a general or default position. A statistical test answer
then the following question: "Assuming that the null hypothesis is true, what
is the probability of observing a value for the test statistic that is at least as
extreme as the value that was actually observed?"[37]

In base of the probability returned from the test on a set of data , the null-
hypothesis can be rejected or not (but never confirmed!). In our specific case, the
null-hypothesis assumed is Ind(x, y|z).

There are many possible independence tests, we present here the so called χ2

and G-tests as in [13],[3], [38] and [18].

G2 = 2
∑
a,b,c

Nabc ln
Nabc

Eabc
(4.1)

χ2 =
∑
a,b,c

(Nabc − Eabc)2

Eabc
(4.2)

Assuming independence, Eabc is the expected number of samples where x = a,
y = b and z = c:

Eabc =
NacNbc

Nc

(4.3)

where Nabc is the number of times in the data where x = a, y = b and z = c. In
similar fashion we define Nac , Nbc and Nc.

Both of this statistics are asymptotically distributed as the chi-squared distri-
bution χ2

df with degree of freedom

df = (D(x)− 1)(D(y)− 1)
∏
w∈z

D(w)

where D(x) is the size of the domain of x. Using the χ2 as a statistic test leads
to the Pearson’s χ2 test of independence, while using the G leads to a likelihood
ratio test of independence, also called a G-test[38].

The results of the test is called p-value and it is calculated as 1 − F (TD),
where F is the cumulative distribution function of χ2

df and TD is the value of
the statistic for the data set D. The p-value corresponds to the probability of
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falsely rejecting the null hypothesis given that it is true. A problem of this kind
of tests is that with a large conditioning set z, any test T (x, y|z) will return a
high p-value with high probability leading to the acceptance (i.e. not rejecting)
of Ind(x, y|z).

Two heuristic solutions have appeared in literature. First, some algorithms
using the above metrics [3] [13] [18] do not perform a test if they determine
that there are not enough samples in the data set to achieve enough precision.
The algorithms require that the average sample per count is at least some fixed
number m. As in [13] we call this the heuristic power rule.

Second, several of the zero counts Nabc = 0 are heuristically declared as struc-
tural zeros, i.e. they are considered to be inherently part of the problem under
consideration. Since they are supposed to be not free to vary, the degrees of
freedom of the test should be adjusted. Spirtes et al. [18] subtract one from the
the degree of freedom for each counter Nabc equal to 0. Tsamardinos et al. [3] [13]
instead consider a structural zero any case Nabc = 0 and also either the marginals
are Nac = 0 or Nbc = 0. Then if Nac = 0 they reduce then degree of freedom by
D(x)− 1.

4.3 Search and Score

Search and Score algorithms consider the problem of learning Bayesian Networks
as optimization problems. In order to find the best Bayesian Network two things
are then needed; the first is a way to somehow quantify how "good" is a structure,
which is usually done with a scoring function of some sort.

Definition 4.1 (Scoring Function). Formally we call scoring function, criterion
or metric a function that takes in input a DAG and a data set and returns in
output a value indicating how well the structure fits the data.

The second element we need is obviously a procedure to efficiently explore
the search space, which, we stress again, is exponential on the number of nodes.
In the next subsections we will briefly recall the most used score functions, with
particular attention to the BDeu metric, and make some general premise on the
search methods.
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4.3.1 Bayesian Dirichlet Score

One of the most used scoring function is the so called Bayesian Dirichlet metric,
or BD metric for short. It was defined by Heckerman, Geiger and Chickering in
1995 [8]. As we have seen in chapter 2, and precisely with equation 2.9, what we
can try to find an expression for the likelihood function and rank the structures
using it: the greater the likelihood function, the greater the posterior probability,
the better the structure for the given data.

The BD metric does exactly that: it gives a precise expression for likelihood
function given a series of assumptions. With xi = k we will mean that variable
xi assume the kth value of his domain, which we consider ordered in some way.
Similarly, given an order for all the possible combinations of values for the vari-
ables t ∈ Πi, with Πi = j we indicate that the set Πi presents the jth possible
values combination. We are not going here to run through all the mathematical
passages, we will limit ourselves to recall all the assumptions and the results. For
the complete paper see [8].

Assumption 1 - Multinomlial Sample

Given a domain U and a database D, let Dl denote the first l-1 cases in the
database. In addition, let xil denote the variable xi in the lth case and Πil the
corresponding parent set. Then, for all network structures B in U,

P (xil = k|Πil = j,D,G) = θijk

This first assumption says in practice that the probability for a variable to
take a certain value depends only on the state of the parents.

Assumption 2 - Parameter Independence

• The parameters associated with each variable in a network structure are
independent

• The parameters associated with each state of the parents of a variable are
independent
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Assumption 3. Parameter Modularity

Given two network structures G and G’, if xi has the same parents in G and G’,
then

P (xi = k|Πi = j,D,G) = P (xi = k|Πi = j,D,G′)

In practice parameter modularity says that the probability for every variable
to assume a certain value depends only on the local situation of the network, i.e.
the parent set.

Example 4.1. In the following simple network, x1 will have the same distribution,
x2 not:

Figure 4.1

Assumption 4. Dirichlet

Given a network structure B and let be Θij =
⋃
θijk, p(Θij|G) is Dirichlet for all

Θij. That is, there exists exponents N ′ijk, which depend on B, that satisfy

p(Θij|G) = c
∏
k

θ
N ′ijk−1

ijk

where c is a normalization constant.

This assumption give the name at the metric we are considering. The Dirichlet
distribution has an important propriety: if the data have a multinomial distribu-
tion, and the prior distribution is distributed as a Dirichlet, then the posterior
distribution of the parameter is also a Dirichlet. The exponents N ′ijk codify some-
how the state of the information about the probabilities we are considering [8].
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Assumption 5. Complete Data

The Database is complete. That is, it contains no missing data.

Given these assumptions, we can determinate a form for the likelihood func-
tion P (D|G). Instead of the likelihood however we apply product rule once again
and we observe that we can consider P (D,G) equivalently. Thus, applying all
the assumption we can write the BD metric:

P (D,G) = P (G)
n∏
i=1

qi∏
j=1

Γ(N ′ij)

Γ(N ′ij +Nij)

ri∏
k=1

Γ(N ′ijk +Nijk)

Γ(N ′ijk)
(4.4)

Γ(x) is the Gamma function, which satisfies Γ(1) = 1 and Γ(z + 1) = zΓ(z),
or in the integer case Γ(z) = (z − 1)!.

N ′ijk are the parameters of the Dirichlet distribution and Nijk is the number
of samples in the observed data set such that xi assumes the jth possible value of
his domain and Πi presents the kth possible combination of values of its elements.

We recall that ri and qi are the degrees of freedom for xi and Πi respectively,
while Nij =

∑
kNijk and N ′ij =

∑
kN

′
ijk; n is the number of variables in the

domain.
The BD score is built taking the logarithm of equation 4.4. We write it

explicitly

SBD(D,G) = log(P (G))
n∑
i=1

qi∑
j=1

(
log

Γ(N ′ij)

Γ(N ′ij +Nij)
+

ri∑
k=1

log
Γ(N ′ijk +Nijk)

Γ(N ′ijk)

)
(4.5)

Usually, the structure prior P (G) is considered to be equal for all the pos-
sible graphs and omitted; in this case we speak of uninformative prior. Other
approaches are possible, like penalizing somehow the number of edges: in [12]
the structure prior used is 0.001f where f is the number of free parameters in
the DAG. The problem of the BD scoring function is to provide a value for all
N ′ijk. A solution is to pose all N ′ijk = 1, which is known as the K2 metric and
was defined by Cooper and Herskovits in 1992 [39]. Alternatively, we can make
further assumptions.
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Assumption 6. Likelihood Equivalence

For any database D and two equivalent network structures G and G’, the proba-
bility of D is the same.

Assumption 7. Structure Possibility

Given a domain U, P (G) > 0 for all complete network structures G.

Given the new assumptions, we can state [8]

N ′ijk = N ′P (xi = k,Πi = j|G) (4.6)

whereN ′ is the only free hyperparameter and it is known as Equivalent Sample
Size (ESS) and expresses the strength in our belief in the prior distribution.
We call in this case the equations 4.4 and 4.5 the BDe metric and BDe score
respectively, where "e" is for equivalence.

Unfortunately determining P (xi = k,Πi = j|G) is still a huge problem. Thus
is necessary to make a last assumption:

N ′ijk = N ′P (xi = k,Πi = j|G) =
N ′

riqi
(4.7)

Recalling that N ′ij =
∑

kN
′
ijk, if the values of the ith variable in the domain

assumes values k = 1, 2, ..., ri we can immediately also obtain:

N ′ij =
∑
k

N ′ijk =
∑
k

N ′

riqi
=
N ′

qi
(4.8)

The metric is called BDeu, where "u" is for uninformative. The BDeu score
is the one that can be used in practice.

4.3.2 BIC and AIC Score

The Bayiesian Information Criterion, which was defined by Schwarz (1978) [7],
and Akaike Information Criterion due to Akaike (1974) [6], are two other well
known metrics based on likelihood function. They interpret a structure G as a
set if independence constraints in the maximum-likelihood estimate, derived from
the observed data, of a joint distribution over the domain.

The two score functions are very similar and differ only in the weight that is
given to a penalty term based on the number of free parameters. We give here
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the equation from [5]

SBIC/AIC(D,G) = max
θ
LG,D(θ)− w

n∑
i=1

(qi(ri − 1)) (4.9)

For AIC w = 1, for BIC w = logN
2

, where N is the number of entries in the
data set. LG,D is the log-likelihood function with respect to data D and structure
G, and can be expressed as

LG,D(θ) = log
n∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk
ijk (4.10)

Moreover, we know that

argmaxθLG,D(θ) = (θ∗ijk)∀ijk =

(
Nijk

Nij

)
∀ijk

Using this information and moving the log inside the product the equation 4.10
can be re-written as follow:

SBIC/AIC(D,G) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij

− w
n∑
i=1

(qi(ri − 1)) (4.11)

4.3.3 Decomposability and Score Equivalence

We introduce now two crucial proprieties for scoring metrics that are greatly
useful during the search phase. The first is the so called decomposability of the
score:

Definition 4.2 (Decomposable Score). Given a DAG G and a scoring function
S(G), S is said to be decomposable if we can find a function si dependent only on
the parent set of xi in G such that

S(G) =
n∑
i=1

si(Πi)

It’s immediate to check that all the BDeu, AIC and BIC metrics are decom-
posable. In fact observing the equations 4.8 and 4.11 we observe the scoring
function contains a sum on all the variables in the domain, while all the param-
eters are dependent only on the parents of the ith variable in the sum, and the
variable itself. The local score functions can be expressed as follows:
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sBDeu(xi,Πi, D) =

qi∑
j=1

(
log

Γ(N
′

qi
)

Γ(N
′

qi
+Nij)

+

ri∑
k=1

log
Γ( N

′

riqi
+Nijk)

Γ( N
′

riqi
)

)
(4.12)

sBIC/AIC(xi,Πi, D) =

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij

− w(qi(ri − 1)) (4.13)

where in 4.12 we supposed uninformative prior.
We show the advantage of decomposability with a simple example.Suppose to

have two DAG G and G′ on the same set of variable, and suppose that the only
difference between the two is a single edge xu ← xv which be present in G′ but
absent in G.

Suppose also that we calculated ∀i = 1, ..., n the local scores s(xi,Πi, D) for
the graph G; to calculate the score of G′ we only need to locally score again only
xu:

S(G′) = S(G)− s(xu,Πu, D) + s(xu,Π
′
u, D)

where Π′u = Πu ∪ {xv}. How useful is to have this property will be even more
evident when we will explain the search procedures.

The second fundamental concept is score equivalence.

Definition 4.3 (Score Equivalence). Given two equivalent DAG G and G’ and
a scoring function S, S is said to be score equivalent if and only if

S(G) = S(G′)

If we are searching for the best bayesian structure underling a certain distribu-
tion from our data, we obviously have not interest in discriminating DAGs which
are equivalent, i.e. which describe the same conditional dependencies between
the variables in the domain.

In other words, we are not normally interested in finding a specific DAG: every
graph belonging to the same equivalence class can be a valid choice. Incidentally
BIC, AIC and BDeu metrics are score equivalent. We omit a demonstration, but
we recall that score equivalence is stated for BDeu in Assumption 7, i.e. is part
if it’s definition.

4.3.4 Search Algorithms: the space of DAGs and CPDAGs

During the years many procedures that make use of scoring function along with a
search strategy of some sort have been proposed, but the general idea is to apply
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an heuristic to find structures with increasing score.

Most of the algorithms comprise, along with a scoring function, the following
parts [2]

• a search space consisting of the various allowable states of the problem,
each of which represents a Bayesian network structure

• a mechanism to encode each of the states

• a mechanism to move from state to state in the search space

Finding new structures means that we need to move in the space of all possible
DAGs for a certain domain. To do it, we need certain operators. To cover the
space of DAGs only three operators are needed [8]

• Add Edge

• Remove Edge

• Invert Edge

Operator Add Edge is used to insert an edge, with the only rule that the new
graph must be still acyclic. Remove Edge on the other hand is always possible
without contraindications. Invert Edge is used to invert an arc: in practice it
first removes an edge x← y and then add the edge x→ y; again cycles must be
checked. It is worth to point out that only Remove and Add Edge operators are
necessary to explore all the possible DAGs, but a direct invert operation can be
useful.

The use of a decomposable scoring function in this context reveals its full po-
tential: at every step of an algorithm using the described operators it is necessary
only the recalculation of the local score of the variables whose parent sets have
changed.

The simplest algorithm that can be realised in a Search And Score context is
a Greedy Local Search
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Algorithm 6: Greedy Local Search

Data: data D, scoring function S
G = empty graph
while The score in the last iteration has improved do

apply the best change to G using Add, Remove and Invert Edge
end

return G

The first issue with such extremely simple approach is the high probability of
getting stuck very fast at a local optimum. To avoid this problem,over the years
more sophisticated algorithms have been proposed [2].

The presence of numerous networks with the same score, i.e. belonging to the
same equivalent class, also pose a problem: many Invert Edge operations may be
needed before we are able to escape the current equivalence class and finally find
a new network with higher score using the Add or Remove Edge operators.

We explained in chapter 3 how equivalent classes of Bayesian Networks can
be represented with PDAG, or more precisely how every class is represented by
a unique complete PDAG, or CPDAG.

However, the operations to move in the space of CPDAG are more numerous
and complicated; their complete definition, along with theorems for their efficient
application are due to Chickering and can be found in [12]; we report here the
list and the relative rules. We will say that an operator is valid if the resulting
PDAG has a consistent extension.

In accordance with [12], we will use the following notation in the space of
PDGAs: Πx is the parent set of x, Nx is the set of neighbours of x, Nx,y is the
set of common neighbours of x and y and Ωx,y is the set of parents of x that are
neighbours of y. Moreover we denote by Z+x the set Z ∪ {x} and with Z−x the
set Z\{x}.

1. InsertU. Let x and y two nodes not adjacent in P. The insertion of the
edge x − y is valid if and only if every undirected path between x and y

contains a node in Nx,y and Πx = Πy. The score increase is:

s(y,Nx,y ∪ Π+x
y )− s(y,Nx,y ∪ Πy)
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2. DeleteU. Let x− y an undirected edge in P. The deletion of x− y is valid
if and only if Nx,y is a clique of undirected edges. The score increase is:

s(y,Nx,y ∪ Πy)− s(y,Nx,y ∪ Π+x
y )

3. InsertD. Let x and y two nodes not adjacent in P. The insertion of the
edge x → y is valid if and only if every semi-directed path from y to x

contains at least one node in Ωx,y, Ωx,y is a clique of undirected edges and
Πx 6= Πy. The score increase is:

s(y,Ωx,y ∪ Πy ∪ x)s(y,Ωx,y ∪ Πy)

4. DeleteD. Let x → y an undirected edge in P. The deletion of x → y is
valid if and only if Ny is a clique of undirected edges. The score increase is:

s(y,Ny ∪ {Πy\x})− s(y,Ny ∪ Πy)

5. InvertD. Let x→ y an undirected edge in P. The reversal of x→ y is valid
if and only if every semi-directed path from x to y that does not include
the edge x→ y contains at least one node in Ωx,y ∪Nx,y and Ωx,y is a clique
of undirected edges. The score increase is:

s(y,Π−xy ) + s(x,Π+y
x ∪ Ωx,y)− s(y,Πy)− s(x,Πx ∪ Ωx,y)

6. MakeV. Let x− y− z be any length-two undirected path in P such that x
and y are not adjacent. Replacing the undirected edges with directed edges
to create the v-structure x→ y ← z is valid if and only if every undirected
path between x and y contains a node in Nx,y. The score increase is:

s(z,Π+x,y
z ∪{N−zx,y})+s(z,Πz∪{N−zx,y})−s(z,Π+x

z ∪{N−zx,y})−s(z,Πz∪Nx,y)
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Figure 4.2: Schema showing the procedure explained in [12] to explore the space
of CPDAGs

After applying an operator to a CPDAG, the resulting PDAG is not necessary
complete. To recover the complete PDAG representing the equivalence class
resulting from the operator, it’s necessary to use the transformation algorithms
presented in chapter 3.

The schema of the entire operation, as presented in [12] is the presented in
figure 4.2. The main advantage of using the PDAG is that we need to search in
a much smaller space, at the price of more complex operations.

4.3.5 Search Algorithms: examples

To conclude, we give a fast overview of algorithms used to search both in the
space of DAGs and CPDAGs. A complete study can be found in [2].

Greedy search has been abundantly used; some of the earliest work that looked
at greedy methods to learn Bayesian network structure was by Herskovits and
Cooper in 1991 [39] and 1992 [40].

The authors provided a way to construct a Bayesian network structure given a
data sample and an ordering of the various variables and used a Bayesian scoring
criterion, which has come to be known as the K2 score. More greedy algorithms
using an order for the variables have followed [41] [42] [43]. Other approaches
still use greedy procedures, but without ordering the variables [8] [44] [45].

Between the others algorithm used, in literature we can find evolutionary algo-
rithms, as in [46], simulated annealing, as in [47], or particle swarm optimization,
as in [48]. Others successfully used the CPDAG search space, a recent example
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is Ant Colony Optimization due to Daly and Shen [49].

4.4 Dynamic Programming

Aside from the two major techniques of structure learning that have been dis-
cussed, there is a third method that is similar to the score-and-search approach,
but does not have the search aspect [2]. These methods use dynamic program-
ming to compute optimal models for a small set of variables and in some cases
combine these models.

A well-known algorithm is the one proposed by Silander and Myllymaki in
2006 [50]. Other similar approaches have been proposed by Koivisto and Sood
(2004) [51], Eaton and Murphy [52], Perrier et al. (2008) [14].

We briefly recall here the Silander-Myllymaki algorithm. We call sink of a
network a node without outgoing edges: given the acyclicity a sink must exists;
then the algorithm follows the following schema:

1. Calculate the local scores for all n2n−1 different (variable, variable set)-pairs.

2. Using the local scores, find best parents for all n2n−1 (variable, parent
candidate set)-pairs.

3. Find the best sink for all 2n variable sets.

4. Using the results from Step 3, find a best ordering of the variables.

5. Find a best network using results computed in Steps 2 and 4.

The problem with this kind of algorithms should be evident without any
further analysis. Such procedures require big amount of resources, time and
specially memory (the original Silander Mylimaki implementation the memory
requirement was 2n+2 bytes), and become infeasible very fast with the increasing
number of variable (the limit is normally around 30). On the other hand, they are
complete algorithms and provide the global optimum solution for the problem,
which is not guaranteed by heuristic procedures [2].
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Chapter 5

Previous Works

5.1 The Max-Min-Hill-Climbing

In 2006 Tsamardinos, Brown and Aliferis presented in [3] an hybrid algorithm for
automatic Bayesian Network structure learning.

The method can be divided in two phases. The first phase, which is called
the Max-Min-Parent-Children algorithm (MMPC for short), use statistical test
of conditional independence to find the probable sets of parents and children for
every variable x in the domain, similarly to the Sparse Candidate algorithm [53].

The second phase is a simple greedy local search applied in the space of the
DAGs but restricted to the hypothetical skeleton identified by phase one. Thus
we can say that the Max-Min-Hill-Climbing (MMHC) algorithm is an hybrid
between the conditional constraints and search & score approaches. In the next
sections we will outline all the part of the algorithms involved.

5.1.1 Max-Min-Parent-Children Algorithm

The Bayesian network learning algorithm presented in [3] is based on the local
discovery algorithm called Max-Min Parents and Children used to reconstruct
the skeleton of the Bayesian network. The Max-Min-Parent-Children Algorithm
(MMPC) algorithm try to find for each variable x in the domain a set, denoted
as CPC, containing all the nodes candidates to be parents or children of x. It is
worth recalling that two equivalent structure, i.e. representing the same distribu-
tion, will have the same skeleton, thus the same sets of parents-children for each
variable in the domain.
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The Max-Min part of the algorithm name refers, as we will see, to the specific
heuristic used. MMPC runs on a target variable t and provides a way to identify
the existence of edges to and from t, without identifying the orientation of the
edges.

By invoking MMPC with each variable as the target one can identify all the
edges (in an un-oriented fashion) in the network, i.e. identify the skeleton of the
Bayesian network, using statistical tests of independence (see 4.2.1).

We report here the algorithms 7 and 8 as presented in the original paper, we
add algorithm 9 to simplify the explanation:

Algorithm 7: MMPC

Data: target variable t, data D
Result: CPC for t
% Phase 1: forward
CPC = empty set
while It’s possible to add a variable in CPC do

(f, assocf ) = MaxMinHeuristic(t, CPC)

if assocf 6= 0 then
add f to CPC

end

end

% Phase 2: backward
for all x ∈ CPC do

if ∃s ⊂ CPC s.t. Ind(x, t|s) then
remove x from CPC

end

end

return CPC
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Algorithm 8: MaxMinHeuristic

Data: target variable t, sub set of variables CPC
Result: the maximum over all the variables of the minimum association

with t relative to CPC, and the variable that achieve the
maximum

assocf = maxxMinAssoc(x, t|CPC)

f = argmaxxMinAssoc(x, t|CPC)

return f, assocf

Algorithm 9: MinAssoc

Data: variables t, x, sub set of variables CPC
Result: the minimum association between t, x given CPC
assoc =∞
for all possible subsets s of CPC do

get the p-value from the statistical test T (t, x|s)
if p-value> α then

return 0

end

if − log( p-value) < assoc then
assoc = − log( p-value)

end

end

return assoc

Algorithm 7 works in this way: the CPC for a variable t is initially cre-
ated empty; then, at every step, a couple formed by a variable f and a value
representing its association with t given the current CPC is returned by the Max-
Min-Heuristic. If the association for f is not zero, then f is added to the CPC
and the process re-iterated. If not, the algorithm starts a backward phase: all
variables in the CPC are tested against all possible subsets s of CPC: if there
exists a s such that Ind(x, t|s), then the variable is eliminated from the CPC.

The algorithm per se is simple, the key is to understand how the Max-Min-
Heuristic works exactly. Given a variable t and a set of variable CPC, the
Max-Min-Heuristic select the variable x which maximize the association with t
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between all the variables in the domain not already in the CPC.
The association considered for each variable is the minimum association it is

possible to find: for all possible subsets s of CPC, the procedure (algorithm 9)
MinAssoc(x, t|CPC) executes a statistical test of independence, in the original
paper the G-test we presented in section 4.2.1.

If the p-value which corresponds to the probability of falsely reject the hy-
pothesis Ind(x, t|S) is less than the significance level α, the variable x and t are
considered independent given s and the association between x and t is 0, else the
association is calculated as − log( p-value).

Recapping, at every step of the forward phase the MMPC algorithm add to
the CPC the variable which maximize the minimum association with t, which is
found performing independence tests over all the possible subsets of the current
CPC. The max-min heuristic is admissible in the sense that all variables with
an edge to or from T and possibly more will eventually enter CPC [13]. The
intuitive justification given for the heuristic is to select the variable that remains
highly associated with t despite the best efforts (i.e., after conditioning on all
subsets of CPC) to make the variable independent of t. Phase 1 stops when all
remaining variables are independent of the target t given some subset of CPC,
i.e., the maximum minimum association reaches zero.

The backward phase is necessary because we have not any grantee that vari-
ables are inserted in the CPC in a correct order: it may happen that variable x
would be considered independent by the algorithm given variable y, but is added
to the CPC before y, thus we need to ensure that at least Ind(x, t|y) is tested at
a later time.

Example 5.1. We report from the original paper [13] an example trace of the
algorithm with target node T. For the example it is assumed that the sample size
is large enough for the results of all tests of conditional independence performed by
MMPC to return the correct result. Thus, the results of each call to Ind(X;T |Z)

can be assessed simply by looking at the graph. In figure 5.1 it is showed the
forward phase, in figure 5.2 the backward phase.
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Figure 5.1: Example trace of MMPC from [3]: forward phase
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Figure 5.2: Example trace of MMPC from [3]: backward phase

5.1.2 Avoiding False Positive in MMPC

In an ideal scenario, MMPC will return no false negatives, i.e., will include all
the parents and children of t in its output. The MMPC algorithm however has a
problem: it may include false positive, i.e include in the CPC nodes that are not
either parent or children of the target variable, even in the ideal setting.

We do not give here the exact explanation, which is given in the original paper
and requires additional theorems and definitions; generally speaking the problem
is due to some particular configurations of edges in the graph.

The solution, however, is quite straightforward: if in the network underlying
the data a variable x is the parent of y, the algorithm will (hopefully) insert x
in CPC of y; obviously, being y one of the children of x, the algorithm will also
include y in the CPC of x. In other words, all the CPC must be symmetric, but
false positive are not [13].

We call the final algorithm, which will find the CPC for all the variables in
the domain, MMPC’. We present here the pseudo-code.
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Algorithm 10: MMPC’

Data: data set D
Result: the CPCs for each variable in the domain, without false positive
for each variable x in the domain do

CPCx = MMPC(x,D)
end

for every ordered couple of variables (x, y) in the domain do

if x ∈ CPCy and y 6∈ CPCx then
remove x from CPCy

end

end

return all the CPCs found

5.1.3 Permutation Independence Test

As we explained, theG2 and χ2 statistics we introduced in 4.2.1 are asymptotically
distributed as χ2

df with a certain number of degree of freedo, i.e. the returned
p-value is approximate and converges to the true value in the sample limit.

"Statisticians have long warned that the approximation is often poor in many
circumstances, particularly when the sample size is low or the probabilities of the
distribution are extreme. Ideally, one would prefer to use exact tests of indepen-
dence. Unfortunately, in the general case such tests have a high computational
overhead that prohibits their use in the context of learning large graphical mod-
els. In addition, they require highly specialized software that is often proprietary"
[13].

Let consider again two variable, x and y, of which we want to test the inde-
pendence over the marginal set z. As we did before, we call Nabc the number of
times in the data set where x = a, y = b and z = c. Nbc, Nac and Nc are defined
in similar fashion.

"A mainstream approach to exact testing is called the exact conditional ap-
proach that considers the row and column marginals in each table Nac, Nbc, and
Nc as fixed. The distribution of the test statistic under the null hypothesis is then
calculated conditioned on these marginals. Specifically, to calculate the exact p-
value one needs to calculate P (T0 ≥ T |Ind(x, y|z)) where T0 is the observed test
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statistic. This in turn implies identifying all contingency tables with the same
marginals and whose test statistic is larger or equal to the observed one. The
number of possible tables with the same marginals quickly explodes" [13]

Recently, to improve the precision of the test for low sample size data sets
Tsamardinos et al. proposed instead [13] an adjustable permutation method.

"Notice that, each table (where z = c) with the same marginals as the ob-
served table can be produced by permuting the values of x or y of the samples
(while retaining z = c). For example, for binary variables x, y, z suppose we have
the observations (0, 1, 0) and (1, 0, 0) giving Nx=0,z=0 = Nx=1,z=0 = Ny=0,z=0 =

Ny=1,z=0 = 1.

Permuting the two values of y between the only two observations provides
the permuted data (0, 0, 0) and (1, 1, 0) with the same marginals. Under the null
hypothesis of independence, this is justified as follows: since x and y are assumed
independent given z, any such permutation has the same probability of being
observed.

Calculating all such possible permutations is equivalent to enumerating all
possible tables with the same marginals. However, one can sample from the space
of all possible permutations (tables) randomly to estimate P (T0 ≥ T |Ind(x, y|z)).
Such methods are called Monte Carlo Permutation methods [54]. " [13]

We denote with D0 the observed data. We obtain permuted data Di, i > 0 as
follows: for each possible value c of z, randomly permute the values of y in D0

only among the cases where z = c (i.e., ensuring all marginals remain the same).
We denote with T (Di) the value of the statistic (either χ2 or the G statistic) on
the data Di. The basic procedure is shown in the following Algorithm:

Algorithm 11: Basic Permutation

Data: data set D0, variables x,y, set of marginals z, number of
permutation B

Result: p-value
for i = 1, .., B do

Randomly permute D0 to obtain Di

Calculate T (Di)

end

return #{T (D0) ≤ T (Di), i = 1, ..., B}/B
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Tsamardinos et al. reported a sufficient number of permutations B to be in a
range between 1000 to 5000, which makes the procedure quite costly for learning
large graphical models. To improve the computational requirements, the authors
designed an adjustable procedure that may stop early the computation of more
permuted statistics. The procedure infers whether the current approximation of
the p-value is sufficiently close to the true p-value to make a decision at signifi-
cance level α.

The first rule implemented in the algorithm checks whenever a simple test on
the not-permuted data is enough to make a decision; if a conservative asymptotic
test (specifically the G test) returns a relatively low p-value (lower than 0.001 in
Tsamardinos experiments) dependence is immediately accepted. Similarly, if a
liberal asymptotic test (the χ2 statistic) returns a high p-value (larger than 0.5),
independence is immediately accepted instead:
Rule 1 if pg < 0.001 return Dep., else if pχ2 > 0.5returnInd.

The more complicated algorithms, conditions and rules will not be recalled
here, and can be found in the original paper [13].
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5.1.4 Hill Climbing

To conclude our fast excursus on the MMHC algorithm we present the simple
greedy local search adopted in the original paper [3]. It is a simple Hill Climb-
ing in the space of DAGs, starting from an empty graph and using the BDeu
scoring function as presented in equation 4.5. At every step one of the possible
operators is used ( Add Edge, Remove Edge and Invert Edge ). Obviously the
resulting graph must remain acyclic at every step, and Add Edge is used only if
the interested variables belong to their reciprocal CPCs. At every step, the oper-
ation on the graph that bring to the highest possible score is used; the score can
decrease, but if 15 iterations passes without a global improvement the algorithm
stops and the best graph found is returned. A TABU list contains the last 100
graphs visited and it is used to avoid returning on already considered solutions.

Algorithm 12: Max Min Hill Climbing

Data: data set D
Result: p-value
Perform MMPC on D
G = empty graph
L = empty list of graphs
while less then 15 iterations has passed from the last improvement in score
do

Apply at G the operator leading to the best possible DAG G’ such that:
- G’ is not in L
- G’ doesn’t have any edge contradicting the CPCs
Put G’ in L
Remove from L the oldest graph if size(L) > 100

end

return the best graph found
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5.2 Complete Branch-and-Bound Algorithm

As we briefly explained in 4.4, the dynamic programming based methods to find
the optimal structure are strongly limited in the number n of variables in the
domain: they spend time and memory proportional to n2n. Such complexity
forbids the use of those methods to a couple of tens of variables, mainly because
of the memory usage, while time complexity is also a issue.

Many methods have been proposed trying to improve the dynamic program-
ming method to work over reduced search spaces. On a different front, Jaakkola
et al. [55] applied a linear programming relaxation to solve the problem, together
with a branch-and-bound search. We consider an algorithm that also uses branch
and bound proposed by de Campos and Ji, which employs a different technique
to find bounds and showed that branch and bound methods can handle somewhat
larger networks than the dynamic programming ideas [5].

The method can be divided in two phases. First a cache containing the scores
(AIC, BIC or BDeu) for all variables and possible parent sets are calculated; a
series of mathematical rules are used to avoid computations and reduce the search
space. Then a B&B procedure is applied. In the next sections we resume both
phases.

5.2.1 Cache Construction and Score Properties

"Local scores need to be computed many times to evaluate the candidate graphs
when we look for the best graph. Because of decomposability, we can avoid to
compute such functions several times by creating a cache that contains si(Πi) for
each xi and each parent set Πi. Note that this cache may have an exponential
size on n, as there are 2n−1 subsets of {x1, ..., xi−1, xi+1, ..., xn} to be considered
as parent sets. This gives a total space and time of O(n2nν) to build the cache,
where ν is the worst-case asymptotic time to compute the local score function at
each node"[5].

Instead, de Campos and Ji described a collection of mathematical results for
AIC, BIC and BDeu that can be used to obtain much smaller caches in many
practical cases[5]. We do not report here the proves of the lemmas; the reader
should refer to the complete discussion in [5].

The first fundamental simple lemma, stated among others in [56], holds for
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all three the scoring function described in 4.3 and it is the following:

Lemma 5.1. Let xi be a node of G′, a candidate DAG for a Bayesian network
where the parent set of xi is Π′i. Suppose Πi ⊂ Π′i is such that si(Πi) > si(Π

′
i)

(where s is one of BIC, AIC, BD or derived criteria). Then Π′i is not the parent
set of xi in an optimal DAG G∗.

"Unfortunately lemma 5.1 does not tell us anything about supersets of Π′i, that
is, we still need to compute scores for all the possible parent sets and later verify
which of them can be removed. This would still leave us with n2nν asymptotic
time and space requirements (although the space would be reduced after applying
the lemma)" [5].

There are a series of more strict proprieties, two separated series for BIC/AIC
and BDeu. We report here the statements of BIC/AIC theorems:

Theorem 5.1. Using BIC or AIC as score function, suppose that xi, Πi are such
that qi > N

w
log ri
ri−1

. If Π′i is a proper superset of Πi , then Π′i i is not the parent set
of xi in an optimal structure.

Corollary 5.1. Using BIC or AIC as criterion, the optimal graph G has at most
O(logN) parents per node.

Theorem 5.2. Let BIC or AIC be the score criterion and let xi be a node with
Πi ⊂ Π′i two possible parent sets such that q′i(ri − 1) + si(Πi) > 0. Then Π′i and
all supersets Π′′i ⊃ Π′i are not optimal parent configurations for xi.

Theorem 5.1 and Corollary 5.1 ensures that the cache stores at most
O(
∑dlogNe

t=0

(
n−1
t

)
) elements for each variable (all combinations up to dlogNe par-

ents) [5]. Theorem 5.2 is quite useful in practice because it is applicable even in
cases where Theorem 5.1 is not, implying that fewer parent sets need to be in-
spected [5] and it provides a bound to discard parent sets without even inspecting
them.

BD theorems are more numerous and requires additional notations. However
only the last one, which we recall here, is used in practice:

Theorem 5.3. Let KΠi
ij = {1 ≤ k ≤ ri : Nijk} be the indices of the categories of

xi such that Nijk 6= 0 and KΠi
i = ∪KΠi

ij . Given the BDeu score and two parent
sets Π0

i and Πi for a node xi such that Π0
i ⊂ Πi and N ′ij =≤ 0.8349 for every j
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for the parent set Πi, if si(Π0
i ) > −|K

Πi
i | log ri then neither Πi nor any superset

Π′i ⊃ Πi are optimal parent sets for xi.

"Theorem 5.3 provides a bound to discard parent sets without even inspecting
them because ... the idea is to check the validity of Theorem 5.3 every time the
score of a parent set Πi of xi is about to be computed by taking the best score of
any subset and testing it against the theorem"[5].

Whenever possible during the cache construction, the algorithms discards Π

and do not even look into all its supersets.
De Campos notes that the assertion N ′ij ≤ 0.8349 required by the theorem is

not too restrictive, because as parent sets grow, ESS is divided by larger numbers.
Hence, the values N ′ij become quickly below such a threshold. It’s worth noting
that the theorems used in practice depends also on the number of samples in the
data set.

5.2.2 Search Algorithm

After the cache has been built, the reduced search space is inspected using a
branch-and-bound algorithm to find the best structure. The algorithm uses a
relaxation of the problem: also graphs with cycles are considered during the
search.

The method accepts in inputs also constraints on the structure of the network;
specific edges can be set as mandatory or forbidden, or there may be limit to the
number of parents a specific variable can have, etc.

We give here the algorithm from the original paper [5] The initialization of
the algorithm is as follows:

• C : (xi,Πi)→ R is the cache with the scores for all the variables and their
possible parent configurations. This is constructed using a queue and ana-
lyzing parent sets according to the properties previously introduced, which
saves (in practice) a large amount of space and time. All the structural con-
straints are considered in this construction so that only valid parent sets
are stored.

• G is the graph created by taking the best parent configuration for each
node without checking for acyclicity (so it is not necessarily a DAG), and
s is the score of G. This graph is used as an upper bound for the best
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possible graph, as it is clearly obtained from a relaxation of the problem
(the relaxation comes from allowing cycles).

• H is an initially empty matrix containing, for each possible arc between
nodes, a mark stating that the arc must be present, or is prohibited, or is
free (may be present or not). This matrix controls the search of the B&B
procedure. Each branch of the search has a H that specifies the graphs that
still must be searched within that branch.

• Q is a priority queue of triples (G,H, s), ordered by s (initially it contains
a single triple with G, H and s as mentioned. The order is such that the
top of the queue contains always the triple of greatest s, while the bottom
has the triple of smallest s.

• (Gbest, sbest) keeps at any moment the best DAG and score found so far. The
value of sbest could be set to−∞, but this best solution can also be initialized
using any inner approximation method. For instance, the algorithm use a
procedure that guesses an ordering for the variable, then computes the
global best solution for that ordering, and finally runs a hill climbing over
the resulting structure. All these procedures are very fast (given the small
size of the precomputed cache that we obtain in the previous steps). A good
initial solution may significantly reduce the search of the B&B procedure,
because it may give a lower bound closer to the upper bound defined by the
relaxation (G,H, s).

• iter, initialized with zero keeps track of the iteration number. bottom is
a user parameter that controls how frequent elements will be picked from
the bottom of the queue instead of the usual removal from the top. For
example, a value of 1 means to pick always from the bottom, a value of 2
alternates elements from the top and the bottom evenly, and a large value
makes the algorithm picks always from the top.

The main loop of the B&B search is as follows:

• While Q is not empty, do

1. Increment iter. If iter
bottom

is not an integer, then remove the top of
Q and put into (Gcur, Hcur, scur). Otherwise remove the bottom of Q
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into (Gcur, Hcur, scur). If scur ≤ sbest (worse than an already known
solution), then discard the current element and start the loop again.

2. If Gcur is a DAG, then update (Gbest, sbest) with (Gcur, scur), discard
the current element and start the loop again (if Gcur came from the
top of Q, then the algorithm stops: no other graph in the queue can
be better than Gcur).

3. Take a cycle of Gcur (one must exist, otherwise we would have not
reached this step), namely (xa1 → xa2 → ...→ xaq+1), with a1 = aq+1.

4. For y = 1, ..., q, do

(a) Mark on Hcur that the arc xay → xay+1 is prohibited. This implies
that the branch we are going to create will not have this cycle
again.

(b) Recompute (G, s) from (Gcur, scur) such that the new parent set of
xay+1 in G complies with this new Hcur. This is done by searching
in the cache C(xay+1 ,Πay+1) for the best parent set. If there is a
parent set in the cache that satisfies Hcur, then include the triple
(G,Hcur, s) into Q.

(c) Mark on Hcur that the arc xay → xay+1 must be present and that
the sibling arc xay ← xay+1 is prohibited, and continue the loop of
step 4. (Step 4c forces the branches that we create to be disjoint
among each other.)

The algorithm is correct and complete, i.e. it explores all the search space [5].
The algorithm was able to outperform the state-of-the-art dynamic programming,
and it is also an any time procedure: if stopped before the optimum is found,
it will be able to return an upper bound, given by the score of the graph at the
first position of Q, and a lower bound, given by the best DAG found so far. The
stopping criterion might be based on number of steps, time consumption and/or
percentage of error.
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Chapter 6

Hybrid Method using Statistical

Constraints

In this chapter we expose the main idea and contribution of this thesis. In
the next sections we describe the motivations behind our work and we detail
the procedure proposed, then we give some indications on implementation and,
finally, we outline the experiment settings, we discuss the results and we compare
them with related works.

6.1 Hybrid Algorithms

As explained in chapter 5, the B&B algorithm by de Campos and Ji use con-
straints on the edges, created during iterations, to efficiently explore the search
space.

However, it is possible to impose structural constraints in input, in the form
of a matrix of nxn dimension, where every single edge xj → xy is represented
by position (i, j) and can be set as forbidden (using 1), mandatory (using -1) or
free (using 0). It is also possible to give more complex constraints as limiting the
number of parent for each variable.

The authors tested the algorithm with randomly generated networks and used
random structural constraints valid for the networks. They verified substantial
gain in term of cache dimension and execution time and the algorithm was able
to find the optimal solution with networks up to 70 nodes, and approximate
solutions for 100 nodes [5].
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The possibility to give constraints in input may be useful when the problem is
restricted to search for a specific structure, or to incorporate experts knowledge
of the domain. For example, we may know that some variables represent external
factors and thus the corresponding nodes should not have incoming edges.

Obviously, in many cases our knowledge of the domain is very limited and
it will be not enough to infer directly a large number of structural constraints,
neither we can impose them at random. The MMPC algorithm, described in
chapter 5, however, de facto imposes constraints that we can treat as valid with
a certain probability.

Thus, we decided to exploit the options given by the B&B algorithm and add
to the complete search the knowledge derived by the MMPC algorithm. In other
words, we first calculate for a certain network and data the set of possible parents
or children for each node, then we use the same data as input for B&B program,
forbidding all edges x ← y such that x 6∈ CPC(y), i.e. building the constraints
input matrix with a 1 at every position (i, j) such that xi 6∈ CPC(xj), and 0 for
all the other positions.

The main problem of statistical tests, particularly with small sample size data
sets, is that they can introduce false negatives: edges that are part of the best
network may be excluded by the MMPC algorithm and thus they will not be
present in the structure obtained using CPCs as constraints.

In order to try to recover eventually missing edges we decide to add a post-
processing phase: a unconstrained fast search algorithm on the structure found
by the B&B algorithm. The final procedure we wanted to adopt is summarized
in figure 6.1.

Figure 6.1: Procedure Diagram

We wanted to test the hybridization of the MMPC algorithm with the com-
plete state-of-the-art B&B algorithm and with a greedy search at the top in order
of precisely evaluate the drawbacks in term of quality, along with the benefits in
term of time and memory; we expected the latter to be sensible, however we did
not know what to expect from score. Our hypothesis was that the if constraints

66



6.2 IMPLEMENTATION

were good enough to allow the B&B algorithm to reach a network near enough
to the real optimum, the final hill climbing could come very near to the best
solution, or even reach it, without getting stuck in too low local optima.

Perrier et al. [14] already proved a similar method to be promising, however
they used a different complete algorithm and experimented in a different setting.
We will discuss the differences in last section of the chapter.

6.2 Implementation

We used C++ for all the code; for the χ2
df distribution and log Γ function im-

plementations, needed for equations 4.8 and 4.1, we choose the boost library
(http://www.boost.org/). In the next subsections we describe the implementa-
tion choices we made when they are different from papers or when they were not
obvious.

6.2.1 MMPC first implementation

The first step was re-implementing the MMPC algorithm. We did it to be able to
eventually modify every aspect of the procedure and to better integrate it with
our method.

Fortunately in [3] the authors give a detailed description of all the algorithm
used. The implementation of the pseudo-code we presented in chapter 5 is almost
straightforward. Data sets are read from an input file and saved in a matrix of
number of samples rows and a column for each variable. The output is orga-
nized as the input of B&B algorithm: the matrix of constraints obtained with
the MMPC algorithm followed by the data set. Our implementation permits
to modify all the parameters of the algorithm: the significance threshold α, the
heuristic on the degree of freedom, the minimum number of samples to do the
test, etc...

The only question to be answered was how to efficiently count all the Nabc we
need for the G-test. The problem is relatively easy using simple binary variables:
we first use a simple example to explain the approach and then generalize it.

Suppose we need to test T (x, y|z), where x, y, z are binary. We can consider
the value of each variable as a digit of a binary number: for example x = 0, y =

1, z = 1 can be seen as 011, or 6 in decimal if we read the bits from left. The
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number of possible combinations, aka the number of counters we need, is in our
case 8, furthermore we can easily give them an order. We can then store all our
counter in a single array of int N with size 8, where every cell N [i] represents the
ith counter.

More clearly, N [0] stores the total number of samples where (x = 0, y = 0, z =

0), N [1] the same for (x = 1, y = 0, z = 0), N [2] for (x = 0, y = 1, z = 0), etc. We
can then read the data set once and increment the right counter at each sample
simply calculating the decimal number represented by the corresponding values
of x, y, z.

The method is immediately generalized for every number of variables, but
the difficulty is due the fact we can have variables that assume more then two
values and especially variables with very different degrees of freedom in the same
domain.

However, it is perfectly possible to order all the different patterns of values,
and relative counters, in the same way we explained for the binary case.

First note that no matter the nature of the domain, we will always be working
with discrete variables, and thus we can code the values of each variable with
natural numbers, starting to 0; for example imagine we have variable w which
can assume the "values" child, adult or old: in the data set child will correspond
to 0, adult to 1 and old to 2.

Somehow we can then look at every value of every variable we in a certain
sample as the digit of a number represented with a mixed base. Suppose to
consider again x, y, z, where x and z binary and y can assume three values. First,
the total number of counters will be D(x)D(y)D(x) = 2 ∗ 3 ∗ 2 = 12. The order
of the combinations will be:

(x = 0, y = 0, z = 0) = 0

(x = 1, y = 0, z = 0) = 1

(x = 0, y = 1, z = 0) = 2

(x = 1, y = 1, z = 0) = 3

(x = 0, y = 2, z = 0) = 4

...

(x = 1, y = 2, z = 1) = 11
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We can calculate the "power" corresponding to each digit-variable multiplying
the degrees of freedom; obtaining the digital number corresponding to a pattern
or the opposite works exactly like the classical base-x/base-10 conversion. All the
counters use the same logic.

6.2.2 Optimizing MMPC

We implemented all the optimizations described in [3] to improve the performance
of MMPC’. We recall them here:

• Once a variable reaches a minimum association of zero with the target
variable t, it is not considered again by the algorithm.

• Computations between subsequent calls to the Max-Min Heuristic are shared
as follows. Suppose that in iteration i variable y is added to CPC of t, so
that CPCi+1 = CPCi ∪ {y}, where the index denotes the iteration. The
minimum association for any x in X with t conditioned on any subset of
CPCi+1 can be written as

min

(
min

S⊆CPCi
Assoc(x, t|S), min

S⊆CPCi
Assoc(x, t|S ∪ {y})

)
That is, the minimum over all subsets of CPCi+1 is the minimum between
the minimum achieved with all subsets that do not include the new element
Y and the minimum achieved with all subsets that include Y . In other
words, only the newly created subsets by the addition of Y need to be
tested for further minimizing the association.

• If a previous call MMPC(x,D) has not returned t, then remove x from
consideration during the invocation MMPC(t,D): a subset z has already
been found such that Ind(x, t|z).

• If a previous call MMPC(x,D) has returned t, then it is possible x also
belongs in CPC of t . As a heuristic instead of starting with an empty CPC
during the call MMPC(t,D), include x in the starting CPC.

None of the optimizations alters the final output (and thus the correctness) of
the algorithms but they significantly improve efficiency [3].
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6.2.3 Permutation Tests

After the basic G-test we implemented a naive version the permutation indepen-
dence test: we implemented the Algorithm 11 along with the Rule 1. To do it
we needed to implement also the χ2 test: the method used to calculate the G2

metric was modified to include both the tests.
We were interested particularly in evaluating the precision of the methods

and their interaction with the complete algorithm more then then optimization.
We will discuss this choice and its implications with more detail along with the
results.

6.2.4 Search Algorithms

For the search algorithm, we first decided to try a simple local search in the
space of CPDAGs. We implemented the DAG-to-CPDAG and the PDAG-to-
DAG algorithms we presented in chapter 3. The DAGs are represented as a
simple binary matrix: a 1 at position (i, j) means there xj is a parent of xi. For
PDAGs we need a slightly more complicated representation: we use the value 2
in the matrix to indicate the presence of an undirected edge, a -1 to indicate an
incoming edge and a 1 to indicate a outgoing edge.

The AIC, BIC and BDeu local score functions described in section 4.3 were
implemented; the counters needed are built from data every time the local score
function is called, exactly like we did for the counters for the statistical tests (see
6.2.1).

The algorithm accepts in input a data set and a DAG G, then at each iteration
do the following operations:

1. Obtain the CPDAG C from the DAG G using DAG-to-CPDAG

2. Apply on C all possible operators described in 4.3

3. Save the best structure G’ obtained. If no improvement in the score was
possible stops, if not go back to point 1

We point out that our implementation was very simple: to test the operators
we blindly apply them, then check the validity using the algorithm PDAG-to-
DAG; if a consist extension exists, we score it and confront it with the best
structure found during the current iteration.
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6.2 IMPLEMENTATION

At this stage we were more interested in testing the effectiveness of the method
which did not give good resutls and was dropped after the first preliminary ex-
periments. In fact, a search using the space of CPDAGs after the B&B algorithm
didn’t give in many case any improvement in the score.

A simpler search in the space of DAGs however gave much better results. The
final algorithm we implemented and used in the final step of the hybrid procedure
is the simple greedy hill climbing presented in previous chapter (Algorithm 12),
with the only difference that it can start from an existing structure G instead of
the empty graph and constraints can be ignored.
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6.3 Experiments

6.3.1 Setting

For our experiments we choose three networks used in [3]: CHILD (20 nodes),
INSURANCE (27 nodes) and ALARM (37 nodes). We opted for the BDeu scoring
function with ESS = 1 for all the experiments. We decide to set our experiments
in a realistic scenario, thus we restricted the experiments on data set with small
sample sizes and limited memory space: large sample sizes with respect to the
number of variables are indeed rahter uncommon in real life problems [57].

Furthermore is important to note that, while the theorems found by de Cam-
pos and Ji decrease their efficiency when the sample size increases, making the
B&B particularly suitable for our experiments, on the other hand the accuracy
of traditional asymptotic independence tests decreases with low sample sizes.
Comparing the different tests presented in [3] and in [13] is thus particularly
interesting.

We consider for each network three different sample sizes (100, 200 and 500)
and 10 data set for each size. The 500 sample data sets used are the ones available
on-line at http://www.dsl-lab.org/supplements/mmhc_paper/mmhc_index.html.
We obtained smaller data sets sampling randomly the data sets with 500 sam-
ples. We test the simple B&B algorithm, denoted with NoC, with two hybrid
procedures using MMPC. The first adopt the the simple G-test and it will be
denoted with C06. The second makes use of the permutation tests described in
[13] (with 5000 permutations) and it will be denoted with C10. The statistical
test used for algorithm 11 is the same used for C06.

We used the 32-bit de Campos program (version January 2012). The software
permits to impose different restrictions; we only give a max to the memory ( 4000
MB ). The version of the program we used has also a limit of 230 iterations.
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6.3.2 Score Results

Network Samples C06 - Score C10 - Score C06 - p C10 - p

100 99.84± 0.13 99.84± 0.14 0.0156 0.0078

Child 200 99.99± 0.02 99.99± 0.02 0.2500 0.5000
500 99.99± 0.03 99.99± 0.04 0.2500 0.2500

100 99.74± 0.14 99.61± 0.25 0.0039 0.0039

Insurance 200 99.85± 0.29 99.80± 0.29 0.0078 0.0137

500 99.90± 0.14 99.76± 1.80 0.13 0.0039

Table 6.1: Comparison between the scores obtained with the B&B algorithm and
the scores obtained with the two hybrid algorithms. Columns 3 and 4 report
the ratio of the scores of the best solutions obtained by the C06 and C10 hybrid
algorithms versus the NoC algorithm, for each network and sample size (percent-
ages, mean ± standard deviation on 10 datasets). Columns 5 and 6 report the
respective p-values of a Wilcoxon signed rank test comparing the results on the
10 data sets. Bold values correspond to p-values < 0.05.

In table 6.1 we present the comparison between the scores obtained with
the two constrained algorithms (C06 and C10) and the unconstrained procedure
(NoC) for each network and data size. It is immediate to verify that all the differ-
ences between the unconstrained and constrained score means are less then 0.5%.
Considering the p-values returned by the Wilcoxon test with a significance thresh-
old of 0.05, we note that for the Child Network the loss in score is significant only
for the smallest instances. For Insurance, on the other hand, only the results for
the C06 procedure with the largest sample size resulted not significantly different
from the unconstrained procedure.

We point out that the algorithm reached the maximum number of iterations
in all the instances for the Insurance network when no hybrid procedure was used:
being the B&B algorithm an any-time procedure, we can expect the solutions in
these cases to be approximate; however after trying a local search starting from
the output DAGs, they resulted to be at least local optima or very close to local
optima. We also must point out that, with the memory limit we imposed, the
B&B algorithm was not able to build the cache for the unconstrained Alarm
cases, thus the comparison between NoC and C06/C10 was not possible.
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Network Samples C06 C10 p-value

100 100 100 1
Child 200 100 100 1

500 100 100 1

100 100 99.87± 0.16 0,0781
Insurance 200 100 99.94± 0.18 0,3828

500 100 99.85± 0.2 0,0273

100 99.72± 1.09 100 0,3750
Alarm 200 99.38± 1.18 100 0,2324

500 99.63± 0.6 100 0,0977

Table 6.2: Comparison between the scores obtained with the C06 and C10 hybrid
algorithms. Columns 3 and 4 report the ratio of the scores obtained by the C06
and C10 hybrid algorithms versus the best of the two scores, for each network and
sample size (percentages, mean ± standard deviation on 10 datasets). Column
5 reports the respective p-values of a Wilcoxon signed rank test comparing the
results on the 10 data sets. Bold values correspond to p-values < 0.05.

To conclude, we compare more directly the scores obtained with the two
different hybrid procedures. Looking at table 6.2 we can immediately see that
only significantly different case is for the Insurance network with 500 sample size.

One could argue that the score is not the ultimate measure of how good
a structure is; a different solution could be making a comparison between the
structure found and the real network, if known, counting the number of missing,
added or reverted edges. Score functions however are useful to easily evaluate
results in the context of a specific data set, so every comparison we made is based
on scores.
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6.3.3 Time Results

We now consider the time taken by the algorithm with the three different settings.
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Figure 6.2: Box plots of the total time needed by the NoC, C06 and C10 pro-
cedures for the Child (first row), Insurance (second row) and Alarm (third row)
networks and for sample sizes equal to 100 (first column), 200 (second column)
and 500 (third column). For NoC, the execution time of the B&B algorithm is
reported. For C06 and C10, the sum of the execution times of the three phases
of the hybrid procedures is reported.

In every case the hybrid procedures took a time considerably smaller, between
one and two orders of magnitude. The more precise constraints given by the
permutation tests (C10) proved their usefulness and the total time for Insurance
cases is much smaller than the simple asymptotic tests (C06, all p-values obtained
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with Wilcoxon signed rank test < 0.0039).

For the Child Network, however, it is exactly the opposite: this is probably
due the fact that the time for calculating the constraints themselves is much
longer for the permutation cases, while the B&B phase required very small time
for both C06 and C10(all p-values < 0.002).

In the Alarm case the total running times are much more similar, but al-
most all computations reached the maximum number of iterations. It’s worth
mentioning, however, that in a couple of instances for both 200 and 500 samples
the C10 hybrid procedure led to less then 230 iterations for the B&B algorithm
and thus to much smaller times, which are clearly visible as outliers in the box
plots. Differences in execution time, however, increase with the sample size and
are significant for the datasets with 500 samples (p-value < 0.0195).

6.3.4 Search Space Results

We now make some considerations on the sizes of the search space. We summarize
our results in figure 6.3.

We first point out that the sizes of original search spaces, which are not
reported in the box plots, is several order of magnitude bigger than the one
obtained with the simple NoC procedure, i.e. with the application of the theorems
for the cache reduction without any further constraints. To be precise, the original
search space reported by the B&B algorithm was 2, 46e + 114 for Child and
2, 10e + 211 for Insurance. For Alarm the value reported was inf, i.e. it was
greater then the maximum representation for the 32-bit program.

It is immediate to verify that the constraints imposed with C06 and C10
lead to much smaller search spaces. This was to be expected, but we note that
the difference, in therms of orders of magnitude, is even more pronounced than
analysing the computational time. We note also that the C10 procedure is in turn
sensibly better then the C06, particularly for the larger networks and sample sizes.

Considering Insurance and Child networks cases and observing the behaviour
of NoC algorithm, we can note how there is a sensible worsening on the effective-
ness of de Campos and Ji theorems for the larger sample sizes. However, we can
also note that the constraints used by C10 and C06 procedure somehow balance
this situation; this is particularly clear in the Alarm case.

We stress that the reduced space for C10 and C06 is the combination of
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Figure 6.3: Box plots of the sizes of the search space, returned in the B&B output,
after the construction of the cache, and thus the applications of the mathematical
criterion on BDeu score function.

the mathematical theorems used in the cache construction phase by the B&B
algorithm and the constraints introduced with the MMPC algorithm. We point
out that, observing the outputs, we could verify that, if the MMPC found, for
example, m variables in the CPC for variable x, the number of cache entries, i.e.
combinations of parents for x, is much smaller then the total number of possible
combinations, which should be 2m.
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6.3.5 Comparison with related works and discussion

In this chapter, we presented a performance analysis of two hybrid algorithms
for Bayesian Networks structure learning. The two algorithms were obtained
hybridizing a complete state-of-the-art method with the MMPC algorithm, using
two different statistical test: a simple asymptotic test and a permutation test.

A similar approach was tested in 2008 by Perrier et al. [14]; they experimented
the use of the MMPC algorithm to obtain constraints for a complete algorithm
based on dynamic programming, followed by local search. The work demonstrated
the potentiality of statistical constraints applied to a complete algorithm and
the authors provided an interesting comparison between different algorithms on
random networks. However, the size of the networks used for the comparisons by
Perrier et al. was limited to 20 nodes. Moreover, the data sets used were very
large (from 500 up to 10000 samples) and no limits were imposed to available
computational resources.

Instead, we used a recent state-of-the-art complete algorithm due de Campos
and Ji and we set our experiments in a realistic scenario: we imposed e reason-
able memory limit and we used data set with fewer samples. This is together a
necessity and a challenge. On the one hand the proprieties found by de Campos
and Ji degrade with the increase number of data [5], which however tend to be
rare in real life problems. On the other hand independence tests are less precise
on scarce data.

Both the independence tests originally used for MMPC (C06) and the more
recently proposed ones (C10) based on permutations of data have been imple-
mented to verify pros and cons; in fact in the context of a complete algorithm
followed by an unconstrained local search the trade-off between computational
time, quality of result and memory is not obvious and can’t be deduced directly
from precedent work, especially in our restricted scenario.

Our results are promising and may help to clarify the subject: both tests
improved dramatically the computational time against a limited loss in score. The
hybrid procedures also permitted to learn a larger network, Alarm, for which the
normal B&B algorithm failed due to the memory limit. The permutation tests
demonstrated to be more more precise in a sensible way, thus further reducing the
time required by the B&B algorithm, but due to their longer calculation times
they are probably not convenient for small networks and the B&B algorithm.
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Chapter 7

Conclusions and Future Work

We described Bayesian Networks, graphical models that represent conditional
independence properties over a set of random variables in a compact and intuitive
way. Since uncertainty appears to be an inescapable aspect of most real-world
applications, Bayesian Networks have seen a growing popularity in the last few
years.

We outlined the general approaches that can be found in literature about
the complex problem of building the graph of a network itself. A first approach
makes use of statistical tests of independence in order to retrieve the skeleton
of the network and then try to recover the direction of the edges [2]. A second
approach makes use of scoring functions to asses the quality of a structure, and
then explores the search space; typically the search space consists in all possible
DAGs or CPDAGs, i.e. Bayesian Network equivalence classes. We gave the details
of AIC, BIC and BD score metrics and some examples of search algorithms; both
heuristic and complete methods can be found in literature [2].

We described in detail the MMHC algorithm due to Tsamardinos et al.[13]
which can be considered an hybrid between the search & score and the statistical
test based approaches. The algorithm first build a set of possible parents or
children for each variable using statistical tests of independence following the so
called MMPC algorithm, then use a simple hill climbing greedy search algorithm
in the space of DAGs constrained to the sets found.

Recently Tsamardinos et al. [13] proposed the use of permutation tests of
independence for data set with small sample sizes.

We described also a recent complete algorithm due to de Campos and Ji [5]
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which presents an approach different than dynamic programming algorithms and
can be considered the state-of-the-art for complete methods.

The work of this thesis consists in an hybrid approach realized using the
MMPC algorithm as structural constraints for the complete B&B method, fol-
lowed by a simple local search in the total search space to recover edges eventually
excluded by statistical tests in the first phase. We made experiments for three
well know networks in a realistic scenario: we used small sample sizes data sets
and imposed a reasonable memory limit to the B&B algorithm. We compared the
results obtained with both simple asymptotic tests and the more recently pro-
posed permutation tests of independences with the simple unconstrained B&B
algorithm.

In 2008 Perrier et al. adopted in [14] a similar approach; however in [14]
the comparison between the different algorithms is limited to 20 nodes, while we
used a more recent complete algorithm and thus we could make comparisons for
a bigger network (27 nodes). Moreover Perrier et al. used much bigger sample
sizes (from 500 to 10000) and no limits for computational resources, while we set
our experiments in a much more realistic scenario.

The main conclusion is that our results are promising and show that the
statistical constraints, even with limited sample sizes, bring a minimal loss in term
of score, while the gain in computational time is considerable. In some cases the
results are demonstrated to be indistinguishable by Wilcoxon signed rank test.
The hybrid procedures also permitted to learn a larger network, Alarm, for which
the normal B&B algorithm failed due to the memory limit we imposed.

A possible future direction of our work will be a systematic comparison be-
tween our hybrid procedures and meta-heuristic methods exploiting the MMPC
constraints, in the context of small sample sizes. A simple algorithm that could
be used is the classic MMHC [3], or its variant, as the one proposed in [14], where
a first hill climbing search, limited to the hypothetical skeleton found by MMPC,
is followed by a second local search without any constraint.

The problem with heuristic methods is that they tend to get stuck on lo-
cal optima; restricting the search space with MMPC can have beneficial effects,
but small sample sizes, as we discussed, are not ideal. An approach we would
like to attempt is re-iterated hill climbing: the algorithm would start from the
empty graph, reach the first solution, then perturb it and start the search again,
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repeating the process for a certain number of times or until some condition is
met.

This is not a new approach per se [8], but using it with the two-phases hill
climbing as in [14] could be interesting. The use of CPDAGs, which did not give
good results for the final local search of our hybrid procedure, in this context
could potentially give some benefit, considering that they represents equivalence
classes of Bayesian Networks, thus a smaller search space.

Another interesting direction will be to study the effect of variations of the
significance threshold used by the independence tests of the MMPC algorithm,
now set to a default value of 0.05, on the overall performance of the hybrid
algorithms.

Furthermore, a variation on the hybrid algorithm that could be worth inves-
tigating consists in exploiting an other characteristic of the B&B algorithm. In
fact, it is possible to give a starting network in input in order to improve the
computation. An idea would be to obtain a first solution as we did for our ex-
periments, then use the solution in input along with constraints obtained with a
more generous statistical test. The objective again would be to obtain the best
network, or an acceptable approximation, in less time and/or memory.

Such procedure, however, to be efficient, should be able to reuse the cache
calculated for the first run of the algorithm and simply expand it, which is not
possible with the current software available.
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