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EXECUTIVE SUMMARY 

 

Smart grids represent a new frontier for improvement of transmission and distribution of 

electric energy since they increase the reliability of power grids through a computerized 

system which allows to detect and prevent  potential outages on the same grid and the whole 

electrical system. 

However the introduction of these new technologies requires additional investments in order 

to provide  the traditional network with such sophisticated computer systems. 

The purpose of this work is to assess the profitability of this type of investment in case we 

apply this set of advanced tools in order to connect two photovoltaic plants owned by a 

residential and a commercial user, allowing them to exchange part of their self-produced 

power. 

In the first chapter we describe technological features of smart grids, a model of regulatory 

framework necessary to support the development of this technology and the European plan of 

development of this technology. 

In the second chapter we deal with the photovoltaic technology (PV technology) looking at 

technical features and level of development of global, European and Italian PV market. 

We focus on Italian market in order to expose the incentive mechanism currently available for 

investment in this sector, since a  billing mechanism known as ‘net metering’ will be adopted 

by two owners of PV plant that we will see in chapters 3-4. 

In the third chapter we evaluate two investment projects in two PV plants, whose the first 

provided power to shared facilities of  a complex of four condos situated in the Western 

suburbs of Padua while the second feeds a post office situated  close to previous buildings. 

In the forth chapter we revaluate previous investment projects under hypothesis that both 

users invest in smart grids. 

We analyze how changes profitability of such investment if both users decide to trade power 

among themselves. 

In the fifth chapter we valuate again previous investments but we collocate them in a future 

scenario  in order to estimate the value of option to wait for investing on the basis of forecast 

about future cost of PV system, smart grids, ordinary maintenance of PV plant and electrical 

system. 

Finally we estimate the shares of contribution to added value of PV investment provide by 

each revenue items through adoption of smart grids.  
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CHAPTER 1 

SMART GRIDS AS NEW TECHNOLOGICAL FRONTIER 

 

In this chapter we  present the technology of smart grids and we mention the research 

program that was at basis of development of this smart system. 

Then we develop a technical description of power grids equipped with this technology, which 

includes both technical requirements and the architecture of smart grids, and  present a model 

of regulatory framework that should promote investments in this field. 

After that we expose briefly main issues inherent traditional power grid that  motivate such 

innovation of the same grid and we  describe as the project of smart grid that has been 

elaborated in order to modernize power grid of European Union and integrate the Community 

power market. 

Finally we illustrate main hurdles that Governments should face in order to deploy this new 

technology and policy imperatives that arise after its adoption. 

 

1.1 What is a smart grid? 

 

A smart grid is an  amalgam of sophisticated  two-way communication systems and sensors 

which allows electricity providers to interact with power delivery system in order to optimize 

and regulate demand, supply and price of electrical power. 

It represents the next generation of electricity delivery which is becoming more and more 

capable to identify and cope critical situations involving power grid. 

This type of electrical network improves the management of  electrical power distribution and 

transmission with respect to traditional grid because on one hand  it provides useful 

information about demand of electricity to utilities allowing them to regulate electrical power 

supply accordingly while on the other hand it allows users to adapt their electricity 

consumption through demand response mechanism. 

Since this new type of technologies provide new monitoring capabilities to electrical system, 

it improves security, resilience and efficiency of electrical power grid. 

The grid security is improved through increase of real-time diagnostic capacity which enables 

electricity providers to prevent potential outages and power disturbances. 

The resilience of electrical power grid is the ability of grid to identify  and face  emergency 

situations guaranteeing the fulfilment of energy needs of crucial infrastructures (as hospitals, 
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fire stations, police departments and military infrastructures)  and businesses, in order to 

reduce the socio-economic impact of potential breakdowns in the same grid. 

A smart grid makes electrical networks more resilient because it allows a more rational 

distribution of electricity, re-routing this commodity to areas where it is insufficient compared 

to local needs. 

As we have mentioned before, a smart grid contributes to efficiency of a power delivery 

system because it is able to adapt electricity provision to consumption in real-time, avoiding 

both waste of electrical power and potential overloads due to excessive demand with respect 

to supply of electricity. 

Since electrical power is not storable, it needs to balance demand and supply of this 

commodity: for this purpose it is necessary to create a virtual buffer for electric power grid, as 

we will see later. 

However it is not easy to forecast power demand because it is very volatile not only at 

seasonal level, with peaks in summer and winter, but even at hourly level: for example 

consumption of electricity is higher during the day than during the night. 

Moreover a smart grid favours the integration of renewable energy sources into electrical 

power provision that, combined with a more rational coordination of demand and supply of 

electricity, they  are aimed at reduction of consumption and waste of electrical power, and 

they implement all government policies whose purpose is environmental protection. 

 

However the institution of a smart distribution grid presents the following aspects, which are: 

-the integration of new technologies into existing local distribution networks, such as smart 

meters, which are useful to improve energy efficiency; 

-the provision of grid monitoring and control devices, aimed at making energy distribution 

more resilient; 

-the provision of better tools to favour communication among utilities and electrical suppliers; 

-the provision of pricing and control systems, necessary for integration of distributed energy 

sources, such as solar panels, energy storage devices, and electric vehicles. 

These aspects will be discussed in more detail in the paragraph which deals with technical 

requirements necessary to develop a smart grid while topic of next paragraph is the birth of 

research programs aimed to implement this new technology. 
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  Figure 1.Smart power grid 

 

 

1.2 The birth of research programs for smart grids  

We can trace the birth of research programs about smart grids in the late 80s, when an F-15 

aircraft, piloted by an Israeli aviator, collided with his wingman. 

In this accident the previous aircraft lost about 90% of the right wing and consequently it lost 

also its control surfaces and its symmetry: so this airplane would have been flipped over and 

crashed, but luckily the pilot was able to made an emergency landing. 

Then  the previous plan underwent particular control tests at McDonnell Douglas (now 

Boeing) in St. Louis, United States. 

This episode inspired a research team at Washington University to deepen their own studies 

on optimization and control projects, inherent the field of aeronautics, which led to 

development of a damage-adaptive Intelligent Flight Control Systems (IFCS). 

The IFCS was developed in the period 1985-1998 thanks to contribution of Boeing and Nasa. 

It uses neural network technology to predict the parameters of aircraft, optimizing the control 

system response. 

Actually IFCS is on the basis of the self-healing power system, so it is applied on the power 

delivery infrastructure. 

It has inspired a research program concerning electrical power grids, namely Electrical Power 

Research Institute (EPRI)/DoD Complex Interactive Networks/System Initiative (CIN/SI). 
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This research program looks at a smart grid as a power system composed by millions of 

interconnected sensors which communicate with each other through an advanced 

communication and data acquisition system which is able to provide real-time analysis in 

order to prevent potential outages that electric grid may incur. 

It has the aim to make the control of the electrical power grid, together with infrastructures 

connected to itself, robust, adaptive and reconfigurable. 

It focuses its researches on complex adaptive systems (CAS), development of measurement 

techniques aimed to analyze emerging behaviour and management on large-scale and 

implementation of management and control systems aimed at increase of robustness and 

operation of power infrastructure. 

CAS are considered as a set of smart agents which are able to react to external events but even 

if their actions are competitive, they act for the good of whole power grid. 

These researches are made through development of simulation analyzes and adoption of 

synthesis tools. 

The objectives of researches planned by CIN/SI are the development of: 

-methodologies for robust monitoring of interconnected electrical systems which are 

heterogeneous and dispersed; 

-techniques for deployment of interactive network systems; 

-tools to protect power grids against potential cascading failures; 

-tools/techniques that allows self-stabilization, self-optimization and self-healing of national 

power grid on large scale; 

-strategies to face the trilemma of population, poverty and pollution. 

 

Previous objectives could be achieved through creation of self-regulating systems. 

However the creation of such systems should address challenges which concern following 

areas: 

-sensing, measurement and visualization; 

-patterns and simulation; 

-systems of control; 

-operating systems and management. 

 

Finally CIN/SI has funded six consortia which involve 28 universities, in order to face 

challenges described above. 

Such consortia have developed further researches that concern the following fields: 

-power law and power network; 
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-grid agents dependent by context; 

-reduction of grid outages and efficiency of Complex Interactive Network Systems; 

-patterns and monitoring methods for Large-Scale Complex Network; 

-smart management of Power Grid; 

-technical innovation for protection systems against cascade failures of Complex Interactive 

Network Systems. 

 

1.3 Technical requirements for a smart grid 

In this paragraph we deal with technical requirements necessary for  proper functioning of a 

smart grid. 

Such grid is modeled as an Internet-type network, in which power customers are connected 

among themselves and with electricity providers through sophisticated information and 

communication systems which allow a real-time transmission of huge amounts of data. 

Before describing technical requirements necessary for a smart grid, we present the main 

operating feature of this type of grid which is the capability to store energy virtually. 

This is realized through a virtual buffer between demand and supply of power. 

A virtual buffer is based on dynamic scheduling of consumption of electricity by customers in 

order to balance production and consumption of this commodity allowing an increase of 

electric bill savings for electrical users: in fact power tariff is determined by both supply-to-

demand ratio and capacity of network to transmit energy. 

However such dynamic scheduling is made by smart agents which should have anticipatory 

capability, since virtual buffers are useful to implement stability of an electrical grid. 

In the following figure we show how a buffered power network is structured 

 

Figure 2. Structure of a buffered power network 
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Now we describe the aforementioned technical requirements for a smart network. 

The first technical requirement is provision of  smart meters with an unique addressable 

identifier and communication capability. 

Smart meters are installed on the customer side and they are fundamental for interaction 

among customers and electricity providers since hardware support for smart grid bases its 

operation on exchange of huge amount of information among previous agents in real time. 

Such devices are useful to increase efficiency in energy distribution. 

The second technical requirement is provision of devices which allow to monitor power grid 

in order to make forecasts about power demand, implementing resiliency of the same grid. 

These devices adopt parametric, non-parametric or hybrid methods in order to make estimates 

about power consumption. 

The third technical requirement is adoption of multi-resolution agents, which are virtual 

agents that act in order to maximize benefits of their own clients, which could be both power 

customers, power providers, power grids but not necessarily human beings. 

They are rational while people do not always decide rationally. 

They could decide to cooperate with other intelligent agents if and only if they could increase 

gain of their own client with  respect to situation of non-cooperation. 

The forth technical requirement is application of pricing and control systems which favour 

integration of renewable sources in the system of provision and distribution of power. 

These systems usually adopt short-term price elasticity models that allow to measure how 

changes of power price affect propensity to electricity consumption of all users. 

Finally we remember that predictions produced through previous models should be accurate 

since these models are useful to develop dynamic negotiations aimed at achievement of a 

balance among demand and supply of electrical power. 

 

1.4 Architecture of a smart grid 

 

In this paragraph we describe a pattern of architecture of a smart grid that was developed by 

Electrical Power research Institute (EPRI)/DoD through foundation of Consortium for 

Intelligent Management of the Electric Power Grid (CIMEG) in 1999. 

The starting point of this research program is creation of an anticipatory control paradigm 

which allows power system to act proactively on the basis of perceptions of potential threats. 

The global health of power system is measured through a bottom-up approach. 
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The security of power grid is maintained through application of another approach, known as  

Local Area Grid (LAG). 

A LAG is demand-based autonomous entity composed by a mixture of various customers and 

it self-protects by rationalizing power consumption of its members. 

This purpose of self-protection is achieved through adoption of intelligent agents. 

Such agents monitor all loads inside LAG, estimate demand of electricity and they are able to 

take anticipatory decisions necessary to avoid potential systemic faults. 

Now we describe the scheme of functioning of this model of power grid developed by 

CIMEG. 

First of all a customer, through its smart meter, places its order, containing amount of power 

that it wants to acquire on the market. 

Previous amount is based on estimates of power consumption of such customers and it is 

affected by market price of electricity. 

However market price of this commodity depends by demand and supply and capability of 

grid to provide required amount of power: so economic models which adopt price elasticity 

are used. 

In this way it is possible to define a virtual buffer between demand and supply of power from 

interactions among demand and supply. 

In the figure below we can see how customers and suppliers interact  in CIMEG pattern for a 

smart grid. 

 

 

Figure 3. Interactions among customers and suppliers in CIMEG model 
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1.5 Regulatory framework for smart-grid investments 

 

A necessary but not sufficient condition to  rule investments in smart grid is an effective 

regulation which allows coordination among grid operators and users. 

The starting point to establish such regulation is the description of main aspects related to 

primary factors that affect investments in power networks. These factors are: 

-asymmetric information; 

-separability of tasks; 

-degree of independence of distribution system operators (DSOs) and transmission system 

operators (TSOs) of smart grid
1
; 

-role played by externalities. 

 

First of all, asymmetric information involves a cost for acquiring information about expenses 

inherent smart-grid investments, but such cost depends on possibility of obtaining a reference 

set of cost observations for operators whose respective structures are comparable. 

Secondly current regulation should be based on high separability of tasks among regulated 

segments since this high level of separability should allow for greater coordination of 

activities of technical research and development, in order to find effective and interoperable 

solutions to face problems that occur on electrical grid. 

Then we should highlight that  high level of independence for DSOs and TSOs is necessary to 

reduce rent extraction for distribution business of ‘old grid’ operators. 

This last objective could be achieved through disaggregation of accounts for DSOs and 

disaggregation of ownership for TSOs. 

The last factor that influences investments in power grids is represented by externalities on 

operations of TSOs and DSOs. 

Such externalities concern market functioning and environmental impact, but both types of 

externalities affect TSOs while DSOs are affected only by latter kind of externalities. 

Nowadays  it is necessary to properly internalize part of these externalities in order to 

encourage DSOs to invest in such technologies since these last operators are very sensitive to 

regulatory and business risk of investments. 

 

                                                 
1.  Distribution System Operators (DSOs) and Transmission System Operators (TSOs) are operators which have 

different  tasks: the former is responsible for power system while the latter is focused on local service supply. 

Moreover in European grid, TSOs are connected to central operator  whose voltage  is between 220 kV and  300 

kV while DSOs distribute power from substations whose voltage is between 110 kV and 132 kV.  
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After that we have described main aspects involved by regulation of smart-grid investments, 

we proceed with presentation of primary requirements for this type of regulation, identified by 

Pollit
2
: 

-application of basic principles of liberalized energy market; 

-increase focus in regulation without considering end-user tariffs as indicators of regulatory 

effectiveness; 

-focus on economic realization of measures of climate change; 

-adoption of advanced risk transfer instruments to manage effectively market and regulatory 

risk. 

 

The first requirement is based on concept that competition reduces costs and prices by 

favouring efficient operations, cheap and timely investments while customers react to price 

signals changing their own power demand. 

The second requirement arises since measures of regulation performance should include also 

environmental impact of a defined regulatory framework together with  price paid by end-

users. 

So it could happen that  higher tariffs could be justified by improvement of conditions of 

surrounding environment. 

This last requirement is linked to requirement of developing measures of climate change as a 

price for  emissions in order to internalize efficiently externalities brought by emissions 

of such polluting substances. 

However increase of tariff on  emissions could meet institutional barriers due to 

reluctance of Governments to invest in low-carbon technologies. 

The last requirement of availability of instruments aimed at management of market and 

regulatory risks is linked to existence of certain risks that should be eliminated or at least their 

impact should be limited. 

So it needs sophisticated tools able to identify which risks are best allocated and where. 

To conclude this part about procedure adopted to define a good regulatory framework for 

smart-grid investments, we illustrate key features that characterize the pattern of regulation 

described by Pollit
3
together with consequences of these features on configuration of internal 

organization of power grids. These characteristics are: 

                                                 
2. From paper ‘The Future of Electricity (and Gas) Regulation in a Low-carbon Policy World’ by Michael Pollit 

(2008). 

3. From paper ‘Electricity Network Investment and Regulation for a Low Carbon Future’ by Pollit and Bialek. 
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-delegation of investment choices to negotiated settlements between grid operators and 

customers; 

-promotion of grid expansion and competition among grid operators; 

-presence of a regulator which make effective externalities caused by climate change. 

 

As we have said before, such framework presents elements that modify the configuration of 

internal organization of power grid. 

First of all, delegation of investment decisions to negotiations among customers and network 

operators makes relationship among grid operator and regulator an ex post auditing 

relationship. 

Moreover promotion of grid expansion and competition favours competition for energy 

services and power generation. 

Finally the leading role of regulator in internalization of environmental externalities allows an 

economic implementation of such externalities. 

 

 

1.6 Issues about traditional power grid which encourage smart-grid 

      investment  by Governments 

 

In this paragraph we illustrate main deficiencies of traditional power grid which require 

investment aimed at innovation of such grid, namely at making it ‘smarter’. 

We have identified main deficiencies of traditional electrical network looking at shortcomings 

of power grid in U.S.A. since European grids present similar deficiencies. 

The main functional deficiencies of this type of network are: 

-it is not able to meet autonomously power demand of its users, so that it needs to acquire 

electricity produced by utilities in order to guarantee an energy provision adequate to 

exigencies of such users; 

-it adopts a consumption and revenue-based model which does not encourage users to save 

power; 

-it is based on a ‘static design’ which does not allow monitoring of data about power 

consumption and potential failures of power grid; 

-it jeopardizes the proper functioning of crucial infrastructures for a Country as hospitals, 

police stations, military barracks, railways, etc. 

-it does not allow users to monitor own power consumptions in real time; 
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-it involves costs for maintenance of remote connection devices; 

-it is not equipped with the communication overlay which would extend its own cyber-

security capacities; 

-it still exploits an excessive share of power generated by fossil fuels because of lack of 

incentive to save energy and increase share of renewable sources employed to produce such 

commodity. 

 

As consequence of each one of previous deficiencies, we have a power grid which is quite 

vulnerable to cyber attacks and not sufficiently capable of responding to climate change. 

We do not forget that not only natural disasters affect negatively energy provision but also 

global warming has an indirect effect of power provision since it causes melting of glaciers, 

so that size of water sources which feed power plants is altered by such climate changes. 

Moreover such energy network is not able neither to promote exploitation of renewable 

sources nor to improve quality of energy provided, since an increasing digitalization of 

economy requires higher and higher quality of energy supply. 

So that customers could neither benefit of lower power tariffs nor receive high-quality power 

as well as environmental policies are not fully implemented.  

 

1.7 An example of  project for smart grids on large scale:  

      the European plan for Community smart grid fit for 2020s 

 

1.7.1 Description of four main projects at the base of plan for the European smart grid 

 

We have chosen to describe the European plan for smart grid as a model for development of 

this technology on large scale since it is one of the biggest project of deployment of large-

scale power grids and it presents particular issues about integration of national power markets 

in an unique continental market of electricity due to different degree of modernization of 

national networks across Europe and different level of employment of renewable sources for 

power generation among European Countries. 

Now we present the  basis of this program, whose aim is creation of  a Community electrical 

infrastructure, which is the 10-years network development plan (TYNDP)
 4

 which identifies 

priorities for an European power infrastructure.
 
 

                                                 
4. From paper ‘Energy infrastructure-priorities for 2020 and beyond-a blueprint for an integrated European 

network’. 
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In order to integrate energy potential of renewable sources of Northern and Southern Europe 

and the continental power market, the European Commission has indicated the main corridors 

on which this ambitious project should be developed in the next decade. These corridors are: 

1
st
) offshore grid in the North Sea and connection to Countries of Northern and Central 

Europe; 

2
nd

) connections in South Western Europe; 

3
rd

) interconnections in South Eastern and Central Eastern Europe; 

4
th

) connections through BEMIP (Baltic Energy Market Interconnection Plan). 

 

The first corridor was chosen to integrate  power sources of offshore areas in the North Sea 

with energy needs of Central Europe. 

For this project it needs a coordinated European strategy in order to allow interconnection 

among national power grids in North-West Europe and all offshore wind farms in the North 

Sea that will be built within a decade. 

The first step that has been done in this direction was the creation of NSCOGI
5
in December 

2009 by nine E.U. Member States plus Norway. 

NSCOGI is an organism whose purpose is the coordination of development of offshore wind 

farms and electrical infrastructure of areas surrounding the North Sea. 

However this organism could operate optimally if TSOs
6
 review plans about development of 

offshore wind plants in order to find new possibilities of hub interconnections for power trade 

and regulators authorize new transmission lines that comply with overall development 

strategies. 

Moreover we should highlight that  development of offshore power grids implies upgrading 

of onshore power grids to degree of modernization of offshore ones. 

 

The choice of the second corridor is aimed not only to promote interchange of power among 

France, Spain and Portugal but also to allow power produced in North Africa through 

renewable sources to reach users of Central Europe. 

The promotion of this project is based on evidence that power lines across Pyrenees are not 

adequate to guarantee interchange of electricity between Iberian Peninsula and the rest of the 

continent. 

                                                 
5. NSCOGI is the acronymous of ‘North Seas Countries Offshore Grid Initiative’ which is an organism funded 

in December 2009. Source which deals in detail with foundation of such organism is the site ‘www.entsoe.eu’ 

6.TSO is the acronymous of ‘Transmission Operators System’ 
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Moreover the renewable energy sector in North African Countries  presents great potential for 

development in the next future, so that it seems a good business to integrate power market of 

North African Countries to the European one. 

Also the project of a submarine power line which connects Italy with Tunisia contributes to 

favour power interchange among the two shores of Mediterranean Sea. 

 

The third corridor could be seen as a part of strategy of consolidation of regional power grids 

in Europe through orientation of electricity flows in two directions: North-South and East-

West. 

The part of program concerning power grid of South Eastern Europe  is aimed to overcome 

the scarce integration of power grid in this geographic area with respect to rest of European 

continent and exploit  hydroelectric potential of Balkan Region. 

Another reason for which Countries of this region are so interested in implementation of this 

project is that they intend to  improve own energy production in order to increase amounts of 

power exchanged with Central Europe and other Countries bordering with European Union as 

Turkey, Moldova and Ukraine. 

The part of program concerning power grid of Central Eastern Europe was elaborated in order 

to encourage interchange of electricity among Germany and Poland and installation of 

pumped storage power plants in the Alpine Countries. 

 

The last corridor was indicated in order to allow power markets of Baltic area to be integrated 

in the European market of electricity through modernization of national electricity 

infrastructure of Countries as Sweden, Finland and Poland in according to standards of 

national electrical infrastructures located in Continental Europe. 

The main driver of this project was the launch of European Energy Program for Recovery 

(EEPR) which provides economic incentives for completion of such infrastructure 

modernization. 

Finally also the involvement of stakeholders of Scandinavian region was determinant for such 

implementation program: in fact both Governments and private investors cooperate with 

European Commission to achieve goals of this program. 
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1.7.2 Regulatory context that should be set to implement the European power grid 

 

However implementation of this program, which has  continental size, requires setting of  a  

regulatory context suitable for attracting investments aimed at financing such project. 

In according to view of European Commission, the starting point for this new regulation is the 

establishment of the transparency and information platform for smart grids. 

This platform should favour the sharing of experiences and good practices inherent the 

management of this power grid across the Old Continent in order to develop synergies among 

agents of the same grid and allow a continuous update of previous regulatory framework. 

Moreover the European Commission has proposed the introduction of other two tools in order 

to create such regulation favourable at smart grid development. 

These two tools are the dedicated regional platforms and the permitting measures. 

The dedicated regional platforms represent an instrument that supports activities as planning, 

implementation and monitoring of predefined priorities. 

Furthermore it raises public awareness on benefits brought by this type of innovation. 

The permitting measures improve coordination and transparency toward all stakeholders 

involved in projects of ‘European interest’. 

In this way they favour participation of private investors in decision-making they speed up 

realization of this kind of projects. 

Process of decision-making is implemented through: 

-institution of a contact authority for projects of ‘European size’ which mediates between 

implementers of project and competent authorities responsible at national, regional and/or 

local level without interfering their competence; 

-definition of a time limit for competent authority to take decisions; 

-introduction of guidelines that show in a transparent way process of decision-making to all 

stakeholders involved; 

-provision of incentives to favour timely realization of such projects. 

 

Eventually it is necessary to maintain a stable framework for financing. 

This last objective could be achieved through a better cost allocation and the catalytic role of 

funding handed out by the Community bodies. 

A better cost allocation consists in application of the so-called ‘user pays principle’ which 

states that power tariffs should be regulated in order to allow energy provider to recover the 

sum invested. 
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The catalytic role of funding handed out by European Commission is based on the so-called 

‘two-front’ approach, which consists in: 

-consolidation of partnership between European Commission and International Financial 

Institution (IFI) and  development of smart-grid programs through joint financial and 

technical initiatives; 

-identification of energy priorities through new tools whose base is mix between traditional 

and innovative financial mechanisms. 

 

1.7.3 Key-actions necessary to face future challenges 

 

After that in previous subparagraph we have seen how a regulatory context should be set in 

order to promote investments in smart grids, now we conclude the European plan for smart 

grids presenting all actions that are necessary in order to make smart grids able to face future 

challenges. 

First of all we should continue to maintain a regulatory framework which encourages 

investments in this field as we have already said  in previous subparagraph but this is not 

sufficient. 

Furthermore we should operate in other field as standardisation and interoperability, data 

protection, R&D and innovation projects and promotion of new skills. 

Standardisation and interoperability represent the fundamental premise to create an European 

power grid. 

Data protection requires to implement new data protection measures and define roles and 

responsibilities of agents that operate in the network. 

R&D and innovation projects are aimed to make continental power grids smarter and smarter. 

Finally promotion of new skills is necessary to eliminate discrepancy between low-skilled and 

high-skill job through implementation of training activities. 

In the  figure at the next page we show the geographic location of all planned projects for 

implementing not only power grid but also oil and gas pipelines that allow energy market of 

European Union to connect with energy markets of North Africa, Middle East and Russia. 
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  Figure 4. Map of priority corridors for electricity, oil and gas in European Union
7
 

 

 

1.8 Hurdles to building a smart power grid on large scale 

 

After that we have dealt with European plan for realization of smart power grids, in this 

paragraph we describe the major hurdles that  governments should face to develop smart grids 

on large scale.
8
 

These hurdles could be divided in four macro-areas: 

1) Planning; 

2) Siting ; 

3) Allocation of costs; 

4) Ensuring a low-carbon power production. 

 

 

 

 

                                                 
7. Source: paper ‘Energy infrastructure-priorities for 2020 and beyond-a blueprint for an integrated European 

network’. 

8.’Building a National Clean-Energy Smart Grid’ from paper ‘Wired for Progress 2.0’ 
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1) Planning 

 

The phase of planning a smart-grid project is necessary to determine the interested parties that 

are involved in such projects, so that it states clear rules aimed at elimination of potential 

conflicts among all participating parties. 

Moreover planning a smart grid includes also all actions whose purpose is improvement of 

planning approaches, reduction of environmental impact and overcoming natural constraints. 

If we look at American examples of planning smart grids on large scale as Western 

Renewable Energy Zone processes and Joint Coordinated System Planning, we  learn that 

broad-based planning could be an optimal approach to remove political obstacles to the 

realization of a smart-grid on wide-scale, which is necessary to overcome the traditional 

model of power distribution system which was set on regional basis. 

This broad-based planning should analyze  potential local resources and favour exploitation of 

on-site renewable resources so that its proposed solution are valid in the long-run. 

Moreover it has to contain a valuation of amount of resources necessary to modernize 

traditional power grid as well. 

Finally this broad-based planning works if power users cooperate in realization of advanced 

procedures of analysis aimed at acquiring essential information for a good planning of such 

infrastructure. 

 

 

2) Siting  

 

This last issue concerns the development of a smart power network on large scale starting 

from realization of transmission projects in several sites served by this infrastructure. 

It requires institution of siting authorities in previous sites in order to facilitate the whole 

realization of these projects on wide-scale. 

The task of such siting authorities is identification of deficiencies in power grid at local level 

as interconnection problems or scarce employment of renewable sources for power 

generation. Moreover they could act autonomously in order to solve issues of power grid and 

encourage exploitation of on-site renewable sources. 
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3) Allocation of costs 

 

Allocation of costs for realization of smart-grid investments on wide scale is an important 

topic that we should discuss since we are dealing with an infrastructure that provides benefits 

to a huge numbers of subjects located in wide geographic areas. 

So the first principle for cost allocation inherent investments of such magnitude is that all 

ratepayers should share expenses for building this interconnection-wide system. 

Thus such expenses should be distributed on a so-called load-ratio basis. 

 

4) Ensuring a low-carbon power production. 

 

A policy goal linked to plan for smart-grid development is the increase of reliability of low-

carbon technologies and minimization of environmental impact due to implantation and 

maintenance of smart power grids. 

This policy goal could be achieved through provision of economic incentives to investments 

aimed at realization of technologies that allow to generate power without impact on natural 

environment and climate change. 

However this allocation of financial resources to projects aimed at production ‘clean energy’ 

requires the identification of sources from which  power is generated and injected to the 

network in order to avoid provision of financing to traditional power sources. 

 

 

 

1.9 Policy imperatives for adopting smart-grid technology 

 

In this last part of this chapter we discuss about policy imperatives
9
 that come out when a 

State or an union of States, as European Union, decides to invest in this field. 

The main policy imperatives linked to deployment of smart grids on large scale are: 

- the security of physical power grid and cybersecurity; 

-the possibility to provide new jobs linked to development of this new technology and power 

production through renewable sources. 

                                                 
9. ’Building a National Clean-Energy Smart Grid’ from paper ‘Wired for Progress 2.0’ 
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The first policy imperative could be achieved through implementation of monitoring and 

management activities in order to make physical power grid reliable. 

While cybersecurity requires application of sophisticated technologies that are able to manage 

power flows in according to power demand and react to protect the same grid against 

manmade disruptions. 

The second policy imperative implies that governments should invest in training workforce 

since this technological sectors requires employment of high-skilled workers. 

For example U.S. Government has launched programs in order to increase employment in the 

so-called ‘green jobs’, which are job linked to development of renewable energy sources. 

These programs consist on financing the so called ‘green job training, provision of high 

wages and  career opportunities for ‘green jobs’. 

However both sectors of smart-grids and ‘green economy’ could represent valid job 

opportunities if they are supported by private investment, qualification of workforce and 

accountability to high standards. 

 

 

1.10 Conclusions 

 

In this chapter we have seen the features of smart grids which represent a new technological 

frontier, more precisely we have discussed about technical characteristic and architecture of 

an electrical system equipped with smart grids. 

Then we have learnt that development of smart grids mainly depend by legislative framework 

and private and public financing for this technology. 

In fact we denote that both U.S Government and European Commission are more and more 

involved in supporting this economic sector since they are aware of inadequacy of 

conventional power grid to actual and future exigencies of good-quality power. 

The main driver of increasing demand for high-quality power is the growth of digitalization. 

Moreover U.S.A. and E.U. have intensified investments in this new technology also because 

they want to integrate power markets and remove all economic and political barriers that 

hinder the traditional fragmentation of electrical grid. 

Finally such type of investment represents a necessary solution for development of 

exploitation of renewable energy sources which are more compatible to environment with 

respect to traditional energy sources and they represent a valid alternative to previous sources 

in a world in which it is expected the future depletion of fossil fuels as oil, gas and coal. 
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CHAPTER 2 

THE PHOTOVOLTAIC TECHNOLOGY FOR POWER 

GENERATION 

 

In this chapter we briefly describe the photovoltaic technology applied to convert solar 

radiation in electricity, which is distributed to residential, commercial and industrial users 

through power grid. 

At first we illustrate technical features of this technology, focusing on three classes of PV 

systems. 

Then we look at degree of development of photovoltaic market on three levels: world, 

European and Italian level. 

Finally we deal with situation of Italian photovoltaic market in more detail through an 

overview of main changes in Italian regulatory framework and a description of the main 

support schemes currently available in such market for sale and valorisation of power 

produced by PV systems. 

 

Figure 1. PV systems with mono-crystalline silicon solar panels 

 

Source: site ‘www.logismarket.it’ 
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2.1 Photovoltaic technology: technical features 

 

The principle of operation of this technology is the photovoltaic effect
10

, which is chemical 

and physical phenomenon that consists in conversion of light into electricity at the atomic 

level. 

In  nature there are some materials that if they are stricken by photons of light they release 

electrons, namely they exhibit a property known as photoelectric effect. 

This last property was discovered by Edmond Bacquerel in 1839 but the first photovoltaic 

module was realized in Bell Laboratories in 1954. 

A PV module is composed by a certain number of solar cells that are electrically connected to 

each other and assembled in a frame or support structure. 

Such cells are made of various  semiconductor materials that exploit PV effect. 

If such cells are stricken by photons,  electrons are loosed from atoms. 

Then  if electrical conductors are attached to the positive and negative poles of such cells, 

forming an electrical circuit, these  electrons are captured in the form of an electric current. 

In the following figure we show how a solar cell works. 

 

 

  Figure 2. Functioning of a solar cell whose generated power feeds a bulb
11

 

 

 

 

 

                                                 
10. ‘How does photovoltaic work?’ by Gil Knier 

11. ‘How does photovoltaic work?’ by Gil Knier  
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The most used semi conductor material to build PV modules is the crystalline silicon, but 

recently new materials for realization of solar cells have been introduced. 

We are speaking about  new thin-film materials as amorphous silicon, cadmium telluride and 

cooper-indium-gallium-diselenide. 

Today there is a huge range of PV cell technologies that  are classified into three 

generations
12

, in according to basic material used to build PV systems and level of 

commercialization of such systems. 

The three generations of PV systems are: 

-first-generation PV systems, whose solar modules are composed by wafer-based silicon cells 

made of mono crystalline or polycrystalline silicon; 

-second-generation PV systems, whose solar modules are composed by thin-film cells that 

could be realized with three alternative materials as amorphous silicon, cadmium telluride and 

cooper-indium-gallium-diselenide; 

-third-generation PV systems includes technologies as concentrating photovoltaic (CPV) 

cells, dye-sensitized solar cells (DSSC) and organic PV cells that are not available on the 

market since they are still in course of experimentation. 

 

Figure 3. Types of solar panels currently available on the market
13

  

 

 

 

At first PV technology was applied in the space industry, then energy crisis in the 1970s 

encouraged application of such technology in power generation. 

                                                 
12. ‘Solar photovoltaics’, IRENA, June 2012 

13.  From site ‘www.cleanenergyreviews.info’ 
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However power produced by solar modules is a direct current while all electrical devices 

require alternating current to operate, so that PV systems are equipped with inverters which 

convert direct current generated by solar modules to alternating current. 

The two main types of inverters used in solar installations today are
14

: 

- string inverters; 

- micro-inverters. 

String inverters convert direct current coming from a string of panels in alternating current. 

They are cheaper than micro inverters but they are not able to avoid that faults of one panel 

affect other panels of the same string. 

Micro inverters convert direct current that receive from one panel to alternating current. 

They are more expensive but more reliable than previous ones since faults of one solar panel 

do not compromise functioning of other panels. 

The next picture shows the two aforementioned types of inverters. 

 

Figure 4. String inverters and  micro-inverters
15

 

 

 

 

 

Finally we conclude this description of main technical feature of photovoltaic technology 

dealing with another interesting aspect that concerns photovoltaic technology: the energy 

efficiency of solar cells.
 16

 

The level of energy efficiency depends by material used to realize solar cells and solar panels. 

Lab tests show that energy efficiency of single solar cells is higher than energy efficiency of 

solar panels.  

                                                 
14. ‘Micro-inverters from string inverters’ from site ‘www.completesolar.com’ 

15. ‘Micro-inverters from string inverters’ from site ‘www.completesolar.com’ 

16. ‘Photovoltaics Report’ from site ‘www.ise.fraunhofer.de’ 
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The maximum level of energy efficiency tested in laboratories for each type of solar cells and 

solar modules is the following: 

-it is 25.6 % for mono-crystalline silicon cells  and 22.9% mono-crystalline silicon modules; 

-it is 20.8% for poly-crystalline cells and 18.5% for poly-crystalline modules; 

-it is 21 % for thin-film cells made of cooper-indium-gallium-diselenide and 17.5% for 

modules composed by this type of cells; 

- it is 21 % for thin-film cells made of gallium telluride and 17.5% for modules made of this 

same material; 

-it is 13.6% for thin-film cells built with amorphous silicon and 10.9% for modules built with 

this materials. 

In this  figure we summarize all these results about levels of energy efficiency of various solar 

cells and solar modules built with aforementioned materials. 

 

Figure 5. Maximum levels of energy efficiency of solar cells and solar modules
17

 

 

 

 

 

 

 

 

 

 
                                                 
17. ‘ Progress in PV: Research and Application 2015’ 
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2.2 The global photovoltaic market 

 

In this paragraph we describe the global photovoltaic market. 

In the first subparagraph we deal with current level of development of such market looking at 

cumulative PV installation and market shares held by two main types of solar panel currently 

available on the market. 

In the second subparagraph we present briefly forecasts about future development of global 

photovoltaic market until 2018. 

 

2.2.1 Current level of development of global photovoltaic market
18

 

 

At the end of 2014  it was estimated that global cumulative capacity of PV installations 

exceeded the threshold of 180 GW with a growth of more than 40 GW over the previous year. 

This growth was driven above all by increase of Chinese PV installations, whose cumulative 

capacity was 60 GW in 2014 versus 40 GW of previous year. 

So  China is become the second world producer of PV energy behind Germany in 2014. 

Its share of global cumulative capacity is 18% versus 20% of Germany. 

Other Countries which have  high levels of cumulative capacity of PV installations are Japan, 

USA and Italy whose global shares are respectively 13%, 12% and 10%. 

If we compare such data with the ones of 2008, we should denote that cumulative capacity of 

PV systems all over the world has grown by 6 times in 6 years driven by fall of price of solar 

modules and increase of energy efficiency of such modules. 

In the last 6 years average cost of solar modules has dropped by 43% at global level while 

average growth of energy efficiency has been 150% for wafer-based silicon modules and 

110% for thin-film cadmium telluride modules in the same period of time. 

If we look at global market shares of PV technologies adopted
19

, we could denote that PV 

market is dominated by crystalline silicon modules whose market share was 90% at the end of 

2014 while thin-film modules had a market share of 10% in the same period. 

Thin-film modules recorded a reduction of their market share with respect to six years ago, 

when it was 18%. 

In the following figures we resume all data about global PV installation that we have seen so 

far.
20

 

                                                 
18.  ‘Photovoltaics Report’ from site ‘www.ise.fraunhofer.de’ 
19.  From site ‘www.solarcellcentral.com’ 

20. ‘Photovoltaics Report’ from site ‘www.ise.fraunhofer.de’ 
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Figure 6. Growth of global cumulative PV installation  

 

 

Figure 7. Shares of global cumulative PV installations held by Regions 
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Figure 8. Market shares held by  crystalline silicon and thin-film modules in 2014
21

 

 

 

 

Development of PV sector is mainly driven by achievement of grid parity, that is the 

condition in which cost of production of solar power is equal or lower than cost of production 

of power through traditional sources as fossil fuels and uranium. 

Under this condition, PV sector could continue its development without government support. 

However development of such sector depends by its competitiveness as well, that is mainly 

affected by how power tariffs are set. 

Investments in PV plants could be considered as low-risk investments since they are 

characterized by technical reliability and high predictability of output. 

Notwithstanding there are  two types of  perceived risks linked to external factors that 

influence this kind of investment decisions, increasing cost of capital for investment in PV 

systems. 

Such risks are: 

- regulatory risk; 

-operational risk. 

The regulatory risk is represented by possibility of introducing retroactive measures.  

Such risk is linked to political decisions and it not well hedged through financial products. 

The operational risk is related to possibility that annual performance level of PV system is 

lower than expected level, but this risk could be minimized through adoption of good-quality 

PV components. 

                                                 
21.  ‘Photovoltaics Report’ from site ‘www.ise.fraunhofer.de’ 
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2.2.2 Forecasts about future level of development of global PV market
22

 

 

Now we present forecasts about future level of development of such market until 2019. 

In the Low Scenario the annual growth of global PV installations is estimated between 40 and 

47 GW in the next four years. 

This last scenario will occur if European PV market will grow slowly and emerging Countries 

will not be able to stabilize own national  PV markets. 

It is based on considerations about historical development of PV sector which has been 

supported by feed-in tariff policies whose it is expected the abolition in the future. 

In the High scenario the annual growth of global PV installations ranges between 60 and 86 

GW and it is based on expectations of  strong political will aimed at support of this sector and 

a growth of such sector in India. 

Finally there is the medium scenario which is represented as the weighted probability that 

defines the most probable forecast of PV market development. 

All forecasts about these three scenarios are shown in the next figure. 

 

 

Figure 9. Forecast about growth of  global PV market until 2019. 

 

 

 

 

                                                 
22. ‘Global market outlook for Solar Power 2015-2018’ from site ‘www.solarbusinesshub.com’ 
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2.3 The European photovoltaic market
23

 

 

In this paragraph we deal with European PV market. 

In the first subparagraph we look at evolution of such market in the last 15 years and 

describing the current situation of itself. 

In the second subparagraph we illustrate briefly outlook about future performance of PV 

sector in Europe until 2019. 

 

2.3.1 Current status and evolution of European PV market  

 

In 2014 growth of PV installations in Europe dropped to the same level as in 2009. 

This is due to transition phase of such market from feed-in tariff support policies toward a 

more market-based framework. 

However development of European PV market is characterized by two opposite forces since 

on one hand we see a progressive trend to integrate PV sector in electricity markets but on the 

other hand some European Countries have adopted retroactive measures that increase level of 

uncertainty associated to investment in PV technologies. 

If we look at European data of 2014, we denote that Country with the highest annual growth 

of PV installations was Great Britain, followed by Germany, France and Italy. 

About markets driven by net-metering, PV markets of Belgium and Denmark had a bad 

performance while Dutch PV market had a good performance. 

Evolution of European PV market in the last 15 years is characterized by two important 

features: 

-the adoption of feed-in schemes for the period 2006-2011; 

-the gradual abolition of such incentives from 2012. 

For the period 2006-2011 we denote a significant growth of continental PV market as effects 

of introduction of these support policies while for the following period we denote an unstable 

path of such sectors due to transition to a  more market-based model. 

The following figure depicts the evolution of European PV market in the last 15 years. 

 

 

 

 

 

                                                 
23. ‘Global market outlook for Solar Power 2015-2018’ from site ‘www.solarbusinesshub.com’ 
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Figure 10. Evolution of PV  annual installed capacity in Europe for the period 2000-2014 

 

 

 

 

In previous data we could observe the leading role of Spanish PV market in European growth 

of PV sector in 2008. 

Then PV markets of Spain, Bulgaria and Czech Republic were negatively affected by 

introduction of retroactive measures that discouraged investments in such PV markets. 

However the European goal of 90 GW of  PV installed capacity planned for 2020 has been 

achieved in 2014. 

Another interesting aspect of European PV market is its segmentation that makes such market 

heterogeneous. 

Segmentation  is influenced by support policies and economic context of each Country. 

In the last years we denote a progressive change of European regulatory framework due to 

implementation of policies aimed at integration of renewable energy sources in the 

continental electricity market. 

However the definition of segmentation of European market is ambiguous but it is useful only 

to compare PV markets in according to cumulative PV installed capacity. 

The segments in which PV market of Old Continent has been divided are: 

-residential, which includes PV systems whose nominal power is below 10 kWp; 

-commercial, which includes PV systems whose nominal power is between 10 and 250 kWp; 

-industrial, which includes PV systems whose nominal power is between 250 kWp and 1 

MWp; 
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-utility scale, , which includes PV systems whose nominal power is above 1 MWp. 

In the following figure we show the  cumulative PV capacity segmentation by Country  in 

Europe in 2014. 

 

Figure 11. European cumulative PV capacity segmentation by Country in 2014. 

 

 

 

 

2.3.2 Forecasts about future performance of European PV market 

 

In this subparagraph we discuss about forecasts inherent future growth of PV market in 

Europe until 2019. 

For the next four years the estimated yearly growth of PV installed capacity ranges between 7 

and 17 GW, which is a lower growth level with respect to levels of annual growth seen in the 

last 15 years. 

In the high scenario, total  PV installed capacity will achieve the threshold of 158 GW in 

Europe in 2019 with an increase by 80% with respect current level of cumulative PV installed 

capacity. 

While in low scenario, the cumulative PV installed capacity in Europe will be 120 GW in 

2019. 

The next figure shows expected evolution of European PV installed capacity until 2019 in 

according with previous scenarios. 
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Figure 12. Expected evolution of European PV installed capacity until 2019 

 

 

 

2.4 The Italian photovoltaic market 

 

In this last paragraph we discuss about Italian PV market. 

At first we describe briefly the current level of development of such market and then we focus 

on two aspects of such market which are the evolution of  Italian regulatory framework in the 

last ten years and the two main support schemes adopted by owners of PV plants of small-

medium size in order to sell or valorise power generated by own PV system. 

This last aspect about support schemes is important in order to present the billing mechanism 

that will be considered in the analysis of the two investment projects that we will see in the 

next two chapters. 

 

 

2.4.1 Current level of development of Italian PV market
24

 

 

In Italy PV cumulative capacity has reached the threshold of 18.6 GW at the end of 2014 with 

an increase of 0.44 GW with previous year. 

Such yearly growth of PV capacity in Italy was modest compared to annual growth recorded 

in the last 6 years, considering that it was 431 MW in 2008. 

                                                 
24. ‘Rapporto Statistico 2014, solare fotovoltaico’ from site ‘www.gse.com’ 
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The slowing of this pace of growth of this sector is due to end of feed-in schemes 

denominated ‘Conto Energia’ but also to other reasons as the reduction of feed-in tariffs, the 

so-called ‘Spalma Incentivi’, and the inclusion of PV systems in the tax basis of the municipal 

real estate tax (in Italy known as ‘IMU’). 

About geographical distribution of PV systems in Italy, we find the highest share of installed 

PV plants in North Italy, roughly 54%, while shares of installed PV plants in Central Italy and 

South Italy (Sicily and Sardinia included) are respectively 17% and 29%. 

Finally we can denote that growth of Italian PV market is driven by residential and 

commercial installations since they could benefit from feed-in tariff schemes, as Net Metering 

System. 

Net Metering System, in Italy known as ‘Scambio sul Posto’ (SSP)  could be adopted only by 

PV plants whose nominal power is lower than 200 kWp. 

Since industrial PV systems could not exploit advantages of such incentive, they should 

increase their share of self-consumed power. 

 

2.4.2 Evolution of Italian regulatory framework for PV sector 

 

In this subparagraph we focus on evolution of Italian regulatory framework in the last ten 

years in which five regulation feed-in schemes, denominated ‘Conto Energia’, were 

introduced in order to promote the exploitation of renewable energy sources as solar, wind, 

wave, hydropower, etc. 

Such incentive mechanisms allow Italy to become one of the world’s greatest producer of 

power through PV sources. 

They improved generation of PV power through provision of premium tariffs to owners of PV 

systems for the 20 years following the investment.  

However the aforementioned premium tariffs have been gradually reduced, so that yield of 

this type of investment has changed in the course of last decade: it ranged between 30 and 

35% in 2007, then it declined to 15% in 2011. 

After that we have discussed effects of introduction of this feed-in schemes, now we describe 

briefly each one of them. 
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1
st
 ‘Conto Energia’

25
 entered into force in September 2005 and it was a revolution for PV 

sector in Italy since for the first time private investors could access to incentives for power 

generation through renewable sources. 

Such feed-in scheme was successful. 

 

 

2
nd

 ‘Conto Energia’
26

entered into force in February 2007 and introduced new criteria for 

installation of PV plants which were installed until December 2010. 

The premium tariff was granted to the whole power generated and not only to self-consumed 

energy, which is power produced and then consumed on site. 

Moreover this scheme simplified bureaucratic procedures to obtain such premium tariffs and 

it was introduced a diversification of tariffs considering also architectural integration of PV 

system. 

Then such scheme was prorogued until June 30, 2011. 

 

3
rd

 ‘Conto Energia’
27

 was valid for PV plants that started to operate from January 1, 2011. 

PV plants were divided in power classes, which were criteria to assign appropriate tariffs. 

Such power classes were ‘integrated’, ‘partially integrated’, ‘building integrated PV plants 

with innovative characteristics’, ‘concentrating PV plants’ and ‘technological innovative PV 

plants’. 

 

4
th

 ‘Conto Energia’ 
28

 is valid for all PV plants commissioned between June 1, 2011 and 

December 31,2016 with a minimum nominal power of 1 kW. 

Until December 31, 2012 the so-called feed-in premium tariff was paid for power generated 

by PV plants, it covered a period of 20 years starting from commissioning date and it was 

composed by premium and price paid for electricity produced. 

Then such tariff was composed by both value of power injected into the grid and incentives. 

The goal set for such scheme was installation of 23,000 MW of PV capacity at national level. 

 

                                                 
25. It was introduced with Ministerial Decree of  28

th
  July 2005 in application of Directive 2001/77/EC on 

promotion of power produced through renewable sources. 

26.  Ministerial Decree February 19, 2007 

27.  Ministerial Decree August 6,2010 

28.  Ministerial Decree May 5, 2011 
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5
th

 ‘Conto Energia’
29

 entered into force on August 27,2012 and then Italian electricity and 

gas regulator, AEEG
30

, stated that this feed-in scheme would cease to have effect 30 calendar 

days after that cumulative cost of incentive would reach the sum of € 6.7 billion per year
31

. 

Such scheme is applied from commissioning date of PV plant and it will be paid 20 years. 

It was introduced a new feed-in tariff that granted an all-inclusive feed-in tariff to amount of 

power fed into the grid and a premium tariff for self-consumed electricity. 

Finally energy generated by PV plant whose nominal power was higher than 1 MWp will 

remain available to owner of PV plant.   

 

2.4.3 Support schemes for sale and valorise power generated by own PV plant 

 

Now we present the two main support schemes adopted by producers of PV power in order to 

sell or valorise such power self-produced. 

These support schemes are purchase and re-sale agreements and net metering, but the first 

scheme allows PV plant’s owner to sell power to GSE
32

, while the second scheme allows PV 

plant’s owner to have power generated by own PV plant valorised. 

Before describing such support schemes, we want highlight that a the scheme of connection of 

a PV system is structured in such a way that at first  power produced feeds  PV owner’s needs 

but if the quantity of power generated exceeds its needs, it is injected to the grid. 

If quantity of self-produced energy is below user’s needs, then user at first absorbs power 

produced by own PV plant and then it acquires the residual part of electricity from the grid. 

 

1) Purchase and re-sale agreements 

 

The first support scheme that we present is purchase and re-sale agreements, in Italy known as 

‘Ritiro Dedicato’. 

This is an alternative way for private power producers to sell energy generated by own plant 

and injected into electrical grid to GSE
33

 instead of selling such power through bilateral 

contracts or directly on the Italian Power Exchange Market (IPEX).
34

 

                                                 
29.  Ministerial Decree July 5,2012 

30.  AEEG stands  for ‘Autorità per l’energia elettrica ed il gas’ 

31.  AEEG states the achievement of such threshold using data provided by GSE which is a company whose task 

is management of services aimed at implementing of exploitation of renewable energy sources.  

32. GSE stands  for ‘Gestore dei Servizi Elettrici’ and it an Italian company that withdraws power produced by 

private PV plants and allocate such energy on the market 

33. GSE is the acronymous of ‘Gestore dei Servizi Elettrici’ and it a company that withdraws power produced by 

private PV plants and allocate such energy on the market 
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In according to this scheme, the power producer sells electricity to GSE at a predetermined 

price and GSE resell such electricity on the market. 

The unit price applied  by GSE for this amount of power bought from private users and resold 

on the market is the ‘average zonal price’, which is the average of monthly price per hourly 

band set on IPEX for market area where PV plant is located. 

Moreover power producers which own PV plants, whose nominal power is up to 1 MWp, 

could sell self-produced power at ‘guaranteed minimum prices’ if ‘average zonal price’ is too 

low but this choice is not binding since they can get back selling power at ‘average zonal 

price’ if it rises again. 

The ‘guaranteed minimum prices’ are stated yearly by AEEG. 

Then GSE will transfer fees paid by producer for use of power grid, such as dispatch and 

transmission, to the distributors. 

The eligible power producers for this kind of support scheme should own: 

1) PV plants whose nominal apparent power is lower than 10 MWA
35

 as renewable source 

plants (RES) or hybrid plants; 

2) plants of any capacity that exploit renewable energy sources as solar, wind, waves, 

geothermal, tides and hydro; 

3) plants whose nominal power is below than 10 MWA that exploit non-renewable sources; 

4) plants whose nominal power is higher or equal to 10 MWA that exploit renewable sources 

different from sources mentioned at  point “2). 

 

2) Net metering
36

 

 

The second support scheme that we are going to see is the Net metering, in Italy known 

‘Scambio sul Posto’, that we will adopt to analyze the two investment projects dealt in the 

next two chapters. 

This scheme could be considered as a mechanism of valorisation of power generated by 

private PV plants and sold to GSE that manage all activities linked to exploitation of power 

produced by PV plants owned by private customers. 

GSE pays a contribution to power produced based on quantities of energy absorbed and 

injected into the electrical grid. 

                                                                                                                                                         
34. IPEX is the Italian Power Exchange market and it is the place where possible to buy and sell wholesale 

power. 

The aim of IPEX is to ensure transparency and equilibrium prices. 

35. VA is acronymous of ‘volt-ampere, which is the unit used to measure apparent power in an electrical circuit. 

36. ‘Lo scambio sul posto fotovoltaico: guida completa’ from site ‘www.fotovoltaiconorditalia.it’ 
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Such contribution is based on features of PV plant and contractual conditions among private 

power producer and its energy supplier. 

Now we describe as net metering process is articulated: 

1. The owner of PV plant sells the power generated by its plant that exceeds its needs  to 

GSE; 

2. The owner of PV plant purchases the difference among power that it needs and self-

consumed power from ENEL
37

; 

3. GSE returns to customers the minimum between cost of  the electricity (COE), which 

the quantity of energy withdrawn from power grid times national unique price (NUP), 

and the value of electricity (VOE), which is the quantity of power injected into the 

grid times the hourly zonal price (HZP); 

4. GSE returns the cost for usage of network of such customer, which is equal to 

minimum between quantity of power injected into the grid and quantity of power 

withdrawn from the electrical grid times the unit cost for exchange standard of 

electricity (UCes), which depends by annual amount of power bought from the power 

grid; 

5. GSE returns the difference among value of electricity and cost of electricity if positive, 

otherwise the amount of such difference will be charged on its electrical bill. 

 

Net metering is a bill mechanism that could be adopted only by owners of RES and 

cogenerated plants whose nominal power is up to 200kWp. 

 

 

 

2.5 Conclusions 

 

In this chapter we have seen the technical features of PV technology and we have denoted that 

PV market is dominated by silicon solar cells since they have higher energy efficiency with 

respect to thin-film solar cells. 

Then we have observed the level of development of PV market at global, European and 

Italian level and the different level of development of three markets. 

 Furthermore we have learnt the importance of regulatory framework to support such sector. 

                                                 
37. ENEL is acronymous of ‘Ente Nazionale dell’energia elettrica’ is the main Italian provider of electricity. 
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About future development of global market, it was estimated that it will continue to grow 

even if at slower pace than in the last ten years: it is driven largely by investments in 

emerging Countries, as China and India, in this sector. 

Future outlook for European PV market is characterized by uncertainty since structure of  

such market is changing: it is influenced by transition from feed-in tariff support policies 

toward a more market-based model. 

Then there are Countries as UK and Germany where PV sector continues to grow while other 

Countries as Spain, Czech Republic and Bulgaria have adopted retroactive measures that 

discourage investments in this sector. 

Finally we look at Italian PV market in which the end of feed-in schemes, introduced in the 

last ten years, has dampened the sharp growth of this sector seen in previous years. 

Moreover the inclusion of PV systems in the tax basis for ‘IMU’ has reduced profitability of 

this type of investment. 

However Net metering, in Italy known as ‘Scambio sul Posto’ (SSP), represents the best form 

of incentive for investments in medium-small sized plants since it allows power producers to 

be remunerated for charges paid in electrical bill for power bought. 

Finally owners of PV plants whose nominal power is above 200 kWp and they could not 

benefit from advantages offered by such billing mechanism, they should increase the amount 

of self-consumed power. 
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CHAPTER 3  

ECONOMIC VALUATION OF TWO PV PLANTS ISOLATED 

 

In this chapter, we want to present the economic analysis of two investment projects in PV 

plants aimed to provide electrical power to two different users. 

These PV plants are situated in the Western suburbs of Padua, at a distance of 20 metres from 

each other, but the first PV plant provides electricity to feed the shared facilities of a complex 

of four  residential buildings while the second PV plant provides this commodity to a post 

office situated nearby the previous buildings. 

The post office is classified as commercial user. 

However before starting the economic analysis of each investment project, we think that it is 

necessary to describe the technical characteristics of each PV plant, as follows. 

 

 

3.1 Technical features of these PV plants 

 

These PV plants have the same technical characteristics but they serve users with different 

profile of power consumption. 

Both PV plants are ground mounted and they are located in the outdoor areas surrounding 

each building, they are both South oriented and each of them has the an optimal inclination of 

36 degrees. 

Moreover they are composed by photovoltaic modules made with mono-crystalline silicon, 

while the total surface of such modules is 240 square metres for each PV plant. 

Then it is possible to estimate the solar irradiation and the electrical energy produced by each 

PV system on daily and monthly basis using a particular software, known as PVGis database. 

So it needs only to insert previous information, together with geographical coordinates of 

location: 

-latitude 45°20’50’’North;  

-longitude 11°53'18" East;  

-13 metres of elevation. 

The following table shows the estimates of solar irradiation and electricity provided on 

average by each PV  plant on monthly and daily basis, relative for each month of the year. 
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Table 1. Estimates of  daily solar irradiation and daily power provided on average by each PV 

               plant   

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Monthly 

power 

produced 

(kWh) 

1560 2370 3350 3500 3960 3870 4270 3970 3360 2540 1670 1550 

Monthly  

irradiation 

(kWh/m2)  

66.7 103 152 163 189 189 210 195 161 116 73.4 65.8 

Daily 

power 

produced 

(kWh) 

50.4 84.6 108 117 128 129 138 128 112 82 55.7 49.9 

Daily  

irradiation 

(kWh/m2) 

2.15 3.67 4.91 5.42 6.11 6.3 6.77 6.28 5.36 3.73 2.45 2.12 

Source: ‘PVGis database’ 

 

 

In according to previous data, the potential annual production of power of each PV plant is  

estimated at 36000 kWh, net of technical system losses. 

The percentage of combined technical system losses amounts to 28.5% and  includes: 

-the share of loss due to temperature and low irradiance, estimated at 9.8%; 

-the share of loss due to shading and albedo, estimated at 2.8%; 

-the share of other losses due deterioration of cables and inverter, estimated at 18.5%. 

After that we present the main features of each PV plant, together with the estimated values of 

potential yearly power , net of operating losses, in the table below. 

 

Table 2. Data of each PV plant 

Classification Ground mounted 

Site Padua, Italy 

Latitude 45°20’50’’North 

Longitude 11°53'18"    East 

Elevation 13 metres 
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Year of installation 2015 

Useful life 25 years
38

 

Material of modules Mono-cristalline sylicon 

Total surfece of modules 240  

Total power 30 kWp 

Yearly irradiation  1680 kWh/  

Technical losses 28.5 % 

POTENTIAL YEARLY POWER 36000  kWh 

 

 

Moreover for the economic analysis it needs to estimate the self-consumption percentage of 

electrical power by each user on daily basis, so we should apply the following formula: 

 

Self consumption of electricity =  

 

Since both PV plants are identical, they produce the same daily quantity of power, namely 

98.6 kWh. 

This is a mean value of daily power production of each PV plant which results from the 

simple division between estimated value of power production and number of days of the year. 

But each user has different electricity consumption habits, so it has been estimated that 

residential user consumes on average 40.08 kWh of their self-produced power every day 

while the post office (commercial user) absorbs on average 75.93 kWh of power generated by 

own PV plant daily. 

 

Using previous data, we estimated the following percentages of self-consumption of 

electricity for each user: 

Self-consumption percentage for residential  user  =  =  41.38% 

Self-consumption percentage for commercial user =  =  77.01% 

 

                                                 
38. From site:’www.energy.gov’ 
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For simplicity we will adopt for our economic analysis the estimates of average daily power 

consumption of each user and the estimates of average daily power generation of each PV 

plant, computed on yearly basis without considering monthly variability. 

In fact we should observe that both daily power consumption and daily power production 

have a peak in July while daily power consumption of these users reaches the minimum in 

April but daily power production reaches the minimum in December. 

In the following figures we show the estimates of hourly power consumption of each one of 

previous users together with the estimates of hourly power production of their own PV plants 

during a day, based on daily average of production and consumption of energy during a year. 

Such estimates of daily power production and daily power consumption have been computed 

as in previous case: we have divided the annual amounts of power production and power 

production of each user by number of days that constitute a year. 

 

Figure 1. RESIDENTIAL POWER CONSUMPTION vs  PV POWER PRODUCTION 

 

Source: ‘www.sunedisonenergysaverplan.com 
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Figure 2. POST OFFICE’s POWER CONSUMPTION vs PV POWER PRODUCTION 

    Source : ‘Analisi dei consumi energetici residenziali e vantaggi connessi all’utilizzo di un manager 

                    energetico’,De Franceschi 

 

The previous figures show that each user has a different habit of power consumption. 

The residential user presents a daily profile of power consumption which is decreasing in the 

night hours, from 23.00 until 05.00, then  it becomes increasing from 05.00 until 09.00, in 

which  it stabilizes at a value that maintains almost unchanged up to 17.00. 

Then residential energy consumption rises again and it reaches the peak of about 5.7-5.8 kWh 

from 18.00 until 22.00. 

The commercial user (the post office) presents a steep growth of power consumption from 

06.00 until 10.00, in which it reaches the peak of more than 11 kWh. 

This peak of consumption is maintained for about three hours, because after 13.00 it decreases 

again until 15.00. 

Then it remains almost stable at about 1.6-1.8 kWh for the rest of the day. 

Peak of power consumption for residential user is in the time slot 18.00-22.00 since we think 

that time slot in which people returns home from work is 18.00-20.00, so that we register a 

massive use of condominium common services as autoclaves, staircase light and this high 

level of use of such appliances continues until 22.00 when people start to go to bed. 

Since peak of consumption is placed in a time slot in which solar panels could not benefit 

from sunlight we observe that a great part of residential power consumption is not covered by 

energy produced by solar plant, so that both quantities of energy bought and sold from the 

grid are high while level of self-consumption remains low. 
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During the other diurnal hours we record an use of common services that is lower with respect 

time slot 18.00-22.00 while we reasonable believe that the minimum consumption of power is 

recorded during the night and dawn. 

About commercial user we observe that peak of power consumption is concentrated in time 

slot 10.00-12.00 even if power consumption increases in time slot 08.00-10.00 since post 

office opens at 08.30, but power consumption of power decline in time slot 13.00-15.00 since 

post office closes at 13.30. 

Moreover  level of energy consumption remains stable from 15.00 to early morning of 

following day. 

The difference among such users is that the peak of power consumption of post office is 

covered by power production of PV plant but this does not happen for residential user. 

Then we have implicitly assumed that power consumption of each day is equal to  power 

consumptions of working days: this is an useful simplification since consideration of 

differences of power consumption among week-ends and holidays with respect to working 

day would complicate this economic analysis. 

 

Even if these two users have different daily profiles of power consumption, they are 

connected with PV plants characterized by the same level of nominal power, namely 30kWp. 

This could be the first reason why previous results show that such users present different 

percentages of daily self-consumption of electricity, more precisely this percentage is higher 

for the post office with respect to the residential complex. 

 

3.2 Economic analysis of the two investment projects 

 

Before entering in the core of such economic analysis, we want to describe the methodology 

used to evaluate these two investments: the NPV Methodology. 

This methodology, also known as discounted cash flow method, is widely applied to assess 

the most part of investment projects since it is a very simple capital budgeting technique that 

provides fair estimates of values of such investment opportunities. 
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3.2.1 The NPV Methodology 

 

This methodology allows to estimate the present value of an investment discounting the 

annual net cash flow with a particular rate, the Weighted Average Capital Cost (WACC). 

In according to this methodology, an investment is considered profitable if the NPV is 

positive. 

The NPV formula is the following: 

 

 

where 

 

 is the initial cost of investment; 

 is the Net Cash Flow of year   

  is the Weighted Average Cost of Capital. 

 

The WACC is a rate of opportunity cost, in fact it indicates the cost incurred by investor to 

forgo to employ his money in an alternative investment opportunity. 

This rate allows to assess the value of capital invested since it allows to evaluate each one of 

the two capital cost components individually: debt and equity. 

Then these two components are weighted with the respective share with respect to total cost 

of investment. 

This is the formula of WACC: 

 

 (1-t) 

 

where 

  

  is equity; 

  is debt; 

 is the cost of equity; 

 is the cost of debt; 

 t   is the marginal tax rate applied in a Country. 
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The cost of debt  often is represented by  yield-to-maturity of long-term government 

bonds.  

The cost of equity  is computed through the Capital Asset Pricing Model (CAPM), so it 

indicates the minimum expected rate of return demanded by an investor who wants to invest 

in a risky asset. 

The CAPM formula adopted to estimate such parameter, which coincides with the expected 

return of equity E( , is the following: 

 

=  

 

where 

 is the return of a risk-free asset; 

 is the unlevered beta of equity; 

 is the expected market return; 

  is the equity risk premium. 

 

The  unlevered beta of equity  , which is the beta of an investor who finances his project 

without borrowing money, indicates the sensitivity of investment return to market movements 

and  it is defined as below: 

 

 

 

 

where 

 

 is the covariance between the market return  and return of equity ; 

 is the variance of market return  

 

In this economic analysis, the WACC for each investment project was estimated in the 

following way: 

-both projects has been financed totally with equity, so WACC will be equal to cost of equity 

; 
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-the risk-free rate  used is the rate of return of AAA rated bonds with 20-years-to-maturity 

traded in Euro area in 2015
39

; 

-the market return   used is the monthly rate of variation of FTSE MIB Index in the 

period 2013-2015
40

; 

-the covariance between return of equity and market return,  was approximated 

to covariance among the monthly rate of variation of FTSE MIB Index in the period 2013-

2015 and the monthly rate of variation of Hourly Zonal Price (HZP) of electricity in Northern 

Italy  in the same period
41

.  

We have chosen to represent the market return with the FTSE MIB Index since such index 

indicates the return of a portfolio composed by stocks issued by 40 companies, quoted at 

Stock Exchange of Milan, which have the highest level of capitalization among quoted 

companies at such stock exchange. 

Moreover   was approximated to  covariance between the monthly rate of 

variation of FTSE MIB Index  and the monthly rate of variation of Hourly Zonal Price (HZP) 

of electricity in the period 2013-2015 since we believe that the return of this type of 

investment depends by monthly variation of HZP because of the adoption of a billing 

mechanism which enhances the energy fed by each user into the power grid in according to 

such price.  

 

In the next table let’s present all values estimated for all these parameters together with the 

estimate of  WACC: 

 

Table 3. WACC rate 

Risk-free rate 1.21 % 

Unlevered beta 0.404 

Expected market return 9.78 % 

Equity risk premium 7.57 % 

Cost of equity 4.68 % 

WACC 4.68 % 

 

 

                                                 
39.From site ’www.ecb.europa.eu.’ 

40.From site ’www.investing.com’ 

41.From site ’www.gse.it’ 
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Note. We assume that initial cost of investment will be financed totally with equity since the 

sum of money necessary for this investment is modest for these two  users in order to apply 

for a loan to the bank: residential user includes a residential condominium complex of 50 

families while post office is a subsidiary of society ‘Poste Italiane s.p.a.’ listed on Italian 

stock exchange. 

 

3.2.2 Economic analysis of the RESIDENTIAL PV PLANT 

 

After that we have computed the WACC, let’s proceed with the  economic analysis of the 

investment project inherent the PV plant connected with the complex of residential buildings. 

As I have said before, we assess this investment project through the NPV Methodology 

considering  a time horizon of 20 years from 2015,even if each PV plant has an estimated 

useful life of  25 years. 

The reason for choice of such time horizon is that each investor has  taken out an insurance 

which immunizes each PV plant for 20 years against the following types of risk: 

-risk of outages of the PV plant due to mistakes in installation procedures or routine 

maintenance of the same plant; 

-risk of damage of solar panels due to weather conditions such as snow and hail; 

-risk of an annual decay of solar panels higher than 1%. 

 

We should denote that this investor has preferred an insurance coverage for its PV plant of 20 

years, instead of 25, since an insurance policy of 25 years would be too expensive because of 

insurance companies require a very high premium in order to provide this additional insurance 

coverage. 

In fact in the last five years of life a PV plant has a very high probability to incur in outages 

and it could have an annual decay higher than 1%. 

So that residential user pays an unique premium of 6,000 €  to have insured its PV plant for 

20 years against the aforementioned risks instead of paying 20 annual premia
42

 for the same 

insurance coverage. 

 

The starting point of such analysis is the analysis of costs , which is identical to cost analysis 

related to the PV plant of the aforementioned post office since both PV plants have the same 

technical features. 

                                                 
42.From site ’www.consorziocaes.org’ 
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First of all we should know that the total cost of a generic PV plant is about 2,500 € per kWp, 

so the total cost of such PV plant amounts to 75,000 € (without insurance policy). 

Such total cost  is composed by the following cost percentages: 

- 47%, PV modules; 

- 11%, inverter; 

- 12%, infrastructure; 

- 7%, circuit panels and cables; 

- 23 %,  project and installation. 

 

So we will report in the table below the cost items, including insurance costs, that compose 

the total expense incurred by residential user for this investment, together with the respective 

monetary amounts: 

 

Table 4. Initial cost of investment for residential user 

 

 

 

 

 

 

 

 

 

 

Source: site www.enerpoint.it,  

 

Moreover we should add to previous initial investment expense other two costs that occur 

during the useful life of plant, which are: 

-the cost of ordinary maintenance of PV plant, which is 210 €for the first year after 

installation, but we estimate an increase of such amount of 1.7% per year;
 43

 

-the cost of inverter substitution, which will be reduced to  6300 € in the next 5 years. 

About the annual cost of ordinary maintenance we assume that it will increase by 1.7% per 

year in according to the average annual rate of inflation
44

, estimated as the average of  annual 

rates of inflation occurred in Italy in the last ten years. 

                                                 
43.From site ’www.viacavoimpianti.it’ 

44.From site ’www.Istat.it’ 

Description Costs (Euro) 

PV modules 35250 

Inverter 8250 

Infrastructure 9000 

Circuit panels and cables  5250 

Project and installation 17250 

Insurance costs 6000 

TOTAL 81000 

http://www.enerpoint.it/
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Nowadays the duration of  useful life of inverter could range between 5 years and 15 years
45

, 

it depends by quality of inverter. 

However we are considering a useful life of 10 years for such device but we believe that 

within five years new inverters will have a  duration up to 15 years while the reduction of 

inverters’ price is estimated at 25% in the same period of time
46

. 

So we believe that an inverter for a PV plant with nominal power of 30 kWp will cost 6,300 € 

at the beginning of 2020s instead of the current price of 8,250 €. 

The next step to compute the NPV of this project is the revenue analysis. 

First of all we should consider that this residential user has chosen to access a billing 

mechanism, the Net Metering, in Italy knows as ‘Scambio sul Posto’ (SSP). 

This last data is important to assess the so-called SSP revenues. 

So the revenues of such investment are: 

1) the electrical bill savings due to auto-consumed energy; 

2) the SSP revenues; 

3) the tax deductions on the cost of the initial investment. 

We should notice that we have based our computation of revenues on the mean daily 

consumption of energy by residential user and the mean daily production of this commodity 

by PV plant, estimated on the course of the year. 

This is an useful simplification for our economic analysis, even if we do not consider the 

variability of mean daily consumption and mean daily production of energy which occurs 

during the months of the year. 

The first type of revenues is based on the  annual quantity of energy auto-consumed and the 

average power tariff applied on Italian market on each kWh of electricity sold by power 

companies.The following table shows how this kind of revenues is estimated: 

 

Table 5. Electrical bill savings for residential PV plant 

Estimated power produced  36000 kWh 

Auto-consumption percentage 41.38 % 

Auto-consumed power  14896.8 kWh 

 Power tariff (taxes included)
47

 0.1852 €/kWh 

Electrical bill savings 2758.89€  

 

                                                 
45.From site ‘www.consulente-energia.com’ 

46.’Studio Fraunhofer’ from site ’www.assoelettrica.it’ 

47. Power tariff   2016 stated by ‘Autorità per l’energia elettrica, il gas ed il sistema idrico’. 
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So the value of electrical bill savings is estimated at 2758.89 € per year, which is a 

considerable amount of money. 

The second type of revenues is the SSP revenues, which are computed through the following 

formula: 

SSP revenues= SSP contribution+ VOE-COE - Fee 

where 

SSP contribution is the sum of money paid by GSE to user in according to quantity of 

electricity exchanged (EE) among the user and GSE itself; 

VOE is the value of electricity, it is equal to quantity of electricity sold by the user to GSE
48

 

times the hourly zonal price (HZP); 

COE is the cost of electricity, it is equal to quantity of energy absorbed by user itself from the 

grid times the unique national price (NUP); 

The fee paid yearly by electrical user to GSE depends by nominal power of PV plant, so that 

it is fixed at 30 € if nominal power of PV plant is less or equal to 20 kWp, but if nominal 

power  is higher than 20 kWp the amount of this fee is the sum between a fixed sum of 30 € 

plus a variable amount that depends by power of PV plant: this variable cost is 1€ per kWp. 

The SSP contribution is computed as follows: 

 

SSP contribution= min(COE;VOE)+UCes×EE 

where 

UCes  is the unit cost for exchange standard of electricity; 

EE is the electricity exchanged and it is equal to the minimum quantity between the energy 

sold by user and the energy absorbed by user through the power grid. 

 

The table below shows the estimated value of SSP contribution, obtained through the 

computational procedure above: 

 

Table 6. SSP revenues for residential PV plant 

Electricity yearly sold 21103.2 kWh 

Electricity yearly bought 18958.1 kWh 

Hourly zonal price (HZP)
49

 0.05681 €/kWh 

                                                 
48. GSE is the acronymous of ‘Gestore del Servizio Elettrico’ which is an Italian company, held by Italian 

Government, which provides incentives to private producers of power through renewable sources. 

49. It was estimated as the average of monthly HZPs of Northern Italy occurred in the period 2013-2015. 

Source: site ‘www.gme.it’ 
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Unique national price(NUP) 0.05208 €/kWh 

Value of electricity (VOE) 1198.87 €    

Cost of electricity (COE) 987.34 €    

Unit Cost of electricity (UCes)
50

 0.20302 €/kWh 

Electricity exchanged (EE) 18958.1 kWh 

SSP contribution 4836.21 € 

VOE-COE 211.63 € 

Fee
51

 60 € 

SSP revenues 4987.75 € 

 

 

The third type of revenues is represented by tax deductions on the initial cost of investment. 

The current Italian law about the installation of PV plants provides fiscal deductions on Italian 

income tax, known as Imposta sul reddito delle persone fisiche (IRPEF), that amount to 50% 

of total costs of investment in photovoltaic energy for anyone who decides to install a PV 

plant by December 31, 2016. 

Obviously fiscal deductions do not cover insurance costs incurred by investors. 

The eligible beneficiaries of these tax incentives are both natural persons and entrepreneurs. 

These tax deductions are credited to the beneficiaries in ten equal annual instalments.  

So the residential user will get  tax credits of  3,750 € per year from 2016 until 2025. 

Now we have all necessary data to assess the NPV of such investment. 

As we have said before, the WACC was estimated at 4.68%. 

Then we have prudentially considered an annual depreciation of 1% for electrical bill savings 

and SSP revenues because we assume that such PV plant has an annual decay of 1%. 

Moreover we assume an annual growth of power tariff of 3%, since we have estimated that 

the mean level of power tariff growth in Italy was 3% per year
52

. 

The annual growth of power tariff will affect only the computation of electric bill savings 

since parameters necessary to compute SSP revenues have controversial trends. 

For this reason we have considered only an annual depreciation of 1% for SSP revenues. 

The table below shows the estimate of  NPV of this investment project, together with the 

Internal Rate of Return (IRR). 

                                                 
50.It was estimated as the  average value of UCes in 2013, reported by ‘Autorità per l’energia elettrica, il gas ed 

il sistema idrico’. 

51.From site’www.gse.com’ 
52.This estimate of annual average growth rate of power tariff  has been  made using annual power tariff for 

period 2005-2015, whose data have been collected from site ‘www.gse.com’. 
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Table 7. NPV and IRR of residential investment project  

Time horizon 20 years 

NPV 42106.58 €  

IRR 10.90% 

 

 

 

About dynamics of internal rate of return (IRR)  we can see that it grows rapidly in the first 

years following the investment and it reaches the final value of 10.9% at the end of such time 

period. 

We denote a variation in growth level of  IRR from 11
th

  year following installation of PV 

plant, which becomes less marked since this time period is characterized by a significant fall 

of NCFs because  fruition of  fiscal inflows is concentrated in the first ten years of life of this 

project. 

However  initial value of IRR is low but it becomes positive 7-8 years after that investment is 

made. 

Since the final value of IRR is higher than the WACC, we could say that such investment is 

profitable. 

The final NPV of such project is 42106.58 € which is a great sum of money for a low-risk 

investment, while the amount of money invested will be recovered after 8-9 years, since at the 

9
th

 year the NPV starts to be positive.  

About dynamics of NPV in the course of years we can say that also growth level of this last 

indicator is modified from 11
th

 year of useful life of PV plant because of end of fruition of tax 

inflows. 

The figures below show dynamics of NPV and IRR in the course of time period that we are 

considering whose duration is 20 years. 
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Figure 3. Dynamics of NPV for  residential PV plant 

 

 

Figure 4. Dynamics of IRR for residential PV plant 

 

 

3.2.3 Economic analysis of the POST OFFICE’s PV PLANT 

 

In this paragraph we will expose  the economic analysis of the investment project concerning 

the PV plant that provides electricity to the aforementioned post office. 
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This PV plant presents the same technical features of the previous one, but the economic 

analysis will provide different results since this user has a different profile of power 

consumption. 

Also in this case we assess this investment project through the NPV Methodology and we 

consider a time horizon of 20 years, starting from 2015. 

The reason of choice of such length of time horizon is the same: the duration of insurance 

coverage for this investment is 20 years. 

The beginning of this analysis is the cost analysis that produces the same monetary values of 

previous cost analysis, since this PV plant has the same nominal power as the previous one. 

In the following table, all components of total cost of investment are summarized: 

 

 Table 8. Cost of initial investment for Post Office 

 

 

 

 

 

 

 

 

 

Source: site ‘www.enerpoint.it 

 

As in the previous case, also this investment project includes the following costs , namely: 

- the annual cost of ordinary maintenance of PV plant; 

- the cost of inverter substitution, which will occur in 2026. 

As we have said in the previous paragraph, the annual cost of ordinary maintenance will be 

210 € in 2016 but we assume that it will grow by 1.7% per year, in according to the average 

of Italian annual inflation rate of the last ten years. 

Moreover we assume that the cost of inverter will be 6300 € in 2026 since in the first half of 

2020s the cost of all components of a PV plant will be reduced by 20-25 % in ten years. 

Before starting the revenue analysis of such investment project, we should denote it is based 

on mean daily consumption of power by such user and mean daily power production of his 

PV plant, computed during the course of the year. 

We do not consider the monthly variability of consumption and production of electricity of 

such user. 

Description Costs (Euro) 

PV modules 35250 

Inverter 8250 

Infrastructure 9000 

Circuit panels and cables  5250 

Project and installation 17250 

Insurance costs 6000 

TOTAL 81000 
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Instead the revenue analysis of this projects produces different results with respect to the 

previous one, since the quantity of energy sold and absorbed by the post office is different. 

Also in this case, the first item of revenue is the electrical bill savings which are reported in 

the following table: 

 

Table 9. Electrical bill savings for Post Office 

Estimated power produced  36000 kWh 

Auto-consumption percentage 77.01 % 

Auto-consumed power  27723.6 kWh 

Power tariff (taxes included)
53

 0.1852 €/kWh 

Electrical bill savings 5134.41€  

 

 

As we can see, the amount of electrical bill savings is 4879.35 € which is bigger with respect 

to the previous investment. 

This is due to the higher self-consumption percentage of power of commercial user with 

respect to the self-consumption percentage of residential user. 

The second item of revenue is the SSP revenues, whose we will report the estimated value in 

the following table: 

 

Table 10. SSP revenues for Post Office 

Electricity yearly sold 8276.4 kWh 

Electricity yearly bought 9073.9 kWh 

Hourly zonal price (HZP)
54

 0.05681 €/kWh 

Unique national price(NUP)
55

 0.05208 €/kWh 

Value of electricity (VOE) 470.18 €    

Cost of electricity (COE) 472.57 €    

Unit Cost of electricity (UCes)
56

 0.20302 €/kWh 

Electricity exchanged (EE) 8276.4 kWh 

                                                 
53. Power tariff for 2016 stated by ‘Autorità per l’energia elettrica, il gas ed il sistema idrico’. 

54. It was estimated as the average of monthly HZPs of Northern Italy occurred in the period 2013-2015. 

Source: site ‘www.gme.it’ 

55. It was estimated as the average of monthly UNPs occurred in Italy in the period 2013-2015. Source: site 

‘www.gme.it’. 

56. It was estimated as the  average value of UCes in 2013, reported by ‘Autorità per l’energia elettrica, il gas ed 

il sistema idrico’ 
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SSP contribution 2150.45 € 

VOE-COE - 2.39 € 

Fee 60 € 

SSP revenues 2088.06 € 

 

 

The third item of revenue is represented by  tax deduction on Italian income tax, knows as 

IRPEF, which amounts to 3,750 € per year for the first ten year after the installation of the PV 

plant. 

Now we have all data necessary to compute the NPV of this investment project are available, 

but we should make the following assumptions: 

-the WACC adopted is 4.68% as in previous case; 

-the electric bill savings and SSP revenues has been depreciated by 1 % since solar panels 

have an annual decay of 1%; 

-about electric bill savings we have considered an annual increase of energy tariff of 3%, 

since this tariff has grown by 3% per year on average in these last ten years. 

Then I will present in the following table results of estimates of NPV and the IRR for this 

investment project. 

 

Table 11. NPV and IRR of commercial investment project  

Time horizon 20 years 

NPV 43565.19 € 

IRR 10.86% 

 

 

The tables above shows how IRR increases during time until it reaches the percentage value 

of 10.86% which is not much lower than IRR related to residential PV plant. 

This is due  to the fact that annual NCFs of commercial user (post office) are below the NCF 

of residential user until 2025 because of the annual SSP revenues of the latter are so higher 

that the greater electric bill savings of the former do not offset them until 2025. 

The financial situation is reversed in 2026 after the end of tax deduction and the payment of  

expense for inverter substitution. 
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About dynamics of growth of IRR we observe the same features that we already seen in 

previous case: this rate has a market growth at the beginning of useful life of such project, it 

becomes positive 7-8 years after the initial expense for the investment. 

As we have already seen for residential PV plant, we observe a contraction of pace of growth 

of this indicator from 2026 because time period characterized by fruition of fiscal benefits 

will end that year: in fact fiscal deductions on initial expenses for investment are spread for 

the 10 years of operation of such PV system. 

However the final NPV of such investment is equal to 43565.19 €, which is an amount of 

money a bit higher than in the previous case. 

About NPV we observe a pronounced reduction of path of growth from 2026 for the same 

reason whose we have already discussed plus increase of discount rate on annual NCFs. 

Since yearly growth of power tariff is 3% per year this will affect positively electrical bill 

savings, so that commercial user which has a higher level of self-consumed energy per year 

than residential user will be more advantaged with respect latter user. 

Since commercial user (the post office) has a lower NCF with respect to residential user until 

2026, the payback period of former user is longer than payback period of  latter user. 

The post office will recover the amount of money invested in 9-10 years. 

In the following pictures it is shown the path of NPV and IRR related to such investment 

project during the 20 year after the PV plant installation. 

 

 

Figure 5. Dynamics of NPV for  Post Office’s  PV plant 
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Figure 6. Dynamics of IRR for Post Office’s PV plant 

 

 

 

 

 

 

 

 

3.2.4 If we consider the whole duration of useful life of both PV plants: how will NPV 

and 

         IRR  change? 

 

 

a) Residential PV plant 

 

If we consider a time horizon of 25 years for this investment project we will have a greater 

NPV, which will be 55983.69 €, and IRR will grow as well: it will increase up to 11.60%. 

As we can see, as duration of time horizon increases the growth of NPV and IRR will be 

lower because of actualized cash flow will be reduced as duration of time horizon increase. 

However trend of such indicators continue to be affected by end of period of fiscal incentives 

from 11
th

 year of useful life of this PV system. 
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In the last 15 years of its residual life we denote a slower pace of increase with respect to 

previous time period.  

Notwithstanding this moderate increase of annual NCF is driven by annual growth of power 

tariff, estimated at 3%. 

 

 

b)Post office’s PV plant 

 

Also in this last investment project if we consider of time horizon of 25 years, we observe an 

increase of  both NPV and IRR: so that NPV will be 60010.78 € and IRR will be 11.65%. 

When we have considered a time horizon of 20 years we have noticed that IRR of commercial 

user was lower than residential user’s one, while now we observe the opposite situation. 

This is due to the fact that annual growth of NCF is driven by annual growth of power tariff, 

so that commercial user, whose auto-consumed power is bigger than energy auto-consumed 

by commercial user, has an higher growth of annual NCF with respect to other user. 

About time paths of these two indicators of profitability we report the same features that are 

already known, namely NPV and IRR present a marked upward trend in the first ten years of 

PV system’s operation but this trend for both indicators is dampen by end of period in which 

this user has fiscal inflows due to tax deductions on half of initial expense for this investment. 
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CHAPTER 4 

ECONOMIC VALUATION OF TWO PV PLANTS CONNECTED 

THROUGH A SMART GRID 

 

4.1 Installation of smart grids: changes in costs, savings and power 

      production  

 

In the previous chapter we have considered each PV plant as a stand-alone plant, but now we 

consider the possible economic advantages that would be if these two plant was connected 

through a smart grid. 

The installation of this new technology constitutes an additional cost of 10,000 € which will 

be shared equally within the two users.
57

 

However this new system reduces the operating losses of each PV plant and increases the 

safety of electrical systems of each user, allowing a cut of annual cost of ordinary 

maintenance for these two electrical systems equal to 300 € per capita the year after the 

installation of this new technology. 

In fact we estimate an annual growth by 1.7% of this amount of money saved, in according to 

the average of Italian annual inflation rate of the last ten years. 

We have estimated that the introduction of smart grids will produce a 40% saving on the 

annual expense for ordinary maintenance of electrical system of each user. 

This quote of maintenance savings is composed by
58

 
59

 : 

- 20.5% , outage detection; 

- 4.5%, service outage management; 

- 3%, integrated Volt/VAr Control, which improves power quality; 

- 2%, for remote meter reading; 

- 3 %, for  tamper detection; 

- 7% ,for renewable generation integration. 

Since the current annual cost for ordinary maintenance of an electrical system of a building is 

about 750 €, we have estimated that a reduction of  40% of such expense represents a saving 

of 300 €. 

                                                 
57. From site ‘www.genitronsviluppo.com’. 

58. ‘Operation and Maintenance Savings from Advanced Metering Infrastracture-Initial Results’ from US 

Department of Energy. 

59.’Smart Grid Economic and Environmental Benefits’ from site ‘smartgridcc.org’. 
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Then we have indexed this amount to the estimated annual inflation rate, which is 1.7%, in 

order to assess the future savings in maintenance of electrical system. 

Moreover these new technologies generate a fall in technical system losses of each PV plant, 

since they tend to minimize power losses of cables and inverter. 

About the reduction of technical losses of each PV plant generated by application of smart 

grids, we assume that technical losses due to cables and inverter are about 15%
60

, while in the 

previous case they amounted to 18.5 %. 

So that combined technical losses fall from 28.5% to 25.5%
61

. 

However it has been estimated a growth of annual energy production of 1,500 kWh, since in 

previous case annual production of energy was estimated at 36,000 kWh while now it reaches 

the threshold of 37,500 kWh, net of technical system losses. 

The following table shows all estimated values about solar irradiation and power provided by 

each PV plant for each month of year, on monthly and daily basis. 

 

Table 1. Estimates of  daily solar irradiation and daily power provided on average by each PV 

               plant 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Monthly 

power 

produced 

(kWh) 

1630 2470 3500 3650 4130 4040 4450 4140 3510 2650 1740 1610 

Monthly  

irradiation 

(kWh/m2)  

66.7 103 152 163 189 189 210 195 161 116 73.4 65.8 

Daily 

power 

produced 

(kWh) 

52.5 88.2 113.0 122.0 133.0 135.0 144.0 134.0 117.0 85.6 58.1 52.0 

Daily  

irradiation 

(kWh/m2) 

2.15 3.67 4.91 5.42 6.11 6.30 6.77 6.28 5.36 3.73 2.45 2.12 

Source: PVGis database 

 

 

                                                 
60.’How Utility Electrical Distribution Networks can Save Energy in the Smart Grid Era’ by Michel Clemence, 

Renzo Coccioni and Alain Glatigny. 

61.Results from ‘PVGis database’ 
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Since the power production of each PV plant has grown because of smart grids but profile of 

consumption of each user has remained unchanged, the percentage of self-consumption of 

electricity of each of them has fallen as we can see below: 

 

Self-consumption percentage for  residential  user =  = 39.84 % 

 

Self-consumption percentage for commercial user =  = 74.37 % 

 

Instead  in the previous case the self-consumption percentage for residential user and 

commercial user were respectively 41.38 % and 77.01%. 

In the next two pictures it is possible to look at hourly power consumption of each one of 

previous users together with the estimated values of hourly power production of their own PV 

plants during a day. 

 

Figure 1. RESIDENTIAL POWER CONSUMPTION vs  PV POWER PRODUCTION 
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Figure 2. POST OFFICE’s POWER CONSUMPTION vs PV POWER PRODUCTION 

 

 

 

Since the profile of energy consumption of each user is not changed, we see the same features 

of consumption already known, which are: 

-the residential user has the minimum of power consumption during the night while it has 

the peak of consumption of 5.7-5.8 kWh from 18.00 to 22.00; 

-the commercial user has the a constant consumption of this commodity of 1.6-1.8 kWh 

during the night and after the 15.00, while  the peak of consumption of 11 kWh, has been 

recorded from 10.00 until 13.00 on every business day. 

One more time reasons that explains such power consumption are the same. 

Families tends to consume more power in time slot 18.00-22.00 since most part of people 

return home from work in time slot 18.00-20.00 so that it is recorded a greater use of 

condominium common service in previous time slot since we predict that people go to bed 

after 22.00. 

While post office presents a peak in power consumption in time slot 10.00-12.00 when  flow 

of customers to this type of office is more intense. 

For simplicity we adopt as pattern of our analysis the profile  of  power consumption of each 

user in a working day, neglecting week-ends or holidays, and  we consider as daily energy 

consumption the average value of daily consumption of this commodity by each user 

computed dividing estimate of their annual power consumption by number of days in a year. 
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After the description of changes in power production of each PV plant because of installation 

of smart grids, it is possible to proceed to economic analysis of each investment project. 

But in the next case of analysis we assume that both users do not exchange electricity among 

themselves. 

 

4.2 Economic analysis of the two investment projects 

 

The economic value of each investment has been assessed through the NPV Methodology, 

that we have already seen before. 

Also in this case it has been considered a time horizon of 20 years for each investment 

projects since the duration of insurance coverage lasts 20 years. 

As we have already seen in the 3
rd

 chapter, the basis of these economic analyzes of such 

investments are the quantities of energy consumed by each users and produced by respective 

PV plants on average during a day. 

These averages of power consumption and production has been estimated on yearly basis, 

exactly as we have seen before.  

The first project that will be analyzed is the residential PV plant. 

 

4.2.1 Economic analysis of the RESIDENTIAL PV PLANT 

 

The starting point of this analysis is the cost analysis, which will produce the same results for 

both PV plants since they have the same nominal power, which is 30 kWp, and the additional 

cost to introduce smart grids will be equally shared among the two users. 

As we have said before, this additional cost is 5,000 € per capita. 

So the total expense incurred by each investor amounts to 86,000 €. 

The following table reports all cost items of such investment opportunity. 

 

Table 2. Initial cost of investment for residential user 

Description Costs (Euro) 

PV modules 35250 

Inverter 8250 

Infrastructure 9000 

Circuit panels and cables  5250 

Project and installation 17250 
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Sources: www.enerpoint.it, www.genitronsviluppo.com 

 

Moreover during  time horizon of such investment project we have to add other two costs 

which are the annual cost of ordinary maintenance of such PV plant, which amounts to 210 €  

in 2016, and the cost of inverter substitution, equal to 6300 €, which will probably occur in 

2026 since actual inverters have an useful life of ten years, on average. 

Also in this cost analysis we have made two assumptions: 

-annual costs of ordinary maintenance of PV plant will increase by 1.7 % per year, in 

according to the mean of annual inflation rate estimated in Italy for the last ten years; 

-in literature there is an analysis, made by Studio Fraunhofer, which forecasts a reduction of 

inverter substitution cost by 25% within five years and an increase of useful life of such 

device up to 15 years, so that the cost of an inverter substitution for a PV plant with 30 kWp 

of nominal power  will amount to 6300 € in the second half of 2020s, instead of the current 

price of 8250 €. 

The next step of this analysis is the revenue analysis. 

We remember that each user adopts the billing mechanism of  ‘Net Metering’, in Italy known 

as ‘Scambio sul Posto’ (SSP). 

In synthesis, the revenue items are: 

1) the electrical bill savings due to auto-consumed energy; 

2) the SSP  revenues; 

3) the savings on annual cost of ordinary maintenance of electrical system; 

4) the tax deductions on the cost of the initial investment. 

The first revenue item is electrical bill savings whose estimated value has been recorded in the 

next table . 

 

Table 3. Electrical bill savings for residential PV plant 

Estimated power produced  37500 kWh 

Auto-consumption percentage 39.84 % 

Auto-consumed power  14940 kWh 

Average power tariff (taxes included) 0.1852 €/kWh 

Electric bill savings 2766.89 €  

 

Additional cost for smart grids 5000 

Insurance costs 6000 

TOTAL 86000 

http://www.enerpoint.it/
http://www.genitronsviluppo.com/
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As we can see, electrical bill savings are about 2766.89 € per year but the increase of value of 

such item generated by the contribution of smart grids is about 8 €: in previous case electrical 

bill savings amounted to 2758.89 €. 

The reason for which this increase of electrical bill savings is so modest is that the growth of 

power production generated by this new system is concentrated above all in the hours of day 

in which the consumption of electricity was already below power production of PV plant. 

The second revenue item is the SSP revenues which are reported in the following table. 

 

Table 4. SSP revenues for residential user 

Electricity yearly sold 22560 kWh 

Electricity yearly bought 18907 kWh 

Hourly zonal price (HZP) 0.05681 €/kWh 

Unique national price(NUP) 0.05208 €/kWh 

Value of electricity (VOE) 1281.63 €    

Cost of electricity (COE) 984.68 €    

Unit Cost of electricity (UCes) 0.20302 €/kWh 

Electricity exchanged (EE) 18907 kWh 

SSP contribution 4823.18 € 

VOE-COE 296.96 € 

Fee 60 € 

SSP revenues 5060.13  € 

 

 

The estimated value of SSP revenues is 5060.13 € per year and also in this case the variation 

of such item with previous case is quite modest, it is about 70 €, and it is driven by the growth 

of quantity of energy sold to GSE. 

Now this last quantity amounts to 22560 kWh per year versus 21103.2 kWh of case in which 

the two PV plant were not connected through the smart grids. 

The third revenue item is new with respect to previous case. 

As we have said before, the savings on cost of ordinary maintenance for each one of these two 

electrical systems are estimated at 300 € only  for year 2016, since we have assumed a growth 

by 1.7% per year of such revenue in according to estimate of Italian inflation rate. 

The last revenue item is the tax deduction on the cost of initial investment. 
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Since also the cost of installation of smart grids is involved in this form of deduction granted 

by Italian Government, we should consider a total tax deduction of 4000 € per year which 

covers a period of ten years: from 2016 to 2025. 

Now it is possible to estimate the NPV of such investment project, in which we have applied a 

WACC of 4.68% as in previous economic analysis. 

Moreover it has been considered an annual depreciation of 1% on electrical bill savings and 

SSP revenues because of PV plants have an annual decay of 1%. 

Then we have assumed that price of electricity paid on electric bill will increase by 3% per 

year since it was the mean growth rate per year of such tariff. 

In this table we show final results about assessment of NPV and IRR for this investment 

project. 

 

Table 5. NPV and IRR of residential investment project  

Time horizon 20 years 

NPV 44461.76 € 

IRR 10.86% 

 

      We denote that the installation of smart grids increases the NPV of such investment, which 

reaches the sum of 44461.76 €, while in the case without smart grids the NPV of such project 

was 42106.58 €. 

While the IRR of this investment reaches the percentage of 10.86% which is lower than 

previous case, probably because of initial expense of investment is increased from 81000 € to 

86000 €. 

As we can see in the following figure, the payback period remains unchanged with respect to 

previous case, namely 8-9 years, as well as the path followed by NPV. 

The path followed by NPV and IRR is similar, one more time we denote that both NPV and 

IRR have a sharp growth in the first years after PV plant installations but then they tend to 

reduce their own pace of growth for various reasons: higher discount rates applied on NCFs, 

end of fiscal revenues that they are paid to such investors only for the first ten years following 

the initial expense for investment. 

The following figures show paths followed by NPV and IRR for residential user’s investment. 
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Figure 3. Dynamics of NPV for  residential PV plant 

 

 

Figure 4. Dynamics of IRR for  residential PV plant 
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4.2.2 Economic analysis of the POST OFFICE’s PV PLANT 

 

The cost analysis of such investment project is identical to the cost analysis that has been 

described before for the residential PV plant as well as values inherent each cost item. 

In the following table we summarize each cost item together with the corresponding monetary 

value. 

 

Table 6. Initial cost of investment for Post Office 

 

 

 

 

 

 

 

 

 

 

 

 

Sources: www.enerpoint.it, www.genitronsviluppo.com 

 

Moreover we should add the annual cost of ordinary maintenance of PV plant, which is 210 € 

the first year following the installation but we assume that it will grow annually by 1.7 %, and 

the cost of inverter substitution. 

The cost of inverter substitution, that will probably occur in 2026, will not be 8250 € as now 

but it will be reduced by 20-25 years within 5 years, as Studio Frenhaufer has forecasted. 

So it will be reduced to 6300 €. 

About the revenue analysis, since this commercial user adopts the billing mechanism of 

‘Scambio sul Posto’ (SSP), we have the same revenue items as in the residential PV plant but 

only the values of electrical bill savings and SSP revenues change. 

The value estimated for electrical bill savings has been recorded in the table below. 

 

Table 7. Electrical bill savings for Post Office 

Estimated power produced  37500 kWh 

Auto-consumption percentage 74.37 % 

Description Costs (Euro) 

PV modules 35250 

Inverter 8250 

Infrastructure 9000 

Circuit panels and cables  5250 

Project and installation 17250 

Additional cost for smart grid 5000 

Insurance costs 6000 

TOTAL 86000 

http://www.enerpoint.it/
http://www.genitronsviluppo.com/
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Auto-consumed power  27888.75 kWh 

Power tariff (taxes included) 0.1852 €/kWh 

Electric bill savings 5165 €  

 

From the table above it results that electrical bill savings are about 5165 € per year, while in 

the case dealt in the 3
rd

 chapter electrical bill savings were 5134.41 €. 

The increase of such revenue is not high because even if the quantity of electricity generated 

by this PV plant has grown, passing from 36,000 to 37,500 kWh per year, the share of self-

consumed electricity has fallen, passing from 77.01% to 74.37 %. 

So that growth of auto-consumed power has been slightly with respect the case without smart 

grids, passing from 27723.6 kWh per year to 27888,75 kWh per year. 

This explains why the increase of electrical bill was so low, about 30 €. 

Now let’s present in the next table the value assessed for SSP revenues. 

 

Table 8. SSP revenues for Post Office 

Electricity yearly sold 9611.25 kWh 

Electricity yearly bought 8898.7 kWh 

Hourly zonal price (HZP) 0.05681 €/kWh 

Unique national price(NUP) 0.05208 €/kWh 

Value of electricity (VOE) 546.02 €    

Cost of electricity (COE) 463.44 €    

Unit Cost of electricity (UCes) 0.20302 €/kWh 

Electricity exchanged (EE) 8898.7 kWh 

SSP contribution 2270.06 € 

VOE-COE 82,57 € 

Fee 60 € 

SSP revenues 2292.63 € 

 

In this case SSP revenues are 2292.63 € while the SSP revenues of post office’s PV plant seen 

in the previous chapter were 2088.06 €: so smart grids have implemented this revenue item of 

about 204 €. 

As we have seen for PV plant connected to a complex of residential building at the beginning 

of the chapter, this increase in SSP revenues with respect the case without connection through 

smart grids, has been driven by growth of quantity of electricity sold to  GSE. 
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The amount of last two revenue items is identical to investment in residential PV plant and 

they are: 

- savings in cost of  annual ordinary maintenance of electrical system, which are 300 € for the 

first year after installation of PV plant; 

-tax deduction of 4,000 € per year for the period 2016-2025. 

As we have seen before, forecasts of annual costs for ordinary maintenance of electrical 

system has been indexed to Italian inflation rate of the last ten years, which is 1.7% per year 

on average. 

One more time we have applied a WACC of 4.68%, we have considered  an annual 

depreciation of 1%  on electric bill savings and SSP revenues because of annual decay of 1% 

of PV plant and an annual growth by 3% of power tariff paid in electric bill, so that this last 

increase of power tariff will affect only electric bill savings. 

All estimates of NPV and IRR of such investment are reported in the following table. 

 

Table 9. NPV and IRR of commercial investment project  

Time horizon 20 years 

NPV 47825.31 € 

IRR 11.05% 

 

 

The NPV estimated for such investment project is 47825.31€ while NPV of PV plant without 

smart grids was 43565.19 €, so this new technology has brought an added value on this 

project of more than 4260 €. 

The duration of payback period has remained unchanged: 9-10 years. 

The IRR has grown up to 11.05%, while in previous case it was 10.86 %. 

Also in this case IRR becomes positive between the 7
th

 and 8
th

 year following realization of 

such project and we denote again that pace of growth of these two indicators shows the same 

features whose  we have already discussed: they increase sharply in the first ten years of 

operation of this PV plant but then this pace of growth is less marked. 

The reasons that explain this trend of such indicators are already known and they have greater 

discount rates for time period far from entry into operation of PV plant and  end of inflows 

due to fiscal incentives. 

In fact each user benefits of revenues deriving from tax deduction only for the first ten years 

of life of PV plant, then lack of this revenue item will reduce annual NCFs. 
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The increase of NPV and IRR of this commercial user equipped with smart networks was 

driven by a growth of amount of power available for sale which affects the SSP revenues. 

In the figures below it is possible to look at path of NPV and IRR for such investment project.  

In the following two pictures it is possible to look at dynamics of two previous indicators of 

profitability for this investment project. 

 

Figure 5. Dynamics of NPV for  Post Office’s  PV plant. 

 

 

Figure 6. Dynamics of IRR for  Post Office’s  PV plant 
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4.3 An alternative scenario: both users exchange electricity among them 

 

Now let’s examine the case in which the aforementioned users decide to exchange electricity 

among them in order to reduce amount of power bought by each one from ENEL. 

We premise that since both users have PV system with equal nominal power installed and 

they have energy surplus and energy deficit in the same hours of day, the possibilities of 

power interchange are quite limited. 

Moreover we should remember that both users adopt billing mechanism of ‘Scambio sul 

Posto’ and each one of them injects a greater quantity of power to electrical grid with respect 

to power absorbed by these user from the same grid. 

In this scenario it has been estimated that they would  exchange a quantity of power equal to 

0.33 kWh per day, namely 120 kWh on annual basis. 

 

This exchange is articulated in the following way: 

-the residential user would sell 0.33 kWh of own power production to post office from 6.00 

until 8.00 of each day; 

-the commercial user would give back such amount of electricity from 16.00 to 17.00 of each 

day. 

 

But this type of exchange would generate a symmetric result among these two investors, 

since: 

-the residential users would obtain a reduction of both power sold and bought of 0.33 kWh 

per day; 

-the commercial user would obtain a reduction of both power sold and bought of 0.33 kWh 

per day. 

 

Obviously this agreement of power exchange among such users will not change the total cost 

supported by each one for the investment, that is 86,000 €, as well as it will not change 

neither  savings on maintenance of  their respective power systems neither the amount of tax 

deductions obtained by each of these two investors. 

However this type of agreement will modify only the amount of bill savings and SSP 

revenues of each user, as we see in the following tables. 
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Table 10. Electrical bill savings for residential  user 

Auto-consumed power plus power received by post office 15060 kWh 

Average power tariff (taxes included) 0.1852 €/kWh 

Electric bill savings 2789.11 € 

 

 

Table 11. SSP revenues for residential user 

Electricity yearly sold 22440 kWh 

Electricity yearly bought 18787 kWh 

Electricity exchanged (EE) 18787 kWh 

SSP revenues 5028.95  € 

 

 

While the amount of electrical bill savings and SSP revenues related to post office 

(commercial user) have been reported in the following tables: 

 

Table 12. Electrical bill savings for post office 

Auto-consumed power plus power received by residential user 28008.75 kWh 

Average power tariff (taxes included) 0.1852 €/kWh 

Electrical bill savings 5187.22 € 

 

 

Table 13. SSP revenues for post office 

Electricity yearly sold 9491.25 kWh 

Electricity yearly bought 8778.7 kWh 

Electricity exchanged (EE) 8778.7 kWh 

SSP revenues 2261.45 € 

 

From this values, we will obtain the following estimates for NPV of each investment project: 

-the NPV for PV plant of  residential user is 44427.35 €. 

-the NPV for PV plant of commercial user is 47790.94 €. 

In order to compare the estimates of NPV for residential user and commercial user obtained 

so far, let’s present in the following tables the estimated values of NPV and IRR for each 

investment project. 
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RESIDENTIAL USER   

 

Table 14. NPV of residential user  

 Without smart 

grids 

With smart grid but without 

power exchange among users 

With smart grid and power 

exchange among users 

NPV 42106.58 € 44461.76 € 44427.35 € 

 

Table 15. IRR of residential user  

 Without 

smart grids 

With smart grid but without 

power exchange among users 

With smart grid and power 

exchange among users 

IRR 10.90 % 10.86 % 10.85 % 

 

 

COMMERCIAL USER (Post Office) 

 

Table 16. NPV of commercial user 

 Without smart 

grids 

With smart grid but without 

power exchange among users 

With smart grid and power 

exchange among users 

NPV 43565.19 €  47825.31 € 47790.94 € 

 

Table 17. IRR of commercial user 

 Without 

smart grids 

With smart grid but without 

power exchange among users 

With smart grid and power 

exchange among users 

IRR 10.86 % 11.05 % 11.04 % 

 

Looking at previous results inherent NPV of each user  it is clear that the optimal investment 

choice for both investors is to invest in smart networks but they should avoid to exchange 

electricity among them. 

The main reason for which it is not convenient to exchange power among such users is that 

the Unit Cost for exchange standard (UCes) is higher than price of unit power bought on the 

market. 
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So that if an user has increased the quantity of auto-consumed energy and reduced the 

quantity of energy bought from the electrical grid, in case of value of electricity bigger than 

cost of electricity, the decrease of SSP revenues caused by  reduction of energy bought from 

electricity provider is not offset by the increase of electrical bill savings, due to growth of 

auto-consumed power. 

About paths followed by NPV and IRR, we find the same features that we have already found 

namely they present a marked increase in the first ten years of life of PV plants in which both 

users receive fiscal inflows deriving from reimbursement of half of initial expense of 

investment, excluded insurance costs, in form of tax deductions on Italian tax of individual 

incomes. 

 

4.3.1 If we consider a time horizon as long as useful life of both investment  

          projects with smart grids: how will NPV and IRR change? 

 

a)  Residential PV plant 

As we have seen in the 3
rd

 chapter an increase of duration of time horizon will produce a 

growth of both final NPVs even if this growth is less sharp as duration of this time horizon 

increase. 

So that if we consider a time horizon of 25 years, the NPV of this investment will be 

59221.69 € if residential user is equipped with smart grids but it does not exchange electricity 

with commercial user, while if it exchanges power with this last user NPV will be 59203.13 €. 

Also in this case it has no incentive to exchange electricity with the other one, even if the 

difference in NPV between the options to exchange/not to exchange is reduced with respect 

the case with a time horizon of 20 years. 

About IRR of residential user, if time horizon is 25 years it will be 11.56 % in case of such 

user forgo to exchange electricity with the other one, otherwise it will be 11.55%. 

They are still lower levels of IRR with respect the case without smart grids, in which IRR for 

residential user was estimated at 11.60 %: this reduction of IRR could be motivated by the 

fact that this user has a low level of self-consumption of electricity, so the annual increment of 

electric bill saving is not so high. 

Paths of NPV and IRR have same trends that we have already faced for same investment 

project but with a lower duration of time horizon. 
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b) Post office’s PV plant 

In a time horizon of 25 years, the NPV of commercial user will be 65135.85 € if it forgoes to 

exchange electricity with other user, otherwise it will be 65117.34 €. 

Also in this case commercial user has no incentive to exchange own self-produced power with 

power self-produced by its neighbour, even if the difference in NPV between these two 

options is less than the case with a shorter time horizon. 

While IRR of this user if it invests in smart grids will be 11.81% in case of no exchange of 

power and 11.80% in the alternative case: these are still higher values with respect of IRR of 

the case without smart grids, which was 11.65%. 

Also in this case features of trend over time inherent NPV and IRR do not change with respect 

situation in which we consider a time horizon of 20 years. 

 

4.4 If residential user would choose to reduce the nominal power of its PV 

      plant to 25 kWp: how will its NPV and IRR change? 

 

Now we hypothesize a new scenario in which residential user chooses to install an PV plant 

with less nominal power, namely 25 kWp. 

The main purpose of analyzing this scenario is to pick the positive effects of interchange of 

electricity among such users. 

We have chosen to analyze the scenario in which only the nominal power of residential PV 

plant is reduced  since only residential user has a very low share of self-consumed power in 

case the nominal power of its PV plant is 30 kWp, in fact it was only 39.84 % (with smart 

grids). 

But if  it reduced the nominal power of its PV plant to 25 kWp the share of self-consumed 

energy will grow up to 46.43%. 

However a PV plant with such nominal power would generate a situation in which the 

quantity of energy sold to power grid is smaller than the quantity of energy bought from 

electricity provider, while in previous cases the situation was reversed. 

So that residential user has incentive to decrease  the amount of power absorbed through 

power grid, buying more electricity from its neighbour user, but it has no incentive to sell own 

energy to post office since the quantity of energy exchanged with power grid would reduce 

and the SSP revenues would fall as well. 

As we have operated until now, also in this case we will develop our economic analysis on the 

basis of daily average of energy requirements of each user and of energy generation of its PV 

plant, computed in the course of the year neglecting monthly variability of such quantities. 
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Moreover we continue to consider a time horizon of  20 years since residential user has signed 

an insurance contract which guarantees insurance coverage for 20 years following installation 

against various types of risks as snow, hail, annual decay greater than 1% and outages caused 

by mistakes in procedures of installation and routine maintenance. 

Notwithstanding we will add also estimates of NPV and IRR relative to both investors in case 

the time horizon considered is long as useful life of both PV plants, namely 25 years. 

Then this user has signed an agreement with the commercial user which will sell to the former 

an annual quantity of energy equal to 600 kWh at unit price of 0.10 €/kWh. 

In this way residential user could increase the amount of power sold to GSE while 

commercial user (the post office) could sell a part of self-produced energy at a price higher 

than average value of HZP, which is 0.05681 €/kWh. 

Since the quantity of energy purchased by residential user from ENEL is higher than quantity 

of energy sold by itself to GSE, it has incentive to resell the whole amount of energy bought 

from its neighbour to GSE  rather than self-consume this additional quantity of electrical 

energy. 

This happens because nowadays the sum between HZP and UCes is higher than unit cost of 

electricity paid in electrical bill, which 0.1852 €/kWh. 

Now let’s proceed with economic analysis of this investment project. 

The first step of this economic analysis is the cost analysis. 

In the next table we will summarize all cost items which compose the initial expense for such 

investment, which amounts to 72500 €. 

 

Table 18. Initial cost of investment for residential user 

 

 

 

 

 

 

 

 

 

 

 

 

Description Costs (Euro) 

PV modules 29375 

Inverter 6875 

Infrastructure 7500 

Circuit panels and cables  4375 

Project and installation 14375 

Additional cost for smart grids 5000 

Insurance costs 5000 

TOTAL 72500 
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About costs incurred during the aforementioned time horizon we should consider: 

-the annual costs of ordinary maintenance of PV plant; 

-the cost of inverter substitution, which is expected in 2026. 

-the cost of energy bought from commercial user. 

The annual costs of ordinary maintenance of PV plant are estimated at 175 € in 2016 but we 

believe that such costs will grow by 1.7% per year in according to expected Italian inflation 

rate. 

We assume that the cost of inverter substitution will be 5300 € in 2026 instead of  actual cost 

of 6875 € because the expected fall of costs of components of PV plant is estimated at 25 % 

within five years
62

. 

Finally we estimate that monetary sum paid by residential investor to other investor for power 

purchase is 60 € per year from 2016 until 2040 when its PV plant will cease to be operational. 

The next step of this economic analysis is the revenue analysis. 

The first two revenue items that we are going to see are the electric bill savings and SSP 

revenues whose estimated values are recorded in the table below. 

 

Table 19. Electrical bill savings of residential user 

Auto-consumed power plus power received by post office 14713.15 kWh 

Average power tariff (taxes included) 0.1852 €/kWh 

Electric bill savings 2724.88 € 

 

Table 20. SSP revenues for residential user 

Electricity yearly sold 17279.9 kWh 

Electricity yearly bought 19136.95 kWh 

Electricity exchanged (EE) 17279.9 kWh 

SSP revenues 4459.02  € 

 

 

The other two revenue items of this type of investments are savings in maintenance costs of 

electrical system and tax deductions. 

One more time we assume that the first revenue item will be 300 € for the first year after 

installation of PV plant but it will increase by 1.7% per year in according to expected  Italian 

inflation rate. 

                                                 
62. Studio Fraunhhofer, from site ‘www.assoelettrica.it’ 
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While tax deductions will cover half of total cost of PV plant and smart grid, so they will 

amount to 3375 € per year for the period 2016-2025. 

The last parameter necessary to proceed to compute the NPV and IRR of this investment 

project  is WACC which has been estimated at 4.68% as we have seen so far. 

In the following tables  we report  the results inherent NPV and IRR of residential user, who 

owns a PV plant equipped with smart grids, in time horizons of two different durations: 20 

years and 25 years. 

Then we add another table that records the estimated values of IRR and NPV of the same 

user, with the same time horizons that we already seen in paragraph 4.2 in order to compare 

these new results with previous ones. 

 

 

Table 21. NPV and IRR of  residential PV plant of nominal power of 25 kWp 

Time horizon 20 years 25 years 

Interchange of power among users Yes No Yes No 

NPV 44842.62 € 43362.22 € 

 

58500.47 € 

 

56858,27 € 

 

IRR 11.89% 11.68% 

 

12.55% 

 

12.34% 

 

 

Table 22. NPV and IRR of residential PV plant of nominal power of 30 kWp 

Time horizon 20 years 25 years 

Interchange of power among users Yes No Yes No 

NPV 44427.4 € 44461.76 € 59203.28 € 59221.69 € 

IRR 10.85% 

 

10.86% 11.55% 11.56% 

 

As we can understand through comparison previous results, the optimal solution for 

residential investor is to maintain a PV plant of nominal power of 30 kWp and this makes not 

convenient for none of two counterparties to trade power, as we have seen before. 
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Table 23. Post Office’s PV plant, with nominal power of 30 kWp 

Time horizon 20 years   25 years 

Interchange of power among users Yes No Yes No 

NPV 48900.46 € 

 

47825.31 € 66352.37 € 

 

65135.85 € 

IRR 11.18% 11.05 % 11.93% 

 

11.81 % 

 

 

If we look at situation of commercial user we see that it prefers sell power to residential user 

in case this user chooses to reduce nominal power of its PV plant to 25 kWp, but since for its 

neighbour it is more convenient to keep a PV plant whose nominal power is 30 kWp, it has to 

keep a PV plant with the same nominal power but it could not exploit benefits of power 

interchange. 

 

 

4.5 Conclusions 

 

In this chapter we have elaborated the economic analysis of the two investment projects that 

we have presented in previous chapter but we have considered the case in which PV systems 

owned by such users are equipped with smart grids. 

We have developed such economic analyzes in two different scenarios: in the first scenario 

we assume that previous users do not trade power among themselves while in second scenario 

we consider the possibility of power interchange among users. 

Since we have seen that it is convenient for both users not to trade power among themselves, 

we have tested hypothesis of reduction of nominal power of residential PV plant to 25kWp in 

order to allow these users to exploit benefits brought by possibility of energy trade among 

themselves. 

Results of such test have been disappointing for residential user in case it reduces nominal 

power of its plant, even if profitability of commercial user’s project would be improved if its 

neighbour would accept such reduction of nominal power. 
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We have neglected the case in which only nominal power of post office’s PV plant is reduced 

since this last user has a high self-consumption percentage of power: thus surely it is not 

willing to decrease nominal power of its PV plant. 

From what has been said, it results that both users will choice to have PV plants whose 

nominal power is 30 kWp but they will not interchange power among themselves, even if 

each user would be advantaged by power interchange in case its own neighbour decreased 

nominal power of its own PV system. 

Then we summarize in the following tables all results about NPV and IRR that we have found 

in these last two chapters related to each user for time horizon of  25 years. 

 

Table 24. NPV and IRR of RESIDENTIAL PV PLANT  

Nominal power 30 kWp 25 kWp 

Installation of 

smart grids 
No Yes No Yes 

Power interchange No No Yes No No Yes 

NPV 55983.69 

€ 

59221.6   

€ 

59203.13 

€ 

51355.38 

€ 

56858,27 

€ 

58500.47 

€ 

IRR 11.60 % 11.56 % 11.55%. 12.23 % 12.34% 12.55 % 

 

 

Table 25. NPV and IRR of POST OFFICE’s PV PLANT ( with nominal power of 30 kW) 

Power 

interchange 
No Yes 

Installation of 

smart grids 
No Yes Yes 

Nominal power 

of residential PV 

plant 

- - 30 kWp 25 kWp 

NPV 60010.78  

€ 

65135.85  

€ 

65117.34  

€ 

66352.37  

€ 

IRR 11.65 % 11.81 % 11.65 % 11.93 % 

 

 



92 

 

CHAPTER 5 

OPTION TO POSTPONE SMART-GRID INVESTMENT AND 

ECONOMIC  ANALYSIS OF BENEFITS BROUGHT BY SMART GRIDS 

 

This chapter is a completion of previous analysis of the two investment projects in PV plants 

equipped with smart grids since it explores other two aspects related to such projects, namely 

the possibility to postpone this investment and the quantification of benefits generated by 

implantation of this technology in terms of revenue due to power interchange among private 

users and savings in electric bill  and expenses for maintenance of own electrical plant. 

In the first paragraph we evaluate the option of investing in this technology over the next five 

years while in the second paragraph we analyze additional revenues brought by smart 

networks in order to understand how much  such improvement of profitability for this type of 

investment depends by new possibilities for power interchange among private users. 

Since this analysis of additional profitability is focused on both present and future 

perspective, we have specifically decided to discuss about option of postponement of this 

investment project before the development of the aforementioned analysis. 

 

5.1Value of option to postpone the two investments in PV plants 

 

Now we deal with temporality of these two investment choices in order to assess if it is 

convenient  to invest this year or postpone such investments of five years. 

The value of the option to wait for investing is based mainly on estimates of future changes of 

unit power tariff paid on electric bill by users and future changes of components of a PV plant 

and the attached smart grids. 

However we continue to index cost of ordinary maintenance of PV plants and electrical 

systems of both users to average of Italian inflation rate, which is 1.7%. 

Then we consider the hypothesis of end of tax incentives for this kind of investments, so that 

this future scenario is characterized by absence of tax deductions on initial expense for 

investment and it is compared with a current scenario, in which we  assume that investors 

irrationally forgo to aforementioned fiscal incentives, in order to evaluate such time option. 

The hypothesis of future elimination of such tax incentives is quite realistic since we observe 

that Italian Government intends to reduce share of tax deduction on Italian income tax offered 

as reimbursement for initial cost of investment year by year. 
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But the main reason for which we test scenarios characterized by lack of fiscal incentives is 

that we want to know if this kind of investment is still profitable even if tax benefits granted 

by governments are not longer available, as it is predictable. 

Now we proceed to analyze the Net Present Value (NPV) of the two investment projects in 

case we postpone them of five years.  

Obviously estimated NPVs have been discounted with respect to Weighted Average Cost of 

Capital (WACC) since decision to invest now or later should be taken now. 

These estimated values of NPV will be compared to current values of NPV for the same 

investments with the same condition in order to estimate the value of wait for investing. 

We consider the same two different scenarios that we have already seen in the previous 

chapter. 

In the first scenario we suppose that both residential PV plant and post office’s PV plant have 

the same nominal power of 30 kWp but they do not interchange power among themselves, 

which was the optimal scenario for both users. 

In the second scenario we assume that the two counterparties involved in power interchange 

are a residential PV plant with a nominal power of 25 kWp and a commercial PV plant with a 

nominal power of 30 kWp. 

 

 

1
st
 scenario 

 

As we have said before in this scenario we assume that both residential and post office’s PV 

plant have a nominal power of 30 kWp, so it is not convenient to either users to trade energy 

with the other. 

Moreover we assume that both users adopt the billing mechanism of ‘Scambio sul Posto’ for 

valorisation of power sold to national power grid. 

About cost analysis we suppose that cost of components of PV plant and attached smart grids 

will be reduced by 25% in five years
63

 while insurance premium for such structures are 

subject both to a decline of 25% within five years, in according to forecasted reduction of cost 

for these technologies, and an annual growth of 1.7% in according to Italian inflation rate. 

Moreover we compute final value of NPV of each investment project on a time horizon of 30 

years, instead of 25 years, since new generation solar panels will have an useful life of 30 

years while new generation inverters will last 15 years
64

. 

                                                 
63.From site: ‘www.assoelettrica.it’. 
64.‘The ugly side of solar panels’ from ‘Low tech magazine’. 
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Cost for inverter substitution, which depends by nominal power of PV plants, it is 6300 € for 

each one of such plant. 

So that initial expense for investment, included expense for the unique insurance premium,  

will be 65550 € for each one of them while annual cost for ordinary maintenance for each PV 

plant it will be 230 € the year following installation but it will increase by 1.7% in according 

to Italian inflation rate. 

About revenue analysis we continue to apply the estimated growth rate of 3% for unit price of 

electricity bought by users from ENEL as well as the estimated growth rate of 1.7% for 

savings in expense for routine maintenance of own electrical system. 

One more time we consider a depreciation of 1% for both electric bill savings (together with 

previous appreciation of 3%)  and SSP revenues in according to annual decay of 1%, while 

WACC is fixed at 4.68%. 

Now we show discounted estimates of final NPV for both projects whose realization is 

postponed by five years. 

Then we report in another table the estimated values of NPV for such investment projects 

realized in current times, excluding tax incentives for both users, in order to compare such 

data with previous ones. 

So it is possible to assess the  value of option to postpone the realization of such projects. 

 

  Table1. Discounted value of NPV for investment in residential and post office’s PV plant  

                (in case such projects has been postponed by five years) 

Type of project Residential PV plant Post Office’s PV plant 

Final NPV
65

 55863.93 € 68830.13 € 

 

 

Table 2. NPV for current investment in residential and post office’s PV plant 

              (without fiscal incentives for both investments) 

Type of project Residential PV plant Post Office’s PV plant 

Final NPV 27849.01 € 33763.25 € 

 

                                                 
65. The final values of NPV have been discounted with WACC since we want to know actualize the expected  

value of NPV within five years since we should decide now if it is convenient to invest this year or postpone 

such investment. 
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As previous tables show, the discounted values of NPV to invest in five years for both 

projects are higher than NPV of both projects, depurated by tax deduction on initial 

investment expense, in case we suppose to invest this year. 

So it is possible to compute the value of option of wait for investing which is equal to the 

difference, if positive, among discounted value of NPV to invest within five years and NPV to 

invest this year otherwise it is equal to zero.  

It results that in both investments it is convenient to postpone realization of both PV plants 

and values of options to delay such investments are 28014.92 € for residential investor and 

35066.88 € for commercial PV plants. 

These high levels for option to delay these investments are due to fall of costs of photovoltaic 

investment whose we have noticed a downward trend over the last ten years. 

In fact forecasts about future decline of cost for PV plants made by Studio Fraunhofer are 

based just on this trend, which is caused by incessant technological progress which allows to 

produce solar modules at lower and lower prices. 

This is the main reason for which Italian Government is trying to gradually fiscal incentives, 

which have been granted in order to reduce dependence on fossil fuels for power generations 

not only to improve the quality of environment but also in anticipation of a future increase of 

traditional energy sources whose future depletion is expected. 

This difference in the value to wait for investing among these two users mainly depends  by 

consumption profile of each one of them. 

Post office has higher value to postpone such investment since it  is characterized by  higher 

level of self-consumption of power, so if power tariff will increase in the future its electric bill 

savings will grow as well while SSP revenues remain unchanged with respect current case. 

Moreover we observe that NPV of residential user in the current case, in which we assume the 

absence of fiscal incentives, has a greater reduction with respect to NPV of commercial user 

in the same case: so we denote that residential user is more penalized by lack of tax incentives 

for this type of investments with respect to post office. 

 

 

2
nd

 scenario 

 

In this second scenario we assume that residential user, which owns a PV plant with 25 kWp 

of nominal power, interchanges electricity with commercial user, whose PV plants has a 

nominal power of 30 kWp. 
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We suppose that residential user purchases 600 kWh per year of power at unit price of 0.10 

€/kWh for 30 years from post office and it resell this amount to GSE applying the conditions 

provided by billing mechanism ‘Scambio sul Posto’, adopted by both users. 

We choose to fix the price of power traded among these two users at 0.10 €/kWh again, in 

order to compare results of this analysis with scenarios dealt in previous chapter, with the 

only difference that in this case we hypothesize the absence of fiscal incentives for this type 

of investments. 

The assumptions relative at both investments are similar to assumptions made in previous 

scenario. 

About the initial expense for investment we continue to forecast a reduction by 25% for cost 

of PV plant and attached smart grids so that that initial cost for residential investment is 

55750 € while initial cost for post office’s PV plant is 65550 €. 

Moreover cost of inverter substitution is estimated at 5300 € for the former and 6300 € for the 

latter. 

Then the estimate of electrical bill savings is based on forecasted growth by 3% for unit price 

of electricity paid by each user to ENEL. 

Both cost for ordinary maintenance of PV plants and savings for ordinary maintenance of 

electrical systems are indexed to the average of Italian inflation rate, which is 1.7% per year. 

One more time we consider an annual depreciation of 1% for both electrical bill savings and 

SSP revenues in order to keep into account the annual decay of 1% of solar panels while we 

continue to adopt a WACC equal to 4.68%. 

Now we proceed to present  discounted estimates of final NPV for both projects whose 

realization is postponed by five . 

This table is followed by another table in which we can look at estimated values of NPV for 

these investment projects realized in current times, assuming that two users do not require tax 

deduction provided for these investments, in order to compare such data with previous ones. 

So it is possible to calculate the  value of option to postpone the realization of such projects. 
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Table 3. Discounted value of NPV for investment in residential and post office’s PV plant  

              (in case such projects has been postponed by five years) 

Type of project Residential PV plant Post Office’s PV plant 

Final NPV 55350.01 € 69203.59 € 

 

 Table 4. NPV for current investment in residential and post office’s PV plant 

               (without fiscal incentives for both investments) 

Type of project Residential PV plant Post Office’s PV plant 

Final NPV 32029.83 € 34185.34 

 

 

As we can see in previous tables, also in this case we have higher values for (discounted) 

NPVs related to possibility to invest within five years with respect to NPVs estimated for 

decision to invest this year in such projects. 

So we surely obtain positive values for options to delay these two investment: in fact for 

residential PV plant the value to postpone investment is 23320.18 € while for post office’s PV 

plant this value amounts to 35018.25 €. 

Also in this case we see that value of option of wait for investing is higher for commercial 

investor with respect to residential one but we observe that the differential of value among 

such options in increased in this last scenario with respect to the first one. 

We can denote that benefits of delay this kind of investment are increased for post office, 

probably because of  combination of self-consumption share and increased demand for power 

by residential user so that commercial user could sell its neighbour an amount of 600 kWh per 

year of energy at price, 0.10 €/kWh, which is higher than remuneration granted by ‘Scambio 

sul Posto’ for energy sold to national power grid.  

Finally we can denote that residential user is penalized by reduced power generation of its PV 

plant which causes a greater dependence towards ENEL or commercial user for energy 

provision while decline of power given to national power grid causes a loss of part of 

advantages granted by access to billing mechanism of ‘Scambio sul Posto’ whose aim is 

valorization of energy sold by private users to power grid. 

In the following tables we summarize value of options to wait for investing for residential 

user and commercial user in the two scenarios that we have seen before. 
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Table 5. Value of option to wait for investing for residential user  

RESIDENTIAL USER 

Scenario 1
st
 scenario 2

nd
 scenario 

Nominal power of residential 

PV plant 

30 kWp 25 kWp 

VALUE of OPTION 28014.92 € 23320.18 € 

 

Table 6. Value of option to wait for investing for commercial user  

COMMERCIAL USER 

Scenario 1
st
 scenario 2

nd
 scenario 

Nominal power of residential 

PV plant 

30 kWp 25 kWp 

VALUE of OPTION 35066.88 € 35018.25 € 

 

 

5.2 Added value provided by smart-grid to PV plant investment 

  

In this paragraph we present the two components of added value provided by smart grids to 

value of PV plant at which they are attached, which are savings in electrical bill and 

additional gains given by new possibilities for power interchange among private owners of 

PV plants. 

Moreover increment of value of investment in PV plant given by installation of smart grids 

has a third component which is linked indirectly to such plant: it is savings in annual routine 

maintenance for electrical system. 

We  assess this added value brought by smart grids to PV plant through comparison of  NPVs 

of  previous PV plants (residential and post office’s) computed for three different cases: 

-PV plants do not adopt smart grids; 

-PV plants are equipped with smart grids but their owners do not trade power among 

themselves; 

-PV plants are equipped with smart grids and there is power interchange among their users.
66

 

 

                                                 
4.In this case we suppose that PV plants involved in power interchange have a different nominal power 

otherwise none of their users is interested to trade power with its neighbour.  
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We estimate potential values of NPV in case both users interchange power among themselves, 

even if we have already seen in previous analyzes that hypotheses of power interchange are 

less profitable for each one of this investors with respect to possibility to invest in a PV plant 

of nominal power of 30 kWp and avoid private trading of energy. 

After that we  make our estimates of additional value generated by installation of smart grid 

on the basis of the previous scenario in which we hypothesize that both users, whose PV 

plants have a different nominal power, decide to trade electricity among themselves. 

In this scenario residential PV plant has a nominal power of 25 kWp while post office’s PV 

has a nominal power of 30 kWp. 

Then we consider two different time framework for such assessment: the current time 

framework and  the future time framework (postponement of investment in five years). 

Let’s start from current time context. 

 

5.2.1 Added value of smart-grid investment in current time framework 

 

We hypothesize that both investors decide to invest this year in PV plant equipped with smart 

grids which allow these users to trade power among themselves. 

The first investment project that we analyze is the residential PV plant, whose power is 25 

kWp. 

This user consumes 14523.35 kWh per year of energy produced by its solar plant and buys 

19326 kWh per year of power from ENEL at unit price of 0.1852 €/kWh for the first year 

following installation of PV plant while in the case in which we consider the possibility of 

power interchange among users we assume that it buys an addition share of power that 

amounts to 600 kWh per year from commercial user at unit price of 0.10 €/kWh for the whole 

useful life of its investments. 

In the case in which this amount of energy purchased from its neighbour is sold together with 

part of power surplus produced by PV plant but not absorbed by its owner, so that the total 

quantity of power given by residential user to national power grid 17357.15 kWh per year 

while in the case in which we do not consider such possibility, this quantity declines to 

16757.13 kWh per year. 

Then we present in the following table all estimated values of NPV for residential user for 

each case in order to assess added value brought by smart grids to such investment. 
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Table 7. NPV of residential PV plant with 25 kWp of nominal power 

Cases NPV 

Without smart grid 51355.38 €  

With smart grid but without power interchange 56858.27 € 

Power interchange among two users 58500.47 € 

 

 

In this three cases we see that installation of smart grids increases value of investment in PV 

plant and this increase is higher if residential user has the possibility to trade power with its 

neighbour. 

So that added value given by introduction of smart grid to such investment is 7145.09 € if 

residential user could exploit possibility of power interchange with commercial user which 

owns a PV plant whose nominal power is 30 kWp. 

The following figure shows the relative weight of each one of previous three components in 

this added value. 

 

 Figure 1. Percentage of contribution provided by improvement of each revenue item to 

                 added value of residential PV plant through adoption of smart grids 

 

 

As we can denote in graphic above the most part of added value given by smart grids to this 

investment is represented by maintenance savings while other contributions to increase of 

value of such investment are less significant. 
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The lowest share of this added value is represented by electrical bill savings since smart grids 

reduce by 3% technical losses of PV plant at which they are attached but the percentage of 

electric bill savings depends also by percentage of self-consumed power. 

So that we  have estimated the increment of electric bill savings due to smart grid, weighting 

the share of reduction of technical losses caused by implantation of this technology with the 

percentage of energy self-consumed by residential investor. 

The share of revenues for power interchange is not so high since the quantity of power traded 

among such users is quite modest, since commercial user could not sell a bigger amount of 

power to its neighbour at unit price of 0.10 €/kWh. 

 

Now we consider the situation of commercial user whose PV plant has a power of 30 kWp. 

This user self-consume 27888.75 kWh per year of energy generated by its PV plant and 

absorbs 8898.7 kWh per year of power from national power grid. 

In the case in which we allow both users to trade power, the amount of this commodity 

produced by its PV plant but not self-consumed is divided in this way: it sells 9011.25 kWh 

per year to GSE and 600 kWh to its neighbour and unit price of energy traded among these 

two users is 0.10 €/kWh. 

Otherwise this users will sell 9611.25 kWh per year of electricity only to GSE. 

In the next table we present all estimated value for NPV of commercial user for the same 

three cases that we have seen before. 

 

Table 8. NPV of post office’s PV plant with 30 kWp of nominal power 

Cases NPV 

Without smart grid 59746.66 €  

With smart grid but without power interchange 65132.85 € 

Power interchange among two users 65557.95 € 

 

 

Also for this user we see that added value given by investment in smart grids is higher if this 

user accepts to sell power to residential user. 

If post office trade electricity to its neighbour, added value for investment in PV plant 

amounts to 5811.29 € which is lower than added value that we have met for residential 

investment. 

Now we show in the following graphic the contribution of each one of three items of added 

value to investment in post office’s PV plant.  
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Figure 2. Percentage of contribution provided by improvement of each revenue item to 

                added value of post office’s PV plant through adoption of smart grids 

 

 

In previous picture we see how savings in annual expense for ordinary maintenance of 

electrical system of commercial user dominates the sum of money estimated as added value of 

smart grid to investment in photovoltaic technology. 

This greater share of maintenance savings, which constitute 90.43 % of added value brought 

by smart grid to such investment, is due to low profits deriving from sale of part of self-

produced power to residential user. 

In fact we quantify this margin of profit as a difference among unit price of power sold to 

residential user, namely 0.10 €/kWh and HZP, which is unit price at which GSE pays power 

purchased from private users. 

HZP is estimated at 0.05681 €/kWh. 

Finally we denote a slight increase of share of electric bill savings with respect previous case 

since we have an higher percentage of self-consumed power. 

For this user share of self-consumed power amounts to 74.36 % while for residential user it 

amounts to 46.43%. 
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5.2.2 Added value of smart-grid investment in future time framework 

 

Now we deal with smart-grid investments for both PV plants under the assumption that both 

users have decided to postpone own investments by five years. 

The first investment that we examine is the investment in residential PV plant. 

One more time we assume that such PV plant has a nominal power of 25 kWp and it interacts 

with post office’s PV plant whose nominal power is 30 kWp. 

The annual amount of energy self-consumed is 14523.35 kWh per year and it purchases 

19326 kWh per year of power from ENEL at unit price of 0.1852 €/kWh. 

If we consider the possibility of power interchange with commercial investor, this user  

purchases  an additional quantity of power , equal to 600 kWh per year paying different unit 

price, 0.10 €/kWh to residential investor. 

However this additional amount of power received by post office’s PV plant is resold to GSE 

in according to condition stated in billing mechanism of ‘Scambio sul Posto’. 

So that if residential investor does not trade with its neighbour, the quantity of energy given to 

electric power grid is 16757.13 kWh per year, otherwise it is 17357.15 kWh per year. 

Then we proceed to NPV for this kind of investment for the same three case: 

-PV plant is not equipped with smart grids; 

-PV plant is equipped with smart grid but users do not interchange power; 

-both users trade powers. 

In the following table we illustrate all estimates of NPV for each one of previous cases. 

 

Table 9. NPV of residential PV plant with 25 kWp of nominal power 

Cases NPV 

Without smart grid 47165.32 €  

With smart grid but without power interchange 53949.51 € 

Power interchange among two users 55350.1 € 

 

 

If we look at previous table we denote that smart grids provide an added value to such 

investment which is 8184.78 € in case residential users accepts to buy energy from its 

neighbour otherwise it amounts to 6784.19 € so the contribute of smart grid to power 

interchange is equal only to 1400.59 €. 

If we want to see the respective percentage of components of this added value, we present in 

the following figure all components of such added value together their respective shares. 
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Figure 3. Percentage of contribution provided by improvement of each revenue item to 

                added value of residential PV plant through adoption of smart grids 

 

 

 

In the previous figure we denote a greater predominance of maintenance savings in the added 

value generated by smart grids with respect to case of investment made in current time. 

Such growth of share for maintenance savings is due to expected increase of this expense that 

we have indexed with respect to inflation rate of 1.7% per year. 

Moreover we see a reduction of NPV in future investment with respect to investment made in 

current time because of expected abolishment of fiscal incentives for investments in ‘clean 

energy’ for the future, so that if NPV declines but SSP revenues and share of added value due 

to increase of electric bill savings remain unchanged and savings in routine maintenance of 

electrical system continues to grows, it is clear that weight of this last item grows 

significantly. 

Then we denote a decline for share of revenues for power interchange since this value is 

linked to SSP revenues that do not changes over time. 

The second investment project whose we evaluate added value brought by smart grids is the 

investment for post office’s PV plant. 

This PV plant has a nominal power of 30 kWp while its neighbour owns a PV plant was 

nominal power is 25 kWp. 

The amount of self-consumed power is 27888.75 kWh per year while the annual amount of 

power bought from national energy provider is 8898.7 kWh. 
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Moreover we should distinguish two cases: the first case in which this investor does not 

interact with residential user for power interchange and the second case in which both 

investors trade power among themselves. 

In the first case post office will sell 9611.25 kWh per year of electricity to GSE in according 

to mechanism of valorisation of energy sold, namely ‘Scambio sul Posto’. 

In the second case the annual quantity of energy sold by commercial user to GSE is 9011.25 

kWh per year while residential user purchases by this investor 600 kWh of power per year 

paying an annual sum of money equal to 60 €. 

The following step is the estimate of NPVs for this investment project for the same three 

cases that we have already defined before. 

In this table we could look at results of this estimation procedure. 

 

Table 10. NPV of post office’s PV plant with 30 kWp of nominal power 

Cases NPV 

Without smart grid 63812.88 €  

With smart grid but without power interchange 68830.13 € 

Power interchange among two users 69203.59 € 

 

 

Data of table above say that added value of installation of smart grids is 5390.71 € in case 

commercial user chooses to interchange power with the residential one, otherwise added value 

of smart grids in case this user forgoes to trade energy with its neighbour is 373.46 €. 

This time we observe that benefits of power interchange due to implantation of this 

technology are lower than all other cases that we have faced so far. 

However we illustrate in the following figure the measures of contribution given by each one 

of these three components to added value of smart grid on investment. 
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Figure 4. Percentage of contribution provided by improvement of each revenue item to 

                added value of post office’s PV plant through adoption of smart grids 

 

 

In the last figure we observe a slight increase of percentage of savings in cost for routine 

maintenance of electrical system with respect to case in which investment in such commercial 

PV plant is set in the present temporal framework. 

This is due to expected increase of cost for ordinary maintenance for electrical system that 

valorises more and more smart grids that allows to save money for this type of expense. 

The share of electrical bill savings is unchanged since the percentage of self-consumed power 

does not change as well as the reduction by 3% of technical losses of PV plant due to such 

technology. 

Finally we denote a slight decline of contribution of revenues for power exchange to this 

added value: the reason is that SSP revenues and monetary amount received by neighbour for 

energy sold do not change in absolute value over time while NPV increases because of smart 

grids. 

In this way the contribution of benefits generated by power interchange among private users 

tend to decline over time 
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5.3 Conclusions  

 

In the first part of this chapter we have seen the value of option to wait for investing in two 

PV plants that provided power to a residential and a commercial user. 

From such analysis it results that both investors should continue to invest in PV plants whose 

nominal power is 30 kWp and avoid to trade power among themselves, as we have seen in 

previous chapter, but the option to invest has a positive values for both users. 

So that they should invest in 5 years since initial cost of investment has been reduced by 25% 

while maintenance savings and electrical bill savings tend to maintain an increasing trend. 

Finally we have demonstrated that the highest share of added value of smart grids to PV 

plants at which they are installed is represented by savings in annual cost for ordinary 

maintenance of electrical system. 

It is expected that this share will increase in the future because annual expense for routine 

maintenance of electrical system will grow by 1.7% per year in according to Italian inflation 

rate while SSP revenues tends to remain unchanged. 

The share of revenues for power interchange is higher for users which purchase power from 

other users and resell such electricity to the market in according to aforementioned 

mechanism ‘Scambio sul Posto’. 

We do not forget that starting condition of greater quantity of energy bought with respect to 

energy sold for an users improves share of added value to NPV due to revenues for power 

interchange since this user obtains more benefits of power interchange that could be exploited 

only if such investor finances the building of such system. 
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CONCLUSIONS 

 

The purpose of this study is to evaluate if installation of smart grid to two medium-small sized  

PV plants increases the value of such PV investments through exploitation of benefits brought 

by this new technology as possibility to interchange power among private producers, 

reduction of technical losses of PV plants and reduction of expenses for ordinary maintenance 

of electrical systems of such users. 

At first we have described technical features of this technology and its crucial role in order to 

improve quality of power provision and implement exploitation of renewable sources for 

generating power with low environmental impact. 

Then we have dealt with PV technology, describing its technical features and level of 

development of PV  markets but we have focused on regulatory framework of Italian PV 

market in order to see the main support schemes currently available for investors in such 

technology. 

The part of Italian regulatory framework concerning support schemes available for investment 

in PV sector constitutes an useful tool for evaluating the effects of combination between such 

support schemes and smart-grid technology. 

In all scenarios that we have analyzed, we denoted that anyway smart grids improve value of 

investments in PV plants but to understand the benefits brought by smart grids in terms of 

new possibility of power interchange among private users, we should differentiate nominal 

power of both PV plants.  

In this last scenario we have denoted that owner of greater PV plant benefits more from such 

possibility of power interchange while owner of smaller PV plant records a net fall of 

profitability for  its investment since benefits of power interchange do not offset the loss of 

profitability due to reduction of nominal power of its PV plant. 

Since the best solution for these two investors is to avoid both reduction of nominal power of 

own PV plants and interchange of power among themselves, it results that the greatest 

contribution of such technology to profitability of PV investments is given by savings in 

expenses for ordinary maintenance of their  electrical systems, which are connected to PV 

plants. 

Moreover we have observed that share of contribution to profitability given by savings in 

routine maintenance of electrical system is higher in case we postpone by five years such 

investment, because cost of investment in PV plants equipped with smart grid will fall by 
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25% in five years while we estimate an annual increase by 1.7% of expense for ordinary 

maintenance of electrical systems of previous users. 

So we learn that the benefits provided by incentive mechanism of net metering are not 

compatible with new possibilities of power interchange provided by adoption of smart grids. 

It seems that net metering is structured so as to discourage power trading among private users 

in order to favour injection of surplus power produced by private user to national power grid. 

However this technology provides economic benefits in terms of increased reliability and 

safety of electrical systems of private owners that could be quantifiable in terms of savings in 

yearly cost of routine maintenance. 

The share of saving in such costs has been estimated at 40%. 

The results of economic analysis of such investment project could be interpreted as a proof  

that potential installation of smart grids on large scale would produce great economic benefits 

as reduction of potential outages on power grids and improvement of quality of power 

provided, since growth of digitalization presses for a better quality of electricity. 

We can say that development of smart grids is complementary to development of production 

of power through renewable sources since it reduces waste of power due to technical losses of 

plants fed with renewable sources and it allows to equilibrate demand and supply of power in 

order to avoid overloads in power grid. 

Moreover it favours integration of national electricity markets, which is a  necessary condition 

to support growth of sector of ‘clean energy’.  

However development of smart grids on large scale requires an adequate regulatory 

framework and the support of government policies. 
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