
Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea in Ingegneria dell’Automazione

Tesi di laurea

Development of functional safety applications for Autec
products. Study of protocols: CANopen, CANopen Safety,

FSOE and ProfiSafe

Candidato:

Giovanni Peserico
Matricola 1179223

Relatore:

Ch.mo Prof. Stefano Vitturi

Anno Accademico 2018-2019

Contents

1 Introduction 5

2 Protocol used in automation 6
2.1 Controller Area Network(CAN) . 6
2.2 CANOpen . 10

2.2.1 Introduction . 10
2.2.2 Structure . 10

2.3 CANOpen Safety . 13
2.3.1 Protocol characteristics . 13
2.3.2 Initialization of a safety network with CANopen Safety 15

2.4 EtherCAT . 17
2.5 Safety for Ethercat (FSOE) . 19

2.5.1 protocol characteristics . 19
2.6 Profibus and Profinet . 22

2.6.1 Profibus . 22
2.6.2 Profinet . 25

2.7 Profisafe . 26
2.7.1 protocol characteristics . 27

3 AUTEC products 30
3.1 Radio Remote Controller and its safety function . 30
3.2 Example of AUTEC products . 32

3.2.1 Dynamic+ Radio Remote Controller . 32
3.2.2 Air Radio Remote Controller . 33

3.3 New development: ideas and future improvements . 35

4 Codesys 36
4.1 Introduction . 36
4.2 Briefly explanation of how Codesys works . 36
4.3 Use of Codesys for safety application . 38

5 Application development 40
5.1 System structure and safety validation operation . 40
5.2 Safety code validation example: function CRC_Calculation 46

6 Conclusion 55

A Example of CANopen Safety chip 56
A Structure and Functionality of the CSC(CANopen Safety Chip) 56
B Structure of the function interface between the permanent firmware and the safety

application . 57
C Requirements . 59

B International standard and regulations 60

2

C Hercules Safety TMS570 MCU by Texas Instrument 66

D Principal differences CAN, EtherCAT and Profinet 68

E Black channel 69

F Token Bus Basic Function 71
A Addition of a new station . 71
B Erasure of a station from the network . 72
C Initialization of the logical ring . 72
D Management of the loss of the token . 72

G Ethernet 73

3

Chapter 1

Introduction

Modern automation systems are strongly based on communication networks, which are nowadays
used at all the hierarchical levels. The introduction of industrial networks started in the 1980s, with
the so called “Fieldbuses”, that are communication systems specifically conceived for field level data
exchange between controllers and sensors/actuators. They have been followed by Real-time Ether-
net networks, at the beginning of the 2000s and, some years later, by the industrial wireless networks.
Industrial networks are rather different from traditional communication systems typically used for gen-
eral purpose applications. Indeed, they rely on protocols specifically designed to ensure real-time and
deterministic performances, as well as to provide high reliability, since it is essential to guarantee con-
tinuity of the production processes, even in the presence of hard environmental conditions, as it is
often the case of industrial applications. For example, network operations may be strongly influenced
by the magnetic interference, mechanical and thermal stresses, humidity, dusts, vibrations, etc .
In this scenario, in recent years, industrial networks have become of fundamental importance, not
only for the communication between the devices at all automation levels, but also for the implementa-
tion of intrinsic safety applications that, traditionally, were based on specific and dedicated hardware
systems. This opportunity is particularly appealing since also safety applications can be now inte-
grated in the context of factory automation and, more in general, in Industrial Internet of Things (IIoT)
and Industry 4.0 systems. This thesis has the principal goal of developing intrinsic safety applica-
tions in distributed real-time industrial systems, mainly based on fieldbuses and RTE networks. To
achieve this important objective the first part of this elaborate provides an introduction of the princi-
pal protocols, such as CANopen Safety, Fail safe Over Ethercat (FSOE) and Profisafe, used for the
safety relevant applications in the automation environment, analysing properties, story, the use of
them by industry, benefit and drawback of each protocol. To fully understand their working principle
the relative consortia networks, such as CAN, Ethercat and Profibus/Profinet, are briefly introduced,
but remembering the fact that these protocols can also be implemented on other networks. Under-
stood the main differences of these protocols, with particular attention to the different way of providing
safety, it was searched an environment to develop safety application using these protocols. Codesys
was identified as this code environment and in particular Codesys Safety SIL2, which allows to work
with Safety protocols and it also provides specific tools for the development of safety application and
for a SIL2 certification.
Once analysed and studied all these arguments, it was possible to start an applicative activity which
provides the practical fully comprehension of them through the development of safety applications.
In particular, since this elaborated is developed with the collaboration of Autec Srl, the applications
are developed for this company products, which were previously analysed.

5

Chapter 2

Protocol used in automation

2.1 Controller Area Network(CAN)

CAN is an International Standardization Organization (ISO) serial communications bus originally de-
veloped for the automotive industry to replace the complex wiring harness with a two-wire bus. The
specification calls for high-immunity to electrical interference and the ability to self-diagnose and re-
pair data errors. It was developed by BOSCH in 1986 with some important advantages like:

• fixed time response;

• easy wiring based on twisted pair;

• high-immunity to electrical interference;

• ability to self-diagnose and repair data errors with the possibility to isolate a node which high-
lighted an error without corrupting the network .

All these benefits lead to a widespread use of CAN also in the automation environment. The ISO
11898 architecture defines the lowest two layers of the seven layer OSI/ISO model: the data-link layer
and physical layer. The CAN network has a multi-master serial bus for connecting electronic control
units, also referred to as nodes, each having a microprocessor and possibly sensors and actuators.
Since CAN is a multi-master communication protocol, every node in the system is equal to every
other node and any processor can send a message to any other processor. With serial transmission
each bit is sent one at a time onto essentially a single wire bus. Also parallel transmissions are
permitted, this transmission would involve each bit having its own wire so that all the bits can be sent
simultaneously and would give quicker transmission, at the expense of higher cost. The processor
decides what messages it wants to transmit and what received messages mean. Messages are sent
onto the bus serially when the bus is free. In the case of simultaneous transmissions, by two or more
devices, a collision occurs, which is handled by the bitwise arbitration method, which requires all
nodes on the CAN network to be synchronized to sample every bit on the CAN network at the same
time. The CAN specifications use the terms "dominant" bits and "recessive" bits where dominant
is a logical 0 (actively driven to a voltage by the transmitter) and recessive is a logical 1 (passively
returned to a voltage by a resistor). The idle state is represented by the recessive level (Logical
1). If one node transmits a dominant bit and another node transmits a recessive bit then there is a
collision and the dominant bit "wins". This means there is no delay to the higher-priority message, and
the node transmitting the lower priority message automatically attempts to re-transmit six bit clocks
after the end of the dominant message. This makes CAN very suitable as a real-time prioritized
communications system. The exact voltages for a logical 0 or 1 depend on the physical layer used, but
the basic principle of CAN requires that each node listens to the data on the CAN network including
the transmitting node(s) itself (themselves). If a logical 1 is transmitted by all transmitting nodes at
the same time, then a logical 1 is seen by all of the nodes, including both the transmitting node(s)
and receiving node(s). If a logical 0 is transmitted by all transmitting node(s) at the same time, then a

6

logical 0 is seen by all nodes. If a logical 0 is being transmitted by one or more nodes, and a logical 1
is being transmitted by one or more nodes, then a logical 0 is seen by all nodes including the node(s)
transmitting the logical 1. When a node transmits a logical 1 but sees a logical 0, it realizes that
there is a contention and it quits transmitting. By using this process, any node that transmits a logical
1 when another node transmits a logical 0 "drops out", losing in such way the arbitration. A node
that loses arbitration re-queues its message for later transmission and the CAN frame bit-stream
continues without error until only one node is left transmitting. Since the 11 (or 29 for CAN 2.0B) bit
identifier is transmitted by all nodes at the start of the CAN frame, the node with the lowest identifier
transmits more zeros at the start of the frame, and that is the node that wins the arbitration or has the
highest priority.
When the CAN controller receives a message, the received serial bits are stored bit by bit until an
entire message has been received and can be acted on by its microcontroller.
All nodes on the CAN network must operate at the same nominal bit rate, but noise, phase shifts,
oscillator tolerance and oscillator drift mean that the actual bit rate may not be the same as the
nominal bit rate. Since a separate clock signal is not used, a means of synchronizing the nodes
is necessary. Synchronization is important during arbitration since all the nodes in must be able to
see the data on the bus at the same time to understand which node "wins" the conflict. Moreover
it is also important to ensure that variations in oscillator timing between nodes do not cause errors.
Synchronization starts with a hard synchronization on the first recessive to dominant transition after a
period of bus idle (the start bit). Resynchronization occurs on every recessive to dominant transition
during the frame. The CAN controller expects the transition to occur at a multiple of the nominal bit
time. If the transition does not occur at the exact time the controller expects it, the controller adjusts
the nominal bit time accordingly. The adjustment is accomplished by dividing each bit into a number
of time slices called quanta, and assigning some number of quanta to each of the four segments
within the bit (Fig. 2.1):

• the Synchronization Segment, which always is one quantum long, is used for synchronization
of the clocks. A bit edge is expected to take place here when the data changes on the bus.

• the Propagation Segment, which is needed to compensate for the delay in the bus lines.

• the Phase Segment, which may be shortened or lengthened if necessary to keep the clocks in
sync.

A transition that occurs before or after it is expected causes the controller to calculate the time differ-
ence and lengthen phase segment 1 or shorten phase segment 2 by this time. This effectively adjusts
the timing of the receiver to the transmitter to synchronize them. This resynchronization process is
done continuously at every recessive to dominant transition to ensure the transmitter and receiver
stay in sync. Continuously resynchronizing reduces errors induced by noise, and allows a receiving
node that was synchronized to a node which lost arbitration to resynchronize to the node which won
arbitration.

Figure 2.1: Structure of bit timing in CAN

7

As concerning the message, there is a basic format (Fig. 2.2) composed by:

• 1 bit to denote start of frame(SOF);

• 11 bits to identify the bit used when information is required from another node to determinate
the specific node;

• the single remote transmission request(RTR), which must be dominant (0) for data frames and
recessive (1) for remote request frames;

• a dominant identifier extension(IDE) bit, which is an extra identification bit that must be dominant
(0) for base frame format with 11-bit identifiers;

• a reserved bit for possible use by future standard amendment;

• 4-bit data length code (DLC) which contains the number of bytes of data being transmitted (0–8
bytes).

• Data Field, which are up to 64 bits of application data;

• 16 bits for the cyclic redundancy check (CRC) field;

• Bit for acknowledges (ACK): Every node receiving an accurate message overwrites this reces-
sive bit in the original message with a dominate bit, indicating an error-free message has been
sent. Should a receiving node detect an error and leave this bit recessive, it discards the mes-
sage and the sending node repeats the message after rearbitration. In this way, each node
acknowledges the integrity of its data. ACK is 2 bits, one is the acknowledgement bit and the
second is a delimiter.

• 7- bit for end-of-frame(EOF) , which marks the end of a CAN frame (message) and disables
bitstuffing (when 5 bits of the same logic level occur in succession during normal operation, a
bit of the opposite logic level is stuffed into the data), indicating a stuffing error when dominant.

• 7-bit interframe space (IFS), which contains the time required by the controller to move a cor-
rectly received frame to its proper position in a message buffer area.

Figure 2.2: Structure of a message in CAN

An extended frame format (Fig. 2.3) is also used in some instances. the Extended CAN message is
the same as the Standard message with the addition of:

• The substitute remote request (SRR) bit replaces the RTR bit in the standard message location
as a placeholder in the extended format.

• A recessive bit in the identifier extension (IDE) indicates that more identifier bits follow. The
18-bit extension follows IDE.

• Following the RTR and r0 bits, an additional reserve bit has been included ahead of the DLC
bit.

8

Figure 2.3: Structure of an extended message in CAN

The frame described above can be of four different types:

1. Data Frame: the most common message type, and comprises the Arbitration Field, the Data
Field, the CRC Field, and the Acknowledgement Field.

2. Remote Frame: to solicit the transmission of data from another node. The remote frame is
similar to the data frame, with two important differences. First, this type of message is explicitly
marked as a remote frame by a recessive RTR bit in the arbitration field, and secondly, there is
no data.

3. Error Frame: which is a special message that violates the formatting rules of a CAN message.
It is transmitted when a node detects an error in a message, and causes all other nodes in the
network to send an error frame as well. The original transmitter then automatically retransmits
the message. An elaborate system of error counters in the CAN controller ensures that a node
cannot tie up a bus by repeatedly transmitting error frames.

4. Overload Frame: similar to the error frame with regard to the format, and it is transmitted
by a node that becomes too busy. It is primarily used to provide for an extra delay between
messages.

The robustness of CAN may be attributed in part to its abundant error-checking procedures. The
CAN protocol incorporates five methods of error checking: three at the message level and two at the
bit level. If a message fails any one of these error detection methods, it is not accepted and an error
frame is generated from the receiving node. This forces the transmitting node to resend the message
until it is received correctly. However, if a faulty node hangs up a bus by continuously repeating an
error, its transmit capability is removed by its controller after an error limit is reached.
Error checking at the message level is enforced by the CRC and the ACK slot. The 16-bit CRC con-
tains the checksum of the preceding application data for error detection with a 15-bit checksum and
1-bit delimiter. The ACK field is two bits long and consists of the acknowledge bit and an acknowledge
delimiter bit. Also at the message level there is a form check which is done by looking for fields in the
message which must always be recessive bits. In particular the bits checked are the SOF, EOF, ACK
delimiter, and the CRC delimiter bits and if a dominant bit is detected, an error is generated.
At the bit level, each bit transmitted is monitored by the transmitter of the message. If a data bit (not
arbitration bit) is written onto the bus and its opposite is read, an error is generated. The only excep-
tions to this are with the message identifier field which is used for arbitration, and the acknowledge
slot which requires a recessive bit to be overwritten by a dominant bit.
The final method of error detection is with the bit-stuffing rule where after five consecutive bits of the
same logic level, if the next bit is not a complement, an error is generated. Stuffing ensures that rising
edges are available for on-going synchronization of the network. Stuffing also ensures that a stream
of bits is not mistaken for an error frame, or the seven-bit interframe space that signifies the end of
a message. Stuffed bits are removed by a receiving node’s controller before the data is forwarded
to the application. With this logic, an active error frame consists of six dominant bit violating the bit
stuffing rule. This is interpreted as an error by all of the CAN nodes which then generate their own
error frame. This means that an error frame can be from the original six bits to twelve bits long with all
the replies. This error frame is then followed by a delimiter field of eight recessive bits and a bus idle

9

period before the corrupted message is retransmitted. It is important to note that the retransmitted
message still has to contend for arbitration on the bus.
The data link and physical signalling layers, which are normally transparent to a system operator, are
included in any controller that implements the CAN protocol, such as TI’s TMS320LF2812 3.3-V DSP
with integrated CAN controller. Connection to the physical medium is then implemented through a
line transceiver such as TI’s SN65HVD230 3.3-V CAN transceiver to form a system node. Signalling
is differential which is where CAN derives its robust noise immunity and fault tolerance. Balanced dif-
ferential signalling reduces noise coupling and allows for high signalling rates over twisted-pair cable.
Balanced means that the current flowing in each signal line is equal but opposite in direction, result-
ing in a field-cancelling effect that is a key to low noise emissions. The use of balanced differential
receivers and twisted-pair cabling enhances the common-mode rejection and high noise immunity of
a CAN bus. The High-Speed ISO 11898 Standard specifications are given for a maximum signal rate
of 1 Mbps with a bus length of 40 m with a maximum of 30 nodes. It also recommends a maximum
indeterminate stub length of 0.3m. The cable is specified to be a shielded or unshielded twisted-pair
with a 120-Ω characteristic impedance (Zo). The ISO 11898 Standard defines a single line of twisted-
pair cable as the network topology, terminated at both ends with 120-Ω resistors, which match the
characteristic impedance of the line to prevent signal reflections. According to ISO 11898, placing RL
on a node must be avoided because the bus lines lose termination if the node is disconnected from
the bus. The CAN standard defines a communication network that links all the nodes connected to a
bus and enables them to talk with one another. There may or may not be a central control node, and
nodes may be added at any time, even while the network is operating-
Defined the main characteristic of of CAN and introduced its characteristics at data link and physical
layers, it is now possible introduce the different application layer supported by the network.

2.2 CANOpen

2.2.1 Introduction

In terms of OSI model, CANopen is a standardized protocol at application layer for distributed automa-
tion systems based on CAN (Controller Area Network) at physical and data-link layers. In particular
it offers the following performance features:

• Transmission of time-critical process data according to the producer consumer principle;

• Standardized device description (data, parameters, functions, programs) in the form of the so-
called "object dictionary". Access to all "objects" of a device with standardized transmission
protocol according to the client-server principle

• Standardized services for device monitoring (node guarding/heartbeat), error signalisation (emer-
gency messages) and network coordination ("network management")

• Standardized system services for synchronous operations (synchronization message), central
time stamp message

• Standardized help functions for configuring baud rate and device identification number via the
bus

• Standardized assignment pattern for message identifiers for simple system configurations in
the form of the so-called "predefined connection set"

2.2.2 Structure

At CANopen layer (Fig. 2.4), two devices exchange Communication and Application Objects (COB).
These instruments allow to access to objects through a 16-bit index and a 8-bit subindex. As known,
since the communication between two devices passes through all their levels, COBs are inserted in
one or more CAN sequence with predefined identificator.

10

Figure 2.4: Protocol Layer interaction

Once understood in which part of a network CANOpen is inserted it is essential to define how a
device with this application protocol is structured (Fig. 2.5). In particular it is mainly composed by
three parts:

1. Communication interface, where are defined the communication objects and all the services to
transmit them over the bus.

2. Object dictionary, where are defined all types of data and Objects (COB) available for the net-
work.

3. Application program, which defines all the function governing internal mechanisms and for the
connection to the hardware interfaces of the process.

Figure 2.5: CANOpen Device model

11

The communication Objects defined in the communication interface can be of four different types:

• Network Management

• Service Data Objects

• Process Data Objects

• Predefined messages such as Sync Object, Time stamp Objects and Emergency Objects

In CANopen there are many ways of transmitting data such as synchronous, asynchronous, with or
without time constraints. Each type of transmission depends on the specific communication object.
In particular if the SDO is used, then the transmission is not characterized by strong time constrains
and it is possible to access to the object dictionary with the index and the subindex.
The SDO transmission uses a Client/Server model and it is also allow to send more than 8 bytes,
since it used the segmentation mechanism. Two CAN messages are required to transfer data. Firstly
there is the ’SDO request’ and secondly the ’SDO response’ . The two network nodes, which are
involved in this process, are designated as ’SDO Client’ and as ’SDO Server’. The server provides
the data via its object directory or accepts it. As an SDO transfer is confirmed, each SDO request
must be answered, even if the device can provide no relevant data or the request was faulty. This
negative response is called "Abort" and includes a long "Abort code" in addition to the 4 bytes. For
these characteristics this modality is used to configure devices in a CAN network with messages with
low priority.
Instead if PDO is used then the transmission has high speed and high priority. In a PDO message
data can be no more than 8 bytes, while the PDO objects are mapped in the Object Dictionary. It is
used a Master/slave model where the Master node is the only one device that can allow the initial-
ization of the communication, which is a transmission without confirm (there is no reply to the sender
to assure that the message is achieved). With PDO it is possible to have different types of transmis-
sion such as synchronous/asynchronous and Cyclic/Acyclic. In particular the synchronization allows
the devices to be strictly synchronized with the master clock, while asynchronous transmission does
not depend on that clock. The concept of cyclic and acyclic communication are instead linked with
the periodicity: in the cyclic one the PDO is sent periodically inside the sync windows, while for the
acyclic one it is sent always in the sync period but without fixed interval. It is possible to summarize
the way of transmission with PDO in 6 different methods:

1. Synchronous Cyclic: this method is the best one for the data flow and guarantees real-time.
The PDO is sent when the Sync object is received and it is possible to set the period.

2. Synchronous Acyclic : this is the cheapest one for the bandwidth, but it is sensitive to error. The
PDO is sent after some event and allows the synchronization with the Sync Object but not in a
periodic way.

3. Synchronous Remote : this method is based on the Remote Frame. The PDO is sent only after
having received the remote frame and data are updated only after the Sync object, which can
be sent manually or periodically.

4. Asynchronous Remote : this method work as previous without using the Sync object, but just
sending the PDO after the remote frame

5. Asynchronous Manufacturer Profile : this method allows to achieve very good real-time perfor-
mance with the drawback that the network could saturate. In fact a frame is sent every time
an Applicant Event which means for example every time change the value of the PDO and so
there could be problem of saturation if it changes too many times.

6. Asynchronous Device Profile: this method is linked with the manufacturer choice.

Predefined messages have specific function, for example SYNC telegram is a periodical broadcast
telegram which can be used to transfer synchronized input data and simultaneously activate output
data on a system-wide basis. Emergency Object are another example of predefined message, in

12

particular if a CANopen Slave malfunctions, an emergency message to the fieldbus is sent. Only one
emergency message is sent for each error. If the nodes receive an emergency message, they may
perform an emergency stop or a predefined action for the specific emergency.
Finally the Network Management Services are used to activate the different system statuses of a
CANopen device. When the device has been switched on (’Power On’), an internal system initial-
ization (’initialization’) is run. Following a successful initialization, a boot-up telegram responds. The
device is now operational and is in the ’preoperational’ status. As a slave can be parametrized in
this status, it is therefore possible to read and write SDO. The NMT command ’Operational’ can be
used to switch a CANopen device to the operational status. In this status the process data is active,
the PDO communication is running. The NMT command ’Reset Application’ is used to restart the
CANopen device, whereas the NMT command ’Reset Communication’ is used to reset the CANopen
communication of the device only. Following both resets, the device is in the initialization status.

2.3 CANOpen Safety

2.3.1 Protocol characteristics

CANopen Safety is a protocol extension of the proven CANopen Standard (EN50325 − 4).
At the physical layer and the lowest level of communication according to the OSI model, the inter-
nationally standardised CAN bus (ISO11898 − 1/2) is used. CANopen Safety was specified by the
international users’ and manufacturers association CAN in Automation (CiA) as DS304 and trans-
ferred into EN50325 − 5.
Therefore, it provides a standardised protocol which allows the user to transfer functional safety in-
formation or process data. The basic idea of CANopen Safety is the transmission of process data
twice independently in two subsequent CAN messages which make up a CANOpen Safety message,
called SRDOs (Safety Relevant Data Objects). The first message contains the process data as in
normal PDOs, while the second frame transmits the same data but bit-wise inverted. The two used
CANIDs are different in minimum in two of the eleven bits. This concept, called serial redundancy,
allows the use of the entire 8-byte data field. This means the PDO mapping defined in standard
CANopen device and application profiles may be easily adapted to the SRDO mapping.
SRDOs are transmitted periodically with a fixed cycle time called SCT (safeguard cycle time) and as
soon their transmission is interrupted an error is signalled and the safety configuration is imposed. In
such way there is the constant monitoring of safety data.
There are two kinds of use for SRDOs: data transmission and data reception,distinguished by the
information direction. Devices where the information direction is set to transmit (tx) are SRDO pro-
ducers and devices where the information direction is set to receive (rx) are called SRDO consumers.
Each part of an SRDO has an abundant error checking which is composed by the five, already de-
scribed, methods typical of CAN which also provide the acknowledgement of each received message.
Moreover consuming safety-related device crosschecks the received process data and uses also a
running number to detect possible repetition, lost, insertion or wrong sequences.
In addition, there is also a time-out between the transmission of the two CAN messages composing
an SRDO which is called SRVT (safety-relevant validation time). There are two timers monitoring the
two cited times and in particular used for detecting possible time-out:

1. One monitors the Safety-related object validation time (SRVT)

2. One monitors the safeguard cycle time (SCT).

If one of the two timers expires (Fig. 2.6), the actuating device goes into safe state.

13

Figure 2.6: CANOpen Safety possible Time-out

The CANopen Safety protocol also defines the GFC (Global Failsafe Command), which consists of
two high-priority CAN messages (CAN identifiers 1 and 2), containing no data and which can be sent
by all networked nodes. The node that sends the GFC must inform the network of the reason for this
GFC transmission via SRDO. In general the GFC is used to speed up the system reaction time. Since
it is transmitted event-triggered, it is not considered safe, but when coupled with the transmission of
a corresponding SRDO the safety issue is resolved. Due to CANopen application layer compatibil-
ity, the safety-relevant communication is limited to transmitting 64 SRDOs. The number of SRDO
consumers is not limited. It is assumed that a device with the need of safety-relevant communica-
tion may use all other CANopen functionality including PDO (process data object), SDO (service data
object), NMT (network management), and Emergency services. SDO access to safety-relevant appli-
cation and configuration objects is allowed only during the NMT pre-operational state. As the sources
(safety inputs) are the origin of safe communication objects (SRDOs), their number is limited to 64.
The number of safety controllers is not limited in theory, as CAN allows consumers to listen to the
same SRDO(s). As concerning the SRDOs in the object dictionary, they are described by the SRDO
communication parameter and the SRDO mapping parameter. The SRDO communication parame-
ter describes the communication capabilities of the SRDO. The SRDO mapping parameter contains
information about the content of the SRDOs (device variables). The indices of the corresponding
Object Dictionary entries are computed, in general, by the following formulas:

• SRDO communication parameter index = 1300h + SRDO-number

• SRDO mapping parameter index = 1380h + SRDO-number

When a sensor (input) device detects any single failure, it stops transmission of SRDOs, which will
be detected by all SRDO consuming devices, which will then transit into safe state. The benefit of
the simple SRDO protocol is that no additional CRC is required and that the standardized CANopen
profiles can be used without any change. But the simplicity of the CANopen Safety protocol has some
drawbacks on the other side. For example, the Safe configuration of application parameters is not
standardized by the CiA 304 specification.
Once setted the safe configuration of communication parameters, then it is inserted in the object
dictionary and a CRC is calculated and associated to it. The CANopen Safety protocol stack checks
periodically, if the CRC sum is still the same. Any inconsistency would lead to stop device operation
and to go into safe state. If an amendment is necessary, then, after the change, it is mandatory
to confirm the new CRC associated to the new configuration. Otherwise the safe communication
does not work. The CANopen Safety Protocol allows safety relevant sensors and actuators to be
connected directly with each other. The presence of a safety relevant control unit (e.g. PLC, safety
monitor) is possible if required by the application, but not mandatory. Therefore logically comparable
safety chains, like those found in standard wired technology, can be realized.

14

Summing up the safety protocol encompasses procedures to systematically detect faults or errors that
could occur during operation. In particular for controlling each error, the CANopen Safety protocol
uses different control strategies (also reported in tab 2.1):

• A running-number, to detect possible loss, insertion, repetition and wrong sequence

• 2 timers to detect possible time-out.

• A confirmation of the reception of the message with an acknowledgement for each part (CAN
message) of the SRDO.

• The identification of transmit and receive SRDO with double identification of the node: with the
id of the first can message and the bit-wise inverted id of the second one

• A CRC checksum to detect possible corruption of data

• The cross-check of the effectiveness bit-wise inversion.

Fault Safety Measures
Runn. Nr Time out ack mess rx/tx SRDO CRC cross-checking

Corruption x x x
Wrong sequence x x

Repetition x x
Insertion x x x x

Loss x x x
Delay x

Coupling x x

Table 2.1: Safety measures adopted by CANopen Safety to detect errors and faults

With all the cited measures to obtain a safe transmission, with CANopen Safety a device can reach
a SIL-3 (Safety Integrity Level) certification according to the standard EN 61508. Unfortunately there
are no tools, useful for the safety certification, supplied by the developers. An example of industrial
product, which obtained the SIL-3 certification using CANopen Safety, is the safety encoders from
the Optocode series. In particular this kind of product was certified by the German testing authority,
TUV Rheinland, and it represents the first certified optical SIL-3 encoders.

2.3.2 Initialization of a safety network with CANopen Safety

As concerning CANopen Safety it is finally presented the general flow chart of the network initialisa-
tion process, controlled by a NMT master application or configuration application (Fig. 2.7).

A) In the first step (Step A) all the devices are in the node state PRE-OPERATIONAL which is
entered automatically after power–on. In this state the devices are accessible via their default
SDO using identifiers that shall been assigned according to the pre-defined connection set. In
this step the configuration of device parameters takes place on all nodes which support param-
eter configuration. Some configuration data might be safety-relevant. So additional measures
shall be taken, to ensure the safety function in the network. This is done by a configuration
application or tool which resides on the node that is the client for the default SDOs. For devices
that support these features, the selection and/or the configuration of PDOs, the mapping of ap-
plication objects (PDO mapping), the selection and/or the configuration of SRDOs, the mapping
of application objects (SRDO mapping), the configuration of additional SDOs and, optionally,
the setting of COB-IDs may be performed via the default SDO objects. In many cases, how-
ever, a configuration is not necessary, since default values are defined for all application and
communication parameters.

15

B) If the application requires the synchronisation of all or some nodes in the network, the appro-
priate mechanisms have to be initiated. This step is used to ensure that all nodes except safety
nodes are synchronised by the SYNC object before entering the node state OPERTAIONAL
(in step E). The first transmission of SYNC object starts within 1 sync cycle after entering the
PRE–OPERATIONAL state.

C) In the optional step C, node guarding may be activated (if supported) using the guarding pa-
rameters configured in the first step.

D) In step D, safety parameters are checked. In particular, this step covers the following safety
relevant configuration entries:

– SRDO numbers(s) used

– Time inspection (refresh time for TX, SCT for RX and the SRVT between two telegrams)

– Information direction

– Mapping parameter

The checksum of the respective configuration entries is defined and associated to the safe
configuration. In fact, after the initialization, this CRC sum is periodically checked and in the
case of mismatch the safety node stop the transmission of SRDOs and the safety controller
enter in safe state.

E) In Step E all the nodes move to the operational state and the initialization procedure is finished.

Figure 2.7: Flow chart of the network initialisation process for safety networks with CANopen Safety

16

2.4 EtherCAT

EtherCAT (Ethernet for Control Automation Technology) is an Ethernet-based fieldbus system, de-
signed by Beckhoff Automation. The EtherCAT protocol is based on a master/slave architecture using
a standard ethernet connection. In particular it is Industrial Ethernet and utilizes standard frames and
the physical layer as defined in the Ethernet Standard IEEE 802.3. However, it also addresses the
specific demands faced in the automation industry, where:

• There are hard real-time requirements with deterministic response times.

• The system is usually made up of many nodes, each only having a small amount of cyclic
process data.

• Hardware costs are even more important than in IT and office applications.

The above requirements make using a standard Ethernet (Appendix G) network at the field level
practically impossible. If an individual Ethernet telegram is used for each node, the effective data
rate sinks significantly for just a few bytes of cyclic process data: the shortest Ethernet telegram is
84 bytes long (including the Inter Frame Gap), of which 46 bytes can be used for process data. For
example, if a drive sends 4 bytes of process data for the actual position and status information and
receives 4 bytes of data for the target position and control information, the effective data rate for
both telegrams sinks to 4/84 = 4.8 %. Additionally, the drive usually has a reaction time that triggers
the transmission of the actual values after receiving the target values. At the end, not much of the
100MBit/s transfer rate remains. Protocol stacks, such as those used in the IT world for routing (IP)
connection (TCP), require additional overhead for each node and create further delays through the
stack runtimes. To overcome these difficulties, EtherCat uses a high performing mode of operation,
in which a single frame is usually sufficient to send and receive control data to and from all nodes.
The EtherCAT master sends a telegram that passes through each node. Each EtherCAT slave device
reads the data addressed to it and inserts its data in the frame as the frame is moving downstream.
The frame is delayed only by hardware propagation delay times. The last node in a segment or
branch detects an open port and sends the message back to the master using Ethernet technol-
ogy’s full duplex feature. The telegram’s maximum effective data rate increases to over 90 %, and
due to the utilization of the full duplex feature, the theoretical effective data rate is even greater than
100 MBits/s. The EtherCAT master is the only node within a segment allowed to actively send an
EtherCAT frame; all other nodes merely forward frames downstream. This concept prevents unpre-
dictable delays and guarantees real-time capabilities. The master uses a standard Ethernet Media
Access Controller (MAC) without an additional communication processor. This allows a master to be
implemented on any hardware platform with an available Ethernet port, regardless of which real-time
operating system or application software is used. EtherCAT slave devices use an EtherCAT Slave
Controller (ESC) to process frames on the fly and entirely in hardware, making network performance
predictable and independent of the individual slave device implementation.
As regarding the frame, EtherCAT embeds its payload in a standard Ethernet one (Fig. (2.8)).
The EtherCAT frame is identified with the Identifier (Ox88A4) in the EtherType field. Since the Ether-
CAT protocol is optimized for short cyclic process data, the use of bulky protocol stacks, such as
TCP/IP or UDP/IP, can be eliminated.

Figure 2.8: EtherCAT in a standard Ethernet frame (according to IEEE 802.3)

17

To ensure Ethernet IT communication between the nodes, TCP/IP connections can optionally be tun-
neled through a mailbox channel without impacting real-time data transfer. During startup, the master
device configures and maps the process data on the slave devices. Different amounts of data can be
exchanged with each slave, from one bit to a few bytes, or even up to kilobytes of data. The EtherCAT
frame contains the frame header and one or more datagrams. The datagram header indicates what
type of access the master device would like to execute:

• Read, write, or read-write

• Access to a specific slave device through direct addressing, or access to multiple slave devices
through logical addressing (implicit addressing)

Logical addressing is used for the cyclical exchange of process data. Each datagram addresses a
specific part of the process image in the EtherCAT segment, for which 4 GBytes of address space
is available. During network startup, each slave device is assigned one or more addresses in this
global address space. If multiple slave devices are assigned addresses in the same area, they can
all be addressed with a single datagram. Since the datagrams completely contain all the data access
related information, the master device can decide when and which data to access and so a fixed
process data structure is not necessary. For example, the master device can use short cycle times
to refresh data on the drives, while using a longer cycle time to sample the I/O; This also relieves the
master device in comparison to in conventional fieldbus systems, in which the data from each node
had to be read individually, sorted with the help of the process controller, and copied into memory.
With EtherCAT, the master device only needs to fill a single EtherCAT frame with new output data,
and send the frame via automatic Direct Memory Access (DMA) to the MAC controller. When a frame
with new input data is received via the MAC controller, the master device can copy the frame again via
DMA into the computer’s memory – all without the CPU having to actively copy any data. In addition
to cyclical data, further datagrams can be used for asynchronous or event driven communication.
Besides to logical addressing, the master device can also address a slave device via its position in the
network. This method is used during network boot up to determine the network topology and compare
it to the planned topology. After checking the network configuration, the master device can assign
each node a configured node address and communicate with the node via this fixed address. This
enables targeted access to devices, even when the network topology is changed during operation,
for example with Hot Connect Groups. There are two approaches for slave-to-slave communication.
A slave device can send data directly to another slave device that is connected further downstream
in the network. Since EtherCAT frames can only be processed going forward, this type of direct
communication depends on the network’s topology, and it is particularly suitable for slave-to-slave
communication in a constant machine design (e.g. in printing or packaging machines). In contrast,
freely configurable slave-to-slave communication runs through the master device, and requires two
bus cycles.
EtherCAT offers a lot of flexibility regarding both the cable types, so each segment can use the exact
type of cable that best meets its needs, that the topology: EtherCAT supports almost all the topolo-
gies (line, tree, star, or daisy-chain). Finally it is important to highlight that for some tasks an accurate
synchronization is required and for this reason EtherCAT uses the allignment of the distribute clocks.
In particular the calibration of the clocks in the nodes is completely hardware-based. The time from
the first DC slave device is cyclically distributed to all other devices in the system. With this mecha-
nism, the slave device clocks can be precisely adjusted to this reference clock. The resulting jitter in
the system is significantly less than 1 µs.
Since the time sent from the reference clock arrives at the slave devices slightly delayed, this prop-
agation delay must be measured and compensated for each slave device in order to ensure syn-
chronicity and simultaneousness. This delay is measured during network startup or, if desired, even
continuously during operation, ensuring that the clocks are simultaneous to within much less than
1 µs of each other. If all nodes have the same time information, they can set their output signals
simultaneously and affix their input signals with a highly precise timestamp. In motion control appli-
cations, cycle accuracy is also important in addition to synchronicity and simultaneousness. In such
applications, velocity is typically derived from the measured position, so it is critical that the position

18

measurements are taken precisely equidistantly (i.e. in exact cycles). Even very small inaccuracies
in the position measurement timing can translate to larger inaccuracies in the calculated velocity, es-
pecially relative to short cycle times. With EtherCAT, the position measurements are triggered by the
precise local clock and not the bus system, leading to much greater accuracy. Additionally, the use of
Distributed Clocks also unburdens the master device; since actions such as position measurement
are triggered by the local clock instead of when the frame is received, the master device doesn’t
have such strict requirements for sending frames. This allows the master stack to be implemented
in software on standard Ethernet hardware. Even jitter in the range of several microseconds does
not modify the accuracy of the Distributed Clocks. Since the accuracy of the clock does not depend
on when it’s set and so the frame’s absolute transmission time becomes irrelevant. The EtherCAT
master need only to ensure that the EtherCAT telegram is sent early enough, before the DC signal in
the slave devices triggers the output.

2.5 Safety for Ethercat (FSOE)

2.5.1 protocol characteristics

Modern communication systems not only realize the deterministic transfer of control data, they also
enable the transfer of safety-critical control data through the same medium. EtherCAT utilizes the
protocol Safety over EtherCAT (FSoE : FailSafe over EtherCAT) for this purpose and so allows:

• A single communication system for both control and safety data

• The ability to flexibly modify and expand the safety system architecture

• Pre-certified solutions to simplify safety applications

• Powerful diagnostic capabilities for safety functions

• Seamless integration of the safety design in the machine design

• The ability to use the same development tools for both standard and safety applications

FSoE was developed according to IEC 61508, is TUV certified, and is standardized in IEC 61784-3
to test FSoE slave devices in accordance with the FSoE specification. In fact EtherCAT Technology
Group (ETG) implemented some test cases in the tool, which were reviewed by TUV Sud, that con-
clusively confirmed the qualification of the tool for validation and compliance. The tool is available for
all users of Safety over EtherCAT technology and it is also used for the official FSoE conformance
tests in the future.

19

The protocol is based on a master-slave relationship with a single device referred to as FSoE master
and several FSoE slaves. The master-slave communication takes place via the so called FSoE
Connections, which are established between the master and each slave. A basic Safety Protocol
Data Unit (Fig. 2.9) , which is the shortest frame, consist in 6 bytes , which carry 1 byte of safety
data.

Figure 2.9: FSOE basic frame

The first byte contains the command to which a specific state of the FSoE connection corresponds
and determines the meaning of the safety data. The Data field is followed by its own CRC and
then by two bytes that report the Connection ID, which is an univocal number assigned by the FSoE
master to each FSoE slave during the initialization phase. Notably, in order to ensure the lowest error
probability, the CRC is elaborated in a different manner with respect to traditional protocols.
Indeed, a device receiving a Safety PDU calculates the CRC on a more complex data structure,
which includes 11 fields (tab. 2.2). Such a data structure contains two additional fields that identify
the sequence number, which consist in a 16-bit counter from 1 to 65535, re-initialized to 1 when the
maximum value is reached. Each safety device manages its own sequence number, which represents
the progressive number of the Safety PDU it transmits. The device also maintains the sequence
number of the Safety PDU it expects to receive from its partner. Since these two values must coincide,
the actual matching is verified by including them in the structure on which the CRC is calculated.

Field Nr. Field

1 received CRC (bit 0-7)
2 received CRC (bit 8-15)
3 ConnId (bit 0-7)
4 ConnId (bit 8-15)
5 Sequence Number (bit 0-7)
6 Sequence Number (bit 8-15)
7 Command
8 SafeData[0]
9 0

10 0
11 0

Table 2.2: Structure of CRC calculation

When more than one byte of safety data is transmitted, a more complex Safety PDU can be used(Fig.
2.10).

1 B 2 B 2 B 2 B 2 B 2B
CMD Data0 CRC0 . . . Datai CRCi Conn.ID

Figure 2.10: FSOE extended frame

20

During normal operation of the protocol, the FSoE master sends a Safety PDU to the addressed slave
and waits for the answer. Then, it moves to the next slave of the network. The slave moves from the
’Reset’ state to the ’Session’ one and then to the ’Connection’ one, where the FSoE connection
is actually established, upon suitable commands received from the master. Subsequently, in the
’Parameter’ state the operational safety parameters are exchanged and, finally, the master sends a
command to enter in the ’Data’ state. In every state, an immediate transition to ’Reset’ may take
place due to either a command received from the master or a problem detected by the slave. In
each device, a watchdog timer monitors the FSoE communication cycle in order to detect possible
delays on the network. If the FSoE master does not receive the answer from a queried slave within
a specified time-out, then the watchdog timer of the master triggers the re-initialization of the FSoE
connection with that slave. Conversely, if a FSoE slave is not queried by the master within a time-out,
then the watchdog timer of the slave forces such device to enter in the reset state. In such a state,
the slave exits the operational state and waits to be re-initialized by the master. The FSoE master
can handle several slaves by establishing a unique FSoE connection for each of such devices. The
communication medium, from the safety point of view, is seen as a black channel (Appendix E).
With such an approach, safety applications and standard applications can coexist, sharing the same
communication system at the same time.
Summing up the safety protocol encompasses procedures to systematically detect faults or errors
that could occur during operation. In particular for controlling each error, the Safety over EtherCAT
protocol uses different control strategies (also reported in tab 2.3):

• A session-number, for detecting buffering of a complete startup sequence;

• A unique connection ID and a unique slave address for safely detecting misrouted messages
via a unique address relationship.

• A CRC checksum (Tab. 2.2) for detecting message corruption from source to sink.

• A sequence number for detecting interchange, repetition, insertion or loss of whole messages.

• A watchdog, which monitors the FSoE communication cycle in order to detect possible delays

With all these measures, the FSoE standard ensures that the residual error probability can be kept
below 10−9 which allows to achieve the highest safety performance, referred to as SIL3.

Fault Safety Measures
Conn. ID Seq. Nr W.dog CRC

Corruption x
Interchange x x
Repetition x
Insertion x

Loss x x
Delay x

Misrouting x

Table 2.3: Safety measures adopted by FSoE to detect errors and faults

21

2.6 Profibus and Profinet

2.6.1 Profibus

Profibus is based on universal international standards and it is oriented to the OSI (Open System
Interconnection) reference model for international standard ISO 7498. In this model, every layer
handles precisely defined tasks. (Layer 1 of this model is the physical layer and defines the physical
transmission characteristics, layer 2 is the data link layer and defines the bus access protocol, layer
7 is the application layer and defines the application functions, while layers 3 to 6 are not used).
There are two variations of Profibus in use today:

• Profibus DP (Decentralised Peripherals) is used to operate sensors and actuators via a cen-
tralised controller in production automation applications.

• Profibus PA (Process Automation) is used to monitor measuring equipment via a process control
system in process automation applications. This variant is designed for use in explosion/haz-
ardous areas. The Physical Layer conforms to IEC 61158-2, which allows power to be delivered
over the bus to field instruments, while limiting current flows so that explosive conditions are not
created, even if a malfunction occurs. The number of devices attached to a PA segment is
limited by this feature.

Profibus DP, which is the most commonly used, is a master/slave token bus protocol for deterministic
communication between Profibus masters and their remote I/O slaves, which are peripheral devices.
The slaves form ’passive stations’ on the network since they do not have bus access rights, and can
only acknowledge received messages, or send response messages to the master upon request. It is
important to note that all ProfiBus slaves have the same priority, and all network communications are
originated by the master. Instead ProfiBus master forms an ’active station’ on the network which are
subdivided in two different classes :

Class 1 , in which the master handles the normal communication and exchanges data with the slaves
assigned to it.

Class 2 , in which the master is a special device primarily used for commissioning slaves and for diag-
nostic purposes

A token bus protocol is used to regulate the access to the network by the different masters. In
particular all masters form a logical ring in which a position with a fixed address assigned to each
device. Every node knows the addresses of the previous and the next device, while the last one is
followed by the first one.
A special PDU, called token, allows the device holding it to transmit in the network, to interview its
slaves or to manage the network (while the other nodes must only listen). This PDU is held only for a
fixed time (th token holding time), after this period the device holding it must send it to the next node.
This working configuration provides some basic function useful to the maintenance of the network
(which are described in Appendix F):

• addition of a new station in the logical ring;

• erasure of station from the network;

• initialization of the logical ring;

• management of the loss of the token;

The master-to-master communication takes place only when the token must be exchanged. Instead
to communicate with slave/slaves a master operates using a cyclic transfer and in particular it can
address to an individual slaves, or to a defined group of slaves (multicast), or it can broadcast a
telegram to all connected slaves. Since it is used a periodic polling mechanism between masters
and slave then is is also deterministic. The length (and timing) of the I/O data to be transferred
from a single slave to a master is predefined in the slave’s device data base or GSD file. The

22

GSD files of each device connected via the network (slaves and class 1 masters only) are compiled
into a master parameter record which contains parametrization and configuration data, an address
allocation list, and the bus parameters for all connected stations. A master uses this information to
set up communication with each slave during startup.
PROFIBUS supports four data transmission services:

1. send data with no acknowledge (SDN);

2. send data with acknowledge (SDA);

3. send and request data with reply (SRD);

4. cyclic send and request data with reply (CSRD).

But PROFIBUS DP supports only SDN and SRD. The SDN is a service used for broadcast from a
master station to all other stations on the bus. Conversely, the SRD is based on a real dual rela-
tionship between the initiator (master station holding the token) and the responder (slave or master
station not holding the token). Most data transfers are defined as SRD which is a message cycle
consisting of a request packet and an immediate response. A response can occur as a one byte
acknowledgement or a data packet. During a message cycle an addressed station has to respond
within a bounded time interval. Since there are different types of message, the structure of the frame
depends on its function. In particular the telegram can be:

• With no data (Fig. 2.11), used to coordinate the network and send fuction information;

Figure 2.11: Frame structure for a message with no data

• With variable length data (Fig. 2.12), to send messages of variable length;

Figure 2.12: Frame structure for a message with variable length data

• With fixed length data (Fig. 2.13), to send messages of fixed length;

Figure 2.13: Frame structure for a message with fixed length data

23

• Token (Fig. 2.14), to communicate between masters.

Figure 2.14: Token structure

where the acronym stands for (Tab. 2.4):

SD Start delimiter
LE Length of protocol data unit
LEr Repetition of length of protocol data unit (with an Hamming distance equal to 4)
FC Function Code
DA Destination Address
SA Source Address
DSAP Destination Service Access Point
SSAP Source Service Access Point
PDU Protocol Data Unit
FCS Frame Checking Sequence, calculated by adding up the bytes within the specified length
ED End Delimiter

Table 2.4: acronym definition

The Service Access Points(SAP) are internal addresses used at any level, which allow to access to
different services. In particular the different services are described in the following table (Tab. 2.5):

Default 0 Cyclical Data Exchange(WriteReaData)
54 Master-to-Master SAP(M-M Communication)
55 Change Station Address(SetSlaveAdd)
56 Read Inputs(RdInp)
57 Read Outputs(RdOutp)
58 Control Commands to a DP Slave(GlobalControl)
59 Read Configuration Data(GetCfg)
60 Read Diagnostic Data(SlveDiagnosis)
61 Send Parametrization Data(SetPrm)
62 CheckConfiguration Data (ChkPrm)

Table 2.5: SAP definition

As concerning the physical level, Profibus provides two different carrier band transmission, a broad-
band transmission and also the possibility of using the optical fibre. The carrier band transmission
are called phase-continuous and phase-coherent. The first one provide a velocity of 1 Mbit/s and a
transmission in which the logical level 0 and 1 are identified by different frequencies, 3,75 Mhz and
6,25 Mhz respectively. The transition between the 2 frequencies is gradual and for this reason the
name continuous. The Phase-coherent modality use the same methods, but link the transmission
velocity to the frequencies. For example for a velocity of 5 Mbit/s the frequencies used are 5 Mhz and
10 Mhz. The both carrier band transmission use a coaxial cable. The broadband method, instead,
provides fixed velocity (1, 5 and 10 Mbit/s) and relative fixed frequencies (1.5, 6 and 12 Mhz respec-

24

tively).
Finally the Optical fibre is the fastest method, but which needs the use of electro-optical converts.

2.6.2 Profinet

Profinet was born as an evolution of Profibus to allow communication between several Fieldbus using
industrial Ethernet. The four key functions of PROFINET are:

1. Performance: automation in real-time

2. Safety: safety-related communication with PROFIsafe

3. Diagnostics: high plant availability due to fast commissioning and efficient troubleshooting

4. Investment protection: seamless integration of fieldbus systems

Standard Ethernet communication via TCP(UDP)/IP communication is sufficient for data communi-
cation in some cases. But, as already said, in industrial automation requirements regarding time
behaviour and isochronous operation cannot be fully satisfied using the TCP/IP channel. Profinet
introduced a scalable real-time concept which is a solution for this problem. In particular this concept
can be realized with standard network components, such as switches and standard Ethernet con-
trollers. The real-time (RT) communication takes place without TCP/IP information. The transmission
of RT data is based on cyclical data exchange using a provider/consumer model. In this type of
model there is not a device which controls the access to the bus and so every node is able to start
the transmission on the bus if it is not busy (Producer interface), and every node is able to read the
bus if someone is transmitting (Consumer interface). To enable enhanced scaling of communication
options and, thus, also of determinism in Profinet, real-time classes have been defined for data ex-
change. These classes involve unsynchronized and synchronized communication. The details are
managed by the field devices themselves. Real-time frames are automatically prioritized in Profinet
compared to UDP/IP frames, in order to prioritize the transmission of data in switches to prevent RT
frames from being delayed by UDP/IP frames.
In particular Profinet differentiates the following classes for RT transmission, which differs in deter-
minism rather than in performances.

• RT CLASS 1: Unsynchronized RT communication within a subnet. No special addressing
information is required for this communication. The destination node is identified using the
Destination Address.

• RT CLASS 2: frames can be transmitted via synchronized or unsynchronized communication.

• RT CLASS 3: Synchronized communication within a subnet.

• RT CLASS UDP: The unsynchronized cross-subnet communication between different subnets
requires addressing information via the destination network (IP address).

Cyclic I/O data are transmitted unacknowledged as real-time data between provider and consumer
in a parametrizable resolution. They are organized into individual I/O elements (sub-slots). The
connection is monitored using a watchdog (time monitoring mechanism).
During data transmission in the frame, the data of a sub-slot are followed by a provider status. This
status information is evaluated by the respective consumer of the I/O data. In particular the cycle can
be subdivided in 4 different phases:

• RED phase: In this phase only RT Class 3 can be sent at scheduled instants and using a rigid
fixed path.

• ORANGE phase: In this phase only RT Class 2 can be sent iat scheduled instants but without
a fixed network topology.

25

• GREEN phase: In this phase only messages that use Ethernet priority defined by IEEE 802.1Q
standard can be sent. In particular RT Class1, RT Class2 and TCP and UDP protocols mes-
sages are sent.

• YELLOW phase: Characterized by the same traffic of the GREEN phase but with the additional
constraint that only the frame that can be sent completely are effectively transmit.

Figure 2.15: Profinet cycle

Instead acyclic data exchange can be used to parametrize and configure IO-Devices or to read out
status information. This is accomplished with read/write frames via standard IT services using UD-
P/IP.
PROFINET provides also an Isochronous data exchange defined as Isochronous Real-Time (IRT).
These data exchange cycles are usually in the range of a few hundred microseconds up to a few mil-
liseconds. The difference to real-time communication is essentially the high degree of determinism,
so that the start of a network cycle is maintained with high precision. The start of a network cycle
can deviate up to 1 µs (jitter). IRT is required, for example, for motion control applications (positioning
control processes) because these devices need to be synchronized.
For data exchange with multiple parameters, Multicast Communication Relation (MCR) has been de-
fined. This allows direct data traffic from a provider to multiple nodes (up to all nodes) as direct data
exchange. MCRs within a segment are exchanged as RT frames. Cross-segment MCR data follow
the data exchange of the RT class. All the PROFINET messages are structured as an ethernet frame
and in particular the structure is presented in following figure (Fig. 2.16). Besides at physical level
common ethernet specific are used.

Figure 2.16: Profinet Message

2.7 Profisafe

As seen, PROFIBUS and PROFINET are industrial communication systems providing comprehen-
sive coverage including both factory and process automation. Both protocols are specified in the
communication profile family 3 in the International Standards IEC 61158 and IEC 61784-1/-2. The
first release of a specification for safety communication was in 1999. Since this event, PROFIsafe

26

has evolved to become the leading and most comprehensive safety communication technology in the
world. PROFIsafe is an International Standard IEC 61784-3-3 since 2007.

2.7.1 protocol characteristics

The PROFIsafe protocol is suitable for both PROFIBUS and PROFINET networks without impacts on
these existing fieldbus standards. It is possible to transmit safety messages on the existing standard
bus cables in coexistence with standard messages. "Single Channel" approach allows the use of
standard PLCs with integrated but logically separated safety processing, but also physical separation
of standard and safety communication is supported without any drawback induced by PROFIsafe.
The PROFIsafe protocol works equally well over copper wires, fiber optics, wireless communication
links, or backplanes, so it does not make any assumptions regarding transmission rates or error
detection mechanisms, with a "Black Channel" approach (Appendix E).
Besides PROFIsafe uses the following safety measures :

• The numbering of the PROFIsafe messages (sequence error detection used for "timeliness")

• A time expectation with acknowledgment (timeout error detection used for "timeliness")

• A Codename between sender and receiver ("authentication")

• Data integrity checks (CRC = cyclic redundancy check)

Using the Monitoring Number, a receiver can see whether or not it received the messages within
the correct sequence. Besides also the sender can understand if the message was rightly received.
In fact the receiver returns a message with the Monitoring Number only as an acknowledgement to
the sender. As safety systems are real-time systems, process signals must not only be delivered
correctly, but also in time. In case of timeliness errors, the safety system will initiate a safe reaction,
e.g. safely stop the movement of a drive. For this purpose, F-Devices utilize a watchdog timer that is
restarted whenever a new PROFIsafe message with a new subsequent Monitoring Number arrives.
The 1 : 1 relationship between the F-Host(safety controller) and a F-Device(safety device) facilitates
the detection of misdirected message frames. Sender and receiver must simply have identification
(Codename which in PROFIsafe is called ’F-Address’) that is unique in the network, and can be used
for verifying the authenticity of a PROFIsafe message. A cyclic redundancy check (CRC) plays a
key role in detecting corrupted data bits. The necessary probabilistic examination makes use of the
definitions within the IEC 61508 that considers the probability of dangerous failures of entire safety
functions. A PROFIsafe message that is exchanged between F-Host and its F-Device is carried within
the payload of a standard PROFIBUS or PROFINET message. In case of a modular F-Device with
several F-Modules, the payload consists of several PROFIsafe messages. The data unit consists of
three fields. The first field contains the F-Input or F-Output data using the already-mentioned subset
of data types. These data structures of a particular F-Device usually are defined via its associated
GSD (General Station Description) file. Normally, factory automation and process automation place
different requirements upon a safety system. One deals with short ("bit") signals that must be pro-
cessed at a very high speed, the other involves longer ("floating point") process values that may take
a little more time. PROFIsafe recommends using 1 up to 12/13 bytes F-Input/ Output data for factory
automation applications since all F-Hosts are obliged to support at least this data length. However,
the measures of PROFIsafe (CRC signature) are laid-out such that data lengths up to a maximum
of 123 bytes can be supported. The second field consists of a Control Byte if the SPDU was sent
by the F-Host or a Status Byte if it was sent by the F-Device. This information helps synchronizing
the sender and receiver of PROFIsafe SPDUs. The third field of a PROFIsafe SPDU is a 32 bit CRC
signature. The Monitoring Number is not transmitted within a PROFIsafe SPDU. Both sender and
receiver use their own Monitoring Number generators that are synchronized via the Control Byte and
Status Byte. Correct synchronization is monitored through the inclusion of the Monitoring Number
values into the CRC signature calculation. The generators are based on an efficient pseudo-random
number generator. Every connection uses a different seed for the generator, derived from its re-
spective Codename ("F-Address"). Sender and receiver of PROFIsafe SPDUs are located in layers

27

above the "Black Channel" communication layers and are usually realized in software. Their central
functionality is a state machine controlling the regular cyclic processing of PROFIsafe messages and
the exceptions such as start-up, power-on/off, CRC error handling etc . . .
Figure(2.17) shows how the PROFIsafe layers interact with the technology part in F-Devices and with
the user program in F-Hosts.

Figure 2.17: PROFIsafe layer structure in F-Host and F-Device

PROFIsafe provides different services for F-hosts or F-devices. For F-Host the main services provide
exchange of F-Output and F-Input data. During start-up, or in case of errors, the actual process
values are replaced by default fail-safe values (FV). These fail-safe values shall be all "0" to force the
receiver into a safe state. PROFIsafe communication errors cause the F-Host driver to switch into a
safe state. A safety function is usually not allowed to automatically switch from a safe state to normal
operation without human interaction. To inform the user program that an operator intervention and
acknowledgement is requested, PROFIsafe provides an additional service "OA-Req". PROFIsafe
informs the F-Device about a pending request such that the F-Device can indicate it via a LED. The
operator acknowledgement can be passed over from the user program to the F-Host driver via a
corresponding service "OA-C".
For F-Device the PROFIsafe services include the corresponding exchange of F-Output and F-Input
data, the extra possibility to activate and report fail-safe values, the indicators for the iParameter,
which are the technology-specific parameters of a F-Device, handling and for the already mentioned
operator request. In case a F-Device needs different iParameters at runtime, another set of services
is available. The service "iPar-EN" allows the user program to switch the F-Device into a mode during
which it will accept new iParameters. The companion service "iPar-OK" indicates to the user program
the readiness to resume normal safety operation.
Following the most important i-parameters are introduced to understand them function and util-
ity:

• F-S/D-Address (short: "F-Address"), it is a unique connection identification for F-Devices/F-
Modules within one PROFIsafe island and corresponds to the Codename. The F-Device tech-
nology compares this "F-Address" with the locally assigned value of a micro switch or otherwise
entered information to ensure the authenticity of the connection.

• F-WD-Time, it specifies a number of milliseconds for a watchdog timer. This timer monitors the
reception of the next valid PROFIsafe SPDU.

• F-SIL, it indicates the SIL expected by the user for the particular F-Device. It is compared with
the locally stored manufacturer information.

• F-iPar-CRC, it is a signature across all the iParameters within the technology of the F-Device.

28

• F-Par-CRC, it is a signature across all the F-Parameters. It is used to ensure correct delivery of
the F-Parameters.

Additionally, the F-Device technology is able to report F-Device faults to the F-Host driver via the flag
"Device-Fault" in the Status Byte. The duration of the demand of a F-Device for a safety reaction shall
be long enough to be transmitted by the PROFIsafe communication. A special service informs the
technology about new Monitoring Numbers in order to facilitate the realization of this requirement.
Diagnostic information from the PROFIsafe layer may be passed over to the technology part via a
special service.
PROFIsafe is suitable for safety functions up to SIL-3. In particular the mandatory safety manual
of each and every F-Device shall provide information about the SILCL (claim limit) and the PFHd

(probability of dangerous failure per hour). Besides PROFIsafe provides a specification for test and
certification: currently two PI test laboratories are accredited for the PROFIsafe testing. To determine
the achieved SIL of a particular safety function, the F-Devices provide the necessary information
in their safety manual. In the first step, the least SILCL (claim limit) of all the safety devices (F-
Devices, F-Host) is selected. This determines the maximum achievable SIL of the entire safety
function. In some cases system manufacturers may offer system support to upgrade to a higher SIL
via redundancy of F-Devices and corresponding system software. In the second step, the PFHd

values are added and the result is checked against the permitted value ranges for a particular SIL.
The least SIL value from these two steps determines the achievable SIL.

29

Chapter 3

AUTEC products

Autec Srl is an important Italian company which produces and sells industrial radio remote controllers.
All these instruments need to be implemented with the industrial protocols introduced in the previous
chapter. In particular for its products Autec uses principally CANOpen as communication network, but
the research and the development of new devices are always prepared to the possibility of changing
the protocols to meet the requirements of the customers and the follow to market trends.

3.1 Radio Remote Controller and its safety function

A radio remote controller is a small, usually hand-held, electronic device for controlling another device
with radio frequency signals. A controller is composed of two parts:

• a transmitting unit from which the commands are sent;

• a receiver unit which is installed on a device and control it applying the commands received.

These instruments are used in industrial systems with some specifications that are requested from
this type of environment and that are different for every kind of device which needs to be controlled.
In particular, it is essential that these controllers are resistant and able to work in critical conditions.
Moreover, it is important that they are user-friendly with a display and some leds to communicate
easily with the user.
Finally it is essential the safety of the user. For this reason, different strategies, that should be
certificated, are used to guarantee it. To certificate a radio remote controller, the first step is to
demonstrate that it complies with all the standards in force in the market in which the equipment
will be used. Depending on the jurisdiction, regulations relevant to radio controls fall under several
categories:

• Radio emissions and immunity: these requirements address the risk of interference of the de-
vice with other radio devices, and the health risks associated with electromagnetic radiation.

• Functional safety: these requirements are the most complex, and address the risk that the
device may malfunction causing dangerous machine behaviour.

• Requirements specific to the lifting machine: these standards may impose special requirements
on the system in a wide variety of ways, including safety performance, physical parameters,
labelling, etc.

• Electrical safety: these requirements aim to control the risk of electrical shocks and fire, and
are common to a wide range of electrical equipment.

The aforementioned regulations can be complex, and can interact with each other. Despite that,
they are called ’minimum requirements’ and it is necessary a second step to have a ’safe’ device. It
consists in ensuring that the radio remote controller also complies with the suitable protection level

30

resulting from the evaluation of the risks.
For radio remote control applications it is essential that the commands are understood correctly at the
receiver, and any damage or corruption of the telegram does not result in erroneous machine motion.
To that end, each telegram must include some additional error check information so that the receiver
can ensure that the telegram was received correctly. Error detection methods are heavily founded
in mathematics, and vary in complexity and efficiency. Typically, though, special coding systems are
used such that a small change in the input data (i.e. the commands for the RRC system) causes a
large change in the telegram. This minimizes the chance that two (or more) errors could cancel each
other out, making a damaged telegram to appear as valid. In fact, the number of simultaneous errors
that would need to occur in order to defeat an error-detection system is a measure of its effectiveness,
and is called Hamming Distance. Besides in a radio remote control application, the communication
medium is open. This means that it is not possible to guarantee that the receiver will not be exposed
to messages being transmitted by other remote control systems, even located far away. In this case,
the use of standard protocols increases the similarity between telegrams on different devices, thus
increasing the risk that an overheard telegram from another system may be inadvertently decoded
and accepted. Such an occurrence cannot be considered a random event (such as noise damaging
a telegram) and on the contrary, it is a systematic risk. Use of proven proprietary telegram protocols
helps to protect against interference from other types of systems. But in order to avoid problems
with similar systems from the same manufacturer, it is also vital that there is rigorous management
of unique (non repeatable) identity codes for each safety radio control system. Once ensured the
communication, it also necessary to manage all the possible critical situations that could threaten the
safety of the user.
There are too many cases that could be reported, but three important examples are introduced to
have an idea of the safety approach.

• The stop button is vital for all industrial environments since it allows the immediate stop of the
system in critical circumstances. It needs to be implemented with a redundant strategy to avoid
failures and once activated, it should need to be manually reset before the radio control system
can be used again.

• The constant control of the device when the controller is pushed on, also when no commands
are sent, is another important safety approach. In fact in such way a radio control system is
able to constantly check that no errors occur, ensuring that when a command is pushed it will
be transmitted or, in case of the detection of an error, transmitting the safe configuration. If this
approach is used the controller needs rechargeable batteries since a large amount of power is
used. Instead the radio controllers which use standard batteries transmits only when they must
transmit a command to reduce the power consumption, but also drastically reducing the safety.

• Finally an essential safety function for a radio remote controller is the protection against unin-
tended movements from standstill (UMFS), that could be due to radio interference. To avoid
UMFS it is important that a movement is done only in correspondence of an action over the
transmitting unit, in particular a redundant strategy is used, that allows the remote radio con-
troller to transmit only when a button is pushed or a lever is moved.

31

3.2 Example of AUTEC products

Autec produces many different kind of manufactures, for this reason to not dwell on issues that are
far from the goal of this thesis, only the principal devices which use the industrial protocols will be
briefly introduced.

3.2.1 Dynamic+ Radio Remote Controller

Autec’s DYNAMIC+ consists of both a joystick transmitting units and the corresponding CRD receiver.
It is suitable for continuous-current applications typical of hydraulic machines used in construction en-
vironments, logistics, transport, infrastructure maintenance and much more. It is able to guarantee
advanced diagnostics and to show the machine data on graphic display or LEDs. This product is
implemented with CANopen which provides standard communication objects for real-time network
configuration and maintenance data. It works with two different frequency bands: 863-870 MHz or
915-928 MHz using bi-directional radio communication with fully-automatic search of working fre-
quency. DYNAMIC+ transmitting units and receiving units, in fact, communicate with each other
in “frequency hopping” mode, as they dynamically utilize the working frequencies included in the
863-870 MHz band (or 915-928 MHz for non-European markets). Basically, they constantly change
working frequencies, verifying that a frequency is free before using it. In this way they maintain a
stable radio link in the presence of interference while simultaneously creating the least possible inter-
ference for other radio equipment in the area. The high reliability of the connection allows a fast and
accurate response to the proportional controls without the need for frequency mapping, even when
radio frequencies are considerably crowded. As regarding the safety, the DYNAMIC+ has been de-
signed according to the most recent standards relating to Functional Safety, such as EN ISO 13849-1
and IEC 62061. The transmitting and receiving units communicate through a unique and univocal
proprietary Autec code which is not reproducible. The safety is not developed with only software, but
it is principally done with hardware. In particular when the DYNAMIC+ identifies some emergency
condition it uses redundant solid state relay, which it is typical for moving machine control.
The safety of DYNAMICS+ is certified, in fact:

• Performance of the STOP function up to PL e cat.4 / SIL 3 classified, according to EN ISO
13849-1 / EN IEC 62061.

• Performance of protection against unintended movements from standstill (UMFS) up to PL d
cat.3 / SIL 2 classified, in accordance with EN ISO 13849-1 / EN IEC 6206.

The proportional joystick remote controls of the DYNAMIC+ (Fig. 3.1) have been developed for typical
hydraulic and mobile machine applications. They are available in four different models: DJS, DJL,
DJR and DJM. They offer up to 12 analog commands and up to 64 digital commands with the option
for data feedback, which allows visualization of the information coming from the machine either on a
graphic display or via a LED panel.

Figure 3.1: Different type of joystick for DYNAMICS+

32

The compact receiving unit (Fig. 3.2), 8-30 VDC power supply, with customized cabling (M12 circu-
lar connectors or 10-pin reduced plug or cable gland), has a maximum of 12 analog and 64 digital
outputs (available via the CANopen interface), 2 STOP outputs, 2 UMFS outputs, 4 programmable
MOSFET outputs and 2 CAN outputs. This double CAN output allows simultaneous management of
both CANopen and J1939 protocols. The CRD also has a 4-digit display for diagnostics. Usually a
standard antenna is internal, but the unit also supports External antenna with 1 m or 3 m extension
cord.

Figure 3.2: Different configuration of receiver unit for DYNAMICS+

3.2.2 Air Radio Remote Controller

Remote controls of the AIR Series are ideal for automation, industrial lifting and both operational and
self-propelled machinery. It is composed of a transmitting unit, which can be either a joystick (Fig.
3.3.a) or hand-held transmitters (Fig. 3.3.b), and a receiving unit (Fig. 3.3.c). These series of devices
have a complete connectivity through CANopen, Profibus, ProfiNet, EtherCat, EtherNet IP and serial
interfaces for the control and communication of data. In particular, the controller is principally im-
plemented with CANopen since most of the customers use this protocol. Moreover, this instruments
are equipped with a data logger for recording all the radio controls operations. The system of data
transmission and control is bi-directional, dual-band and is configurable by the user:

• with automatic frequency search at system start-up (434/915 MHz).

• with completely automatic search through FHSS technology - Frequency Hopping Spread Spec-
trum (870/915 MHz).

As regarding the safety Autec designs and produces AIR controls with a level of safety that meets
even the strictest of the standards. The most important aspects of the remote control (functional,
electrical, environmental, radio) reflect state-of-the-art technology for both control and communica-
tion. The STOP function of AIR Series models has been certified by TUV Rheinland as compliant
up to PL e according to EN ISO 13849-1 and to SIL 3 according to EN IEC 62061. Radio frequency
communication is made through a certified and proprietary Autec system which is suitable for safety-
critical applications. Each remote system uses its own unique code which cannot be reproduced.
When the AIR controller identifies some emergency condition it switches off the power supply to the
devices by opening a electro-mechanical relay which is normally close. Moreover, to ensure the
safety of the whole system also in case of failure, this product uses a redundant relay. This approach
is typical for industrial production machine.

33

Finally another two important strengths of these series are

• Reliability: all electronic and mechanical parts are designed, manufactured and tested to with-
stand heavy use in adverse conditions (e.g. extremes temperature, shock and vibrations, sub-
stances such as oils, paints and thinners; even electromagnetic disturbance, dust and water).
The AIR Series features casings with IP65 protection. 100% of the radio controls produced are
subject to functional testing with specific equipment that ensures proper construction of each
part that goes into an Autec system. An effective traceability system allows us to precisely
identify the components and activities carried out through the production process to ensure the
highest levels of safety and reliability.

• Flexibility: each receiver can be paired with any transmitter in the series, according to the needs
of the specific applications. In this way, it is possible to adapt to complex working situations, in-
cluding the use of multiple machines, maintaining both high reliability and safety. Thanks to the
wide configurability of available actuators and displays, the transmitting units can adapt to many
application requirements. In addition, with all the different receivers available and the ability to
insert additional cards into the expansion slots, the AIR Series offers high configurability and
the ability to optimize the output interface with respect to the function required by the machine.

(a) Different type joystick for AIR series

(b) Different type of hand held transmitters for AIR series

(c) Different type of receiver unit for AIR series

Figure 3.3: Principal AIR series products

34

3.3 New development: ideas and future improvements

As already mentioned, Autec is continuously researching to develop new products to satisfy the mar-
ket requirements. In particular this thesis would like to propose a new approach for the safety: a com-
plete development with the software through the safety protocols and especially through CANopen
Safety. It will be also essential to develop the tests necessary to prove the reliability of the applica-
tions and for a further certification of them with TUV Rheinland, as the current products. This aspect
may represent a problem, since it may require a long time. Moreover CANopen safety does not pro-
vide any tool for certification, as conversely FSOE and Profisafe do. Another interesting improvement
would be the introduction of the Industrial Internet of Things (IIoT) approach. In particular, since the
Autec products already record the data of the radio operation in some memory, it would be interesting
to save these data in a cloud to elaborate them. In this way there would be the possibility of predict-
ing possible failures and consequently doing the right maintenance in advance. This idea introduces
another possible problem since when, the data are loaded in a cloud, they are subjected to security
attacks. For this reason before introducing this approach it is essential to develop also security appli-
cations. In this thesis, only the first activity will be faced and in particular the goal of this work is the
development of safety applications, while the IIot activity is an idea for a future improvement.

35

Chapter 4

Codesys

4.1 Introduction

The development environment Codesys (Controlled Development System) created by the German
company 3S-Smart Software Solution allow to implement abstract machine for logical control us-
ing one of the languages defined by IEC 61131-3. The development tool is used for two applica-
tions:

• To code and run PC controller for automation machine. For these applications Codesys works
as compiler of IEC 61131-3 programs, producing a program executable by real time CoDeSys
SP RTE.

• To code industrial control system (as PLC). For these applications Codesys is sold with the
compiler and with the personalized interface for the specific PLC.

This development environment provides so many tools that it can cover the most different fields, in
particular it can range from the soft motion, with an editor for the the motion planning, to specific
tasks of safety for disparate systems. This last function is implemented with pre-certified software
components that make it much easier for device manufacturers to have their SIL2 or SIL3 controllers
certified. Therefore, Codesys Safety consists of components within the programming system and
the runtime system, whereas the project planning is completely integrated in the IEC 61131-3 pro-
gramming environment. Besides different field bus can be used directly in the programming system
Codesys and for this purpose, the tool integrates configurators for the most common system such
as PROFIBUS, CANopen, EtherCAT, PROFINET and EtherNet/IP. These two important facts are the
reasons of the choice of introducing Codesys. In particular for this thesis some safety applications for
the Autec products will be developed in the Codesys environment and with CANopen field bus.

4.2 Briefly explanation of how Codesys works

It is possible to download the demo free of charge from the official website, with the restrictions that it
is not possible to use all the library and that it has a maximum number of components, or it is possible
to buy the license and the full version from the website too. Once installed the development tool it
is possible to see all the programs that it includes and in particular Codesys V2.3 which is the most
important and which allows the development and simulation of code or control industrial systems
according to IEC 61131-3. This packet also includes:

• Configuration, which is useful to configure the servers OPC and DDE, which are the servers
supported by Codesys for communication and remote applications.

• ENI interface, which allows to connect the environment CoDeSys with an external database,
such that data could be share between more users, programs and computers.

36

• CoDeSys SP RTE which allows to implement real time execution.

• HMI runtime system, which allows to show graphic visualization created with CoDeSys

A project consists in all the objects useful for the creation of the PLC application. In particular the
objects are: POU (program Organization Unit), data defined by the user, visualization part, resources
and libraries. Every POU comprises a initial part in which are defined all the data essential for the
success of communication and a central part which contains the actual aforementioned program
written in one of the IEC 61131-3 languages. Running Codesys, it will load the latest project or, if
it is the first time it runs, an example. Once created a new project, which is set in ST and name
PLC_PRG by default, the screen is presented as in Fig. 4.1.
It is subdivided in two parts: in the right one, the window link with the element in the left part is
showed, while in the left one the Project Browser is showed. This one is made of 4 objects:

• POU: list of the POU (Program Organization Unit), separated in Program (PRG), Function(FC)
and Function Blocks (FB), as imposed by regulation IEC 61131-3;

• Data types: list of the type of data defined by the user ;

• Visualizations: list of graphic panels;

• Resource: list of configuration menu .

Moreover, there is the possibility to convert a program from a language to another, to use all the
library that support that language and to insert programmed POU such as timers, registers counters
etc. A project for the development of a control system can be subdivided in two parts: a program
which controls the system and a program that simulates the plant. Obviously they must interact
between each other and in particular the control part, once elaborated the outputs, must command
the actuators, while the simulator must show the state of the plant coherently with its real operating.
By default only the PLC_PRG is run, so it is necessary to modify the system configuration such that
both the programs are run.

Figure 4.1: Project Browser

Once briefly introduced how Codesys works, it is necessary to explain all the type of data that can
be used. In particular Codesys support different standard data which are associated with a memory

37

space and a particular value:

• Boolean data: which can assume only the value true or false and for which are reserved 8 bit;

• Integer data: which are BYTE, WORD, DWORDS, SINT, USINT, INT, UNIT, DINT and UDINT.
For each type of integer is reserved a particular memory space and possible value. (Tab. 4.1)

Type minimum value maximum value memory space
BYTE 0 255 8 Bit
WORD 0 65535 16 Bit

DWORD 0 4294967295 32 Bit
SINT -128 127 8 Bit

USINT 0 255 8 Bit
INT -32768 32767 16 Bit

UINT 0 65535 16 Bit
DINT -2147483648 2147483647 32 Bit

UDINT 0 4294967295 32 Bit

Table 4.1: Different type of Integer Data

• Real and LReal data: used to represent rational number with floating point. For real data
32 bit of memory are reserved with a lower and upper bound equal to 1.175494351e-38 and
3.402823466e+38 respectively, while fore Lreal data 64 bit of memory are reserved with a lower
and upper bound equal to 2.2250738585072014e-308 and 1.79769313486231e+308 respec-
tively.

• String : which can contain all type of character and have an unlimited length(in principle, cince
it is limited by physic limits).

• date and time data: TIME ,TIME OF DAY(TOD), DATE and DATE AND TIME (DT) SAVED AS
DWord; tie is expressed in millisecond for TIME and TOD, while in second for DATE and DT. To
assign this type of data it is necessary to write ’t’ or ’T’ followed by # and by the time which
can be expressed with the following order with day ’d’, hours ’h’, minutes ’m’, seconds ’s’ and
milliseconds ’ms’.
For example a right assignment is:
T IME1 = t#10h38m2s

• Addresses: to read or write a defined memory space. In particular the syntax for this type of
assignment is % followed by a prefix for the field (which can be I for input, Q for output and M
for memory space) and a prefix for the dimension (which can be X for a bit, B for a byte, W for
a word and D for a double word). An example can be:
%IB200 (InputByte200).

• Variables: which can be defined either as global (seen by all the program that set up the project)
or local (defined only for the program in which they are defined).

4.3 Use of Codesys for safety application

Once introduced the idea of how Codesys works and said that it can range the most different fields, it
is possible to focus on the safety function of this development environment. In particular Codesys cre-
ates executable safety application code for industrial controllers with integrated code generators on
different architectures and it develops safety runtime systems in accordance with IEC 61508. More-
over it offers integrated solutions for practically popular systems. This makes a convenient integrated
configuration of Profisafe, FSoE or CANopen Safety in combination with standard field bus systems.
Finally there is a cooperation between the Codesys developers and the certification institutions such
as TUV SUD and TUV Rheinland, which allows to meet the requirements for certification with more

38

accuracy and to make realistic estimation for safety projects. In addition there is a separate team
exclusively for the development of safety software products. Once the risk analysis for a product is
done, it is possible to choose the right Codesys Safety software:

• Codesys Safety, a product for device manufacturers to implement safety-related protection con-
trollers in mechanical engineering pursuant to the Mobile processing machines

• Codesys Safety SIL2, a product for device manufacturers to implement safety-related mobile
controllers in accordance with IEC 61508 SIL2 and machine guideline in compliance with IEC
61508 SIL3 and EN13849 PLe.

• Codesys Safety for EtherCAT Safety Module, for device manufacturers and users, based on
Beckhoff Automation GmbH’s safety logic terminal EL6900 that has already been certified in
accordance with IEC 61508 SIL3. The system can be used with any standard controller with
CODESYS and CODESYS EtherCAT.

39

Chapter 5

Application development

5.1 System structure and safety validation operation

Codesys Safety SIL2 was the environment for the application development, since it allows to build
safety projects and it provides a series of tools that are useful for using CANopen Safety.
The first activity was characterized by the study of this environment and the development of basic
application to understand Codesys characteristics and its operation. After that, two devices with a
microcontroller for functional safety were studied since they are the systems over which the applica-
tions are run. In particular the microcontroller is Hercules Safety TMS570 MCU by Texas Instrument
(Appendix C). Once analysed, they were connected with a PC and, after their drivers installation on
the PC, they were connected each other via CANopen , defining one master and one slave. In this
context, an experimental session has been carried out to appropriately set the application environ-
ment, as well as to configure the evaluation boards. This activity required quite a long time since it
implied a series of tests to understand the connection quality, the effective use of CANopen safety,
the actual safety performance of the communication system and, finally, all the rules controlling the
safety connection. Once established the safe interaction between the two devices and loaded the
code on them, the Codesys window device appears as in Fig. (5.1).

(a) Master communication window (b) Slave communication window

Figure 5.1: Devices communication window

40

A test network has been implemented as reported in Fig. 5.2. As it can be seen, a radio remote con-
troller was connected to the CANopen network and it was configured to send 4 CANopen messages
in which were inserted the Autec telegram. The master node was setted, on Codesys, such that it
read all the messages sent by this device and it sent safety messages on the network addressed to
the slave evaluation board using the CANopen Safety protocol. Besides, a small actuators, which
was able to light some leds according to a specific logic, was connected to the network Configured
the slave evaluation board to send a message to this device, the complete designed system architec-
ture was achieved. In particular all the hardware system is also presented in Fig. 5.3
The flow chart of the system is instead presented in the scheme in Fig. 5.4.

Figure 5.2: Scheme of the hardware system architecture

Figure 5.3: Photo of the hardware system architecture

41

Figure 5.4: Scheme of the flow chart

42

The network operation is described as follows (Fig. 5.4):

• the radio remote controller split the Autec telegram in 4 PDOs composed by 8 bytes.
The telegram is composed by 27 bytes of which:

– 3 bytes for the address of the device.

– 17 bytes for digital and analog inputs safety messages ,the timestamp and the UID number.

– 7 bytes used to check the telegram integrity via an algorithm that ensures the correctness
of the communication with a defined very high probability.

In each message it was also sent a byte, which was used as identifier, while the final byte of the
last message was set to 0.

• The master evaluation board, once received the 4 PDOs, reconstructed the original telegram
only if the 4 identifiers coincided. After that, it used the algorithm for checking if the bits of
BCH matched the structure of the message. After the BCH test, the master also checked the
timestamp of the telegram, which is a byte calculated to have a time control. In particular a
counter is used to have the enumeration of the telegram sent in a similar way to the method
used by profisafe and fsoe. The checking algorithm checked that the difference between the
value of the bytes of actual timestamp and the value of the expected timestamp is equal to 0 or
+/− 1, detecting possible delay, loss or repetition. Finally, another control was implemented to
check that the telegram was sent effectively to the right receiver, simply checking that the UID
number of the telegram corresponded to the UID number of the receiver. If all the tests were
successful, then the evaluation board prepared the message to transmit, calculating a CRC
(cyclic redundancy check) which will be explained in the next section. Once the message was
ready, the evaluation board sent it in the CAN network a CANopen Safety message (SRDO)
with the bytes of interest. Conversely if any of the tests failed then the evaluation board sents a
SRDO in which the bytes configured to signal the error and to impose the safe condition of the
machine.

• The slave evaluation board received the SRDO, checked that the transmission was successfully
with the code generated by Codesys Safety (which managed the CANopen Safety communi-
cation) and with the additional checked of the CRC. After that the board prepared a PDO using
the information of the SRDO and sent it in the CAN network such that its information was read
by a small electronic board (led unit) which lighted some led according a defined logic.

• Some leds were lighted according to the data sent by the slave to simulate a smart actuator
and to have a visual match of the status of the transmission. In particular checking the 4 least
significant bits of the safety byte a different number of leds were lighted:

– 4 leds, if they correspond to the value F (byte =16#*F), which means that the transmission
is working and that the safety command was pushed and the stop was not activated;

– 2 leds, if they correspond to the value C (byte =16#*C), which means that the transmission
is right working and that neither the safety command nor the stop button were pushed;

– 0 led, if they correspond to the value 0 (byte =16#*0), which means that or the stop button
was pushed, or an error was detected and so the safety configuration was imposed.

This architecture was designed to manage and transmit safely part of the Autec telegram, the safety
commands, in particular, using CANopen safety for the transmission in the CAN network. In fact once
checked and verified the message received from the Autec radio remote controller, the safety infor-
mation was sent through an SRDO, using CANopen Safety, to another device which should simulate
the one that usually manages the commands sent by the controller. Moreover the small actuators
lightening some leds were inserted in the network to simulate another node in the network and to
have a visual match of the status of the transmission.
A future development, as outlined in Fig. 5.5, is expected to implement the safety master in the Autec

43

receiving unit. In such way the receiving unit would be able to do all the tests, verifying the radio
transmission, and then to send the safety information using CANopen Safety. Thus, the communica-
tion would result completely safety, since the radio transmission would be seen as a black channel
and data would be accepted only after all their complete safety checks.

Figure 5.5: Scheme of the future hardware system architecture

All the algorithms were implemented according to the Codesys Safety SIL2 User Manual such that
the fully reconstruction of the telegram ensured safety and moreover, it was possible to transmit
the safety bytes through CANopen Safety. In particular following the ISO 62061 standard, all the
checks of input data and of data pre-transmission corruption were done through the already cited
BCH, Timestamp and UID. Also, all the checks of transmission corruption and error were managed
by Codesys using the protocol CANopen Safety. Every single rule was checked and all the code
analysed to verify that the rule was respected. Regarding the hardware platform, an evaluation board
from Texas Instruments including the mentioned Hercules TMS570 safe MCU was used for this work.
Although the Hercules TMS570 MCU is a microcontroller designed for safety relevant applications,
the evaluation board might not be designed with all procedural requirements and design constraints
that are essential for an actual safety relevant hardware platform. However, the check of the correct
design of the hardware platform as well as the correct implementation of Codesys Safe SIL 2 runtime
environment were not in the scope of this thesis work.
Nevertheless, many different validation tests were carried out to check that the system worked in the
expected way in all the operational contexts.
Firstly it was checked that the CANopen Safety worked in the right way, managing and sending all
the declared errors. In particular as soon as one of the errors listed in Fig. 5.6 is detected, the safety
communication is interrupted and a particular procedure which requires the reboot of the device is
needed.

44

Figure 5.6: Different type of error signalled for the safety communication

• The error SRDO_RECEIV E_ERROR is generated when the device receives an unexpected
SRDO. For example, when it receives an old message . To simulate this error condition, a
SRDO was sent in the interval between one SRDO and the correct subsequent one. This was
achieved with ’PCAN’ tool, which is a hardware and software interface that allows to write in a
CAN network messages of variables length and addresses. In such way the device receive an
unexpected message and consequently it is signalled the error.

• The error SRDO_SEND_ERROR is created when the device sends a wrong SRDO since the
message it is sending is corrupted.

• The error SRDO_DATA_ERROR is created when the device receives a wrong SRDO, for ex-
ample when the bit-wise inverted CAN message does not coincide with the expected message
calculated from the first part of the SRDO. This error condition was simulated with the PCAN
instrument by overwriting the first part of the SRDO.

• The error SRDO_INV ALID_CONFIGURATION is created when the devices that should
communicate are not well configured. In this case the safety communication never starts until
the devices are correctly reconfigured.

• The error SRV T_TIMEOUT is created when there is a delay, exceeding a fixed time, between
the first CAN message that compose the SRDO and its subsequent bit-wise inverted CAN
message. To impose this condition the CAN network was congested with many high priority
messages sent with ’PCAN’. In particular a NMT message was sent every 1 millisecond.

• The error SCT_TIMEOUT is created when there is a delay, exceeding a fixed time, between
two consecutive SRDOs. Since the SRDOs are periodic messages, the device sending them
was switched off to create this error. In fact as soon the receiving device does not receive the
expected SRDO within the fixed time, it signals this error. This error was also detected when
the CAN network was congested, since not even the first part of the SRDO was received within
the fixed time.

• The error UNSAFE_STACK_NOT_OPERATIONAL is created when not even the unsafe
communication is guaranteed. Also this error was detected when the CAN network was con-
gested. Indeed in this condition it may happen that the devices are not able to communicate.
In this case the device signals for the safe communication the above error, while for the unsafe
communication it signals the error MODULE_NOT_FOUND. Once the network is not con-
gested any more, the unsafe communication is recovered, while the safe communication is still
no available.

As expected, when one of all the above cited errors is detected, the communication is stopped, the
safe configuration is sent, and a human action (the physical reboot of the devices) is necessary
to established the transmission again. All these validation tests showed that the CANopen Safety
protocol was implemented correctly, signalling errors and managing them in the right way.
After that, some further analyses concerning the timestamp were done, checking the results of the
function that controls their correctness. When the transmission through radio misses a packet, the
receiving unit sent, in the CAN network to the master, the previous message. For this reason the

45

timestamp test also checked that there were no more than 9 consecutive misses messages with the
same timestamp, which would mean that the transmitter is not able to communicate with the receiver
for a time that exceeds a fixed threshold. In this case the elaboration board signals the error and
transmits a message to stop the machine in a safety condition. To check if these actions were done
effectively, some possible cases were inspected. In particular it was analysed when the transmitter is
correctly switched off, when the power supply is suddenly taken off and finally when the transmitter is
too far from the receiver and so too many packets are lost. In all these cases all the messages sent
by the receiver unit and from the master were tracked and analysed. It was seen that 9 consecutive
messages were sent by the CRD and detected from the master with no error. At the 10th consecutive
equal message, the master device signalled the error and sent the message to achieve the safe
condition.
After that also some tests were made to verify the quality of the function to control the BCH and the
UID. In particular with the Radio remote controller it was sent a message with the BCH bits calculated
for a configuration which did not correspond to the effective one. When the telegram was inspected
by the BCH test, as expected, the error was highlighted by the master and the safety configuration
was sent. Finally a message with setted the wrong UID number, and so addressed to another device,
was sent with the radio remote controller. Also in this case the function worked correctly, in fact the
device signalled the error and it imposed the safety configuration.

5.2 Safety code validation example: function CRC_Calculation

It is now introduced the code of the CRC_Calculation and CRC_check functions and the safety
validation of the code. Firstly it is presented what the CRC is, its goal and this particular calculation.
After that, the code and the safety analysis are presented. A cyclic redundancy check (CRC) is an
error-detecting code commonly used in digital networks and storage devices to detect accidental
changes to raw data. Blocks of data entering these systems get a short check value attached,
based on the remainder of a polynomial division of their contents. On retrieval, the calculation is
repeated and, in the event the check values do not match, corrective actions can be taken against
data corruption. To compute an n-bit binary CRC, line the bits representing the input in a row, and
position the (n + 1)-bit pattern representing the CRC’s divisor (called a "polynomial") underneath the
left-hand end of the row. The message to transmit is left shifted of n position where n is the length of
the CRC (such that the resulting code word is in systematic form). After that it is computed the binary
division module 2 between the shifted message and the fixed generator.
This operation is acted with an algorithm that:

1) Computes the bitwise XOR between:

+ the n+ 1 most significant bit of the message

+ the fixed generator.

2) Substitutes the n+ 1 most significant bit with the result of the previous operation.

3) Checks the new message length:

+ If it is composed by more than n bits, then it return to point 1).

+ Otherwise the message is the remainder which is also the searched CRC.

After the calculation of the CRC, the message to transmit is built by appending the calculated CRC to
the initial message. The validity of a received message can easily be verified by performing, again,
the previous calculation. The remainder should be equal to zero if there are no detectable errors.

46

Following it is presented an example of a CRC calculation:

initial_message = 0011001000100100
generator = 10011
intial_message_shifted = 00110010001001000000
Division :
110010001001000000
10011
010100001001000000
/10011
000111001001000000
///10011
000011111001000000
////10011
000001100001000000
/////10011
000000101101000000
//////10011
000000001011000000
////////10011
000000000010100000
//////////10011
000000000000111000
////////////10011
000000000000011110
/////////////10011
000000000000001101

In general, computation of CRC corresponds to Euclidean division of polynomials over Galois field of
dimension 2. In particular for this field only two elements are defined which are nearly always called
0 and 1, while there are two permitted operations: addiction and multiplication which correspond
to the XOR operation and the AND operation respectively. Given the original message polynomial
M(x) and the degree-n generator polynomial G(x). The bits of M(x) ∗ xn are the original message
with n zeroes added at the end. The CRC ’checksum’ is formed by the coefficients of the remainder
polynomial R(x) whose degree is strictly less than n. The quotient polynomial Q(x) is of no interest.
So resuming it holds:

M(x) ∗ xn = Q(x) ∗G(x) +R(x)

and using the modulo operation, it can be stated that:

R(x) = M(x) ∗ xnmodG(x)

In communication, the sender attaches the n bits of R after the original message bits of M, which
could be shown to be equivalent to send out M(x) ∗ xn −R(x) (the codeword.)
The receiver, knowing G(x) and therefore n, separates M from R and repeats the calculation, verifying
that the received and computed R are equal. If they are, then the receiver assumes the received
message bits are correct.

47

Explained the BCH goal and its calculation, it is now presented the code and its analysis for a possible
safe validation.

1 FUNCTION_BLOCK CRC_Calculation
2 VAR_INPUT
3 S_B1 : SAFEUSINT ;
4 S_B2 : SAFEUSINT ;
5 S_B3 : SAFEUSINT ;
6 S_B4 : SAFEUSINT ;
7 S_B5 : SAFEUSINT ;
8 S_B6 : SAFEUSINT ;
9 S_B7 : SAFEUSINT ;

10 S_B8 : SAFEUSINT ;
11 END_VAR
12 VAR_OUTPUT
13 S_CRC : SAFEULINT ;
14 S_ok : SAFEBOOL;
15 S_outB1 : SAFEUSINT ;
16 S_outB2 : SAFEUSINT ;
17 S_outB3 : SAFEUSINT ;
18 S_outB4 : SAFEUSINT ;
19 S_outB5 : SAFEUSINT ;
20 S_outB6 : SAFEUSINT ;
21 S_outB7 : SAFEUSINT ;
22 S_outB8 : SAFEUSINT ;
23 END_VAR
24 VAR
25 S _ i n i t i a l : SAFEULINT ;
26 S_temp1 : SAFEULINT ;
27 S_temp2 : SAFEULINT ;
28 S_temp3 : SAFEULINT ;
29 S_temp4 : SAFEULINT ;
30 S_temp5 : SAFEULINT ;
31 S_temp6 : SAFEULINT ;
32 S_temp7 : SAFEULINT ;
33 S_temp8 : SAFEULINT ;
34 S_generator : SAFEULINT ;
35 S_i : SAFEINT ;
36 S_trasm : SAFEULINT ;
37 S_temp : SAFEULINT ;
38 S_quoz : SAFEULINT ;
39 S_quot : SAFEULINT ;
40 S_sh i f t 1 : SAFEULINT ;
41 S_sh i f t 2 : SAFEULINT ;
42 S_sh i f t 3 : SAFEULINT ;
43 S_sh i f t 4 : SAFEULINT ;
44 S_sh i f t 5 : SAFEULINT ;
45 S_sh i f t 6 : SAFEULINT ;
46 S_sh i f t 7 : SAFEULINT ;
47 S_sh i f tTo t : SAFEULINT ;
48 S_tempQuoz : SAFEULINT ;
49 S_tempBinDiv : SAFEULINT ;
50 S_sh i f tB inD iv : SAFEULINT ;
51 S_table : ARRAY[0 . . 6 3] OF SAFEULINT := [

48

52 16#1 , 16#2 ,
53 16#4 , 16#8 ,
54 16#10 , 16#20 ,
55 16#40 , 16#80 ,
56 16#100 , 16#200 ,
57 16#400 , 16#800 ,
58 16#1000 , 16#2000 ,
59 16#4000 , 16#8000 ,
60 16#10000 , 16#20000 ,
61 16#40000 , 16#80000 ,
62 16#100000 , 16#200000 ,
63 16#400000 , 16#800000 ,
64 16#1000000 , 16#2000000 ,
65 16#4000000 , 16#8000000 ,
66 16#10000000 , 16#20000000 ,
67 16#40000000 , 16#80000000 ,
68 16#100000000 , 16#200000000 ,
69 16#400000000 , 16#800000000 ,
70 16#1000000000 , 16#2000000000 ,
71 16#4000000000 , 16#8000000000 ,
72 16#10000000000 , 16#20000000000 ,
73 16#40000000000 , 16#80000000000 ,
74 16#100000000000 , 16#200000000000 ,
75 16#400000000000 , 16#800000000000 ,
76 16#1000000000000 , 16#2000000000000 ,
77 16#4000000000000 , 16#8000000000000 ,
78 16#10000000000000 , 16#20000000000000 ,
79 16#40000000000000 , 16#80000000000000 ,
80 16#100000000000000 , 16#200000000000000 ,
81 16#400000000000000 , 16#800000000000000 ,
82 16#1000000000000000 , 16#2000000000000000 ,
83 16#4000000000000000 , 16#8000000000000000] ;
84 END_VAR
85

86 / / CRC_Calculation
87 / / c a l c u l a t e the data to t r a s m i t t (8 bytes) and the r e l a t i v e CRC
88 / / b (x) po lynomia l assoc ia ted wi th the data
89 / / g (x) po lynomia l o f the generator o f degree g
90 / / generator chosen 16#8005 , assoc ia ted polynomia l : x^16+x^15+x^2+1
91 / / p (x) = b (x) * 2^g ;
92 / / p (x) : g (x) = q (x) + r (x) −−−−> CRC = r (x) doing b inary d i v i s i o n mod2
93 / / data to t r a s m i t t m(x) = p (x) + r (x)
94 / / no c o r r u p t i o n o f the data a f t e r the t rasmiss ion i f
95 / / the t r a s m i t t e d message has a remainder equal to 0 (doing b inary

d i v i s i o n mod2)
96

97

98 / / Ca l cu l a t i on o f the s a f e u l i n t data i n a sa fe t y way
99 S_sh i f t 1 := S_table [5 6] ;

100 S_temp1 := SAFEUSINT_TO_SAFEULINT(S_B1) ;
101 S_temp1 := S_temp1* S_sh i f t 1 ;
102 S _ i n i t i a l := S_temp1 ;
103 S_sh i f t 2 := S_table [4 8] ;

49

104 S_temp2 := SAFEUSINT_TO_SAFEULINT(S_B2) ;
105 S_temp2 := S_temp2* S_sh i f t 2 ;
106 S _ i n i t i a l := S _ i n i t i a l + S_temp2 ;
107 S_sh i f t 3 := S_table [4 0] ;
108 S_temp3 := SAFEUSINT_TO_SAFEULINT(S_B3) ;
109 S_temp3 := S_temp3* S_sh i f t 3 ;
110 S _ i n i t i a l := S _ i n i t i a l + S_temp3 ;
111 S_sh i f t 4 := S_table [3 2] ;
112 S_temp4 := SAFEUSINT_TO_SAFEULINT(S_B4) ;
113 S_temp4 := S_temp4* S_sh i f t 4 ;
114 S _ i n i t i a l := S _ i n i t i a l + S_temp4 ;
115 S_sh i f t 5 := S_table [2 4] ;
116 S_temp5 := SAFEUSINT_TO_SAFEULINT(S_B5) ;
117 S_temp5 := S_temp5* S_sh i f t 5 ;
118 S _ i n i t i a l := S _ i n i t i a l + S_temp5 ;
119 S_sh i f t 6 := S_table [1 6] ;
120 S_temp6 := SAFEUSINT_TO_SAFEULINT(S_B6) ;
121 S_temp6 := S_temp6* S_sh i f t 6 ;
122 S _ i n i t i a l := S _ i n i t i a l + S_temp6 ;
123 S_sh i f t 7 := S_table [8] ;
124 S_temp7 := SAFEUSINT_TO_SAFEULINT(S_B7) ;
125 S_temp7 := S_temp7* S_sh i f t 7 ;
126 S _ i n i t i a l := S _ i n i t i a l + S_temp7 ;
127 S_temp8 := SAFEUSINT_TO_SAFEULINT(S_B8) ;
128 S _ i n i t i a l := S _ i n i t i a l + S_temp8 ;
129

130 / / T r a s l a t i o n o f the data o f g p o s i t i o n where g i s the degree of the
generator po lynomia l

131 S_sh i f tTo t := S_table [1 5] ;
132 S _ i n i t i a l := S _ i n i t i a l * S_sh i f tTo t ;
133 S_trasm := S _ i n i t i a l ;
134 / / Ca l cu l a t i on o f the CRC as the remainder o f the b inary d i v i s i o n mod 2 ,

c a l c u l a t i o n using the sa fe t y s p e c i f i c a t i o n
135 FOR S_i := 0 TO 48 DO
136 / / Selected generator po lynomia l
137 S_generator := 16#8005;
138 S_tempBinDiv :=16#8000;
139 S_sh i f tB inD iv := S_table [48−S_i] ;
140 S_tempBinDiv := S_tempBinDiv * S_sh i f tB inD iv ;
141 S_tempBinDiv := S_tempBinDiv AND S _ i n i t i a l ;
142 IF NOT (S_tempBinDiv= 0) THEN
143 S_generator := S_generator * S_sh i f tB inD iv ;
144 S _ i n i t i a l := S _ i n i t i a l XOR S_generator ;
145 END_IF
146 END_FOR
147 S_CRC:= S _ i n i t i a l ;
148 S_trasm := S_trasm + S_CRC;

50

1 FUNCTION_BLOCK Check_CRC
2 VAR_INPUT
3 S_B1 : SAFEUSINT ;
4 S_B2 : SAFEUSINT ;
5 S_B3 : SAFEUSINT ;
6 S_B4 : SAFEUSINT ;
7 S_B5 : SAFEUSINT ;
8 S_B6 : SAFEUSINT ;
9 S_B7 : SAFEUSINT ;

10 S_B8 : SAFEUSINT ;
11 END_VAR
12 VAR_OUTPUT
13 S_ok :SAFEBOOL;
14 END_VAR
15 VAR
16 S _ i n i t i a l : SAFEULINT ;
17 S_temp1 : SAFEULINT ;
18 S_temp2 : SAFEULINT ;
19 S_temp3 : SAFEULINT ;
20 S_temp4 : SAFEULINT ;
21 S_temp5 : SAFEULINT ;
22 S_temp6 : SAFEULINT ;
23 S_temp7 : SAFEULINT ;
24 S_temp8 : SAFEULINT ;
25 S_generator : SAFEULINT ;
26 S_i : SAFEINT ;
27 S_trasm : SAFEULINT ;
28 S_temp : SAFEULINT ;
29 S_quoz : SAFEULINT ;
30 S_quot : SAFEULINT ;
31 S_sh i f t 1 : SAFEULINT ;
32 S_sh i f t 2 : SAFEULINT ;
33 S_sh i f t 3 : SAFEULINT ;
34 S_sh i f t 4 : SAFEULINT ;
35 S_sh i f t 5 : SAFEULINT ;
36 S_sh i f t 6 : SAFEULINT ;
37 S_sh i f t 7 : SAFEULINT ;
38 S_sh i f tTo t : SAFEULINT ;
39 S_tempQuoz : SAFEULINT ;
40 S_tempBinDiv : SAFEULINT ;
41 S_sh i f tB inD iv : SAFEULINT ;
42 S_table : ARRAY[0 . . 6 3] OF SAFEULINT := [
43 16#1 , 16#2 ,
44 16#4 , 16#8 ,
45 16#10 , 16#20 ,
46 16#40 , 16#80 ,
47 16#100 , 16#200 ,
48 16#400 , 16#800 ,
49 16#1000 , 16#2000 ,
50 16#4000 , 16#8000 ,
51 16#10000 , 16#20000 ,
52 16#40000 , 16#80000 ,

51

53 16#100000 , 16#200000 ,
54 16#400000 , 16#800000 ,
55 16#1000000 , 16#2000000 ,
56 16#4000000 , 16#8000000 ,
57 16#10000000 , 16#20000000 ,
58 16#40000000 , 16#80000000 ,
59 16#100000000 , 16#200000000 ,
60 16#400000000 , 16#800000000 ,
61 16#1000000000 , 16#2000000000 ,
62 16#4000000000 , 16#8000000000 ,
63 16#10000000000 , 16#20000000000 ,
64 16#40000000000 , 16#80000000000 ,
65 16#100000000000 , 16#200000000000 ,
66 16#400000000000 , 16#800000000000 ,
67 16#1000000000000 , 16#2000000000000 ,
68 16#4000000000000 , 16#8000000000000 ,
69 16#10000000000000 , 16#20000000000000 ,
70 16#40000000000000 , 16#80000000000000 ,
71 16#100000000000000 , 16#200000000000000 ,
72 16#400000000000000 , 16#800000000000000 ,
73 16#1000000000000000 , 16#2000000000000000 ,
74 16#4000000000000000 , 16#8000000000000000] ;
75 END_VAR
76

77 / / Check_CRC
78 / / check o f the rece ived message
79 / / b ina ry d i v i s i o n mod 2 of the rece ived message f o r the f i x e d generator
80 / / the message i s c o r r e c t i f the remainder i s equal to 0
81

82 / / Ca l cu l a t i on o f the s a f e u l i n t data i n a sa fe t y way
83 S_sh i f t 1 := S_table [5 6] ;
84 S_temp1 := SAFEUSINT_TO_SAFEULINT(S_B1) ;
85 S_temp1 := S_temp1* S_sh i f t 1 ;
86 S _ i n i t i a l := S_temp1 ;
87 S_sh i f t 2 := S_table [4 8] ;
88 S_temp2 := SAFEUSINT_TO_SAFEULINT(S_B2) ;
89 S_temp2 := S_temp2* S_sh i f t 2 ;
90 S _ i n i t i a l := S _ i n i t i a l + S_temp2 ;
91 S_sh i f t 3 := S_table [4 0] ;
92 S_temp3 := SAFEUSINT_TO_SAFEULINT(S_B3) ;
93 S_temp3 := S_temp3* S_sh i f t 3 ;
94 S _ i n i t i a l := S _ i n i t i a l + S_temp3 ;
95 S_sh i f t 4 := S_table [3 2] ;
96 S_temp4 := SAFEUSINT_TO_SAFEULINT(S_B4) ;
97 S_temp4 := S_temp4* S_sh i f t 4 ;
98 S _ i n i t i a l := S _ i n i t i a l + S_temp4 ;
99 S_sh i f t 5 := S_table [2 4] ;

100 S_temp5 := SAFEUSINT_TO_SAFEULINT(S_B5) ;
101 S_temp5 := S_temp5* S_sh i f t 5 ;
102 S _ i n i t i a l := S _ i n i t i a l + S_temp5 ;
103 S_sh i f t 6 := S_table [1 6] ;
104 S_temp6 := SAFEUSINT_TO_SAFEULINT(S_B6) ;
105 S_temp6 := S_temp6* S_sh i f t 6 ;

52

106 S _ i n i t i a l := S _ i n i t i a l + S_temp6 ;
107 S_sh i f t 7 := S_table [8] ;
108 S_temp7 := SAFEUSINT_TO_SAFEULINT(S_B7) ;
109 S_temp7 := S_temp7* S_sh i f t 7 ;
110 S _ i n i t i a l := S _ i n i t i a l + S_temp7 ;
111 S_temp8 := SAFEUSINT_TO_SAFEULINT(S_B8) ;
112 S _ i n i t i a l := S _ i n i t i a l + S_temp8 ;
113 FOR S_i := 0 TO 48 DO
114 / / Selected generator po lynomia l
115 S_generator := 16#8005;
116 S_tempBinDiv :=16#8000;
117 S_sh i f tB inD iv := S_table [48−S_i] ;
118 S_tempBinDiv := S_tempBinDiv * S_sh i f tB inD iv ;
119 S_tempBinDiv := S_tempBinDiv AND S _ i n i t i a l ;
120 IF NOT (S_tempBinDiv= 0) THEN
121 S_generator := S_generator * S_sh i f tB inD iv ;
122 S _ i n i t i a l := S _ i n i t i a l XOR S_generator ;
123 END_IF
124 END_FOR
125 S_ok := (S _ i n i t i a l =0) ;

The above code is written in Structured Text (defined by IEC 61131-3, FVL language) respecting all
the Codesys Safety SIL2 User Manual at the level extended. Some strong constraints are imposed
by the manual. For example, it is not possible to use the function to shift the bits of a variable. To
obtain this effect, firstly a table was built in which all the possible power of 2 obtainable using 64 bits
were reported, and then the variable was multiplied or divided by the i- element of the table to obtain
a left or right i- shift respectively. The possibly exceeded numbers were rejected and everything was
managed in a safety way also since safe variables were used. Moreover the table was also used to
avoid to use the function EXPT for the power of 2 whose use is not allowed by the manual.
A particular explanation is needed also for the binary division MOD 2, which was implemented in a
different way with respect to the original version, because of the constraints imposed by the manual
and by the structured text. Indeed, it is not possible to:

• use WHILE cycles

• use FOR cycles with no constant number

• access a single bit of a variable in a cyclic way

then to find the most significant bit an AND operation was executed between the message of interest
and a variable which was imposed with all 0 except for the (64-j) bit which is imposed as one. The
result is different form 0 if the (64-j) bit was 1 also in the message, while is equal to 0 otherwise.
Once found the most significant bit of the message, the divisor is shifted such that its most significant
bit has the same position of the one of the message of interest. Then it is done the XOR operation
between these two messages and all these operations were repeated until the message was smaller
than the divisor and so it coincided with the CRC.
All the constraints that concern the implemented code are reported in the table 5.1 with the corre-
sponding technique used to respect it.

53

Rule Technique to respect it

Safe input and output variables not beginning All safe input and output
with the prefix S_ are not permitted in FBs were declared with S_.
Safe, explicitly defined, local variables not All variables were declared with S_.

beginning with the Prefix S_ are not permitted.
Safe data that have not been declared All safe data were declared with safe type.

with a SAFE data type are not permitted.
All the arrays were declared with a

constant length; all the accesses were done
Arrays are not permitted without either with constant variables or with a variable

explicit range check. which could change to a maximum
constant number which was in any case

smaller than the fixed limit.
Only libraries whose "SIL2" property Only libraries whit setted "SIL2"
is set may be used in the application. property were used.

POU without a visible description of the Every POU was commented with input,
functional specification is not permitted. output , functional specification description.

Implicit type conversions within Every conversion was explicit.
expressions are not permitted.

FOR loops with no constant number of For loops were used only with
loop executions per cycle constant number of loop.

within a state are not permitted.
WHILE loops are not permitted. While loops were not used.

expressions with a maximum nesting depth Every expression was subdivided in
greater than 1 are not permitted. smaller sub-expressions of depth 1,

which was executed one by one.
Calculation of AND or OR with more than Every Safe output was calculated
one SAFEBOOL output is not permitted. independently from the other.

Calculation of a SAFEBOOL output without every safebool was calculated
at least one SAFEBOOL input is not permitted. using safe data.

MOD use is not permitted unless explicitly the remainder was calculated
permitted by the controller manufacturer. subtracting the quotient multiplied

for the divisor to the dividend.
EXPT use is not permitted unless explicitly since only power of 2 were used, it was
permitted by the controller manufacturer. built in advance a table with all the

possible power of 2 for a ulint.
SHL use is not permitted. to obtain a left shift of n position, the

number was multiplied for the n power of 2.
SHR use is not permitted. to obtain a right shift of n position, the

number was divided for the n power of 2.

Table 5.1: Rules Codesys Safety SIL2 at level extended and their satisfaction

54

Chapter 6

Conclusion

This thesis introduced the principal characteristics of the most important industrial networks, the
relative most important industrial networks’ protocols and finally the corresponding safety protocol
with all the different techniques to obtain a safety transmission. In such way it is possible to un-
derstand how an industrial network works, which requirements are needed and in which way they
are achieved. The study of safety protocols allows to understand all the difficulties and all the prob-
lem that can arise when it is necessary to ensure the correctness of a transmission with a given
probability. The different safety protocol have strategies to ensure the effective safety, which can be
completely different and so many methods were analysed. For example, as seen, CANopen Safety
provide to consider a message as the effectively message and its bitwise inverted message. Using a
CAN message for each part, the 5 methods typical of CAN to check the corruption of the message
are used. In such way for a single SRDO there are twice all these controls, besides there is the check
of the effectively bit-wise inverted bit and finally there are 2 timers to check possible timeout between
the first part and the second one and between two consecutive SRDOs. Instead, for example, FSOE
uses a bigger CRC(of 32 bit) calculated with a different algorithm to detect corruption, a session
number to verify the correct configuration, a unique connection id to avoid misrouting, a sequence
number to detect repetition,loss or insertion and finally a watchdog to detect possible delay and time-
out. Without using the protocol methods, also Autec use different way to ensure that the transmission
of the radio was successfully in particular an algorithm is used to analyse the data received, besides
a CRC is used and the UID is checked. Once understood all the difficulties of ensuring a safety
transmission some safety applications were developed and the foundations for their safety validation
were laid. But all these operations and all these methods are only a small part of the entire world of
safety. In fact there are many aspects which needed to be analysed that go from the safety of the
hardware system to software management of all possible failures. For this reason this thesis wants
to be only a starting point for the future works that will be done with thePh.D. ’in Alto Apprendistato’
always in collaboration with Autec Srl.

55

Appendix A

Example of CANopen Safety chip

A Structure and Functionality of the CSC(CANopen Safety Chip)

The CSC (CANopen Safety Chip) is composed by a 16-bit microcontroller and by two internal CAN
controllers that are used redundantly. Physical connection to the CAN bus is implemented by routing
signals from both on-chip CAN controllers to a single CAN transceiver and applicable EMI protection
circuitry. The microcontroller operates in single-chip mode and runs with a 16 MHz internal system
clock. It provides 10 kByte internal SRAM and 256 kByte Flash memory and it is available a wide
selection of on-chip peripheral modules (e.g. ADC, DAC, DMA, Timer, ports, serial synchronous and
asynchronous interfaces). The software of the CSC consists in:

• the permanent firmware, which contains the CANopen safety protocol stack with all safety rele-
vant field bus functions, the diagnostic functions for RAM, register, stack, Flash and the watch-
dog functions with monitoring.

• the variable safety application which is located in the second, variable Flash sector and it is
loaded into the Flash by the user at a later time.

The permanent firmware controls all processes in the CSC. Thus the conditions for transfer of an
SRDO are verified among others. The test controls whether the SCT has elapsed and whether the
data and the configuration are valid and after that the SRDO is assembled and transferred. Upon
receipt of an SRDO the received CAN message is examined as well:
- if the SRDO is valid, the safety application will be notified of the receipt in two ways (call of an event
function and status in the so called safety relevant RAM);
- if a faulty SRDO was received or if no valid SRDO could be received in the expected time, the
safety application will be notified as well. The safety application has to initiate the corresponding
error response. Error responses to the SRDO enable targeted action to certain parts of the device
which can then be rendered into a secure state. Other functional units not effected by the local error
are not influenced. The CSC provides 4 SRDOs to ensure secure data transfer. Two SRDOs are
reserved for the transmission of safety relevant data and two are reserved for receiving data. There
are 128 bits of data (organized bytewise) available in both send and receive directions. The data
structure in the SRDO is static and can be set by the user during programming. While the entry
of safety relevant variables in the Object Dictionary can be performed by the user during program
development. Beside the CANopen safety services, there are integrated in the CSC the following
CANopen standard functions :

• 2 transmit and 2 receive PDOs (process data object), PDO linking, static PDO mapping, syn-
chronous and asynchronous transfer

• 1 SDO Server (service data object), expedited and segmented transfer

• NMT Slave (network management)

56

• Heartbeat Producer

• Emergency Producer

The CSC is specified and certified for use in devices according to IEC61508 up to SIL3 (safety
integrity level). Since the CSC consists of a microcontroller with redundant safety structures, a second
shut-off path is required to set the device into a secure state if the microcontroller fails. According to
IEC61508 such field bus devices are ranged in the class of highly available devices, which require a
degree of diagnostic coverage . The diagnostic test interval must be correspondingly smaller than the
safety cycle time, which is the maximum required time between the recognition of a safety relevant
event and the electrical initialization of the corresponding safety response. In particular for the CSC
the safety cycle time was set to <= 20ms. The secure and timely discovery of errors therefore takes
on special importance. The diagnostic routines of the CSC are an important part of the permanent
firmware, infact they determine directly the time performance and resource requirements of the chip.
Time intensive diagnostics include the calculation of a 16-bit CRC across program memory as well
as the diagnosis of the RAM. The algorithms used for it determine crucially the usable size of the
Flash and RAM. The permanent firmware checks the 5 kByte RAM via a transparent GALPAT test
and the 42 kByte program memory (permanent firmware and safety application) via the 16-bit CRC.
Errors recognized by the diagnostic function are treated as severe safety related errors. For a sensor
device this means transfer of SRDOs is stopped immediately. The CSC is now in an intrinsically
secure state that cannot be exited. In an actuator application this will lead to release of the external
Watchdog, which sets the actuator into the secure state via the secondary shut-off path. The CSC
contains a logical program execution monitor, which is tested by the permanent firmware. The safety
application is also integrated in the program process monitoring. Errors that are recognized by the
program execution monitor, are considered the same as diagnostic errors and cause a change into an
intrinsically secure state. The additional temporal program execution monitor function comes into use
when the CSC is implemented in actuators and, so, a Watchdog with an external time base and a time
window is used. Errors in the temporal program execution effect the actors via the secondary shut-
off path. The user is solely responsible for the safety application. It serves as the general function
and data interfaces of the permanent software and is used for additional data processing according
to the required functionality. Parameters for initialization of the CANopen stack are handed over in
the application. The applied periphery, which is not submitted to the diagnosis of the permanent
firmware, has to be diagnosed in the safety application. If there is no safety application running on
the CSC, then this will cause an error in the monitoring of the logical program execution and result in
a change to an intrinsically secure state. Besides a variable user software enables direct integration
of simple applications (e.g. emergency stop device, emergency monitoring relay, safety valve) in
the CSC, whereby costs can be minimized. Instead in more complex applications (such as safety
related drives, safety light curtains, laser scanners) the CSC can function as dedicated bus interface
and communicate with other hosts or microcontrollers. In such cases the safety application provides
secure transfer of safety related data to and from the superordinate modules. The interface can be
configured freely by the device developer for which is available the entire free CSC periphery. This
includes the synchronous and asynchronous (UART) serial interfaces or parallel interfaces via the
freely available ports. In particular a total of 70 free port pins are available to the user and some of
them have alternative functions. If the chip is used as a bus interface, safety critical errors are sent
from the safety application to the superordinate unit as a binary shut-off signal. The superordinate
CPU performs the shut-off itself. For example, the CPU can transfer the drive to a secure location
with a predefined function and thereby bring the entire system into an intrinsically secure state.

B Structure of the function interface between the permanent firmware
and the safety application

Configuration of the permanent firmware (e.g. the CANopen stack), signalization of events (e.g.
SRDO received, diagnostic error recognized, send GFC, GFC received etc.) and the call of the

57

safety application all occur via a program and data interface. Since both software parts are developed
separately, they can not be linked with each other via the development environment’s linker. Interfaces
are required for an alternating call. The interface is defined by a jump table for the function call and
data memory for parameter transmission. Data access occurs with fixed addresses that are known
by both software parts. This call mechanism via fixed data structures is identified as "Callgate". In
particular it makes functions available for the following mechanisms:

1. The permanent firmware calls the safety application functions.

2. The safety application calls permanent firmware functions or CANopen stack functions respec-
tively.

3. Data exchange between the application and the permanent firmware that are components of
the Object Dictionary.

4. Data exchange between the application and the permanent firmware that are not components
of the Object Dictionary.

The transmission of safety related data in redundant memory occurs over fixed structures that are
recognized by both parts of the software. This mechanism enables an efficient use of data and mini-
mization of resource requirements. Recopying the data during the transmission between modules is
not required. The main Callgate functions are now introduced:

• Appinitialisation() : This function is called by the permanent firmware in order to initialize the
application. Within the function, the safety application initializes its own global and local vari-
ables, sets the CANopen node number and defines and registers its own sections of the Object
Dictionary.

• AppProcess(): This function is called cyclically by the permanent firmware; the application
executes its own cyclical processes in this function.

• AppPdoEvent(): signals the transmission or receipt of a PDO.

• AppSrdoEvent(): This function is called if an SRDO was sent or received without error.

• AppGfcEvent(): signals the receipt of a GFC

• AppSrdoError(): This function is called if an error occurred during the receipt of an SRDO,
or if a send-SRDO could not be sent within the refresh time. The safety application confirms
the successful processing of the event. If the processing is not confirmed then the permanent
firmware will recognize this as a safety error and change to an intrinsically secure state.

• AppStopWatchdog(): This function is called by the permanent firmware if the application’s
Watchdog can no longer be used (e.g. due to a CAN error or diagnostic error). This

Besides are now introduced the functions for the safety goal:

• CscSetNodeId(): configures the node number to be used

• CscDefineVariable(): defines a variable (for object entries of variable length, e.g. manufacture
device name, index 0x1008 according to DS 301); is used for variables that are initialized in
the safety application, whereby the object entry is located in the CANopen stack‘s permanent
Object Dictionary.

• CscDefineVarTab(): defines a variable block for representation in the Object Dictionary (for
objects of a fixed length, e.g process variables)

• CscRegisterOdPart(): registers the user specific part of the Object Dictionary in the CANopen
stack of the permanent firmware.

• CscWriteObject(): writes a value in an Object Dictionary entry

• CSCReadObject(): Reads a value from an Object Dictionary entry

58

• CSCSendEmergency(): sends an emergency message to the CAN bus

• CSCSendGfc(): sends a GFC

The microcontroller provides a series of interrupt sources. All interrupt sources that are not used
by the permanent firmware can be used by the safety application. The function interface makes a
mechanism available that allows interrupt service routines to be assigned to corresponding interrupt
vectors. All unused interrupts are processed by a standard interrupt handler.

C Requirements

The CSC is designed to maintain a security cycle time of 20ms with the resources used. Dure to
the time intensive diagnostic routines (see above), not all of the microcontroller’s RAM and Flash is
available for the CSC. The permanent firmware requires 32 kByte Flash and approximately 2 kByte
RAM. Furthermore, 512 Byte RAM are required for the system stack. Approximately 10 kByte Flash
and 2.5 kByte RAM are available for the safety application. All safety relevant data that is transferred
per SRDO is a component of the permanent firmware and is used by the application as shared
memory. The system stack is also used equally by both software parts.

59

Appendix B

International standard and regulations

In most countries, national laws regulate how people and the environment shall be protected. In
Europe for instance, the "Low Voltage Directive", the "EMC Directive", and the "Machinery Direc-
tive" are examples of such legislation. The laws in turn refer to approved International Standards.
The basic standard for functional safety is the IEC 61508 covering the functional safety of electrical
equipment and the basic principles and procedures. It introduces a quantitative approach for cal-
culating the residual probability of so-called safety functions to fail (Safety Integrity Levels - SIL). It
is mainly useful for safety device and safety controller developers. The sector standard IEC 62061
describes the specific safety aspects for machinery applications such as those found in factory au-
tomation. This standard deals with ready-to-use systems, subsystems, and elements and how to
assess safety functions for certain combinations of these. ISO 13849-1 is the successor of the EN
954-1 (withdrawn in 2011) and has a similar scope. However, it introduces a slightly different calcula-
tion model (Performance Levels - PL) and covers non-electrical devices such as hydraulic valves, etc.
For safety of machinery, the basic terminology and principles for design are defined in ISO 12100 as
well as risk assessment and risk reduction. The IEC 60204-1 specifies general requirements and
recommendations relating to the electrical equipment of machines. Some of the issues are power
supply, protection against electrical shock, emergency stops, conductors and cables, etc. Product
standards such as IEC 61496, IEC 61800-5-2, IEC 61131-6 and ISO 10218-1 for example, deal with
the requirements for individual product families. The requirements for F-Devices and F-Hosts to pro-
vide increased electromagnetic immunity are defined within the generic IEC 61000-6-7 and in sector
standard IEC 61326-3-1. Special performance criteria DS ("defined state") allow for incorrect func-
tioning under increased electromagnetic interference conditions above the normally required levels.
However, in these cases the equipment under test (EUT) shall go at least into a safe state. The
fieldbus standards are specified in IEC 61158 and IEC 61784-1. Real time Ethernet variants are
defined in IEC 61784-2. Common parts for installation guidelines are summed up in IEC 61918,
whereas profile-specific parts are collected in IEC 61784-5. Common parts for security guidelines
are summed up in IEC 62443, whereas profile-specific parts are planned for a future IEC 61784-4.

60

Figure B.1: International fieldbus and safety standards

As instead regarding the regulations of PLC, IEC 61131 provides a standardization for them and in
particular:

• IEC 61131-1 define the PLC device;

• IEC 61131-2 define the architecture hardware and software of PLC;

• IEC 61131-3 define the languages to implement sequence control over PLC;

• IEC 61131-4 define the guidelines for the user;

• IEC 61131-5 define the messages service;

• IEC 61131-6 define the communication through the fieldbus;

• IEC 61131-7 define the control coding with fuzzy logic

• IEC 61131-8 define the guidelines to use and develop code languages.

As it can be seen in previous section, Codesys is especially regulated by IEC 61131-3 and so it is
interesting to deepen this regulation and in particular the languages that it defines. Since there are
many different PLC producers a big complication for a PLC programmer is the differences between
the languages. For this reason IEC 61131-3 defined five different standard languages:

• Instruction List(IL): textual language of low level used for small applications or to optimize part
of applications;

• Sequential Function Chart(SFC): graphical language used to partition in a sequence of consec-
utive state the execution of the application;

• Structured TExt(ST): textual structure language of high level, very similar to C. It is usually used
to implement the complex part of application which are difficult to implement with a graphic
language;

• Ladder Diagram(LD): graphic language which implement a boolean logic using electrical scheme;

• Function Block Diagram(FBD): graphical language, based on the interpretation of the system
behaviour through flow of signal between the process elements.

61

As regarding regulations of remote radio controllers, the most important are:

• EN300-220-2 (radio): Short Range Devices (SRD) operating in the frequency range 25 MHz to
1 000 MHz. Part 2: Harmonised Standard covering the essential requirements of article 3.2 of
Directive 2014/53/EU for non specific radio equipment;

• EN301-489-3: EMC standard for radio equipment and services.; EN61000-6-2, -6-3: Electro-
magnetic Compatibility;

• EN60950: Equipment for safety information technology; IEC 62479:2010: Assessment of the
compliance of low power electronic and electrical equipment with the basic restrictions related
to human exposure to electromagnetic fields (10 MHz to 300 GHz);

• Comitato Elettrotecnico Italiano (CEI) EN60204-32: Safety equipment

• CEI EN50178: Electronic instrument for power plants ;

• EN13557: Cranes - Controls and Control Stations;

Finally it is presented the most important point of the, already cited, IEC 62061 which is the regulation
to follow to certificate the Codesys Safety Sil 2 code according to the manual at the level extended.
This regulation is composed by 9 articles:

1. Scope;

2. Normative references;

3. Terms, definitions and abbreviations;

4. Management of functional safety;

5. Requirements for the specification of safety-related control functions;

6. Design and integration of the safety-related electrical control system;

7. Information for use of the machine;

8. Validation of the safety-related electrical control system;

9. Modification of the safety-related electrical control system;

The principal points of the main articles are described following. The article nr4 affirm that a functional
safety plan should bee drawn up and documented for each Safety-Related Electrical Control System
(SRECS) design projects. In particular the plan should:

• identify the relevant activities;

• describe the policy and the strategies to fulfil the specified functional safety requirements;

• describe the strategy to achieve functional safety for the application software, development,
integration, verification and validation.

• identify persons, departments or other units and resources that are responsible for carrying out
and reviewing each of the relevant activities;

• identify or establish the procedures and resources to record and maintain information relevant
to the functional safety if the SRECS;

• describe the strategy for configuration management taking into account relevant organization
issues, such as authorized persons and internal structures of the organization.

• establish a verification plan

• establish a validation plan.

62

The main information of article nr5 concern the all the specification that must be available for a
SRECS. In particular:

• the results of the risk assessment for the machine including all safety functions determined to
be necessary for the risk reduction process for each specific hazard.

• the machine operating characteristics, including: modes of operation, cycle time, response time
performance, environmental conditions, interaction of person with the machine

• all the information relevant to the Safety-Related Control Function(SRCF) which can have a
influence on the SRECS design including:

– a description of the behaviour of the machine that a SRCF is intended to achieve or to
prevent;

– all interfaces between the SRCFs, and between SRCFs and any other function;

– required fault reaction functions of the SRCF.

The main information of article nr6 concern the all the steps that must be followed during the devel-
opment of a SRECS. There are a lot of requirements:

• some general requirements

• for behaviour of the SRECS on detection of a fault in the SRECS

• for systematic safety integrity of the SRECS

• for the selection of safety-related electrical control system

• for safety-related electrical control system (SRECS) and in particular for its design and devel-
opment, which include all the rule to follow during the designing of hardware and software part
of a SRECS.

All the detailed are described in the already cited article of the regulation, which is suggested to be
read. In particular as concerning the software design for FVL language this regulation sends to the
IEC 61508-3.
For this reason, and since structured text language (which is a FVL language) was used, it is now
described the main points of the cited regulation. In particular the regulation affirm that:

• the design method chosen shall possess features that facilitate:

– abstraction, modularity and other features which control complexity;

– the expression of:

1. functionality;

2. information flow between elements;

3. sequencing and time related information;

4. timing constraints;

5. concurrency and synchronized access to shared resources;

6. data structures and their properties;

7. design assumptions and their dependencies;

8. exception handling;

9. design assumptions (pre-conditions, post-conditions, invariants);

10. comments.

– ability to represent several views of the design including structural and behavioural views;

63

– comprehension by developers and others who need to understand the design;

– verification and validation.

• The software design shall include, commensurate with the required safety integrity level, self-
monitoring of control flow and data flow. On failure detection, appropriate actions shall be taken.

• Where the software is to implement both safety and non-safety functions, then all of the software
shall be treated as safety-related, unless adequate design measures ensure that the failures of
non-safety functions cannot adversely affect safety functions.

• Where a pre-existing software element is reused to implement all or part of a safety function,
the element shall meet both the requirements below for systematic safety integrity:

1. meet the requirements of one of the following compliance routes:

– Route 1S: compliant development. Compliance with the requirements of this standard
for the avoidance and control of systematic faults in software;

– Route 2S: proven in use. Provide evidence that the element is proven in use;

– Route 3S:assessment of non-compliant development.

2. provide a safety manual that gives a sufficiently precise and complete description of the
element to make possible an assessment of the integrity of a specific safety function that
depends wholly or partly on the pre-existing software element.

• The software architecture defines the major elements and subsystems of the software, how
they are interconnected, and how the required attributes, particularly safety integrity, will be
achieved. It also defines the overall behaviour of the software, and how software elements
interface and interact

• The software architecture design shall:

– select and justify an integrated set of techniques and measures necessary during the soft-
ware safety lifecycle phases to satisfy the software safety requirements specification at
the required safety integrity level. These techniques and measures include software de-
sign strategies for both fault tolerance (consistent with the hardware) and fault avoidance,
including (where appropriate) redundancy and diversity;

– be based on a partitioning into elements/subsystems, for each of which the following infor-
mation shall be provided:

1. whether the elements/subsystems have been previously verified, and if yes, their ver-
ification conditions;

2. whether each subsystem/element is safety-related or not;

3. software systematic capability of the subsystem/element.

– determine all software/hardware interactions and evaluate and detail their significance;

– use a notation to represent the architecture which is unambiguously defined or restricted
to unambiguously defined features;

– select the design features to be used for maintaining the safety integrity of all data. Such
data may include plant input-output data, communications data, operator interface data,
maintenance data and internal database data;

– specify appropriate software architecture integration tests to ensure that the software ar-
chitecture satisfies the software safety requirements specification at the required safety
integrity level.

64

The principal points of the IEC 61508-3 which could concern the development of the defined applica-
tion have been highlighted, but the above points are further from resuming the complete regulation.
For this reason for further details it is suggested to read the regulation. Finally in the following table
(tab . B.1) are resumed al the cited regulations and the relative argument they regulate.

Regulation Argument

functional safety of electrical equipment
IEC 61508 and the basic principles and procedures

IEC 62061 specific safety aspects for machinery applications
Machine Safety with the definition of

ISO 13849-1 Performance Levels - PL model

ISO 12100 risk assessment and risk reduction
general requirements and recommendations relating

IEC 60204-1 to the electrical equipment of machines

IEC 61496, IEC 61800-5-2
IEC 61131-6 and ISO 10218-1 requirements for individual product families

requirements for F-Devices and F-Hosts to provide
IEC61000-6-7 increased electromagnetic immunity

IEC61158 and IEC61784-1 fieldbus standards
IEC 61784-2 Real-time Ethernet variants
IEC 61918 installation guidelines
IEC 62443 security guidelines
IEC 61131 PlC regulations

IEC 61131-1 PLC device
IEC 61131-2 architecture hardware and software of PLC
IEC 61131-3 languages to implement sequence control over PLC
IEC 61131-4 guidelines for the user
IEC 61131-5 messages service
IEC 61131-6 communication through the fieldbus
IEC 61131-7 control coding with fuzzy logic
IEC 61131-8 guidelines to use and develop code languages
EN300-220-2 requirements for non specific radio equipment
EN301-489-3 standard for radio equipment and services

EN61000-6-2, -6-3 Electromagnetic Compatibility
EN60950 Equipment for safety information technology

Assessment of the compliance of low power electronic
IEC 62479:2010 and electrical equipment with the basic restrictions

related to human exposure to electromagnetic fields
CEI EN60204-32 Safety equipment

CEI EN50178 Electronic instrument for power plants
EN13557 Cranes - Controls and Control Stations

Table B.1: Most important regulations for Protocols, PLC , Remote Controller and for a safety valida-
tion

65

Appendix C

Hercules Safety TMS570 MCU by Texas
Instrument

The TMS570LS series is a high performance automotive grade microcontroller family. The safety
architecture includes Dual CPUs in lockstep, CPU and Memory Built-In Self Test (BIST) logic, ECC
on both the Flash and the data SRAM, parity on peripheral memories, and loop back capability on
peripheral IOs. The TMS570LS family integrates the ARM Cortex-R4F Floating Point CPU which
offers an efficient 1.6 DMIPS/MHz, and has configurations which can run up to 160 MHz providing
more than 250 DMIPS. The TMS570LS series also provides different Flash (1MB or 2MB) and data
SRAM (128KB or 160KB) options with single bit error correction and double bit error detection. The
TMS570LS devices feature peripherals for real-time control-based applications, including up to 32
nHET timer channels and two 12-bit A to D converters supporting up to 24 inputs. There are multiple
communication interfaces including a 2-channel FlexRay, 3 CAN controllers supporting 64 mailboxes
each, and 2 LIN/UART controllers. With integrated safety features and a wide choice of communica-
tion and control peripherals, the TMS570LS series is an ideal solution for high performance real time
control applications with safety critical requirements.
The devices utilize the big-endian format where the most significant byte of a word is stored at the
lowest numbered byte and the least significant byte at the highest numbered byte.
The device memory includes general-purpose SRAM supporting single-cycle read/write accesses
in byte, halfword, and word modes. The flash memory on this device is a not volatile, electrically
erasable and programmable memory implemented with a 64-bit-wide data bus interface. The flash
operates on a 3.3V supply input (same level as I/O supply) for all read, program and erase operations.
When in pipeline mode, the flash operates with a system clock frequency of up to 160 MHz.
The device has nine communication interfaces: three MibSPIs, two LIN/SCIs, three DCANs and
one FlexRay controller (optional). The SPI provides a convenient method of serial interaction for
high-speed communications between similar shift-register type devices. The LIN supports the Lo-
cal Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard
Non-Return-to-Zero (NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a
serial, multi-master communication protocol that efficiently supports distributed real-time control with
robust communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applica-
tions operating in noisy and harsh environments (e.g., automotive and industrial fields) that require
reliable serial communication or multiplexed wiring. The FlexRay uses a dual channel serial, fixed
time base multimaster communication protocol with communication rates of 10 megabits per second
(Mbps) per channel.
A FlexRay Transfer Unit (FTU) enables autonomous transfers of FlexRay data to and from main CPU
memory. Transfers are protected by a dedicated, built-in Memory Protection Unit (MPU).
The NHET is an advanced intelligent timer that provides sophisticated timing functions for real-time
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer
micromachine and an attached I/O port. The NHET can be used for pulse width modulated outputs,
capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requir-

66

ing multiple sensor information and drive actuators with complex and accurate time pulses. A High
End Timer Transfer Unit (HET-TU) provides features to transfer NHET data to or from main memory.
A Memory Protection Unit (MPU) is built into the HET-TU to protect against erroneous transfers. The
device has two 12-bit-resolution MibADCs with 24 total channels and 64 words of parity protected
buffer RAM each. The MibADC channels can be converted individually or can be grouped by soft-
ware for sequential conversion sequences. Eight channels are shared between the two ADCs. There
are three separate groupings, two of which are triggerable by an external event. Each sequence can
be converted once when triggered or configured for continuous conversion mode. The frequency-
modulated phase-locked loop (FMzPLL) clock module contains a phase-locked loop, a clock-monitor
circuit, a clock-enable circuit, and a prescaler. The function of the FMzPLL is to multiply the external
frequency reference to a higher frequency for internal use. The FMzPLL provides one of the six pos-
sible clock source inputs to the global clock module (GCM). The GCM module provides system clock
(HCLK), real-time interrupt clock (RTICLK1), CPU clock (GCLK), NHET clock (VCLK2), DCAN clock
(AVCLK1), and peripheral interface clock (VCLK) to all other peripheral modules. The device also has
an external clock prescaler (ECP) module that when enabled, outputs a continuous external clock on
the ECLK pin. The ECLK frequency is a user-programmable ratio of the peripheral interface clock
(VCLK) frequency. The Direct Memory Access Controller (DMA) has 32 DMA requests, 16 Channels/
Control Packets and parity protection on its memory. The DMA provides memory to memory transfer
capabilities without CPU interaction. A Memory Protection Unit (MPU) is built into the DMA to protect
memory against erroneous transfers. The Error Signaling Module (ESM) monitors all device errors
and determines whether an interrupt or external Error pin is triggered when a fault is detected. The
External Memory Interface (EMIF) provides a memory extension to asynchronous memories or other
slave devices. Several interfaces are implemented to enhance the debugging capabilities of applica-
tion code. In addition to the built in ARM Cortex-R4F CoreSight debug features, an External Trace
Macrocell (ETM) provides instruction and data trace of program execution.
For instrumentation purposes, a RAM Trace Port Module (RTP) is implemented to support high-speed
output of RAM accesses by the CPU or any other master. A Direct Memory Module (DMM) gives the
ability to write external data into the device memory. Both the RTP and DMM have no or only min-
imum impact on the program execution time of the application code. A Parameter Overlay Module
(POM) can re-route Flash accesses to the EMIF, thus avoiding the reprogramming steps necessary
for parameter updates in Flash.

Figure C.1: Hercules Safety TMS570 MCU

67

Appendix D

Principal differences CAN, EtherCAT and
Profinet

CAN EtherCAT Profinet
Band Up to 1 MBit/s 100 MBit/s 100 MBit/s

Networks lenght 40 m, with repeater 100 m, with hub 100 m, with hub
in theory infinite in theory infinite in theory infinite

thorough several
Data in a packet 8 byte sub-telegrams, 244 bytes

up to 4 gigabytes
Carrier sense Access CSMA/BA CSMA/CD CSMA/CD

Kind of wire Twisted Pair flexible 4-wire shielded
copper cable

Terminating resistor 120 Ω 100 Ω 100 Ω
Topology Bus All standard type All standard type

CRC 16 bit 32 bit 32 bit
Prioritisation Based on ID None Real time data

have priority

Table D.1: Principal differences between the most important networks

68

Appendix E

Black channel

Traditionally, if a signal needs to be sent from one controller to another, a hard wired output from
one would be connected to the other and would be treated as any other safety input or output on
the controller. This method is fine for a small number of signals but can become costly and difficult
to modify as the number of signals increase. However, if the same data can be passed using some
form of data link the system becomes more flexible and cost effective. Clearly, for this type of link to
work, the data must be transferred in a reliable and deterministic manner. The railway industry has
been using serial data for safety signalling for many years and this has proven to be very successful.
Traditionally in these systems the data is handled by components that are known and considered
part of the safety system; hence, their failure modes have been identified and appropriate measures
taken to ensure that they meet the safety requirements. Any software installed on the communication
components are also safety certified. Therefore, the communication channel is well defined and
each configuration has to be designed within the limits of the certified configurations. This type of
communication channel is known as a ‘White Channel’ because the properties of the channel are well
defined and known. Each of the components is designed with integrity levels that suit the specific
application, so that there is confidence that the data is unlikely to be corrupted by, for example, a
software bug and any transmission errors are detectable. The down side of this design philosophy
is that migrating to newer technologies can be slow and costly, as well as the components having
inflexible architectures. If it is looked at communication in general, the information technology arena
has many powerful communication options that are both flexible and relatively low cost. One of the
main drivers for this technology is obviously the high take up of the internet. For example, many
personal computers can be connected together at high speed using off-the-shelf low cost hubs and
switches. The cost is driven down by the high volume of users (unlike the low number of users of white
channel communication systems). The down side of using the high volume low cost unit is that it’s
reliability can be an unknown quantity and the quality of the software inside is also an unknown factor;
therefore, there is no way of knowing how a transported packet may be modified if a fault occurred.
Communication paths using such unknown components are called ‘Black Channel’ communication
paths. The name black channel comes from the concept of a black box. The intent of both a black
box and black channel is that what goes in one end does not see anything between the inlet and
outlet as it passes through the device. The difference between the two concepts is that, rather than a
black box piece of hardware, it is the network itself that must appear to not be there. The bus system,
therefore, does not perform any safety-related tasks but only serves as transmission medium. With
a black channel, data from the sending safety system is launched into an unknown communication
mechanism. Neither the sender or receiver know the route the data might take, how many nodes will
actually be handling the data, how long the data will take to get to the end and how any of the nodes
may have interfered with the data before being received by the receiving safety system. Therefore to
use a Black Channel for safety related data, the data must have built-in mechanisms to detect any
interference and with a confidence level of detection that is suitable for the safety application relying
on the data.

69

Figure E.1: Black Channel structure

The simplest form of black channel is a point-to-point serial data link. Typical failure modes of this
black channel network are:

• Electrical noise (or cross talk) on the cable causing data corruption. Usually detected using a
CRC and / or parity check. (The integrity of this will be covered further on in the paper).

• Total loss of data (broken cable). Usually detected by a time-out.

• Cross talk (its own data). Usually the sender receiving its own data that it is sending to the other
end. Usually protected against by the sender turning off it’s receiver during a send, or simply
ignoring (clearing) any received data during the send.

• Cable cross talk (data from another data link). This may be detected if the data is a different
type or length than expected.

70

Appendix F

Token Bus Basic Function

As already seen the token bus configuration is used to regulate the access to the network by the
different master. In particular to manage the logical ring some basic function are necessary:

• addition of a new station in the logical ring;

• erasure of a station from the network;

• initialization of the logical ring;

• management of the loss of the token;

A Addition of a new station

Every master device, when it is holding the token, has the duty of periodically checking if a new
device wants to enter in the logical ring. In particular this check is done through a frame called
’solicit-successor’, which is a frame with the sent in the network. This frame have the function of
asking if there is a device with an address number which is include between the current and the next
addresses. The master sending this message can obtain:

1. no answer;

2. one valid answer;

3. more than one valid answers;

4. one invalid answer;

In the case nr1 there is no action to do. In the case nr2 the device changes the address of its
next station and then it sends the token to the new device. The receiver accepts the token and
saves the address of device who sent the message to it. In the case nr3 the master holding the
token understands that there were many answers and it starts a mechanism to identify which device
should be added to the logical ring. In particular it sends a frame, called ’resolve-contention’, which
is composed by 4 window. Each window is identify by 2 bits: 00, 01, 10, 11 respectively. The devices
which have answered to the first solicit-successor, answers in the window corresponding to the first 2
bit of their address, but only if there is no answer in the window with previous number. If many answer
are, again, received, the master keeps to send resolve-contention, which are compare progressively
with the 2 more significant bits still not compared. When finally there is only an answer, the master
changes its address of its next station and then it sends the token to the new selected device. The
receiver accepts the token and saves the address of device who sent the message to it. In the case
nr4 the master understands that there was a collision and so it listens the network.

71

B Erasure of a station from the network

A master device which wants to exit by the logical ring, waits for the token. When it receives the PDU,
it sends a set-successor in which is specified the address of its next device. In such way its previous
device can set the address of its new next device.

C Initialization of the logical ring

When the network needs a initialization or the token is lost, there is no activity on the bus. Each
device identify a time-out and starts the initialization of the logical ring. This procedure consist in the
assignment of the token to a device, which then starts to add new device to the network. The token
is assigned to the node which sent in the network the frame claim-token. If many devices sent this
frame, a procedure similar to the one for the selection of only one node for the addition of a new
station, starts.

D Management of the loss of the token

Every device holding the token has to manage this special PDU until it is sent to the next node. The
node sending the token understands if the transmission was successful when it finds activity in the
network. If it happens that no activity was found for a time exceeding a fixed period, then the node
re-send the token. If the procedure again has not success, then the device understands that its next
station was unexpectedly gone out the logical ring and so it sends a frame, called who-follows, which
is used to identify the new next device. If no answer is detected, then it tries again. If not even this
procedure has success, then it sends a solicit-successor. Finally if no answer is received, then it
understands that there was a failure.

72

Appendix G

Ethernet

Ethernet is a family of computer networking technologies commonly used in local area networks
(LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially intro-
duced in 1980 and first standardized in 1983 as IEEE 802.3, and has since retained a good deal of
backward compatibility and been refined to support higher bit rates and longer link distances. Over
time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI
and ARCNET.
The original 10BASE5 Ethernet uses coaxial cable as a shared medium, while the newer Ethernet
variants use twisted pair and optical fibre links in conjunction with switches. Over the course of its
history, Ethernet data transfer rates have been increased from the original 2.94 megabits per sec-
ond (Mbit/s) to the latest 400 gigabits per second (Gbit/s). The Ethernet standards comprise several
wiring and signalling variants of the OSI physical layer in use with Ethernet.
Systems communicating over Ethernet divide a stream of data into shorter pieces called frames. The
internal structure of an Ethernet frame (Fig. G.1) is specified in IEEE 802.3. It is composed by:

• the preamble, which consists of a 56-bit (seven-byte) pattern of alternating 1 and 0 bits, al-
lowing devices on the network to easily synchronize their receiver clocks, providing bit-level
synchronization.;

• the SFD (start frame delimiter) to provide byte-level synchronization and to mark a new incom-
ing frame (1 byte);

• the destination MAC address (MAC address is a unique identifier(UID) assigned to a network
interface controller) (6 bytes);

• the source MAC address (6 bytes);

• an IEEE 802.1Q tag or IEEE 802.1ad tag, which indicates virtual LAN (VLAN) membership and
IEEE 802.1p priority. The first two bytes of the tag are called the Tag Protocol IDentifier (TPID)
and double as the EtherType field indicating that the frame is either 802.1Q or 802.1ad tagged.
(4 bytes);

• the EtherType field, to indicate which protocol is encapsulated in the payload of the frame (2
bytes);

• the payload, which the data of interest to transmit. It is composed at least by 46 bytes and as
maximum by 1500 bytes.

• the frame check sequence (FCS), which is a 32 bit CRC that allows detection of corrupted
data within the entire frame as received on the receiver side. The FCS value is computed as a
function of the protected MAC frame fields: source and destination address, length/type field,
MAC client data and padding (that is, all fields except the FCS).

The end of a frame is usually indicated by the end-of-data-stream symbol at the physical layer or by

73

loss of the carrier signal.

Figure G.1: Ethernet frame structure

Ethernet has evolved to include higher bandwidth, improved medium access control methods, and dif-
ferent physical media. The coaxial cable was replaced with point-to-point links connected by Ethernet
repeaters or switches. Despite the evolution of Ethernet technology, all generations of Ethernet use
the same frame formats, described above. The original version was based on the idea of computers
communicating over a shared coaxial cable acting as a broadcast transmission medium. The method
used was similar to those used in radio systems, with the common cable providing the communication
channel. A scheme known as carrier sense multiple access with collision detection (CSMA/CD) gov-
erned the way the computers shared the channel. In particular a collision happens when two stations
attempt to transmit at the same time. With CSMA/CD the devices detect the corrupt transmitted data
and then re-transmit according to a previous fixed method (For example they wait random different
times and then try to re-transmit). Through the first half of the 1980s, Ethernet’s 10BASE5 imple-
mentation used a coaxial cable 9.5 mm in diameter. Its successor, 10BASE2, called "thin Ethernet",
used the RG-58, which is a type of coaxial cable often used for low-power with an outside diameter
of around 5 mm. In a modern Ethernet, the stations do not all share one channel through a shared
cable or a simple repeater hub; instead, each station communicates with a switch, which in turn for-
wards that traffic to the destination station. In this topology, collisions are only possible if station and
switch attempt to communicate with each other at the same time, and collisions are limited to this
link. Furthermore, the 10BASE-T standard introduced a full duplex mode of operation which became
common with Fast Ethernet. In full duplex, switch and station can send and receive simultaneously,
and therefore modern Ethernets are completely collision-free.

74

Bibliography

[1] T. Sauter, S. Soucek, W. Kastner, and D. Dietrich,
"The evolution of factory and building automation," IEEE Ind. Electron. Mag., vol. 5, no. 3, pp.
35–48, 2011

[2] J. P. Thomesse,
“Fieldbus Technologies in Industrial Automation,” Proceedings of the IEEE, vol. 93, no. 6, pp.
1073–1101, June 2005.

[3] J. D. Decotignie
"Ethernet–Based Real–time and Industrial Communications," Proc. IEEE, vol. 93, no. 6, pp.
1102–1117, June 2005.

[4] A. Willig
"Recent and Emerging Topics in Wireless Industrial Communications: a Selection," IEEE Trans-
actions on Industrial Informatics, vol. 4, no. 2, pp. 102–124, May 2008.

[5] M. Wollschlaeger, T. Sauter, and J. Jasperneite,
"The Future of Industrial Communication: Automation Networks in the Era of the Internet of
Things and Industry 4.0," IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 17–27, March
2017.

[6] M. Sollfrank, M. F. Pirehgalin and B. Vogel-Heuser,
"Integration of safety aspects in modeling of Networked Control Systems," IEEE 15th Interna-
tional Conference on Industrial Informatics (INDIN), Emden, 2017, pp. 405-412

[7] J. Åkerberg, M. Gidlund, F. Reichenbach and M. Björkman,
"Measurements on an industrial wireless HART network supporting PROFIsafe: A case study,"
ETFA 2011, Toulouse, 2011, pp. 1-8.

[8] F. Tramarin, S. Vitturi, M. Luvisotto and A. Zanella,
"On the Use of IEEE 802.11n for Industrial Communications," in IEEE Transactions on Industrial
Informatics, vol. 12, no. 5, pp. 1877-1886, 2016.

[9] S. Vitturi, A. Morato, A. Cenedese, G. Fadel, F. Tramarin, R. Fantinel.
"An Innovative Algorithmic Safety Strategy for Networked Electrical Drive Systems. 16th Inter-
national Conference on Industrial Informatics (INDIN18), 2018.

[10] Y. Liu and Y. Song,
"EtherCAT-based functional safety-integrated communication," International Conference on Au-
tomatic Control and Artificial Intelligence (ACAI 2012), Xiamen, 2012, pp. 1005-1008

[11] Ing Stefano Maggi,
"Dispensa sul ’Controller Area Network’ (CAN)"

[12] CIA 301,
"CANopen: Application layer and communication profile"

[13] Reiner Zitzmann, CIA ,
"CANopen Safety"

75

[14] Dr. Frank Jungandreas, Klaus Rupprecht, SYS TEC electronic GmbH,
"CANopen safety development solutions"

[15] CAN Newsletter 1/2010,
"CANopen Safety: The forgotten protocol extension"

[16] EtherCAT Technology Group,
"EtherCAT – The Ethernet Fieldbus"

[17] EtherCAT Technology Group,
"The safety solution for EtherCAT"

[18] Dalimir Orfanus, Reidar Indergaard, Gunnar Prytz, Tormod Wien (ABB)/ETFA 2013,
"EtherCAT-based Platform for Distributed Control in High Performance Industrial Applications"

[19] Member of PROFIBUS & PROFINET International,
"PROFIBUS System Description Technology and Application"

[20] Member of PROFIBUS & PROFINET International,
"PROFIsafe System Description Technology and Application"

[21] International Electrical Commission,
IEC 61131, 2003-1,"Programmable controllers", Part 3: Programming languages, Ed. 2

[22] International Electrical Commission,
DIN EN IEC 62061: "Safety of machinery – Functional safety of safety-related electrical, elec-
tronic and programmable electronic control systems" (2005-10)

[23] Alessandro Bonan, Lorenzo Fraccaro, Stefano Bianchin, Marc Cosgrove, Antonio Silvestri
"Safe Paper, Autec Srl"

[24] Autec Srl
"Catalogue: AIR Radiocontrols for automation, industrial lifting and operating machinery"

[25] Autec Srl
"Catalogue: DYNAMIC Radio Remote Controls for Hydraulic and Mobile Machinery"

[26] CODESYS
"Manuale di utilizzo del software Codesys"

[27] CODESYS
"User manual CODESYS Safety SIL2 "

76

Acknowledgements

This thesis is an important goal of my carrier, which was achieved with a lot of efforts and with the
help of some important people. At the same time this thesis is a starting point for the future works
that will be done with the Ph.D. ’in Alto Apprendistato’ and also for my working carrier. For these
reasons I want to thank professor Stefano Vitturi, who gave me this important opportunity and gave
me all the assistance I needed. Besides it is essential for me to thank Autec Srl and all the colleagues
who worked with me for their helpfulness, their patient and time.
I want to thank, also, my family: my mother and my father who allowed me to achieve this important
goal, with emotional and economic support. They always pushed me to not be satisfy of a goal,
allowing me to achieve better results. My sister who had supported me, especially when I was
younger, teaching me when my parents were working and whom I want to wish all the happiness of
the world with the incoming baby and all the supports I can give her as uncle. My girlfriend Giorgia
who has supported me for all these 5 years, who has waited for me every time I had to study, being
patient and understanding the importance and all the difficulties of these path. I want to thank her
since she was always available to talk, laugh and forget all the problems for all the moments together,
allowing me to live this path with happiness and lightening the difficulties with her supports.
I want to thank all my friends who helped me to live with a bit more light-heartedness, who laughed
together and who were fellows of so many adventures. Finally I want to thank all the people, who I
can not cite for time and space, who supported me with a conversation, a smile, a laugh, since all
these people, with a small action, have helped me to achieve this goal.

