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Abstract 
 

 

Mathematical models can be used to support the development and optimization of chemical 

processes. However, modelers often face challenges in estimating all the model parameters due 

to identifiability and estimability issues. This is typically the case of complex and/or over-

parameterized models, resulting in some parameters being unidentifiable or difficult to be 

precisely estimated. Moreover, data are usually limited, while running additional experiments 

might be expensive or impractical. To tackle this issue, modelers often estimate only a subset 

of all the model parameters. 

In this work, a systematic workflow for parameter estimability proposed in the literature (Wu 

et al., 2011, International Journal of Advanced Mechatronic Systems, 3, pp. 188-197) is 

implemented and critically evaluated. The methodology is applied to two case studies of 

industrial interest: (i) a fermentation process, and (ii) a process for the production of urethane. 

Different levels of uncertainty on parameter values and experimental noise are taken into 

account. A robustness test is used to assess the sensitivity of the methodology to initial 

parameter guesses. Results suggests that parameters ranking and subset selection depends 

significantly on both the initial guesses of the model parameters and sensors noise, and that 

repeating the methodology can improve the results and the precision of parameter estimates. 
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Introduction 
 

 

The accurate estimation of parameters in mathematical models is essential for describing 

chemical processes and predicting their behavior under various conditions. However, this task 

often poses significant challenges due to the inherent complexity, non-linearity, and 

overparameterization of many chemical process models. As the number of parameters 

increases, so does the potential for issues such as parameter correlation, non-identifiability, and 

lack of convergence in estimation algorithms. These challenges are further compounded by the 

nature of the experimental data, which are often sparse, noisy, or uninformative. In many cases, 

performing additional experiments to gather more informative data is either cost-prohibitive or 

technically unfeasible. 

In light of these difficulties, analyzing the identifiability and estimability of model parameters 

becomes a critical step before parameter estimation can proceed. 

In Chapter 1 the context of modeling when chemical processes are involved is presented, 

underlying the difficulties that modelers may face when model parameters need to be estimated. 

Following a review of existing methods in the literature that address issues related to parameter 

identifiability and estimability, motivations and objectives associated to a more rigorous and 

novel estimability method are discussed. 

Chapter 2 describes the estimability method proposed by Wu et al., (2011) and the 

orthogonalization algorithm – which is required to produce a ranked list of model parameters – 

as well as the mathematical techniques adopted to implement the method algorithms. 

Additionally, two other estimability methods based on sensitivity analysis – i.e., local 

sensitivity analysis (LSA), and global sensitivity analysis (GSA) – are introduced for 

comparative purposes. Finally, a technique for evaluating the robustness of the results is 

presented. 

The validity of the estimability method is then assessed in Chapter 3, where a fermentation 

process is used as a case study. The method is applied under varying levels of measurement 

noise and uncertainty on parameter values. Robustness of these results is then examined, and 

the precision of parameter estimates is analyzed. Finally, the results are compared with those 

obtained using the sensitivity-based methods discussed in the previous chapter.  

In Chapter 4, the estimability method is applied to a more complex model describing the 

production of urethane. Results are then commented, and similarities with the previous case 

study are discussed, together with the precision of parameter estimates and model performance. 

Lastly, the robustness of the results is examined. 

Some final remarks conclude the work. 



 



 

Chapter 1 

Assessing parameter estimability in 

mathematical models 

This chapter addresses current challenges associated with the implementation of mathematical 

process models, with a particular focus on difficulties in estimating all model parameters based 

on available experimental data.  Methods proposed in literature – which are aimed at 

determining whether and which parameters in a model can be estimated from the experimental 

data – are presented and analyzed. Finally, the motivations and objectives of this work are 

discussed, with particular focus on a recently proposed approach retrieved from literature. 

 

1.1. Challenges on mathematical modelling of chemical processes 

Over the last decades, the improvement of computational power led to an increase in the 

development of computational methods that address engineering challenges. With that, the field 

of Computer-Aided Process Engineering (CAPE) is dramatically transforming the way 

industrial processes are developed, designed and optimized (Quaglio, 2020).  

The CAPE approach involves implementing mathematical models of processes into computer 

programs. Mathematical models are valuable tools for developing new chemical processes and 

enhancing existing ones. These models enable chemical engineers to gain a deeper 

understanding of the actual operating process and predict its behaviour under various operating 

conditions. Furthermore, they are instrumental in training operators and in the development and 

testing of control systems (Foss et al., 1998).  

These models are generally formulated as systems of differential and algebraic equations, with 

their mathematical structure representing the underlying causal mechanisms of the physical 

system, and are assumed to take the following general form: 

 

                                                              𝐟(𝐱̇(𝑡), 𝐱(𝑡), 𝐮(𝑡), 𝑡, 𝛉) = 0         ,                                      (1.1) 
 

                                                                   𝐲̂ = 𝐡(𝐱(𝑡), 𝐮(𝑡), 𝑡, 𝛉)            ,                                       (1.2) 
 

where f and h represent model equations, u(t) represent control input variables, t is time, 𝛉 

represents model parameters and 𝐲̂ represents model predictions for a measurable set of system 

states 𝐲. 

In practice, developing fundamental models presents several challenges, as the processes of 

interest to chemical engineers are often highly complex and involve numerous reactions with 



8  Chapter 1 

 
 

associated kinetic parameters. The complexity of these models further increases when 

thermodynamic and mass transfer parameters are incorporated to more accurately describe the 

process.  

As shown in Figure 1.1, several steps are used to develop fundamental models. Parameter 

estimation (Step 4) contains its set of challenges, since models are generally nonlinear in the 

parameters, requiring nonlinear optimization algorithms and initial guesses of parameter values 

for parameter estimation. Initial guesses of parameter values become then very important 

because multiple optima may be encountered. Additionally, most of the times modelers 

frequently work with limited and/or noisy experimental data, making it nearly impossible to 

accurately estimate all model parameters. Some parameters may have minimal impact on model 

predictions, rendering precise estimation unattainable. In other cases, the effects of certain 

parameters on model predictions may be correlated with those of others, leading to different 

sets of parameter values that yield nearly identical predictions (Petersen et al., 2001). 

 

Figure 1.1. Steps in model formulation (McLean and McAuley, 2012). 
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In this context, it may be useful to check the identifiability and estimability of model 

parameters. Identifiability issues arise when the model structure is the main problem when the 

parameters cannot be uniquely estimated, while estimability issues arise when it is not possible 

to obtain unique parameter estimates with the existing experimental data. Table 1.1 summarizes 

the concepts of parameter identifiability and estimabilty. 

 

Table 1.1. Identifiability and estimability (McLean and McAuley, 2012). 

 Identifiability analysis Estimability analysis 

Question 

answered 

Can different values of model parameters 

lead to the same input-output behaviour for 

the model? 

Can all parameter values be estimated 

uniquely from the available 

experimental data? 

Alternative 

names 

Structural identifiability 

A-priori identifiability 

Practical identifiability 

A-posteriori identifiability 

Model 

complexity 

Difficult to assess in models with more 

than ~10 parameters  

Can be assessed in models with ~50 

parameters 

 

Sometimes model parameters are identifiable based on the model structure but may not be 

estimable in practice due to limited information contained in the available experimental data. 

In these cases, fixing some parameters at their nominal values and estimating only a subset of 

them can make possible the parameter estimation task. 

Techniques used to assess the identifiability and estimability of model parameters will be 

discussed next. 

 

1.2. Identifiability Analysis 

Identifiability analysis, also called structural identifiability and/or a-priori identifiability, can 

be performed to determine if unique values of model parameters can be obtained under the 

assumptions of accurate model structure and noise-free measurement data (Kim and Lee, 2019). 

A model and its parameters are said to be identifiable if there exists a unique input-output 

behaviour for each set of parameter values. Consider a nonlinear ordinary differential equation 

(ODE) model of the form: 

 

                                                                         
𝑑𝐱

𝑑𝑡
= 𝐟(𝐱, 𝐮, 𝛉)         ,                                                 (1.3) 

 

                                                                           𝐲 = 𝐠(𝐱, 𝐮, 𝛉)        ,                                                  (1.4) 
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where x is a vector of model states, u is a vector of input trajectories, 𝛉 is a vector of model 

parameters and y is a vector of model predictions. The model and parameters are said to be 

identifiable if the following holds for any 𝜃1 and 𝜃2 belonging to the allowable parameter space: 

 

                                                        𝐠(𝐱, 𝐮, 𝜃1) = 𝐠(𝐱, 𝐮, 𝜃2) ⇔ 𝜃1 = 𝜃2       ,                             (1.5) 
 

if Equation (1.5) holds for the entire parameter space, the parameters are said to be globally 

identifiable, whereas if Equation (1.5) holds only for a neighbourhood of the parameter space, 

the parameters are said to be locally identifiable (Jimènez-Hornero et al., 2008). 

Assessing identifiability can uncover problems with model structure, and if model parameters 

are unidentifiable, the modeller will need to either simplify the model equations or obtain more 

information from additional output variables. Performing additional experiments using the 

same measured outputs will not solve an identifiability problem, therefore, the modeller could 

simplify the model by either lumping several parameters that appear together in one single 

overall parameter (e.g., Chu and Hahn, 2009), or remove terms that are expected to have little 

influence on model predictions (e.g., Degenring et al., 2004), or fix some parameters, thus 

reducing the number of parameters that require estimation (e.g., Chu et al., 2009). 

Several methods were developed to assess identifiability in nonlinear ODE models. Grewal and 

Glover (1976) proved that if the linearised version of a nonlinear model is identifiable, then the 

original nonlinear model is also identifiable. Unfortunately, if the linearised version of the 

nonlinear model is unidentifiable, we cannot conclude that the original nonlinear model is also 

unidentifiable (Vajda et al., 1989). 

Pohjanpalo (1978) proposed a Taylor-series-expansion approach, which require high order 

derivatives of system outputs with respect to time, where the number of derivatives required is 

at least equal to the number of parameters. Vajda and Rabitz (1989) developed a similarity 

transformation (or local state isomorphism) approach, Ljung and Glad (1994) developed a 

differential algebra technique that is restricted to polynomial nonlinearities. The latter method 

has been applied using symbolic computational packages, eliminating the need to perform 

complicated algebraic equations by hand. Jimenez-Hornero et al. (2008) attempted to use the 

cited techniques to assess the identifiability of a nonlinear ODE model of an acetic acid 

fermentation process. All the cited techniques either failed to provide firm conclusions or were 

too difficult to implement due to the complexity of the analytical expressions and long 

computational times. 

In summary, even though structural identifiability represents a “low bar” in order to a model be 

identifiable, structural identifiability analysis methods are not widely used in practice, yet, due 

to either the computational complexity or the lack of mature computer implementations (Miao 

et al., 2011). 
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1.3. Estimability Analysis 

Parameters that are said to be identifiable, may not be estimable in practice due to the limited 

information contained in the available experimental data. Estimability analysis, also known as 

practical identifiability and/or a-posteriori identifiability, is a tool for determining if all model 

parameters can be estimable from the available data. 

An easier and often better choice is to first assess the estimability of the model parameters, 

since many identifiability techniques are complicated and can fail when applied to nonlinear 

fundamental models. Techniques for determining estimability are easier to use and can be 

applied to complex nonlinear models with many parameters (McLean and McAuley, 2012). 

A parameter may be non-estimable for two primary reasons: (1) the model predictions are not 

sensitive to variations in the parameter's value, or (2) the parameter's influence on model 

predictions is correlated with the influence of one or more other parameters. Assessing 

parameter estimability requires evaluating both the sensitivity of model predictions to changes 

in parameter values and the correlations between the effects of different parameters. The 

methods for assessing parameter estimability will be discussed in greater detail. 

 

1.3.1. Sensitivity-based estimability methods 

Sensitivity analysis is a well-researched and utilized concept that can be often used to rank the 

influence of parameters on the model outputs through calculations of sensitivity matrices and 

can in some cases determine non-estimability. The associated sensitivities of the predicted 

outputs to the parameters can be placed in a sensitivity matrix, S: 
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                                                     𝐒 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑦̂11
𝜕𝜃1

|
𝑢1

…
𝜕𝑦̂11
𝜕𝜃𝑝

|
𝑢1

⋮ ⋱ ⋮
𝜕𝑦̂1𝑛
𝜕𝜃1

|
𝑢1

…
𝜕𝑦̂1𝑛
𝜕𝜃1

|
𝑢1

𝜕𝑦̂21
𝜕𝜃1

|
𝑢1

…
𝜕𝑦̂21
𝜕𝜃𝑝

|
𝑢1

⋮ ⋱ ⋮
𝜕𝑦̂𝑑𝑛
𝜕𝜃1

|
𝑢1

…
𝜕𝑦̂𝑑𝑛
𝜕𝜃𝑝

|
𝑢1

𝜕𝑦̂11
𝜕𝜃1

|
𝑢2

…
𝜕𝑦̂11
𝜕𝜃𝑝

|
𝑢2

⋮ ⋱ ⋮
𝜕𝑦̂𝑑𝑛
𝜕𝜃1

|
𝑢2

…
𝜕𝑦̂𝑑𝑛
𝜕𝜃𝑝

|
𝑢2

⋮ ⋱ ⋮
𝜕𝑦̂𝑑𝑛
𝜕𝜃1

|
𝑢𝑟

…
𝜕𝑦̂𝑑𝑛
𝜕𝜃𝑝

|
𝑢𝑟)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           ,                                      (1.6) 

 

where the dimensions of S are [𝑁 𝑋 𝑝] , with N=dnr, where d is the number of response 

variables, n is the number of measurement times, r is the number of experimental runs and p is 

the number of parameters. Each column corresponds to the sensitivities of the predicted outputs 

of a single parameter. 

For simple models with a limited number of parameters and outputs, graphical inspection of the 

sensitivity matrix can provide insights into the estimability of the parameters. For instance, 

visual analysis of the sensitivity matrix can reveal whether model predictions are insensitive to 

variations in a parameter or whether combinations of two or more parameters produce similar 

model outputs, indicating a correlation among these parameters (Holmberg, 1982). Both 

scenarios can lead to issues with parameter estimability. For example, Figure 1.2 shows that 

parameters 𝜃2 and 𝜃3 have little to no influence on the model output, while parameters 𝜃1 and 

𝜃4 are shown to have great influence and their effect on the model output seem to be correlated 

with each other. It is crucial to ensure appropriate scaling when calculating sensitivity 

coefficients to prevent small sensitivity values from arising due to an improper choice of units 

for the parameters or model outputs. 
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Other methods that rely on the sensitivity matrix are based on the Fisher Information Matrix 

(FIM). The FIM is important for estimability analysis since it contains information about 

measurement uncertainty. The sensitivity matrix in equation (1.4) is related to the FIM by: 

 

                                                                        𝐹𝐼𝑀 = 𝐒TΣ−1𝐒         ,                                                   (1.7) 
 

where Σ−1 is the inverse of the variance-covariance matrix of the response variables. A simple 

way to assess estimability is to check the rank of the FIM. If the rank of the FIM is less than 

the number of the parameters (i.e. the FIM is singular) then the parameters are not all estimable 

(Petersen et al. 2001). Due to numerical uncertainties, it is difficult in many times to determine 

if the FIM has full rank or not, which is why in many cases the FIM is analyzed via an eigen-

decomposition. The presence of a “small” eigenvalue is indicative of ill-conditioning of the 

matrix, and as a result the corresponding parameter cannot be estimated reliably (Lam et al., 

2022). 

In summary, sensitivity-based estimability methods are rather simple to implement but in 

practice are recommended for simple models with few parameters. Moreover, these methods 

need to be implemented carefully, since the calculations of the sensitivity matrix are based on 

initial parameter guesses that may be inaccurate, and conclusions are valid locally, (i.e. in the 

proximities of the initial parameter guess). 

 

 

 

Figure 1.2. Sensitivity plot. 
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1.3.2. Global sensitivity analysis 

Global sensitivity analysis (GSA) can be used to quantify the importance of model parameters 

and their interaction with respect to model outputs. Differently from a local sensitivity analysis, 

the results of a GSA do not depend on a specific choice of parameters value, but it uses as input 

the entire range of parameters values (Braakman et al., 2022). 

One of the most used GSA methods, also used during this project, is the variance-based Sobol’s 

GSA. This is a variance-based methodology based on Saltelli (2002) in which the variance of 

the 𝑖th model output is decomposed as follow: 

 

                                                    𝑉(𝑦𝑗) =∑𝑉𝑖 +∑∑𝑉𝑖𝑗
𝑗>𝑖:

+⋯+ 𝑉12…𝑘
𝑖𝑖

      ,                         (1.8) 

 

where 𝑉𝑖 is the first-order effect of factor i to the variance of the output, while 𝑉𝑖𝑗 and 𝑉12…𝑘 

express the variance contributions due to second and k-th order interactions. There are two types 

of variance-based sensitivity indices (Sobol, 1993): the first-order index (𝑆𝑖) ,which represents 

the main effect contribution of each input factor (in our context, the parameters) to the variance 

of the output. It indicates by how much one could reduce, on average, the output variance if the 

corresponding input factor could be fixed. The other index is the total effect index (ST,i) that 

accounts for the total contribution to the output variance of the i-th factor, including its 

individual contribution (first-order effect) plus all higher-order effects due to its interactions 

with other factors. The first-order index is defined as: 

 

                                                                  𝑆𝑖 =
𝑉𝜃𝑖(𝐸𝜃∼𝑖(𝑦𝑗|𝜃𝑖))

𝑉(𝑦𝑗)
       ,                                              (1.9) 

 

where 𝑉𝜃𝑖(𝐸𝜃∼𝑖(𝑦𝑗|𝜃𝑖)) represents the first-order effect of 𝜃𝑖 on the output. The higher the value 

of 𝑆𝑖 is, the higher the influence of the i-th factor on the output. The total effect index is defined 

as: 

 

                                                              𝑆𝑇,𝑖 = 1 −
𝑉𝜃∼𝑖 (𝐸𝜃𝑖(𝑦𝑗|𝛉∼i))

𝑉(𝑦𝑗)
      ,                                  (1.10) 

 

where 𝑉𝜃∼𝑖(𝐸𝜃𝑖(𝑦𝑗|𝛉∼i)) is the first-order effect of 𝛉∼i. If the value of 𝑆𝑇,𝑖 is small, it is a 

necessary and sufficient condition for 𝜃𝑖 being noninfluential. Interpretations about Sobol’s 

GSA can be summarized as follows: 

• The higher the value of Si, the higher the influence of the i-th factor on the output; 

• If Si = 0, then the i-th factor has no direct influence on the output; however, it may still 

be an important factor through its interactions with other factors; 
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• A significant difference between Si and ST,i indicates an important interaction involving 

that factor; 

• The sum of all Si is always lower than or equal to 1. If it is equal to 1, then there are no 

interactions between the factors and this implies that the model is additive;  

• ST,i must be higher or equal to Si. If it is equal, then the factor has no interactions with 

the other factors; 

• If ST,i = 0, the i-th factor has no influence on the model output and the factor can be fixed 

at any value within its range of uncertainty; 

• The sum of all ST,i is always higher than or equal to 1. If it is equal to 1, then there are 

no interactions between the factors. 

Sobol's Global Sensitivity Analysis (GSA) method can be effectively employed to assess 

parameter estimability, as it identifies parameters that have little to no influence on model 

outputs and detects significant interactions between parameters across the entire range specified 

by the user. This makes Sobol's GSA a valuable tool for reducing the number of "free" 

parameters in a model by fixing those that are non-influential. 

 

1.3.3. Repeated parameter estimation methods 

Monte Carlo (MC) simulations can be used to assess parameter estimability. The MC method 

used for this purpose (Miao et al., 2011) repeatedly simulates measurement noise on a dataset. 

The general procedure of the method is as follows: 

1. Determine a nominal parameter vector 𝛉̂ for simulation study. 

2. Simulate the model with 𝛉̂ to obtain measurements y at the experimental sample times. 

3. Generate n (e.g., 1000) sets of simulated data from the measurements with a given 

measurement error level. 

4. Fit the model to each of the n simulated datasets to obtain parameter estimates 𝛉i,                  

i=1,2,…,n. 

5. Calculate the average relative estimation error (ARE) for each element of 𝛉 as 

 

                                              𝐴𝑅𝐸(𝜃(𝑘)) = 100% ×
1

𝑛
∑

|𝜃(𝑘) − 𝜃𝑖
(𝑘)|

|𝜃(𝑘)|

𝑛

𝑖=1

      ,                            (1.11) 

 

where 𝜃(𝑘) is the kth element of 𝛉̂ and 𝜃𝑖
(𝑘)

 is the kth element of 𝛉i. 

 

Steps 2-5 may be repeated for different levels of measurement noise, to understand how 

parameter estimability varies with measurement noise. ARE values are typically used to assess 

parameter estimability. For an expected level of measurement noise, high values of ARE 

indicate that a parameter is not estimable. 
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While this method is straightforward to apply, it is computationally expensive due to the large 

number of parameter estimations required. Additionally, it may produce misleading results if 

the parameter values used to generate the dataset are significantly different from the "true" 

parameter values. 

Raue et al. (2009) developed a graphical profile-likelihood method to assess parameter 

estimability. Numerous parameter estimation calculations are required and the importance of 

each parameter on the objective function J used for parameter estimation is considered. The 

method consists in choosing a range of values for each parameter of interest, and for different 

candidate values from the range, the remaining parameters are adjusted to minimise the value 

of J. If the parameter of interest has a negligible effect on J (e.g., 𝜃2 in figure 1.3), the parameter 

is inestimable, and if the value of J is strongly dependent on the value of the parameter of 

interest (e.g., 𝜃1 in figure 1.3), the parameter is estimable. 

 

Figure 1.3. Profile-likelihood estimability plots (Raue et al., 2009). 

 

Both cited methods require a threshold value (e.g., for the ARE and for changes in J to 

categorise parameters as estimable or inestimable). 

All the estimability methods discussed can be applied to identify parameters in a model that 

may cause estimability issues. However, in practice, mathematical models of chemical and 

pharmaceutical processes are often highly complex and involve a large number of parameters, 

making it likely that some parameters will be unidentifiable or inestimable. In such cases, it 

may be practical to fix certain parameters at nominal values and estimate only a subset of them. 

A methodology to address this challenge will be presented in the next chapter. 
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1.4. Motivations and objectives 

Over the last decades, significant efforts have been devoted in developing methods and 

techniques that can assist parameter estimation by determining whether and which model 

parameters can be estimated from the available experimental data. These methods, including 

identifiability and estimability approaches, however, pose some issues. 

• Their implementation can be computationally demanding; 

• Results may only be valid locally, e.g., in the proximity of a specific parameter; 

• Outcomes can be influenced by arbitrary decisions and cut-off values, which are 

required to assess estimability. 

Recently, the estimability method proposed by Wu et al. (2011) has gained attention due to its 

simplicity of implementation. It can be applied to models with numerous parameters to 

determine which parameters should be estimated from a given dataset. 

This thesis aims to evaluate the recent estimability method by Wu et al. (2011), in combination 

with the well-known parameter ranking method proposed by Yao et al. (2003). The objective 

is to apply the estimability method to different models and compare it with other established 

approaches presented in literature. The method will then be analyzed under varying levels of 

measurement noise and uncertainty on parameter values, both of which can significantly 

influence the results. 



 



 

Chapter 2 

Methodology 

In this chapter, a discussion about software tools and mathematical techniques used in this work 

is provided. Then, the methods used for ranking and selecting model parameters are explained 

thoroughly, and their algorithms are presented. At the end, the interest is focused on how these 

methods were implemented in this study, and on how the robustness of the results can be tested. 

 

2.1. Software and mathematical tools 

The project development requires a software capable of solving the system of algebraic and 

ordinary differential equations (DAEs) describing the process of interest. In this study, 

MATLAB® R2023b was used to solve the systems of DAEs, to implement the algorithms for 

parameter ranking and subset selection – which will be presented in the following –, and finally, 

to perform parameter estimation. It was also used Siemens Process System Enterprise’s 

advanced process modelling software gPROMS® Model Builder v. 7.0. for performing global 

sensitivity analysis (GSA) and model-based design of experiments (MBDoE) to design 

informative experiments for the subsequent parameter estimation activity. 

 

2.1.1. Model simulation 

In this study, the mathematical models on which the parameters ranking and selection is 

assessed, are comprised by systems of ordinary differential equations and algebraic equations. 

In order to solve them, the equations of the model were implemented in MATLAB® R2023b, 

where the ODE solver ode15s was used. This solver is able to solve stiff differential equations 

and DAEs, requiring as input the time span of the integration, an initial value of the response 

variables and the values of the eventual manipulated variables and parameters. 

 

2.1.2. Parameter estimation 

Once the mathematical model and the experimental data are available, parameter estimation is 

performed. The aim is to estimate the values of model parameters that allow to obtain the model 

predictions as close as possible to the observed experimental data. This is achieved by 

minimizing the value of an objective function (Braakman et al., 2022). In this study, as 

requested by the parameter selection method, explained in detail in §2.4, parameter estimation 

is performed by minimizing the weighted sum of squared residuals of the following objective 

function 𝐽: 
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                                                 𝐽(𝛉) =∑∑∑ (
𝑦𝑖𝑙𝑚 − 𝑦̂𝑖𝑙𝑚(𝛉)

𝑠𝑦𝑖
)

2

 ,                                       (2.1)

𝑟

𝑚=1

𝑛

𝑙=1

𝑑

𝑖=1

 

 

where 𝑦 and 𝑦̂ are the response and predicted response of the 𝑖 = 1…𝑑 response variables, of 

𝑙 = 1…𝑛 measurement times and 𝑚 = 1…𝑟 experimental runs. In this study, parameter 

estimation, and therefore the minimization of the objective function of Equation (2.1), was 

performed by using a nonlinear programming solver on MATLAB® R2023b called fmincon, 

which is often used to find the minimum of constrained nonlinear multivariable functions. The 

solver needs as inputs the objective function, an initial guess of the parameters to be estimated 

and a constraint on the parameters, as a lower bound and an upper bound values. Setting those 

bound helps the solver to converge on meaningful parameter values. Additionally, a sequential 

quadratic programming algorithm (SQP) is used as algorithm for the solver, since SQP methods 

represent the state of the art in nonlinear programming methods and the algorithm is sometimes 

faster and more accurate than the default one (Schittkowski, 1986). 

The parameter estimation task can be also very challenging considering that models often have 

many parameters to be estimated, and the data used to estimate those parameters are often 

sparse. This combination of sparse data and large number of parameters, along with 

nonlinearities in the model, can result in the optimization algorithm to converge in a local 

minimum of the objective function, yielding misleading parameter estimates (Braakman et al., 

2022). Unless knowledge of the initial estimates is well known, it is recommended to use global 

optimization algorithms, in order to reduce the likelihood of ending up in a local minimum. 

Taking this into account, parameter estimation in this study was performed by enabling a 

MultiStart option in the solver. This allows the solver to find multiple local minima, starting 

the solver from multiple starting points, or better, from multiple initial parameter values inside 

the constraints, so that the final local minimum picked by the solver will be the optimal between 

all the local minimum encountered. 

 

2.1.3. Sensitivity analysis 

Sensitivity analysis can be utilized to quantify the extent to which changes in various parameters 

affect the model outputs, and as seen in §1.3.1 and §1.3.2, it can also be used to assess parameter 

estimability. Sensitivity analysis provides metrics to rank the importance of parameters with 

respect to an output of interest: the larger the values of the metrics, the more sensitive the model 

response with respect to parameter changes (Saltelli et al., 2008). Parameters that are less 

influential therefore can be fixed to their nominal values and be excluded from the parameter 

estimation task, reducing the number of free parameters in the model. This reduction of free 

parameters can provide greater confidence in model output predictions (Braakman et al., 2022).  

Generally, there are two types of sensitivity analysis: 
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• Local sensitivity analysis (LSA): performed with a one-at-a-time (OAT) method. A 

single parameter is perturbed around its nominal value, while the others remain fixed, 

and the size of the changes in the responses is noted, quantified by means of partial 

derivatives; 

• Global sensitivity analysis (GSA): quantify the sensitivity of the model responses to the 

model parameters exploring the entire interval given for each parameter. 

In this study, both analyses were used. LSA analysis is very straightforward since the partial 

derivatives of the model responses with respect to parameter changes are already calculated for 

the method that will be presented in §2.3. While for the GSA, the technique adopted was the 

Sobol method, already presented in §1.3.2, a variance-based methodology based on Saltelli 

(2002) in which the variance of the 𝑖th model output is decomposed as follow: 

 

                                                    𝑉(𝑦𝑗) =∑𝑉𝑖 +∑∑𝑉𝑖𝑗
𝑗>𝑖:

+⋯+ 𝑉12…𝑘
𝑖𝑖

  ,                             (2.2) 

 

where 𝑉𝑖 is the first-order effect of factor i to the variance of the output, while 𝑉𝑖𝑗 and 𝑉12…𝑘 

express the variance contributions due to second and k-th order interactions. The metrics used 

to quantify the influence of model parameters to the model responses are the first order index 

𝑆𝑖 and the total effect index 𝑆𝑇,𝑖. The first order index is defined as: 

 

                                                                    𝑆𝑖 =
𝑉𝜃𝑖(𝐸𝜃∼𝑖(𝑦𝑗|𝜃𝑖))

𝑉(𝑦𝑗)
   ,                                                (2.3) 

 

where 𝑉𝜃𝑖(𝐸𝜃∼𝑖(𝑦𝑗|𝜃𝑖)) represents the first-order effect of 𝜃𝑖 on the output. The first order effect 

𝑆𝑖 represents the main effect of each parameter on the variance of the output. If a first-order 

index is large, then the corresponding parameter is influential on the output. The total effect 

index is defined as: 

 

                                                          𝑆𝑇,𝑖 = 1 −
𝑉𝜃∼𝑖 (𝐸𝜃𝑖(𝑦𝑗|𝛉∼i))

𝑉(𝑦𝑗)
   ,                                           (2.4) 

 

where 𝑉𝜃∼𝑖(𝐸𝜃𝑖(𝑦𝑗|𝛉∼i)) is the first-order effect of 𝛉∼i. The total effect index accounts for the 

total contribution to the output variance of the i-th factor. If a total effect index is small, then 

the corresponding parameter is non-influential. Properties of the sensitivity indices are listed in 

§1.3.2. 

In this work, GSA was performed within gPROMS® through the Global System Analysis 

entity that allows investigating the system behaviour. Variability of selected outputs is 

computed after specifying the range of variability of each input of interest. 
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2.1.4. Model based design of experiments 

Parameters are estimated based on data obtained from experiments; therefore, experiments 

should be carefully designed to support effective parameter estimation. Model based design of 

experiments (MBDoE) techniques are effective mathematical tools, which exploit the 

knowledge of the structure of the underlying system, represented by a mathematical model, 

aiming to obtain the maximum information content from the designed experiment. These 

techniques are used to reduce the parameter uncertainty region through the optimization of the 

experiment design vector 𝛗, defined as (Franceschini and Macchietto, 2008): 

 

                                                                 𝛗 = [𝐲0, 𝐮(𝑡), 𝐭
sp, 𝜏]𝑇   ,                                                   (2.5) 

 

where 𝐲0 is the set of initial conditions for the measured variables, 𝐮(t) is the vector of time 

varying control variables, 𝐭sp is the vector of the output variables sampling times, and 𝜏 is the 

total duration of the experiment. The optimization problem is then formulated as: 

 

                                                           𝛗opt = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛗

{𝜓[𝐕θ(𝛉,𝛗)]}   ,                                        (2.6) 

 

where 𝐕θ is the parameter variance-covariance matrix, and 𝜓 is a selected metric of 𝐕θ that 

represents the criterion for the experimental design. 𝐕θ is evaluated as: 

 

                         𝐕θ(𝛉,𝛗) = {(𝐕θ
0)−1 +∑∑∑𝑠𝑖,𝑗 [

𝜕𝑦̂𝑖(𝑡𝑘)

𝜕𝜃𝑙

𝜕𝑦̂𝑗(𝑡𝑘)

𝜕𝜃𝑚
]
𝑙,𝑚=1:1:𝑁𝜃

𝑁𝑦

𝑗=1

𝑁𝑦

𝑖=1

𝑁𝑠𝑝

𝑘=1

}

−1

,      (2.7) 

 

where 𝑠𝑖,𝑗 is the 𝑖, 𝑗𝑡ℎ element of the inverse of the measurement error covariance matrix, 𝑁𝑠𝑝 

is the number of sampling intervals, 𝑁𝑦 is the number of measured variables, 𝑁𝜃 is the number 

of parameters, and 𝐕θ
0 is the preliminary parameter variance-covariance matrix. 

To compare the magnitude of different parameter variance-covariance matrices, a selected 

metric 𝜓 is evaluated through different criteria: 

• A-Optimal: minimizes the trace of 𝐕θ(𝛉,𝛗), and thus minimises the dimensions of the 

enclosing box around the joint confidence region; 

• E-Optimal: minimise the largest eigenvalue of 𝐕θ(𝛉,𝛗), and thus minimises the size of 

the major axis of the joint confidence region; 

• D-Optimal: minimise the determinant of 𝐕θ(𝛉,𝛗), and thus minimises the volume of 

the joint confidence region. 

A geometrical interpretation of each criterion is presented in Figure 2.1. One of the main 

reasons why MBDoE is used is to improve the precision of the parameter estimates. To 
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determine if a parameter has been estimated with sufficient precision, a t-test is used. The t-

value for each parameter is calculated at (1 − 𝛼)% confidence level as: 

 

                               𝑡𝑖 =
𝜃𝑖

95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖
=

𝜃𝑖

𝑡 (1 −
𝛼
2 ,𝑁 − 𝑁𝜃)√𝑣𝑖𝑖

     ,             (2.8) 

 

where 𝜃𝑖 is the parameter estimate, 𝑣𝑖𝑖 is the 𝑖𝑖𝑡ℎ term of the variance-covariance matrix, N is 

the number of samples and 𝑁𝜃 the number of parameters. A statistically satisfactory parameter 

estimation is reached when a parameter t-value 𝑡𝑖 is greater than the reference t-value 𝑡𝑟𝑒𝑓 with 

(1 − 𝛼)% confidence level and (𝑁 − 𝑁𝜃) degrees of freedom (Franceschini and Macchietto, 

2008): 

 

                                                                   𝑡𝑟𝑒𝑓 = 𝑡(1 − 𝛼, 𝑁 − 𝑁𝜃)    .                                            (2.9) 

 

In this work, a D-Optimal criterion was used and the significance level 𝛼% was set to 5%.  

 

 

MBDoE was performed on gPROMS®, within the Experiment Design entity, more 

specifically in the …to be designed  section. There, the user can provide guesses for the 

initial conditions, the sensor and the values of manipulated variables that later are to be 

optimally determined by the MBDoE algorithm. Once the design is set, it is executed on the 

Experiment Design entity, and the results are obtained. After that, a new experiment with the 

MBDoE results is set in the Experiments entity, and its parameter estimation together with an 

evaluation of the precision of the parameter estimates is done in the Model Validation entity, 

where the parameters chosen to be estimated must be selected with their range of uncertainty, 

measured as an upper and lower value. 

Figure 2.2. Geometric interpretation of the various criterions 
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2.2. Selecting a subset of parameters to estimate 

As in many practical situations model parameters are not all estimable, or obtaining sufficient 

data to estimate all the parameters reliably is too expensive or time consuming, it is often useful 

to determine which parameters can and should be estimated from the available experimental 

data. To do so, different simplified models (SMs), which have a smaller number of parameters, 

can be generated (Wu at al., 2011), each one having its own parameter subset that will be 

estimated from the experimental data, while the other parameters remain fixed at their nominal 

values.  

Deciding which parameters to fix and which to estimate is referred as parameter subset 

selection. Several methods in the literature for selecting appropriate parameter subsets to 

estimate produce a ranked list of parameters, with the parameters appearing on the top being 

the ones that are the most important to be estimated so that good predictions can be obtained, 

while the parameters appearing on the bottom are the least important ones. However, a lot of 

these methods suffer from arbitrary cutoff values that are used to determine how many 

parameters to estimate and how many to fix (Thompson et al., 2009). 

This problem motivated Wu et al., (2011) to propose a criterion based on mean squared error 

(MSE) to determine the number of parameters to be estimated from a ranked list. The mean 

squared error is the sum of the squared bias and variance, and it is a convenient measure for the 

quality of the model predictions. Using the definitions given in the original article, we will call 

simplified models (SMs), the models where only a subset of parameters is estimated from 

experimental data (and the rest is fixed) as compared to extended models (EMs), i.e. the original 

models where all parameters are estimated from available data. SMs can sometimes give better 

predictions, in terms of mean squared error, than EMs, especially if the available data for 

parameter estimation is noisy and limited. 

When using a SM, some parameters are omitted from the estimation procedure, leading to an 

increase in bias in the parameter estimates, which sometimes can negatively affect model 

predictions. On the other hand, it may lead to a reduction in the variance of model predictions. 

Therefore, while using an SM may result in large bias in parameter estimates, overfitting or 

estimating too many parameters decreases the model predictive ability and may lead to large 

variances in model predictions, since when too many parameters are estimated using limited 

data, the high levels of uncertainty associated with the parameter estimates result in large 

variances in the model predictions (Thompson et al., 2009). A SM gives better predictions than 

the EM when the variance reduction outweighs the bias. 

The orthogonalization method, which is used for ranking model parameters to most to least 

important, and the MSE-based method, used to select model parameters will be presented next. 
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2.3. Orthogonalization method 

The orthogonalization method was first introduced by Yao et al. (2003) for selecting estimable 

parameters in a complex dynamic reactor model containing 50 parameters. In their approach, 

Yao et al. used the average values of response variables and initial parameter values for scaling. 

Later, Thompson et al. (2009) refined this algorithm by incorporating uncertainty-based scaling 

factors. 

Referring to a model described by equations (1.3) and (1.4), the orthogonalization method relies 

on a sensitivity matrix S containing partial derivatives of the model predictions with respect to 

the model parameters: 

                                                          𝐒 =

(
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                  ,                        (2.10) 

 

where the dimensions of S are [𝑁 𝑋 𝑝] , with N=dnr, where d is the number of response 

variables, n is the number of measurement times, r is the number of experimental runs and p is 

the number of parameters. In this sensitivity matrix, each column is associated with a particular 

parameter and each row is associated with prediction of a particular measured value that will 

be used for parameter estimation. 

For models that have analytical solutions, the derivatives in Equation (2.10) can be obtained 

directly through analytical methods. However, for more complex nonlinear ordinary differential 

equation (ODE) models, the elements of the sensitivity matrix S must be computed numerically. 

This can be done either by using finite difference approximations with perturbed parameter 

values (Saltelli et al., 2000) or by solving sensitivity equations (Leis and Kramer, 1988). 



26  Chapter 2 

 
 

In order to apply the method, the sensitivity coefficients of S (i.e. elements of matrix S) should 

be properly scaled so that they are dimensionally consistent and can be meaningfully compared 

(Thompson et al., 2009). A new matrix Z is then formed, called scaled sensitivity matrix, on 

which each element of S is multiplied by scaling factors: 

 

                                                                   𝑍𝑖𝑙𝑚,𝑗 =
𝜕𝑦̂𝑖𝑙𝑚
𝜕𝜃𝑗

𝑠𝜃𝑗0

𝑠𝑦𝑖
       .                                                (2.11) 

 

These scaled sensitivity coefficients are calculated for each of the 𝑖 = 1…𝑑 response variables, 

each of the 𝑙 = 1…𝑛 measurement times and each of the 𝑚 = 1…𝑟 experimental runs. Scaling 

factors must be chosen carefully, because scaling can strongly affect the outcome of the 

parameters ranking. Scaling factor 𝑠𝜃𝑗0 accounts for uncertainties in the initial guess for 

parameters and scaling factor 𝑠𝑦𝑖 reflects the uncertainty associated with the measured 

responses. Factor 𝑠𝑦𝑖 can be determined from replicate experiments or information about sensor 

suppliers, since it reflects the inaccuracies of different measurements (McLean et al., 2012), 

while factor 𝑠𝜃𝑗0 reflects how far the modeler is willing to allow the particular parameter to 

move away from its initial guess. 

The orthogonalization method, showed in Table 2.1, relies on the scaled sensitivity matrix to 

rank parameters from the most estimable to the least estimable. The rank of each model 

parameter is determined based on the influence of the parameter on model predictions and on 

correlations with other parameters. 

 

Table 2.2. Orthogonalization algorithm 

1. Compute the magnitude (Euclidean norm) of each column in the Z matrix. Select the column 

with the largest magnitude as the most estimable parameter. Set 𝑘 = 1. 

2. Put the k selected columns from Z that correspond to parameter that have been ranked in the 

matrix 𝐗k. 

3. Use 𝐗k to predict columns in Z using ordinary least squares (OLS): 

                                                           𝐙̂k = 𝐗k(𝐗k
T𝐗k)

−1
𝐗k
T𝐙     ,                                          (2.12)                                 

And calculate the residual matrix: 

                                                            𝐑k = 𝐙 − 𝐙̂k   ,                                                          (2.13) 

4. Calculate the magnitude of each column in 𝐑k. The (k+1)th most estimable parameter 

corresponds to the column in 𝐑k with the largest magnitude. 

5. Increase the iteration counter k by one and repeat steps 2-4 until all parameters are ranked. 

 

With all parameters ranked, parameters that stay on top of the ranked list are the ones with 

strong and independent influence on one or more model predictions, being then the most 

important parameters to be estimated, while on the bottom of the ranked list are the less 
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important parameters, on which can possibly give estimability problems. One advantage of 

scaling based on the initial uncertainties of parameters is that parameters with large 

uncertainties are more likely to be selected for estimation, while those that are known with high 

precision a-priori are placed on the bottom of the ranked list, and most of the times excluded 

from the estimation process. 

The steps of the method will be discussed in the following paragraph. 

 

2.3.1. Graphical visualization of the orthogonalization method 

The ranking of the parameters starts by calculating the magnitude of each column of the scaled 

sensitivity matrix Z. In Figure 2.2, columns of matrix Z are visualized in form of plots, showing 

the scaled sensitivity coefficients (i.e. the elements of the matrix Z) in function of time. The 

following example is taken from a kinetic model that will be further discussed and introduced 

in Chapter 3. The model has four parameters (𝜃1, 𝜃2, 𝜃3 and 𝜃4) and two output variables (𝑥1 

and 𝑥2) that were measured every hour for the duration of 10 hours. For the sake of 

interpretability, the response variables 𝑥1 and 𝑥2 were shown in different plots. 

 

 

From Figure 2.2 it is easy to see graphically that column 1, which corresponds to parameter 𝜃1, 

presents the largest magnitude, therefore the method would select parameter 𝜃1 to be the most 

estimable (Step 1). This would lead to use the first column of matrix Z to predict the columns 

of Z using ordinary least squares (Step 2). Figure 2.3 shows the prediction of Z using the first 

column of Z (Step 3). As expected, the column of the most estimable parameter previously 

selected is perfectly predicted, since to predict it, the same exact column of Z was used. 

Figure 2.3. Visualization of matrix Z. The columns in this figure represent the columns of the matrix Z 
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The next most estimable parameter will be then the one with the largest magnitude among the 

other unranked parameter columns. It is already seen in Figure 2.3 that column 3 of matrix Z 

has the largest prediction residuals (i.e. the difference between the original column of matrix Z 

and the predicted column of Z is larger than the columns 2 and 4). Figure 2.4 shows the 

computation of the residual matrix 𝐑k (Step 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Visualization of the predicted matrix using ordinary least squares 
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Confirming the visual results of Figure 2.3, Figure 2.4 shows that column 3 of matrix 𝐑k, which 

corresponds to parameter 𝜃3, has the largest magnitude (Step 4), therefore parameter 𝜃3 should 

be selected as the next most estimable parameter. This procedure should be repeated until all 

the parameters are ranked. 

The orthogonalization method therefore calculates the magnitude of the columns of Z and 𝐑k 

to assess the “net” influence of a parameter on the model responses, while the regression step 

(i.e. ordinary least squares prediction) is used to assess the correlation between parameters, 

being the columns of Z that are most similar to the predicted columns of Z the ones that are 

more correlated. 

 

2.4. MSE-based parameter selection method 

The MSE-based method, developed by Wu et al., (2011), determine the optimal number of 

parameters to estimate from the ranked list obtained via orthogonalization, so that the best 

predictions (i.e. with the lowest expected MSE) are obtained. 

The method is developed using univariate linear models, but the extension to multivariate 

nonlinear models is quite straightforward, by assuming that the statistical properties of the 

nonlinear model can be adequately characterized by its linearised representation (Wu et al., 

2011). 

Consider an EM that can be described by the following univariate linear model: 

 

                                                       𝐘 = 𝐗𝛃 + 𝛆 = 𝐗1𝛃1 + 𝐗2𝛃2 + 𝛆    ,                                     (2.14) 
 

Figure 2.4. Visualization of the residual matrix 
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where 𝐘 ∈ ℝ𝑛 denotes a vector of measured responses, 𝐗 ∈ ℝ𝑛×𝑝 is matrix of independent 

variable settings, 𝐗1 ∈ ℝ
𝑛×𝑝1, 𝐗2 ∈ ℝ

𝑛×(𝑝−𝑝1) are submatrices of 𝐗, 𝛃 ∈ ℝ𝑝 is a vector of all 

unknown parameters, 𝛃1 ∈ ℝ
𝑝1, 𝛃2 ∈ ℝ

(𝑝−𝑝1) are subvectors of 𝛃, and 𝛆 ∈ ℝ𝑛 is a vector of 

additive random noise terms, where 𝑛 is the total number of measurements, 𝑝 is the total number 

of parameters in the EM, 𝑝1 is the number of parameters in the SM, and (𝑝 − 𝑝1) is the number 

of parameters excluded from the SM. Additionally, the following least-squares assumptions 

(Beck and Arnold, 1977) are made: 

• 𝐗1 and 𝐗2 are perfectly known; 

• Stochastic component 𝛆 is independently and identically distributed with mean zero 

and constant variance 𝜎2. 

A particular SM is of the form: 

 

                                                                          𝐘 = 𝐗1𝛃1 + 𝐞  ,                                                       (2.15) 
 

where 𝐞 = 𝐗2𝛃2 + 𝛆 is the stochastic component combined with any model mismatch. Note 

that the SM is nested within the EM. The MSE is defined as the expected squared difference 

between the model prediction, 𝐘̂, and the noise-free response of the process, 𝐘true = 𝐗𝛃 (Rice, 

1995): 

𝑀𝑆𝐸(𝐘̂) = 𝐸 ((𝐘̂ − 𝐘true)
𝑇
(𝐘̂ − 𝐘true))                       

                                                     = (𝐸(𝐘̂) − 𝐘true
T )(𝐸(𝐘̂) − 𝐘true) + 𝑡𝑟 (𝐶𝑜𝑣(𝐘̂))  ,         (2.16) 

 

where 𝐸(∙) denotes the expected value, 𝐶𝑜𝑣(∙) denotes the variance-covariance matrix and 

𝑡𝑟(∙) denotes the trace. The second line of Equation (2.16) shows that the MSE is equal to the 

squared bias (𝐸(𝐘̂) − 𝐘true
T )(𝐸(𝐘̂) − 𝐘true) plus the total variance 𝑡𝑟 (𝐶𝑜𝑣(𝐘̂)) of the model 

predictions (Rice, 1995). 

Using ordinary least squares, model predictions at the design points used for parameter 

estimation are: 

 

                                                              𝐘̂S = 𝐗1(𝐗1
T𝐗1)

−1𝐗1
T𝐘 = 𝑃1𝐘   ,                                     (2.17) 

 

                                                              𝐘̂E = 𝐗(𝐗
T𝐗)−1𝐗T𝐘 = 𝑃𝐘    ,                                         (2.18) 

 

where 𝑃1 = 𝐗1(𝐗1
T𝐗1)

−1𝐗1
T and 𝑃 = 𝐗(𝐗T𝐗)−1𝐗T. Subscripts “S” and “E” indicate the use of 

a SM and EM, respectively. When unknown parameters in the EM (Equation 2.14) and SM 

(Equation 2.15) are estimated using ordinary least squares (OLS), the expected total MSE for 

predictions at the design points is (Beck and Arnold, 1977): 

 

                   𝑀𝑆𝐸𝑆 = 𝐸 ((𝐘̂S − 𝐗𝛃)
𝑇
(𝐘̂S − 𝐗𝛃)) = 𝜎

2𝑝1 + 𝛃2
T𝐗2

T(𝐈n − 𝑃1)𝐗2𝛃2    ,       (2.19) 
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                                              𝑀𝑆𝐸𝐸 = 𝐸 ((𝐘̂E − 𝐗𝛃)
𝑇
(𝐘̂E − 𝐗𝛃)) = 𝜎

2𝑝   ,                          (2.20) 

 

where 𝐈n is the (𝑛 × 𝑛) identity matrix. The first term on the right-hand side of Equation (2.19), 

𝜎2𝑝1, is the total variance in model predictions made at the design points. The second term, 

𝛃2
𝑇𝐗2

𝑇(𝐈n − 𝑃1)𝐗2𝛃2, is the corresponding total bias (Wu et al., 2011). 

The MSE-based method is used to determine whether the SM or the EM is expected to give 

predictions with lower MSE at the design points used for parameter estimation. This strategy 

relies on a critical ratio 𝑅𝐶, which was defined by Wu et al., (2007) as: 

 

                                                             𝑅𝐶 =
𝛃2
T𝐗2

T(𝐈n − 𝑃1)𝐗2𝛃2
(𝑝 − 𝑝1)𝜎2

    .                                          (2.21) 

 

The critical ratio 𝑅𝐶 is the total squared bias in the model prediction, introduced by removing 

parameters from the EM, divided by the variance reduction in the model predictions, due to few 

parameters in the SM considered. Therefore, the inequality: 

 

                                                                             𝑅𝐶 < 1    ,                                                               (2.22) 
 

is a necessary and sufficient condition for 𝑀𝑆𝐸𝑆 < 𝑀𝑆𝐸𝐸, meaning that model predictions 

obtained using the SM have a smaller mean squared error than those from the EM. This then 

implies that the SM is preferable to the EM for making predictions (Wu et al., 2007). 

Unfortunately, 𝑅𝐶 cannot be calculated directly, because the true parameter values 𝛃2 and the 

true noise variance 𝜎2 are unknown. These values can then be replaced with the parameter 

estimates 𝛃̂2 and the noise variance estimate 𝑠𝐸
2 obtained using the EM and the available data, 

by fitting the EM using OLS, resulting in the following estimator for 𝑅𝐶: 

 

                                 𝑟𝐶 =
𝛃̂2
T𝐗2

T(𝐈n − 𝑃1)𝐗2𝛃̂2
(𝑝 − 𝑝1)𝑠𝐸

2 =
(𝑆𝑆𝐸𝑆 − 𝑆𝑆𝐸𝐸) ∕ (𝑝 − 𝑝1)

(𝑆𝑆𝐸𝐸) ∕ (𝑛 − 𝑝)
     ,               (2.23) 

 

where SSE is the sum of squared residuals and 𝑛 the number of measurements. When 𝜎2 is 

assumed to be known, from prior information about the variability of the response, the estimator 

for 𝑅𝐶 becomes: 

 

                                    𝑟𝐶 =
𝛃̂2
T𝐗2

T(𝐈n − 𝑃1)𝐗2𝛃̂2
(𝑝 − 𝑝1)𝜎2

=
(𝑆𝑆𝐸𝑆 − 𝑆𝑆𝐸𝐸) ∕ (𝑝 − 𝑝1)

𝜎2
    .             (2.24) 

 

The MSE-based method for parameter selection, however, is based on a corrected critical ratio 

𝑅𝐶𝐶, which is defined as: 
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                                             𝑅𝐶𝐶 =
(𝑀𝑆𝐸𝑆 −𝑀𝑆𝐸𝐸) ∕ 𝑛

𝜎2
=
𝑝 − 𝑝1
𝑛

(𝑅𝐶 − 1)    ,                      (2.25) 

 

since when comparing two 𝑆𝑀𝑠 with different parameter numbers, and thus different values of 

𝑝1, the SM with the lower value of 𝑅𝐶 may not correspond to the lower 𝑀𝑆𝐸𝑆. This can be seen 

from the reduction in the total MSE at the design points, when a particular SM is used: 

 

                                          Δ𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑆 −𝑀𝑆𝐸𝐸 = 𝜎2(𝑝 − 𝑝1)(𝑅𝐶 − 1)   .                      (2.26) 
 

Because of the (𝑝 − 𝑝1) term in Equation (2.26), the SM with lower value of 𝑅𝐶 may not be 

the one with the lower 𝑀𝑆𝐸𝑆 (Wu et al., 2011). As a result, the corrected critical ratio 𝑅𝐶𝐶 is 

used for comparing several models with different number of parameters. 

For the EM, the value of 𝑅𝐶𝐶 is zero, since for the EM, 𝑝 is equal to 𝑝1. In a case where the EM 

has the smallest MSE, the 𝑅𝐶 for all the 𝑆𝑀𝑠 will be greater than 1, and their corresponding 𝑅𝐶𝐶 

will be positive. In this situation, the EM will give better predictions in terms of MSE than the 

𝑆𝑀𝑠. In situations where some of the 𝑆𝑀𝑠 have a lower MSE than the EM, the 𝑅𝐶 for these 𝑆𝑀𝑠 

will be lower than 1, and their corresponding 𝑅𝐶𝐶 will be negative, indicating that these 𝑆𝑀𝑠 

will give better predictions, in terms of MSE, than the EM. The SM with the lowest value of 

𝑅𝐶𝐶 will be then the one that gives the best predictions. 

Expression of 𝑟𝐶 in Equations (2.23) and (2.24) can be used to calculate an estimate of 𝑅𝐶𝐶. 

Unfortunately, these simple estimators for 𝑟𝐶 can have a large bias and variance (Kubokawa et 

al., 1993). When 𝜎2 is unknown, the following truncated estimator should be used: 

 

                          𝑟𝐶,𝐾𝑢𝑏 = 𝑚𝑎𝑥 (
𝑛 − 𝑝 − 2

𝑛 − 𝑝
 𝑟𝐶 − 1 ,

2(𝑛 − 𝑝 − 2)

(𝑝 − 𝑝1 + 2)(𝑛 − 𝑝)
 𝑟𝐶)  ,          (2.27) 

 

where the subscript Kub indicates that the estimator was derived using the improved estimator 

developed by Kubokawa et al., (1993). The 𝑟𝐶 in Equation (2.27) is obtained from Equation 

(2.23). When 𝜎2 is known, the appropriate truncated estimator is: 

 

                                                  𝑟𝐶,𝐾𝑢𝑏 = 𝑚𝑎𝑥 (𝑟𝐶 − 1,
2

𝑝 − 𝑝1 + 2
 𝑟𝐶)  ,                                  (2.28) 

 

where 𝑟𝐶 is obtained from Equation (2.24). The MSE estimate obtained from the truncated 

estimators in Equations (2.27) and (2.28) is lower than with the original 𝑟𝐶 estimators in 

Equations (2.23) and (2.24). As a result, to select the best model that gives better prediction the 

following estimate for the corrected critical ratio 𝑅𝐶𝐶 is recommended: 
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                                                                𝑟𝐶𝐶 =
𝑝 − 𝑝1
𝑛

(𝑟𝐶,𝐾𝑢𝑏 − 1)    .                                         (2.29) 

 

The candidate model with the lowest value of 𝑟𝐶𝐶 will be then the one that gives the best 

predictions in terms of MSE at the experimental points. Table 2.2 shows the algorithm to be 

implemented: 

 

Table 3.2. MSE-based algorithm to determine the optimal number of parameters to estimate 

1. Rank model parameters from most estimable to least estimable using the orthogonalization 

method in Table 2.1. 

2. Use weighted least squares (WLS) regression to estimate the first parameter from the list, 

with all other parameters fixed at initial guesses. Next, estimate the top two parameters, 

followed by the top three parameters and so on, until all of the ranked parameters have been 

estimated. Denote the value of the objective function with the top 𝑘 parameters estimated and 

the remaining 𝑝 − 𝑘 parameters held fixed as 𝐽𝑘. 

3. Compute the critical ratio: 

                                             𝑟𝐶,𝑘 = (𝐽𝑘 − 𝐽𝑝) (𝑝 − 𝑘)⁄   ,                                     (2.30) 

For 𝑘 = 1,2,… , 𝑝 − 1 

4. For each value of 𝑘, compute the corrected critical ratio: 

                                                        𝑟𝐶𝐶,𝑘 =
𝑝 − 𝑘

𝑁
(𝑟𝐶𝐾𝑢𝑏,𝑘 − 1)  ,                                    (2.31) 

where 

                                  𝑟𝐶,𝐾𝑢𝑏,𝑘 = 𝑚𝑎𝑥 (𝑟𝐶 − 1,
2

𝑝 − 𝑝1 + 2
 𝑟𝐶)  ,                     (2.32) 

5. Select the value of 𝑘 corresponding to the lowest value of 𝑟𝐶𝐶,𝑘 as the appropriate number of 

parameters to estimate. 

 

Parameters in the 𝑘𝑡ℎ SM, as highlighted in Table 2.2 (Step 2), are estimated by minimizing the 

weighted sum of squared residuals, of a weighted least squares objective function 𝐽, defined as: 

 

                                                  𝐽(𝛉) =∑∑∑ (
𝑦𝑖𝑙𝑚 − 𝑦̂𝑖𝑙𝑚(𝛉)

𝑠𝑦𝑖
)

2

  ,                                  (2.33)

𝑟

𝑚=1

𝑛

𝑙=1

𝑑

𝑖=1

 

 

where 𝑠𝑦𝑖 is the uncertainty of the 𝑖𝑡ℎ measured response variable, which was used to scale the 

sensitivity matrix in Equation (2.11). Note that on Table 2.2 (Step 4), computation of 𝑟𝐶𝐶,𝑘 is 

done with 𝑛 set to 𝑁, which is the total number of responses for all variables combined, allowing 

the method to be used for multivariate models. 

It may seem that the expression of Equation (2.30) for calculating the critical ratio 𝑟𝐶 is different 

from the one derived in Equation (2.24), but they are equivalent, considering that the 

uncertainty factor 𝑠𝑦𝑖 is a variance. This can be better seen if Equation (2.24) is rearranged: 
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                                            𝑟𝐶 =
1

(𝑝 − 𝑝1)
(
𝑆𝑆𝐸𝑆
𝜎2

−
𝑆𝑆𝐸𝐸
𝜎2

) =
(𝐽𝑝1 − 𝐽𝑝)

(𝑝 − 𝑝1)
     .                           (2.34) 

 

In cases where it is impossible to estimate all 𝑝 parameters simultaneously due to numerical 

difficulties, 𝐽𝑝 can be approximated by estimating a sufficiently large number of parameters, 

where estimation of additional parameters does not produce a noticeable reduction in the 

objective function value (McLean et al., 2012). After determining the number of parameters to 

be estimated, it is crucial to compare the model's predictions with the experimental data to 

assess potential lack of fit, which may suggest underlying structural issues with the model. 

 

2.5. Implementation of the methods 

The implementation starts by first calculating the elements of the sensitivity matrix S, which 

are partial derivatives of the model predictions with respect to the model parameters. In this 

study, elements of S are calculated numerically using finite difference approximations, such as 

forward difference approximation, as shown is Equation (2.35). 

 

                                                           
𝜕𝑦

𝜕𝜃
≈
Δ𝑦

Δ𝜃
=
𝑦(𝜃 + Δ𝜃) − 𝑦(𝜃)

Δ𝜃
     ,                                   (2.35) 

 

where the parameter perturbation Δ𝜃 is kept as low as possible, around 1 − 2% of the initial 

parameter value 𝜃. This calculation is performed for one parameter at-time, meaning that the 

perturbation is done for just one parameter, while the others are held fixed at their nominal 

values. In this way, the first perturbed parameter will then be the parameter that corresponds to 

the first column of the scaled matrix S, then when a second parameter is perturbed, model 

predictions are calculated, sensitivity coefficients (Equation 2.35) are also calculated, filling 

the second column of the matrix S, and so on for all the model parameters. 

Once the matrix S is formed, each element of S is multiplied by the scaling factors seen in 

Equation (2.11). The scaling factor that reflects the uncertainty of parameters, 𝑠𝜃𝑗0, is calculated 

in this study as the difference between the upper bound and the lower bound of parameter 

values, decided a-priori, while the scaling factor that reflects the uncertainty in the 

measurements is set to be the standard error of the measurements, 𝜎. When all elements of the 

scaled matrix S are scaled, the algorithm showed in Table 2.1 is implemented, ending up with 

a ranked list of parameters. 

Once the ranked list is obtained, the MSE-based method can be applied. In this study, synthetic 

“experimental” data is obtained by simulation with the “true” values of the parameters, assumed 

to be known a-priori, and later adding a Gaussian noise with a determined constant variance. 

Upper and lower bound of parameters are then set as the constraints for the solver of parameter 
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estimation, and the steps of Table 2.2 are followed. Finally, an optimal number of parameters 

to be selected is found, by selecting the smaller value of 𝑟𝐶𝐶,𝑘, and graphical inspection of the 

predictions with respect to the experimental data is done to verify the success of the methods. 

 

2.6. Robustness test 

One may not be confident in the values of the initial guesses of the parameters that are required 

for the application of the orthogonalization method. Different values of initial parameter 

guesses can result in different values for the scaled sensitivity coefficients in Z, and it can lead 

to a different parameter ranking and/or in different parameters selected for estimation. 

To assess the robustness of the results of the method proposed by Wu et al., (2011), and 

accordingly, the results of the orthogonalization method, a Monte Carlo technique was used. In 

particular, 100 sets of initial parameter guesses were chosen randomly from a uniform 

distribution for each of the model parameters, with lower and upper parameter bounds set to  

𝜃𝑗0 ± a pre-determined percentage of the parameter nominal value, that represents parameter 

uncertainty. 

Then, 100 ranked lists were obtained by repeating the orthogonalization method, and the 

frequency of the rank for each parameter is reported graphically.  The MSE-based method is 

then applied to the 100 ranked lists, each one representing a random set of initial parameter 

guesses, to determine the optimal number of parameters to estimate. The frequencies of the 

optimal number of parameters selected for estimation are also shown graphically.  

This type of analysis can be valuable since it verifies if the methods agree for the most part on 

which parameters and how many of them are selected for estimation, based on the degree of 

uncertainty of parameters, and it also verifies if the first initial parameter guesses given by the 

modeler results in the most frequent outcome inside the specified range of parameter 

uncertainty. A drawback of this analysis is the computational time, since the orthogonalization 

and MSE-based methods need to be repeated for 100 times. 



 



 

Chapter 3 

Application of the methodology on a 

fermentation process model 

This chapter firstly focuses on the application of the estimability method used to rank and select 

model parameters on a fermentation process model, considering different levels of 

measurement noise and uncertainty on parameter values. Then, the robustness of results is 

assessed using a Monte Carlo approach and the precision of the parameter estimates is further 

analysed. Finally, results are compared to other analysis such as LSA and GSA.   

 

3.1. Fermentation process model 

The methodology discussed in the previous chapter is applied to a biomass fermentation process 

for baker’s yeast growth.  

 

 

Assuming Monod-type kinetics for biomass growth and substrate consumption, the system is 

described by the following set of DAEs presented in Galvanin et al. (2007): 

 

Figure 3.5. Process scheme of a baker's yeast fermentation process 
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{
  
 

  
 

𝑑𝑥1
𝑑𝑡

= (𝑟 − 𝑢1 − 𝜃4)𝑥1

𝑑𝑥2
𝑑𝑡

= −
𝑟𝑥1
𝜃3

+ 𝑢1(𝑢2 − 𝑥2)

𝑟 =
𝜃1𝑥2
𝜃2 + 𝑥2

    ,                                               (3.1) 

 

where 𝑥1 is the biomass concentration [g/L], 𝑥2 is the substrate concentration [g/L], 𝑢1 is the 

dilution factor [h-1], and 𝑢2 is the substrate concentration in the feed [g/L]. Variables 𝑢1 and 𝑢2 

are manipulated variables, while 𝑥1 and 𝑥2 are measured outputs. The experimental conditions 

that characterize a particular experiment are the initial biomass concentration 𝑥1
0 (range 1 – 10 

g/L), the dilution factor 𝑢1 (range 0.05 – 0.20 h-1), and the substrate concentration in the feed 

𝑢2 (range 5 – 35 g/L). The initial substrate concentration 𝑥2
0 is set to 0 g/L and cannot be 

manipulated for experimental design purposes. Both 𝑥1 and 𝑥2 can be measured during the 

experiment, therefore 𝐱(𝑡) = 𝐲̂(𝑡). The total duration of a single experiment is set equal to 10 

h. It is assumed that the experimental run involves ten sampling times (i.e. times when the 

measured variables 𝑥1 and 𝑥2 were measured), one every hour. The true process conditions are 

presented in Table 3.1. 

 

Table 3.4. Process settings at nominal conditions 

Variable/Parameter Units Nominal value 

𝑡 ℎ 10.00 

𝑥1
0 𝑔/𝐿 5.00 

𝑥2
0 𝑔/𝐿 0.00 

𝜃1 - 0.310 

𝜃2 - 0.180 

𝜃3 - 0.550 

𝜃4 - 5.000 × 10-2 

 

It is assumed that inputs 𝐮(𝑡) can be manipulated and represented as a piecewise-constant 

profile over the switching intervals presented in Table 3.2. 

 

Table 3.5. Manipulated variables switching intervals and values 

 𝒖𝟏 [𝒉
−𝟏] 𝒖𝟐 [𝒈/𝑳] 

0 ≤ 𝑡 < 2 ℎ 0.100 20.00 

2 ≤ 𝑡 < 6 ℎ 0.200 10.00 

6 ≤ 𝑡 ≤ 10 ℎ 0.150 30.00 
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Once operating conditions are fixed, the methodology is then applied to the biomass 

fermentation process, with different levels of experimental data noise and uncertainty on the 

actual values of the parameters. 

 

3.2. Methodology results with low experimental data noise 

First, the estimability analysis is applied assuming that the available experimental data are 

affected by low level of noise. It is assumed that a single measurement sensor is present in the 

process, and that it measures both the response variables 𝑥1 and 𝑥2 with a constant variance of 

𝜎2 = 2.000×10-2. 

Therefore, the scaling coefficient that represent the uncertainty of the measures is set to be the 

standard error of the measurements, so 𝑠𝑦𝑖 = 𝜎 = 0.141 g/L. Results are then subdivided based 

on the level of uncertainty on parameter values. 

 

3.2.1. Low uncertainty on parameter values 

It is assumed that a low uncertainty on parameter values corresponds to when parameters stay 

in the range of ±30.00% of the “true” parameter values, which are already known. The scaling 

factor reflecting parameter uncertainty is calculated as: 

 

                                                                        𝑠𝜃𝑗0 = 𝑢𝑏𝜃𝑗 − 𝑙𝑏𝜃𝑗    ,                                                   (3.2) 

 

where 𝑢𝑏𝜃𝑗  and 𝑙𝑏𝜃𝑗 stand for upper bound of parameter 𝜃𝑗  and lower bound of parameter 𝜃𝑗 , 

respectively, and in the case of low uncertainty on parameter values, 𝑙𝑏𝜃𝑗 = 𝜃𝑗 − (0.300 × 𝜃𝑗) 

and 𝑢𝑏𝜃𝑗 = 𝜃𝑗 + (0.300 × 𝜃𝑗). 

The initial guess of parameter values, along with their scaling factors of uncertainty is presented 

in Table 3.3. 

 

Table 6.3. "True" parameter values, initial parameter guesses and uncertainty factors 

Parameter “True” value Initial guess Uncertainty 𝒔𝜽𝒋𝟎 

𝜃1 0.310 0.240 0.144 

𝜃2 0.180 0.220 0.132 

𝜃3 0.550 0.650 0.450 

𝜃4 5.000 × 10-2 3.900 × 10-2 2.340 × 10-2 

 

The orthogonalization method is then applied to the initial parameter guesses, following the 

procedure of Table 2.1. A ranked list of the parameters is obtained, as shown in Table 3.4. 
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Table 3.4. Ranking obtained using the orthogonalization algorithm 

Parameter Rank 

𝜃1 1 

𝜃2 3 

𝜃3 2 

𝜃4 4 

 

The MSE-based method is then applied, and as expected, estimating additional parameters 

resulted in an improved fit of the data, as shown by the trends in the objective function 𝐽 plotted 

in Figure 3.2. 

 

 

An improvement in the objective function 𝐽 is observed for up to two parameters estimated. 

When additional parameters are estimated, there is negligible improvement in the fit. The 

smallest value of 𝑟𝐶𝐶,𝑘 is when 𝑘 = 2, clearly seen in the zoomed plot of Figure 3.2. Thus, 

estimating the first two parameters from the ranked list should give the best predictions with 

the lowest MSE. That is, parameters 𝜃1 and 𝜃3 should be estimated, and the other parameters 

should remain at their initial values specified in Table 3.3. Final results of the estimability 

analysis are summarized in Table 3.5. 

Figure 3.6: Effect of the number of parameters estimated on the objective function J and 𝑟𝐶𝐶,𝑘 

values obtained using the algorithm in Table 2.2. Note the different scales used on the vertical 

axis for 𝑟𝐶𝐶,𝑘 and the presence of a zoomed plot referring to the values of 𝑟𝐶𝐶,𝑘 close to zero. Case 

of low noise and low uncertainty on parameter values. 
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Table 3.5. Estimability analysis results. Case of low experimental noise and low uncertainty on 

parameter values. 

Parameter Rank Selected 

𝜃1 1 yes 

𝜃2 3 no 

𝜃3 2 yes 

𝜃4 4 no 

 

Comparison between model predictions and experimental data, resulting from the estimation of 

the ranked list parameters is shown in Figure 3.3, along with the coefficient of determination 

R2 in Table 3.6. 

 

Table 3.6. R2 values for each model output. Case of low experimental noise and low uncertainty 

on parameter values. 

Parameters estimated 𝒙𝟏 𝒙𝟐 

1 -2.417 0.856 

2 0.978 0.998 

 

It can be seen from Figure 3.3 that the model predictions match the experimental data very well 

already when the first two ranked parameters are estimated, and that no significant 

improvements are made when more than two parameters are estimated. It can also be seen from 

Figure 7.3. Model predictions vs estimated parameters. "exp" refers to the experimental data and 

"pred" to the model predictions. 
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Table 3.6 that the R2 of the two measured variables is very close to 1 when two parameters are 

estimated, indicating that the model fits the data very well when the parameters selected by the 

method are estimated. 

  

3.2.2. High uncertainty on parameter values 

When the uncertainty on parameter values is high, it was assumed that the initial parameter 

guesses can be taken from a range of ±100.00% of the parameters “true” value. Thus, the 

scaling factor reflecting the uncertainty is calculated by Equation (3.2), with 𝑙𝑏𝜃𝑗 = 0.00 and 

𝑢𝑏𝜃𝑗 = 2.000 × 𝜃𝑗 . The initial guess of parameter values, along with their scaling factors of 

uncertainty is presented in Table 3.7. 

 

Table 3.7. "True" parameter values, initial parameter guesses and uncertainty factors. 

Parameter “True” value Initial guess Uncertainty 𝒔𝜽𝒋𝟎 

𝜃1 0.310 0.120 0.240 

𝜃2 0.180 0.320 0.640 

𝜃3 0.550 0.800 1.600 

𝜃4 5.000 × 10-2 8.000 × 10-2 0.160 

 

The results of the orthogonalization method are shown in Table 3.8. 

 

Table 3.8. Ranking obtained using the orthogonalization algorithm 

Parameter Rank 

𝜃1 1 

𝜃2 3 

𝜃3 2 

𝜃4 4 

 

The parameters ranking did not change from the one obtained with low uncertainty on 

parameter values. Trends of the objective function 𝐽 and 𝑟𝐶𝐶,𝑘 values are shown in Figure 3.4. 
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Similarly to when the uncertainty on parameter values is low, negligible improvements of the 

objective function 𝐽 are observed after estimating the first two ranked parameters. However, the 

lowest value of 𝑟𝐶𝐶,𝑘 is obtained when 𝑘 = 4, thus according to the MSE-based method, all the 

model parameters should be estimated in order to obtain the best predictions with the lowest 

MSE. Final results are summarized in Table 3.9. 

 

Table 3.9. Estimability analysis results. Case of low experimental noise and high uncertainty on 

parameter values. 

Parameter Rank Selected 

𝜃1 1 yes 

𝜃2 3 yes 

𝜃3 2 yes 

𝜃4 4 yes 

 

The model predictions with the corresponding number of estimated parameters are shown in 

Figure 3.5, and values of R2 in Table 3.10. 

 

 

Figure 3.8. Effect of the number of parameters estimated on the objective function J and 𝑟𝐶𝐶,𝑘 

values obtained using the algorithm in Table 2.2. Case of low noise and high uncertainty on 

parameter values. 
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Table 3.10. R2 values for each model output. Case of low experimental noise and high uncertainty 

on parameter values. 

Parameters estimated 𝒙𝟏 𝒙𝟐 

1 -0.766 0.910 

2 0.886 0.994 

3 0.962 0.998 

4 0.981 0.998 

 

When the uncertainty on parameter values is high, the MSE-based method tends to select all 

four parameters to be estimated, even though graphically the predictions seem to be quite good 

after estimating only the first two ranked parameters, with acceptable R2 values. The 

methodology should be repeated after each estimation as the number of model parameters to be 

estimated is strongly influenced by the initial guess values.  

 

3.3. Methodology results with high experimental data noise 

The estimability analysis is applied for a case where experimental noise is high. It was assumed 

that the sensor that measures variables 𝑥1 and 𝑥2 has a constant variance of 𝜎2 = 0.200. Thus, 

the scaling factor that reflects the uncertainty of the measures is set to be 𝑠𝑦𝑖 = 𝜎 = 0.447 g/L. 

 

 

Figure 3.9. Model predictions vs estimated parameters. Case of low noise and high parameter uncertainty. 



Application of the methodology on a fermentation process model 45 

 

 

3.3.1. Low uncertainty on parameter values 

The same values of 𝑠𝜃𝑗0 used in the previous case (§3.2.1) are also adopted in the case of high 

experimental noise, along with the initial parameter guesses, thus Table 3.3 serve as a reference 

for the case of high experimental noise too. 

Results of the orthogonalization method are shown in the following ranked list: 

 

Table 3.11. Ranking obtained using the orthogonalization algorithm 

Parameter Rank 

𝜃1 1 

𝜃2 3 

𝜃3 2 

𝜃4 4 

 

 Trends of the objective function 𝐽 and 𝑟𝐶𝐶,𝑘 values are shown in Figure 3.6. 

 

The trend in the objective function 𝐽 shows that there is no significant improvement in the fit 

of experimental data when more than two parameters are estimated. Moreover, the lowest value 

of 𝑟𝐶𝐶,𝑘 is when 𝑘 = 2, so when the top two ranked parameters are estimated, while the others 

Figure 3.10. Effect of the number of parameters estimated on the objective function J and 

𝑟𝐶𝐶,𝑘 values obtained using the algorithm in Table 2.2. Case of high noise and low 

uncertainty on parameter values. 
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are fixed at their initial guess, the model will give the best predictions in terms of MSE. The 

estimability results are summarized in Table 3.12, along with the model predictions in Figure 

3.7 and R2 values in Table 3.13. 

 

Table 3.12. Estimability analysis results. Case of high experimental noise and low uncertainty on 

parameter values. 

Parameter Rank Selected 

𝜃1 1 yes 

𝜃2 3 no 

𝜃3 2 yes 

𝜃4 4 no 

  

 

Table 3.13. R2 values for each model output. Case of high experimental noise and low uncertainty 

on parameter values. 

Parameters estimated 𝒙𝟏 𝒙𝟐 

1 -1.176 0.831 

2 0.670 0.952 

 

Graphically, model predictions seem to not change significantly after estimating the first two 

ranked parameters, which is confirmed by checking the R2 values, since they do not change 

significantly when two or more parameters are estimated. While the R2 value regarding the 

Figure 3.11. Model predictions vs estimated parameters. Case of high noise and low uncertainty on 

parameter values. 
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model output 𝑥2 is very high, the R2 value of 𝑥1 is not very high even when all parameters are 

estimated, indicating that the model are not very accurate for the measured variable 𝑥1, but still 

acceptable. 

 

3.3.2. High uncertainty on parameter values 

The same values of 𝑠𝜃𝑗0 used in the previous case of low experimental noise (§3.2.2) are also 

adopted in the case of high experimental noise, along with the initial guesses of the parameters, 

referred in Table 3.7. 

The ranking obtained from the orthogonalization method is showed in Table 3.14. 

 

Table 3.14. Ranking obtained using the orthogonalization algorithm. 

Parameter Rank 

𝜃1 1 

𝜃2 3 

𝜃3 2 

𝜃4 4 

 

And trends of the objective function 𝐽 and 𝑟𝐶𝐶,𝑘 values are shown in Figure 3.8. 

 

Figure 3.12. Effect of the number of parameters estimated on the objective function J and 

𝑟𝐶𝐶,𝑘 values obtained using the algorithm in Table 2.2. Case of high noise and high 

uncertainty on parameter values. 
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Like the other cases, the trend on the objective function 𝐽 tends to stabilize when more than two 

parameters are estimated, and the lowest value of 𝑟𝐶𝐶,𝑘 is when 𝑘 = 2. The estimability results 

are summarized in Table 3.15, along with the model predictions in Figure 3.9 and R2 values in 

Table 3.16. 

 

Table 3.15. Estimability analysis results. Case of high experimental noise and high uncertainty on 

parameter values. 

Parameter Rank Selected 

𝜃1 1 yes 

𝜃2 3 no 

𝜃3 2 yes 

𝜃4 4 no 

 

  

Table 3.16. R2 values for each model output. Case of high experimental noise and high 

uncertainty on parameter values. 

Parameters estimated 𝒙𝟏 𝒙𝟐 

1 -0.238 0.877 

2 0.627 0.946 

 

where model predictions seem to not change significantly when more than two parameters are 

estimated, confirmed by the R2 values. 

Figure 3.13. Model predictions vs estimated parameters. Case of high noise and high uncertainty on 

parameter values. 
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3.4. Discussion 

The methodology proposed by Wu et al., (2011) was successfully applied to a biomass 

fermentation process, where different levels of experimental data noise and uncertainty on the 

actual values of the parameters were analysed. Table 3.17 summarizes the results obtained. 

 

Table 3.17. Estimability analysis results for all cases 

Parameter Low noise High noise 

 
Low uncertainty on 

parameter values 

High uncertainty 

on parameter 

values 

Low uncertainty on 

parameter values 

High uncertainty on 

parameter values 

 Rank Selected Rank Selected Rank Selected Rank Selected 

𝜃1 1 yes 1 yes 1 yes 1 yes 

𝜃2 3 no 3 yes 3 no 3 no 

𝜃3 2 yes 2 yes 2 yes 2 yes 

𝜃4 4 no 4 yes 4 no 4 no 

 

Results show that the parameters ranking did not change for all the cases analysed, thus 

solidifying that the parameters ranking of importance is well determined. In the case of high 

noise in the experimental data, the MSE-based method tends to select two parameters for 

estimation. Trends of the objective function 𝐽 for the case of high noise tend to stabilize at 

higher values than the cases of low noise, indicating than the data fit is worse when the noise 

in the experimental data is higher. Values of 𝑟𝐶𝐶,𝑘 on the other hand, for the cases of high 

experimental noise, tend to assume lower values when only one parameter is selected for 

parameter estimation, compared to the cases of low noise, indicating that the MSE-based 

method tends to prefer the estimation of less parameters when the experimental data noise is 

higher. 

When the experimental data noise is low, the MSE-based method tends to select all the model 

parameters to estimate when the uncertainty on parameter values is high, indicating that the 

method tends to select more parameters for estimation from the ranked list when the 

experimental noise is low. Meanwhile, when the noise and the uncertainty on parameter values 

is low, the method tends to select the first two ranked parameters, therefore uncertainty on 

parameter values seems to have an important impact on the number of selected parameters, 

since when the modeller is very certain in the precision of the initial guess of the parameters, 

the method then tends to select less parameters for estimation. 
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3.5. Assessment of the methodology robustness 

As presented in §2.6, a Monte Carlo technique is used to assess the robustness of the 

estimability analysis proposed by Wu et al., (2011). A number of 100 different initial guesses 

of the parameters from a random distribution inside a pre-defined range is considered, which is 

given by the initial uncertainty on parameter values that was assumed. Therefore, in cases where 

the uncertainty is high, the different sets of model parameters are taken from the interval of 

±100.00% of the “true” parameter values, while if the uncertainty is low, parameter sets are 

taken from the interval of ±30.00% of the “true” parameter values. 

 

3.5.1. Results with low experimental data noise 

The frequency of the parameters ranking for the different levels of uncertainty on parameter 

values is assessed and shown in Figure 3.10. 

 

 

when the uncertainty on parameter values is low, the orthogonalization method agrees with a 

very high frequency on the position of the parameters in the ranked list (see Figure 3.10a). 

Conversely, when the uncertainty on parameters is high, the parameters ranking, depending on 

the initial guesses, is not very established (see Figure 3.10b). The robustness test highlights that 

parameters 𝜃1 and 𝜃3 are the most influential for the model predictions, staying most of the 

time in the first two positions, while parameters 𝜃2 and 𝜃4 are the less influential. Either way, 

for both cases the parameters ranking tends to agree to the one assessed in §3.2. 

The frequency of the number of parameters selected for estimation is shown in Figure 3.11. 

(a) (b) 

Figure 3.10. Frequency of parameter rankings obtained using the algorithm in Table 2.1 with 100 

random initial parameter guesses. Case of low uncertainty (a), and high uncertainty (b) on the parameter 

values. 
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when the uncertainty on parameter values is low, the method selects the two top ranked 

parameters as the optimal number of parameters selected for estimation for roughly 70% of 

initial parameter guesses, while when the uncertainty on parameter values is high, for roughly 

65% of the initial parameters guesses, the method selects four parameters to be estimated, 

confirming that what was found as a result in §3.2 is the most common outcome. 

 

3.5.2. Results with high experimental data noise 

The frequency of parameter rankings for both cases of low and high parameter uncertainty is 

shown in Figure 3.12. 

(a) (b) 

Figure 3.11. Frequency of the number of parameters selected obtained using the algorithm in Table 

2.2 with 100 random initial parameter guesses. Case of low uncertainty (a) and high uncertainty (b) on 

the parameter values. 

(a) (b) 

Figure 3.12. Frequency of parameters rankings obtained using the algorithm in Table 2.1 with 100 random 

initial parameter guesses. Case of low uncertainty (a), and high uncertainty (b) on parameter values. 
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As the case of low experimental noise, when the uncertainty on parameter values is low, all the 

parameters retain their original ranks almost 90% of the time, and when the uncertainty on 

parameter values is high, the ranks of the parameters are more variable, but for most of the time 

(almost 70% of the time), all the parameters retain their original ranks, as encountered in §3.3. 

The frequency of the number of parameters selected for estimation is shown in Figure 3.13. 

 

In both cases the method selects most of the time two parameters as the optimal number of 

parameters to estimate, agreeing to the results obtained in §3.3. 

 

3.5.3. Comments on results 

The results of the robustness test indicate that the parameter rankings remain relatively stable 

across varying levels of experimental noise. However, the rankings are more significantly 

affected by changes in the levels of uncertainty associated with the parameter values. In 

particular, when the uncertainty on parameter values is low, the method tends to select most of 

the time the same rank for the parameters, while when the uncertainty on parameter values is 

high, the parameters ranking tend to vary more, even though it is clear that parameters 𝜃1 and 

𝜃3 are the most influential, occupying almost every time the first two positions, while 

parameters 𝜃2 and 𝜃4 are the less important ones, almost always staying in the last two positions. 

Moreover, the test shows that when the uncertainty on parameter values is low, the MSE-based 

method tends to select less parameters for estimation (in this model of interest, the first two 

parameters) regardless of the experimental noise, while if the uncertainty on parameter values 

(a) (b) 

Figure 3.13. Frequency of the number of parameters selected obtained using the algorithm in Table 2.2 

with 100 random initial parameter guesses. Case of low uncertainty (a) and high uncertainty (b) on 

parameter values. 
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is high, the method tends to select more parameters when the experimental noise is low (all the 

parameters) and less parameters when the experimental noise is high (the first two parameters). 

These results suggest that when values of parameter guesses are not close to the “true” values, 

the method tends to select more parameters to be estimated; in other words, the number of 

model parameters to be estimated depends on the initial values of parameter guesses. 

 

3.6. Parameter precision 

Results of the estimability analysis were analysed for sets of parameters that present an unusual 

ranking, with the scope of verifying if the parameter estimates obtained are statistically reliable, 

and therefore precise. If parameter estimates are not reliable, a second iteration of the 

methodology is applied using as initial guesses the parameter estimates obtained in the first 

iteration, and the precision of the second parameter estimates is assessed. If the estimates are 

still not precise, an MBDoE is then performed in order to improve the precision of the parameter 

estimates. 

Parameter sets are taken from the robustness test when the experimental noise and the 

uncertainty on parameter values is high. The first parameter set is showed in Table 3.18, along 

with the results of the estimability analysis. 

 

Table 3.18. Estimability analysis results of the first anomalous parameter set. 

Parameter Initial guess Rank Selected 

𝜃1 0.431 2 yes 

𝜃2 0.114 3 no 

𝜃3 0.641 1 yes 

𝜃4 5.400×10-3 4 no 

 

It can be seen an inversion on the parameter rankings between parameter 𝜃1 and 𝜃3, where 

usually parameter 𝜃1 retains the first position, but in this case, it assumes the second position 

of the ranking. Model predictions and R2 values for different subsets of parameters to estimate 

are shown in Figure 3.14 and Table 3.19. 
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Table 3.19. R2 values for each model output. 

Parameters estimated 𝒙𝟏 𝒙𝟐 

1 0.459 -0.684 

2 0.648 0.945 

 

Considering what the MSE-based method suggests, only the first two parameters from the 

ranked list should be estimated. R2 values also stabilize after estimating two parameters. Table 

3.20 shows the parameter estimates of the first two ranked parameters, along with their 

corresponding t-values. 

 

Table 3.20. Estimation of model parameters chosen by the MSE-based method. 

Parameter Initial guess Estimate 𝟗𝟓% CI 𝟗𝟓% t-value 

𝜃1 0.431 0.240 7.800×10-3 30.72 

𝜃3 0.641 0.455 2.840×10-2 16.03 

    𝑡𝑟𝑒𝑓 = 1.724 

 

As shown in Table 3.20, the parameter estimates t-values are higher than the reference one, 

indicating that the parameters are estimated with sufficient precision. 

Another parameter set that has an anomalous ranking is the one presented in Table 3.21. 

 

 

Figure 3.14. Model predictions vs estimated parameters. 
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Table 3.21. Estimability analysis results of the second anomalous parameter set. 

Parameter Initial guess Rank Selected 

𝜃1 2.080×10-2 2 yes 

𝜃2 0.232 4 no 

𝜃3 1.087 3 yes 

𝜃4 3.310×10-2 1 yes 

 

where parameter 𝜃4, which is frequently encountered in the last position, is now in the first 

position in the ranking, and consequently, the other parameters are also in unusual positions. 

Model predictions and R2 values are shown in Figure 3.15 and Table 3.22. 

Table 3.22. R2 values for each model output. 

Parameters estimated 𝒙𝟏 𝒙𝟐 

1 -18.23 -13.90 

2 -2.820 0.537 

3 0.670 0.953 

 

According to the results of the MSE-based method, only the first three ranked parameters 

should be estimated. Their estimates, along with the corresponding t-values are shown in Table 

3.23. 

 

 

 

Figure 3.15. Model predictions vs estimated parameters. 
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Table 3.23. Estimation of model parameters chosen by the MSE-based method. 

Parameter Initial guess Estimate 𝟗𝟓% CI 𝟗𝟓% t-value 

𝜃1 2.080×10-2 0.278 0.180 1.540 

𝜃3 1.087 0.497 0.326 1.520 

𝜃4 3.310×10-2 2.120×10-2 0.133 0.159 

    𝑡𝑟𝑒𝑓 = 1.729 

 

All the parameters t-value are lower than the reference one, indicating that the parameter 

estimates are not precise enough. At this point. One could either apply the MSE-based method 

again, with the parameter estimates obtained in the first iteration as initial guesses, and check 

if the new parameter estimates obtained are precise, or one could simply perform a MBDoE on 

the MSE-based method results of the first iteration, with the scope of improve the parameter 

estimates precision by designing a new informative experiment. 

Table 3.24. shows the results of the MSE-based method when the parameter estimates obtained 

in the initial results (see Table 3.23) are used as initial guesses for a second iteration of the 

method. Note that parameter 𝜃2 was not selected for estimation previously, so its initial guess 

is kept at the one used in the first iteration. 

 

Table 3.24. Estimability results of the second iteration. 

Parameter Initial guess Rank Selected 

𝜃1 0.278 1 yes 

𝜃2 0.232 3 no 

𝜃3 0.497 2 no 

𝜃4 2.120×10-2 4 no 

 

Using as initial guesses the parameter estimates obtained using the MSE-based method, in the 

second iteration of the method the parameter rankings changed, where the parameters retain 

their most common position, as seen in the Monte Carlo results. This time, however, the method 

selected only the first parameter for estimation, while keeping the others fixed. The model 

predictions with this set of initial guesses are shown in Figure 3.16 along with the R2 values in 

Table 3.25. 
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Table 3.25. R2 values for each model output. 

Parameters estimated 𝒙𝟏 𝒙𝟐 

1 0.670 0.953 

 

While the estimated value of the first ranked parameter, which is the only one selected by the 

method for estimation, and its t-value is showed in Table 3.26. The R2 value did not change 

when estimating more than one parameter. 

 

Table 3.26. Estimation of model parameters chosen by the MSE-based method. Second iteration. 

Parameter Initial guess Estimate 𝟗𝟓% CI 𝟗𝟓% t-value 

𝜃1 0.278 0.282 5.800×10-3 48.83 

    𝑡𝑟𝑒𝑓 = 1.720 

 

where parameter 𝜃1 has now a t-value larger than the reference one, indicating that the 

parameter estimate is precise enough in this second iteration. 

Instead of repeating the MSE-based method with the parameter estimates found in Table 3.23 

as initial guesses, one could use a MBDoE with the aim of improving the precision of the 

parameter estimates, by designing a new and more informative experiment. The values of the 

manipulate variables suggested by a MBDoE are shown in Table 3.27. 

 

 

Figure 3.16. Model predictions vs estimated parameters. Second iteration. 
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Table 3.27. MBDoE results. 

 𝒖𝟏 [𝒉
−𝟏] 𝒖𝟐 [𝒈/𝑳] 

0 ≤ 𝑡 < 2 ℎ 0.179 33.26 

2 ≤ 𝑡 < 6 ℎ 0.140 25.01 

6 ≤ 𝑡 ≤ 10 ℎ 5.000×10-2 27.87 

 

Adding the new experiment in the parameter estimation task, and using the parameter estimates 

obtained in Table 3.23 as initial guesses, results in the following estimates: 

 

Table 3.28. Estimation of model parameters after MBDoE 

Parameter Initial guess Estimate 𝟗𝟓% CI 𝟗𝟓% t-value 

𝜃1 0.278 0.309 5.400×10-2 5.700 

𝜃3 0.497 0.541 0.108 4.980 

𝜃4 2.120×10-2 4.480×10-2 2.300×10-2 1.940 

    𝑡𝑟𝑒𝑓 = 1.682 

 

where after a new informative experiment the parameters are estimated with enough precision, 

since all the parameters t-value are higher than the reference one. 

 

3.7. Comparison with other estimability methods 

Results of the estimability analysis obtained in §3.2 and §3.3 are compared to two 

methodologies used to assess the estimability of model parameters, which are the LSA and 

GSA, already mentioned in §2.1.3. 

 

3.7.1. Local sensitivity analysis 

The LSA is based on the computation of sensitivity coefficients 𝑆𝑖𝑗, which are partial 

derivatives of the model predictions with respect to the model parameters. Sensitivity 

coefficients are calculated as follows: 

 

                                                               𝑆𝑖𝑗(𝑡𝑘) =
𝜕𝑦𝑖(𝑡𝑘)

𝜕𝜃𝑗
 
𝑠𝜃𝑗0

𝑠𝑦𝑖
      ,                                               (3.3) 
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where the scaling factors 𝑠𝜃𝑗0 and 𝑠𝑦𝑖 are needed so that the sensitivity coefficients are 

dimensionally consistent and comparable to each other. The LSA is performed when the 

uncertainty in the measures is high, and it is evaluated for both levels of uncertainty on 

parameter values used in the previous cases. Values of scaling factors and initial guesses are 

taken from §3.3. Figures 3.17 and 3.18 show the trend of the sensitivity coefficients with respect 

to time, for both levels of the uncertainty on parameter values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. LSA for the case of low uncertainty on parameter values. 
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As seen in Figures 3.17 and 3.18, the model outputs 𝑥1 and 𝑥2 seem to be more sensible to 

perturbations of parameter 𝜃1, followed by parameter 𝜃3, which seems to be more important 

for output 𝑥2. Parameter 𝜃4 seem to be influential for the output 𝑥1 in the case of high parameter 

uncertainty, while parameter 𝜃2 seems to have little influence on the model outputs, having its 

values of sensitivity coefficients always close to zero. 

From the LSA it can be extracted that parameter 𝜃1 is the most influential for the model outputs, 

while parameter 𝜃2 is the less influential, and can potentially be not estimable. The other 

remaining parameters exhibit some influence on model outputs, but no strong conclusions can 

be drawn. The LSA results on parameter 𝜃1 agree with the results of the orthogonalization 

method, since most of the time it selects 𝜃1 as the most estimable parameter, placing it in the 

top of the ranked list, while LSA results about 𝜃2 are somewhat compatible with the results of 

the MSE-based method since most of the time it does not select 𝜃2 to be estimated. 

It is important to note that LSA depends on the initial guesses of model parameters, and that 

results are only valid close to the neighbourhood of the initial guesses, so no general conclusions 

can be drawn.  

 

3.7.2. Global sensitivity analysis 

The GSA is performed on the model of interest, and similarly to the LSA, it is performed for 

cases of low and high uncertainty on parameter values. The total effect indices 𝑆𝑇,𝑖 are 

computed for every model parameter, every hour of the duration of the experiment. The results 

are shown in Figures 3.19 and 3.20. 

Figure 3.18. LSA for the case of high uncertainty on parameter values. 
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Recall that 𝑆𝑇,𝑖 = 0 is a necessary and sufficient condition for an input factor (in this case, a 

parameter) to be non-influential (Saltelli, 2002). Therefore, parameters that exhibit this 

condition can be let free to vary over their range of uncertainty, without having significant 

contribution to the variance of the output. 

GSA results show that for both cases of uncertainty, parameters 𝜃1 and 𝜃3 present high values 

of 𝑆𝑇,𝑖, determining that these parameters are influential on the model outputs, and should be 

Figure 3.19. Trend of the total effect index of model parameters. Case of low uncertainty on 

parameter values. 

Figure 3.20. Trend of the total effect index of model parameters. Case of high uncertainty on 

parameter values. 
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preferably considered for the estimation task. Parameter 𝜃3, in particularly, seems to be more 

influential on the output 𝑥1 and less influential on 𝑥2. Parameters 𝜃2 and 𝜃4, instead, assume 

very low values of 𝑆𝑇,𝑖 along the entire experiment, suggesting that their influence on the model 

output is not significant, and that they can potentially be fixed over their entire range of 

uncertainty, since estimability problems could arise, simplifying then the model and the 

parameter estimation task. 

Overall, GSA results are in alignment with the orthogonalization and MSE-based method, since 

parameters 𝜃1 and 𝜃3 were selected most of the time by the orthogonalization method as the 

most influential parameters, and also selected by the MSE-based method to be estimated, while 

𝜃2 and 𝜃4 were selected as the less influential ones and most of the time were excluded from 

the estimation task. 

On the other hand, GSA does not consider the experimental data noise and does not give clear 

conditions to which parameters should be estimated. 

 

3.7.3. Discussion 

LSA-based ranking method is easy to implement, but cannot be recommended (i) when the 

relationship between model parameters and model predictions is highly nonlinear, (ii) when 

high uncertainty on parameter estimates is present, and (iii) when high parameters correlation 

is present. Moreover, LSA results only apply locally, i.e. near to the point in the parameter 

space at which the analysis is performed, so it is recommended when one has high certainty in 

the nominal parameter values. GSA on the other hand, has the advantage of taking into account 

the whole domain within the parameter space defined by the modeller, not depending on a 

specific choice of parameter values, therefore taking into account the parameter uncertainty. 

Moreover, GSA can also detect interactions between parameters. The main drawback of the 

GSA-based method – in particular, the variance-based Sobol’s GSA – is the high computational 

burden, making its implementation almost impossible to computationally expensive models. 

Either way, both methods give as a result a ranking of parameter influence on the model outputs, 

which in the case study presented, agree with each other, but lack of an objective result 

regarding on which parameters select for estimation, and which ones to fix at their nominal 

value. More specifically, GSA proposes a condition to fix parameter values when 𝑆𝑇,𝑖 = 0, but 

there is no clear condition when values of 𝑆𝑇,𝑖 are for example slightly higher than zero. 

Moreover, both methods agree that parameters 𝜃1 and 𝜃3 are the most influential, which is also 

in line with the estimability method proposed by Wu et al., (2011). 

Not only the estimability method proposed by Wu et al., (2011) has the capability of ranking 

model parameters as LSA and GSA, but also on pinpoints which parameter(s) one should select 

to be estimated, based on a mean-squared-error approach. Another advantage of the method is 

that it takes into account the available experimental data noise. Limitations of the method 
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proposed by Wu et al., (2011) are its dependence on initial parameter values (which is why a 

robustness test is recommended) and that the method considers the MSE for predictions at the 

experimental data for parameter estimation. Often, the modeler is not particularly interested in 

making predictions at the points where data is already available, but instead, accurate 

predictions may be desired at different sets of operating conditions where the model will be 

used (McLean and McAuley, 2012). 



 



 

Chapter 4 

Second case study: production of urethane 

In this chapter, a more complex model is considered as a second instance to demonstrate the 

effectiveness of the estimability method proposed by Wu et al., (2011), considering different 

levels of measurement noise and uncertainty on parameter values. Then, the robustness of 

results is assessed. 

 

4.1. Urethane production model 

The kinetic model discussed by Galvanin et al., (2009) is considered as case study. The model 

describes the reaction of urethane in a simultaneous and consecutive set of reactions with 

chemical equilibrium: 

 

𝐴 + 𝐵 → 𝐶 

𝐴 + 𝐶 ⇄ 𝐷 

                                                                           3𝐴 → 𝐸         ,                                                              (4.1) 

 

where A is phenylisocyanate, B is butanol, C is urethane, D is allophanate, and E is 

isocyanurate. Dimethylsulfoxide (S) is used as solvent. The experiments for these reactions are 

carried out in a semibatch reactor with two feed vessels v1 and v2, one for phenylisocyanate 

(and the solvent) and one for butanol (and the solvent). At the beginning, the reactor contains 

the solvent, phenylisocyanate and butanol. It is assumed that the reactor temperature T can be 

manipulated directly. 

The model is represented by the following set of DAEs: 

 

                                                 

{
 
 
 
 

 
 
 
 

𝑑𝑛𝐶
𝑑𝑡

= 𝑉(𝑟1 − 𝑟2 + 𝑟3)

𝑑𝑛𝐷
𝑑𝑡

= 𝑉(𝑟2 − 𝑟3)

𝑑𝑛𝐸
𝑑𝑡

= 𝑉𝑟4

𝑛𝐴 + 𝑛𝐶 + 2𝑛𝐷 + 3𝑛𝐸 − 𝑛𝐴
0 − 𝑓𝑣1𝑛𝐴

𝑣1 = 0

𝑛𝐵 + 𝑛𝐶 + 𝑛𝐷 − 𝑛𝐵
0 − 𝑓𝑣2𝑛𝐵

𝑣2 = 0

𝑛𝑆 − 𝑛𝑆
0 − 𝑓𝑣1𝑛𝑆

𝑣1 − 𝑓𝑣2𝑛𝑆
𝑣2 = 0

           ,                 (4.2) 

 

with initial conditions for the three differential variables set to 
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                                                                 𝑛𝐶(0) = 𝑛𝐷(0) = 𝑛𝐸(0) = 0          ,                              (4.3) 
 

where the molar numbers 𝑛𝑖 for species i are the state variables of the nonlinear DAE system. 

The following correlations also need to be considered: 

 

                                         

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑉 =∑

𝑛𝑖𝑀𝑖

𝜌𝑖

6

𝑖=1

𝑟1 = 𝑘1
𝑛𝐴
𝑉

𝑛𝐵
𝑉
= 𝑘1𝑐𝐴𝑐𝐵

𝑟2 = 𝑘2𝑐𝐴𝑐𝐶
𝑟3 = 𝑘3𝑐𝐷
𝑟4 = 𝑘4𝑐𝐴

2

𝑘𝑖 = 𝑘𝑟𝑒𝑓,𝑖 𝑒𝑥𝑝 (−
𝐸𝑎,𝑖
𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓,𝑖
)) , 𝑖 = 1,2,4

𝑘3 =
𝑘2
𝑘𝐶

𝑘𝐶 = 𝑘𝑐2 𝑒𝑥𝑝 (−
Δℎ

𝑅
(
1

𝑇
−

1

𝑇𝑔2
))

         .              (4.4) 

 

In this model, eight parameters need to be estimated: the steric factors 𝑘𝑟𝑒𝑓,𝑖 (𝑖 = 1,2,4), the 

activation energies 𝐸𝑎,𝑖 (𝑖 = 1,2,4), the equilibrium constant 𝑘𝑐2, and the reaction enthalpy Δℎ 

of the reversible reaction. The reaction rates 𝑟𝑖 are expressed in [mol/(L ∙ h)] and the volume 𝑉 

in [L]. Molar masses 𝑀𝑖 [kg/mol], densities 𝜌𝑖 [kg/m3], reference temperatures 𝑇𝑟𝑒𝑓,1, 𝑇𝑟𝑒𝑓,2, 

𝑇𝑟𝑒𝑓,4, 𝑇𝑔2 [K], and the gas constant R  [J/(mol ∙ K)] are set as constant, as shown in Table 4.1. 

Values of the constants are taken from Bauer et al., (2000). 

 

Table 4.7. Constants in the model for the reaction of urethane. 

Molar masses [kg/mol] Densities [kg/m3] Reference temperatures [K] 

𝑀𝐴 = 0.119 𝜌𝐴 = 1.095 × 103 𝑇𝑟𝑒𝑓,1 = 363.16 

𝑀𝐵 = 7.412 × 10-2 𝜌𝐵 = 809.00 𝑇𝑟𝑒𝑓,2 = 363.16 

𝑀𝐶 = 0.193 𝜌𝐶 = 1.415 × 103 𝑇𝑟𝑒𝑓,4 = 363.16 

𝑀𝐷 = 0.312 𝜌𝐷 = 1.528 × 103 𝑇𝑔2 = 363.16 

𝑀𝐸 = 0.357 𝜌𝐸 = 1.451 × 103 Gas constant [J/(mol∙K)] 

𝑀𝑆 = 7.806 × 10-2 𝜌𝑆 = 1.101 × 103 𝑅 = 8.314 

 

Feeds 𝑓𝑣1 and 𝑓𝑣2 are the “accumulated” feeds from the two feed vessels. They can vary from 

zero up to the initial molar hold-ups of the vessels, described by 𝑛𝐴
𝑣1, 𝑛𝐵

𝑣2, 𝑛𝑆
𝑣1, and 𝑛𝑆

𝑣2, i.e., the 

initial molar numbers of phenylisocyanate, butanol, and solvent within the two feed vessels. 
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Feeds 𝑓𝑣1 and 𝑓𝑣2 and temperature T are the experiment design variables. It is assumed that 

the temperature profile T is discretized as a piecewise linear function within the range of 300 – 

473 K, and that the total duration of the experiment is 90 h. Figure 4.1 shows how the 

temperature profile was manipulated in this study. 

 

The measured variables are the molar concentrations [mol/L] of urethane (𝑐𝐶), of allophanate 

(𝑐𝐷), and of isocyanurate (𝑐𝐸). During a single experiment, samples are taken every hour, for 

the total duration of the experiment. The experiment conditions are reported in Table 4.2. 

 

Table 4.8. Process settings at nominal conditions. 

Variable Units Nominal value 

𝑡 h 90.00 

𝑛𝐴(0) mol 1.000×103 

𝑛𝐵(0) mol 50.00 

𝑛𝑆(0) mol 10.00 

𝑛𝐴
𝑣1 mol 0.00 

𝑛𝐵
𝑣2 mol 0.00 

𝑛𝑆
𝑣1 mol 0.00 

𝑛𝑆
𝑣2 mol 0.00 

 

The MSE-based method proposed by Wu et al., (2011) combined with the orthogonalization 

method is then applied to the process of urethane, and like the case of the fermentation process 

Figure 4.1. Temperature profile. 
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seen in Chapter 3, different levels of measurement noise and uncertainty on parameter values 

are considered. 

 

4.2. Methodology results with low experimental data noise 

A single measurement sensor is present in the process, which in the case of low experimental 

data noise, it is assumed that the sensor measures the measured variables 𝑐𝐶, 𝑐𝐷, and 𝑐𝐸 with a 

constant standard error of 𝜎 = 4.000×10-3 mol/L. Therefore, the scaling factor that represent 

the uncertainty of the measures is set as 𝑠𝑦𝑖 = 𝜎 = 4.000×10-3 mol/L. As in chapter 3, the 

methodology is assessed for cases of low and high uncertainty on parameter values. 

 

4.2.1. Low uncertainty on parameter values 

The scaling factor that reflects the uncertainty on parameter values is calculated as Equation 

(3.2), but differently from the fermentation process, low uncertainty corresponds to a range of 

±20% of the “true” parameter values, thus 𝑙𝑏𝜃𝑗 = 𝜃𝑗 − (0.200 × 𝜃𝑗) and 𝑢𝑏𝜃𝑗 = 𝜃𝑗 + (0.200 

× 𝜃𝑗)  are set as lower and upper values of the uncertainty range. Parameter initial guesses, 

along with the parameter “true” values and uncertainty factors are presented in Table 4.3. 

 

Table 4.9. "True" parameter values, initial parameter guesses and uncertainty factors. 

Parameter “True” value Initial guess Uncertainty 𝒔𝜽𝒋𝟎 

𝑘𝑟𝑒𝑓,1 [L/mol ∙ h] 1.250 × 10-3 1.100 × 10-3 4.400 × 10-4 

𝑘𝑟𝑒𝑓,2 [L/mol ∙ h] 7.290 × 10-6 8.700 × 10-6 3.480 × 10-6 

𝑘𝑟𝑒𝑓,4 [L/mol ∙ h] 8.800 × 10-7 1.000 × 10-6 4.000 × 10-7 

𝐸𝑎,1 [J/mol] 2.944 × 104 2.500 × 104 1.000 × 104 

𝐸𝑎,2 [J/mol] 7.101 × 104 6.000 × 104 2.400 × 104 

𝐸𝑎,4 [J/mol] 2.302 × 104 1.900 × 104 7.600 × 103 

𝑘𝑐2 [L/mol] 0.217 0.180 7.200 × 10-2 

Δℎ [J/mol] -1.830 × 104 -2.000 × 104 8.000 × 103 

 

The results of the methodology are shown in Table 4.4, along with the trends of the objective 

function 𝐽 and corrected critical ratio 𝑟𝐶𝐶,𝑘, shown in Figure 4.2. 
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Table 4.10. Estimability analysis results. Case of low experimental noise and low uncertainty on parameter 

values. 

Parameter Rank Selected 

𝑘𝑟𝑒𝑓,1 3 yes 

𝑘𝑟𝑒𝑓,2  5 yes 

𝑘𝑟𝑒𝑓,4  4 yes 

𝐸𝑎,1  1 yes 

𝐸𝑎,2  2 yes 

𝐸𝑎,4  8 no 

𝑘𝑐2  7 no 

Δℎ  6 yes 

 

where the first six top ranked parameters are selected to be estimated. Moreover, the objective 

function value does not improve significantly when more than two parameters are estimated. 

Model predictions for every subset of estimated parameters compared to the experimental data 

are presented in Figure 4.3, while the R2 values, which assess the goodness of the data fit, are 

shown in Table 4.5. Note that all estimated model parameters are statistically satisfactory (t-

values higher than the reference), as reported in Table 4.6. 

Figure 4.2. Effect of the number of parameters estimated on the objective function J and 𝑟𝐶𝐶,𝑘 values 

obtained using the algorithm in Table 2.2. Case of low noise and low uncertainty on parameter values. 
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Table 4.5. R2 values for each model output. Case of low experimental noise and low uncertainty 

on parameter values. 

Parameters estimated 𝒄𝑪 𝒄𝑫 𝒄𝑬 

1 0.988 0.761 0.710 

2 0.998 0.977 0.710 

3 0.999 0.977 0.710 

4 0.999 0.978 0.710 

5 0.999 0.981 0.710 

6 0.999 0.984 0.710 

 

Table 4.6. Precision of parameter estimates of the estimability analysis. Case of low experimental 

noise and low uncertainty on parameter values. 

Parameter “True” value Initial guess Estimate 95% t-value 

𝑘𝑟𝑒𝑓,1 1.250 × 10-3 1.100 × 10-3 1.200 × 10-3 7.619 

𝑘𝑟𝑒𝑓,2  7.290 × 10-6 8.700 × 10-6 6.956 × 10-6 62.94 

𝑘𝑟𝑒𝑓,4  8.800 × 10-7 1.000 × 10-6 9.994 × 10-7 5.533 

𝐸𝑎,1  2.944 × 104 2.500 × 104 2.970 × 104 11.08 

𝐸𝑎,2  7.101 × 104 6.000 × 104 7.182 × 104 105.81 

Δℎ  -1.830 × 104 -2.000 × 104 -1.600 × 104 17.00 

    𝑡𝑟𝑒𝑓 = 1.650 

 

Figure 4.3. Model predictions of every subset of estimated parameters vs experimental data. Case of low 

noise and low uncertainty on parameter values. 
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Model predictions seem satisfactory even for a small number of parameters selected for 

estimation, in fact, R2 values do not change significantly when two or more parameters are 

estimated. However, the MSE-based method still selected the top six parameters to be 

estimated. 

 

4.2.2. High uncertainty on parameter values 

It is assumed that when the uncertainty on parameter values is high, the parameters can range 

from ±50% of the parameters “true” value. Therefore, scaling factors that reflect the uncertainty 

are calculated with lower and upper values 𝑙𝑏𝜃𝑗 = 𝜃𝑗 − (0.500 × 𝜃𝑗) and 𝑢𝑏𝜃𝑗 = 𝜃𝑗 + (0.500 

× 𝜃𝑗). Parameter initial guesses, along with the parameter “true” values and uncertainty factors 

are presented in Table 4.7. 

 

Table 4.7. "True" parameter values, initial parameter guesses and uncertainty factors. 

Parameter “True” value Initial guess Uncertainty 𝒔𝜽𝒋𝟎 

𝑘𝑟𝑒𝑓,1 [L/mol ∙ h] 1.250 × 10-3 1.850 × 10-3 1.850 × 10-3 

𝑘𝑟𝑒𝑓,2 [L/mol ∙ h] 7.290 × 10-6 3.700 × 10-6 3.700 × 10-6 

𝑘𝑟𝑒𝑓,4 [L/mol ∙ h] 8.800 × 10-7 1.300 × 10-6 1.300 × 10-6 

𝐸𝑎,1 [J/mol] 2.944 × 104 1.500 × 104  1.500 × 104 

𝐸𝑎,2 [J/mol] 7.101 × 104 3.700 × 104 3.700 × 104 

𝐸𝑎,4 [J/mol] 2.302 × 104 3.300 × 104 3.300 × 104 

𝑘𝑐2 [L/mol] 0.217 0.110 0.110 

Δℎ [J/mol] -1.830 × 104 -1.000 × 104 1.000 × 104 

 

The results of the methodology are presented in Table 4.8, while trend of 𝐽 and 𝑟𝐶𝐶,𝑘 are shown 

in Figure 4.4. 

 

Table 4.8. Estimability analysis results. Case of low experimental noise and high uncertainty on 

parameter values. 

Parameter Rank Selected 

𝑘𝑟𝑒𝑓,1 1 yes 

𝑘𝑟𝑒𝑓,2  6 yes 

𝑘𝑟𝑒𝑓,4  5 yes 

𝐸𝑎,1  3 yes 

𝐸𝑎,2  4 yes 

𝐸𝑎,4  2 yes 

𝑘𝑐2  7 no 

Δℎ  8 no 
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Some parameters changed their rankings significantly (𝑘𝑟𝑒𝑓,1, 𝐸𝑎,4), while others maintained or 

slightly changed their positions. The MSE-based method selected the top six ranked parameters 

to be estimated, and the objective function value did not change significantly when four or more 

parameters are estimated. Model predictions for every subset of estimated parameters compared 

to the experimental data are presented in Figure 4.5, and the corresponding R2 in Table 4.9. 

 

Figure 4.4. Effect of the number of parameters estimated on the objective function J and 𝑟𝐶𝐶,𝑘 values 

obtained using the algorithm in Table 2.2. Case of low noise and high uncertainty on parameter values. 

Figure 4.5. Model predictions of every subset of estimated parameters vs experimental data. Case of low noise 

and high uncertainty on parameter values. 
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Table 4.9. R2 values for each model output. Case of low experimental noise and high uncertainty 

on parameter values. 

Parameters estimated 𝒄𝑪 𝒄𝑫 𝒄𝑬 

1 0.952 -0.506 -4.218 

2 0.953 -0.506 0.699 

3 0.953 -0.506 0.698 

4 0.999 0.982 0.703 

5 0.999 0.982 0.714 

6 0.999 0.984 0.714 

 

Table 4.10. Precision of parameter estimates of the estimability analysis. Case of low 

experimental noise and high uncertainty on parameter values. 

Parameter “True” value Initial guess Estimate 95% t-value 

𝑘𝑟𝑒𝑓,1 1.250 × 10-3 1.850 × 10-3 1.300 × 10-3 31.61 

𝑘𝑟𝑒𝑓,2  7.290 × 10-6 3.700 × 10-6 6.080 × 10-6 28.49 

𝑘𝑟𝑒𝑓,4  8.800 × 10-7 1.300 × 10-6 1.176 × 10-6 9.454 

𝐸𝑎,1  2.944 × 104 1.500 × 104  2.933 × 104 39.01 

𝐸𝑎,2  7.101 × 104 3.700 × 104 7.408 × 104 81.75 

𝐸𝑎,4  2.302 × 104 3.300 × 104 1.637 × 104 3.569 

    𝑡𝑟𝑒𝑓 = 1.650 

 

where confirming the trend of 𝐽, model predictions seem to not change significantly after having 

estimated the top four ranked parameters. Like the previous case, all estimated model 

parameters are statistically satisfactory, as shown in Table 4.10. 

 

4.3. Methodology results with high experimental data noise 

When the experimental data noise is high, it is assumed that the sensor measures the measured 

variables 𝑐𝐶, 𝑐𝐷, and 𝑐𝐸 with a constant standard error of 𝜎 = 1.000×10-2 mol/L. Therefore, the 

scaling factor that considers measurement uncertainty is set as 𝑠𝑦𝑖 = 𝜎 = 1.000×10-2 mol/L. 

Cases of low and high uncertainty on parameter values are considered next. 

 

4.3.1. Low uncertainty on parameter values 

The initial parameter guesses used are the same ones from the case of low experimental noise 

and uncertainty (refer to Table 4.3.). The methodology results are shown in Table 4.11 and 

trends of 𝐽 and 𝑟𝐶𝐶,𝑘 in Figure 4.6. 
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Table 4.11. Estimability analysis results. Case of high experimental noise and low uncertainty on 

parameter values. 

Parameter Rank Selected 

𝑘𝑟𝑒𝑓,1 4 no 

𝑘𝑟𝑒𝑓,2  6 no 

𝑘𝑟𝑒𝑓,4  5 no 

𝐸𝑎,1  2 yes 

𝐸𝑎,2  1 yes 

𝐸𝑎,4  7 no 

𝑘𝑐2  8 no 

Δℎ  3 yes 

 

 

where the estimability method selects the top three ranked parameters to be estimated. Model 

predictions for every subset of estimated parameters compared to the experimental data are 

presented in Figure 4.7, along with the R2 values in Table 4.12. Note that parameter ∆ℎ estimate 

resulted to not be statistically satisfactory (t-value lower than the reference one), as reported in 

Table 4.13. However, even though only two model parameters are estimated with a statistically 

satisfactory precision (while one is not precise statistically and the rest are not estimated, thus 

Figure 4.6. Effect of the number of parameters estimated on the objective function J and 𝑟𝐶𝐶,𝑘 values 

obtained using the algorithm in Table 2.2. Case of high noise and low uncertainty on parameter values. 
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fixed to their initial guess), the model still gives satisfactory predictions (see R2 values in Table 

4.12). 

 

 

Table 4.12. R2 values for each model output. Case of high experimental noise and low uncertainty 

on parameter values. 

Parameters estimated 𝒄𝑪 𝒄𝑫 𝒄𝑬 

1 0.983 0.688 0.245 

2 0.994 0.906 0.245 

3 0.994 0.906 0.245 

 

Table 4.13. Precision of parameter estimates of the estimability analysis. Case of high 

experimental noise and low uncertainty on parameter values. * = estimated model parameter is 

not statistically satisfactory (i.e., t-value lower than the reference). 

Parameter “True” value Initial guess Estimate 95% t-value 

𝐸𝑎,1  2.944 × 104 2.500 × 104 2.779 × 104 11.46 

𝐸𝑎,2  7.101 × 104 6.000 × 104 6.880 × 104 4.244 

Δℎ  -1.830 × 104 -2.000 × 104 -1.464 × 104 1.241* 

    𝑡𝑟𝑒𝑓 = 1.650 

 

Model predictions do not change significantly when two of more parameters are estimated, 

despite suggesting that predictions for the molar concentration of specie E are not very accurate 

Figure 4.7. Model predictions of every subset of estimated parameters vs experimental data. Case of high 

noise and low uncertainty on parameter values. 
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(low R2 value). This is likely due to the high measurement noise of the system under 

investigation, which has the same magnitude of the values of E concentration. In other words, 

the high noise makes R2 values untrustworthy when referring to specie E. Therefore, overall 

model performance is good (see R2 values of species C and D).  

 

4.3.2. High uncertainty on parameter values 

Parameter initial guesses and uncertainty used in this case are the same as the analog case where 

the experimental noise is low (refer to Table 4.7). The estimability results are shown in Table 

4.14 and trends of 𝐽 and 𝑟𝐶𝐶,𝑘 in Figure 4.8. 

 

Table 4.14. Estimability analysis results. Case of high experimental noise and high uncertainty on 

parameter values. 

Parameter Rank Selected 

𝑘𝑟𝑒𝑓,1 1 yes 

𝑘𝑟𝑒𝑓,2  6 no 

𝑘𝑟𝑒𝑓,4  5 no 

𝐸𝑎,1  3 yes 

𝐸𝑎,2  4 yes 

𝐸𝑎,4  2 yes 

𝑘𝑐2  7 no 

Δℎ  8 no 

Figure 4.8. Effect of the number of parameters estimated on the objective function J and 𝑟𝐶𝐶,𝑘 values 

obtained using the algorithm in Table 2.2. Case of high noise and high uncertainty on parameter values. 
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where this time, the estimability method selects the first four parameters to be estimated. 

Parameters ranking, however, remained the same as the analog case with low experimental 

noise. Model predictions for every subset of estimated parameters compared to the experimental 

data are presented in Figure 4.9, and R2 values are shown in Table 4.15. Similar comments to 

observations drawn in the previous section regarding R2 values with reference to specie E can 

be done here. 

 

 

Table 4.15. R2 values for each model output. Case of high experimental noise and high uncertainty on 

parameter values. 

Parameters estimated 𝒄𝑪 𝒄𝑫 𝒄𝑬 

1 0.944 -0.515 -2.195 

2 0.945 -0.514 0.121 

3 0.945 -0.514 0.121 

4 0.993 0.873 0.121 

 

 

 

 

 

 

 

Figure 4.9. Model predictions of every subset of estimated parameters vs experimental data. Case of high noise 

and high uncertainty on parameter values. 
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Table 4.16. Precision of parameter estimates of the estimability analysis. Case of high 

experimental noise and high uncertainty on parameter values. 

Parameter “True” value Initial guess Estimate 95% t-value 

𝑘𝑟𝑒𝑓,1 1.250 × 10-3 1.850 × 10-3 1.300 × 10-3 31.61 

𝐸𝑎,1  2.944 × 104 1.500 × 104  2.752 × 104 14.63 

𝐸𝑎,2  7.101 × 104 3.700 × 104 8.143 × 104 16.70 

𝐸𝑎,4  2.302 × 104 3.300 × 104 1.151 × 104 4.141 

    𝑡𝑟𝑒𝑓 = 1.650 

 

As seen by the trend of 𝐽, model predictions do not change significantly when four or more 

parameters are estimated. Moreover, all estimated model parameters are statistically 

satisfactory, as shown in Table 4.16.  

 

4.4. Discussion 

The estimability analysis results are summarized in Table 4.17. 

 

Table 4.17. Comparison between all the estimability results. 

Parameter Low noise High noise 

 
Low uncertainty on 

parameter values 

High uncertainty 

on parameter 

values 

Low uncertainty on 

parameter values 

High uncertainty 

on parameter 

values 

 Rank Selected Rank Selected Rank Selected Rank Selected 

𝑘𝑟𝑒𝑓,1 3 yes 1 yes 4 no 1 yes 

𝑘𝑟𝑒𝑓,2  5 yes 6 yes 6 no 6 no 

𝑘𝑟𝑒𝑓,4  4 yes 5 yes 5 no 5 no 

𝐸𝑎,1  1 yes 3 yes 2 yes 3 yes 

𝐸𝑎,2  2 yes 4 yes 1 yes 4 yes 

𝐸𝑎,4  8 no 2 yes 7 no 2 yes 

𝑘𝑐2  7 no 7 no 8 no 7 no 

Δℎ  6 yes 8 no 3 yes 8 no 

 

The estimability method tends to select more parameters to be estimated when the experimental 

data noise is high (i.e., three parameters need to be estimated when the uncertainty on parameter 

values is low, four parameters need to be estimated when uncertainty on parameter values is 

high). Conversely, when the experimental data noise is low, the method selects for both cases 

of uncertainty six parameters to be estimated. This trend of selecting less parameters to be 
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estimated when the experimental data noise is high is also found in the previous Chapter. Not 

only the number of parameters selected is affected by the measurement noise, but also on the 

initial values of parameter guesses, since when the values of parameter guesses are not close to 

the “true” values (case of high uncertainty on parameter values), the method tends to select 

more parameters to be estimated (see when the noise is high). 

Parameters ranking remains the same when the uncertainty on parameter values is high, 

independently of the noise, while it slightly changes when the uncertainty on parameter values 

is low. When all cases are analyzed, some parameters are commonly found in the top positions 

(i.e. 𝐸𝑎,1 and 𝐸𝑎,2), while some in the last positions (i.e. 𝑘𝑐2 and ∆ℎ), but no absolute 

conclusions can be drawn about the ranking of influence of the parameters. 

 

4.5. Robustness of the results 

As in Chapter 3, the robustness of the results is assessed using a Monte Carlo approach, where 

100 different sets of parameter initial guesses are taken from the range of uncertainty on 

parameter values assumed. 

 

4.5.1. Results with low experimental data noise 

The frequency of the rank for each parameter is shown in the shaded box diagram in Figure 

4.10. 

 

 

(a) (b) 

Figure 4.140. Frequency of parameters rankings obtained using the algorithm in Table 2.1 with 100 

random initial parameter guesses. Case of low uncertainty (a), and high uncertainty (b) on 

parameter values. 
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The degree of shading for each cell depends on the frequency of that rank for the parameter. 

For example, in the case of low uncertainty on parameter values, parameter 𝑘𝑟𝑒𝑓,1, which is 

ranked third in Table 4.4, ranks as third using approximately 80 out of 100 sets of initial 

parameter guesses, while parameter 𝐸𝑎,2, which is ranked second in Table 4.4, results to rank 

as the top parameter more frequently (nearly 80% of the time). This inversion also happens with 

parameter 𝐸𝑎,1, whereas the ranks for other parameters are more variable. 

Rankings when the uncertainty on parameter values is low are more defined (a lot of positions 

are well established), while rankings when the uncertainty on parameter values is high are more 

variable and so less certain. Despite that, there is a tendency of parameters 𝐸𝑎,1, 𝐸𝑎,2 and 𝑘𝑟𝑒𝑓,1 

to be at the top of the ranked list, while 𝑘𝑐2, ∆ℎ and 𝑘𝑟𝑒𝑓,4 are more commonly encountered in 

the bottom of the ranked list. 

The frequencies of the optimal number of parameters selected for estimation are shown in 

Figure 4.11. 

 

 

When the uncertainty on parameter values is low, most of the time the top five parameters are 

selected for estimation (nearly 80% of the time), while when the uncertainty on parameter 

values is high, the method tends to select five or seven parameters to be estimated, with both 

choices selected approximately 40% of the time. 

 

4.5.2. Results with high experimental data noise 

(a) (b) 

Figure 4.11. Frequency of the number of parameters selected obtained using the algorithm in 

Table 2.2 with 100 random initial parameter guesses. Case of low uncertainty (a) and high 

uncertainty (b) on parameter values. 
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The frequency of the rank for each parameter is shown in the shaded box diagram in Figure 

4.12. 

 

As the case of low measurement noise, when the uncertainty on parameter values is low, 

parameter rankings are more regular, where parameters tend to retain their ranking most of the 

time, while the ranking is more variable when the uncertainty on parameter values is high. In 

both cases, the rankings obtained in §4.3 agree for the most part with the most common 

positions found in the robustness test. 

The frequencies of the optimal number of parameters selected for estimation are shown in 

Figure 4.13. 

(a) (b) 

Figure 4.12. Frequency of parameters rankings obtained using the algorithm in Table 2.1 with 100 

random initial parameter guesses. Case of low uncertainty (a), and high uncertainty (b) on parameter 

values. 

(a) (b) 

Figure 4.13. Frequency of the number of parameters selected obtained using the algorithm in Table 

2.2 with 100 random initial parameter guesses. Case of low uncertainty (a) and high uncertainty (b) 

on parameter values. 
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When the uncertainty on parameter values is low, the method selects for nearly 80% of the time 

three parameters to be estimated, which is also the number obtained in §4.3.1, while when the 

uncertainty on parameter values is high, the method also selects with a higher frequency three 

parameters to be estimated, but four and five parameters are also selected with a similar 

frequency. 

 

4.5.3. Discussion 

The robustness test showed that the estimability method tends to select a lower number of 

parameters to be estimated from the ranked list (i.e. it selected three parameters to be estimated 

with a higher frequency, for both cases of uncertainty on parameter values) when the 

experimental data noise is low, while the method tends to select a higher number of parameters 

to be estimated when the experimental data noise is high (5 and 7 parameters are selected with 

a higher frequency when the uncertainty on parameter values is low and high, respectively). 

Moreover, when the uncertainty on parameter values is lower, the method selected the most 

common outcome of the MSE-based method with a higher frequency (an optimal number of 

parameters selected is picked approximately 80 out of 100 times), while when the uncertainty 

on parameter values is higher, there was not a significant conclusive result on the number of 

parameters selected (for example, five and seven parameters are selected with almost the same 

frequency when the experimental noise is low). 

Meanwhile, parameter rankings appear not to change through the different levels of 

experimental noise; conversely, they change for different levels of uncertainty on parameter 

values. However, while it is true that when the uncertainty on parameter values is higher, the 

rankings are more variable, it appears that for both cases of uncertainty, some parameters are 

more commonly picked to be at the top of the ranked list (𝐸𝑎,1, 𝐸𝑎,2, 𝑘𝑟𝑒𝑓,1), some in the middle 

(𝐸𝑎,4, 𝑘𝑟𝑒𝑓,2), and some in the bottom (𝑘𝑐2, 𝑘𝑟𝑒𝑓,4, ∆ℎ). 



 

Conclusions 
 

 

The estimability method proposed by Wu et al., (2011) was applied to two case studies: (i) a 

fermentation process where the mathematical model describing the process has 4 model 

parameters, and (ii) a urethane production process with 8 model parameters. The method was 

then tested considering that (i) the available experimental data are affected by different levels 

of measurement noise, and that (ii) initial parameter guesses are characterized by different 

levels of uncertainty. Based on the presented case studies, some general observations can be 

drawn: 

• When the measurement noise is higher, the method tends to select less parameters to be 

estimated compared to when the measurement noise is lower; 

• When the uncertainty on parameter values is higher (i.e. when the parameter initial 

guesses are distant from the “true” values), the method tends to select more parameters 

to be estimated compared to when the uncertainty on parameter values is lower. 

A robustness test based on a Monte Carlo approach was then applied to overcome the issue of 

high dependency on initial parameter guesses, and its results mostly confirmed what was 

previously found. However, if the initial parameter guesses are very different with respect to 

the “true” values, the method could give different results about the number of selected 

parameters with a higher frequency. 

The estimability method proposed by Wu et al., (2011) proved to be an efficient tool for 

overcoming estimability issues, producing results regarding parameters rank of influence that 

were coherent with other estimability methods used in this study. Moreover, it offers the distinct 

advantage of identifying which parameters should be selected for estimation, without the need 

of an arbitrary threshold or cut-off value, while maintaining low computational cost. 

Results from the analysis of parameter estimates precision suggest that repeating the 

estimability method, using the parameter estimates from the previous iteration as initial guesses 

in subsequent iterations, can lead to more accurate rankings of parameter influence and a more 

accurate selection of parameters to be estimated, while also improving the precision of the 

estimates. 

Future work should focus on applying the estimability method to more complex models with a 

larger number of parameters, as well as conducting a more comprehensive analysis of the 

interaction between model-based design of experiments and the estimability method. It would 

also be valuable to select model parameters based on the mean squared error of predictions at 

the operating conditions of interest, rather than limiting the analysis to experimental points. 

This approach, already explored in the literature, could lead to improved model performances, 

especially when operating conditions differ significantly from the experimental setup.
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