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A B S T R A C T

In this thesis we shall study in some depth the structure and
identification of various GARCH models. These models were
introduced to describe the volatile behavior of empirical time
series and to try to give an explanation of the phenomenon. In
order to improve the predictions of volatility, various univari-
ate and multivariate extensions of the basic Garch model have
been introduced. In particular, our concern is focused on the
state space framework, which overcomes the difficulties we may
encounter studying Multivariate GARCH models.

We shall study the structure and the statistical properties of
Garch models such as stochastic stability, predictive capacity
and the identification procedures. A set of simulations are per-
formed in order to verify if the empirical findings is consistent
with the theory exposed. We shall see that state space models
combined with a Garch framework outperform the standard
GARCH models.
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1
I N T R O D U C T I O N

1.1 WHY FORECAST VOLATILITY?

In finance, volatility is a measure of how much the values of
a temporal series may vary over time. It may for example be
is a measure of the standard deviation of asset returns. Un-
derstanding the volatility behavior and, in particular, forecast
it on the future, it has been intensely studied in mathemati-
cal finance, both empirically and theoretically. Modeling volatil-
ity is important for investment, risk management, trading, and
for academic researcher to understand market dynamics. Risk
management, almost entirely, consists on measuring the poten-
tial losses of a portfolio, and estimating these losses requires
an estimate of future volatility. Indeed, the estimate of future
volatility is important to derive option prices and is important
to Value-at-Risk model in order to produce a risk measure. An-
other field of application, perhaps the most challenging, is trad-
ing. Option traders, evaluate their own strategies by forecasting
the amount of volatility of the price underlying an option. Ac-
tually, in modern markets, it is also possible to trade volatility
directly, through the use of derivative securities such as options
and variance swaps and thus give a prediction on volatility be-
comes very important to traders to make profits. Volatility is
also important in the bank industry. In fact, interest rates are
volatile. High interest rate volatility not only can compromise
the ability of the central bank to conduct monetary policy, but
can also affect the ability of financial market to discern the mon-
etary policy stance.

Until 1980’s, the financial literature assumes a constant one-
period forecast variance. Empirical observations show some pe-
culiar characteristics of volatility:
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2 introduction

• clustering and persistence phenomena for which there ex-
ist high volatility periods followed by low volatility peri-
ods;

• mean reverting (see for example Hillebrand);

• asymmetry, that is, negative return generates higher volatil-
ity than positive return.

Given these characteristics, the assumption of a constant one-
period forecast is implausible. In particular, correlation of square
returns on historical series causes clustering and persistence.
Figure Figure 1 shows an example of this phenomenon. In or-

Figure 1: Examples of financial markets and economic data with time-
varying volatility: (a) absolute values of S&P 500 log returns;
(b) absolute values of changes in the BP/dollar exchange
rate; (c) absolute values of changes in the log of the risk-
free interest rate; (d) absolute deviations of the inflation rate
from its mean

der to explain this evidence Engle [11] introduces a new class of
stochastic processes called AutoRegressive Conditional Heteroscedas-
tic (ARCH). These processes are zero mean, serially uncorrelated
processes with constant uncondition variance and noncostant
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variance conditional on the past. Successively, Bollerslev et al.
[1] extended ARCH to Generalized AutoRegressive Conditional Het-
eroscedastic (GARCH) to permit the volatility to also depend on
volatility past values. Both these papers show the consistency
and normality of maximum or quasi-maximum likelihood esti-
mators and, moreover provide a test to verify the presence of
GARCH components on time series. A drawback of these mod-
els was their univariate structure. Indeed, in real scenarios, dif-
ferent economic variables are correlated with each other and an
univariate modeling can be inappropriate. A multivariate frame-
work is introduced by Engle and Kroner [12] to take in account
possible variable correlations.

In parallel, other branches of mathematical finance, consid-
ered state space models as, for example Harvey [15]. State space
models were used since 1960’s (see [17]) in control engineering
because of the powerful estimation algorithm called Kalman fil-
ter. Within the state space approach forecasting algorithm can
be based on Kalman filtering.

Harvey, Ruiz, and Sentana [14] incorporate ARCH and GARCH
disturbances in time series models with unobserved components,
that is, in a state space approach, and then analyze the im-
plications this has for estimation. Most state space models are
however based on intuitive statistical grounds without a strong
finance theory support. For example the Nelson-Siegel model
proposed by Nelson and Siegel [20]. Its popularity is due to par-
simony, ease of estimation and to the fact that there is some un-
derlying economic interpretation in the three factors it is based
on, which represent level, slope and curvature of the yield curve.
An issue of this model is that it does not ensure, theoretically,
absence of arbitrage. As an extension of Nielson-Siegel model,
[8] introduce the Dynamic Nelson-Siegel (DNS) model by esti-
mating the classical one with time-varying factors and model
them using (V)AR specifications. In addition Diebold, Rude-
busch, and Aruoba [9] rewrite the DNS model in state space
form and shows the forecasting performances are better than
those of standard time series models. However, Christensen, Die-
bold, and Rudebusch [6] derive the Nelson-Siegel model under
absence of the riskless arbitrage assumption and introduce the
Arbitrage Free Nelson-Siegel (AFNS) model, thereby reducing,
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at least partially, the leak of absence of theoretical ground. Koop-
man, Mallee, and van der Wel [18] introduces the DNS-GARCH
models, assuming time-varying volatility. In particular they as-
sume the errors follow a GARCH dynamic. In such a way, it
allows the model to capture latent exogenous shocks that affect
the entire yield curve and are not captured by the three factor
structure of the level, slope and curvature factors. This expan-
sion increases the flexibility of the term structure model and en-
ables it to better fit more complex shapes of the yield curve, as
Koopman, Mallee, and van der Wel [18] show by plotting some
fitted curves. They find that allowing for time-varying volatility
significantly increases the likelihood value relative to the tradi-
tional DNS model. In this thesis we will extend DNS-GARCH
models permitting to errors to follow also asymmetric GARCH.
Indeed, as we already said, volatility reacts differently to pos-
itive shocks than negative. Thus, we aspect that allowing for
asymmetric response of the variance of the common component
to shocks turns out to increase in-sample fit of the time-varying
volatility. We will consider the GJR-GARCH and E-GARCH for
asymmetry. Moreover, it is reasonable to think that macroeco-
nomic and financial variables influences volatility .

In this thesis we will analyze the structure and identification
of various GARCH models. In particular we will point our at-
tention to state space GARCH models. It is important to under-
stand how good are the predictions and fitness with respect to
other time series models, already known. Random walk fore-
casts turn out to be difficult to beat in the short term, as also
noted by Duffee [10]. For the medium and long term the DNS
models with time-varying volatility components seem to be able
to significantly outperform the naive forecasting method at the
short end of the yield curve. However, in the long end of the
curve the random walk forecasts are relatively accurate and stay
very hard to beat. As well known, parsimony is it very impor-
tant in identification. It turn out that the DNS model with a
common shock component in the factors, which has the smallest
number of parameters among the time-varying volatility mod-
els, performs best when forecasting is concerned. Moreover, the
smaller number of parameters the smaller the variance of esti-
mate.



1.1 why forecast volatility? 5

The thesis is organized as follows. Chapter 2 introduces uni-
variate and multivariate GARCH models, state space models
with an introduction of Gaussian state space model and Kalman
filter. Chapter 3 studies stochastic stability of all the GARCH
models presented. Chapter 4 discusses identification algorithms
showing how a state space approach is powerful instrument
for estimation. Finally, Chapter 5 compares the performance, in
term of goodness of fit and forecasting, of the presented models.





2
S T Y L I Z E D FA C T S A N D
M O D E L S

FINANCIAL TIME SERIES

In this thesis we shall consider the mathematical description of
financial time series using stochastic models. In contrast with
engineering, modeling financial time series presents same diffi-
culties which make their analysis more complex. Although there
are some statistical regularities (called stylized facts) which are
common to a large number of financial series quite indepen-
dently on their nature, this complexity is due to the variety of
instruments, such as stocks, interest rates etc.

Let pt denote the price of an asset at time t and let yt =

log(pt/pt−1) the log return. The reason why log returns are of-
ten used is that they are independent of monetary units, which
facilitates comparisons between assets. The are some empirical
properties to be noticed of financial series that explains the the-
ory used is this thesis.

a. Nonstationarity of price series. Sample paths of prices
are close to a random walk. Moreover, they are compati-
ble with second-order stationarity but not strict stationary
assumption. Figure 2 shows log returns of CAC index.

b. Absence of autocorrelation for the price variations. The
series of price variations generally display small autocor-
relation, that is, they are close to white noise.

c. Autocorrelations of squared price returns. In general squa-
red return y2t are strongly correlated. This property implies
that the white noise is not an i.i.d. process for example be
a martingale difference. Figure 3 shows this property.

7



8 stylized facts and models

Figure 2: CAC 40 log-returns.

Figure 3: CAC 40: sample squared returns (January 2, 2008 to October
15, 2008).
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d. Volatility clustering. In general high-volatility subperiods
are followed by low-volatility periods. This property is re-
current but not periodic. In particular, it is not compatible
with homoscedastic marginal distribution for the returns.

e. Fat-tailed distributions. It can be shown that empirical dis-
tribution does not resemble a Gaussian distribution. In par-
ticular, the densities have fat tails and are sharply picked
at zero (leptokurtic). To measure this fact, there exists the
kurtosis coefficient defined as the ratio of the sample forth-
order moment to the squared sample variance.

Figure 4: Kernel estimation of the CAC 40 return density versus Gaus-
sian density (dotted line).

f. Leverage effects. This fact was noticed by Black, and in-
volves an asymmetry of the impact of past positive and
negative values on the current volatility. Negative returns
(corresponding to price decreases) tend to increase volatil-
ity by a larger amount than positive returns (price increases)
of the same magnitude.

g. Seasonality.
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As already said, this empirical evidence is incompatible with
standard time series, for example ARMA models. The fact that
large absolute returns tend to be followed by large absolute
returns is not compatible with costant conditional variance as-
sumption. This is called conditional heteroscedasticity:

Var(yt | yt) 6= const.

where yt is the strict past of {yt}. Suppose yt are interest rates or
log-returns. In order to account for the peculiarities of financial
series let consider the model

yt = σtεt (1)

where

1. σt is measurable with respect to a σ-field Ft−1;

2. {εt} is a iid zero mean, unit variance process, independent
of Ft−1 and {ys, s < t};

3. σ > 0.

All this implies that {y(t)} is a d-martingale, which in particular
implies that

E(yt | Ft−1) = 0, E(y2t |Ft−1) = σ
2
t

where the random variable σ2t (or σt) is called volatility of yt.
Moreover we have

E(yt) = E(σt)E(εt) = 0

for all t and

Cov(yt,yt−s) = Eytyt−s = E(E(ytyt−s) | Ft−1)
= E(εt)E(σtyt−s) = 0, ∀s > 0,

that is, {yt} is second-order white noise process. Finally, the kur-
tosis coefficient of yt is related to that of εt, denoted κε and it is
given by

Ey4t
(Ey2t)

2
= κε

(
1+

Var(σ2t)(
Eσ2t

)2
)

.

.
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UNIVARIATE GARCH

An important class of time series that verifies the properties
above are the so-called GARCH models.

An early definition, Engle [11] is the ARCH model, while the
GARCH model is introduced by [1] as a generalized ARCH. For
the sake of clarity, we will give only the definition of a general
GARCH(p,q).

Definition 1 (GARCH(p,q) process). A process yt is called a
GARCH(p,q) process if it satisfies:

a. E(yt|ys, s < t) = 0, ∀s > 0,

b. There exist constantsω, αi, i = 1, . . . ,q and βj, j = 1, . . . ,p
such that

σ2t = Var(yt | ys, s < t) = ω+

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjσ
2
t−j

(2)

The last equation is rewritten as

σ2t = ω+A(z−1)y2t +B(z−1σ2t), t ∈ Z

where

A(z−1) =

q∑
i=1

αiz
−i, B(z−1) =

p∑
i=1

βiz
−i

The definition in Definition 1 does not give guarantees that
GARCH(p,q) processes are well-defined. On needs to show that
the formula defines a process of finite variance of all t. This will
be addressed later in Theorem 1.

Let {εt} be an iid sequence with zero mean and unit variance.

Theorem 1. The process {yt} GARCH(p,q) if
yt = σtεt

σ2t = ω+

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjσ
2
t−j

(3)
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where αi > 0, βj > 0 and ω > 0.

Proof. The Definition 1 implies that process {yt} is a d-martingale
with a variance following the law

σ2t = ω+A(z−1)y2t +B(z−1σ2t), t ∈ Z

The process σtεt is a d-martingale. In fact, σt process depends
on the past and εt is i.i.d. and thus it can be easily shown that
a the product with a i.i.d is a d-martingale itself satisfying the
conditions:

1. Ft ⊂ Ft+1;

2. yt is Ft-measurable;

3. E|yt| = Eσt|εt| = Eσt
{
E|εt|

∣∣Ft−1} = 0 <∞;

4. E (yt+1|Ft) = σt+1E (εt+1|Ft) = 0.

And these conditions are compatible with Definition 1. Finally,
the existence conditions are related to the positivity constraint
on σ2. In order to guarantee σ2t to be positive, all coefficients
ω,αi,βj must be positive. In particular, ω is strictly positive in
order to avoid the eventuality σ2t = 0.

Figure 5 shows a simulation of a GARCH(1,1). It can be proved
that the forth-order moment doesn’t exist. This is reflected by
the presence of large absolute values. In addition, when β → 1,
a shock on volatility has a persistent effect. Here we briefly give
a condition for the existence of 2m-th moment of a GARCH(1,1)

Theorem 2 (Order existence). The 2m-th order exists if and only
if

µ(α,β,m) =

m∑
j=0

(
m

j

)
ajα

jβm−j < 1

where

ω = 1, aj =

j∏
i=1

(2j− 1), j = 1...m

Then the second-order moment exists if and only if β+α < 1

and it results Ey2t =
ω

1−α−β
> ω. In Section 2.0.1, we will see

that this is also the condition for second-order stationary.
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Figure 5: Simulation of 500 observation of GARCH(1,1) process with
ω = 1, α00.7, β = 0.2 and εr ∼ N(0, 1).

A GARCH(1,1) process satisfies the squared correlation proper-
ties of financial series. Indeed,

Ey2ty
2
t−s = C(α+β)s

where C is a constant.

2.0.1 Stationarity and Ergodicity

In this thesis, we will focus on GARCH(1,1) case since the model
used on the simulations considers only a GARCH(1,1) model
error {

yt = σ
1
2
t εt εt iid(0, 1)

ht = ω+αy2t−1 +βσ
2
t−1

(4)

with ω > 0, α > 0 and β > 0. The following theorem gives a
necessary and sufficient condition for strict stationarity.

Theorem 3 (Strict stationarity). If

γ := E log{αε2t +β} < 0,
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then

ht =
{
1+

∞∑
t=1

(
αε2t−1 +β

)
. . .
(
αε2t−i +β

)}
ω

converges a.s. and the process {yt} is the unique strictly station-
ary solution of model (4) and it also ergodic. If γ > 0 and ω > 0,
there exists no strictly stationary solution.

The proof of stationarity shows that the sum

ht =
{ ∞∑
t=0

(
αε2t−1 +β

)
. . .
(
αε2t−i +β

)}
ω

converges a.s.. Being εt is i.i.d. and thus ergodic, the ergodicity
of yt follows by the relation

yt =
√
htεt =

{ ∞∑
t=0

(
αε2t−1 +β

)
. . .
(
αε2t−i +β

)
ω

}
εt

and Theorem A.2.

Proof. First we note that E log+(αε2t + β) 6 E(αε2t + β) = α+ β

and so γ is always defined. For n > 1 it can easily found

σ2t = ω
{
1−

n∑
i=1

(
αε2t−1 +β

)
. . .
(
αε2t−i +β

)}
(5)

+
(
αε2t−1 +β

)
. . .
(
αε2t−n−1 +β

)
σ2t−n−1

:= ht(n) +
(
αε2t−1 +β

)
. . .
(
αε2t−n−1 +β

)
σ2t−n−1

Since the elements of the series are non-negative the limit pro-
cess ht = limn→∞ht(n) exists and it assumes value in [0,+∞].
We have to show it is finite. Letting n go to +∞ in

ht(n) = ω+
(
αε2t−1 +β

)
ht−1(n)

we obtain
ht = ω+

(
αε2t−1 +β

)
ht−1



stylized facts and models 15

Now suppose that γ < 0. We have{(
αε2t−1 +β

)
. . .
(
αε2t−n +β

)}1/n
= exp

{
1

n

n∑
i=1

log
(
αε2t−i +β

)}
→ eγ a.s.

as n→∞ by the application of the strong law of large numbers.
Applying the Cauchy rule, the series

ht =
{ ∞∑
t=0

(
αε2t−1 +β

)
. . .
(
αε2t−i +β

)}
ω

converges almost surely in R. Then, the process

yt =
√
htεt =

{ ∞∑
t=0

(
αε2t−1 +β

)
. . .
(
αε2t−i +β

)}
ω (6)

is strictly stationary and ergodic (see Section A.1). If γ > 0 the
sum

n∑
i=1

(
αε2t−1 +β

)
. . .
(
αε2t−i +β

)}
→ +∞ as n→∞

and there exists no finite solution of Equation 4.

In real scenario it is difficult to verify strict stationarity on gen-
erated data. Often it is easier to verify the second order condi-
tion. Thus, now we give a sufficient and necessary condition for
Second-Order stationarity.

Theorem 4. Let ω > 0. If α+ β > 1 there no exists no second-
order stationary solution to the GARCH(1,1) model. If α+ β <

1, the process yt defined by (4) is second-order stationary. In
addiction, yt is a second-order white noise process. The solution
is unique.

We will show only the existence of the stationary solution. For
a detailed proof see [13].

Proof. If we have a second-order solution of (4) then

E(y2t) = E{E(y
2
t |ys, s < t)} = E(σ

2
t) = ω+ (α+β)Ey2t−1
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that is,
(1−α−β)Ey2t = ω

Hence, we must have α + β < 1 since ω > 0. Conversely,
suppose α+ β < 1. Then there exists the limit sum ht and we
have

Ey2t = Eht = E

{
1+

∞∑
i=1

(
αε2t−1 +β

)
. . .
(
αε2t−i +β

)}
ω

= E

{
1+

∞∑
i=1

(
E
(
αε2t−1 +β

))i}
ω

=

{
1+

∞∑
i=1

(α+β)n

}
ω

=
ω

1− (α+β)

The condition α+β < 1 it is easy to verify practically.

Analogously it can be shown the condition for stationary for
GARCH(p,q). The proof of second-order stationarity follows hand
in hand the proof of Theorem 4. Define the GARCH(p,q) models
as 

yt = σtεt

σ2t = ω+

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjσ
2
t−j

(7)

where αi > 0,βj > 0 and ω > 0. The following theorem gives a
necessary and sufficient condition for second order stationarity
of GARCH(p,q) process.

Theorem 5. If there exists a GARCH(p,q) process, which is second-
stationary, and if ω > 0, then

q∑
i=1

αi +

p∑
i=j

βj < 1. (8)

Conversely, if holds (8), the unique stricly stationary solution
of model (7) is a weak white noise (and thus is second-order
stationary).
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Proof. Subsequent substitutions yields

ht = ω+

q∑
i=1

αiε
2
t−iht−i +

p∑
i=1

βiht−i

= ω+

q∑
j=1

αjε
2
t−j

(
ω+

q∑
i=1

αiε
2
t−iht−i−j +

p∑
i=1

βiht−i−j

)

+

p∑
j=1

βj

(
ω+

q∑
i=1

αiε
2
t−iht−i−j +

p∑
i=1

βiht−i−j

)
...

= ω

∞∑
k=0

M(t,k) (9)

where

M(t, 0) = 1,

M(t, 1) =
q∑
i=1

αiε
2
t−i +

p∑
i=1

βi

and in general

M(t,k+ 1) =
q∑
i=1

αiε
2
t−iM(t− i,k) +

p∑
i=1

βiM(t− i,k).

(10)

Since ε2t is i.i.d., we have

E (M(t,k)) = E (M(s,k)) for all k, t, s. (11)
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From Equation 10 and Equation 11 it follows

E (M(t,k+ 1)) =

(
q∑
i=1

αi +

p∑
i=1

βi

)
E (M(t,k))

...

=

(
q∑
i=1

αi +

p∑
i=1

βi

)k+1
E (M(t, 0))

=

(
q∑
i=1

αi +

p∑
i=1

βi

)k+1
.

Finally,

E
(
y2t

)
= ωE

( ∞∑
k=0

M(t,k)

)

= ω

∞∑
k=0

E (M(t,k))

=
ω

1−
∑q
i=1 αi −

∑p
i=1 βi

if and only if

q∑
i=1

αi −

p∑
i=1

βi < 1,

and y2t converges almost surely.

2.1 MULTIVARIATE GARCH

In the real world scenario, financial variables are not indepen-
dent but are correlated each other. This implies the use of mul-
tivariate processes. Now we define a multivariate GARCH pro-
cess.
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Definition 2. A N-dimensional multivariate GARCH process
εt|Ft−1

1 is given by

εt = ztH
1
2
t (12)

where zt is a zero mean N-dimensional i.i.d. process with co-
variance matrix IN.

One easily obtains E
(
εt|Ωt−1

)
= 0 e E

(
εtε

′
t|Ωt−1

)
= Ht. The

general extension of a GARCH(p,q) is the vech model proposed
by Bollerslev et al. [2]. It uses vech(·) operator, which stacks all
the non-redundant element of a matrix N×N in a vector N(N+

1)/2× 1. Then the matrix Ht is transformed in

vech(Ht) =ω
∗ +

q∑
i=1

A∗ivech(εt−iε
′
t−i) +

p∑
j=1

Bjvech(Ht−j)

(13)

vech(Ht) =ω
∗ +A(z−1)vech(εt−1ε

′
t−1) +B(z

−1)vech(Ht−1)

(14)

where ω∗ = vech(Ω) is a vector of N(N+ 1)/2× 1 parameters
whileA∗i e B∗j areN(N+1)/2×N(N+1)/2matrices. This model
has two drawbacks: in order to guarantee Ht > 0 is it necessary
impose constraints on A and B, and, more important, there are
N(N+ 1)

2

[
1+ (p+q)

N(N+ 1)

2

]
parameters to be estimated. For

instance, with N = 5 and p = q = 1 there are 465 parameters to
be estimated. This fact makes his use inconvenient.

A more general model is the BEEK model proposed by Engle
and Kroner [12] and Kroner. It intrinsically imposes Ht. Let us
consider the following model

Ht = CC
′ +

K∑
k=1

q∑
i=1

Aikεt−iε
′
t−iA

′
ik +

K∑
k=1

p∑
i=1

BikHt−iB
′
ik

(15)

where C,Aik e Bik are N×N matrices. The following proposi-
tion gives a condition for the positivity ofHt in a BEKK-GARCH(p,q).

1 Ft−1 represents all the past information
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Theorem 6. If H0,H1, ...,Hp+1 are all definite positive, then the
BEKK with K = 1 imposes Ht > 0 for all εt values if C is full
rank or if each Bi is full rank.

For stationarity conditionso for vech model and BEKK model see
Engle and Kroner [12]. Unfortunately, also BEKK-GARCH has
a number of parameters of order N2 causing computation prob-
lems. Although, there are approaches of simplification for esti-
mation, it is preferable use state space approaches.

LINEAL GAUSSIAN STATE SPACE MODELS AND
THE KALMAN FILTER

Before introducing state space GARCH models we present LGSSM
and Kalman filter, since they will be used in this thesis. The es-
timation procedure of this models is reported in Chapter 4. A
state space models consists of a state equation and observation
equation. While the state equation formulates the dynamics of
the state variables, the observation equation relates the observed
variables to the unobserved state vector. The state vector can
contain trend, seasonal, cycle and regression components plus
an error term. With these models can be used a very power in-
struments both for estimation and prediction of latent variable,
named Kalman filter. Named after [17] the Kalman filter is a re-
cursive algorithm that computes estimates for the unobserved
components at time t, based on the available information at the
same date. Suppose to consider the state space model{

x(t+ 1) = Atx(t) +Btv(t)
y(t) = Ctx(t) + w(t)

(16)

E(v(t)v(τ) ′) =

{
Q for t = τ
0 otherwise

E(w(t)w(τ) ′) =

{
R for t = τ
0 otherwise

with the notation:

• y(t) denotes an p× 1 vector of observable variables.
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• x(t) denotes a possibly unobserved n× 1 state vector.

• v(t) and w(t) are white noise i.i.d with zero mean.

In addiction we will make the assumptions:

• The disturbances v(t) and w(t) are assumed to be uncor-
related at all leads and lags

E(v(t)w(τ) ′) = 0 for all t and τ

• The initial state and the disturbances are uncorrelated, i.e.

E{x0
[
v(t) ′, w(t) ′

]
} = 0, ∀t > t0

The matrices At,Bt,Ct,Qt and Ht are in general time variant.
For our application they are constant. Usually, at least some of
the elements of the system matrices At and Bt in the state equa-
tion and Ct , Qt and Rt in the observation equation depend on
a vector θ unknown parameters.

The Kalman filter and smoother

Once a model is written into state space form, the Kalman fil-
ter can be employed to compute optimal forecasts of the mean
and covariance matrix of the normally distributed state vector
xt+1 , based on the available information through time t. More
precisely it produces estimate minimizing the mean squared er-
ror. The Kalman filter can be used for estimation by filtering and
smoothing: filtering uses only the information up to time t while
filtering uses the entire set of information in the sample.

Filtering

Now let assume A, B, C, R and Q are constants. Let us denote

Ft ≡ (yt, yt−1, ..., y1, xt, xt−1, ..., x1)

and denote
x̂t+1|t ≡ Ê(xt+1|Ft)

x̂t|t ≡ Ê(xt|Ft)
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Pt+1|t ≡ E
(
xt+1 − x̂t+1|t

)(
xt+1 − x̂t+1|t

) ′
It can be demonstrated that the equation describing the Kalman
filter are

x̂t+1|t = Ax̂t|t−1 +K(t)
(
y(t) −Cx̂t|t−1

)
K(t) = APt|t−1C

′(CPt|t−1C
′ + R)−1

Pt+1|t = A

(
Pt|t−1 − Pt|t−1C

′(CPt|t−1C
′ + R)−1CPt|t−1

)
+Q

The N× 1 vector

εt = yt − E(yt|Ft−1) = yt −Cx̂t|t−1

is the one-step ahead prediction error of yt given Ft−1 and it is
called innovation since

E(εt|Ft−1) = E(εt), Cov(ys, εt) = 0

for s = 1, . . . , t − 1. In general the prediction error εt is a d-
martingale.

It is also important to understand in which conditions the
Kalman filter admits a steady-state representations. It is imme-
diate to see that the process is stationary in t > 0 if only if A is
"stable". In this case P0 is the solution of Lyapunov equation

P0 = AP0A
′ +Q

In these hypothesis we have Σ(t) = Ex(t)x(t) ′ = P0,∀t > 0. Then
we immediately have

Theorem 7. Let us denote x̂(t) = x̂(t|t− 1). If the matrix A in
Equation 16 is asymptotically stable, then the estimate

x̂(t) = E(x(t)|y0, . . . ,y(t− 1))

converge, as t0 → −∞, in quadratic mean, towards the limit
x̂∞(t), that is the Wiener-Kolmogorov predictor of x(t) condi-
tional to the infinite past of the process y. Them then there exists
the limit

lim
t0→−∞P(t) = P∞
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Finally, P∞ is the solution of A.R.E.

P = A
[
P− PC ′(CPC ′ + R)−1CP

]
A ′ +Q

It must be noticed that it is true only if v(t) and w(t) are uncor-
related. Otherwise we have to substitute A with F = A− SR−1C

and Q with Q̃ = Q− SR−1S ′ where S = Ev(t)w(t) ′.
The estimate x̂∞(t) satisfies the equation (steady-state)

x̂∞(t+ 1) = A−K∞Cx̂∞(t) +K∞yt (17)

If Equation 17 represents a completely reachable dynamic sys-
tem and the spectrum Sy(e

jω) > 0, then all the eigenvalues are
inside the unit circle and the steady-state predictor is asymptot-
ically stable.

In general we have the following theorem (if S = 0).

Theorem 8 (Fundamental theorem of Kalman filter). Necessary
and sufficient condition for

1. there exists a unique solution P̄ = P̄ ′ of A.R.E.,

2. P̄ is stabilizing,

3. limt→∞ P(t) = P̄ for every P0 = P ′0 > 0, is that (A,C) è
detectable and (A,Q) is stabilizable.

If we assume stationarity, the initial conditions is set as

Ex(0|− 1) = E(x) = 0

P(0|− 1) = P0

where P0 is the solution of

P0 = AP0A
′ +Q

In general, for non-stationary process is a good procedure to
choice P0 = kI with k very large. In the steady-state, the Kalman
predictor is

x̂(t+ 1) = Ax̂(t) +K∞e(t) (18)
y(t) = Cx̂(t) + e(t) (19)
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where e(t) = y(t) −Cx(t) define the steady-state innovation.
In case of non-Gaussian disturbances, the Kalman filter is no

longer guaranteed to yield the conditional mean of the state
vector. However, it nevertheless represents an optimal estimator
in the sense that no other linear estimator has a smaller MSE.
For a detailed discussion see Picci [21].

2.2 STATE SPACE GARCH

In parallel to multivariate GARCH, state space framework is
considered. Ruiz e Sentana (1992) Harvey et al. [14] introduces a
state space model with ARCH/GARCH errors. Given the obser-
vation vectorN× 1 yt we consider the model without regression
factors

xt = Aαt−1 +Bηt + vt (20)
yt = Cαt +Dεt +wt (21)

where xt is m × 1 state vector. The matrices C (N ×m) e A
(m×m). The disturbances vt (N× 1) and ωt (N× 1) are vt ∼
NID(0,Q) e wt ∼ NID(0,R). Moreover εt, vt and wt are mutu-
ally independent. The GARCH effect is introduced through the
scalar disturbances εt e ηt:

εt = h
1/2
t η1t e ηt = q

1/2
t η2t

where η1t ∼ NID(0, 1) and η2t ∼ NID(0, 1) are uncorrelated. In
addition we have

ht = ω1 +α1ε
2
t−1 +β1ht−1 (22)

qt = ω2 +α2η
2
t−1 +β2qt−1 (23)

It is assumed α1 + α2 < 1 e β1 + β2 < 1. The estimation proce-
dure is in Chapter 4. However, see Harvey, Ruiz, and Sentana
[14] for a complete discussion.
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2.3 DNS-GARCH MODELS

In this section we will introduce DNS state space model. These
model are particular linear Gaussian models introduced to ex-
plain evidences on the behavior of the yields. We chose to use
this model rather than general Gaussian state space model be-
cause they are, how we will see, suitable for explaining empiri-
cal facts.

2.3.1 Dynamic Nelson-Siegel Model

Diebold and Li in [8] introduce the DNS model to model the
yield curve,period-by-period, as a three-dimensional parameter
evolving dynamically. The N yields yt(τi) for i = 1, . . . ,N at
time t = 1, . . . , T , where τi is the maturity time is modeled by

yt(τi) = β1t +β2t

(
1− e−λτi

λτi

)
+β3t

(
1− e−λτi

λτi
− e−λτi

)
+ εi,t

(24)

εi,t ∼ N(0,σ2IN),

where the coefficients βit represent the factors level, slope and
curvature, respectively. The parameter λt affects the exponential
decay rate; small values of λt produce slow decay and imply a
better fit of the curve at long maturities, while large values of
λt produce fast decay and imply a better fit the curve at short
maturities. Furthermore, it also governs where the loading on
β3t achieves its maximum.

The challenge of yield curve modelling is to identify a frame-
work under which the modelled yield curves will provide a suf-
ficiently accurate fit to endless permutations of possible yield
curve shapes and structures without over complicating the solu-
tion in the presence of assumed additive observation error. The
Nelson Siegel three factor model makes a valuable contribution
to this pursuit through the use of an elegant and easily inter-
preted method. shapes and structures without over complicat-
ing the solution in the presence of assumed additive observation
error.
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To give an interpretations of factors βit we consider the be-
havior over the maturity time τ. Actually, for high values of τ
we have

yt(τi)→ β1t

and thus, β1t may be viewed as the long-term factor, while the
loading factor (

1− e−λτi

λτi

)
→ 0

meaning that β2t can be viewed as the short-term factor. At last,
the factor loading of β3t(

1− e−λτi

λτi

)
→ 0

as maturity is high or low, and this means β3t affects the mid-
term of yield curve. To estimate this model, [9] introduce a uni-
fied state-space modeling approach that permits to simultane-
ously fit the yield curve at each point in time and estimate the
underlying dynamics of the factors. To specify the autocorrela-
tions of the three coefficients they introduce the state equation
of dimension 3

xt+1 = (I−Φ)µ+Φxt + vt vt ∼ NID(0,Q), (25)

where xt+1 = (β1t,β2t,β3t), µ is a 3× 1 costant vector, Φ (3× 3)
is the coefficient matrix, vt is the disturbance error with variance
Q e initial condition x0 ∼ N(µ,Σx) with variance Σx that solves
X−ΦXΦ ′ = Q. The measurement equation is given by

yt = C(λ)xt +wt, wt ∼ NID(0,R), t = 1, . . . , T ,
(26)

with the observations vector yt =
[
yt(τ1), ...,yt(τN)

] ′
, the dis-

turbances vector wt =
[
w1t, ...,wNt

] ′
, and the matrices C(λ) is

defined by

Cij(λ) =


1, j = 1

(1− e−λ·τi)/λ · τi, j = 2

(1− e−λ·τi − λ · τie−λ·τi/λ · τi), j = 3
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The parameter µ carries information about the mean of process
{x(t)}. In general, without loss of generality, we can suppose the
{y(t)} and therefore {x(t)} is a zero mean process. This assump-
tion allows us to estimate one parameter less. The model to be
estimated become

xt+1 = Axt + vt vt ∼ NID(0,Q), (27)
yt = C(λ)xt +wt, wt ∼ NID(0,R), t = 1, . . . , T ,

(28)

2.3.2 DNS-GARCH

Koopman in [18] introduces the GARCH component as

yt = C(λ)xt + εt

εt = Dε1t +wt

(29)

where D is N× 1 vector, ε∗t is a scalar disturbance and ωt is a
N× 1 disturbances vector. For identification issues we can im-
pose DD ′ = 1. The disturbances are mutually independent and
their distributions are given by

ε1t ∼ NID(0,ht), wt ∼ NID(0,R), t = 1, ..., T ,

where R typically diagonal while ht is given by

ht+1 = ω1 +α1ε
2
1t +β1ht t = 1, ..., T , (30)

with ω,α,β unknown e such that to satisfy the stationarity. The
matrix variance of yt is C(λ)ΣxC(λ) ′ +Σε(ht) where Σx satisfies
AΣxA

′ − Σx = Q.
As an alternative, the volatility component can be incorpo-

rated in the state equation. In this case, the volatility component
indirectly influences the yields through the state as

xt+1 = Axt +ηt

ηt = Bε2t + vt

vt ∼ N(0,Q), ε2t|Ft−1 ∼ N(0,qt)
(31)
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where B and vt are 3× 1 vectors of loadings and noise terms,
and ε2t carries the garch component and qt has the formulation

qt+1 = ω2 +α2ε
2
2t +β2qt t = 1, ..., T .

The matrices B and D take into account the sensitivity of the
different yields in respect with the GARCH disturbance. It has
been empirically found that short maturity yields are more sen-
sitive to common shocks than long maturity yields.

In the following part of this section we shall give the condi-
tions for stationarity of DNS-XGARCH model defined by

xt+1 = Axt +Bε2,t + vt

ht = ω+αε22,t−1 +βht−1

yt = C(λ)xt +wt,

t = 1, ..., T ,

(32)

vt ∼ N(0,Q), ε2,t | Ft−1 ∼ N(0,ht), wt ∼ NID(0,R)

Theorem 9. Let ω > 0, α > 0, β > 0 and suppose the initial
time to be t0 = 0. The the processes {x(t)} and {y(t)} are jointly
asymptotically second-order stationary as t → ∞ if and only if
are satisfied

1. all the eigenvalues of A is strictly less than 1,

2. α+ β < 1, that is, the process ε2,t is second-order station-
ary.

The variance matrix Σ̄x := limt→∞ Σx(t) is the asymptotic state
variance matrix.

Proof. The proof consists on showing that the matrix Σx(t) con-
verges at Σ̄x.

The variance matrix of the state process at t+ 1 is

Σx(t+ 1) = AΣx(t)A
′ +BΣε(t)B

′ +Q

where

Σε(t) = Eε
∗2
t = Eh2t = ω+αEε22,t−1 +βEht−1

= ω+αΣη(t− 1) +βΣε(t− 1)

= ω+ (α+β)Σε(t− 1).
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Thus, we have

Σε(t) = (α+β)tΣε(0) +ω

t−1∑
i=0

(α+β)i (33)

and we obtain

Σx(t) = A
tΣx(0)(A

′)t

+

t−1∑
k=0

At−1−kBΣε(k)B
′(A ′)t−1−k +

t−1∑
k=0

At−1−kQ(A ′)t−1−k.

Using (33) it follows

Σx(t) = A
tΣx(0)(A

′)t

+

t−1∑
k=0

At−1−kB

{
(α+β)kΣη(0) +ω

k−1∑
i=0

(α+β)i

}
B ′(A ′)t−1−k

+

t−1∑
k=0

At−1−kΣv(A
′)t−1−k

Σx(t) = A
tΣx(0)(A

′)t +
t−1∑
k=0

At−1−kB(α+β)kΣη(0)B
′(A ′)t−1−k

+ω

t−1∑
k=0

k−1∑
i=0

(α+β)iAt−1−kBB ′(A ′)t−1−k

+

t−1∑
k=0

At−1−kΣv(A
′)t−1−k

Now suppose that α+β < 1. This implies

(α+β)k < 1 ∀k > 0
k−1∑
i=0

(α+β)i <

∞∑
i=0

(α+β)i =
1

1− (α+β)
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and hence it results

Σx(t) < A
tΣx(0)(A

′)t

+

t−1∑
k=0

At−1−kBΣη(0)B
′(A ′)t−1−k

+
ω

1− (α+β)

t−1∑
k=0

At−1−kBB ′(A ′)t−1−k

+

t−1∑
k=0

At−1−kΣv(A
′)t−1−k

Now suppose A is stable. We have, as t→∞,

lim
t→∞Σx(t) 6

∞∑
k=0

At−1−kBΣη(0)B
′(A ′)t−1−k

+
ω

1− (α+β)

∞∑
k=0

At−1−kBB ′(A ′)t−1−k

+

∞∑
k=0

At−1−kΣv(A
′)t−1−k.

Since the matrix A is stable all the series converge and this
proves that

0 < lim
t→∞Σx(t) <∞

The stationarity conditions of DNS-YGARCH model are the
same of those of DNS-XGARCH. In addiction, if the process
{x(t)} is gaussian, the DNS-YGARCH model is also ergodic.

2.3.3 SSGARCH

Here we will introduce two GARCH models in state space frame-
work.



2.3 dns-garch models 31

The first model is given by
x(t+ 1) = ax(t) + v(t) {v(t)} i.i.d. Var(v) = σ2v

y(t) = σ(t)x(t)

σ(t)2 = ω+

q∑
i=1

αiy(t− 1)
2 +

p∑
j=1

βjσ(t− 1)
2

(34)

First we are interested to see if this model is effectively a GARCH
model, that is, consistent with Definition 1. The following theo-
rem shows that the model Equation 34 is partially a GARCH
model.

Theorem 10. Suppose the process {v(t)} to be i.i.d. with zero
mean and variance σ2v. Then, the model defined by Equation 34

is a GARCH process according to the Definition 1 if we substi-
tute the condition E(yt | Ft−1) = 0 with

E(yt | Ft−1) = k(Ft−1) ∃k

where k depends on past observations. By this substitution
it follows that the process {yt} it is not a d-martingale but zero
mean white noise process.

Proof. Let define Ft−1 as the space of past observations of pro-
cess {yt}. The following property are satisfied:

1. Ft ⊂ Ft+1;

2. {yt, t ∈ Z} is Ft-measurable;

3. E|y(t)| <∞.

The third condition follows by

E|y(t)| = E|σ(t)| · |x(t)| < KE|x(t)| <∞ ∃ K.

provided that {x(t)} is Gaussian.
Finally, we have

E
[
y(t) | Ft−1

]
= σ(t)E[x(t) | Ft−1]
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where E[x(t) | Ft−1] is provided by the Kalman filter and it is
different from zero, in general.
The conditional variance is

E[y2t | |Ft−1] = E[σ(t)
2x(t)2 | Ft−1] = σ(t)

2E[x(t)2 | Ft−1]

where E[x(t)2 | Ft−1] is provided by the Kalman filter. This result
is compatible with time-varying conditional variance hypoth-
esis. The difference with the variance defined in Definition 1

is the term E[x(t)2
∣∣Ft−1] which can be interpreted as a time-

varying coefficient before the heteroscedastic variance.
Moreover in Theorem 11 we proof the unconditional variance of
process {y(t)} is constant under the stationarity assumption.

The following theorem gives a necessary and sufficient condi-
tion for the second-order stationarity for the GARCH(1,1) model.
It can merely generalize with some more calculus to GARCH(p,q)
process.

Theorem 11. Suppose {v(t)} to be i.i.d.. If are satisfied the condi-
tions

ασ2x +β < 1, |a| < 1

where σx is the stationary state variance of process {x(t)}, then
then process y(t) is second-order stationary.

Proof. For the stationarity of {y(t)} the process {x(t)} must be
stationary, that is, the required condition is

|a| < 1.

Under this condition we have

σ2x =
σ2v

1− a2
> σ2v as t→∞

Then, asymptotically, the unconditional variance of process y(t)
is

Ey(t)2 = σ2xEσ(t)
2
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Thus we need to evaluate Eσ(t)2. It follows that

Eσ(t+ 1)2 = ω+ Eσ(t)2E
(
αx(t)2 +β

)
Eσ(t+ 1)2 = ω+ Eσ(t)2

(
ασ2x +β

)
Eσ(t)2 = ω

∞∑
k=0

(
ασ2x +β

)k
as t→∞

and if and only if
(
ασ2x +β

)
< 1 the stationary variance is

Eσ(t)2 =
ω

1− (ασ2x +β)

Finally we have

Ey(t)2 =
σ2xω

1− (ασ2x +β)
.

Let suppose y(0) = 0. The process y(t) can be rewritten avoid-
ing the state space form as

y(t) = σ(t)

t−1∑
k=0

akv(t− 1− k) as t→∞
In particular, we have

y(t) = σ(t)

t−1∑
k=0

akv(t− 1− k)

y(t+ 1) = σ(t+ 1)

t∑
k=0

akv(t− k)

= σ(t+ 1){

t−1∑
k=0

akv(t− k) + v(t)}

and thus it can be easily found the auto-regressive form

y(t+ 1) = a
σ(t+ 1)

σ(t)
y(t) + σ(t+ 1)v(t)
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Defining γ(t+ 1) = aσ(t+1)
σ(t) we have

y(t+ 1) = γ(t+ 1)y(t) + σ(t+ 1)v(t) (35)

where γ(t+ 1), σ(t+ 1) are known at instant t and y(t) and v(t)
are uncorrelated. Thus, the one-step prediction is given by

y(t+ 1|t) = γ(t+ 1)y(t)

The conditional one-step variance prediction is

E[y(t+ 1)2|t] = γ(t+ 1)2E[y(t)2|t] + σ(t+ 1)2E[v(t)2|t]

= γ(t+ 1)2E[y(t)2|t] + σ2vσ(t+ 1)
2

= γ(t+ 1)2y(t)2 + σ2vσ(t+ 1)
2. (36)

The second model we propose is given by
x(t+ 1) = ax(t) + v(t) {v(t)} i.i.d.(0,σ2v)

y(t) = cx(t) + σ(t)ε(t) {ε(t)} i.i.d. (0,σ2ε)

σ(t)2 = ω+αy(t− 1)2 +βσ(t− 1)2

(37)

The following theorem gives a necessary and sufficient condi-
tion for the stationarity.

Theorem 12. The model Equation 37 is second-order stationary
if and only if

ασ2ε +β < 1

and the stationary variance is

Ey(t)2 = c2σ2x + σ
2
ε

ω+αc2σ2x
1− (ασ2ε +β)

Proof. If |a| < 1 the process {x(t)} is asymptotically stationary
and then the stationary variance is

Ey(t)2 = c2σ2x + Eσ(t)
2σ2ε

Eσ(t)2 = ω+αEy(t− 1)2 +βEσ(t− 1)2
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which yields

Eσ(t)2 = ω+α
{
c2σ2x + Eσ(t− 1)

2σ2ε

}
+βEσ(t− 1)2

= ω+αc2σ2x + (ασ2ε +β)Eσ(t− 1)
2

Letting t→∞ we obtain

Eσ(t)2 =
(
ω+αc2σ2x

) ∞∑
i=0

(ασ2ε +β)
i

=
ω+αc2σ2x
1− (ασ2ε +β)

if and only if ασ2ε +β < 1. It follows that

Ey(t)2 = c2σ2x + σ
2
ε

ω+αc2σ2x
1− (ασ2ε +β)

Concerning all the state space models presented in this section
a remark have to be done: all these models are conditionally
Gaussian on the past and obviously the term the term that the
Kalman filter minimizes is

E
[
(x− x̂)(x− x̂) ′

∣∣Ft−1]
with the same formulas for prediction and updating. See Chen
and Kumar [5] for details.





3
S T O C H A S T I C
S TA B I L I T Y

In this section we will explore the stochastic stability of GARCH
models. In particular we will study the geometrical ergodicity
and the β-mixing properties. This last properties require the an
heavy use of Markov Chian theory. We will refer to Meyn and
Tweedie [19].

3.1 GEOMETRIC ERGODICITY AND MIXING

In this section we shall study the Geometric Ergodicity and Mix-
ing properties of GARCH models. We will need elements of
Markov chain theory, well explained in [19].

Let be Xt a Markovian process evolving on state space E with
a σ-field F. Our objective is study the converge of the probability
Pµ(X)(Xt ∈ ·) to a probability π(·) independent on the initial
probability µ, as t→∞. We need µ to be invariant, i.e stationary,
and this is satisfied if there exists a probability measure π such
that, ∀π,

∀B ∈ F, Pµ(Xt → B)→ π(B), ast→ +∞.

A chain {Xt} is said to be ergodic if

‖Pt(x, ·) − π‖ → 0, ast→ +∞ (38)

, where ‖ · ‖ is the total variation norm. This condition is satisfied
if the chain is irreducible, aperiodic and admits a invariant prob-
ability π, for almost all x ∈ E. The mixing property is stronger
than ergodicity. In addiction, condition (38) does not give any in-
formation on convergence rate. We will define a stronger notion
of ergodicity that is geometric ergodicity, that gives a geometrical

37
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rate convergence. The chain {Xt} is called geometrically ergodic if
there exists ρ ∈ (0, 1) such that

∀x ∈ E,
1

ρt
‖Pt(x, ·) − π‖ → 0, ast→ +∞. (39)

Geometric ergodicity imply α and β-mixing (see Section A.3).
Davydov in [7] showed that for an ergodic Markov chain {Xt},
of invariant probability measure π,

βx(k) =

∫
‖Pk(x, ·) − π‖π(dx).

Then, if Equation 39 holds, that is {Xt} is geoemtrically station-
ary,

βx(k)→ 0 as t→∞
which is the condition for β-mixing. In general, it is not easy
to verify the properties of recurrence, existence of an invariant
probability measure and geometric ergodicity. The follow theo-
rem provides a way to prove geometric ergodicity for several
Markov processes.

Theorem 13 (Feign and Tweedie). Assuming that:

1. {Xt} is a Feller chain;

2. {Xt} is φ-irreducible;

3. there exists a compact set A ⊂ E such that φ(A) > 0 and a
continuous function V : E→ R+ satisfying

V(x) > 1,∀x ∈ A, (40)

and for δ > 0,

E{V(Xt)|Xt−1 = x} 6 (1− δ)V(x), ∀x /∈ A. (41)

Then {Xt} is geometrically ergodic.

The condition (3.) is named drift criterion. Indeed, V can be
seen as a energy function and when the chain is outside the
center A of the state space, the energy is dissipated on average.
When the chain lies inside A, the energy function is bounded
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since A is compact and V is continue. For some models, the
drift criterion is too restrictive because is based on in only one
step transitions. Meyn and Tweedie [19] adapt the criteria to
transition in n steps.

Theorem 14 (Geometric ergodicity criterion). Assuming that:

1. {Xt} is a Feller chain;

2. {Xt} is φ-irreducible;

3. there exists a compact set A ⊂ E such that φ(A) > 0, an
integer n > 1 and a continuous function V : E → R+

satisfying

V(x) > 1, ∀x ∈ A, (42)

and for δ > 0 and b > 0,

E{V(Xt+n)|Xt−1 = x} 6 (1− δ)V(x), ∀x /∈ A (43)
E{V(Xt+n)|Xt−1 = x} 6 b ∀x ∈ A (44)

Then {Xt} is geometrically ergodic.

The compactness condition of A can be replaced by a small
set if the function V is bounded on A.

3.1.1 Geometric ergodicity of GARCH

We will focus on GARCH(1,1) since only ths is used on state
space framework. Consider the GARCH(1,1) model{

yt = σ
1
2
t εt

ht = ω+αy2t−1 +βσ
2
t−1

(45)

where ω > 0, α > 0, β > 0 and {εt} as usual. Let us make an
assumption

Assumption 1. The law Pε of process {εt} is absolutely contin-
uous, of density f with respect to the Lebesgue measure λ on
(R,B(R)). We assume that

ε0 := inf{ε|ε > 0, f(ε) > 0} = inf{−ε|ε < 0, f(ε) > 0},
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and that there exists τ > 0 such that(
−ε0 − τ,−ε0

)
∪
(
ε0, ε0 + τ

)
⊂ {f > 0}.

This imply ε0 = 0.

Now we are ready to present the following theorem.

Theorem 15. Under Assumption 1 and if

E log(αε2t +β) < 0,

the strictly stationary solution of the GARCH(1,1) model (45) is
such that the Markov chain {σt} is geometrically ergodic and the
process {yt} is geometrically β-mixing.
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I D E N T I F I C AT I O N

A relevant part of finance theory still assumes that the prices
follow a random walk process. If significant sample autocor-
relations are detected in the price variations it means the ran-
dom walk hypothesis drops. As we saw in previous chapter
the second-order stationary solution of a GARCH process is a
white noise, that is, with theoretical autocorrelation such that
ρ(h) = Eytyt+h/Wy

2
t = 0 ∀h 6= 0. Thus, the first step is to

verify the absence of correlation. The second step consists on
checking for correlation in the squared returns. Given observa-
tions y1, ...,yN the theoretical autocorrelations of a centered pro-
cess {yt} are generally estimated by the sample autocorrelations
(SACRs)

ρ̂(h) =
γ̂(h)

γ̂(0)

with

γ̂(h) = γ̂(−h) =
1

N

N−h∑
i=1

ytyt+h h = 0, 1, . . . ,N− 1.

while for sample autocorrelations of squared return we have

γ̂(h) = γ̂(−h) =
1

N

N−h∑
i=1

y2ty
2
t+h h = 0, 1, . . . ,N− 1.

If we find that the variance process exhibits some correlation,
a GARCH framework should be considered. In order to quan-
tify the correlation we use formal hypothesis tests, such as the
Ljung-Box-Pierce Q-test and Engle’s ARCH test.
Under the null hypothesis that a time series is a random se-
quence of Gaussian disturbances (i.e., no ARCH effects exist),
this test statistic is also asymptotically Chi-Square distributed.
Third step consists on estimating the model parameters.

41
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In order to provide estimates of the parameters we use the con-
cept of Maximum Likelihood.
For pure GARCH models we will use the Quasi Maximum Like-
lihood Estimator (QMLE): term "Quasi" refers to the non-Gaussianity
of noise ε(t). Indeed, in general is a i.i.d process.
The estimation of GARCH models will be discussed in Section 4.2.
In Section 4.3 we will discuss the estimation problem of DNS-
GARCH models.

For state space models with GARCH noise and SSGARCH dis-
cussed in Section 2.2 we must use a slightly different framework.
As it is, we cope with the state equation representing the unob-
served latent process. Being the state value unknown we can
not directly employ the Maximum Likelihood Maximization. A
well known technique, dealing with this problem, is Expectation-
Maximization (EM) algorithm. Basically, given an initial guess of
vector parameters θ, it is an iterative procedure that follows the
steps:

• perform the E-step, that is, apply the optimal linear pre-
diction by the Kalman filter;

• perform the M-step, that is, find θ such that it maximizes
the log-likelihood function L(·, θ)

• repeat steps 1 and 2 with the new current estimation of θ
until the algorithm converges.

Finally, the last step (see Section 4.5) concerns the validation
of the fitted model and in more detail we will compare the resid-
uals, conditional standard deviations, and returns.

First of all, we consider the property of white noise of the
general stationary GARCH(p,q) process.

4.1 VERIFICATION OF WHITE NOISE PROPERTY

Consider the usual GARCH(p,q) model
yt =

√
htεt

ht = ω0 +

q∑
i=1

α0iy
2
t−i +

p∑
j=1

β0jht−j, ∀t ∈ Z,
(46)
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with {εt} a i.i.d process and satisfying the second-order assump-
tion.

Consider ρ̂m = (ρ̂(1), . . . , ρ̂(m)) ′ and γ̂m = (γ̂(1), . . . , γ̂(m)) ′

with obvious meaning of notation given the N observations of
process yt. Then, it follows

Theorem 16. If {yt} is the stationary sulution of the GARCH(p,q)
model and if Ey2t is finite, then, when N→∞,

√
Nγ̂m → N

(
0,Σγ̂m

)
and

√
Nρ̂m → N

(
0,Σρ̂m

)
where

Σγ̂m = E


y2ty

2
t−1 y2tyt−1yt−2 · · · y2tyt−1yt−m

y2tyt−1yt−2 y2ty
2
t−2

...
... . . .

y2tyt−1yt−m · · · y2ty
2
t−m


is nonsingular and

Σρ̂m =
1(

Ey2t
)2Σγ̂m .

If the law of {εt} is symmetric then Σγ̂m is diagonal.

The sample autocorrelation function (ACF) and partial auto-
correlation function (PACF) are useful qualitative tools to assess
the presence of autocorrelation at individual lags. The Ljung-
Box Q-test is a more quantitative way to test for autocorrela-
tion at multiple lags jointly. The choice of m affects test perfor-
mance. If N is the length of the observed time series, choosing
m = ln(N) is recommended. The Ljung-Box test statistic is given
by

Q(m) := N(N+ 2)

m∑
i=h

ρ̂2(h)

N− h

and it rejects the strong white noise hypothesis if Q is greater
than the (1−α)-quantile of χ(m)2 since, under the null hypoth-
esis, Q(m) follows a χ(m)2 distribution. Unfortunately this test
is not robust to condition heteroscedasticity since it assume the
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process is strong white noise. It can be shown that under as-
sumption of Theorem 16 the statistic

Q(m) = Nρ̂ ′mΣ
−1
ρ̂m
ρ̂m

asymptotically follows a χ(m)2 distribution.

4.2 QMLE FOR PURE GARCH AND ARMA-GARCH

QMLE is the most used method to estimate GARCH because it
provides good asymptotic behaviors as consistency and normal-
ity under the assumption of stationarity and some other mild
assumptions.

In Section 4.2.1 will be presented this method for pure GARCH
Although the variable εt is i.i.d. and not in general gaussian, it
will be demonstrated that the gaussian log-likelihood provides
consist estimates and asymptotic normality. The terms "Quasi"
refer to the assumption that εt is gaussian.

4.2.1 QLME for GARCH models

Suppose the observations y1, ..,yN follow a stationary GARCH(p,q)
process defined as

y(t) =
√
h(t)ε(t)

h(t) = ω0 +

q∑
i=1

α0iy(t− i)
2 +

p∑
j=1

β0jh(t− j), ∀t ∈ Z,

(47)

where ε(t) is i.i.d with variance 1, ω0 > 0, α0i > 0 and β0j > 0.
Assume the orders p and q are known. The vector of parameters
to be estimated is

θ = (ω,α1, ...,αq,β1, ..,βp) ′

and it belongs to the parameter space

Θ ⊂ (0,∞)× [0,∞)p+q



4.2 qmle for pure garch and arma-garch 45

The notation θ0 refers to the true parameters, that is

θ0 = (ω0,α01, ...,α0q,β01, ..,β0p) ′.

For the sake of clarity, given a time-varying variable f(t) let use
the notation f(t) = ft. Given the initial conditions y0, . . . ,y1−q
and h̃0, . . . , h̃1−p, the conditional Gaussian likelihood is given by

LN(θ) =

N∏
t=1

1√
2πh̃t

exp
(
−
y2t
2h̃t

)

where, for t > 1, h̃t are defined as in Equation 47. If process is
wide stationary, the unknown initial values can be chosen as the
unconditional variance and so

y20 = · · · = y21−q = h̃0 = · · · = h̃1−p =
ω

1−
∑q
i=1 αi −

∑p
j=1 βj

(48)

Defining x = (y1, . . . ,yN), the estimated parameter θ̂(x) ∈ Θ
maximizes L(θ), that is

θ̂N = arg max
θ∈Θ

LN(θ). (49)

Under gaussian assumption and taking the log-likelihood, it re-
sults that the function to be maximized is given by

−
1

2

N∑
i=1

(
log h̃t +

y2t
h̃t

)
and it is equivalent to minimizing, with respect to θ,

l̃(x, θ) =
1

N

N∑
i=1

(
log h̃t +

y2t
h̃t

)
(50)
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In order to find θ̂, it is necessary to cancel the derivative of
l̃(x, θ), that is,

1

N

N∑
t=1

(
y2t − h̃t

) 1
h̃2t

∂h̃t

∂θ
= 0. (51)

Similarly, define

l(x, θ) =
1

N

N∑
i=1

(
loght +

y2t
ht

)
.

To show the strong consistency, we make the following as-
sumption.

A1: θ0 ∈ Θ and Θ is compact.

A2:
∑p
j=1 βj < 1 ∀θ ∈ Θ.

A3: ε2t has nondegenerate distribution and Eε2t = 1.

A4:
∑q
i=1 αiz

i and
∑q
i=1 βiz

i are coprime,
∑q
i=1 αi 6= 0, and

α0q +β0p 6= 0.

Under these assumptions, it follows

Theorem 17 (Consistency of QMLE). ] Let θ̂N be the estimator
satisfying Equation 49 with the initial conditions Equation 48,
then

θ̂N → θ0, as n→∞ a.s.

Proof. Let rewrite the GARCH component of model Equation 47

in the auto regressive form

ht = ct +Bht−1 (52)

where

ht =


ht

ht−1
...

ht−p+1

 , ct =


ω+
∑q
i=1 αiy

2
t−i

0
...
0

 ,
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B =


β1 β2 · · · βp
1 0 · · · 0
...
0 · · · 1 0


We will establish the following intermediate results.

1. limN→∞ supθ∈Θ |lN(θ) − l̃N(θ)| = 0, a.s.

2. ∃t ∈ Z such that ht(θ) = ht(θ0) a.s.⇒ θ = θ0

3. Eθ0 |lt(θ0)| <∞, and if θ 6= θ0, Eθ0lt(θ) > Eθ0lt(θ0).

4. For any θ 6= θ0, there exists a neighborhood V(θ) such that

lim
N→∞ inf

θ∗∈V(θ)
l̃N(θ

∗) > Eθ0l1(θ0) a.s.

1 .Asymptotic irrelevance of the initial values. Iterating (52) we
obtain

ht =

∞∑
k=0

Bkct−k.

Let ht be the vector obtained by replacing ˜ht−i by ht−i, and let ct
be the vector obtained by replacing y20, . . . ,y

2
t−q by by the initial

values (48).
Then, it is easy to see that almost surely

sup
θ∈Θ
‖ht − h̃t‖ = sup

θ∈Θ

∥∥∥∥ q∑
i=1

Bt−k(ct − c̃t) +Bt(h0 − h̃0)
∥∥∥∥ 6 Kρt ∀t.

(53)

where K is a opportune constant and ρ < 1. The last inequality
follows by the structure of B and assumption A2. For x > 0 we
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have log x 6 x− 1. It follows that, for x,y > 0,
∣∣∣log x

y

∣∣∣ 6 |x−y|
min(x,y) .

We thus have almost surely, using (53),

sup
θ∈Θ

∣∣lN(θ) − l̃N(θ)∣∣ 6 1

N

N∑
i=1

sup
θ0∈Θ

{∣∣∣∣ h̃t − hth̃tht

∣∣∣∣y2t + ∣∣∣∣log
(
h2t
h̃2t

)∣∣∣∣}

6
K

N

{
sup
θ∈Θ

1

ω2

}
N∑
t=1

ρty2t +
K

N

{
sup
θ∈Θ

1

ω

}
N∑
t=1

ρt

(54)

Given that
∑∞
t=1 ρ

t = 1
1−ρ we have 1

N

∑N
t=1 ρ

t → 0 as N → ∞.
Then, from assumption A1, using the Borel-Cantelli’s lemma
and the Markov’s Inequality we are allowed to show ρty2t → 0

a.s. Finally, applying the first Cesaro’s theorem we have

1

N

N∑
t=1

ρty2t → 0

and point 1 follows.
2. Identifiability of the parameter. Assume that ht(θ) = ht(θ0)

a.s.. Let define

Aθ(z) =

q∑
i=1

αiz
i, Bθ(z) =

q∑
i=1

βiz
i. (55)

Then we obtain{
Aθ(z)

Bθ0(z)
−

Aθ0(z)

Bθ(z)

}
y2t =

ω0
Bθ0(1)

−
ω0

Bθ(1)
a.s. ∀t.

If the operator between braces were not null, then there would
exist a constant linear combination of the y2t−i, i > 0. Thus the
linear innovation of the process (y2t ) would be equal to zero.
Then, under assumption A3,

y2t −Eθ0(y
2
t |y

2
t−1, . . . ) = ht(θ0)(ε

2
t −1) 6= 0, with not null probability.
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We thus have

Aθ(z)

Bθ0(z)
=

Aθ0(z)

Bθ0(z)
, ∀|z| 6 1 and

ω

Bθ(1)
=

ω

Bθ0(1)
.

(56)

Under assumption A4 it follows that Aθ(z) = Aθ0(z), Bθ(z) =

Bθ0(z) and ω = ω0.
3. It can be shown that Eθ0lt(θ0) is well defined in R. Since for

all x > 0, log x 6 x− 1 with equality iff x = 1, we obtain

Eθ0lt(θ) − Eθ0lt(θ0) = Eθ0 log
ht(θ)

ht(θ0)
+ Eθ0

ht(θ0)

ht(θ)
ε2t − Eθ0ε

2
t

(57)

= Eθ0 log
ht(θ)

ht(θ0)
+ Eθ0

ht(θ0)

ht(θ)
− 1 (58)

> Eθ0

{
log

ht(θ)

ht(θ0)
+ log

ht(θ0)

ht(θ)

}
= 0

(59)

with equality if and only if ht(θ0)
ht(θ)

= 1 a.s., that is, for point 3 if
and only if θ = θ0.
4. Compactness of Θ and ergodicity of lt(θ). See Francq and
Zakoïan [13].

It can be shown the Asymptotic Normality of the estimator.
Let consider the following assumptions

A5: θ belongs to the interior of Θ.

A6: ν = Eε4t <∞.

Then, it follows the theorem

Theorem 18 (Asymptotic Normality of QMLE). Under assump-
tion A1-A6,

√
N(θ̂N − θ0)

L→ N
(
0, (ν− 1)J−1

)
where

J := Eθ0

(
∂lt(θ0)

∂θ∂θ ′

)
= Eθ0

(
1

h2t(θ0)

∂ht(θ0)

∂θ

∂ht(θ0)

∂θ ′

)
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is a positive definite matrix.

Proof. The proof is split in several parts. It shows the integra-
bility of the derivatives of the criterion at θ0, the invertibility
of J, uniform integrability of the third-order derivatives of the
criterion, asymptotic decrease of the effect of the initial values ,
the CLT for martingale increments and finally the ergodic theo-
rem.

4.3 PARAMETER ESTIMATION: A KALMAN FIL-
TER APPROACH

So far, we have presented the QMLE estimation for time series.
Now we will extend this results to state space models introduc-
ing the EM algorithm. Here we will not specify the distribution
of noises, but we consider it as i.i.d. white noise process. In can
be shown (for example see Wu [24]) that under general condi-
tion the EM algorithm converges providing consistent estimates
of parameters. In our case, we note that the state-space models
we will employ are in general non-Gaussian but they are condi-
tionally Gaussian to the strict past.

4.3.1 EM algorithm with Kalman filter

Let us now, a brief explanation of EM algorithms, in the general
linear state space model. Suppose to consider the state space
model {

x(t+ 1) = Ax(t) + v(t)
y(t) = Cx(t) + w(t)

E(v(t)v(τ) ′) =

{
Q for t = τ
0 otherwise

E(w(t)w(τ) ′) =

{
R for t = τ
0 otherwise

with the notation:

• y(t) denotes an p× 1 vector of observable variables.
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• x(t) denotes a possibly unobserved n× 1 state vector.

• v(t) and w(t) are white noise i.i.d with zero mean.

We will make the assumptions:

• The disturbances v(t) and w(t) are assumed to be uncor-
related at all leads and lags

E(v(t)w(τ) ′) = 0 for all t and τ

• The initial state and the disturbances are uncorrelated, i.e.

E{x0
[
v(t) ′, w(t) ′

]
} = 0, ∀t > t0

• A has all stable eigenvalues, i.e., the process is stationary.

Let denote
Ft ≡ (yt, yt−1, ..., y1, xt, xt−1, ..., x1)

and denote
x̂t+1|t ≡ Ê(xt+1|Ft)

x̂t|t ≡ Ê(xt|Ft)

Pt+1|t ≡ E
(
xt+1 − x̂t+1|t

)(
xt+1 − x̂t+1|t

) ′
It can be demonstrated that the equation describing the Kalman
filter are

x̂t+1|t = Ax̂t|t−1 +K(t)
(

y(t) −Cx̂t|t−1

)
K(t) = APt|t−1C

′(CPt|t−1C
′ + R)−1

Pt+1|t = A

(
Pt|t−1 − Pt|t−1C

′(CPt|t−1C
′ + R)−1CPt|t−1

)
+Q

Given the stationarity the initial conditions is set as

Ex(0|− 1) = E(x) = 0

P(0|− 1) = Σ

where Σ is the solution of

Σ = AΣA ′ +Q
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Besides the predictions, the Kalman filter can be used to identify
the unknown parameters A, C, D, Q, R. This approach is based
on the iterative maximization of an opportune likelihood func-
tion. In order to be clear, let suppose T observations (y1, . . . ,yT )
are available. Once obtained the Kalman predictions we have to
find the parameters maximizing the log-likelihood given all the
information, that is, the likelihood function

L(y1, . . . ,yT ; θ) =
T∏
t=1

f(yt|Ft−1; θ)

If the disturbances {v, w}Tt=1 are Gaussian then the conditional
distribution of y(t) is Gaussian:

y(t)|Ft−1 ∼ N

(
(Cx̂t|t−1),CPt|t−1C

′ + R

)
and the likelihood function is

fyt|Ft−1(y(t)|x(t),F) = (2π)−n/2|CPt|t−1C
′ + R|1/2

× exp

−
1

2

(
y(t) −Cx̂t|t−1

) ′︸ ︷︷ ︸
z(t) ′

(CPt|t−1C
′ + R)−1︸ ︷︷ ︸

F(t)−1

(
y(t) −Cx̂t|t−1

)︸ ︷︷ ︸
z(t)


And the sample log-likelihood function is

log
(
fYt|Xt,F(yt|Ft−1)

)
=

T∑
t=1

log fyt|Ft−1
(
yt|F_t− 1bigr)

= −
nT

2
log(2π) −

1

2

T∑
t=1

log |Ft|−
1

2

T∑
t=1

z ′tF
−1
t zt.

(60)

The identification algorithm consists of the follow step:

1. Construct a guess of initial numerical values for state space
parameters A,C,D,Q,R.
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2. Iterate on the Kalman filter

x̂(t+ 1|t) = Ax̂(t|t− 1) +K(t)
(

yt −Cx̂(t|t− 1)
)

K(t) = AP(t|t− 1)C ′(CP(t|t− 1)C ′ + R)−1

Λ(t) = C ′(CP(t|t− 1)C ′ + R)

P(t+1|t) = A

(
P(t|t−1)−P(t|t−1)C ′Λ(t)−1CP(t|t−1)

)
+Q

to obtain estimates of sequences
{

x̂(t+ 1|t)
}T
t=1

and
{
P(t+

1|t)
}T
t=1

.

3. Use the sequences
{

x̂t+1|t
}T
t=1

and
{
Pt+1|t

}T
t=1

to calculate
the value for the log likelihood function.

4. Use numerical optimization methods to make better guesses
as to the state space parameters until the log-likelihood
function is maximized.

5. Go to step 2.

It is important to note that there must be constraints on A, C,
D, Q, and R due to identification problems. In this thesis we
use the MATLAB Optimization package to maximize the log-
likelihood function. It implies Nelder-Mead algorithm. More-
over, each on step 2 we can calculate the information matrix
N×N (NumerOfParameters = N) with elements (i, j)

Iij(θ) =
1

2

∑
t

{
tr

[
F−1t

∂Ft

∂θi
F−1t

∂Ft

∂θj

]}
(61)

+ E
∑
t

(
∂zt

∂θi

) ′
F−1t

∂zt

∂θi
, i, j ∈ {1, . . . ,N}

and by dropping the expectation operator from this expression
we obtain a result that is asymptotically equivalent and in our
case easier to evaluate. If we remember the Cramer-Rao inequal-
ity

Var(θ̂) > I(θ)−1
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and that the maximum likelihood asymptotically satisfies the
equality we obtain, as T →∞

Var(θ̂) = I(θ)−1.

In this way we found an estimate of estimator variance. This
gives us an insight about the estimator significance. Unfortu-
nately, we need to evaluate the derivatives of Ft and zt. They
result

∂zt

∂θi
= −C

∂xt|t−1

∂θi
−
∂C

θi
xt|t−1

∂Ft

∂θj
=
∂C

∂θj
Pt|t−1C

′ +C
∂Pt|t−1

∂θi
C ′ +CPt|t−1

∂C ′

θi
∂xt|t−1

∂θi
=
∂A

∂θi
x(t− 1|t− 1) +A

∂xt−1|t−1

∂θi

(
+
µ

∂θi

)
∂Pt|t−1

∂θi
=
∂A

θi
Pt−1|t−1A

′ +A
∂xt−1|t−1

θi
A ′ +APt−1|t−1

∂A

θi
+
∂Q

θi

∂xt|t

θi
=
∂xt|t−1

∂θi
+
∂Pt|t−1

∂θi
C ′F−1t zt + Pt|t−1

∂C

∂θi
F−1t zt−

Pt|t−1C
′F−1t

∂Ft

∂θi
F−1t + Pt|t−1C

′F−1t
∂zt

∂θi

4.4 DIEBOLD-NIELSON-SIEGEL MODELS

In this section we will consider the identification problem of
state space models with GARCH(1,1) errors. We will concentrate
on DNS-GARCH models but all the discussion below can be
banally generalized on more general system state space system.

Now let consider the DNS model Equation 27- Equation 28

(with the factor λ to be constant over time) rewritten with con-
trol theory parameters notation. Since we are interested to esti-
mate the volatility, let insert ε1,t in the state vector forming the
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augmented state z(t) = (x(t) ′, ε1(t)) ′. The augmented model is
given by

z(t+ 1) =

[
A 03

0 ′3 0

]
z(t) +

[
v(t)

ε1(t+ 1)

]
t = 0, . . . , T − 1

(62)

that rewritten is

z(t+ 1) = Āz(t) +

[
v(t)

ε1(t+ 1)

]
(63)

[
v(t)

ε1(t+ 1) | y
t

]
∼ N

(
0,

[
Q 0

0 h(t+ 1)

])

where all parameters are those presented above. As we can see
there is no input but a mean coefficient is present. Thus the
state equation we are considering is The measurement equation
is given by

y(t) = C(λ)x(t) +Dε1(t)

=
[
C(λ) D

]
z(t)

= C̄z(t) +w(t) w ∼ N(0,R) t = 0, ..., T − 1
(64)

If the volatility component appears in the state equation the
augmented model becomes

z(t+ 1) =

[
A 03

0 ′3 0

]
z(t) +

[
I B

0 1

][
v(t)

ε2(t+ 1)

]
y(t) =

[
C(λ) 0

]
z(t) + ε(t)

(65)

w(t) ∼ N(0,R),

[
v(t+ 1)

ε2(t+ 1) | y
t

]
∼ N

(
0,

[
Q 0

0 q(t+ 1)

])

where z(t) = (x ′(t), ε2(t)) ′.
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Let rewrite the Equation 62-Equation 64 and Equation 65 with
the usual notation{
z(t+ 1) = Āz(t) +Gn(t+ 1) n(t+ 1)|yt ∼ N(0, Q̄(t+ 1))

y(t) = C̄z(t) +wt w(t) ∼ N(0,R)

When the measurement equation has the GARCH component
we have

G = I4, C̄ =
[
C(λ) D

]
Q̄ =

[
Q 0

0 h(t+ 1)

]
, n(t+ 1) =

[
v(t)

ε1(t+ 1)

]
while when the GARCH component appears in the state equa-
tion we have

G =

[
I B

0 1

]
, C̄ =

[
C(λ) D

]
,

Q =

[
Q 0

0 q(t+ 1)

]
, n(t+ 1) =

[
v(t)

ε2(t+ 1)

]
The prediction step is given by

ẑ(t+ 1 | t) = Āẑ(t | t)

ẑ(t+ 1 | t) = Āẑ(t | t− 1) +K(t)

(
yt − C̄ẑ(t | t− 1)

)
K(t) = ĀP(t | t− 1)C̄ ′(C̄P(t | t− 1)C̄ ′ + R)−1

Pt+1|t = ĀP(t | t)Ā
′ +GQ̄G ′

= A
{
P(t | t− 1)

[
I− C̄ ′Λ−1(t)C̄P(t | t− 1)

]}
Ā ′ +GQ̄G ′

and the update step is given by

ẑ(t+ 1 | t+ 1) = Āẑ(t | t− 1) + L(t+ 1)
[
y(t+ 1) − C̄Aẑ(t | t)

]
P(t+ 1 | t+ 1) =

[
I− L(t+ 1)C̄

]
P(t+ 1 | t)
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where L(t+ 1) is called filter gain and it is

L(t+ 1) = P(t+ 1 | t)C̄ ′Λ(t+ 1)−1

Since h(t+ 1) is a function of the unobserved value ε1(t) and its
past values, we will not be able to compute the necessary value
of h(t+ 1) at time t. If past values of the disturbances ε1(t) were
directly observable, the model would be a conditionally Gaus-
sian one and so the Kalman filter it will be quasi-optimal. Since
the Kalman filter produces the minimum mean square linear es-
timator (conditional on the past), a natural solution would be to
take the expectations of latent variables in (30)

h(t) = ω+αE
[
ε∗2(t) | yt

]
+βh(t− 1) t = 1, ..., T − 1

and E
[
ε21(t) | y

t
]

is precisely the estimate provided by the Kalman
filter. Indeed,

ε1(t− 1) = ε̂1(t− 1 | t− 1) + ε̃1(t− 1)

is the decomposition in estimate and estimation error; it can
easily demonstrated that these two terms are uncorrelated and
so we obtain

E
[
ε21(t− 1) | y

t−1
]

= E
[
ε1(t− 1) | y

t−1
]2

+ E
(
ε1(t− 1) − E

[
ε1(t− 1) | y

t−1
])2

= E ε̂1(t− 1 | t− 1)
2 + E ε̃1(t− 1)

2

where E ε̂1(t− 1 | t− 1)2 is the third element of ẑ(t− 1 | t− 1)

and E ε̃1(t− 1)
2 is the element in the position (3, 3) of P(t− 1 |

t− 1). The initial conditions of the Kalman filter are given by

z(0 | −1) = E z(t) = 0

and

P(0 | −1) =

[
Σx 0

0 h0

]
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where h0 = ω
1−α−β is the unconditional variance, the covariance

matrix of εt is given by

Σε(ht) = EhtDD
′ + R. (66)

and the matrix variance Σx is the solution of

AΣxA
′ − Σx = Q.

It is important to notice that the covariance matrix of ε1(t) it is
not htDD ′+R how Koopman claims. Actually, this last one term
represents the covariance matrix based on past information, that
is

Var(ε(t) | ε1(t)) = htDD
′ + R

with ht deterministic. Once produced the estimates of z(t) by
the Kalman filter at time t = 0, . . . , T − 1, we will use these ones
in the likelihood function in order to estimate the parameters.
Thus, the likelihood function to be maximized is

lT (θ) = −
nT

2
log(2π) −

1

2

T∑
t=1

log |F(t | t− 1)| (67)

−
1

2

T∑
t=1

r(t | t− 1) ′F(t | t− 1)−1r(t | t− 1). (68)

where

r(t | t− 1) = y(t) −Cx(t | t− 1), F(t | t− 1) = CP(t | t− 1)C ′ + R

and the vector of parameters are θ = (A, λ,Q,R,D,ω,α,β) or
θ = (A, λ,Q,R,B,ω,α, beta) respectively in dependence of the
location of GARCH component. The last model, named as DNS-
XYGARCH, is given by

x(t+ 1) = Ax(t) +Bε2(t) + v(t) (69)
y(t) = C(λ)x(t) +Dε1(t) +w(t) (70)
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Defining

η(t) = Bε2(t) + v(t)

ε(t) = Dε1(t) +w(t)

we have

η(t) | xt,yt ∼ N(0,Q+ qtBB
′)

ε(t) | xt,yt ∼ N(0,R+ htDD ′)

Then we apply the Kalman filter to the model

z(t+ 1) = Āz(t) +Gn(t+ 1) (71)
y(t) = C̄z(t) +w(t) (72)

where

z(t) =

 x(t)ε1(t)

η2(t)

 , Ā =

A 03 03

0 ′3 0 0

0 ′3 0 0

 ,

n(t+ 1) =

 v(t)ε1(t)

ε2(t)

 , G =

I3 03 B

0 ′3 1 0

0 ′3 0 1

 , C̄ =
[
C D 0

]

In order to avoid identification issues a restriction is required.
Koopman in [18] suggests the normalization DD ′ = 1 but we
choose to fix ω at a very small value close to zero. The actual
choice for the constraint to avoid identification problems is irrel-
evant to the results of the analysis since all methods are equiva-
lent to a scaling factor.
Finally, we would aspect the parameters to be estimated con-
sistently. Indeed, the DNS-GARCH is estimated with the EM
algorithm, that, under stationary and other mild conditions, pro-
vides consistent estimates.

We remember that the estimation of state space models pre-
sented in Section 2.2 is performed by the EM algorithm and that
the E-step evaluates the optimal estimate minimizing the condi-
tional MSE.
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4.5 VALIDATION

Once obtained the estimated models we want to search for the
most suitable model. In order to do this we can simply com-
pare different models. But the question is: What to compare?
Normally there exists a number of ways to evaluate a model
that, in general, depends on the application. We are interested
to goodness of forecasting, i.e, how well the model is capable of
reproducing and predicting the data (volatility). Thus we will
work with k-step ahead model predictions ŷk(t|m) where m is the
model used. We will use a reasonable way to compare models,
that is, we will compare the cost function

Jk(m) =
1

T

T∑
t=1

|yτ(t) − ŷτ,k(t|m)|2 (73)

where τ is the maturity time considered and y(t) are the yields.
It represents the mean square prediction k-ahead error. To give
a measure of this fit we define

R2 = 1−
Jk(m)

1
T

∑T
t=1 |y(t)|

2
(74)

where y(t) has been detrended to zero mean. Given that the
quantity Jk(m) will depend on the actual data for which the
comparison is made, it is natural to consider the expectation of
the model fit with respect to θT

J̄k(M) = EJ̄k(M(θ̂T ))

A common error is to use the identification data to assess the
quality measure for the model, both in model comparison and
in validation of single model. This error is also made by [18].
While the validation question will be treated in a while, the use
of identification data comports that observation Jk is not an un-
biased estimate of J̄k. On other hand, using validation data yields
an correct estimate of J̄k. Thus we will compare the quantity

Jk(m) =
1

T

T∑
t=1

|yτ(t) − ŷτ,k(t|θ̂T )|
2 (75)
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also known as Root Mean Squared Error (RMSE). There exist
vary model structure selection criteria, such as, AIC, BIC, and
MDL. We will consider AIC and BIC.

The AIC criterion is defined by the formula

2p− 2 ln(L)

where p is the number of parameters and L is the value of likeli-
hood. Given a set of candidate models for the data, the preferred
model is the one with the minimum AIC value. Hence AIC not
only rewards goodness of fit, but also includes a penalty that is
an increasing function of the number of estimated parameters.
The penalty discourages overfitting (increasing the number of
parameters in the model almost always improves the goodness
of the fit). In practice we will use the corrected AIC criteria, i.e.,

AICc = AIC +
2k(k+ 1)

T − k− 1

where T denote the sample size. It is strongly recommended to
use AICc. For example see [3]. The BIC criteria formula is given
by

BIC = −2 lnL+ k ln(T)

with the usual notations. The BIC criterion is similar to AIC, but
it tends to penalize free parameters more strongly than does
AIC.

Other comparison criteria we will use is LR-statistic (Likelihood
Ratio). We note that this statistic is reasonable only if we com-
pare two models M1 and M2 such that M1 ⊂ M2. This is why
the likelihood ratio test compares specifications of nested mod-
els by assessing the significance of restrictions to an extended
model with unrestricted parameters. In our application, we will
use this test to verify GARCH components on noise errors. The
test uses the following algorithm:

• Maximize the log-likelihood function l(θ) under the re-
stricted and unrestricted model assumptions. Denote the
MLEs for the restricted and unrestricted models θ̂CON and

ˆtheta,respectively. In our case θ̂CON is the parameter eval-
uated under the null hypothesis that GARCH component
is assent, i.e, where the model has Gaussian noise.
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• Evaluate the loglikelihood objective function at the restricted
and unrestricted MLEs, i.e., l̂CON = l(θ̂CON) and l̂ = l(θ̂)

• Compute the likelihood ratio test statistic, LR = 2
(
l̂− l̂CON

)
.

• If LR exceeds a critical value (Cα) relative to its asymptotic
distribution, then reject the null, restricted model in favor
of the alternative, unrestricted model. Under the null hy-
pothesis, LR is χ2d distributed with d degrees of freedom.
The degrees of freedom for the test (d) is the number of
restricted parameters and the significance level of the test
α determines the critical value (Cα).

Normally, once the model is fitted, correlation of the standard-
ized innovations are quantified and compared using Q-test and
ARCH test. For ARMA-GARCH and state-space models with
GARCH innovation, for example DNS-GARCH, the validation
procedures is slightly different. The main difference consists on
the role of innovations, meaning that, in the DNS-GARCH case,
the GARCH component represents the model innovation driv-
ing the returns and unobserved processes. Thus, we cannot di-
rectly use tests such as Q-test or Engle’s test to identify het-
eroscedasticity on volatility. In order to validate the GARCH in-
novation hypothesis, we will first fit the homoscedasticity model
to the reduced form and then, we test the heteroscedasticity with
the tests proposed above.

Although in time series models, such as pure-GARCH or ARMA-
GARCH, the GARCH component can be identified analyzing
the residual with the data to be fitted, in state space models
the innovations can be either on state equation or measurement
equation. In other hand, we have available only the process {yt}

while the state process is unobserved and we cannot calculate
the residuals. In order to test the GARCH component on inno-
vation we propose this steps:

1. fit the homoscedasticity model to the reduced form, that
is, without regarding of an eventual GARCH components;

2. if an autocorrelations on squared sresiduals is identified,
proceed to fit the model with the GARCH component only
on state equation.
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3. if an autocorrelations on squared residuals is identified
again and tests validate the heteroscedasticity hypothesis,
it means the GARCH component can also be in measure-
ment equation.

4. fit the model with GARCH components in both state and
measurement equations.

As we know the parameter estimation procedure selects the
best model within the chosen model structure and the constraints.
The problem of validation can be summarized on the following
questions:

• Does the model agree sufficiently well with the observed
data?

• Is the model good enough for our purpose?

• Does the model describe the "true system"?

We shall focus on question 1. To do this will use the residual
analysis.

The residual is the part of the data that the model could not
reproduce, i.e.

ε(t) = y(t) − ŷ(t|θ̂T ) (76)

where is the 1-ahead step prediction. Let us considered the quan-
tity

RTε (τ) =
1

T

T∑
t=τ

ε(t)ε(t− τ) (77)

where 0 6 τ 6 τMAX and τMAX is chosen opportunely small.
If we find this quantity to be not small for h 6= 0, i.e., there is
a correlation among the residuals themselves. This means that
y(t) could have been better predicted. If a model well describe
to true model we will aspect the residual error to be white. Here
we present briefly the Whiteness Test.

We can now understand that the number RTε (t) carries infor-
mation about whether the residuals can be regarded as white.
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Indeed, suppose {ε(t)} is a white noise process with zero mean
and variance λ. Then it can be shown that

1√
T

T∑
t=m

ε(t)

 ε(t− 1)...
ε(t−m)

→ N(0, λ2I) (78)

and the k−th row of this vector is
√
NRTε (k). Therefore, if ε is

white we can show that

N

RTε (0)

m∑
τ=1

RTε (τ)
2 → χ2(m) in law.

This can be regarded as a test statistic. We refuse the null hypoth-
esis, i.e. hypothesis of whiteness with significance α if statistic
values are bigger than kα where Pχ2(m) = α.

We shall also discuss the goodness of fit. Naturally, this is strictly
correlated with the residuals, in particular with the quantity
Equation 75. We define the fitness value as

fit = 100
(
1−

‖y− ŷk(t|θT )‖
‖y−mean(y)‖

)
(79)

where the quantity ‖y− ŷk(t|θT )‖ is the RMSE. Finally, we will
analyze also the filtered errors, that is, the difference between
the observed yield and the filtered estimate obtained from the
Kalman filter. We newly remark that all this work must be done
on validation data and not as does Koopman et al. [18].
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S I M U L AT I O N S

This chapter is concerned about the simulations of the consid-
ered models. Before the estimation process, in Section 5.1 we
shall analyze the data used to perform the simulations in order
to infer some styled facts. In particular, our interest in focused
on to verify heteroscedasticity. In section Section 5.2 we shall
present and discuss the estimation results of various models. In
section Section 5.3 we shall discuss the predictive capacity and
the validation question.

5.1 DATA STATISTICS

In this thesis we will use monthly constant maturity yields of US
government zero-coupon bonds obtain from the Federal Bank
dataset. This dataset consists on monthly yields1 for the the pe-
riod from January 1994 until December 2013. We consider the
maturities of 3, 6, 12, 24, 60, 120, 240 months. We will not con-
sider 1-month maturity since they are only available from 2011

onwards. Identification data starts from January 1994 until De-
cember 2003 while validation data start from January 2004 until
December 2013. In some figure will consider only the period
2007-2013 as period 2004-2007 has no significance for our pur-
poses, that is, we are interested in volatile periods. Figure 6 con-
sists on the so called cross section of the yields over the sam-
ple period. As we can see interest rates has heavily varied over
time. The long term trend is downwards and short term interest
rates approach zero. It is interesting to see two sudden variation,
namely in mid-end 2011 and 2008: they corresponds to twin tow-
ers’ attack and financial crisis, respectively.

At this point a spontaneous question arises: Can we already
say anything about the heroscedasticity in the data? As we dis-
cussed in Section 4.5 we can verify the presence of GARCH ef-

1 The monthly yields are simply the mean of daily yields.

65



66 simulations

Figure 6: Cross section of yields from 1994 until December, 2013. The
most significant variations are in correspondence of Twin
Towers attack 2001 and mortgage crisis 2008, respectively.

fect by the analysis of returns and squared returns. First, let us
convert the yields in log returns. The 3, 12, 60, 120-months log
returns are presented in Figure 7 and their ACF is presented
in Figure 8. The autocorrelation slowly decreases and this indi-
cates that we are nearby the non-stationarity region. This will be
confirmed later. Without regarding the squared return analysis,
we can see evident clustering phenomenon on returns. This tell
us that high probably there exists an ARCH behavior, at least.
Thus, let us analyze the ACF of the squared returns to verify
this evidence. In Figure 9 we present the ACF of squared re-
turns. They strongly confirm our hypothesis, that is, there is a
GARCH component on time series. In order to also give a for-
mal answer, in Table 1 we report the Q-test results on squared
returns for the respective maturities with a complete rejection of
homoscedasticity hypothesis.

As we saw in Section 2.3.1, since the first component of C(λ)
is the only one that equals one as τ→∞, its corresponding β1t
coefficient is linked with the long-term interest rate. Let define

Mt(τ) = β1t +β2t

(
1− e−λτ

λτ

)
+β3t

(
1− e−λτ

λτ− e−λτ

)
Then, by defining the slope of the yield curve asMt(∞)−Mt(0),
it is easy to verify that the slope converges to −β2t for a given t.
Finally, the shape of the yield can be defined by [Mt(τ1) −Mt(0)]−
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Figure 7: Log return of interest yields for 3, 12, 60, 120-months matu-
rities from 2001 until December 2013.

(a) 3-Months (b) 12-Months

(c) 60-Months (d) 120-Months

Figure 8: Sample autocorrelation of returns for 6, 12, 60, 120-months
maturities.
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(a) 3-Months (b) 12-Months

(c) 60-Months (d) 120-Months

Figure 9: Sample autocorrelation of squared returns for 6, 12, 60, 120-
months maturities.

Maturity Statistic
(Months) Q-test kα

3 967 31.4
6 1382 31.4

12 928 31.4
24 460 31.4
60 732 31.4

120 656 31.4
240 731 31.4

Table 1: Test statistic of squared residuals, kα is the critical value. The
significance is α = 0.5 and the number of lags is m = 20.
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[Mt(∞) −Mt(τ1)] for a medium maturation τ1 , say, two years,
and for a given t. It can be shown that this shape approximately
approaches β3t. Thus, the longest maturity approximates the
level of yields curve. Based on this heuristic we define the slope
factor as yt(240) − yt(3), where yt(τ) is the yield under matu-
rity τ (in months). The curvature, proxies the mid-term behav-
ior and so we can define it as [yt(24) − yt(3)]− [yt(240) − yt(24)].
Shorter maturity yields are more volatile than longer maturities.
This can be seen by the standard deviation decreasing. The only
exception is for 6-month yields, as also remarked by Koopman
et al. [18]. In addiction, the high correlations for all maturities
at different horizons indicates persistence of the yields dynamic.
This persistence tends to be more remarkable with long-term
maturity. Also Slope and Curvature present high persistence.

5.2 MODEL FITTING ON IDENTIFICATION AND
VALIDATION DATA

In Section 5.2.1 we shall discuss the estimation of the standard
DNS model, that is, without any GARCH component. In Sec-
tion 5.2.2 we shall argue the introduction of GARCH shocks on
noise errors.

5.2.1 Pure DNS model

The first model we analyze is the AR(1) DNS model, that is,

xt+1 =

a1 0 0

0 a2 0

0 0 a3

 xt + vt vt ∼ NID(0,Q)

yt = C(λ)xt +wt, wt ∼ NID(0,σ2rI7), t = 1, . . . , T ,

The covariance matrix Q is restricted to be diagonal. We analyze
7 maturities and so the matrix C is 7× 3 dimensional. The esti-
mation results are presented in Table 2. The diagonal values are
very close to one, reflecting the presence of high persistence in
the yields and empirical factor proxies. The parameter λ is es-
timated as 0.0436 with an standard error of .00007: this means
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that the estimate has high significance. The fact that the eigen-
value are so close to one, advise us to use a less parsimonious
model accounting for the possibility of eventual correlation be-
tween the factors. The measurement errors covariance matrix
R = σ2rI = 0.01I with a standard error 0.007. In Table 3 we

(a) Estimates of A and µ. The standard errors
are shown in subscript.

A β1,t−1 β2,t−1 β3,t−1

β1,t 0.990.03 0 0

β2,t 0 0.990.02 0

β3,t 0 0 0.9850.05

(b) Estimate of diagonal matrix Q.

Q β1,t−1 β2,t−1 β3,t−1

β1,t 0.220.009 0 0

β2,t 0 0.090.001 0

β3,t 0 0 0.270.05

Table 2: Estimation of the AR(1) DNS model. Panel 5.1(a) reports the
coefficient estimates of A. Panel 5.1(b) reports the estimate of
covariance matrix Q.

present the estimation results of the standard DNS model, that
is, with A unconstrained, Q symmetric ed semidefinite positive
and R diagonal definite positive. In order to ensure positivity
and symmetry on Q and R we use the Cholesky factorization
Q = qq ′ and R = r2 with r diagonal of dimension 7 × 7. As
we can see the diagonal values of A are less close to one than
AR(1)-DNS model. In addiction, the log-likelihood function (see
Table 5) is higher than that of AR(1) and the lagged value of the
third factor, which proxies for the curvature, has a significant in-
fluence on the slope factor. In Figure 5.10(a) and Figure 5.10(b),
the empirical level, slope, curvature and the filtered latent fac-
tors of DNS model are respectively reported. In order to show
the that the βi represent the three main characteristics of the
term structure of interest rates, in Figure 5.10(c) we present the
filtered latent factors of DNS model obtained by the Kalman fil-
ter) compared with the empirical factors. In particular we plot
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−β2t and a scaled β3t. In Figure 13 we present the filtered esti-

(a) Estimates of A and . The standard errors are
shown in subscript.

A β1,t β2,t β3,t

β1.t−1 0.940.03 0.0020.01 0.0110.01
β2,t−1 −0.030.02 0.920.02 0.070.02
β3,t−1 0.120.07 0.060.03 0.830.04

(b) Estimate of Q. Since Q is forced to be sym-
metric we report only the upper triangular ma-
trix (6 parameters to be estimated).

Q β1,t β2,t β3,t

β1.t 0.070.008 −0.060.009 0.0180.01
β2,t 0.110.01 −0.030.02
β3,t 0.540.05

Table 3: Estimation of the standard DNS model. Panel 5.2(a) reports
the estimate of A. Panel 5.2(b) reports the estimate of covari-
ance matrix Q.

mates of the yields compared with the reference yields (that is
the identification data). In particular, in Figure 12 we plot the
filtered estimates of the yields for 4 maturities. In order to verify
the fitting property of validation data, in Figure 14 we plot the
filtered yields on the validation data (from January 2004 until
2014).

As we can see, the goodness of fit is less than that obtained
using identification data. This behavior is reasonable and give
us the a better description on real fitting capacity.

5.2.2 DNS-GARCH models

In this subsection, we will estimate the DNS model with GARCH
errors. The likelihood maximization algorithm used to estimate
the DNS model it is not suitable for DNS-GARCH estimation,
since we need to constraints the stationarity condition on GARCH
process, that is, α + β < 1. For identification purposes we fix
ω = 0.0001. Adding a GARCH component on errors, should
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(a) Empirical Factors (L, S, C).

(b) Filtered latent factors.

(c) Filtered latent factors.

Figure 10: Figure 5.10(a): empirical Level, Slope, Curvature. L =
y(3M), S = y(120M) − y(3M), C = 2y(24M) − y(120M) −
y(3M). Figure 5.10(c): filtered βi.
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Figure 11: Filtered Yields for all the maturities.

permit us to capture the clustering phenomena. In particular,
when the GARCH volatility of the common shock component is
low and relatively constant, the measurement error is close to
a white noise process. In other hand, when volatility increases,
latent shocks affect the yield curve and the measurement error
cannot be characterized as such. This specification could indi-
cate that the three factor structure does not suffice in fitting the
shape of the yield curve during these periods in time. Table 4

shows the estimated parameter of DNS-GARCH. The estimated
parameter λ is 0.0596. How we can see some estimate has high
standard errors meaning that the estimate is not significant. In
Figure 15 and Figure 16 we report the estimate of matrices D
and the volatility, respectively.

We also implemented DNS with GARCH in the state equa-
tion (DNS-XGARCH) and different GARCH specification as T-
GARCH and E-GARCH. Here we will not report the results
since GARCH on state equation doesn’t considerately improve
the standard DNS performances. Finally, in Table 5 we report
the likelihood function of each model and other statistics such
as, LR statistic, BIC and AIC. The LR test rejects the null hypoth-
esis, that is, the omoscedasticity, with a statistic equal to 610 and
a critical value equal to 5.99.
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(a) 3-Months yields estimation

(b) 12-Months yields estimation

(c) 60-Months yields estimation

(d) 120-Months yields estimation

Figure 12: Filtered Yields for vary maturities.
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(a) Estimates of A and µ. The standard errors are shown
in subscript.

A β1,t β2,t β3,t

β1.t−1 0.990.04 −0.0040.006 0.00170.01
β2,t−1 −0.0020.02 0.980.02 0.0170.01
β3,t−1 0.0880.07 0.0050.03 0.980.04

(b) Estimate of Q. Since Q is forced to be sym-
metric we report only the upper triangular ma-
trix (6 parameters to be estimated).

Q β1,t β2,t β3,t

β1.t 0.050.008 −0.060.009 0.0450.01
β2,t 0.1160.01 −0.080.02
β3,t 0.590.06

(c) α and β estimates.

α β

0.120.14 0.820.06

Table 4: Estimation of the DNS-GARCH model. Panel 5.3(a) reports
the estimates of A coefficients. Panel 5.3(b) reports the es-
timate of covariance matrix Q. Panel 5.3(c) reports the esti-
mated garch components α and β.

l(θ) |θ| AIC BIC LR

AR(1)-DNS 11 1150 -2278 -2271

DNS 1472 26 -2918 -2721

DNS-GARCH 1777 35 -3484 3456 610

Table 5: Statistic of estimated models. LR statistic is evaluate between
the unconstrained model (DNS-GARCH) and the constrained
model DNS. The symbol | · | indicates the cardinality, that is,
the number of parameter to be estimated.
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Figure 13: Filtered Yields for all the maturities on validation data.

5.3 MODEL FORECASTING ON VALIDATION DATA

In this section we shall study the forecasting capacity of DNS
and DNS-GARCH models. In particular, we will compare their
performance in order to establish whether introducing GARCH
errors increases the quality of predictions.

The prediction of k-step ahead (in our case one step is equal
to one months) can be obtained by the iteration of Kalman equa-
tions presented in Section 4.3. The k-months ahead prediction is
given by

x(t+ k|t) = Akx(t|t) (80)
y(t+ k|t) = Cx(t+ k|t) (81)

These equation are the same for both the DNS and DNS-GARCH
models. This is due to the fact that the expectation of the garch
component in the measurement equation is equal to zero. Thus,
it doesn’t directly influence the prediction steps. Actually, the
time-varying volatility is accounted for in the Kalman filter steps
and therefore it affects the estimates. Hence, the common shock
has an indirect influence on the predictions. For the sake of clar-
ity, in this thesis, we consider only 1, 3, 6, 12 months ahead
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(a) 3-Months yields estimation

(b) 12-Months yields estimation

(c) 60-Months yields estimation

(d) 120-Months yields estimation

Figure 14: Filtered Yields for vary maturities on validation data.
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Figure 15: Estimate of D coefficients. The x-axis represent the maturi-
ties in log scale.

Figure 16: Estimated volatility. The peak in years 2008-2009 is due to
the subprime mortgages crisis.
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predictions for the maturities. In Table 6 we report the goodness
of fit of the predictions and RMSE for all the maturities. For
instance, in Figure 17 we show the comparison between DNS
and DNS-GARCH performance for 1-month ahead prediction.
The fitting statistics confirm us that when prediction horizon

Figure 17: Comparison of 1-month ahead predictions between DNS
and DNS-GARCH models. The gray line indicates the true
yields at the prediction instant.

increases the goodness of fit decreases. In particular, the worst
case is verified when the maturity is equal to 120 months. The
best fit is obtained on 1 years-ahead prediction in both the mod-
els. The DNS-GARCH model outperforms the standard DNS
model: it better predicts yields on high volatility time periods.
In low volatility time periods the DNS-GARCH and DNS per-
formances are very similar. This is what we expected because
when the volatility is low the GARCH component on error in
irrelevant in respect with the white noise.

The presence of GARCH components on error is confirmed
by Table 7, in which the ARCH-tests of DNS model squared
residuals are reported. For all the maturities, the omoscedastic-
ity hypothesis is rejected.

Finally, we fit a simple model AR(1)-GARCH(1,1){
yt = ayt−1 + εt, |a| < 1, εti.i.d

σ2t = ω+αε2t−1 +βσ
2
t−1 α+β < 1,ω > 0

(82)
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FIT [%]
τ1 τ2 τ3 τ4 τ5 τ6 τ7

DNS-GARCH
1-M 88.74 93.13 93.23 89.51 83.36 84.68 77.30

3-M 79.51 86.80 86.80 81.71 75.38 72.14 65.11

6-M 71.00 78.19 77.76 72.07 65.90 58.62 51.29

12-M 50.58 58.69 57.49 51.05 48.25 40.64 35.50

DNS
1-M 86.64 88.1 92.1 89.42 82.78 84.08 77.01

3-M 77.1 84.77 84.12 81.70 74.75 71.76 64.98

6-M 69.17 77.10 71.22 65.39 58.55 51.44 51.44

12-M 49.1 58.25 57.79 51.43 48.18 41.14 36.18

RMSE
τ1 τ2 τ3 τ4 τ5 τ6 τ7

DNS-GARCH
1-M 1.6 1.58 1.51 2.18 3.21 2.49 3.40

3-M 3.39 2.92 2.85 3.65 4.62 4.45 5.17

6-M 5.82 4.55 4.52 5.25 6.13 6.43 7.10

12-M 8.64 7.55 7.61 8.16 8.64 8.83 9.14

DNS
1-M 2.53 2.22 2.01 1.81 3.32 2.20 2.97

3-M 4.79 3.78 3.33 3.51 5.06 4.38 4.51

6-M 6.84 5.60 4.94 5.12 6.69 6.39 6.41

12-M 9.36 8.10 7.56 7.77 9.09 8.83 8.67

Table 6: Fitting and RMSE on validation data for DNS and
DNS-GARCH models. We consider the 1, 3, 6, 12-months
ahead predictions. The goodness of fit is measure as

100

(
1−

√∑T−k
t=1 (y(t+ k) − ŷ(t+ k|t, θ))2∑T−k

t=1 y(t+ k)
2

)
where k is the

horizon in months and y = (y(1), . . . ,y(T)) is detrended.
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Maturity Statistic
(Months) ARCH-test kα

3 250 3.8
6 293 3.8
12 269 3.8
24 311 3.8
60 326 3.8

120 330 3.8
240 303 3.8

Table 7: Test statistic of DNS model squared residuals, kα is the critical
value. The significance is α = 0.5 and the number of lags is
m = 20.

ω α β

0.000035 0.33 0.65

0.00001 0.22 0.77

0.000006 0.12 0.87

0.000005 0.079 0.91

0.000005 0.057 0.93

0.000004 0.043 0.94

0.000003 0.026 0.96

Table 8: Estimated parameters of AR(1)-GARCH(1,1) model.

for each maturity in order to understand if the ARCH(1) com-
ponent α and the GARCH(1) β components are similar to those
provided by DNS-GARCH estimation. The estimated parame-
ters for the AR-GARCH model are reported in Table 8, which
confirm the similarity with the DNS parameter estimations. The
parameters in Table 8 are similar to those evaluated for DNS-
GARCH model. It is, interesting to note the β factor increases,
that is, the persistence increases as the maturity increases. In Fig-
ure 18 we finally present the volatility (that is the conditional
standard deviations) and standardized residuals for vary matu-
rities. As we expect, the volatility on the yields decreases as the
maturity time increases.
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Figure 18: Condition Standard deviations and standardized residual
of AR(1)-GARCH(1,1) model for 1, 12, 60, 240 maturities.

The prediction of yields provided by AR(1)-GARCH(1,1) model
is (see Equation 93)

yt+k|t = a
k+1yt−1 (83)

(84)

while the variance prediction is

Var(yt+k|yt) =
ω(1− a2(k+1))

{1− (α+β)(1− a2)}
+ (85){

σ2t −
ω

1− (α+β)

}
a2(k+1) − (α+β)k+1

a2 − (α+β)

with a2 6= α + β. In Table 9 we present the goodness of fit
of AR(1)-GARCH(1,1) model 1-month ahead prediction for 1

month maturity. As we can see, DNS-GARCH model better pre-
dicts the dynamic of yields.
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FIT [%]
τ1 τ2 τ3 τ4 τ5 τ6 τ7

AR(1)-GARCH(1,1)
1-M 26.63 35.6 32.7 30.39 27.19 25.4 22.62

RMSE
τ1 τ2 τ3 τ4 τ5 τ6 τ7

AR(1)-GARCH(1,1)
1-M 16.27 14.78 15.04 14.45 14.03 12.1 11.6

Table 9: Fitting and RMSE on validation data for AR(1)-GARCH(1,1)
model for 1-month ahead prediction. The goodness of fit

is measure as 100

(
1−

√∑T−k
t=1 (y(t+ k) − ŷ(t+ k|t, θ))2∑T−k

t=1 y(t+ k)
2

)
where k is the horizon in months and y = (y(1), . . . ,y(T))
is detrended.





6
C O N C L U S I O N S

The main purpose of this thesis was to introduce models suit-
able to predict the volatility of returns. These models have to
explain some recurrent phenomena, called stylized facts, exhib-
ited by most of the time series (asset returns, bond returns, etc).
The class of models which explains these facts, and discussed
in this thesis, are the GARCH models. The importance of this
models lays on the prediction of its variance which represents
the volatility. Firstly, in Chapter 2 we presented the univariate
GARCH(p,q) models and we studied its properties such as exis-
tence of moments and stationarity. Unfortunately, an univariate
framework is not sufficient to deal with the real financial sce-
nario. Engle and Kroner [12] introduced Multivariate models in
order to take in account of this drawback. Besides the difficul-
ties in producing theoretical studies, these models suffer a heavy
drawback, namely, an enormous number of parameters have to
be estimated even with low-order multivariate GARCH models.
These difficulties have led us to use state space model frame-
work, yet intensely employed in engineering and physics fields.
These models are particularly suitable for filtering and optimal
predictions provided by the Kalman filter, minimizing the MSE.

In Section 2.2 we introduced the following state space mod-
els: DNS-GARCH models, that is, a linear Gaussian state space
model with noise process following a GARCH(1,1) process, and
SSGARCH, namely, GARCH models in space space formula-
tion.
Then we provided the stationarity conditions. Concerning the
DNS-GARCH model we have shown the stationary condition
are the stability of transition matrix and the stationarity of GARCH
process describing the error dynamic. In other words, the sta-
tionarity is established by the Gaussian state space model and
the the GARCH(1,1) model independently. Similarly, SSGARCH
models require the transition coefficients to be stable (that is,
less than 1 in the univariate case) but unlike the DNS-model the

85
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second condition relative the GARCH dynamic depens on the
unconditional asymptotic state variance σ2x. The larger σ2x the
smaller must be the coefficients α and β.

In Chapter 3 we analyzed stochastic stability of univariate
GARCH models in terms of mixing and geometric ergodicity.
Mixing regards the description of dependency between past and
future, while ergodicity is an instrument useful to show con-
sistency of identification algorithm. As we have seen, even for
simple univariate GARCH model mixing property is difficult to
study as it requires a strong Markov Chain theory.

In Chapter 4 we studied the identification problem.
More specifically, we presented the QMLE for univariate GARCH
models and the EM algorithm for SSGARCH models. There are
several alternatives to QML method to estimate GARCH and
ARMA-GARCH models. We studied QML method because it is
the most commonly used estimation method. Its most attractive
characteristic is that the asymptotic properties (consistency and
normality) are valid under mild conditions. On the other hand
it presents some drawbacks, the most important of which is that
the estimator is not explicit but it requires a numerical maxi-
mization. Another drawback is the inefficiency.
We identified state space models, such as DNS and DNS-GARCH
models with the EM algorithm. These method provides consis-
tent estimators under very mild conditions, but a numeric like-
lihood maximization is needed. In addiction, we employed con-
strained minimization in order to impose stationarity on DNS-
GARCH model. We used the interior point algorithm. Its ap-
proach to constrained minimization is to solve a sequence of
approximate minimization problems. If the original problem is

min
x
f(x), h(x) = 0 and g(x) 6 0 (86)

then for each µ > 0, the approximate problem is given by

min
x,s
fµ(x, s) = min

x,s
f(x) − µ

∑
i

ln(si), (87)

h(x) = 0 and g(x) + s = 0.

As µ decreases to zero, the minimum of fµ should approach
the minimum of f. The added logarithmic term is called a bar-
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rier function. A complete description of this method is given by
Byrd et al. [4] and Waltz et al. [23]. To solve the approximate
problem the algorithm uses one of two main types of step at
each iteration:

• A direct step in (x, s). This step attempts to solve the KKT
equations

5xL(x, λ) = 0, λgigi(x) = 0 ∀i, (88)

with the constraints
g(x) 6 0,
h(x) = 0,
λg,i > 0.

(89)

where L is the Lagrangian and λ =
[
λg λh

]
is the vector

of multipliers such that

L(x, λ) = f(x) +
∑

λg,igi(x) +
∑

λh,ihi(x). (90)

• A conjugate gradient step, using trust region.

At each iteration the algorithm decreases a merit function, such
as

fµ(x, s) + ν‖(h(x),g(x) + s)‖.

The parameter ν may increase with iteration number in order
to force the solution towards feasibility. If an attempted step
does not decrease the merit function, the algorithm rejects the
attempted step, and attempts a new step. The main drawback
of this algorithm is the expensive computational cost.

As regards the simulations, in Chapter 5 we have shown the
data analyzed, that is, the US treasury bonds, present clustering
volatility phenomena according to GARCH models. The identifi-
cation step corroborates these findings, proving that introducing
a GARCH component on standard DNS models increases the
likelihood function and improves the goodness of fit. Moreover,
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using DNS-GARCH models we are able to both predict yields
and volatility yields (σ2t) by consecutive iterations of

σ2t+k|t = ω+αε2t+k−1|t +βσ
2
t+k−1|t.

that yields

σ2t+k|t−1 = ω
(
1+ · · ·+βk−1

)
+α

k−1∑
i=0

βk−i−1εt+1|t−1 +β
kσ2t

where σ2t is deterministic and ε2t+i|t−1 for i = 0, . . . ,k are evalu-
ated by the Kalman filter equations. The main difference with
the volatility predicted in the other SSGARCH models is the
ARCH variable. In DNS-GARCH model the ARCH variable is
given by ε2t , i.e., the noise component while in SSGARCH it is
the yield, i.e., yt.
Moreover we found the DNS-GARCH proxies very well empir-
ical evidences (Level, Slope and Factor) and can better explain
hig volatility time periods than the DNS model.
We also compared DNS-GARCH model with the AR(1)-GARCH
models estimated by the QML method and we have shown the
DNS-GARCH model outperforms the AR(1)-GARCH(1,1) mod-
els for short maturities. In the empirical simulations we did not
find particular problems. The main problem we could encounter
was the parameter initialization. For DNS-GARCH models, we
performed a multistart procedure in order to avoid to be at-
tracted by a local minim. A disadvantage we encountered is the
computational time, especially in the DNS-GARCH model esti-
mation.

6.0.1 Further research

Finally let us represent the GARCH(1,1) model in the state space
framework. It is given by

yt = σtεt

σ2t = ω+αy2t−1 +βσ
2
t−1

with εt i.i.d..
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Let define σ2t = x1(t) and εt = x2(t). Then the GARCH(1,1)
can be rewritten as[

x1(t+ 1)

x2(t+ 1)

]
=

[
ω+αx1(t)x2(t)

2 +βx1(t)

0

]
+

[
0

1

]
ε(t+ 1)

y(t) =
√
x1(t)x2(t)

This model is non-linear and it needs of the Extended Kalman
filter (EKF) framework. The estimation of the model is provided
by the EM algorithm with the only difference that the model
used by the EM algorithm is the linearization of the non-linear
system. Using a Kalman filter framework we are able to estimate
efficiently the GARCH(1,1) model.
It is interesting for further works, studying multivariate GARCH
written in state space model framework. Although these mod-
els would be non-linear they would allow to avoid the compli-
cations encountered with Multivariate GARCH models. Succes-
sively, an important step would be studying stochastic stability
of these models.





A
S O M E D E F I N I T I O N S
A N D T H E O R E M S

a.1 ERGODICITY

Definition A.1 (Stationarity). A process {yt} is said to be strictly
stationary if all its finite order distributions are invariant to tem-
poral shifting, that is, for each n,

Fn(x1, . . . , xn, t1 +∆, . . . , tn +∆) = Fn(x1, . . . , tn)

identically in x1, . . . , xn, t1, . . . , tn, for all ∆ ∈ Z.
In particular, it is said to be second-order stationary if

F2(x1, x2, t1 +∆, t2 +∆) = F2(x1, x2, t1, t2).

This means that the second-order mutual distribution F2(x1, x2, t1, t2)
of variables y(t1),y(t2), depends only on temporal interval τ =

t1 − t2. Therefore, the process mean Ey(t) is is constant over
time and the covariance matrix

Σ(t1, t2) = E [(y(t1) − Ey(t1))] [(y(t2) − Ey(t2))]
′

depends only on temporal distance τ.

A stationary process is said to be ergodic if it satisfies the
strong law of large numbers.

Definition A.2 (Ergodicity). A strictly stationary process {yt},
t ∈ Z, is said to be ergodic if and only if, for any Borel set B and
any integer k,

1

T

T∑
t=1

1B(yt,yt+1, . . . ,yt+k)→ P{(yt,yt+1, . . . ,yt+k) ∈ B}
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with probability 1.
In particular it is said to be second-order ergodic if and only if
the sample mean

ȳT =
1

T

T∑
t=1

y(t)→ Ey(t)

and the sample variance

ST (τ) =
1

T

T∑
t=1

[y(t+ τ) − ȳT ][y(t) − ȳT ]→ Σ(τ)

with probability 1.

Theorem A.1. If {yt}, t ∈ Z, is an ergodic process and if {yt} is
defined by

yt = f(. . . ,yt−1,yt,yt,yt+1, . . . )

where f is a measurable function from R∞ → R, then yt is also
ergodic.

In particular, if {yt} is governed by the law

yt = ayt−1 + et, |a| < 1, et iid(0,σ2), (91)

then the theorem shows that {yt}, {(yt−1et)} and y2t−1 are also
ergodic.

Theorem A.2 (Ergodic theorem). If {yt} is ergodic, if f is mea-
surable and if f(y) ∈ L1(y) then

1

T

T∑
t=1

f(. . . ,yt−1,yt,yt,yt+1, . . . )→ Ef(. . . ,yt−1,yt,yt,yt+1, . . . )

almost surely.

a.2 MARTINGALE DIFFERENCE

Let {Ft; t ∈ Z}be asuccession of σ-fields such that Ft−1 ⊂ Ft.
The stochastic process {y(t), t ∈ Z} is a martingale difference (d-
martingale) in respect with {Ft} if and only if
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1. yt is Ft-measurable;

2. E|yt| <∞;

3. E(yt+1
∣∣Ft) = 0.

The first condition and second conditions yield

E{yt
∣∣Fs} = 0 ∀ s < t.

Obviously a d-martingale is always a zero mean process.
The following theorem applies to GARCH processes, which are
ergodic martingale differences.

Theorem A.3 (Billingsley, 1961). If (yt,Ft) is an ergodic sequence
of squared integrable martingale differences such that σ2y =

Var(yt) 6= 0, then

1

T

T∑
t=1

yt → N
(
0,σ2y

)
in law.

a.3 MIXING

Mixing assumptions, introduced by Rosenblatt [22], are used
to convey different ideas of asymptotic independence between
remote past and remote future of a process. We present here
α-mixing and β-mixing coefficients.

a.3.1 α-Mixing and β-Mixing

The strong mixing (α-mixing) coefficient between two σ-fields
A and B is defined by

α (A,B) = sup
A∈A,B∈B

|P(A∩B) −P(A)P(B)|.

It is clear that:

• if A are independent then α(A,B) = 0;

• 0 6 α(A,B) 6
1

4
;
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• α(A,A) > 0 provided that A is nontrivial;

• α(A ′,B ′) > α(A,B) provided that A ′ ⊂ A and B ′ ⊂ B.

For a process {yt} we have

αy(k) = sup
t

α{σ(ys, s 6 t),σ(ys, s > t+ k)}.

If {yt} is stationary, we can omit the term supt and thus we have

αy(k) = sup
A∈A,B∈B

|P(A∩B) −P(A)P(B)|

= sup
f,g

∣∣∣Cov(f(. . . ,y−1,y0),g(yk,yk+1, . . . ))
∣∣∣

where the supremum is taken on set of measurable functions f
and g such that |f| < 1, |g| < 1. The process {yt} is said to be
α-mixing, if αy(k) → 0 as k → ∞.s If αy(k) decreases to zero at
an exponential rate, then {yt} is said to be geometrically α-mixing.

The β-coefficients of a stationary process {yt} are defined by

βt(k) = E sup
B∈σ(ys,s>k)

∣∣∣P(B|σ(ys, s 6 0)) −P(B)
∣∣∣

=
1

2
sup

P∑
i=1

Q∑
j=1

∣∣∣P(Ai ∩Bj) −P(Ai)P(Bj)
∣∣∣

where the sup is taken among all the pairs of partitions {A1, . . . ,AP}
and {B1, . . . ,BQ} such that Ai ∈ σ(ys, s 6 0)} for all i and Bj ∈
σ(Xs, s > k) for all j. The process {yt} is said to be β-mixing if
βy(k)→ 0 as k→∞. We have

αy(k) 6 βy(k),

meaning that β-mixing implies α-mixing.

a.4 THEORETICAL PREDICTION OF GARCH PRO-
CESSES

Let consider the GARCH(p,q) stationary process defined in Equa-
tion 7. We have already shown that the optimal prediction in L2
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sense of yt given its past is 0. The GARCH processes are inter-
esting because we can predict the squared process. Defined the
past of process as Ft−1 and given the prediction horizon k we
obtain recursively

E(y2t+k
∣∣Ft−1) = E(σ2t+k∣∣Ft−1)

= ω+

q∑
i=1

αiE(y
2
t+k−i

∣∣Ft−1) + p∑
j=1

βjE(σ
2
t+k−i

∣∣Ft−1),
(92)

with 
E(y2t+k−i

∣∣Ft−1) = E(σ2t+k−i∣∣Ft−1), i 6 h,

E(y2t+k−i
∣∣Ft−1) = y2t+k−i, i > h,

E(σ2t+k−i
∣∣Ft−1) = σ2t+k−i, i > h.

These predictions are also optimal linear predictions of {y2t }.
For AR(1) −GARCH(1, 1) process defined by

yt = ayt−1 + εt

εt = σtηt

σ2t = ω+αε2t−1 +βσ
2
t−1,

(93)

where ω > 0, α > 0, β > 0, α+ β < 1, |a| < 1. For k > 0, we
have

yt+k = εt+k + aεt+k−1 + · · ·+ akεt + ak+1yt−1
and hence

E(yt+k
∣∣ys, Ft−1) = a

k+1yt−1.

The conditional variance results,

Var(yt+h
∣∣ Ft−1) = Var

(
k∑
i=0

ak−iεt+i
∣∣ Ft−1

)

=

k∑
i=0

a2(k−i)Var(yt+i
∣∣ Ft−1).
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Given

Var(yt+i
∣∣ Ft−1) = E(σ2t+i∣∣ Ft−1)

= ω+ (α+β)E(σ2t+i−1
∣∣ Ft−1)

= ω[1+ · · · (α+β)i−1] + (α+β)iσ2t ,

we have

Var(yt+i
∣∣ Ft−1) = ω1− (α+β)i

1− (α+β)
+ (α+β)iσ2t , for all i > 0.

Finally,

Var(yt+h
∣∣ Ft−1)

=

k∑
i=0

a2(k−i)
ω

1− (α+β)

+

{
σ2t −

ω

1− (α+β)

} k∑
i=0

(α+β)ia2(h−i)

=
ω(1− a2(h+1))

[1− (α+β)](1− a2)

+

{
σ2t −

ω

1− (α+β)

}
a2(h+1) − (α+β)h+1)

a2 − (α+β)

with a2 6= α+β.
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In the following we report some code functions used in this
thesis.
The following file is DNS.m. It uses the function kalmanRecursionDNS

in order to provide an estimate on DNS model.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%MAIN%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

close all

load data/OriginalData.mat

maturity = [3 6 12 24 60 120 240]’;

y=yieldsTOT(1:600,:); %240x7q

%% DNS-AR-Qdiag-Req

% NoP = 3 + 3 + 3 + 1 + 1 = 11

A_0 = [0.9 0 0;0 0.9 0;0 0 0.9];

mu = [3 -3 -3]’;

Q = [0.5 0 0 ;0 0.5 0;0 0 0.5];

r_0 = 0.5;

R = diag(repmat(r_0,7,1));

lambda_0= 0.05;

vp0 = [reshape(diag(A_0),[3,1]); mu; reshape(diag(Q),[3,1]); r_0; lambda_0];

%% optimization

options=optimset(’Display’,’iter’,’TolFun’,10^(-25),’TolX’,10^-...

8,’MaxFunEvals’,10000,’MaxIter’,32);

% Z = zeros(11,11);

% Z(1,1) = .99;

% Z(2,2) = .99;

% Z(3,3) = .99;

% b = [1 1 1 inf inf inf inf inf inf inf inf inf]’;

lambda_0 = 0.05;

vp0 = [reshape(diag(A_0),[3,1]); mu; reshape(diag(Q),[3,1]); r_0; lambda_0];

ub = [.99 .99 .99 inf inf inf inf inf inf inf inf]’;

lb = [-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf 0.01];
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[vpEstAR1,fvalAR1] =

fmincon(@(vp) ...

-kalmanRecursionDNS(vp,y,maturity,’DNS-AR-Qdiag-Req’),...

vp0,[],[],[],[],lb,ub,[],options);

A = diag(vpEstAR1(1:3));

mu = vpEstAR1(4:6);

Q = diag(vpEstAR1(7:9))^2;

% lambda = vpEstAR1(11);

R = diag(repmat(vpEstAR1(10),length(maturity),1))^2;

% % h = hessian(@(vp) kalmanRecursionDNS(vp,y,maturity,...

’DNS-AR-Qdiag-Req’), vpEst);

% % I = -h; %fisher

I = fisherMatrix(y,maturity,’DNS-AR-Qdiag-Req’,vpEstAR1);

vc = inv(I);

stderr = sqrt(diag(vc));

%% DNS-AR-Qdiag-Rdiag

% NoP = 9 + 3 + 6 + 7 + 1 = 26

A_0 = [0.9 0 0.001;-0.01 0.92 0.05;0.1 0.05 0.85];

mu_0 = [4 -4 -4]’;

Q_0 = [0.05 0 0 ;0 0.124 0;0 0 0.5];

R_0 = 0.1*eye(7);

lambda_0= 0.05;

vpQ0 = [0.05 0.05 0.02 0.1 -0.05 0.59]’;

vp0 = [reshape(A_0,[9,1]); mu_0; vpQ0;

repmat(0.1,length(maturity),1); lambda_0];

%% optimization

options=optimset(’Display’,’iter’,’TolFun’,10^(-10),...

’TolX’,10^-6,’MaxFunEvals’,10000,’MaxIter’,...

150,’Algorithm’,’interior-point’ );

ub = inf*ones(26,1);

ub(1) = 0.99;

ub(5) = 0.99;

ub(9) = 0.99;

lb = -20*ones(26,1);

lb(26) = 0.01;

[vpEst,fval] = fmincon(@(vp) -...

kalmanRecursionDNS(vp,y,maturity,’ ’),...

vp0,[],[],[],[],lb,ub,[],options);
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% [vpEst,fval] = fmincon(@(vp) -

kalmanRecursionDNS(vp,y,maturity,’’),vp0,options);

A = reshape(vpEst(1:9),[3,3]);

mu = vpEst(10:12);

a = vpEst(13:18);

q = triu(ones(3),0);

q(q==1) = a;

q=q’; %lower triang

Q=q*q’; %3x3 - 6 params

% Q = [vpEst(13:15)’; 0 vpEst(16:17)’; 0 0 vpEst(18)];

R = diag(vpEst(19:25).^2);

lambda = vpEst(26);

% C=[ones(NoM,1),((1-exp(-lambda*maturity))./

(lambda*maturity)),((1-exp(-...

% lambda*maturity))./(lambda*maturity))-...

% exp(-lambda*maturity)];

% % h = HessMp(@(vp) kalmanRecursionDNS(vp,y,maturity,’’),

vpEst);

% % h = hessian(@(vp) kalmanRecursionDNS(vp,y,maturity,’’),

vpEst);

% % I = fisherMatrix(y,maturity,’ ’,vpEst); %fisher

% % vc = inv(I);

% % stderr = sqrt(diag(vc));
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The following file is DNS-GARCH.m. It uses kalmanRecursionDNSGARCH
function in order ro provide an estimate of DNS-GARCH model.

clear all

close all

load data/OriginalDataW.mat

maturity = [3 6 12 24 60 120 240]’;

y=yieldsTOT(1:700,:); %240x7

% y=yieldsTOT;

%% DNS-GARCH

% NoP = 9 + 3 + 6 + 7 + 1 + 7 + 2 = 35

A_0 = [0.95 0.001 0.003;-0.05 0.92 0.05;0.1 0.05 0.85];

mu_0 = [4.5 -4 -4 0]’;

omega = 0.0001;

alpha0= 0.7;

beta0 = 0.2;

Q_0 = [0.055 -0.059 0.051 0;0 0.124 0 0;0 0 0.5 0;...

0 0 0 omega/(1-(alpha0 + beta0))];

R_0 = 0.1*eye(7);

lambda_0= 0.05;

% C=[ones(NoM,1),((1-exp(-lambda*maturity))./...

(lambda*maturity)),((1-exp(-...

% lambda*maturity))./(lambda*maturity))-...

% exp(-lambda*maturity)];

vpQ0 = [0.05 -0.05 0.05 0.1 -0.05 0.6]’;

Lambda_0 = [1 0.5 0.8 1.2 1.1 1.1 0.05]’;

vp0 = [reshape(A_0,[9,1]); mu_0(1:3); vpQ0;...

repmat(0.1,length(maturity),1);...

lambda_0; Lambda_0; [alpha0 beta0]’];

%% optimization

options=optimset(’Display’,’iter’,’TolFun’,10^(-8),...

’TolX’,10^-...

6,’MaxFunEvals’,10000,’MaxIter’,150,’Algorithm’...

,’interior-point’,’AlwaysHonorConstraints’,’bounds’);

ub = inf*ones(35,1);

ub(1) = 0.99;

ub(5) = 0.99;

ub(9) = 0.99;

ub(34) = 0.9;

% ub(27:33) = 10;
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lb = -inf*ones(35,1);

lb(26) = 0.03;

lb(34) = 0.5;

lb(35) = 0.05;

lb(27:33) = 0.001;

Z = zeros(35,35);

Z(1,34:35) = 1;

b = ones(35,1);

% b(1) = 1;

[vpEst,fval] = fmincon(@(vp) -...

kalmanRecursionDNSGARCH(vp,y,maturity),...

vp0,Z,b,[],[],lb,ub,[],options);

NoM = 7;

A = reshape(vpEst(1:9),[3,3]);

mu = vpEst(10:12);

a = vpEst(13:18);

q = triu(ones(3),0);

q(q==1) = a;

q=q’; %lower triang

Q=q*q’; %3x3 - 6 params

% Q = [vpEst(13:15)’; 0 vpEst(16:17)’; 0 0 vpEst(18)];

R = diag(vpEst(19:25).^2);

lambda = vpEst(26);

Lambda = vpEst(27:33);

alpha = vpEst(34);

beta = vpEst(35);

C=[ones(NoM,1),((1-exp(-lambda*maturity))./...

(lambda*maturity)),((1-exp(-...

lambda*maturity))./(lambda*maturity))-...

exp(-lambda*maturity) Lambda];

% h = HessMp(@(vp) kalmanRecursionDNS(vp,y,maturity,’’), vpEst);

% h = hessian(@(vp) kalmanRecursionDNS(vp,y,maturity,’’), vpEst);

% I = fisherMatrix(y,maturity,’ ’,vpEst); %fisher

% vc = inv(I);

% stderr = sqrt(diag(vc));
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The following code is the function kalmanRecursionDNS

function L = kalmanRecursionDNS(vp,y,maturity,type)

NoM = 7;

if strcmp(type,’DNS-AR-Qdiag-Req’)

A = vec2mat(diag(vp(1:3)),3);

mu = vp(4:6);

q = diag(vp(7:9));

Q = q*q’;

R = eye(NoM)*vp(10)^2;

lambda = vp(11);

NoP = 11;

else

A = reshape(vp(1:9),[3,3]);

mu = vp(10:12);

a = vp(13:18);

q = triu(ones(3),0);

q(q==1) = a;

q=q’; %lower triang

Q=q*q’; %3x3 - 6 params

R = diag(vp(19:25))*diag(vp(19:25))’;

lambda = vp(26);

NoP = 26;

end

C=[ones(NoM,1),((1-exp(-lambda*maturity))./...

(lambda*maturity)),((1-exp(-...

lambda*maturity))./(lambda*maturity))-...

exp(-lambda*maturity)];

%kalmanRec

ss = 3; %scalar = 3

[T ~] = size(y); T=240;

y=y’;

x = zeros(ss, T); %3x240 matrix of L,S,C

V = zeros(ss, ss, T); %3x3x240 matrix of V(Y);

loglik = 0;

L = 0;

%derivate matrici di stato

for t=1:T
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init_x=mu;

% init_V=inv(eye(ss)-A*A’)*Q;

% init_V=A*V(:,:,t)*A’+Q;

init_V = dlyap(A,Q);

%init_V=eye(length(Q));

if t==1

prevx = init_x;

prevV = init_V;

else

prevx = x(:,t-1); %E[ X | y_t-1 ] prior mean

prevV = V(:,:,t-1);%Cov[ X | y_t-1] prior covariance

% dxprev = dx(:,t);

% dVprev = dV(:,:,t);

end

%prediction step

xpred(:,t) = A*prevx + (eye(ss)-A)*mu; %(I-A)u+AX - E[X_t | X_t-1]

Vpred(:,:,t) = A*prevV*A’ + Q; %A*V*A’ + Q - E[V_t | V_t-1]

%update step

% errors from measurement eq. (innovation)

e(:,t) = y(:,t) - C*xpred(:,t);

n=7; %scalar = 7

%7x7 B*SIGMA*B’ or V(e|x_t...) on measurement eq

S = C*Vpred(:,:,t)*C’ + R+0.001*eye(7);

Sinv= inv(S); %7x7

K = Vpred(:,:,t)*C’*Sinv; % Kalman gain matrix

xnew(:,t) = xpred(:,t) + K*e(:,t); %E[ X | y_t ] updated mean

%Cov[ X | y_t] updated covariance

Vnew(:,:,t) = (eye(ss) - K*C)*Vpred(:,:,t);

x(:,t)=xnew(:,t); %update timestep

V(:,:,t)=Vnew(:,:,t); %update timestep

loglik(:,t)=((-n/2)*log(pi)-0.5*log(det(S))-0.5*(e(:,t)’*Sinv*e(:,t)));

L= L + loglik(:,t);

end

end
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The following code is the function kalmanRecursionDNS

function L = kalmanRecursionDNSGARCH(vp,y,maturity)

NoM = 7;

A1 = reshape(vp(1:9),[3,3]);

A = [A1 zeros(3,1);zeros(1,3) 0];

mu = vp(10:12);

a = vp(13:18);

q = triu(ones(3),0);

q(q==1) = a;

q=q’; %lower triang

Q1=q*q’; %3x3 - 6 params

omega =0.0001;

alpha = vp(34);

beta = vp(35);

%Q = [Q1 zeros(3,1);zeros(1,3) omega/(1 - (alpha + beta))];

R = diag(vp(19:25))*diag(vp(19:25))’;

lambda = vp(26);

Lambda = vp(27:33);

C=[ones(NoM,1),((1-exp(-lambda*maturity))./...

(lambda*maturity)),((1-exp(-...

lambda*maturity))./(lambda*maturity))-...

exp(-lambda*maturity) Lambda];

%kalmanRec

ss = 4; %scalar = 4

[T os] = size(y); %OS=7, T=240;

y=y’;

x = zeros(ss, T); %4x240 matrix of L,S,C

V = zeros(ss, ss, T); %4x4x240 matrix of V(Y);

loglik = 0;

L = 0;

h1 = omega/(1-alpha - beta);

for t=1:T

init_x=[mu;0];

init_V1 = dlyap(A1,Q1);

init_Q = [Q1 zeros(3,1);zeros(1,3) h1];

init_V = [init_V1 zeros(3,1);

zeros(1,3) h1];

if t==1

prevx = init_x;

prevV = init_V;
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Q(:,:,t) = init_Q;

h(t) = h1;

else

prevx = x(:,t-1); %E[ X | y_t-1 ] prior mean

prevV = V(:,:,t-1);%Cov[ X | y_t-1] prior covariance

% dxprev = dx(:,t);

% dVprev = dV(:,:,t);

end

%prediction step

if t > 1

eps = prevV;

h(t) = omega + alpha*(eps(4,4)+prevx(4)^2) + beta*h(t-1);

% h(t) = omega + alpha*(eps(4,4) + prev) + beta*h(t-1);

end

Q(:,:,t) = [Q1 zeros(3,1);

zeros(1,3) h(t)];

%(I-A)u+AX - E[X_t | X_t-1]

xpred(:,t) = A*prevx + (eye(ss)-A)*[mu;0];

%A*V*A’ + Q - E[V_t | V_t-1]

Vpred(:,:,t) = A*prevV*A’ + Q(:,:,t);

%update step

% errors from measurement eq. (innovation)

e(:,t) = y(:,t) - C*xpred(:,t);

n=7; %scalar = 7

%7x7 B*SIGMA*B’ or V(e|x_t...) on measurement eq

S = C*Vpred(:,:,t)*C’ + R + 0.0001*eye(7);

Sinv = inv(S); %7x7

K = Vpred(:,:,t)*C’*Sinv; % Kalman gain matrix

%E[ X | y_t ] updated mean

xnew(:,t) = xpred(:,t) + K*e(:,t);

%Cov[ X | y_t] updated covariance

Vnew(:,:,t) = (eye(ss) - K*C)*Vpred(:,:,t);

x(:,t)=xnew(:,t); %update timestep

V(:,:,t)=Vnew(:,:,t); %update timestep

loglik(:,t)=((-n/2)*log(pi)-0.5*log(det(S))-0.5*(e(:,t)’*Sinv*e(:,t)));

L= L + loglik(:,t);

end

save(’volatility’,’h’);

end
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