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“Strength does not come from physical capacity.
It comes from an indomitable will.”
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Abstract

Currently, a wide range of applications in medicine take advantage of
robots usage, but this relationship has not yet revealed its full potential.
Even if the the idea of robots able to replicate human operations has already
been proposed to the popular culture from decades, performing a coordinate
human-like movements requires the use of advanced tools, like movement
reconstruction and kinematics modelling. Humanoid robots can already au-
tonomously perform complex tasks through human gesture and speech. In-
stead, implementations of full robotics controls derived from biological sig-
nals, like Electromiography (EMG) and Electroencefalography (EEG), are
still not fully accomplished, despite the many attempts in the researching
panorama. Therefore, the aim of this thesis is to create a reliable system,
for real-time applications, able to decode and then replicate, on a humanoid
robot, the same motor task of a subject, using as an input only EMG signals.
In order to accomplish this result, this study is first undertaking a target-
oriented classification employing Support Vector Machine (SVM). The suc-
cessive analysis, implements a different approach of end effector trajectory
reconstruction and deriving from it the kinematic that has to be applied to
the robotic limb. The use of Multivariate Linear Regression (MLR) models
and subsequent Kalman filter for the prediction correction have produced
noteworthy results. Moreover, the computational time performance of the
algorithm made clear that a real-time application is actually possible. Future
developments of this study could be helping the design of new robotic device
and exoskeletons able to support patients with neuro-muscular dysfunctions
and moreover develop a new concept of rehabilitation and physiotherapy.
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Chapter 1

Background and Motivations

Believing or not, robots have turned nowadays to an important, if not es-
sential, part of human reality. Industry, home automation, army, healthcare,
vehicles: these are just few of the many area where robotics has found a fer-
tile field for developing and expanding new concepts. The first rudimentary
robot appeared in the society starting from the sixties. The Unimate was
introduced in the industrial process in 1961 [1] and it was designed for accom-
plish dangerous operations for the human operator. Robotic systems have
become since increasingly accurate and complex, solving already an unlim-
ited number of tasks aiming to a future total automatic controlled process.

1.1 Healthcare and robots: A new horizon

In this perspective, where robots are designed as a support and, if neces-
sary, as a replacement of human activities, a great affinity is found between
robotics and the medical environment, leading to a promising revolution of
the healthcare industry. A wide range of applications in medicine currently
take advantage of robots usage, including drug manufacturing, monitoring
vitals, dispensing drugs to patients, and performing surgeries.

An other interesting field of application regards robotics introduction in
physiatry, a branch of medicine that aims to enhance and restore functional
ability and quality of life to those with physical impairments or disabili-
ties. Many rehabilitation procedures are set up on the concept of neuro-
plasticity1. After brain tissue degeneration, due to stroke or aneurysm, the
neuro-connectivity of patients’ brain is undermined and if the motor-planing
area is involved this could lead to the loss of motor ability. In this case, reha-
bilitation aims to restore, at least partially, the brain-muscles connection by

1Ability of brain to modify his neurons connection under specific stimuli.
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inducing in the brain new neural paths. This means that until now medical
practitioners had to manually induce re-activation of peri-lesional regions by
means of a repetitive passive movements. Of course, the extensive use of
human operators is a huge economical burden for the hospitals. This way,
the introduction of assistive robotic device permits to single practitioners to
treat at the same time multiple patients and to cut the costs of rehabilita-
tion. On the other hand, the use of actual technologies able to communicate
with patients through biological signals could improve drastically the per-
formance of patient care, especially for those affected by motor disabilities.
The adoption of EMG-driven and EEG-driven movement decoding could be
used to counterbalance to degenerative diseases like muscular dystrophies or
amyotrophic lateral sclerosis. Theoretically would be possible, once is gener-
ated a proper model, to read the degenerated bio-signals from the disabled
patient and afterwards predict and produce the movement, for instance, in
a exoskeleton for supporting and helping him in completing the motor task.
The same perspective can be held regarding humanoid robots. They could
be used as an alternative effector for interacting with the world by patients
who are unable to wear exoskeletons. In this case, research is focusing on
the use Brain-Machine Interface (BMI) for the robot control using as a input
EEG signals, adressing this technology also to patients in locked-in status.

The idea of robots able to replicate men operations and acting like humans
has already been proposed to popular culture thanks to television, media and
entertainment from decades. Humanoid robots can already autonomously
perform complex task decomposition required to high-level commands given
through human gesture and speech [2]. Furthermore, there have been also
by now a successfully implantation of prosthetic limbs with neurological con-
nection [3]. Humanoid robotics presents to us much more than a interaction
tool, but a research instrument for understanding how human body and brain
work and interact eache other. The biomechanics studies about physiological
systems and functions have found a new stimulation and a new perspective
to look into human motor mechanisms. Pathological conditions that once
seemed untreatable could have now new openings, providing either tools to
design rehabilitation strategies or instruments and simulation environment
for surgical procedure, like Da Vinci Robot®[4].

What is important to understand is that humanoid robots and exoskele-
tons have a very different configuration with respect to today’s industrial
robots. Performing a coordinate human-like movements, besides, requires a
different planning and the use of advanced tools like movement reconstruction
and kinematics modelling. The introduction of humanoids robot may as well
have brought a new perspective in the way of thinking about human-machine
interface. Humans have learned since in developing and adapting their abil-
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ities to use of technology through use of keyboards, joy-pad and monitors.
Humanoid robots are changing the way we used to think of technology in-
teraction: technology has learn how to adapt to us, no more the other way
round. The concept of performing a “spontaneous interconnection” between
human and robots with respect to deal with other constrained modalities,
took rapidly place in the robotic research panorama. Many studies, in fact,
today are based on the idea that human motion and/or physiological signals,
like EMG and EEG, could actually provide all the necessary information for
models creation.

1.2 Aim of the thesis

In this context, my thesis aims to show that it is possible to reconstruct the
trajectory of a limb’s patient from EMG signals. From litterature [2][5] is
known that at the current state of art it is not possible manipulating only
the EMG signals to reproduce univocally the exact limb kinematics. This
is due to the fact that the extracted features from the EMG data are not
straightforward related to Degrees of Freedom (DOF) to be handled. In fact,
different motor tasks or different modalities of task execution could be re-
flect by the same EMG. Moreover, EMG acquisition is affected by high noise
presence that prevents us to capture the exact muscular activation using only
extra-cutaneous sensors. Taking into account these limitations, the purpose
of this thesis is, thus, not to reconstruct the entire limb kinematics during
a motor task counting only on EMG, but exclusively the end effector’s one.
The goal of this study is to provide a starting tool for the design of rehabili-
tation/support exoskeletons: these results could be afterwords developed in
a more powerful instrument for designing robotic prosthetic limbs.

Specifically, the mayor interest of this thesis is not only to implement an
algorithm able to decode different tasks and replicate the subject movement
starting from EMG, but also to design it with a fast computational time in
order to perform the process in real-time. For this reason I decided to divide
my research in two part: respectively target-oriented classification and kine-
matic reconstruction analysis. The first part of the study aims to present
the problem of EMG-driven decoding and it will try to solve it through the
extraction of parameters suggested from literature[5][6][7][8]. The chosen pa-
rameters are then used to feed a Linear SVM for the trials classification. This
section should be therefore a preamble, showing off that is actually possible
to discriminate different tasks from EMG signals. The kinematic reconstruc-
tion analysis, instead, will try a different approach by relating directly the
end effector kinematics to the EMG acquistion. Linear regression model is
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for this preferred, applying a linear predictor function which parameters are
estimated directly from the distinct channel samples. Last, the classifier is
tested in an on-line simulation and the estimated trajectory points finally
addresed towards the robot via a Robotic Operating System (ROS) network.

1.3 Physiology of motor system

Before going any further with the thesis development, here is displayed a
short introduction to the physiology of the motor system. A full understand-
ing of muscles physiology and of EMG generation process is necessary to
recognize how these physiological signals are related to muscular contraction
and motor production.

Figure 1.1: Neuro-muscular activation: 1) Upper motor neuron runs down the
corticospinal tract. 2) Synapse with the alpha motor neuron inside the spinal cord.
3) The lower motor neuron innervates the muscle fibers. 4) The neuronal signal
activates the acetycholine release in the neuromuscular junction, causing action
potential and consequently muscular contraction[9]

Movement is the result of the combination of the nervous system and
muscles, which interconnection is known as the neuro-muscular system. As



1.3. PHYSIOLOGY OF MOTOR SYSTEM 5

displayed in Figure 1.1, high level commands in the brain end up in descen-
dant nervous signals that are charged for skeletal muscles control. When a
action is planned in the motor cortex, the brain recollects a motor scheme
and decides which muscle has to be activated to tackle the specific task. The
upper motor neuron is thus stimulated and the neuronal signal sent down to
the spinal cord. These particular nerve cells hold long axons, those starting
from the brain cortex go into the spine where they synapse with their respec-
tive lower motor neurons. Lower motor neurons, or alpha motor neurons,
connect them-self directly with the voluntary muscle that was planned to
move: these two elements together constitute the motor unit2(Figure 1.2).

Figure 1.2: Motor unit representation

What is interesting in muscle fibers is that they are a particular type
of cells capable of changing their size thanks to myosin/actin chains sliding
across each other. A typical muscle is served by several alpha motor neurons
and each neuron is subdivided in proximity to the muscle into tiny branches.
The end of these subdivisions (presypnatic terminal), with its connection
with the muscular fibers, is named neuromuscular junction. The electrical
signal from the brain travels down the nerves and prompts the release of the
chemical Acetylcholine (ACH) from the presynaptic terminals. This chemi-
cal is picked up by receptors on sarcolemma3 changing, thus, the electrical
potential on the muscular fibers. An ionic difference is maintained by ion
pumps between the inner and outer spaces of a muscle cell, generating a
resting potential at the membrane around -80mV. Looking at Figure 1.3,
once the electrical potential is taken over the threshold (roughly +30mV ),

2It is the smallest functional unit to describe the neural control on muscular contraction
process: the elements that compose it are cell body and dendrites of a motor neuron,
multiple branches of its axon and the muscle fibers that innervates it.

3Sarcolemma is the cell membrane of a striated muscle fiber cell.
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thanks to ACH stimulation, an actual action potential occurs. The action
potential propagates across the muscle membrane, causing voltage gated cal-
cium channels to open. This event triggers a cellular cascade that finally
causes muscle contraction.

Summing up the neuromuscular transmission steps:

1. nerve action potential;

2. calcium entry into the pre-synaptic terminus;

3. release and diffusion of ACH;

4. consequently ACH combination with post-synaptic receptor and End
Plate Potential (EPP) increase;

5. opening of Na+/K+ channels;

6. post-synaptic membrane depolarization up to muscle action potential
firing.[10]

Figure 1.3: Depolarization-Polarization cycle within excitable membrane

1.3.1 EMG signals

EMG can be recorded using different types of electrodes: the most commons
one are surface electrodes and fine wire. The first modality is among all the
most used. Despite fine-wire Electromiography (fEMG) can provide a better
quality and muscle-specific signals (especially for deep muscles), it has to face
its invasiveness and the discomfort for the subject. Simultaneously, setting
up a surface Electromiography (sEMG) is really easy, totally ergonomic and
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ensure anyway satisfying acquisitions [11]. This methodology is used as well
for the data set of this thesis.

Myoelectric signals are formed by physiological variations in the state of
muscle fiber membranes [12]. EMG is a diagnostic medicine technique for
evaluating and recording the electrical activity of voluntary muscles. EMG
is performed using an instrument called an electromyograph, to produce a
records called electromyogram. Studying EMG allows not only to observe
muscle response but to analyze and measure muscular performance in order
to create new bio-medical models or treatments.

EMG signals are based on the action potential recording at the muscle
fiber membrane resulting from depolarization and repolarization processes
above explained [13]. However, it is not obvious how this activity is reflected
and described in the electromyogram. Since a motor unit consists of many
muscle fibers, what the electrode “see” is the magnitude of all the fibers be-
longing to the motor unit: the so called Motor Unit Action Potential (MUAP)
can differ in size and form, depending on fiber disposition. Moreover, it has
to be taken into account the superposition of MUAPs. In fact, each electrode
detects all the active motor units under its site, as shown in Figure 1.4. The
signal resulting from the acquisition is therefore named interference pattern,
or more commonly raw EMG [13].

Figure 1.4: Recruitment and firing frequency of motor units modulates the muscle
torque and is reflected in the superposed EMG signal [14]

The central nervous system has the ability to modulate muscular contrac-
tion and therefore, muscle strength thanks two main mechanisms: increasing
the number of active motor units (spatial recruitment) or increasing the in-
dividual motor unit firing rate to take advantage of the summed generated
tension (temporal recruitment) [15]. For this reason, these two strategies
together are the most influencing factors on the magnitude and density of a
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interference pattern. Thus, stronger is the torque generate from the muscle,
higher will be the recruitment characterizations on the EMG signals. Raw
sEMG can range between +/-5000µV with distinctive frequency contents
range between 6 and 500Hz, showing most frequency power between ∼20
and 150Hz [13].

Figure 1.5: Raw EMG recording of Vastus Lateralis muscle

From engineering perspective, these characteristic frequencies are very
important for filters design during the pre-processing phase. Noise can influ-
ence the signal in different circumstances. Signal distortions could appear due
different tissue characterization: tissue type, thickness, physiological changes
and temperature may vary electrical conductivity between the electrode and
the motor unit. In addition Cross-Talk phenomena, external noises and al-
terations in the geometry between muscle belly and electrode site could lead
to artifacts introduction. Furthermore, by its nature, raw EMG spikes are of
random shape [13] (Figure 1.5). This means that one raw recording burst can
be conceptualized as the output of a random stochastic process4. Therefore,
it is not possible to precisely reproduce the exact shape of EMG envelope,
even if the motor task is the same. This is due to the fact that the actual
set of recruited motor units constantly changes within the matrix/diameter
of available motor units [16].

1.3.2 Arm muscular anatomy

In is shortly shown a summary of the muscular anatomy of a human su-
perior limb. Table 1.1 lists the principal muscles involved in arm motion.
In Figure 1.6, 1.7 is possible to see their anatomic representation, respec-
tively, of muscles located in the torso and in the arm. The yellow dots reflect
approximately the sensor site for the sEMG.

4A stochastic process is a collection of random variables, representing the evolution of
some system over time.



1.3. PHYSIOLOGY OF MOTOR SYSTEM 9

Tagged Muscles

Torso

DeltA Anterior Deltoid (Clavicular)

DeltM Medial Deltoid (Acromial)

DeltP Posterior Deltoid (Spinal)

TrapSup Superior Trapezius (Descendent)

RhombMaj Rhomboid Major

Infrasp Infraspinatus

TeresMaj Teres Major

PectClav Pectoralis Major (Clavicular part)

Arm

TrLat Lateral (Head) Triceps

TrMed Medial (Head) Triceps

BicShort Short (Head) Biceps

BicLong Long (Head) Biceps

Forearm

BrRad Brachioradialis

Supin Supinator

Brac Brachialis

PronTer Pronator Teres

Table 1.1: Table of the tagged muscles in the sEMG acquisition. First column
marks the anatomical location; second column shows the label used in the data set
and in the code; the last one presents the names of muscle.

Although my study does not involve muscular modelization and therefore
does not imply the knowledge of anatomy, a good understanding of how each
muscle affects a basic movement permits to look at the sEMG with a more
critical attitude. In fact, thanks to EMG it is possible to observe which of
the tagged muscle actually has been active during the movement execution.
Exploiting both this information it is possible to understand, at least roughly,
which is the task that the subject is undergoing to. On the other hand these
observations may result useful during a possible check up post acquisition.
It is always reliable take a quick look to EMG acquisitions and control for
suspicious and unexpected action potential firing before undertake massive
data processing and analysis.
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(a) Torso anatomical represen-
tation (back)

(b) Torso anatomical represen-
tation (front)

Figure 1.6: Yellow dots represent electrodes pair sites in EMG: 1.TrapSup,
2.DeltP, 3.TeresMaj, 4.Infrasp, 5.RhombMaj, 6.PectClav, 7.DeltA & DeltM. Label
corresponding to Table 1.1

(a) Arm anatomical rep-
resentation (front)

(b) Arm anatomical rep-
resentation (back)

Figure 1.7: Yellow dots represent electrodes pair sites in EMG: 8.BicLong &
BicShort, 9.Brac, 10.PronTer, 11.TrMed & TrLat, 12.Supin, 13.BrRad. Label cor-
responding to Table 1.1
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For example during arm flexion we expect activation from Deltoid, Cora-
cobrachialis, Pectoralis Major, Trapezius and others torso muscles. However,
if other electrical activities are picked up it could imply presence of noise
likely due to set-up errors during the electrodes positioning.

1.4 Technique for EMG classification

All the techniques implemented for the EMG analysis and classification rely
on simple concept of “feature”. A feature is defined as the value of a certain
parameter related to the channel from which it is extracted. Once a parame-
ter is determined in aN -channel EMG collection, it is then possible to extract
N feature which are then used for classification problems. The parameters
follow mainly two approaches: amplitude signal analysis or time-frequency
representation.

The first method is currently based on the recognition and classification of
EMG patterns that encode the information. This information is then used to
estimate muscles activity from the EMG and finally detect the kind the task.
Even if these techniques result to be very successful, it has been demonstrate
that amplitude and rate of change of the EMG were not enough to reliably
control more than one actuator [17]. To solve this problems researches tried
to increase the number of possible states of the models using multiple-channel
acquisitions or other statistical measures, such as entropy [18]. Others, in-
stead, preferred a different approach looking to a time-series modelization of
the EMG: the results encouraging but unfortunately very sensitive to change
of signal amplitude and envelope. On the other hand, Hudgins et al. found
out that EMG exhibits approximately the same structure during the initial
phase of muscle contraction [8]. Time-domain features such as zero-crossing,
mean absolute value and slope were extracted from several EMG segments
and then they are classified using an artificial neural network.

Regarding the latter approach, instead, the main instrument for studying
the frequency components of a EMG signal is the Fast Fourier Transform
(FFT). Every signal, including EMG, can be considered as a summation of
sine waves with different oscillatory frequencies (Formula 1.1). The Discrete
Fourier Transform (DFT) algorithm decompose that signal to its underlined
sinus contents: basically the coefficients coming out from the DFT give a
quantitative measure of how much the current signal could be described with
that frequency sine wave.

Xk
def
=

N−1∑
n=0

xn · e−2πikn/N , k ∈ Z (1.1)
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The approach based on time-frequency has shown that a representation
on both the two domains could actually drastically improve the classification
performance. Feature extraction is usually implemented thanks to Short-
time Fourier Transform (STFT) or Wavelet Transform (WT) [7]. The mean
and median frequency are more over the most important parameters for
analyzing the frequency components of the EMG signals[6]. The study of
Reaz at al. [6] demonstrates that these two parameters increases with the
increase of muscle contraction, meaning that it is possible to distinguish
different muscle actions using these characteristic frequencies. The changes
in the power spectrum in fact are caused from the presence of newly recruited
motor units during the task. The rising firing rate of the MUAP is reflected in
the increase of the mean and median frequency (translation of the spectrum
toward higher frequencies). Procedure of wavelet decomposition have been
approached from many researchers and there are many papers displaying
real-time classification thanks to WT and STFT. All these studies anyway
were applied on EMG acquisitions with a low number of channels. In fact
the WT requires a great amount of computational load and for a data set
of 16-channeled sEMG it could take too much time, overtaking real-time
boundaries.

1.5 NAO robot

Figure 1.8: Aldebaran NAO robot v3.3 (Academic edition)

The final purpose of this thesis is to replicate the same movement of
a subject into a robotic element. The NAO robot (Figure 1.8) has been
chosen for this objective as the most applied humanoid robot in education,
research and supported by many different programming environment. The
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Figure 1.9: Caption

NAO robot is developed by the worldwide leading manufacturer of humanoid
robots Aldebaran Robotics and is on the market since 2008 [19]. The Nao
robot is equipped with a 1,6GHz Intel atom processor, two HD cameras, four
microphones, two loudspeakers as well as a WLAN interface. Besides, NAO
provides several sensors to perceive its environment (More detailed documen-
tation of the NAO platform can be found under Aldebaran-Robotics) [19].
The NAO robot is equipped with five kinematic chains (head, two arms, two
legs). It is 58cm tall and it has about 5Kg of mass.

1.5.1 Arm kinematic chain

The NAO’s arm is an articulated manipulator capable of interacting with
the environment. It is possible to represent this kinematic chain as the se-
quence of mechanic links connected each other by joints. In NAO robot, the
arm is composed entirely of rotatory joints, except for the fingers junction.
The combined action of the actuators generate different configuration of the
robotic links, but not all the position are valid or feasible due to positioning
constrain and collision between links themselves. It is for this reason defined
the “joint space” reflecting all the valid combinations of joint rotation value.
The total number of actuators in a kinematic chain corresponds to its DOF:
higher are the DOF more flexible is the robot. Robot kinematics is the ap-
plication of geometry to the study of kinematic chains with multiple degrees
of freedom. More specifically, robot kinematics provide the transformation
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from the joint space, where the kinematic chains are defined, to the Cartesian
space, where the robot manipulator moves, and vice versa [20].

Each arm of the NAO has 5 DOF:

• Shoulder Pitch

• Shoulder Roll

• Elbow Yaw

• Elbow Roll

• Wrist Yaw

One of the leading reason for implementing this study on NAO robot is
the great similarity between its Range of Motion (ROM) to the human’s one.
The comparison between the two of them is displayed in Table 1.2. The close
affinity between the two kinematic chains, indeed, makes much more easier
the replication and the control of the end effector motion in to the robotic
element.

Figure 1.10: NAO’s joint ROM
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ROM
Joint Name NAO Human

LShoulderPitch [-119.5°, 119.5°] [-180°, 60°]

LShoulderRoll [-18°, 76°] [-45°, 180°]

LElbowYaw [-119.5°, 119.5°] [-180°, 75°]

LElbowRoll [-88.5°, -2°] [-150°, 0°]

LWristYaw [-104.5°, 104.5°] no range

RShoulderPitch [-119.5°, 119.5°] [-60°, 180°]

RShoulderRoll [-76°, 18°] [-180°, 45°]

RElbowYaw [-119.5°, 119.5°] [-75°, 180°]

RElbowRoll [2°, 88.5°] [0°, 150°]

RWristYaw [-104.5°, 104.5°] no range

Table 1.2: Comparison between the NAO’s and human’s joint ROM [21]

Robot kinematics is a powerful instrument to control movements execu-
tion as well as to calculate actuator forces and torque. There are two main
analysis in mechanical links and joints: forward and inverse kinematics.

Despite of the fact that control of actuator is managed by coordinates-free
in the joint space, these values result to be actually very little informative to
the understanding of the end effector position and orientation. The forward
kinematics, for this reason, creates a map from the joint space to the 3D
Cartesian space. This means that given a set of joint values (θ1, θ2, ...,
θm), the forward kinematics gives back the position (px, py, pz) and the
orientation (ax, ay, az) of the final element of the kinematic chain respect
to the global coordinates system. Forward kinematics strength is underlined
from the fact that it is independent from the domain, providing always an
analytical solution.

Anyhow, usually a common task for a robot manipulator is to follow tra-
jectories or get to a target point. This implies the fact that the objective to
solve is usually handed over as a 3D point in Cartesian space. To reach this
goal is necessary to project the end effector to the goal, specifying appropri-
ate values of the joints rotation. The inverse kinematic basically computes
the reverse action of the forward analysis: produce a transformation from
the Cartesian space to the joints one. On the contrary the inverse kinematic
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is not a domain-independent problem and it is possible to get different so-
lutions in the joint space (different link configurations) corresponding to the
same target point. As the number of DOF increases, a point in the 3D space
may have more than one matching points in the joint space. This multi-
plicity of solutions makes the inverse kinematics a relation, not a mapping
[20]. The inverse kinematics can be solved or in analytical way (Closed-form
equation) or using numerical method with iterative approximation (Jacobian
approximation method).

The NAO arm kinematic chain refers to a mathematical model consist-
ing in an assembly of rigid bodies (links) connected by joints. Each link is
constrained by their connection to other links and they are able to change
configuration only thanks to actuators action. Taking in to account this, the
translation and orientation of a joint j with respect to an adjacent joint i in
the 3D space can be full described using a 4×4 affine transformation matrix
T ji :

T ji =


R̂


dx

dy

dz


[

0 ... 0
]

1

 (1.2)

where R̂ ∈ R3x3 and vector dX(= [dx dy dz]T ) ∈ R3. The affine trans-
formation matrix T ji provides at the same time the translation dX (related
to the link dimensions) and orientation (returned by sub-matrix R̂) of the
coordinate system j with respect to coordinate system i [20][22].

For each robotic manipulator of N joints, there is an equal number of
left-handed Cartesian coordinate systems. Every frame is then linked to the
previous one thanks to affine one-by-one transformation. For convenience, in
a manipulator the frame enumeration starts from an established base frame,
typically a fixed point on the robot’s body. In the case of the NAO arm, the
shoulder is chosen as starting joint [22]. A point described in frame j can be
therefore transformed as a point in another frame coordinates by cascading
the transformations for all intermediate frames:

T ji = T i+1
i T i+2

i+1 ...T
j
j−1 and p̄i = T ji pj (1.3)

Denavit and Hartenberg [23] established a formalism for describing trans-
formations between two frames adjacent to a joint. The points in one end
of a joint are described with respect to a coordinate system that is consis-
tent with the previous frame, as function of the joint state. They concluded
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that to fully describe this transformation matrix it was necessary only four
parameters, known as Denavit-Hartenberg (DH) parameters: a, α, d, and θ.

Figure 1.11: Denavit-Hartenberg scheme and notation on two consecutive frame

This convention establishes a specific arrangement between the two con-
secutive reference frame, displayed in figure 1.11.

1. zi-axis is aligned to the direction of the joint axis of action

2. xi-axis is parallel to the common normal between zi and zi−1 (xn =
zn−1 × zn)

3. yi-axis follows from the xi and zi axes to form a right-handed coordinate
system.

Once settled this conventions, the DH parameters are defined as:

• a : length of the common normal

• α: angle about the common normal, from zi and zi−1

• d : offset along the zi−1-axis to the common normal

• θ: angle about the zi−1-axis, from xi−1 and xi

Thus, the transformation from the (i-1)-th reference frame to the i-th is
accomplished using the affine transformation matrix TDH , obtained thanks
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the multiplication of four matrix, consisting in the two rotation and in the
two translation, represented by the four DH parameters:

TDH = Rx(α)Tx(a)Rz(θ)Tz(d) (1.4)

This equation lead to the analytical form:

TDH =


cosθ −sinθ 0 a

sinθcosα cosθcosα −sinα −dsinα
sinθcosα cosθsinα cosα dcosα

0 0 0 1

 (1.5)

The kinematic chain for the NAO left arm is composed of five joints.
Accordingly, to obtain the expression of the end effector, referred to the
reference base frame, five sets of DH parameters are necessary. Table 1.3
shows the parameters that are used for each DH transformation matrix in
NAO arm kinematic chain. A(dx, dy, dy) represents a translation matrix of
a vector dX(= [dx dy dz]T ); Rj(θ) is a transforamtion matrix corresponding
to a rotation around the j-axis of θ angle.

Frame (Joint) a α d θ

Base Translation A(0, ShoulderOffsetY, ShoulderOffsetZ)

LShoulderPitch 0 −π
2

0 θ1

LShoulderRoll 0 π
2

0 θ2 + π
2

LElbowYaw ElbowOffsetY π
2

UpperArm
Length θ3

LShoulderRoll 0 −π
2

0 θ4

LWristYaw 0 π
2

LowerArm
Length θ5

End Effector
Rotation

Rx(−pi
2

)Rz(−pi
2

)

End Effector
Translation

A(HandOffsetX, 0, -HandOffsetZ)

Table 1.3: Denavit-Hartenberg parameters sets related to each frame of the NAO
arm kinametic chain; the different thetai represents the joint angle coordinate-free
of the rotatory actuators
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Introducing the values reported in Table 1.3 to the analytical solution
of Equation 1.5 it is easy to calculate the final transformation matrix as
concatenation of the single DH transformations:

TEndBase = A0
BaseT

1
0 (θ1)T

2
1 (θ2)T

3
2 (θ3)T

4
3 (θ4)T

5
4 (θ5)Rx(−pi/2)Rz(−pi/2)AEnd5

(1.6)

1.5.2 NAOqi

NAO must interpret and move according to the data that it is able to pick
up from the environment. This is where the embedded software in its head
comes in. NAOqi is the operating system provided by Aldebaran that allows
the small humanoid to understand the data received by its sensors.

Figure 1.12: Schematic representation of NAOqi remote control

The humanoid robot NAO provides the NAOqi Software Development
Kit (SDK). This framework includes a programming interface to develop ap-
plications in different programming languages like C++, Java or Python.
The NAO operating system lets the developers the possibility to control di-
rectly NAO hardware components. The core of the NAOqi SDK represents
the main broker which acts as a server running on a Linux kernel inside the
robot [19]. Different modules consent the access to joints motion, face recog-
nition and other function incorporated in this framework. The SDK, besides
this, grants to developers flexibility in applications development, those could
be run remotely from a laptop. The NAOqi, in this study, was directly in-
stalled in a Laptop supported by Linux operating system and it is used to
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simulate NAO behaviour, later displayed in RViz5 environment. In Figure
1.12 is represented a short schematic representation of how the connection
was set up between NAOqi and the remote control.

1.6 ROS

ROS is a free software framework for robotic purpose that offers many tools
for communication between robots and other devices or software through a
TCP/IP network.

ROS functionality are split in two parts. The core software contains the
different API to create a ROS network and to create the ROS-nodes that
can connect to the network. It also contains scripts and command-lines to
monitor nodes connections, the exchanged messages on the network and to
interface ROS with other software such as RViz. On the other hand, ROS
provides a very large packages database referenced in ROS main website [24].

The best service of ROS is its communication network. Communication
is based on the TCP/IP protocol with each node connecting with a socket.
The server is administrated by a master that handles all the connection and
addressing details. The principal components of a ROS network are:

• Nodes: they are process that can perform computation, execute some
tasks and communicate through the network. ROS provides libraries
to write the nodes with the C++ or the Python languages;

• Messages: they are packages of structured data sent on the network. A
message is divided in fields. Different messages are distinguished from
the field types;

• Topics: the topics are a transport system with publish and subscribe
semantics used to send messages. A node can connect to a topic by its
name either as a publisher in order to send data or as a subscriber in
order to receive these data;

• Services: they are an alternative to the topics that does not use the
publish/subscribe system but instead uses a request/response model.
A node that uses service will only receive data in response to the query
it made.

5 RViz (ROS visualization) is a 3D visualizer for displaying sensor data and state
information from ROS. Using RViz, it is possible to see the current configuration on a
virtual model of the robot. You can also display live representations of sensor values
coming over ROS topics including camera data, infrared distance measurements, sonar
data, and more.
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1.7 Thesis overview

The following chapter provides a overview of the database that was used
for analysis and then it briefly outlines the acquisition protocol to better
understand the starting point and then interpret the conclusions of this study.

Chapter 3 presents the target-oriented analysis. This part wants to show
up how it is possible to classify a multi-channel EMG: multi-class SVM are
used to label the motor tasks in different classes, those correspond to the
target that as to be reached. Methods are presented and results discussed in
way to drag conclusions about the chosen parameters for the classification.

In Chapter 4, the principal part of the project is described. The methods
used for the kinematic reconstruction such as MLR and the correlated use
of predictive filters are exposed. Then, once the results deriving from the
trajectory reconstruction algorithm are discussed, the final part concerning
the robot connection is covered.

In Chapter 5, finally, we draw some more conclusions about all the ex-
perience and from the online testing. Limitations of this study and possible
future work are finally discussed.

At the end of this thesis are placed glossary, appendix about part of the
code used for classification and bibliography.
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Chapter 2

Experimental design

This chapter presents a brief overview of the data set recorded at the Foun-
dation I.R.C.C.S. San Camillo (Venice, Italy)1. In the data set a single
acquisition is organized in three different recording: EEG, EMG and end ef-
fector kinematics (position and velocity). The experiment took place in date
17 December 2013.

2.1 Patients

The experiment involved two patient of the hospital.
The first subject (BV), had a ischemic stroke in the left frontal-parietal

of the brain cortex. The brain damage results in the loss of the motor coor-
dination and ability on the right part of the body. Between the stroke and
the acquisition had passed approximately ten months.

The second patient (FA), suffered from a massive ischemic stroke in the
right cortex and sub-cortex (involving frontal, parietal, insular, temporal
and occipital part). Between the stroke and the acquisition had passed two
months only. It was not clear from the subject information if many small
strokes occurred and loss of motor control was the result of the last one or
instead it was only one event. For the second subject was recorded only one
run. Since the amount of data for the first patient was fairly higher it was
chosen as exemplar for the model.

1San Camillo foundation takes care of facilities designed as I.R.C.C.S., i.e. hospitals
pursuing research in the bio-medical field and in the organization and management of
services.
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2.2 Experimental protocol

Figure 2.1: Example of possible screen displayed to the subject. The centered
square in yellow is the starting point; the external squares represent instead the
four possible target, the one filled in red is the goal; last, the blue spot stand for
the pointer

On the computer screen was displayed five different squares: one in the mid-
dle representing the starting point and the other four at the cardinal points
respect the first one representing instead the possible goals, as displayed in
Figure 2.1. The patient was asked to repeat four different motor tasks with
the superior limb, extending the arm in one of the four direction. One trial
started when the pointer is placed correctly inside the starting square. After
a time of tt = 2000ms (time of target delivery) a target square was randomly
selected giving a visual output to the patient; the patient had to wait for
a second output at tlag = 4000ms (lagging time) from the start before go
ahead moving the manipulator towards the target. If the pointer, virtually
describing the manipulator on the screen, exited before this second flag, the
subject had to start over from the beginning. The trial ended when the
pointer entered in the aimed target. Afterwards, it was asked to the patient
to reposition the pointer inside the initial square and a new trial started.
Each run consists of 80 trials randomly disposed, however for each target is
reserved the same number of trials.
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2.3 Data acquisition

The acquisition was set up in way that the patient, once arranged with
the EEG cap and the EMG electrodes, had his hand on a manipulator with
kinematic sensors. One acquisition was divided in three run: each run consist
of 80 consecutive trials.

In our analysis, EEG recording was not taken into account. The EMG
was captured in a unique acquisition for each run composed by 17 different
channels. The first 16 channels are addressed to record a specific muscle
activity. The number of channel is chosen in way to record as much more
information as possible, avoiding simultaneously problems of cross-talking.
To avoid these drawbacks only those muscles that are most influential on the
limb motion of interest have been selected. The position of the 16 pairs of
electrodes and the list of their respective muscles are shown in Chapter 1.3.2
(particularly attention to Figure 1.6, 1.7a, 1.7b and to Table 1.1). The last
channel, labeled as “Trigger”, produced a signal which was high when the
pointer was inside a square (starter or goal) and instead assume zero value
once was out. This signal is useful to us so that it is possible to label the
EMG and kinematic data. sEMG is sampled at 1000Hz. Before the begin of
the analysis and the pre-processing of the signals it has been done a check up.
Some inconsistencies were found on some of the EMG channels acquisitions.
The more obvious was on the 8th channel. The signal results in a constant
high intensity noise. Probably the electrode on Theres Major muscle was
broken or it have detached immediately after its set-up. Moreover the 16th
channel has been excluded from the analysis due to heavy noise alterations.

Velocity and position are actually recorded only when the “Trigger” signal
is down. Basically, every kinematic recording starts when the cursor exits
from the initial square and ends once the pointer entered in the goal: each
run provided a set of 80 acquisitions. This acquisition strategy has proved
not to be the best solution since it caused the loss of fundamental data.
In fact, this experimental design led to kinematics recordings that actually
do not present the starting condition, when the pointer is steady in the
center of the plane. This means that the classifier is never fed with data
related to stationary condition of the manipulator, probably constituting a
weak case in the model. This limitation is going to be discussed later in a
following chapter, with illustration of the related problems concerning the
modelization. Position and velocity with respect to EMG has a sample rate
of 100Hz. This of course leads to problems of interpolation or down-sampling
of the two different recordings.

Thanks to the EMG trigger and to the time samples acquired simultane-
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ously to the kinematics data it was possible to coordinate the two acquisition
and fit them together.



Chapter 3

Target-oriented classification

This chapter performs a preliminary analysis on the treatment of data in
a off-line perspective. The parameters used to implement the classification
are, in fact, computed from the entire length of a trial acquisition. This
issue makes the following techniques and methods not suitable for a on-line
application. Based on what is exposed Chapter 1.4, both the two type of
analysis (amplitude and frequency domain related parameters) are adopted
for the classification in order to make a comparison between the performance
of both the two approach. According to literature [5][6][7][8] the features are
extracted based on parameters that more characterize the sEMG evolution
in both time and frequency domain:

TIME DOMAIN

• s_mean: mean magnitude of
the rectified signal

• IEMG: area under the recti-
fied signal

• ZCR: Zero-Crossing Rate
(ZCR) of not-rectified oscil-
lating signal

• in_percent: percentage con-
tribution of each channel to
total acquisition

• mean_peak: mean of the
highest spikes of rectified sig-
nal

FREQUENCY DOMAIN

• f_mean: mean frequency of
the filtered signal

• f_median: median frequency
of the filtered signal
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The label used in the in the previous list are the same used in the Matlab
code (Appendix A, Listing A.1).

3.1 Methods

For s_mean, IEMG, in_percent and mean_peak parameters it is necessary
a common previous EMG signal pre-processing before they are computed.
In fact for amplitude related parameters is usually necessary compute the
rectification. The first step is to band-filtering the EMG, according to the
scientific finding exposed in Chapter 1.3.1. In this thesis, Butterworth band-
pass filters1 are implemented thanks to the function already present in Matlab
main library, adopting a filter order equals to seven, a low-cut frequency of
4Hz and as high-cut frequency 200Hz. To solve signal aleatoriness and to
minimize its unpredictable part, instead, a full-wave rectification2 is applied
followed by a simple moving-average smoothing. The band-pass filtering
computed before makes sure that signal is clean and hold null mean value
in order that baseline does not affect the rectification. The combination of
these actions leads to obtain at the end a “linear envelope” signal (Figure
3.1) that outlines the same information of the initial EMG [13].

Figure 3.1: Matlab plot of the rectified EMG signals. The figure shows the
acquisition of the selected channels of patient BV in trial n◦ 35

On the other hand, ZCR parameter exploits the fact that contraction gives
large changes in potential: higher is the contraction, higher is the rate[5].
For this reason, even if it is a amplitude related parameter, ZCR is instead

1The Butterworth filter is a type of signal processing filter designed to have as flat a
frequency response as possible in the passband [25].

2Full-wave rectifier implies the complete shift to positive of the negative values of the
signal. It opposes to half-wave rectifiers those instead cut out from the signal the negative
part.



3.1. METHODS 29

extracted directly on the raw EMG: the signal is not pre-processed since
filtering procedure may alter the ZCR trend. Some controls are instead
implemented in order to not count noisy zero-crossing and supply to the
absence of filters.

At last for the frequency-domain correlated parameters, only the filter-
ing part is applied, in order to extract features related only to the EMG
characteristic frequencies.

Appendix A.2 contains also the detailed definition of the chosen parame-
ters and the correlated implementation in Matlab code for their computation.

At the end of the extraction algorithm therefore we should get for each
trial and for each of the chosen parameters a features set, one for each chan-
nel. One trial, regardless to which parameter, is now marked by the feature
vector, in this case of study a vector of 14 elements: basically one trial can
be thought as a point in a 14-Dimensional space. Learning algorithms can
be applied to this perspective in way to create supervised learning mod-
els those are able to use classification and regression analysis to cluster the
multi-dimensional space.

Figure 3.2: Graphic represen-
tation of a classification derived
from multi-dimensional SVM

Given a set of training examples, each
marked for belonging to one of the differ-
ent class, a SVM training algorithm builds a
model that assigns new sample into one class
or the other, making it a non-probabilistic
binary linear classifier. A SVM model is a
representation of the parameters space sub-
division, mapped so that the training ele-
ments of separate categories are divided by
maximizing the distance between the ele-
ment of different classes. In linear classi-
fier the space subdivision is called model-
ing class boundaries with hyper-planes, i.e.
based on the value of a linear combination
of the characteristics. Test samples are then
mapped into that same space and predicted

to belong to a category based on which part of the space fall on. The Mat-
lab function used in this master thesis project has been download from the
MathWorks®web-site in the section of Matlab Central - File Exchange, since
the multi-class SVM has been implemented in the main Matlab library only
starting from the newly released Matlab R2015a. A multi-class SVM is nec-
essary in our case due to the presence of four different classes represented
from the four different motor tasks in the data-set. The function code was
written by Cody Neuburger, researcher in the Florida Atlantic University
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(Florida, USA) [26].

3.2 Results

Even if the time performance are actually discouraging and not suitable for
a real-time application, it was possible at the end to look some interesting
results after the testing phase. The classifier is tested and cross-validated
using a Leave-One-Out (LOO) technique3 on all the 240 trials.

Parameters Number of
Classification Errors

Classification Error
Frequency

s_mean 16 6.67 [2.73,9.47]%

IEMG 20 8.33 [4.09,11.50]%

ZCR 87 36.25 [29.82,42.34]%

in_percent 25 10.42 [5.84,13.98]%

mean_peak 12 5.00 [1.43,7.39]%

f_mean 35 14.58 [9.47,18.79]%

f_median 40 16.67 [11.34,21.15]%

Table 3.1: Results of the models cross-validation with LOO on 240 trials (obser-
vations). First column contains the name of the parameters; the second one shows
the total number of classification errors; the last column presents the classification
error frequency with 95% of confidence interval, fitting the the error prediction
with a binomial distribution

In Table 3.1 is displayed a comprehensive view of the cross-validation
results. LOO cross-validation tests cyclically each observation, i.e. each trial,
training the model on the rest of the data-set. It is possible in this way to test
the SVM 240 times. The best result is obtained thanks to the mean_peak
parameter, following a similar outcome with s_mean parameter: only 5%
around of classification error. The result instead gets worst when we train the

3Cross-validation is a model validation technique, mainly used in setting where the goal
is prediction, and one wants to estimate how accurately a predictive model will perform
in practice. LOO cross-validation in particular involves using only one observations as the
validation set and the remaining observations as the training set. This is repeated on all
the different observations of the data set.



3.2. RESULTS 31

Target 1
(Nord)

Target 2
(East)

Target 3
(South)

Target 4
(West)

s_mean 0.25 0.13 0.06 0.56

IEMG 0.15 0.10 0.05 0.70

ZCR 0.01 0.39 0.06 0.54

in_percent 0.20 0.08 0.08 0.64

mean_peak 0.33 0.00 0.17 0.50

f_mean 0.20 0.09 0.17 0.54

f_median 0.17 0.05 0.10 0.68

Table 3.2: The table displays the percentage contribution of each class (embodied
by the target and its correspondent motor task) to the total error prediction for
each parameter

model with frequency-domain parameters. Both mean and median frequency
give back a 15% of class mismatch. The worst outcome is generated however
training the classifier with the ZCR: over 35%. In Table 3.2, the attention is
focused on the contribution that each class gives to the total error. The class
referred to Target 4 happens to be the one that brings larger contribution
to class mismatch, greater than 50% of the error for each parameter. Figure
3.3 gives a graphical representation of the Table 3.1 and 3.2.

Figure 3.3: Plot of the classifier error prediction results
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3.3 Discussion

Classifier performances show a significant improvement in case of using time-
domain parameters, but for ZCR. This is probably due to the fact that the
Fourier Transform compute the spectrum over all the trial signal, without
windowing the signal. The high classification error could be attributed to the
fact that some muscles had just a short contraction and the high frequency
content of the burst is mitigated from the rest of spectrum when mean and
median are extracted. On the contrary, it is possible to see that with just
the mean of the signal the SVM is able to classify correctly over the 90% of
the trials in the data-set.

The best performance anyway is shown from the mean of the peaks of
the pre-processed EMG signal. It is fully understandable thinking about
the nature of the peaks in a EMG. Superposition of MUAP increases the
amplitude of the EMG, so stronger is the motor unit recruitment, higher are
the correspondent burst peaks[13]. The later parameter is probably even less
affected from the rest of the signal too. For example EMG mean, the area
under the curve or the input per channel percentage are computed taking
into account all the samples of the acquisition. Therefore it is possible that
even if inside the signal there are significant change of pattern, they are lost
during the computation of such parameters. Peaks detection instead counts
only restricted number of values, this could explain the better result.

The worst outcome is obtained instead for the ZCR. Explanation to this
can be charged to the same reasons displayed for the frequency-domain pa-
rameters related, but more likely the implemented controls were not enough
to supply the absence of signal filtering. Observing the different run taken
by the patient, it is visible a upward trend of the signal amplitude. This
drift in the signal acquisition is probably due to muscular fatigue or sensor
detachment and it is the reason why the regulative threshold in some trials
is not enough to cut out the noisy zero-crossing.

An other remark as to be done to a noteworthy particular. In Figure
3.3 is evident that the major rate of error prediction happen for the class
corresponding to Target 4. This is likely related to the choice to not tak-
ing into account the corrupted channels’ acquisition. Teres Major in fact is
involved in arm adduction and backward extension, instead Trapezius (supe-
rior fibers) manage the scapula rotation: both of them are involved for the
motor task accomplishment.

This kind of analysis does not give back directly a kinematic response,
but it is possible once a certain task is encoded with a class to associate that
with a prefixed built trajectory. This is not a excellent solution since there is
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only a limited set of actions and the paths of the end-effector have every time
to be adjusted to the anthropometry of the subject. Moreover the patient
can not perform customize movements and it ends to be quite hard to be
employed in real-life situations.

The discussion of the obtained results made clear to the necessity of a new
kind of approach which could be at the same time fast and not constrained
to limited number of class, leaving to the users more freedom and trying to
give to him a tool as user-friendly as possible. On the other hand anyway,
it was observed that, without spending much effort in algorithm design for
parameters extraction, the simple EMGmean value results to be good enough
as feature in the target-oriented classification.



34 CHAPTER 3. TARGET-ORIENTED CLASSIFICATION



Chapter 4

Kinematic reconstruction analysis

The following chapter describs in the main part of the thesis. Using infor-
mation gathered in the target-oriented analysis as a starting point, we want
to show the possibility to use sEMG to decode upper limb trajectory and
to control an humanoid robot. The implemented techniques and solutions
used to solve problems related to the real-time application are here discussed.
The reliability of this solution is in the end presented through performance
discussion.

The main challange was the design of an algorithm for the trajectory pre-
diction that would it be at the same time accurate and fast enough to keep
up with a real-time application, such as the movement of robotic device. In
order to meet this two objectives it was considered to split the kinematic
reconstruction in two parts: a first component consisting in the actual pre-
diction model, and a second filtering element able to fix the prediction errors
of the first part. Accordingly to this consideration, first, a predictive model
is built and developed on MLR and then, instructed on an observed train-
ing set. The fitted model is then used to estimate the trajectory of a end
effector, only based on the data contained in test set. The best choice for
the prediction corrector is here represented by Kalman filter. This type of
predictive filters not only permits to overcome the inaccuracy of the MLR
predictor, but moreover it perfectly suits the necessity for a low computation
time.

4.1 Methods

The analysis is divided in two parts:

• Off-line training

• On-line simulation
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Respecting this subdivision, we applied LOO technique where one trial it
is randomly selected one trial from the data set, which it will be reserved for
the on-line simulation (Test set). The remaining trails are instead employed
for the training of the MLR model (Training set).

Filtering, full-wave rectification and digital smoothing is performed on the
of the training set EMG signals, using the same procedure of the previous
target-oriented analysis for amplitude related parameters.

Afterwards, Principal Component Analysis (PCA) is computed directly
on the EMG channel acquisitions. PCA is a statistical procedure that uses
an orthogonal transformation to convert a set of observations of possibly cor-
related variables into a set of values of linearly uncorrelated variables called
principal components. This operation aims to obtain a dimensionality re-
duction of the training set and consequently the reduction of the algorithm
computational time. The utilized function is already implemented in the
Matlab main library. This function returns the principal component co-
efficient matrix, also known as weights: each column contains coefficients
for one principal component (columns are in order of decreasing component
variance). This is directly multiplyed to the training set and results in an
uncorrelated orthogonal vector basis set. Of this principal components are
kept only those with the largest variance, explaining the 96% of the total
training set variance.

After the PCA, the MLR model has to be trained. Multivariate linear
regression is an approach for modeling the relationship between a dependent
set of correlated variables Y and one or more explanatory variables (or inde-
pendent variable) denoted from vector X. In this case of study, the vector
Y is represented from the kinematics data, velocity and position in the 3D
space; X embodies the observations of the channeled EMG after PCA reduc-
tion. In linear regression, data are modeled using linear predictor functions.
Linear regression refers to a model in which the values of Y are obtained
from an affine function of X. The estimation algorithm calculates a series of
parameters that are used to compute a linear combination of the PCA vec-
tors, as close as possible to the position and velocity values. Thus, the model
is fully characterized within a matrix of dimension dxK, where each column
contains the d parameters for the linear combination (number of PCA compo-
nents plus the constant value) of the K (equals to six) correlated coordinates
of position and velocity in a 3D space. Practically, the “mvregress” Matlab
function receives as inputs the matrices of the kinematics data and the PCA
reduced EMG data and produces in output a single estimated coefficients
matrix.

The last step, before moving to the on-line test is the implementation of
the model used for the Kalman filtering. The Kalman filter is designed to
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operate recursively on streams of noisy input data to produce a statistically
optimal estimate of the underlying system state. Two equations define the
filter: the update state equation and the measures equation. The algorithm
works in a two-step process. In the prediction step, the Kalman filter pro-
duces estimates of the current state variables, exploiting the update state
equation, along with their uncertainties. Once the outcome of the next mea-
surements, corrupted by certain error/noise, is observed, these estimates are
updated using a weighted average, with more weight being given to estimates
with higher certainty. Because of the algorithm’s recursive nature, it can run
in real-time: only the present input measurements and the previously calcu-
lated state and its uncertainty matrices are necessary and no additional past
information is required. The estimated trajectory out-coming from the MLR
predictor is chosen as input for the Kalman filter. The update state equa-
tion is derived from a classic kinematic model of a moving point, with the
assumption of null acceleration. The measures equation is instead a simply
noise adder. More detailed information for filter implementation and related
code are displayed in Appendix B.2. At the end of the off-line training, PCA
reduction matrix, the MLR predictor and the Kalman filter model should be
therefore handed over to the on-line simulation code section.

In a real-time application, the predictor algorithm has to work asyn-
chronously from the acquisition In order to respect this consideration, the
virtual acquisition is simulated simply scanning forward the test trial data
and the trajectory estimation is applied iteratively on EMG signal buffers
composed by 512 samples. The start of consecutive buffers are spaced from
one another with offset equals to 32 samples, creating an overlap between
successive buffers.

First, pre-processing and rectification is applied on a single buffer. Sec-
ondly, like in the off-line part, the dimensionality of the buffer is reduced
thanks to PCA and the mean is then computed on the principal vector com-
ponents. Therefore, an averaged observation is obtained from the single
buffer made up of only a single sample. Afterwards, the calculated values
are used afterwards as entry for the MLR, that projects them in a point
coordinates of a 3D Cartesian space. Finally the position and velocity of the
end effector is rectified applying the Kalman filter formerly designed.

The reconstructed kinematics data are sent to the NAO robot by means
of to designed ROS network.
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4.2 Results

The results presented in this section derive from ten different on-line tests.
For each test it is performed the procedure explained in the methods section
(off-line training and on-line simulation), choosing every time a different test
set.

Figure 4.1, 4.2 and 4.1 display the obtained results at the end of three
simulations; three representative trials (representing respectively good, bad
and mean fit performance) are shown. In each of these figures a graphical
representation of both position (on the top) and velocity (on the bottom)
prediction is shown. The blue line is the actual kinematics recording, ob-
tained from the acquisition session. In black is plotted the first prediction
out-coming from the MLR model. The red curve, instead, represents the final
result of the algorithm, after the Kalman filter. The three line are displayed
on the same Matlab plot in order to get a better comparison between the
estimation and the real kinematics.

Figure 4.4 instead reports the results of the goodness of fit of the Kalman
filtered position values and the real trajectory: this parameter shows how
good the test data fit the reference one. The Matlab function that was
adopted in the code uses a cost function based on Normalized Mean Square
Error (NMSE):

GoF = 1−
∣∣∣∣∣∣∣∣ x̄ref − x̄
x̄ref −mean(x̄ref )

∣∣∣∣∣∣∣∣2 (4.1)

where, || indicates the 2-norm of a vector.

NMSE costs vary between -Inf (bad fit) to 1 (perfect fit). If the cost
function is equal to zero, then x is no better than a straight line at matching
xref .
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(a) Matlab plot of position prediction results

(b) Matlab plot of velocities prediction results

Figure 4.1: Trajectory prediction results on the first on-line simulation. The blue
curve represents the real end effector kinematics, the dashed black line stands for
the MLR prediction and finally the red line is the final result after Kalman filtering

(a) Matlab plot of position prediction results

(b) Matlab plot of velocities prediction results

Figure 4.2: Trajectory prediction results on the third on-line simulation. The
blue curve represents the real end effector kinematics, the dashed black line stands
for the MLR prediction and finally the red line is the final result after Kalman
filtering
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(a) Matlab plot of position prediction results

(b) Matlab plot of velocities prediction results

Figure 4.3: Trajectory prediction results on the eighth test. The blue curve
represents the real end effector kinematics, the dashed black line stands for the
MLR prediction and finally the red line is the final result after Kalman filtering

Figure 4.4: Matlab plot of the goodness of fit parameters for each on-line sim-
ulation, between the Kalman filtered position values and the real trajectory. The
goodness of fit is calculated separately for each direction component. On the Top
of the plot are placed the target label: N= North, S=South, W=West and E=East

Finally, in Table 4.1 is presented a comparison between the actual time for
the trial execution and the computational time demanded from the trajectory
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estimation algorithm for each on-line test.

Simulation N° Real execution time
(ms)

Algorithm execution time
(ms)

1 1050 579

2 1502 1102

3 994 527

4 1429 1013

5 1404 985

6 2589 2245

7 1355 1618

8 486 303

9 1328 867

10 1224 767

Table 4.1: Comparison between the algorithm computational time and the actual
trial duration. First column contains the label of the on-line simulation, second
and third column, respectively, the demanding time for the trial execution and for
the trajectory estimation. Time is expressed in milliseconds

4.3 Discussion

The first remark to be done is on the MLR model. It is certainly true
that the output of the MLR predictor can not be directly employed as an
effective signal for the robot control, but it is anyway interesting to note that
prediction results really close to real trajectory. From the plots in Figure 4.1,
4.2 and 4.1, it is actually possible to see that the resulting pattern at least
do not totally deviate from real one. If this had not happened, it would have
been considerably more difficult obtain such good results after the prediction
correction.

The same results, on the other hand, prove the real strength of the
Kalman filter. The filter is actually able to rectify the distorted prediction
based on a simply kinematic model of a moving point in a 3D space and prior
statistical knowledge. In the Matlab plots it is evident that the goal is always
met, at least in the leading direction. For the remaining two components,
instead, there are often more evident fitting problems. This is particularly
appreciable when the latter two trajectory components are stationary: the
filter produces a noticeable drift toward the MLR estimation values. The
reason probably lies on the fact that, for stationary signals, the Kalman fil-
ter action on the prediction step is not strong enough to overcome the error
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introduced from MLR. This last observation is proved from Figure 4.4. The
goodness of fit reaches always, at least for one direction, a particularly high
value.

Anyway, Figure 4.4 seems to display worst result with respect to the
graphical representation in Figure 4.1, 4.2 and 4.1, since for some trial the
goodness of fit value go down under -10. This can be explained within the
choice of the cost function used in the goodness of fit calculation. NMSE, as
its name states, normalizes the fit error and for this reason in stationary curve
even a small deviation can lead to a big NMSE values. Using the same logic,
this explain why curves with significant variations in the trend and presenting
the same amount of fit error, result actually in better performance.

The velocity prediction on the contrary do not provide great results, but
in this study these values have an active role only in the Kalman filter, where
they are employed for the estimation of the new end effector position. In fact,
this thesis do not utilize velocity directly in the robot device control, but only
position.

Talking about performance, it is noteworthy to take a look at Table 4.1.
The evident conclusion that can be deduced from the table is that the compu-
tational time is significantly lower to duration of the trial. The buffer off-set
acts directly on the computational time. The computational load can be fur-
ther lowered, raising the spacing between consecutive buffers. Higher is the
buffer off-set, lower is the output frequency of the predictive algorithm and
less time is therefore computed the iterative estimation. At the same time
lowering the output frequency could lead to less accuracy in the trajectory
estimation values.

Anyway, employing a buffer offset of 36 samples (∼28 buffer per second),
this study was able to meet the real-time constraint and an excellent fit at
once.

4.4 NAO robot control

Until now was only presented and discussed methods and techniques re-
garding the implementation of an algorithm for the EMG-driven movement
decoding, but no reference has been addressed to the control of a robotic
device. As stated in Chapter 1, once the part of trajectory prediction is
successfully concluded, the out-coming data have to be used for the control
of a robotic manipulator. The last issue that has to be solve is the creation
of a comunication path between the output data from the Matlab program
and the robotic element.

As presented in Chapter 1, a ROS network is the perfect tool to achieve
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the realization of a communication channel with a robot device. Figure 4.5
displays the ROS computation graph of the implemented network for the
NAO robot control.

Figure 4.5: rqt_graph GUI plugin display of the ROS network created for the
NAO robot control

The main part of the analyzed ROS network was actually already im-
plemented from libraries which can be easily download from the ROS on-
line database. This network section is already designed and it manages the
communication with the NAOqi operating system, joint control and motion
regulation, displaying the state information of the NAO robot in a RViz 3D
model.

This thesis developed only a small portion of the displayed network: mat-
lab_node and LArm2Motion ROS nodes. This two nodes are simply ad-
dressed to the exchange of topic between the Matlab process and the NAOqi
operating system.

The matlab_node consists of a simply publisher node that works parallel
with the trajectory prediction Matlab code.

Figure 4.6: Schematic representation of the Matlab-IPC-ROS conectivity

The node is implented using IPC (Inter Process Communication)1. It is
a software package for iter-process comunication employed for the creation of

1IPC provides flexible, efficient message passing between processes (Figure 4.6). It
can transparently send and receive complex data structures, including lists and variable
length arrays, using both anonymous "publish/subscribe" and "client/server" message-
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bridge communication between ROS and Matlab. ROS cannot communicate
directly with Matlab due to incompatible dependencies.

Following the data stream, once Matlab estimates the 3D trajectory point
starting from the EMG data, the inverse kinematic has in first to be applied.
As stated in Chapter 1.5.1 the control of the NAO’s arm, in fact, is performed
directly on the joint angle values. The code implementation of the Jacobian
approximation method for inverse kinematic is taken from the repository
attached to Kofinas Nikolaos Master Thesis project [20]. This numerical
method provide finally the joint angles to be applied on the actuators in
order to reach a particular position in the 3D Cartesian space with NAO’s
arm end effector.

The obtained free coordinates are then published on the matlab_topic
toward the second node. The LArm2Motion ROS node is created instead in
c++ language. The class implemented by the embodied c++ code performs
two main operation. The first is the creation of a subscriber that gathers
the messages coming from the Matlab code and the second is the creation
of another publisher that reorganizes the structured information from the
matlab_topic and in another topic that is acknowledged from the NAOqi
API.

Finally, The joint_angle topic sends to the arms joints the updated angle
values permitting the NAO to move the arm.

During the on-line simulation, it is simply necessary to start up the ROS
network running the launchers from the terminal and once the the Matlab
process is started, the virtual model in RViz starts to move accordingly to
the prediction algorithm (Figure 4.7).

Figure 4.7: RViz program display of the NAO virtual model replicating a subject
movement

passing paradigms. A wide variety of languages and operating systems are supported.
(http://www.cs.cmu.edu/ IPC/).



Chapter 5

General discussion and outlooks

In conclusion, this study manages to accomplish the two main goals estab-
lished at the opening of this thesis. The designed EMG-driven movement
decoding algorithm proved a computational time fast enough to be actually
employed in a real-time application and at the same time a satisfying per-
formance in the trajectory fit. Finally, the control of an humanoid robot
is implemented on the data out-coming from end effector trajectory estima-
tor, by means of a ROS network set up. The Cartesian coordinates of the
trajectory are then transposed in the joint space coordinates generating a
fluently motion in the robotic limb, but above all, generating a movement
that replicates the subject task.

5.1 Limitation of the case of study

The first drawback that can be made on the obtained results is that the
algorithm is only tested on one subject. The choice to implement the study
only on one patient was accordingly to the fact that only a small amount
of trials were available for the second subject. The absence of an adequate
number of trials made impossible to create a reliable predictive model.

An other clear limitation is that all the implemented models are trained
on a data set that involves a low number of task classes. The fact that the
patient performed only four kind of motor task actually could have helped
the positive performance of the classifiers. The model has not been tested for
customized movements, but given the results obtained so far we are confident
that it can respond optimally even then.

For what concern directly the first analysis of motor task target-oriented
classification, it is made clear that its main limitation lies in the issue that
no kinematics information are actually produced in output. This actually
related to the type of analysis that was undertaken. If a robotic device as
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to be controlled subsequently a set of pre-selected trajectories have to be
provide in advanced to the algorithm. Each of this trajectory is then labeled
and assigned to the corresponding target class. This solution, as explained
in Chapter 3.3, appear to be actually to much constraining for a real-time
application, since the only freedom left to the patient is the choice of the
goal.

Far less evident deficiencies can be found instead in the kinematic re-
construction analysis. The prediction performance are really satisfying and
promising but it is nevertheless true that the on-line simulation initial con-
dition is not the actual real trail start. In fact the kinematic recording of a
single trial starts only when the virtual pointer leaves the initial square, as
described in Chapter 2. This implies that the manipulator is already moving
with a certain velocity when the data starts to be acquired. The lack of null
velocity and position as a starting condition could have influenced somehow
the performance of the predictive algorithm: the velocity and position values
at the beginning of the acquisition may have “helped” the estimation toward
the right direction.

A second shortcoming in this analysis is the total absence of a velocity
control. The NAO robot is purely controlled only with joint angle values,
without taking in to account the velocity of task accomplishment. The mo-
tion of the robotic end effector from one point to the consecutive in the
trajectory is performed always with the same velocity. Therefore, when the
subject accomplishes the same path with different velocities, NAO robot
moves the arm with the same kinematics.

5.2 Future directions

Future works based on this study should first of all try to overcome the afore-
mentioned limitations. Therefore, the algorithm should be tested employing
different data sets on different patients and different kinds of task, making
particular attention to the starting condition analysis.

Once the efficacy of this predictive model has been fully proved, the study
can be further developed in new perspectives. The thesis aim to replicate
the same movement of a subject into a robotic device. Even if the subject
was affected from a neuro-muscolar dysfunction the employed EMG data
were relative to the healthy limb. The EMG signals under analysis then
are not corrupted respecting the standard parameters characterization. It is
clear that, as the conclusions of this study are fascinating, and as limitless
could be its applications in the robotic field, no benefit can be brought on
a patient with motor dysfunctions. For this reason a further step would be
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to improve the predictive algorithm in order to estimate the trajectory of a
end effector employing EMG recordings of a non-healthy person. Therefore,
the algorithm will have to be strong enough to estimate the trajectory even
from corrupted EMG signals.

This new direction of the study could lead to novel applications in health
care and develop a new concept of performing rehabilitation. Nowadays,
modern physiotherapy has already employed the use of robotic devices, such
as manipulators, which are used to help the patients in their rehabilitation
process. The repetitive movement of the offended limb, even if passively, is
a typical therapy strategy in order to restore motor abilities. In this contest
the use of of exoskeleton combined with a EMG-driven decoding algorithm
would create a new device able in first place to help the patient in carry
on daily life motor tasks and simultaneously improve his/her pathological
condition. Patients will not need anymore stressful rehabilitation sessions in
the hospital but they will be able to carry them on simply wearing a robotic
support.

On another front, this algorithm can be integrated with other systems
able to decode movements from other biological signals, for example eye-
movement or EEG. BMI is another promising field that in the past years have
led to numerous accomplishments [27][28]. The combination of more systems
for decoding patient movements could give to the patient a tool that will be,
primarily, incredible reliable, but moreover a tool that will guarantee great
liberty of action, thanks to shared-control. This prospective gives confidence
that this study is only the start for series of other future accomplishments
that would lead in medical environment to great innovations. Neuro-muscular
pathologies that now make the patient’s live condition really challenging and
exasperating, they will be treated in a future with simple wearable devices.
Patient in locked-in state will be able to interact with the world thanks
to robotic manipulators. New rehabilitation strategy and protocol will be
developed. Essentially the applications of this study are limitless.

Even if the obtained results are far from being defined “perfect”, what is
actually important is the concept and the conclusion that underlie them: it
is really possible control a machine with physiological signals.
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Chapter A

Target-oriented classification code

A.1 Matlab main

The following code displays the program main for target-oriented classifi-
cation, comprehensive of signal extraction from data set files, filtering and
EMG rectification, parameter extraction, SVMmodeling and error prediction
calculation.

1

%% Data loading and store variables
3 disp(’[user] - Loading data’);

5 [emg , pos , vel , TargetLab , TrialId , LTrials] = ...
offlineDataExtraction(path , limb);

7

%% General settings
9 disp(’[user] - General settings ’);

EmgNumChannels = size(emg , 2);
11 EmgNumSamples = size(emg , 1);

EmgChanLabels = {’CH1’, ’CH2’, ’CH3’, ’CH4’, ’CH5’, ’CH6’, ’CH7’, ...
13 ’CH8’, ’CH9’, ’CH10’, ’CH11’, ’CH12’, ’CH13’, ...

’CH14’, ’CH15’, ’CH16’};
15 EmgChanId = 1: EmgNumChannels;

EmgChanLabels = EmgChanLabels(EmgChanId);
17 KinNumVariables = size(pos , 2);

KinLbVariables = {’x’, ’y’, ’z’};
19 NumTrials = length(LTrials);

NumTargets = 4;
21 param = {’s_mean ’, ’IEMG’, ’ZCR’, ’in_percent ’, ’mean_peak ’, ...

’f_mean ’, ’f_median ’};
23 NumParam = length(param);

25 % Taking off from analysis the corrupted channels
EmgExChanId = [8 16];

27 EmgChanId = setdiff(EmgChanId , EmgExChanId);
EmgChanLabels = EmgChanLabels(EmgChanId);

29 emg = emg(:, EmgChanId);

31 %% Emg signal rectification
% The emg acquired signal is rectified before bulding up the model

53
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33 % according litterature the parameter of the filters are set up

35 disp(’[proc] - Computing rectification of the emg signals ’);
s = emg_smoothing(proc_rectification(emg , 7, 4, 200, 1000) ,20);

37

%% Amplitude Parameters Extraction
39 % Extraction of the most significative EMG signal parameters related to

% amplitude for each channel.
41

disp(’[proc] - Extraction of amplitude related parameters ’);
43 [s_mean , IEMG , ZCR , in_percent , mean_peak] = emg_amparam(emg , s, TrialId);

45 %% Frequence Parameters Extraction
% Extraction of the most significative EMG signal parameters related to

47 % frequency domani for each channel.

49 disp(’[proc] - Extraction of frequency related parameters ’);
[f_mean , f_median] = emg_fparam(emg , TrialId);

51

%% Multi -class SVM prediction with cross -convalidation Leave -One -Out
53

% Definition of the group test: it conteins the target label of each trial
55 for idTrial = 1: NumTrials

tmp = TargetLab(TrialId == idTrial);
57 tLab(idTrial ,1) = tmp(1);

end
59

% Creation of NumTrials different partition of the trial sets acording with
61 % the leave -one -out criterion

LO_partitons = cvpartition(NumTrials ,’LeaveOut ’);
63

% Run of the multi -class support vector machine
65

disp([’[proc] - multi -class SVM prediction with ’ ...
67 ’cross -convalidation Leave -One -Out’]);

for idParam = 1: NumParam
69 disp([’ ...for ’ cell2mat(param(idParam)) ’ parameter ’]);

for idTrial = 1: NumTrials
71 ind_training=training(LO_partitons ,idTrial);

ind_test=test(LO_partitons ,idTrial);
73 eval([’result_class(ind_test ,idParam) = multisvm(’ ...

cell2mat(param(idParam)) ’(ind_training ,:),’ ...
75 ’tLab(ind_training),’ cell2mat(param(idParam)) ...

’(ind_test ,:));’]);
77 end

end
79

% Calculation of the error class prediction
81 disp(’[proc] - Error prediction computation ’);

check_class = zeros(NumTrials , length(param));
83

% check_class variable represents a table containing the missmatch between
85 % the predicted class and the real class

for idParam = 1: NumParam
87 for idTrial = 1: NumTrials

if result_class(idTrial ,idParam) ~= tLab(idTrial)
89 check_class(idTrial ,idParam) = 1;

end
91 end

end
93

% total number of error prediction over all the cross -convalidation
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95 % datasets divided by parameters
NumErrPred = sum(check_class ,1);

97

% total error prediction frequency estimation over all the
99 % cross -convalidation datasets divided by parameters

fErrPred = NumErrPred/NumTrials;
101

% estimation of the real error frequency range with 95% confidence
103 % interval , fitting the error prediction with a binomial distribution

for idParam = 1: NumParam
105 pd = fitdist(check_class (:,idParam),’Binomial ’);

int_tmp = paramci(pd);
107 intConf (1:2, idParam) = abs(int_tmp (:,2)-fErrPred(idParam));

end
109

% analysis of the total error prediction frequency related to the target
111 for idTarget = 1: NumTargets

ind = tLab == idTarget;
113 errTarget(idTarget ,1: NumParam) = sum(check_class(ind ,:) ,1)./ NumErrPred;

end

Listing A.1: Main section of the target-oriented classification code

A.2 Parameters extraction

This appendix section defines the parameters used to feed the SVM model
and how they are extracted. In the following formulas, the variable s identi-
fies the rectified signal. The letter i represents the pointer to the acquisition
sample (N is the length of the trial acquisition vector), the letter j instead
stands for the identification number of the channel.

• s_mean is defined as the mean value of the EMG rectified signal of a
single channel. On line 38 in Listing A.2 the value is computed simply
calling out the matlab function mean().

s_meanj =
1

N

N∑
i=1

sj(i) i, j ∈ N (A.1)

• IEMG represents the integral under the curve of a rectified sEMG
channel acquisition. Since the signal after the pre-processing is con-
verted in positive values there is no integration problem. In Matlab
code is used Trapezoidal Numerical Integration (Listing A.2, line 41).

IEMGj =
t(N)− t(1)

2N

N−1∑
i=1

[sj(i) + sj(i+ 1)] i, j ∈ N (A.2)
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• ZCR is simply a counter of the sEMG zero-crossing. The difficult part
is to get rid of the noisy crossing. For this particular parameter the
same procedure of Chang et al.[5] is kept. First, on the raw sEMG a
base-line correction is done so that the signal has null mean; second
step is to set up a control able to identify the zero-crossing only related
to the muscle contraction. This was done selecting overshoots and
undershoot in the signal (using findpeaks() function) and counting only
the consecutive pair which respects threshold condition and positive-
negative value reversal (Listing A.2, line 48-56).

• in_percent wants to express which channel is more active than the
others. It is possible to see each channel as just a portion of the total
information carried out from the sEMG: basically each channel gives
a percent contribution to the totality of the acquisition. The channel
activation is represented by the mean value of its recording; the mean
values are then normalized with the value obtained from their summa-
tion (Listing A.2, line 39,45). The sum of in_percent along j return
100%.

in_percentj =
s_meanj
s_100%

(A.3)

where s_100% =
M∑
j=1

s_meanj j ∈ N (A.4)

• mean_peak is derived from the mean of the highest spikes value for
each of the sEMG channel. The Matlab function findpeaks() was set
up in way to get the 20 highest peak values (Listing A.2, line 42-44).

After the FFT the signal is mapped from time domain to a frequencies
preserving the same number of samples. The Furier Transform of a real signal
is however a periodic signal of 2π and symmetric to the π axis: which is why
only the first half of the domain is kept for the analysis. The FFT of the
signal in the following formulas is represented from the parameter S and the
letter k is the pointer to the frequency components, included between 1 and
N/2.

• f_mean is the mean frequency content of the signal. (Listing A.3, line
31).

f_meanj =

∑N/2
k=1 f(k) · S(k)∑N/2

k=1 S(k)
k ∈ N (A.5)
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• f_median represents the median frequency of the signal spectrum.
(Listing A.3, line 32-37).

1

function [s_mean , IEMG , ZCR , in_percent , mean_peak] = ...
3 emg_amparam(emg , s, TrialId)

% The function emg_amparam is designed for the extraction of the more
5 % important and relevant parameters , according with litterature , for

% the caraterization of emg signals in amplitude domain.
7 % INPUT

% - emg : raw emg signal matrix; columns contain single
9 % channel acquisition , rows contain the ith sample

% for each channel
11 % - s : pre -processed emg signal acquisition matrix

% - TrialId : vector containing the trial label for each emg
13 % sample

% OUTPUT
15 % - s_mean : s signal matrix mean for each channel

% acquisition
17 % - IEMG : s signal matrix integration for each channel

% acquisition
19 % - ZCR : Zero -crossing counter of the emg signal matrix

% for each channel acquisition
21 % - in_percent : percentual input of each channel acquisition in

% s signal matrix
23 % - mean_peak : mean of the more relevant peak in s signal

% matrix for each channel acquisition
25 % Each output parameter is a matrix which contains along rows the

% parameter of each channel and along columns the realisation of each
27 % trial.

29 % Initial settings
ZCR = zeros(TrialId(end), size(s,2));

31 s_mean = zeros(TrialId(end), size(s,2));

33 for idTrial = 1 : TrialId(end)
ind = TrialId == idTrial;

35 cemg = emg(ind ,:);
cs = s(ind ,:);

37 s_mean(idTrial ,:) = mean(cs, 1);
emg_mean = mean(cemg ,1);

39 s_100perc = sum(cs, 2);
for idCh = 1 : size(s,2)

41 IEMG(idTrial , idCh) = trapz ((1: size(cs ,1))/1000 , cs(:,idCh));
[pks pkpos] = findpeaks(cs(:,idCh), ’npeaks ’,20,’sortstr ’, ...

43 ’descend ’);
mean_peak(idTrial , idCh) = mean(pks);

45 in_percent(idTrial , idCh) = mean(cs(:,idCh)./ s_100perc)*100;
tmp=cemg(:,idCh)-emg_mean(idCh);

47 tmp = spline_smth(tmp);
[over over_pos] = findpeaks(tmp , ’MinPeakDistance ’, 10);

49 [under under_pos] = findpeaks(-tmp , ’MinPeakDistance ’, 10);
pks_pos = sort([ over_pos; under_pos ]);

51 for idZcr = 1: length(pks_pos)-1
if abs(tmp(pks_pos(idZcr))-tmp(pks_pos(idZcr +1))) >0.008 ...

53 && tmp(pks_pos(idZcr))*tmp(pks_pos(idZcr +1))<0
ZCR(idTrial , idCh) = ZCR(idTrial , idCh)+1;

55 end
end

57
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end
59 end

end

Listing A.2: emg_amparam function: used for the extraction of time-domain
related parameters

2 function [f_mean , f_median ]= emg_fparam(emg , TrialId)

4 % The function emg_fparam is designed for the extraction of the more
% important and relevant parameters , according with litterature , for

6 % the caraterization of emg signals in frequency domain.
% INPUT

8 % - emg : raw emg signal matrix; columns contain single
% channel acquisition , rows contain the ith sample

10 % for each channel
% - TrialId : vector containing the trial label for each emg

12 % sample
% OUTPUT

14 % - f_mean : emg signal matrix frequency mean for each
% channel acquisition

16 % - f_median : emg signal matrix frequency median for each
% channel acquisition

18 % Each output parameter is a matrix which contains along rows the
% parameter of each channel and along columns the realisation of each

20 % trial.

22 for idTrial = 1 : TrialId(end)
ind = TrialId == idTrial;

24 cemg = emg(ind ,:);
for idCh = 1 : size(emg ,2)

26 hp_emg = filt_highlow(cemg(:,idCh), 7, 4, 1000, ’high’);
% Fourier fast transform: frequency domain shift

28 fft_tmp = abs(fft(hp_emg));
fft_emg = fft_tmp (1: ceil(length(fft_tmp)/2));

30 freq = linspace (1/1000 ,500 , size(fft_emg ,1))’;
f_mean(idTrial , idCh) = sum(freq.*fft_emg)/(sum(fft_emg));

32 median_threshold=sum(fft_emg)/2;
ind_median = 2;

34 while sum(fft_emg (1: ind_median))<median_threshold
f_median(idTrial , idCh)=freq(ind_median);

36 ind_median=ind_median +1;
end

38 end
end

Listing A.3: emg_fparam function: used for the extraction of frequency-domain
related parameters



Chapter B

Kinematic reconstruction analysis
code

B.1 Matlab main

The following code displays the program main for the kinematic prediction.
MLR modeling, PCA data reduction and Kalman filtering are included in
the following code (Listing B.1). The Matlab code presents, as described in
Chapter 4, two primary section: off-line training and on-line simulation.

The code contains, moreover, the implementation of the Matlab Publisher
used to communicate with the ROS network and send the messages to NAO
robot.

2 %% Load initialized Data -base
disp(’[user] - Loading Reshaped DataBase ’);

4 load(’OnlineDB.mat’);
addpath(genpath(path));

6

%% Section for initialization the comunication with NAO robot
8

send2Nao = true;
10

if (send2Nao)
12 % Human anthropometry initialization

14 global shoulderOffsetX
global shoulderOffsetY

16 global elbowOffsetY
global upperArmLength

18 global shoulderOffsetZ
global LowerArmLength

20 global HandOffsetX
global HandOffsetZ

22

% INITIALIZATION ROS PUBBLISHER
24

59
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% add the ipc_bridge_matlab binaries to your path
26 [a, p] = system(’rospack find ipc_geometry_msgs ’);

addpath(strcat(p, ’/bin’));
28

% create a publisher that publishes a geometry_msgs/Twist message
30 pid=geometry_msgs_Twist(’connect ’,’publisher ’,’matlab_module ’,’twist’);

32 % create an empty geometry_msgs/Twist message structure
msg=geometry_msgs_Twist(’empty ’);

34

% Starting free -coordinates initialization
36

thetaST (1) = 1.2; % Shoulder pitch: with negative values --->
38 % forward rotation

thetaST (2) = 0.40; % Shoulder roll: with positive values --->
40 % abdution

thetaST (3) = -1.13; % Elbow yaw: with negative values --->
42 % intrarotation

thetaST (4) = -1.40; % Elbow pitch: with negative values --->
44 % flexion

thetaST (5) = 1.00; % Wrist yaw: wth positive values --->
46 % intrarotation

% only one trial is tested in NAO robot
48 NumTest = 2;

else
50 NumTest = 10;

end
52

% initializazion of result variable
54 gdf = zeros(NumTest , KinNumVariables);

56 for h=1: NumTest
if send2Nao

58 % Set Nao to the starting position
initNao(thetaST);

60 rosPublisher(pid ,msg ,thetaST);
theta = thetaST ’;

62 end

64 disp([’ ONLINE SIMULATION N’ num2str(h) ’ :’]);
Ep = s(TrainIndex (:,h), :);

66 Et = s(TestIndex(:,h), :);
Pp = pos(TrainIndex (:,h), :);

68 Pt = pos(TestIndex (:,h), :);
Vp = vel(TrainIndex (:,h), :);

70 Vt = vel(TestIndex (:,h), :);

72 % PCA and LRM
% Computing PCA on the emg signals and from these results building up

74 % the linear regression model for predicting the position and velocity
% acquisition

76

PCAExplained = 96;
78

% The following function gives back position and velocity regression
80 % model and PCA parameters

82 Kp = [Pp , Vp];
[coeff , PCACmpId , M] = emgModelRegress(Ep , Kp , PCAExplained);

84

% ONLINE SIMULATION
86 % The online simulation is run on the test set consisting of a single
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% trail. Since the online simulation has to be accomplished in
88 % real -time , the test trial is segmented in a overlapped buffer series;

% for each buffer is computed:
90 % - rectification;

% - PCA decomposition;
92 % - buffer mean calculation;

% - Multivariate linear regression model for the mean vector;
94 % - Kalman filtering of the regression pre1diction.

96

testEmg = emg(TestIndex (:,h), :);
98 Fs = 1000;

FsB = 32; % Sample distant between buffers
100

BufferSize = 512;
102 FrameShift = FsB;

testEmg = [testEmg; repmat(testEmg(end ,:),BufferSize ,1)];
104 StartPos = 1: FrameShift:length(testEmg) - BufferSize;

StopPos = StartPos + BufferSize - 1;
106

Pos = zeros(length(StartPos), KinNumVariables);
108 Vel = zeros(length(StartPos), KinNumVariables);

KPos = zeros(length(StartPos), KinNumVariables);
110 KVel = zeros(length(StartPos), KinNumVariables);

112 % Kalman filter matrixes creation
% Auxiliary matrix

114 A = eye(3);
B = FsB/Fs*A;

116 O = zeros (3);
% Model matrix

118 F = [A,B;
O,A];

120 % Measurement matrix
H = [A,O;

122 O,A];

124 % Covariance Matrix
kappa = 2.9; % Modulation value

126

%R = eye (6); % Measure covariance matrix
128 tmp = Ep*coeff;

tmp1 = [ones(size(tmp(:,PCACmpId) ,1) ,1),tmp(:,PCACmpId)]*M-Kp;
130 R = cov(tmp1);

Q = kappa*eye(6); % Model covariance matrix
132

% Initial condition setting
134 Pstart = F*Q*F’; % Intial error extimation covariance matrix

Xstart = [Pt(1,:),Vt(1,:)]’; % Initial kinematic values extimation
136

% BUFFER CYCLING
138 pnew = Pstart;

xnew = Xstart;
140

display(’[proc] - Online Simulation (Buffer cycling)’);
142 tic;

for sId = 2: length(StartPos)
144 % Buffer initialization

cstart = StartPos(sId);
146 cstop = StopPos(sId);

cbuff = testEmg(cstart:cstop , :);
148 % Buffer rectification
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crect = proc_rectification(cbuff , 7, 200, 4, 1000);
150 % Buffer PCA reduction

ctmp = crect*coeff;
152 cpca = ctmp(:, PCACmpId);

% Buffer mean
154 cval = mean(cpca , 1);

% Kinematic values prediction
156 cpred = [ones(size(cval ,1) ,1),cval]*M;

cpos = cpred (:,1: size(KinLbVariables ,2));
158 cvel = cpred(:, (1: size(KinLbVariables ,2))+size(KinLbVariables ,2));

% KALMAN FILTERING
160 [ckin , pnew , xnew] = fdk([cpos cvel]’, pnew , xnew , F, H, Q, R);

Pos(sId , :) = cpos;
162 Vel(sId , :) = cvel;

KPos(sId , :) = ckin (1: size(KinLbVariables ,2));
164 KVel(sId , :) = ckin ((1: size(KinLbVariables ,2)) + ...

size(KinLbVariables ,2));
166 if send2Nao

theta = ToNao(KPos(sId ,:),theta);
168 rosPublisher(pid ,msg ,theta);

end
170 end

tSim = toc;
172

174 disp(’[proc] - RESULTS: performance of the prediction algorithm ’);
for vId = 1: KinNumVariables

176 gdf(h,vId) = goodnessOfFit(KPos(:, vId), Pt(StartPos , vId), ...
’NMSE’);

178 disp([’ Goodness of fit for ’ KinLbVariables{vId} ...
’ position [-inf 1]: ’ num2str(gdf(h,vId))]);

180 end
disp([’ Simulation runing time: ’ num2str(tSim) ’s vs. ’ ...

182 ’real test time ’ num2str(size(testEmg ,1) /1000) ’s’])
end

Listing B.1: Main section of the kinematic reconstraction code

B.2 Kalman Filter

This section of the appendix is dedicated to Kalman filtering. Here it is
explained the formulation of the Kalman filter and the implementation in
the Matlab code.

The idea underlying the Kalman filter is to think at filtering as a problem
of system state estimation. In this perspective our measurements can be
thought of as noisy output from a certain system. If the model of the system
is known, it is possible to compare the noisy measurements with the output
of this model in order to estimate the better the best solution.{

x(t+ 1) = Fx(t) + w(t)

y(t) = Hx(t) + v(t)
(B.1)
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In the system, the first line embodies the Model equation the second is
called instead the Measure equation. x is the state vector, and represents
what actually we want to estimate, y is the vector of the measurements, F
is the matrix of the transition state and H is the input-output matrix. w
and v in the end represent respectively the error of model and the noise we
want to get rid of on the measurements data. In the equation system, w and
v are aleatory vectors between them uncorrelated, with covariance matrix
cov(w) = Q and cov(v) = R.

The Kalman filter is designed to operate recursively on streams of noisy
input data to produce a statistically optimal estimate of the underlying sys-
tem state. Two equations define the filter: the update state equation and
the measures equation. The algorithm works in a two-step process. In the
prediction step, the Kalman filter produces estimates of the current state
variables, exploiting the transition state equation, along with their uncertain-
ties. Where the estimation and the error prediction are have the following
representation:

x̂(t+ 1|t) = Fx̂(t|t)
P (t+ 1|t) = FP (t)F T +Q

(B.2)

What it is estimate here represents the prior knowledge of the next event
at t + 1, independently from what is going to actually happen. Once the
outcome of the next measurements, corrupted by certain noise, is observed,
these estimates are updated refining the estimation of the new state. The
obtain formulation is the following:

x̂(t+ 1|t+ 1) = X̂(t+ 1|t) + P (t+ 1|t)
HT [HP (t+ 1|t)HT +R]−1[y(t+ 1)−Hx̂(t+ 1|t)]

P (t+ 1) = P (t+ 1|t)HT [HP (t+ 1|t)HT +R]−1HP (t+ 1|t)

(B.3)

where x(t + 1|t + 1) is the finally estimation of the system state and
P (t + 1) is its uncertainty. Listing B.2 displays the code of Kalman filter
predictive filter; definition of the input matrices are instead in Listing B.1
from between lines 112 ans 139.

2 function [y,Pnew ,Xnew]=fdk(ys,Pold ,Xold ,F,H,Q,R)

4 %-------------------------------------------------------------------------%
% KALMAN FIELTER %

6 %-------------------------------------------------------------------------%
% ### INPUT ###

8 % ys = value of the istant measurment
% Pold = error extimation covariance matrix at the prior iteration
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10 % Xold = state vector at the prior iteration
% F = state transition matrix

12 % H = Input/Output trasfer matrix
% Q = model error covariance matrix

14 % R = measure error covariance matrix
% ### OUTPUT ###

16 % y = ys filtered value at the current iteration
% Pnew = error extimation covariance matrix at the current iteration

18 % Xnew = state vector at the current iteration
%-------------------------------------------------------------------------%

20

% predictive step of Kalman filter
22 xpred=F*Xold; % calculation of x(t|t-1)

Ppred=F*Pold*F’+Q; % calculation of P(t|t-1)
24 K=Ppred*H’*inv(H*Ppred*H’+R); % calculation of the filter gain currection

26 % correction step using ys measurments
e=ys-H*xpred; % prediction error

28 Xnew=xpred+K*e; % calculation of x(t|t)
I=eye(size(Q));

30 Pnew=(I-K*H)*Ppred; % calculation of P(t|t)

32 % calculation of the filtered value
y=H*Xnew;

Listing B.2: fdk function: it implements the Kalman filtering. The matrices used
by the model are passed to the algorithm as input variables along with the measure
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