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Abstract

There exist various types of public transports in the cities, starting from trains,
buses, trams to the newest rental bikes and electric scooters. The use of the latter
is even more helpful to the ecosystem, given that no carbon dioxide is produced
during use and they have a lot of potential to improve the city’s environment,
making it eco-sustainable and smart. The stationless bike sharing system, called
floating, is replacing the one that uses fixed stations, called docking, for a matter
of ease of use and freedom left to the end user. A bike can be left in any place
you choose, even a few meters from the destination, without having to look for
a mandatory delivery area. One of the remaining problems is the availability of
means of transportation in case of need. These are distributed through the use
of vans that collect and place them in defined areas, so that they can be found
available and sorted as needed.

The aim of this thesis is to identify areas of use of this type of bikes through
various spatial clustering techniques, using the city of Padua (Italy) as center
of the study. In addition, a rectangle division of the analysis area was used
to go deeper and further highlight differences. Subsequently, two prediction
methodologies were implemented to identify the number of vehicles that should
be made available in a specific region and in a specific time slot. ARIMA and
XGBoost were used as prediction technologies, which allow in a reliable and
precise way to have a real value of means of transportation that will be used in
that time period. The various predictions were then compared using statistical
methods to analyze the best clustering method and the number of ideal regions
to create. The application of this method of analysis, study and prediction can
be used to make the distribution of bicycles more optimized in order to make
this type of transport more sustainable for the environment.
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1
Introduction

Starting from the ancient river boats, passing through stagecoaches, steam
trains, trams, until the newer buses, high-speed trains, planes, subways, the
public transports have gradually evolved giving access to fast and safe travel
systems to millions of people. Now, the goal is to make these vehicles eco-
sustainable, so as to affect the environment as little as possible. There are
already various cities that implemented the most recent ones, such as: electric
buses, bike sharing and electric scooters. This thesis will concentrate on the bike
sharing system, because is the main travel method used in the city where the
University is placed, that is Padua (Italy).

Bike sharing is a system in which bicycles are made available to individuals
for short-term rentals. The aim of bike sharing is to provide an easy and af-
fordable transportation option to the public one, promoting sustainability and
reducing the number of cars on the roads. It has a relatively long history, dating
back to the 1960s in Europe, when free bikes were made available for public
use in Amsterdam. However, it was not until the 1990s and early 2000s that the
modern era of bike sharing began, with the introduction of technology-driven,
commercial systems. One of the earliest bike sharing systems was launched in
Copenhagen, Denmark in 1995. The system, called Bycyklen, used smart cards
and computerized docking stations to manage the distribution of bikes. Since
then, bike sharing has continued to grow in popularity around the world, with
new systems being launched in cities of all sizes. Two common solutions are
docking and floating, each with their own unique features and benefits. Dock-
ing bike sharing systems involve bicycle being housed in a network of docking
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stations throughout a city. Users can rent a bike from any docking station using
a membership card, credit card or smartphone app. Once the user has paid
the rental fee, he can unlock the bike and then ride it. The return is done by
placing the bicycle on any docking station near to the destination. The cycle is
then locked until another user rents it. Floating bike sharing systems, on the
other hand, do not require docking stations. Bikes are distributed throughout
the city and can be found using a smartphone app or website, which shows the
user the location of available bicycles. Users rent it using the app, and then ride
to their destination. Once they have arrived, the user can leave the bike locked
in a safe and legal location, ready for the next user to find and rent. This last
system is the one used in Padua and it is highly flexible, as bikes can be rented
and returned anywhere within the designated service area. So, the users can
easily travel to locations that are not well-served by docking stations. Floating
systems can also be more cost-effective than docking systems, as they do not
require the installation or maintenance of stations. However, the distribution of
bikes can be more challenging, as bicycle can become clustered in certain areas
or be difficult to find.

There is a big problem with the floating bike sharing system, that is to
say: the dynamics of human mobility often lead to inevitable bike supply and
demand imbalance. The aim of this thesis is to identify areas of use of this type
of bike through various spatial clustering techniques, using Padua (Italy) and
Montreal (Canada) as the study cities. Padua, as said before, has a floating bike
sharing system instead of Montreal that has a docking system. We used the
Canadian city to compare the clustering methods and to verify the reliability of
the predictions. Identifying different regions in a city permits us to: process data
independently in each zone and provide a method for predicting the number of
bikes that have to be available in a specific time range in a region. There are lots
of researches in the literature about this problem. As an example, in a paper, the
authors concentrate their research on the trucks route optimization[8], using a
graph approach, including the truck drivers’ home in the dataset. The aim of
their work is to maximize the sum of the following three parts:

• Optimizing the repositioning system.

• Lowering the workload of all truck drivers.

• Lowering the travel cost of all trucks.

For doing this, they divided their workflow into three steps:
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CHAPTER 1. INTRODUCTION

1. Using travel clustering to identify virtual stations.

2. Estimating repositioning targets of all stations.

3. Planning routes and calculating workload of all truck drivers

Another research analyzed the flow characteristics of dockless shared bikes
that are expounded through the time series location data and after they used a
model called DestiFlow[6] to describe the spatio-temporal flow of urban dockless
shared bikes. This flow can be divided into 3 parts. In the first one, they used
a POI-based clustering, with POI that stands for point of interest and can be a
house, shopping mall, station, ecc... To find each region containing a POI, they
processed the dataset with a K-Means based clustering. After, they gave to every
cluster a probability that indicates how much a bike starting from a point can
arrive in the selected region. Obviously, the more active an aggregation area
is, the more popular the aggregation area is, and the greater the probability of
departure and arrival from there is. For the last and third step, they constructed
a formula to estimate the number of flows in a time window [𝑡 , 𝑡 + Δ𝑡):

| 𝑓 𝑙𝑜𝑤Δ𝑡
𝑠 | = 𝐶 ∗Φ(𝑡 , 𝑡 + Δ𝑡) 𝑤𝑖𝑡ℎ Φ(𝑡 , 𝑡 + Δ𝑡) =

∫ 𝑡+Δ𝑡

𝑡
𝜙(𝑥)𝑑𝑥

Where 𝜙(𝑥) is the one-dimensional Gaussian mixture model and 𝐶 is the total
number of flow. Moreover, there are scientific papers that lean on convolutional
neural networks. One of this paper [13], divides a city into a grid, with every cell
representing a region. With the use of origin-destination trips between areas,
they define a Spatial-Temporal Memory Newtork divided into 3 independent
Convolutional LSTM that are used to extract the temporal dependency based on
spatial relationships from a historical sequence. In their network they capture
the temporal dependency from three points of view: closeness, period, and
trend. Closeness captures the temporal dependency of bicycle usage in the past
one day, period captures the bicycle usage in the past a couple of days and trend
aims to capture the long-term dependency on a weekly scale. After that, the 3
convolutional LSTM have to be fused into the final prediction and they used 3
different typologies, such that: weighted element-wise addition, concatenation
and weighted concatenation.

In this thesis the Padua and Montreal datasets will be divided with different
types of clustering that give various results as output, a few with a more homo-
geneous distribution of bikes and others that concentrate in the creation of more
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areas in the outskirts zones. This approach will be done because the scope of
this thesis is to predict the number of bikes that have to be available in a certain
area of Padua in a specific range of time. Then, to be able to forecast this value
in every area of the city, the entire dataset has to be divided into clusters and
a prediction algorithm has to be applied to each of them. For the forecasting
process, two types of forecasting methods have been implemented, ARIMA and
XGBoost. The first one is one of the most used techniques and it provides reli-
able results in the most common cases. The second one gained significant favor
in the last few years as a result of boosting the processing times and results in
forecasting challenges. The implementation of it was done to test its efficiency,
accuracy and feasibility comparing the results with the ARIMA ones. They use
different approaches to the forecasting problem and we will observe in a more
detailed way further on.
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2
Clustering and prediction techniques

Observing different datasets from different cities that have a floating bike
sharing system, it is simple to notice a region based partitioning of the drop and
retrieval locations. There are zones with a lot of bikes, one near to each other,
and others with a very few of them and only in certain hours. The best way to
analyze these datasets is to divide them into regions, using specific clustering
techniques. We have chosen this approach because the aim of this thesis is to
predict the number of bikes that have to be available in a certain zone of Padua
in a specific range of time. Then, to be able to forecast this value in an area of the
city, we have to divide the entire dataset into clusters and apply a forecasting
algorithm to each of them.

2.1 Clustering

Clustering is a type of unsupervised machine learning algorithm[12] that is
used to group together similar data points based on their intrinsic characteristics.
In clustering, the goal is to identify patterns and structures in the data that may
not be immediately apparent and to group data points that are similar into
clusters. Clustering is useful in a wide range of applications, including data
mining, image processing, social network analysis and market segmentation.
For example, in bio-informatics, clustering can be used to identify groups of
genes or proteins that are co-regulated or functionally related, which can help
to understand the underlying mechanisms of diseases.

There are various methodologies for clustering, each with its own strengths
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2.1. CLUSTERING

and weaknesses. Here are some of the most common clustering methodologies:

• Hierarchical clustering[17]: the data points are grouped into a tree-like
hierarchy of clusters, either by recursively dividing the data into smaller
clusters (Divisive clustering) or by merging clusters until a desired number
of clusters is reached (Agglomerative clustering).

• Density-based clustering: clusters are formed based on the density of
the data points in a particular region, rather than the distance between
the data points. One popular algorithm for density-based clustering is
DBSCAN[5].

• Model-based clustering: clusters are formed by fitting a statistical model
to the data, such as a Gaussian mixture model (GMM[14]) or a Hidden
Markov model[18]. Model-based clustering can be useful in identifying
complex patterns in the data.

• Graph-based clustering[10]: the data points are represented as nodes in
a graph, and the clusters are identified as connected sub-graphs. Graph-
based clustering can be useful in identifying clusters in high-dimensional
data, where distance-based methods may not be effective.

Clustering is a powerful tool for discovering patterns and relationships in
data and can be used in a wide range of applications. The choice of clustering
method depends on the characteristics of the data and the specific problem.

2.1.1 Squares

The first technique is not really a clustering method. It simply divides the
area of interest into squares with the same size. It can be applied in every
dataset. In our case, the only mandatory note for the use is that a perfect square
as clusters’ number is needed, in a way that there is a big square divided into
smaller ones of the same dimension. The algorithm calculates first the ends
of the main square, taking the 4 points that are on the edges of the area of
interest, so there is one object for each cardinal point. Successively, it processes
the length and the width of the smaller squares, simply dividing the distance
from the northernmost and the southernmost points and the distance from the
easternmost and the westernmost points by the root of the number of desired
clusters. This is not a very good clustering technique as it will be seen later,
because it can create a large number of nearly empty clusters and ones with a
very high number of objects.

During the development of the thesis has been realized that the statistical
evaluations on the prediction of the values using this type of clustering returned
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very high values, precisely because there were many semi-empty clusters and
therefore it was easy to predict the number of bikes in that region.

2.1.2 K-Means

𝐾-Means[11] is the most famous and used clustering method and it is applied
in search engines, astronomy, market segmentation and statistics. Its goal is to
split whole data into 𝑘, fixed a priori, different clusters. The algorithm begins by
randomly selecting 𝑘 initial centroids, which are the center points of the clusters.
Each data point is then assigned to the closest centroid, based on its Euclidean
distance to each center. Once all data points have been assigned to their nearest
centroid, the algorithm computes the mean of the data points assigned to each
cluster and moves the centroid to this new mean location, called barycenter. This
process is repeated until the centroids no longer move or a specified number of
iterations have been completed.

Figure 2.1: Example of K-Means iterations

The real aim of this algorithm is to minimize a squared error function, also
known as the Within-Cluster Sum of Squares (WCSS). The WCSS is used as the
objective function of the algorithm, and is a measure of how well the clusters
represent the data. The smaller the WCSS, the better the clustering result. So,
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the objective function is:

argmin
𝑆

𝑘∑
𝑖=1

∑
𝑥∈𝑆𝑖

| |𝑥 − 𝜇𝑖 | |2

Where 𝜇 is the centroid of points in 𝑆𝑖 .
K-means clustering has several advantages, including its simplicity, speed,

and ability to handle large datasets. However, it also has some limitations. For
example, it requires the number of clusters to be specified beforehand, which can
be difficult or impossible in some datasets. It is also sensitive to the initial choice
of centroids and can converge to a sub-optimal solution if the initial centroids are
poorly chosen. Additionally, K-means is only able to identify spherical clusters
and may not perform well on datasets with non-spherical clusters or clusters of
varying size and density.

2.1.3 GMM

GMM (Gaussian Mixture Model)[14] clustering is a statistical method for
clustering data points based on their probability distribution. GMM assumes
that the data points are generated from a mixture of Gaussian distributions,
where each Gaussian distribution represents a different cluster. The goal of
GMM clustering is to estimate the parameters of these Gaussian distributions,
such as their means and standard deviations, and to assign each data point to
the most likely cluster.

The GMM clustering algorithm begins by randomly initializing the means
and standard deviations of the Gaussian distributions. It then iteratively updates
these parameters using the Expectation-Maximization (EM) algorithm, until the
algorithm converges to a stable solution. The EM algorithm consists of two steps:
the E-step and the M-step. In the E-step, the algorithm estimates the probability
of each data point belonging to each cluster, given the current parameters of the
Gaussian distributions. This is done using Bayes’ theorem, which calculates the
posterior probability of each cluster given the observed data. In other words, the
E-step calculates the degree of membership of each data point to each cluster. In
the M-step, the algorithm updates the parameters of the Gaussian distributions
based on the probabilities calculated in the E-step. Specifically, the means and
standard deviations of the Gaussian distributions are updated based on the
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weighted average of the data points assigned to each cluster, where the weights
are the probabilities calculated in the E-step. The algorithm iterates between the
E-step and the M-step until the parameters converge to a stable solution. At this
point, the algorithm assigns each data point to the most likely cluster based on
the posterior probabilities calculated in the E-step.

In this thesis, the GMM clustering with K-means initializer has been used.
It is a variant of GMM clustering that uses the K-means algorithm to initialize
the means of the Gaussian distributions. The GMM clustering algorithm with
K-means initializer follows a similar process to the standard GMM clustering
algorithm. However, instead of randomly initializing the means of the Gaussian
distributions, the means are initialized using the means of the K-means clusters.
This can help to improve the convergence of the algorithm and avoid the problem
of getting stuck in local optima. The algorithm for GMM follows this steps:

1. Initialize the number of clusters K and the convergence criteria.

2. Use the K-means algorithm to partition the data into K clusters and calcu-
late the means of each cluster.

3. Use the means of the K-means clusters as the initial means of the Gaussian
distributions.

4. Calculate the covariance matrices and mixing coefficients for each Gaus-
sian distribution.

5. Iterate the Expectation-Maximization (EM) algorithm until convergence is
achieved.

6. Assign each data point to the most likely cluster based on the posterior
probabilities.

One advantage of GMM clustering with K-means initializer is that it can
be faster and more robust than standard GMM clustering, especially for large
datasets. This is because the K-means algorithm can quickly partition the data
into K clusters, which can provide a good starting point for the GMM algorithm.
However, GMM clustering with K-means initializer also has some limitations.
For example, the quality of the clustering result can be sensitive to the choice of
K, and the algorithm may not work well if the data distribution is not well-suited
to the Gaussian mixture model. Additionally, GMM clustering with K-means
initializer can be sensitive to outliers, which can affect the initial clustering result
and the convergence of the algorithm.
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Figure 2.2: Example of GMM with different initializer

2.1.4 Mean Shift

Mean Shift[2] clustering is a non-parametric clustering algorithm that iden-
tifies the modes of a density function and uses them to cluster the data. The
algorithm works by iteratively shifting each object towards areas of high density
in the data, until the points converge to a final set of cluster centers. The Mean
Shift clustering algorithm can be summarized as follows:

1. Choose a bandwidth h, which controls the size of the window used to
estimate the density of the data.

2. For each data point, define a window around the point with radius h.

3. Estimate the density of the data within the window using a kernel function,
such as the Gaussian kernel.

4. Calculate the mean shift vector for the data point by taking the weighted
average of the data points within the window, where the weights are
determined by the kernel function.

5. Shift the data point towards the mean shift vector.

6. Repeat steps 2-5 until the data points converge to a final set of cluster
centers, which define the clusters in the data.
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One advantage of Mean Shift clustering is that it can handle datasets with
irregular shapes or sizes of clusters, as the clusters are defined based on the
local density of the data. Additionally, the algorithm is able to automatically
determine the number of clusters in the data, as the algorithm converges to a
set of cluster centers. However, the algorithm can be sensitive to the choice of
kernel bandwidth, as a bandwidth that is too small can result in overfitting,
while a bandwidth that is too large can result in over-smoothing. Addition-
ally, the algorithm can be computationally expensive for large datasets, as the
density estimates and cluster center updates must be calculated for each data
point. Overall, Mean Shift clustering is a powerful method for discovering the
structure of data, and can be useful in a wide range of applications such as image
segmentation, object tracking, and anomaly detection.

Figure 2.3: Comparison between Mean Shift and K-Means

2.1.5 BIRCH

BIRCH[19] (Balanced Iterative Reducing and Clustering using Hierarchies)
is a hierarchical clustering algorithm that is designed to be scalable to large
datasets. It is a memory-efficient method that uses a tree-based data structure to
perform clustering. The algorithm consists of three main steps. In the first step, it
constructs a tree-based data structure to represent the data, called the Clustering
Feature Tree (CFT). The CFT is a hierarchical structure that recursively partitions
the data into smaller clusters, with the root node representing the entire dataset.
In the second step, BIRCH performs a clustering pass through the CFT to identify
the final clusters. The algorithm uses a clustering criterion based on the radius
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and diameter of the clusters to merge the leaves of the CFT into larger clusters.
The resulting clusters are then represented by their centroids, which are updated
to reflect the new members in each cluster. In the final step, BIRCH optionally
applies a traditional clustering algorithm, such as K-means, to the centroids
identified in the second step. This step is intended to improve the clustering
accuracy by refining the cluster assignments.

One of the key advantages of BIRCH is its ability to handle large datasets
efficiently. The algorithm has a low memory footprint, as it only requires the
storage of the CFT and the centroids of the final clusters. Additionally, it is
able to identify clusters with arbitrary shapes and sizes, as it uses a clustering
criterion that is based on the diameter and radius of the clusters. However, one
limitation of BIRCH is that it assumes that the clusters are roughly spherical and
have similar densities. This may not be appropriate for datasets with clusters
that have non-spherical shapes or significantly different densities. Additionally,
BIRCH may not perform as well as other clustering algorithms, such as DBSCAN,
in datasets with noise or outliers.

2.2 Predictions

For comparing the results of the clustering techniques and for getting a value
of bikes in a cluster in a specific time range that can be used in the real world, two
time series prediction methods were used. The time series prediction is the task
of forecasting future values of a sequence of observations, where the order and
timing of the observations are important. Time series prediction is a fundamen-
tal problem in many domains, such as finance, economics, weather forecasting,
and industrial process control, among others. Accurate time series prediction
can be valuable in decision-making, planning, and risk management. One of the
most common approaches to time series prediction is to use statistical methods
such as ARIMA (Auto-Regressive Integrated Moving Average) and its variants.
ARIMA models attempt to capture the auto-correlation of the time series data
and use it to make predictions. However, ARIMA models can be limited in their
ability to capture more complex patterns, such as seasonality or non-linearity.
Another approach to time series prediction is to use machine learning meth-
ods, such as neural networks and decision trees. These methods can be used
to model the nonlinear relationships between the inputs and the outputs of the
time series, as well as capture the effects of external factors. Neural networks,
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Figure 2.4: Comparison between different clustering techniques

in particular, have been shown to be effective in handling complex time series
data, such as image or audio signals. For this thesis, ARIMA has been chosen as
entry point in the forecasting world because is one of the most used techniques
for forecasting and it provides reliable results in the most common cases. Fur-
thermore, there exists a large community of users that has implemented it in
various way and this helped us to setup and find the best values for the model.
Afterwards, XGBoost was introduced, that gained significant favor in the last
few years as a result of helping individuals and teams win virtually every Kaggle
structured data competition. It was implemented to test its efficiency, accuracy
and feasibility comparing its results with the ARIMA ones. They use different
approaches to the forecasting problem and it will get to more of that in the next
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chapters.

2.2.1 ARIMA

ARIMA (AutoRegressive Integrated Moving Average)[7] model is a popular
and widely-used statistical techniques for time series analysis and forecasting.
ARIMA models are commonly used in many fields, including finance, eco-
nomics, engineering, and environmental science, among others. ARIMA mod-
els attempt to capture the auto-correlation in the time series data, which means
the correlation of the current observation with past observations, and use it to
make predictions. ARIMA model has three components: the Auto-regressive
(AR) component, the Integrated (I) component, and the Moving Average (MA)
component. The AR component is responsible for modeling the auto-correlation
in the data, while the MA component is responsible for modeling the moving
average of the error terms. The I component is used to make the time series
data stationary, which means that the statistical properties of the data remain
constant over time. The AR component of the ARIMA model is defined as a
linear regression of the current observation on the previous observations, or the
lagged values of the time series. The order of the AR component, represented
by 𝑝, specifies the number of lagged values used in the regression. The MA
component of the ARIMA model is defined as a linear combination of the previ-
ous error terms, which are the differences between the observed values and the
predicted values. The order of the MA component, represented by 𝑞, specifies
the number of previous error terms used in the combination. The I component
of the ARIMA model is used to make the time series data stationary. Stationary
data has a constant mean, variance, and auto-correlation over time. The order
of the I component, represented by 𝑑, specifies the number of times the data
needs to be differenced to achieve stationarity. Differencing means taking the
difference between consecutive observations.

The parameters of the ARIMA model, including 𝑝, 𝑑, and 𝑞, can be estimated
using various methods, such as maximum likelihood estimation or least squares
estimation. Once the parameters are estimated, the ARIMA model can be used
to make predictions of future values of the time series. For each of these,
the higher the order, the more complex the model becomes. ARIMA models
are a powerful and flexible technique for time series analysis and forecasting.
However, they have some limitations, such as their assumption of linearity and
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stationary data, and their inability to capture nonlinear patterns or long-term
trends. Nonetheless, ARIMA models remain a widely-used method for time
series analysis and forecasting due to their simplicity and interpretability, as
well as their ability to handle a wide range of time series data.

2.2.2 XGBoost

XGBoost (Extreme Gradient Boosting)[1] is a powerful and widely-used ma-
chine learning algorithm for classification and regression problems. It is an
implementation of gradient boosting that uses decision trees as the base learner.
XGBoost has gained popularity in recent years due to its exceptional perfor-
mance in many machine learning competitions and its ability to handle large
and complex datasets. It works by iteratively adding decision trees to the model,
each one correcting the errors of the previous tree. The algorithm is designed to
minimize a loss function, such as mean squared error for regression problems
or log loss for classification problems. In each iteration, the algorithm calculates
the gradient and the second derivative of the loss function with respect to the
predicted values and then fits a decision tree to the negative gradient. The pre-
dictions of the decision tree are then added to the predictions of the previous
trees, and the algorithm moves to the next iteration. The learning rate is a hyper-
parameter that determines the contribution of each tree to the final predictions,
and can be tuned to balance between overfitting and underfitting. XGBoost has
several features that make it powerful and efficient. First, it uses a technique
called "regularization" to prevent overfitting. Regularization includes L1 and L2
regularization, which penalize large coefficients and reduce the complexity of
the model. XGBoost also has a built-in method for handling missing data, and
can automatically handle categorical features by encoding them as numerical
variables. In addition, it supports parallel processing on multiple CPU cores and
can be distributed across multiple machines for training on very large datasets.
XGBoost has become a popular choice in many machine learning tasks due to its
ability to handle a wide variety of data types and perform well on many different
types of datasets. It is commonly used in industry for a variety of tasks, such as
fraud detection, recommendation systems and image/speech recognition. XG-
Boost has also been used successfully in various scientific domains, including
genomics, physics, and neuroscience to analyze and model complex data.
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3
Implementation

For the implementation, the chosen development language is Python. It
is a high-level, interpreted programming language that is widely used for a
variety of purposes such as web development, scientific computing, artificial
intelligence, machine learning, data analysis and more. An advantage of Python
is the large community and libraries, because it has a huge and active community
of developers who contribute to a vast library of pre-built modules and packages.
This makes it easier to find solutions to problems and speeds up the development
process. There are a lot of available packages regarding machine learning,
clustering and prediction techniques that do for us. However, Python is not
perfect. It has a slow execution, given that is an interpreted language, which
means that it runs code line by line rather than compiling it first.

We relied on different libraries, such as:

• NumPy[16]: is a popular open-source Python library that provides sup-
port for large, multi-dimensional arrays and matrices, along with a large
collection of mathematical functions for operating on these arrays.

• Pandas[15]: used for data manipulation, analysis and preparation. It
provides powerful data structures and functions for working with struc-
tured data, including time series data. Pandas library is built on top of
NumPy. More specifically, we used Pandas dataframes and Input/Out-
put. A dataframe is a data structure, which is a two-dimensional table-like
structure with rows and columns. It can easily handle heterogeneous data
types and missing values. Pandas can read and write data from various
file formats such as CSVs, that we used to store results.

• Matplotlib[9]: for creating static, animated, and interactive visualizations
in Python. It provides a flexible framework for creating various types of
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visualizations, including line plots, scatter plots, bar plots, histograms,
heatmaps, and more. In this work, it was used for visualizing the various
clustering results.

• Sklearn[3]: also known as Scikit-learn, it is a very popular library for
machine learning. It provides a wide range of algorithms and tools such
as classification, regression, clustering and dimensionality reduction. It is
very useful in this work because it is integrated with NumPy and Pandas
packages, it provides metrics for quantifying the quality of predictions
and multiple clustering methods.

3.1 Datasets

In this section the datasets used in this thesis are descibed, one of Padua
and the other of Montreal. These are briefly reported on Table 3.1 that shows
the: types of bike sharing system of the city of origin of the dataset, number of
stations if the system is a docking one, number of total bike trips, number of
filtered bike trips, size of the file, starting and ending date of the entire collection.
The number of filtered trips refers to the travels in a specific range of time that
will be detailed on Section 3.2.

Dataset Padua Montreal
Bike sharing system Floating Docking
Stations number - 3742
Trips number 979756 29460723
Filtered trips number 119747 3952782
Size 152MB 1.73GB
Starting date 02/05/2019 01/06/2014
Ending date 13/05/2022 16/11/2020

Table 3.1: Comparison between Padua and Montreal datasets

3.1.1 Padua

This thesis was designed in order to try to improve the floating bike sharing
system currently in place in the city of Padua. The hometown of the university
provided bikes data from May 2019 to May 2022 in the form of a CSV file, that con-
tains a total of 979756 rows. A row contains a lot of columns as can be observed
in Figure 3.1 such as: UserId, RideDistance, VehicleType, SOCConsumed, ecc...
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But the ones more interesting and useful are the GPS coordinates, the timestamp
of the starting and ending moments of the travels. The GPS data were used for
the clustering, but a filter has to be applied to them , taking only the starting
points. This was done because the ending point is always a starting point for
another travel, so there were useless duplicates in the calculations. Given that,
only the starting times have been taken, because the aim of this thesis is to know
the bikes starting from a specific cluster on a determined time period for predict
the number of bicycles that have to be available. This analysis simplified the
initial work and the clustering processing time, given a minor number of values
in input as showed in Figure 3.2.

Figure 3.1: Padua dataset

3.1.2 Montreal

Afterwards, some reasoning about a method to evaluate the clustering ap-
plication methods and the prediction techniques have been done. So, other
datasets have been searched and, unfortunately, there were no more floating
bike sharing system datasets available. Then, we chose the docking sharing
system of Montreal[4] given that its data structure contained a large number of
values, exactly 29460723 bike movements. This dataset is a little bit different,
given that it has a stations file that lists all the 3742 available docking stations in
Montreal as showed in Figure 3.3. This file is the one used for clustering, because
the bike travels have fixed starting and ending points. For the predictions, the
CSV does not contain directly the GPS coordinates as you can be seen in Figure
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Figure 3.2: Padua dataset with only the useful information

3.4. Then, the activity was to merge the bike travels dataset with the stations
one, substituting the station’s ID in a travel row, with its GPS coordinates. This
process gave as outpu the number of bikes in a specific location, that is a station,
in a determined time window.

Figure 3.3: Montreal stations dataset
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Figure 3.4: Montreal trips dataset

3.2 Data processing

At the start of 2022, as everybody knows, there was the start of the Covid-19
spread. The Padua university and the whole world have to start a massive use
of remote working and lecturing. Being the floating bike sharing system of
Padua very influenced by the students presence in the city, it suffered a drop in
usage. So, we had to think about which time period of the dataset to analyze.
We decided to take a three month long time window, starting from the 1st of
September 2019 to the 31th of November of the same year. This is because it
is the period in which the university starts the lectures and there are a lot of
student movements in the city.

For Montreal, we applied the same logic, adding the consideration about
the weather in Canada. Since it is a more colder region, we decided to take a
different period 4 months long, starting on the 1st of June 2019 ending on the
30th of September 2019.
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For both of them, we saved in a Pandas dataframe with the GPS coordinates
of the points, the timestamp of the travel’s start for the prediction process. We
decided to predict the number of bikes that have to be available in a certain
cluster for every hour in a day. For doing that, we had to calculate the number
of travels that have started from a region every hour for training our prediction
model.

1 startDate = datetime.datetime(2019, 9, 1, 0, 0, 0)

2 endDate = datetime.datetime(2019, 11, 30, 23, 59, 59)

3 data= pd.read_csv("./Padova.csv")

4

5 for row in data.itertuples():

6 date = datetime.datetime.strptime(row.StartTime , ’%Y-%m-%d %H:%M

:%S’)

7

8 if date >= startDate and date <= endDate:

9 longData.append(row.StartLongitude)

10 latData.append(row.StartLatitude)

11 time.append(date)

Code 3.1: Padua data filtering and processing example

1 startDate = datetime.datetime(2019, 6, 1, 0, 0, 0)

2 endDate = datetime.datetime(2019, 9, 30, 23, 59, 59)

3 tripsData = pd.read_csv("./Montreal/trips.csv")

4 stationsData = pd.read_csv("./Montreal/stations.csv")

5

6 for row in stationsData.itertuples():

7 stationsDict[row.code] = GpsData(row.longitude , row.latitude)

8 insertedStations[row.code] = 0

9

10 for row in tripsData.itertuples():

11 date = datetime.datetime.strptime(row.start_date , ’%Y-%m-%d %H:%M

:%S’)

12

13 if date >= startDate and date <= endDate:

14 stationCode = int(row.start_station_code)

15

16 if insertedStations[stationCode] == 0:

17 insertedStations[stationCode] = 1

18 longData.append(stationsDict[stationCode].longitude)

19 latData.append(stationsDict[stationCode].latitude)

22



CHAPTER 3. IMPLEMENTATION

20 time.append(date)

Code 3.2: Montreal data filtering and processing example

In the Montreal process, Code 3.2, we loop on all the trips data to get only the
station used in the fixed time period. Furthermore, for distinct them we used
an Hash map that has as a key the ID of a station and for value a flag equal to 0
if the station is not inserted and 1 otherwise. So, we bypass the station not used
or already selected.

3.3 Clustering techniques

In this thesis, as described in the previous chapter, we used different cluster-
ing techniques and the next sections will describe their implementations. For
determining the perfect number of clusters for the Padua dataset, we used the
K-Means algorithm with a range of values from 1 to 300. For each result, we
calculated its objective function and at the end we compared them. As will be
seen below, we have to take a perfect square as clusters number for the Squares
algorithm. Given that and the results of the K-Means process, we chose to cluster
the dataset into 16, 36 and 64 regions.

3.3.1 Squares

The function that processes the division into squares accepts as input two
parameters.

• A dataframe, that contains the GPS coordinates of every point.

• An integer, that is the number of desired clusters. It has to be a per-
fect square, because the algorithm divides the whole area into rows and
columns with the same number of squares.

Afterwards, the algorithm processes the maximum and minimum latitude
and longitude for storing the border of the main area. With them, the calculation
of the square height and width can be easily obtained by dividing the subtraction
of the maximum and minimum latitude and longitude respectively with the
square root of the clusters’ number. At the end of these foreplay steps, the
function iterates each coordinate point in the dataset, calculating its cluster
label. If the point will not be included into any region, it means it is a right
border point and has to be included in the rightest square of the current row
that is being processed.

23



3.3. CLUSTERING TECHNIQUES

1 def DivideIntoSquares(data, numberOfSquares):

2 squaresPerRow = int(sqrt(numberOfSquares))

3

4 maxLat = maxLong = -181

5 minLat = minLong = 181

6

7 for latitude in data["Latitude"]:

8 if latitude > maxLat:

9 maxLat = latitude

10 else:

11 if latitude < minLat:

12 minLat = latitude

13

14 for longitude in data["Longitude"]:

15 if longitude > maxLong:

16 maxLong = longitude

17 else:

18 if longitude < minLong:

19 minLong = longitude

20

21 squareHeight = (maxLat - minLat) / squaresPerRow

22 squareWidth = (maxLong - minLong) / squaresPerRow

23

24 labels = []

25

26 for row in data.itertuples():

27 flag = False

28

29 for i in range(1, squaresPerRow + 1):

30 if row.Latitude >= minLat + (squareHeight * (i - 1)) and

row.Latitude < minLat + (squareHeight * (i)):

31 for k in range(1, squaresPerRow + 1):

32 if row.Longitude >= minLong + (squareWidth * (k -

1)) and row.Longitude < minLong + (squareWidth * (k)):

33 labels.append(squaresPerRow * (k - 1) + i -

2)

34 k = i = squaresPerRow + 10

35 flag = True

36

37 if flag == False:

38 labels.append(squaresPerRow * (k - 1) + i - 1)

39
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40 return labels

Code 3.3: Squares clustering function

3.3.2 K-Means

For the K-Means algorithm, it was used the Sklearn clustering package pass-
ing the number of desired clusters and selecting as initializer the "k-means++"
option.

1 kmeans = KMeans(n_clusters = numberOfClusters , init =’k-means++’)

2 kmeans.fit(data)

3 labels = kmeans.predict(data)

Code 3.4: K-Means clustering implementation

3.3.3 GMM

For GMM, it was used the same clustering package as K-Means, passing only
the number of desired clusters. The default initializer of GMM is "k-means".

1 gmm = GaussianMixture(n_components = clusters).fit(data)

2 labels = gmm.predict(data)

Code 3.5: GMM clustering implementation

3.3.4 Mean Shift

The implementation of Mean Shift uses the Sklearn clustering library, that
accepts as input a parameter called Bandwidth. If not given, it calculates it by
itself. The Bandwidth is the distance scale of the kernel function and is calculated
with a quantile value, that is used in KNN inside the "estimate_bandwidth"
method to determine the bandwidth. Different quantile values produce various
Bandwidth and the Mean Shift clustering gives as output a different number of
clusters. Many testes have been done to identify the perfect quantile values for
generating fixed numbers of clusters. The results with our datasets are:

• Quantile: 0.13 produces 16 clusters on Padua and 0.08 produces 9 clusters
on Montreal

• Quantile: 0.06725 produces 36 clusters on Padua and 0.052 produces 16
clusters on Montreal
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• Quantile: 0.037 produces 64 clusters on Padua and 0.028 produces 36
clusters on Montreal

1 bandwidth = estimate_bandwidth(data, quantile=quantile)

2 labels = MeanShift(bandwidth=bandwidth).fit(data).labels_

Code 3.6: Mean Shift clustering implementation

3.3.5 BIRCH

For BIRCH clustering, it was used one more time the Sklearn clustering
library. The algorithm accepts two input parameters, such as: the number of
clusters and a threshold value. The threshold has to be higher than the radius
of the subcluster obtained by merging a new sample and the closest subcluster,
otherwise a new subcluster is started. But, because it has been used a fixed
number of clusters, we set this value to a low number, exactly 0.001. That
permits a higher division of regions in the dataset, so the algorithm can perform
a merge of these zones to obtain the desired clusters’ number.

1 labels = Birch(threshold=distanceThrehsold , n_clusters=clusters).fit(

data).labels_

Code 3.7: BIRCH clustering implementation

3.4 Data filtering

After the clustering, the script transforms the output result into a matrix in
which every column is a cluster and every row is the number of bikes in that
cluster in a given hour. In other words, the first row indicates the number of
bicycles in every region from the 0:00 to the 0:59 of the first day chosen (see
section 3.2), the second row from 1:00 to 1:59, and so on.

1 def ProcessElementsPerCluster(data, clusters):

2 elementsPerCluster = []

3 for i in range(0, clusters):

4 elementsPerCluster.append([0])

5

6 currentStartDate = datetime.datetime.strptime(data["Time"][0], ’%

Y-%m-%d %H:%M:%S’).replace(hour=0, minute=0, second=0)

7 currentEndDate = currentStartDate + timedelta(minutes=59, seconds

=59)
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8

9 for row in data.itertuples():

10 rowTime = datetime.datetime.strptime(row.Time, ’%Y-%m-%d %H:%

M:%S’)

11

12 if rowTime >= currentStartDate and rowTime <= currentEndDate:

13 elementsPerCluster[row.ClusterLabel][-1] += 1

14 else:

15 currentStartDate = currentEndDate + timedelta(seconds =

1)

16 currentEndDate = currentStartDate + timedelta(minutes=59,

seconds=59)

17

18 for i in range(0, clusters):

19 elementsPerCluster[i].append(0)

20

21 elementsPerCluster[row.ClusterLabel][-1] += 1

22 return elementsPerCluster

Code 3.8: Count elements per cluster script

Every clustering algorithm gives as output a different result. Sometimes it is
similar, like GMM and K-Means, other times it is very different, such as Mean
Shift and Squares. As an example, the Squares approach creates a lot of almost
empty squares, that are near the border of the main square. This situation
produces easier predictions in those regions, because the real value is almost
always equal to 0. Given that, the evaluation results are higher than expected
and we need to find a way to balance the output of different clustering methods.
At this point, it is important to introduce some kind of filtering methods.

The first one is the filter by values method. The function accepts as inputs
the matrix of elements per cluster, the number of clusters processed by the
clustering algorithm and a threshold, that is the minimum number of values in
total that a region must have to be considered in the evaluation. We decided
to filter the clusters, taking into account only the ones with at least 90 values
inside. Namely, areas with a minimum of one travel, that started inside the area,
per day. The function gives as outputs the new filtered matrix and the updated
clusters number.

1 def FilterClusters(elementsPerCluster , clusters, threshold):

2 if threshold <= 0:

3 return elementsPerCluster , clusters

4
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5 currentColumn = 0

6

7 for i in range(0, clusters):

8 i = currentColumn

9 cont = 0

10

11 for k in range (0, len(elementsPerCluster[i])):

12 cont += elementsPerCluster[i][k]

13

14 valuesList.append(cont)

15

16 if cont < threshold:

17 elementsPerCluster.pop(i)

18 clusters -= 1

19 else:

20 currentColumn += 1

21

22 return elementsPerCluster , clusters

Code 3.9: Filtering by a threshold

The second method of filtering is taking only the first 𝑘 populous clusters. This
can bring different results. The K-Means algorithm creates more or less balanced
clusters, looking at the number of values inside them. Instead, Mean Shift does
not divide the area with the most values into many clusters, but creates more
clusters in the outermost regions. Therefore, this filtering system serves more
to understand and evaluate the goodness of the predictions, given that having
much higher and fluctuating values, it is much more difficult to correctly predict
the exact value of bikes. The function takes as inputs the matrix of elements per
cluster, the number of clusters processed by the clustering algorithm and the
number of the clusters to give as output.

1 def GetKTopCluster(elementsPerCluster , clusters, k):

2 if k <= 0:

3 return elementsPerCluster , clusters

4

5 valuesList = list()

6 topClusters = []

7 topClustersValues = []

8 topClustersIndex = []

9

10 for i in range(0, clusters):

11 cont = 0
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12

13 for z in range (0, len(elementsPerCluster[i])):

14 cont += elementsPerCluster[i][z]

15 valuesList.append(cont)

16

17 for i in range(0, k):

18 maxIndex = 0

19

20 for x in range(1, clusters):

21 if valuesList[x] > valuesList[maxIndex]:

22 maxIndex = x

23

24 topClustersIndex.append(maxIndex)

25 topClusters.append(elementsPerCluster[maxIndex])

26 topClustersValues.append(valuesList[maxIndex])

27 valuesList[maxIndex] = -1

28

29 return topClusters , k

Code 3.10: Filtering by the top k clusters

3.5 Predictions

For generating the predictions, as described in Section 2.2, we implemented
two techniques: ARIMA and XGBoost. Both take as inputs the matrix of ele-
ments per cluster and the number of clusters processed by the clustering algo-
rithm. Moreover, we divided each column of the matrix into train and test sets.
The first one is two-third of the original size of the column and the second is the
remaining part.

3.5.1 ARIMA

The predictions function that uses ARIMA, loops for each column in the
matrix and divides every column in the train and test sets. After, it loops for
each value in the test set, training every time the model with the train set with
the desired order of ARIMA. More specifically, we pass the (𝑝, 𝑑, 𝑞) order of the
model for the autoregressive, differences, and moving average components. 𝑑 is
always an integer, while 𝑝 and 𝑞 may either be integers or lists. We used in order
the values (1, 1, 1) that are the most common parameters for the non-seasonal
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time series. The function gives as output the real values of the test set and the
predicted ones.

1 def ProcessArimaPredictions(elementsPerCluster , clusters):

2 predictions = list()

3 values = list()

4

5 for i in range(0, clusters):

6 tmp = elementsPerCluster[i]

7 size = int(len(tmp) * 0.66)

8 train, test = tmp[0:size], tmp[size:len(tmp)]

9 values.extend(test)

10 history = [x for x in train]

11

12 for t in range(len(test)):

13 model = ARIMA(history, order=(1,1,1))

14 model_fit = model.fit()

15 output = model_fit.forecast()

16 predictions.append(output[0])

17 history.append(test[t])

18

19 return values, predictions

Code 3.11: ARIMA predictions function

3.5.2 XGBoost

XGBoost works slightly differently from ARIMA. It needs again the train and
test sets, but split into two more sets. Then, we have X and Y train and test sets.
Y contains the same elements of X, but shifted left by one value, because it has
to contain the value of the next hour with respect to the one in the same position
in the X set. In other words, a cell in Y represents the number of bikes that has
to be available in the next hour, given the bikes available now, that are contained
in X. The function loops for each existing cluster, constructing a regressor. The
regressor takes as inputs the train sets and an evaluation set, composed by all
train and test sets for the current cluster. After this operation, for each regressor
we take the predicted values.

1 def ProcessXGBoostPredictions(elementsPerCluster , clusters):

2 predictions = list()

3 values = list()

4
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5 X_train_list = []

6 X_test_list = []

7 y_train_list = []

8 y_test_list = []

9 totSize = len(elementsPerCluster[0])

10 testSize = int(len(elementsPerCluster[0]) * 0.66)

11

12 for i in range(0, clusters):

13 X_train = pd.DataFrame()

14 X_test = pd.DataFrame()

15 y_train = pd.DataFrame()

16 y_test = pd.DataFrame()

17

18 trainList , testList = elementsPerCluster[i][0:testSize],

elementsPerCluster[i][testSize:totSize]

19

20 X_train["Values"] = trainList

21 y_train["Values"] = trainList

22 X_train = X_train.tail(-1)

23 y_train = y_train.head(y_train.shape[0] -1)

24

25 X_test["Values"] = testList

26 y_test["Values"] = testList

27 X_test = X_test.tail(-1)

28 y_test = y_test.head(y_test.shape[0] -1)

29 values.extend(X_test["Values"])

30

31 X_train_list.append(X_train)

32 X_test_list.append(X_test)

33 y_train_list.append(y_train)

34 y_test_list.append(y_test)

35

36 reg_list = []

37 for i in range(0, clusters):

38 reg = XGBRegressor(base_score=0.5, booster=’gbtree’,

39 n_estimators=900,

40 early_stopping_rounds=50,

41 objective=’reg:squarederror’,

42 max_depth=10,

43 learning_rate=0.005)

44 reg.fit(X_train_list[i], y_train_list[i],

45 eval_set=[(X_train_list[i], y_train_list[i]), (

X_test_list[i], y_test_list[i])],
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46 verbose=100)

47 reg_list.append(reg)

48

49 for i in range(0, clusters):

50 predictions.extend(reg_list[i].predict(X_test_list[i]))

51

52 return values, predictions

Code 3.12: XGBoost predictions function
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4
Results

This section will describe the results of the different clustering techniques
and the prediction algorithms applied to the Padua and Montreal datasets.

4.1 Clustering

We applied the different clustering techniques presented on Section 2.1, that
gives us very different results in terms of regions created. The distinction is
already very clear in the partition in 16 clusters of Padua or 9 regions of Montreal.
Omitting the Squares algorithm, that divides the dataset into regions of the
same size, leaving out the density of data, K-Means and GMM have a similar
approach, given that GMM uses K-Means as initializer. However, K-Means still
makes regions that are more homogeneous and with a similar number of bikes
inside each one. Mean Shift uses a complete opposite approach. It creates macro
regions in the center of Padua and Montreal, that is to say where there are the
highest number of items, and tends to divide the external parts into several
sections, creating clusters with very low bicycles inside. BIRCH is in between
them. Create areas, that are larger than K-Means and GMM, but still try to
divide the whole area into balanced clusters. All of these observations can be
noticed in both divisions of Padua in 36 or 64 clusters and of Montreal in 16 or
36 areas.

For the clustering implementation and process, we used the same machine,
in a way that we can compare the execution time of each clustering technique.
We reported the data in Figure 4.7 (table format on Table A.1) and the values
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Figure 4.1: Results of clustering Padua in 16 regions

are very similar. The unique exception is the Mean Shift, with very high times
with the highest linked with the lowest number of clusters desired. One more
thing to notice, is the time that takes GMM to perform 64 clusters. With a lower
number of regions the execution time is very fast, the last one is a little bit over
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Figure 4.2: Results of clustering Padua in 36 regions

the mean, probably caused by the iterations that GMM has to do for creating a
number of clusters higher than the correct one for the dataset. For the Montreal
dataset, we have not reported the execution times, given they are below the
second, apart for Mean Shift that is around 3 seconds.

To analyze better the differences between the clustering techniques, we con-
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Figure 4.3: Results of clustering Padua in 64 regions

centrated into the number of bikes per cluster. We want to know which is the
better clustering method in term of homogeneity, because if a clustering algo-
rithm creates one or more region with a very low number of bikes or only one
with a very elevated, it is not good for the scope of this thesis. With reference
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Figure 4.4: Results of clustering Montreal in 9 regions

to Figures 4.8, 4.9 and 4.10, we can see again that K-Means is the more balanced
clustering algorithm, having a not so high maximum number of items in a clus-
ter, that is similar to BIRCH and GMM in every division of the Padua dataset.
Furthermore, it has always the highest minimum, that means it creates regions
that are almost always not empty. GMM works similarly in the first two partition

37



4.1. CLUSTERING

Figure 4.5: Results of clustering Montreal in 16 regions

cases: 16 and 36, while in the last it creates at least an empty cluster. Considering
this evaluation, Mean Shift is the worse one, creating few clusters with a lot of
bikes inside them and many with a low number of items. BIRCH, as before, is
somewhere in between, but creating enough more or less empty clusters.

Observing the Montreal dataset, in Figures 4.11, 4.12 and 4.13, we can see that
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Figure 4.6: Results of clustering Montreal in 36 regions

the results are similar to the Padua ones, with GMM and K-Means winning the
battle and BIRCH near them. In this cases, GMM tends to be better compared
with K-Means, because this time we have chosen a not very high number of
clusters. A curious thing that happened is that the lower number of items in a
cluster is equal for all but Squares, in the 16 and 36 cases. This is caused by the
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Figure 4.7: Execution times of the clustering algorithms on Padua dataset

fact that the stations are already spread in the city and the clustering algorithms
tend to create similar clusters in the areas with a low number of items.

At the end, we can say that GMM and K-Means are the best clustering
techniques for the problem presented in this thesis, with GMM having a drop
when the desired number of clusters exceeds the perfect number for that dataset.

Figure 4.8: Clusters with the higher and lower number of items on 16 clusters
for Padua
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Figure 4.9: Clusters with the higher and lower number of items on 36 clusters
for Padua

Figure 4.10: Clusters with the higher and lower number of items on 64 clusters
for Padua

4.2 Evaluation metrics

After the clustering, we proceeded with the prediction steps. We use two
techniques, ARIMA and XGBoost, that provide us different results. We had to
find a way to compare their outcomes to understand better which is nicer and
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Figure 4.11: Clusters with the higher and lower number of items on 9 clusters
for Montreal

Figure 4.12: Clusters with the higher and lower number of items on 16 clusters
for Montreal

why. We introduced different statistic metrics:

• Real values mean: a simple mean that considers all the values returned
by the function presented on Snippet 3.8, summing all the values from the
dataset, present at each hour in every cluster divided by the number of
time intervals.

• Predicted values mean: as above, but using the predicted values for each
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Figure 4.13: Clusters with the higher and lower number of items on 36 clusters
for Montreal

hour in the time period.

• RMSE: stands for Root Mean Square Error and it measures the average
difference between the actual values and the predicted values of a set of
data.

𝑅𝑀𝑆𝐸 =

√
1
𝑛
∗
∑

(𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒)2

RMSE is particularly useful when you want to measure the accuracy of
a predictive model, such as a regression model or a machine learning
algorithm. It is often used as a benchmark to compare the performance
of different models, with lower values of RMSE indicating better perfor-
mance. For example, if the RMSE value is 10 for a set of data, it means that
on average, the predicted values of the model are off by 10 units from the
actual values.

• MAE: Mean Absolute Error, it measures the average absolute difference
between the actual values and the predicted values of a set of data.

𝑀𝐴𝐸 =
1
𝑛
∗
∑

|𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 |
As before, the lower the better. The interpretation of the result is quite
similar to the RMSE.

• R2 score: known as the coefficient of determination, is a statistical measure
that is used to evaluate the goodness of fit of a regression model. It is a
number between 0 and 1 that represents the proportion of the variance in
the dependent variable that is explained by the independent variables in
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the model.

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

where 𝑆𝑆𝑟𝑒𝑠 is the sum of the squared residuals (the difference between
the actual and predicted values) and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares
(the difference between the actual values and the mean of the dependent
variable). The R2 score ranges from 0 to 1, where a value of 0 indicates
that the model does not explain any of the variance in the dependent
variable, while a value of 1 indicates that the model perfectly explains all
the variance in the dependent variable. However, it can be influenced by
the number of independent variables in the model and other factors.

4.3 Comparison

In this section we will compare the results of the prediction with ARIMA
and XGBoost techniques, both on Padua and Montreal datasets.

4.3.1 Padua

For the Padua dataset, the clustering is important as the predictions. This is
because there is a floating bike sharing system and there can be a bike anywhere
in the city. Dividing the dataset in areas that do not benefit the size of the same
or the number of bikes contained is crucial. This can lead to less bicycle variance
between time periods and then faster and more precise predictions.

We started with the use of the ARIMA method, that was implemented as can
be seen on Snippet 3.11. ARIMA is not the best solution for our scope, but it is a
good method to try and learn. A bad thing about it is the time for the processing.
It takes hours to process the clusters generated with the Padua dataset. With
ARIMA is it possibile to see immediately the need of using different evaluation
metrics and not only one. This is because it tends to follow the mean of the
dataset passed in input, but this can be good or bad, depending on the field
in which it is applied to. In our case this is not the behavior we are trying
to investigate, because follow only the mean can give us false results. If you
observe the result at macro level, it is near to the perfection, meanwhile if you
zoom in you can see a lot of variance in the prediction of a single time period.
ARIMA tends to lean too much on the value of the previous hour and if the
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Figure 4.14: Results of top 5 of 16 clusters with ARIMA on Padua

Figure 4.15: Results of regions with at least 90 items over 16 clusters with ARIMA
on Padua

number of bikes has an increasing or decreasing spike from a period to another,
ARIMA will predict it wrong surely by a fairly high value.

It is more clear with the analysis of the results showed in Figures 4.14, 4.15
and 4.16 (more precise numeric results can be seen in Tables A.5, A.6 and A.7).
The predicted means are very close to the real one and the R2 score is not bad,
mostly with Mean Shift and Squares approach. But, as described before, the
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Figure 4.16: Results of 16 clusters with ARIMA on Padua

R2 score can lead to a false evaluation if it is taken alone. Observing the RMSE
and MAE, it can be noticed that the higher values are from the Mean Shift and
Squares again. These are indices of a not so good prediction. As in Section 4.1,
the best clustering for the ARIMA method are again the K-Means and GMM,
but this time with a not so clear winner, given that if we analyse the RMSE and
MAE the K-Means is better, but the R2 score tells us otherwise, crowning the
GMM. A small note is that only for 16 clusters, in both of the three cases we took
in examination (top 5 clusters, clusters with at least 90 bikes and all clusters),
the RMSE is similar to the mean. This will not happen in the next cases. For a
better understanding, we have to watch the results with 36 and 64 clusters.

With 36 clusters, referring to Figures 4.17, 4.18 and 4.19 generated from
Tables A.8, A.9 and A.10, in the top 5 clusters case, the results are similar to
the 16 clusters approach. Taking into account the regions with at least 90 bikes,
there is immediately a note to consider. GMM and K-Means have all the clusters
with a good amount of data, meanwhile the other clustering algorithms lose
from 10 to 20 clusters. This is even more pronounced in the 64 clusters case.
Considering 36 regions, the RMSE takes a boost, increasing to nearly double
of the mean. This means that the predictions are not very good, because they
deviate by a value nearly equal to two times the mean from the real value.

In the last case for ARIMA, with 64 clusters, for the top 5 clusters the results
are similar to the others. Referring to Figures 4.20, 4.21 and 4.22 with the
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Figure 4.17: Results of top 5 of 36 clusters with ARIMA on Padua

Figure 4.18: Results of regions with at least 90 items over 36 clusters with ARIMA
on Padua

data from Tables A.11, A.12 and A.13, the clusters deleted by the threshold
filter applied in Snippet 3.9, are more the 50% for the Squares and Mean Shift
approaches, and a little less for BIRCH. The other 2 cases are similar. In both
the RMSE reaches a higher value with respect to the mean. Overall, the GMM
gives to us a better result than the K-Means, losing in the RMSE, but winning in
the MAE and R2 score.
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Figure 4.19: Results of 36 clusters with ARIMA on Padua

Figure 4.20: Results of top 5 of 64 clusters with ARIMA on Padua

For giving a overall look at the results, we can observer Figures 4.23 and
4.24 that represent the 2 most important evaluation metrics in our study. As
stated before, the RMSE follows the mean, lowering as the number of clusters
decreases and with the K-Means constantly below the other algorithms. The R2
score has the same trend, with the Mean Shift and the Squares battling for the
higher position in the podium. As said before, this can cause a blander, because
the same algorithms have the MAE and RMSE above the others in every case.
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Figure 4.21: Results of regions with at least 90 items over 64 clusters with ARIMA
on Padua

Figure 4.22: Results of 64 clusters with ARIMA on Padua

So, the R2 score metric alone can not considered as sufficient to give value to the
results. In conclusion, ARIMA is not the best prediction method for the scope
of this thesis. However, considering this approach, with a normal high number
of clusters for the dataset, the best clustering algorithm is the GMM, returning
not the higher R2 score, but a good overall result considering the RMSE, MAE
and the predictions mean.
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Figure 4.23: Comparison of RMSE results with ARIMA on Padua

Figure 4.24: Comparison R2 score comparison with ARIMA on Padua
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Now, it is important to consider the XGBoost approach, implemented as
shown in Snippet 3.12. The most impressive thing about this method is the
execution time. XGBoost takes very few minutes, if not seconds, for processing
the Padua dataset, with optimal results as we will see next.

Considering the 16 clusters case, showed with histograms in Figures 4.25,
4.26 and 4.27, generated from Tables A.14, A.15 and A.16 respectively, we can
immediately see a big difference from ARIMA. The RMSE is way below the
mean and the R2 score is above the 0.800 with all the clustering techniques. This
indicates that the predictions are good for all the clustering methods. In this
case, noticing all the 3 types of filtering, the GMM wins right away, having a
lower RMSE and MAE, but a higher R2 score compared to the K-Means.

Figure 4.25: Results of top 5 of 16 clusters with XGBoost on Padua

In the 36 clusters case, represented with Figures 4.28, 4.29 and 4.30, obtained
from Tables A.17, A.18 and A.19, the RMSE is close to the mean, but the R2 score
is still very high. In this case too, GMM wins, considering all the aspects, but by
a very little to the K-Means.

In the 64 clusters case, showed by Figures 4.31, 4.32 and 4.33, that represent
Tables A.20, A.21 and A.22, the RMSE is still close to the mean and the R2 score is
high, but not as before. In this case too, GMM wins, considering all the aspects,
but by a very little to the K-Means. An important note to take into account, is
the fact that all the clustering techniques return to us very good results with
XGBoost highlighting efficiency and precision of this forecasting method. For
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Figure 4.26: Results of regions with at least 90 items over 16 clusters with
XGBoost on Padua

Figure 4.27: Results of 16 clusters with XGBoost on Padua

declaring the best clustering algorithms, we concentrated again in the ones with
the best regions partitioning.

To conclude the Padua section, we can say that XGBoost is way better com-
pared to ARIMA, considering the evaluation metrics and the processing times
that can be seen in Figures 4.34 and 4.35. XGBoost gives us similar results with
all the clustering methods and numbers, crowning GMM as the best clustering
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Figure 4.28: Results of top 5 of 36 clusters with XGBoost on Padua

Figure 4.29: Results of regions with at least 90 items over 36 clusters with
XGBoost on Padua

algorithm to accomplish the aim of this thesis. K-Means is also a very good alter-
native, but usually produces a lower R2 score. BIRCH produces a good RMSE,
MAE and R2 score, similar to the K-Means and GMM ones, but it loses by a lot
in terms of creating regions, with too many almost empty zones. The last two,
Squares and Mean Shift are very similar, because they give a lot of importance
to the outer zones. This gives as result a higher R2 score, given that predicting
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Figure 4.30: Results of 36 clusters with XGBoost on Padua

Figure 4.31: Results of top 5 of 64 clusters with XGBoost on Padua

regions with nearly 0 items is easy, because the prediction will be almost always
0. This will falsify the results, but it will be balanced with the center clusters
that have a very high number of bikes and are so difficult to predict, a fact that
raises the RMSE and MAE.
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Figure 4.32: Results of regions with at least 90 items over 64 clusters with
XGBoost on Padua

Figure 4.33: Results of 64 clusters with XGBoost on Padua

4.3.2 Montreal

In the Montreal case, there are some differences with respect to Padua. The
clustering process is done using the station data, so the amount of points is very
low and the items are distributed all over the city.

We started again with the ARIMA method. The results are showed in Figures
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Figure 4.34: Comparison of RMSE results with XGBoost on Padua

Figure 4.35: Comparison R2 score comparison with XGBoost on Padua
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Figure 4.36: Results of top 3 of 9 clusters with ARIMA on Montreal

Figure 4.37: Results of regions with at least 120 items over 9 clusters with ARIMA
on Montreal

4.36, 4.37 and 4.38 linked to Tables A.26, A.27 and A.28. They are pretty similar
to the Padua ones, with GMM and K-Means with the more balanced RMSE,
MAE and R2 score ratio, but BIRCH is about on the same level. As before,
Squares and Mean Shift tend to have a higher R2 score, but a higher RMSE and
MAE too.

With 16 clusters, referring to Figures 4.39, 4.40 and 4.41 generated from Tables
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Figure 4.38: Results of 9 clusters with ARIMA on Montreal

Figure 4.39: Results of top 3 of 16 clusters with ARIMA on Montreal

A.29, A.30 and A.31, the trend continues, with the RMSE being lower or equal to
the mean in all of the cases. A difference from Padua, is that the only clustering
techniques dropping regions with the application of the threshold is Squares.
All the others still the whole dataset partitioned. The best clustering position
is still contended by BIRCH, K-Means and GMM, with all 3 having good RMSE
and R2 score.

Referring to Figures 4.42, 4.43 and 4.44 with the data from Tables A.32, A.33
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Figure 4.40: Results of regions with at least 120 items over 16 clusters with
ARIMA on Montreal

Figure 4.41: Results of 16 clusters with ARIMA on Montreal

and A.34, the threshold filter applied in Snippet 3.9 still does not apply any effect
in the real clustering techniques. Also in this cases, we have the same results as
before. Considering ARIMA on Montreal, there is not a specific best algorithm,
but K-Means, GMM and BIRCH are all very similar, with GMM gaining a little
bit of advantage observing the items per cluster, but this is not a fundamental
evaluation metric.
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Figure 4.42: Results of top 3 of 36 clusters with ARIMA on Montreal

Figure 4.43: Results of regions with at least 120 items over 36 clusters with
ARIMA on Montreal

Observing Figures 4.45 and 4.46, we can see that the RMSE follows a decreas-
ing trend grouped on 3 sets of steps each. As with Padua dataset, the K-Means
is the best one, but this time GMM is nearly equal or lower in the cases with
higher number of regions. The R2 score is very high in all cases, proving that the
clustering on few and already spaced out station, gives better results compared
to the same done on sparse points.
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Figure 4.44: Results of 36 clusters with ARIMA on Montreal

Figure 4.45: Comparison of RMSE results with ARIMA on Montreal

We have to use XGBoost to see more marked differences. Considering the 9
clusters case, that can be observed in Figures 4.47, 4.48 and 4.49, linked to Tables
A.35, A.36 and A.37 respectively, we can see a small change from ARIMA. The
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Figure 4.46: Comparison R2 score comparison with ARIMA on Montreal

overall result are very similar to the previous, with higher R2 score for every
algorithm. But with 9 clusters, K-Means has a little bit of advantage in terms of
RMSE, MAE and R2 score compared to the usual GMM and BIRCH. The RMSE
still is below the mean for all the 5 algorithms.

In the 16 clusters case, generated from Tables A.38, A.39 and A.16 and showed
with Figures 4.50, 4.51 and 4.52, the GMM and K-Means seem to be the same
clustering, apart from the top 3 case, in which K-Means is a little bit better.
Overall, the result is always the same as before.

In the last case with 36 clusters, represented by Figures 4.53, 4.54 and 4.55,
that represent Tables A.41, A.42 and A.43, the RMSE is still close to the mean, but
below and the R2 score is again very high. Still we do not have a clear winner,
with the highest place in the podium contended by GMM and K-Means, and the
third taken by BIRCH.

Based on Figures 4.56 and 4.57, in the RMSE case, we can see the differences
between the clustering algorithms that try to create regions with a similar num-
ber of elements with the others. Squares and Mean Shift have a very high RMSE,
which means that it is not very convenient to use such methods for creating areas
with the Montreal dataset. The R2 score is very constant in every case, with all
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Figure 4.47: Results of top 3 of 9 clusters with XGBoost on Montreal

Figure 4.48: Results of regions with at least 120 items over 9 clusters with
XGBoost on Montreal

the 5 algorithms very near to each other.
To conclude the Montreal section, we can confirm that XGBoost is better than

the ARIMA method again, because it tends to have the RMSE always below the
related mean, a lower MAE and a very high R2 score for all the clustering
algorithms. But this time, we can not declare the best clustering. This is caused
by the dataset. In Padua case, we have items that can be placed randomly in the
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Figure 4.49: Results of 9 clusters with XGBoost on Montreal

Figure 4.50: Results of top 3 of 16 clusters with XGBoost on Montreal

city, meanwhile in Montreal the starting and ending point of a bike travel is fixed,
and the clustering application is a lot easier. We can however say, that GMM is
the best algorithm, because with both dataset it tends to be really efficient and
reliable and, apparently, works best with some noise that is the normal case in
our situation using a floating bike sharing system.
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Figure 4.51: Results of regions with at least 120 items over 16 clusters with
XGBoost on Montreal

Figure 4.52: Results of 16 clusters with XGBoost on Montreal
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Figure 4.53: Results of top 3 of 36 clusters with XGBoost on Montreal

Figure 4.54: Results of regions with at least 120 items over 36 clusters with
XGBoost on Montreal
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Figure 4.55: Results of 36 clusters with XGBoost on Montreal

Figure 4.56: Comparison of RMSE results with XGBoost on Montreal
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Figure 4.57: Comparison R2 score comparison with XGBoost on Montreal
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5
Conclusions and Future Works

The aim of this thesis was to analyze and make more efficient the floating
bike sharing system of Padua to make it more eco-sustainable. For making
this happen, we used different clustering techniques, to have as many choices
as possible about which method is the best. After that, we wanted to predict
the number of bikes that have to be available in every cluster in every hour
of a day. Using ARIMA and XGBoost, we have given very credible results,
supported by different evaluation metrics that have been compared between the
various clustering algorithms implemented. Using different datasets and bike
sharing systems, helped us to analyzing data from different sources, in order
to clarify the results and the various comparison metrics used. We showed the
differences between the various clustering techniques and furthermore with the
forecasting methods implemented. We reached the conclusion that XGBoost
is better in terms of efficiency, execution time and quality of results with the
respect to the ARIMA approach. With respect to the clustering algorithms,
we consider GMM as the best, because with both dataset it tends to be really
reliable and works best with some noise that is the standard case in our work
environment using a floating bike sharing system. Furthermore, following our
analyses and the processes carried out, we suggest to use different evaluation
metrics to be able to observe the study environment from all angles, without
neglecting things that we consider to be taken for granted or basic, but which
in reality hide something that is falsified or that has no real meaning when
considered alone. With the increasing of the clusters number, the differences
between the clustering algorithms have become more clear, with the ones that
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have a more homogeneous approach outdistanced the other algorithms quite
clearly, above all with the use of ARIMA for forecasting. Our thesis showed how
a step by step approach can lead to optimize and to make more efficient bike
sharing systems. This workflow can be applied into different cities without any
issue and it can be used to reduce air pollution caused by vans that move bikes
or by people who are forced to take their own vehicle due to lack of them. The
implementation is fast and not so difficult, mostly with the use of XGBoost as
a forecasting method. It only needs a dataset of bike movements, that does not
need a high number of items, because in our work we only used 3 months of
data to train and test the whole environment.

During the realization, we encountered some problems with the implemen-
tations of specific clustering libraries or with the understanding of the results
given by the statistical metrics. We have tried to implement more clustering
techniques, like DBSCAN, OPTICS, ClustGeo and more, but our datasets do not
fit very well with these type of algorithms. This was probably caused by the fact
that DBSCAN is very powerful in cases with a lot of noise, such as very big cities
or regions with an enormous density of items. This affects all the clustering
based on the DBSCAN algorithm, just like OPTICS. Furthermore, at the start
of the analysis of the predictions step, we did not understand well why some
clustering algorithms that divided the datasets not very homogeneously, had a
higher score compared to the K-Means or GMM. After a deep study we found
out that it was given by the quantity of clusters with very few elements inside.
The 90% of hours in these regions contained 0 bikes and so the predictions were
easier to do. This situation falsified a lot of the results and for fixing it we applied
different filtering methods to the clustering process.

For future works, we suggest to implement more clustering techniques, that
can lead to different and better predictions. These can bring to a deeper un-
derstanding of how a clustering algorithm should work with this environment.
Furthermore, it will be very useful to introduce a prediction system that takes
into account the weather and differentiates the usual working day to the week-
ends or holidays. This can bring to very precise predictions for each day of the
year, including all the possible cases that would lead the forecasting algorithms
to be very wrong with respect to the real value.
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A
Appendix Data tables

Clusters Squares K-Means GMM Mean Shift BIRCH
16 0s 2.4s 3.01s 3263.91s 6.96s
36 0s 3.86s 3.45s 1655.61s 7.36s
64 0s 7.26s 16.57s 1448.71s 7.98s

Table A.1: Clustering processing times for Padua dataset

Cluster Number Squares K-Means GMM Mean Shift BIRCH
0 124 7294 1076 57120 174
1 67 19395 6800 44341 33
2 9 10262 6554 10582 2727
3 1384 4277 15476 2364 18
4 21237 5258 14287 1577 43
5 36870 3798 4630 1385 12495
6 494 7772 5149 34 4835
7 423 6461 7667 73 2632
8 19715 7267 10717 17 9266
9 34872 2903 23939 8 20742
10 2532 4106 1010 717 11
11 20 2991 1553 46 25914
12 528 17578 1712 4 6829
13 1413 3540 3995 144 3370
14 37 13667 12189 1 6367
15 21 3177 2992 1333 24290

Table A.2: Number of bikes per region on 16 clusters on Padua dataset
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Cluster Number Squares K-Means GMM Mean Shift BIRCH
0 3 1657 333 23767 17731
1 38 15762 11125 29205 22126
2 19 2448 2439 20808 4128
3 2 1972 1850 9609 103
4 4 3795 2914 7954 109
5 7 3925 170 4235 7969
6 140 5436 7298 7462 1480
7 2706 2159 2055 2922 2534
8 1753 1325 2794 2663 50
9 24 6945 4493 4332 27
10 3 3383 15608 2515 92
11 347 1332 5377 1246 2605
12 3218 5254 3795 772 276
13 16304 1767 2997 177 12719
14 33479 2835 1020 974 3730
15 2143 2197 3554 45 2633
16 13 5460 2462 44 2066
17 49 1825 3174 22 27
18 2691 2270 3949 29 4089
19 14584 3976 1155 69 1214
20 24683 737 2074 759 5788
21 6582 1479 1239 11 164
22 182 2710 4986 18 38
23 7 2793 2530 8 53
24 242 2099 480 26 4152
25 3049 4442 9234 6 51
26 7184 868 2771 4 396
27 79 357 3391 5 5468
28 13 7944 1124 8 16
29 12 6934 2696 3 11
30 3 2665 2373 2 10
31 49 1332 4676 37 3
32 102 3211 836 3 730
33 29 2217 354 2 2299
34 0 2963 598 2 3180
35 3 1272 1822 1 11679

Table A.3: Number of bikes per region on 36 clusters on Padua dataset

Cluster Number Squares K-Means GMM Mean Shift BIRCH
0 1 4189 15661 20961 1176
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1 1 5480 12347 25229 10
2 31 14937 0 12776 4152
3 13 782 1287 12827 2568
4 4 898 256 8129 30
5 3 1838 2330 2604 1180
6 1 1305 1451 3285 11
7 1 1144 803 2976 3180
8 16 1195 2106 2336 27
9 16 2096 2343 2043 37
10 76 1319 9220 2355 1237
11 46 3274 593 5023 53
12 4 2224 2486 3219 396
13 5 2211 1298 1358 12719
14 0 1182 869 3768 266
15 16 1753 1156 1990 12662
16 439 1658 1023 882 2299
17 1368 1116 2403 3207 11679
18 3495 1118 696 825 68
19 3564 2684 1410 799 2281
20 286 1137 700 335 20
21 3 807 18 140 64
22 1 1692 5514 115 8
23 47 1361 1283 104 1638
24 882 4148 583 224 1123
25 2815 2294 8605 60 51
26 13559 1994 1347 659 134
27 29617 950 68 24 5468
28 3403 1077 3429 23 16
29 485 1932 74 1019 1443
30 5 4671 1708 19 596
31 3 281 102 19 3
32 278 2349 4797 17 1454
33 3563 1649 400 14 27
34 11065 1504 252 44 2578
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35 20033 902 715 96 13
36 5363 1101 1288 12 771
37 2317 962 889 66 1910
38 38 2578 1978 8 6190
39 0 979 366 9 48
40 142 4053 146 15 39
41 2051 1223 0 9 357
42 3036 63 1617 8 19
43 9043 833 1111 26 24
44 433 1954 150 3 2988
45 172 396 1275 4 2800
46 5 92 1156 7 87
47 6 1158 0 3 3274
48 2 1478 294 3 1789
49 2 89 404 45 2300
50 486 1590 960 4 623
51 1285 21 2095 3 5391
52 84 1976 883 2 25
53 28 2033 7730 2 1179
54 8 1086 206 2 1204
55 10 265 75 1 1162
56 2 2044 1236 2 93
57 17 2378 1817 1 14679
58 23 1466 836 1 45
59 24 1056 343 2 38
60 20 849 0 1 1425
61 1 1440 2514 1 10
62 0 1517 708 1 29
63 3 3915 336 1 580

Table A.4: Number of bikes per region on 64 clusters on Padua dataset
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Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 9.418 5.781 6.277 9.514 7.931
Predictions mean 9.581 5.864 6.356 9.676 8.074
RMSE 6.802 5.026 5.190 7.786 6.231
MAE 4.283 3.163 3.336 4.145 3.838
R2 score 0.661 0.494 0.537 0.752 0.645

Table A.5: Evaluation results of top 5 clusters of 16 using ARIMA on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 11 16 16 9 12
Values mean 4.440 3.057 3.057 5.425 3.488
Predictions mean 4.521 3.112 3.122 5.529 3.566
RMSE 4.611 3.232 3.253 5.819 3.889
MAE 2.176 1.950 1.921 2.496 1.931
R2 score 0.744 0.536 0.591 0.784 0.709

Table A.6: Evaluation results of regions with at least 90 items over 16 clusters
using ARIMA on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 3.057 3.057 3.057 3.057 3.057
Predictions mean 3.113 3.112 3.122 3.114 3.124
RMSE 3.823 3.232 3.253 4.365 3.639
MAE 1.505 1.950 1.921 1.413 1.698
R2 score 0.761 0.536 0.591 0.800 0.717

Table A.7: Evaluation results of 16 clusters using ARIMA on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 8.001 3.523 3.886 7.733 6.061
Predictions mean 8.089 3.610 3.954 7.846 6.139
RMSE 6.077 3.896 4.126 6.104 5.081
MAE 3.871 2.305 2.459 3.853 3.242
R2 score 0.607 0.424 0.444 0.594 0.501

Table A.8: Evaluation results of top 5 clusters of 36 using ARIMA on Padua
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Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 17 36 36 16 26
Values mean 2.869 1.358 1.358 3.252 1.876
Predictions mean 2.915 1.394 1.394 3.318 1.916
RMSE 3.434 1.935 1.951 3.698 2.500
MAE 1.625 1.115 1.120 1.881 1.267
R2 score 0.705 0.456 0.468 0.679 0.610

Table A.9: Evaluation results of regions with at least 90 items over 36 clusters
using ARIMA on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 1.358 1.358 1.358 1.358 1.358
Predictions mean 1.381 1.394 1.394 1.386 1.387
RMSE 2.360 1.935 1.951 2.388 2.125
MAE 0.775 1.115 1.120 0.791 0.922
R2 score 0.733 0.456 0.468 0.720 0.632

Table A.10: Evaluation results of 36 clusters using ARIMA on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 6.941 2.732 4.447 6.706 4.861
Predictions mean 7.026 2.831 4.515 6.787 4.943
RMSE 5.532 3.550 4.376 5.443 4.497
MAE 3.488 1.954 2.693 3.466 2.797
R2 score 0.582 0.421 0.462 0.516 0.492

Table A.11: Evaluation results of top 5 clusters of 64 using ARIMA on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 25 61 56 28 39
Values mean 1.947 0.801 0.888 1.741 1.245
Predictions mean 1.991 0.828 0.914 1.782 1.280
RMSE 2.666 1.419 1.593 2.489 1.913
MAE 1.258 0.793 0.771 1.174 0.990
R2 score 0.681 0.409 0.552 0.647 0.573

Table A.12: Evaluation results of regions with at least 90 items over 64 clusters
using ARIMA on Padua
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Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 0.764 0.764 0.764 0.764 0.764
Predictions mean 0.782 0.791 0.787 0.783 0.785
RMSE 1.668 1.386 1.477 1.647 1.496
MAE 0.499 0.758 0.664 0.519 0.614
R2 score 0.710 0.413 0.561 0.678 0.600

Table A.13: Evaluation results of 64 clusters using ARIMA on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 9.421 5.781 6.278 9.516 7.933
Predictions mean 9.148 5.594 6.102 9.169 7.683
RMSE 3.784 2.955 3.239 4.292 3.639
MAE 1.962 1.393 1.586 1.861 1.805
R2 score 0.895 0.825 0.820 0.925 0.879

Table A.14: Evaluation results of top 5 clusters of 16 using XGBoost on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 11 16 16 9 12
Values mean 4.442 3.058 3.058 5.427 3.489
Predictions mean 4.331 2.980 3.003 5.270 3.406
RMSE 2.587 2.047 1.968 3.221 2.324
MAE 1.105 1.060 1.013 1.217 1.030
R2 score 0.919 0.808 0.845 0.934 0.896

Table A.15: Evaluation results of regions with at least 90 items over 16 clusters
using XGBoost on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 3.058 3.058 3.058 3.058 3.058
Predictions mean 2.984 2.980 3.003 2.974 2.985
RMSE 2.146 2.047 1.968 2.417 2.175
MAE 0.770 1.060 1.013 0.699 0.911
R2 score 0.925 0.808 0.845 0.939 0.899

Table A.16: Evaluation results of 16 clusters using XGBoost on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 8.002 3.524 3.888 7.735 6.063
Predictions mean 7.701 3.401 3.675 7.447 5.894
RMSE 3.662 2.691 2.817 3.524 3.186
MAE 1.784 1.246 1.208 1.698 1.527
R2 score 0.857 0.725 0.741 0.865 0.804

Table A.17: Evaluation results of top 5 clusters of 36 using XGBoost on Padua
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Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 17 36 36 16 26
Values mean 2.870 1.359 1.359 3.253 1.876
Predictions mean 2.793 1.358 1.347 3.171 1.860
RMSE 2.108 1.343 1.378 2.184 1.620
MAE 0.883 0.740 0.706 0.992 0.757
R2 score 0.889 0.738 0.745 0.888 0.836

Table A.18: Evaluation results of regions with at least 90 items over 36 clusters
using XGBoost on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 1.359 1.359 1.359 1.359 1.359
Predictions mean 1.327 1.358 1.347 1.329 1.349
RMSE 1.450 1.343 1.378 1.411 1.378
MAE 0.428 0.740 0.706 0.425 0.556
R2 score 0.899 0.738 0.745 0.902 0.845

Table A.19: Evaluation results of 36 clusters using XGBoost on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 6.942 2.732 4.447 6.708 4.861
Predictions mean 6.633 2.633 4.203 6.441 4.668
RMSE 3.327 2.600 2.906 3.249 2.761
MAE 1.632 1.109 1.355 1.473 1.321
R2 score 0.849 0.690 0.763 0.828 0.809

Table A.20: Evaluation results of top 5 clusters of 64 using XGBoost on Padua

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 25 61 56 28 39
Values mean 1.948 0.801 0.887 1.741 1.246
Predictions mean 1.904 0.830 0.911 1.717 1.257
RMSE 1.678 1.070 1.124 1.556 1.267
MAE 0.764 0.599 0.551 0.694 0.668
R2 score 0.874 0.664 0.799 0.862 0.813

Table A.21: Evaluation results of regions with at least 90 items over 64 clusters
using XGBoost on Padua
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Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 0.764 0.764 0.764 0.764 0.764
Predictions mean 0.751 0.789 0.785 0.758 0.775
RMSE 1.051 1.020 1.041 1.031 0.992
MAE 0.309 0.563 0.478 0.313 0.421
R2 score 0.885 0.683 0.785 0.874 0.824

Table A.22: Evaluation results of 64 clusters using XGBoost on Padua

Cluster Number Squares K-Means GMM Mean Shift BIRCH
0 70726 1277747 39120 3272403 1237306
1 1866 145411 551551 298973 204491
2 503863 74373 17465 119708 832986
3 2581377 1234998 1497927 88013 101638
4 9670 10926 294601 123700 21509
5 74721 248487 142948 34370 35709
6 666904 741095 1138540 978 455909
7 19785 210559 20168 5894 1055471
8 23870 9186 250462 8743 7763

Table A.23: Number of bikes per region on 9 clusters on Montreal dataset

Cluster Number Squares K-Means GMM Mean Shift BIRCH
0 12912 346906 273447 2948722 1087252
1 23817 465916 924909 328936 357405
2 0 14149 585424 150208 124870
3 74558 108997 123952 207287 101638
4 398133 22436 123039 90244 150054
5 312450 58549 24293 31404 637172
6 0 375491 7186 100603 157188
7 119078 946789 866119 31768 1055471
8 2446015 64563 93533 978 7763
9 444409 110715 64705 4905 27739
10 1433 978 62035 5894 79621
11 6090 1006040 21692 1601 38626
12 37020 7763 7763 38785 978
13 59552 147772 410486 8114 7970
14 10406 153282 978 1464 20531
15 6909 122436 363221 1869 98504

Table A.24: Number of bikes per region on 16 clusters on Montreal dataset
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Cluster Number Squares K-Means GMM Mean Shift BIRCH
0 0 374658 65891 1397967 98504
1 6733 80005 451652 943167 559057
2 1237 21851 63067 546539 7970
3 0 28551 36945 242364 7763
4 0 67033 55791 49552 16554
5 1869 258207 398174 155570 8565
6 15834 978 395369 114453 192357
7 13962 101958 978 75936 219446
8 48794 30847 4905 64210 479842
9 1866 73468 140353 39318 67741
10 0 295094 60271 116003 78098
11 10447 7763 67682 6512 211015
12 89547 136273 7763 978 280491
13 347953 8438 1866 11371 91297
14 284370 15279 16084 10451 25864
15 0 2197 113471 6872 65891
16 0 22597 132328 21373 34257
17 26069 9545 12093 3959 4669
18 377800 106525 69897 39861 271696
19 1618188 12093 6699 2845 85084
20 330866 2464 264560 40250 295138
21 9670 302022 90810 4905 9545
22 0 75607 33099 11880 49268
23 0 77889 40522 9336 308749
24 74721 6672 128960 5417 11880
25 505012 407793 80879 5894 978
26 153873 415379 8438 3536 19174
27 16235 173325 2281 2363 53668
28 0 187721 19958 8024 33957
29 0 9336 35005 817 27400
30 0 36162 258221 1464 71258
31 6413 59276 274363 5593 10923
32 1606 63356 11880 710 9608
33 2845 2483 266900 742 62620
34 705 328251 264277 1127 9336
35 6167 146697 71350 1423 173119

Table A.25: Number of bikes per region on 36 clusters on Montreal dataset
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Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 400.132 338.448 355.978 395.088 331.545
Predictions mean 400.464 338.730 356.277 395.414 331.828
RMSE 236.456 177.874 184.821 283.141 168.872
MAE 118.194 102.494 107.526 116.456 101.692
R2 score 0.789 0.707 0.693 0.824 0.657

Table A.26: Evaluation results of top 3 clusters of 9 using ARIMA on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 9 9 9 9 9
Values mean 140.579 140.579 140.579 140.579 140.579
Predictions mean 140.830 140.730 140.729 140.822 140.732
RMSE 136.724 103.182 107.448 163.703 101.581
MAE 42.890 44.396 44.563 42.567 44.277
R2 score 0.847 0.805 0.804 0.855 0.793

Table A.27: Evaluation results of regions with at least 120 items over 9 clusters
using ARIMA on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 140.579 140.579 140.579 140.579 140.579
Predictions mean 140.830 140.730 140.729 140.822 140.732
RMSE 136.724 103.182 107.448 163.703 101.581
MAE 42.890 44.396 44.563 42.567 44.277
R2 score 0.847 0.805 0.804 0.855 0.793

Table A.28: Evaluation results of 9 clusters using ARIMA on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 351.930 257.139 259.027 372.128 295.793
Predictions mean 352.222 257.352 259.254 372.435 296.046
RMSE 221.240 134.758 138.049 254.918 153.337
MAE 105.354 79.972 80.765 110.193 91.203
R2 score 0.794 0.671 0.664 0.823 0.667

Table A.29: Evaluation results of top 3 clusters of 16 using ARIMA on Montreal
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Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 14 16 16 16 16
Values mean 90.372 79.075 79.075 79.075 79.075
Predictions mean 90.505 79.150 79.303 79.291 79.194
RMSE 103.637 63.787 63.644 110.782 69.540
MAE 28.526 26.443 26.333 24.658 26.108
R2 score 0.848 0.797 0.800 0.862 0.813

Table A.30: Evaluation results of regions with at least 120 items over 16 clusters
using ARIMA on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 79.075 79.075 79.075 79.075 79.075
Predictions mean 79.192 79.150 79.303 79.291 79.194
RMSE 96.944 63.787 63.644 110.782 69.540
MAE 24.960 26.443 26.333 24.658 26.108
R2 score 0.850 0.797 0.800 0.862 0.813

Table A.31: Evaluation results of 16 clusters using ARIMA on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 264.644 129.186 147.409 310.434 145.848
Predictions mean 264.901 129.295 147.533 310.692 145.980
RMSE 156.407 63.463 82.183 163.572 81.943
MAE 81.972 40.524 48.683 94.828 48.203
R2 score 0.767 0.639 0.621 0.701 0.656

Table A.32: Evaluation results of top 3 clusters of 36 using ARIMA on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 25 36 36 36 36
Values mean 50.608 35.145 35.145 35.145 35.145
Predictions mean 50.704 35.327 35.281 35.257 35.266
RMSE 57.959 30.302 29.550 48.468 31.022
MAE 16.899 13.124 13.051 12.050 13.098
R2 score 0.840 0.767 0.776 0.842 0.779

Table A.33: Evaluation results of regions with at least 120 items over 36 clusters
using ARIMA on Montreal
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APPENDIX A. APPENDIX DATA TABLES

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 35.145 35.145 35.145 35.145 35.145
Predictions mean 35.211 35.327 35.281 35.257 35.266
RMSE 48.299 30.302 29.550 48.468 31.022
MAE 11.736 13.124 13.051 12.050 13.098
R2 score 0.846 0.767 0.776 0.842 0.779

Table A.34: Evaluation results of 36 clusters using ARIMA on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 400.132 338.448 355.978 395.088 331.545
Predictions mean 382.486 332.112 328.300 373.956 317.674
RMSE 156.105 115.838 122.276 193.390 115.403
MAE 68.081 58.187 60.233 71.497 60.509
R2 score 0.908 0.861 0.867 0.918 0.840

Table A.35: Evaluation results of top 3 clusters of 9 using XGBoost on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 9 9 9 9 9
Values mean 140.579 140.579 140.579 140.579 140.579
Predictions mean 134.447 133.436 134.433 133.244 134.613
RMSE 90.223 67.011 68.172 111.743 69.093
MAE 24.225 23.141 24.256 25.554 25.936
R2 score 0.933 0.918 0.920 0.932 0.904

Table A.36: Evaluation results of regions with at least 120 items over 9 clusters
using XGBoost on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 140.579 140.579 140.579 140.579 140.579
Predictions mean 134.447 133.436 134.433 133.244 134.613
RMSE 90.223 67.011 68.172 111.743 69.093
MAE 24.225 23.141 24.256 25.554 25.936
R2 score 0.933 0.918 0.920 0.932 0.904

Table A.37: Evaluation results of 9 clusters using XGBoost on Montreal
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Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 351.930 257.139 259.027 372.128 295.793
Predictions mean 332.141 235.817 250.438 360.346 279.911
RMSE 148.700 88.871 93.568 162.976 101.717
MAE 64.065 42.773 46.277 64.379 52.585
R2 score 0.907 0.851 0.845 0.928 0.854

Table A.38: Evaluation results of top 3 clusters of 16 using XGBoost on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 14 16 16 16 16
Values mean 90.372 79.075 79.075 79.075 79.075
Predictions mean 85.587 75.408 75.608 76.527 75.063
RMSE 69.416 41.889 41.923 70.791 45.880
MAE 16.573 13.834 14.303 13.972 14.315
R2 score 0.932 0.918 0.912 0.944 0.919

Table A.39: Evaluation results of regions with at least 120 items over 16 clusters
using XGBoost on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 79.054 79.075 79.075 79.075 79.075
Predictions mean 74.889 75.408 75.608 76.527 75.063
RMSE 64.933 41.889 41.923 70.791 45.880
MAE 14.502 13.834 14.303 13.972 14.315
R2 score 0.933 0.918 0.912 0.944 0.919

Table A.40: Evaluation results of 16 clusters using XGBoost on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 264.644 129.186 147.409 310.434 145.848
Predictions mean 253.929 122.051 140.059 295.719 136.704
RMSE 109.595 54.430 49.557 108.978 55.790
MAE 48.407 25.772 23.236 53.782 26.031
R2 score 0.886 0.798 0.784 0.867 0.841

Table A.41: Evaluation results of top 3 clusters of 36 using XGBoost on Montreal
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APPENDIX A. APPENDIX DATA TABLES

Metric Squares K-Means GMM Mean Shift BIRCH
Clusters 25 36 36 36 36
Values mean 50.608 35.145 35.145 35.145 35.145
Predictions mean 48.585 33.303 33.498 33.555 33.507
RMSE 40.166 19.616 19.922 32.095 20.340
MAE 9.463 6.590 6.582 6.538 6.558
R2 score 0.923 0.900 0.896 0.931 0.905

Table A.42: Evaluation results of regions with at least 120 items over 36 clusters
using XGBoost on Montreal

Metric Squares K-Means GMM Mean Shift BIRCH
Values mean 35.145 35.145 35.145 35.145 35.145
Predictions mean 33.741 33.303 33.498 33.555 33.507
RMSE 33.472 19.616 19.922 32.095 20.340
MAE 6.573 6.590 6.582 6.538 6.558
R2 score 0.926 0.900 0.896 0.931 0.905

Table A.43: Evaluation results of 36 clusters using XGBoost on Montreal
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