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INTRODUCTION 

 

 

 

 

1. Introduction 
The model we will be describing all the way through this paper is based on two broad categories 

of terms structure models: affine term structure models and vector autoregression models. The 

first stream of literature shapes the general framework of the model, that will later be linked to 

the VAR models through some similarities that Ang and Piazzesi (2003) first noted. It is 

precisely for this reason that we need to produce some basic knowledge and overall description 

of Affine Term Structure Models (ATSMs).  

The research in the field of bond yields mostly moved in the continuous time context, mainly 

with the aid of Partial Differential Equations, even if many other models focused on VARs and 

an important distinction must be made in this sense: the macroeconomics variables that were 

usually included in such econometric models of course described only partially bond yields 

movement; on the other side stochastic calculus implied in ATSMs managed to give a more 

complete description of bond yields movements, though losing some ground for what concerns 

tractability and closed solutions. In this space left out between the two approaches we may find 

some reason to bring them together: there are some topics that draw aside VARs from ATSM 

models. 

The most important among such topics is that the macroeconomic variables typically used in 

simple VARs neglect the core features of bonds, the first one being that bonds are first of all 

assets. Beyond the traditional view of bonds as safer assets than equity instruments, if we put a 

bond in a short term trading context, risk increases along with the maturity of the bond and, as 

a natural consequence, the risk-averse investor will require some premium for the risk he bears. 

This means that to avoid arbitrage opportunities in bond yields, the expected future short rates, 

adjusted for such risk, should well describe long maturities yields at the present time: this is 

what the liaison between the different maturities at a given time is made of, this is what risk 

premia specifications in ATSMs and what the cross-equation restrictions in modern VAR 

models are intended to describe usually. 

The definition of ATSMs is not univocal across the literature, as some details may differ among 

authors. Generally ATSMs encircles all those term structure models that include some no-
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MOTIVATION FOR BOND YIELDS RESEARCH 

arbitrage restriction and a linear relationship between bond yields and some vector of state 

variables x, were the constant term and the slope coefficient are functions of maturity of a bond.  

The breaking point in term structure literature came with the work of Vasicek (1977) that firstly 

introduced such kind of models and using a single state variable being the present short rate, 

whose movements were defined by a Markov process. ATSMs then grew in number and 

diversification starting form Vasicek-like models, with a single state variable, and evolving to 

multifactor models were the state variable became a vector. 

The common framework of ATSM is by the way a description of yields as risk-adjusted 

expected future rates. This adjustment strictly relates to the definition of risk premia and excess 

bond returns. In the earliest models in this stream of literature a time-constant term premia on 

bonds, even if this lead to bond yields definition that did not really well suit observed data. 

 

   

1.1 Motivation for Bond Yields Research 

  

There are different motivations to justify bond yields research, among these the first one is 

surely forecasting. 

After Vasicek work, many other papers underlined what seems to be a rational relationship 

between bonds of different maturities. The fact that long maturities bond yields are usually 

found to drive short-term rates means that present time yield curve contains some information 

about the future of the economy, or at least about the expectation on the economy. As the main 

model will explain in next chapters, the relationship between yields and macroeconomic 

variables and the forward-looking feature of longer-term maturity yields may create some 

mechanism that should be in some way useful to get some knowledge about the future path of 

the economy. This should not be surprising, given the great role of expectations in economics, 

but as Stock and Watson (2003) may suggest, this kind of relationship may not be stable across 

periods.  

Another motivation that may be quoted is linked to the central bank monetary policy decisions. 

As it is widely known, central banks have only control on shortest maturities bond yields, but 

internal demand usually is affected by the short end of the yield curve: most decisions by 

economic agents, even on a micro basis, are based on expectations about future and thus on 

long term yields. Again this kind of chain connecting the monetary authority and the stimulation 

1.1 
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of the economy passes through the connection among different maturity bonds, even though 

some kind of precision is lost through the stages: the tentative activity of central bank usually 

is acting on inflation and real activity through short rates, and by intentionally communicating 

its own intentions, it usually acts on economy and, more concretely, on financial markets. 

Finally, hedging and derivatives pricing may imply some use of yield curve. This is so since 

derivatives linked to interest rates may need such models to be priced, or other risks normally 

taken by banks may need to be hedged using yield curves and the linkages between yield curve 

movements and the dynamics of the state of the economy. 
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ASSET PRICING 

 

  

 

2. Asset Pricing 
 

2.1 Time Variation of Expected Returns 

To have a good view on the general model we will produce it is definitely useful to get which 

kind of consequences assumptions on expected returns may have. If we consider a scenario 

having k possible states of nature having probability π ( k ), assuming that no arbitrage 

opportunities are present, we may represent the price of a certain asset ( i ) at a given time t as 

the sum of weighted payoffs multiplied by their respective probability: 

𝑃𝑖,𝑡 =  ∑ 𝜋𝑡+1(𝑠) 𝑚𝑡+1(𝑠) 𝑋𝑖,𝑡+1 (𝑠)

𝑘

𝑠=1

 

With 𝑚𝑡+1(𝑠) being the weight for each payoff for the purpose of discounting, and 𝑋𝑖,𝑡+1 (𝑠) 

being the payoff at time t+1 for the asset i, for a given s scenario. Considering risky assets (e.g. 

common stocks) the payoff should include the price movement plus the dividend, both 

considered at time t+1, while for zero coupon bonds, the payoff should simply equal the price 

movement in the asset. On a general basis the returns on the assets are qualified as  

𝑅𝑠,𝑡+1 =  
𝑋𝑖,𝑡+1

𝑃𝑖,𝑡
− 1 

Considering the safe asset thus, the payoff will be nothing but the above equation considering 

that the payoff is a certain one, this implying that the payoff only needs to be discounted by the 

relative weight. This brings our return on the safe asset to be represented as  

𝑅𝑠,𝑡+1 =  
1

∑ 𝜋𝑡+1(𝑠) 𝑚𝑡+1(𝑠) 𝑋𝑖,𝑡+1 (𝑠)𝑚
𝑠=1

− 1 

 

𝑅𝑠,𝑡+1 =  
1

𝐸𝑡(𝑚𝑡+1)
− 1 

2 

TIME VARIATION OF EXPECTED RETURNS 2.1 
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The return thus depends on the pure discount factor that is applied to the certain payoff. In such 

a setting, to extract a definition of risk premium we need to compare the safe to the risky asset: 

peculiarly we may write 

𝐸𝑡 (𝑚𝑡+1(1 + 𝑅𝑖,𝑡+1)) = 1 

Since the gross return, discounted by the stochastic discount factor, is by definition equal to one 

in expectation. This brings us to consider the covariance between the stochastic discount factor 

and the gross return, that will be, by definition 

𝐶𝑜𝑣 (𝑚𝑡+1 , (1 + 𝑅𝑖,𝑡+1)) = 1 − 𝐸𝑡(𝑚𝑡+1)𝐸𝑡(1 + 𝑅𝑖,𝑡+1) 

The gross return on the risky asset may thus be represented as 

𝐸𝑡(1 + 𝑅𝑖,𝑡+1) = −
𝐶𝑜𝑣 (𝑚𝑡+1 , (1 + 𝑅𝑖,𝑡+1))

𝐸𝑡(𝑚𝑡+1)
+ (1 + 𝑅𝑠,𝑡+1) 

Excess return on this basis will simply be the difference between the safe and the risky asset 

expected gross return, that is to say 

𝐸𝑡(𝑅𝑖,𝑡+1 − 𝑅𝑠,𝑡+1) = 1 − 𝑅𝑠,𝑡+1 𝑐𝑜𝑣 (𝑚𝑡+1 , (1 + 𝑅𝑖,𝑡+1)) 

Excess return on risky asset with respect to the safe asset will thus be in expectation negatively 

related to the return on the safe asset and to the covariance between stochastic discount factor 

and the return on the risky asset. It is now crucial to understand how to interpret this result: if 

the covariance between the stochastic discount factor and the return of the risky asset is low, 

then a greater excess return will be expected. This means that assets with high returns when 

stochastic discount factor is low (i.e. future payoff are diminished by a smaller percentage, and 

so they are valued more since time is less expensive) will require a higher risk premium. 

Considering different cases of frequency of observations, forecasting shall be simpler in two 

points in time which are near, i.e. at higher frequency, when we have the stochastic discount 

factor which is not varying that much across different points and where the return on the safe 

asset is near zero, while forecasting will be harder when the frequency is lower and times of 

observations are further from each other: in this case safe return will be away from zero and 

stochastic discount factor will be more volatile, requiring higher risk for such uncertainty on a 

longer horizon. This links directly predictability of risky returns with stochastic discount factors 

and risk premia, allowing us to say that on longer horizon the assumption of time varying risk 

premia is much more realistic then the constant risk premia one. 
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2.2 Bond Returns 

The aim of term structure models is to analyze returns on bonds and see how they move cross 

sectionally across maturities and along certain periods of time, and it proves useful for example 

to get some information on expectations about inflation. In performing such analysis it is then 

comfortable to work with zero coupon bonds, that, having a single cash flow at maturity, allow 

us to study form a valid theory that can be extended even to ordinary coupon bonds. 

The price of zero coupon bonds and their respective yield are usually related by a simple 

equation as the following 

𝑃𝑡,𝑇 =
1

(1 + 𝑌𝑡,𝑇)
𝑇−𝑡

 

With 𝑃𝑡,𝑇 being the price of the zero coupon bond with maturity equal to T and valued at time 

t, and 𝑌𝑡,𝑇 being the respective yield to maturity. Using continuously compounded yields to 

maturity we can transform the above expression taking logs and get 

𝑝𝑡,𝑇 = − (𝑇 − 𝑡) 𝑦𝑡,𝑇
 

At this point it is crucial to observe that the coefficient through which yields negatively affect 

price is time to maturity. This means that on a general basis that for a given level of yield, longer 

maturities will reflect into a lower price, having thus a higher risk premia, mainly due to the 

higher uncertainty caused by the larger distance between price valuation and payoff.  

Passing then to consider holding period returns, a bond with a maturity in T, indicated as 𝑟𝑡,𝑡+1
𝑇  

will be represented with 

𝑟𝑡,𝑡+1
𝑇 = 𝑝𝑡+1 ,𝑇 − 𝑝𝑡 ,𝑇 =  − (𝑇 − 𝑡 − 1) 𝑦𝑡+1,𝑇 + (𝑇 − 𝑡)  𝑦𝑡,𝑇 

=  𝑦𝑡,𝑇 − (𝑇 − 𝑡 − 1) (𝑦𝑡+1,𝑇 −  𝑦𝑡,𝑇) 

=  (𝑇 − 𝑡) 𝑦𝑡,𝑇 − (𝑇 − 𝑡 − 1) 𝑦𝑡+1,𝑇 

This is equivalent to say that the difference between yields and returns in a period (of a bond 

with maturity at T), is nothing but the difference between the yield’s movement in that period 

multiplied by a scalar related to maturity. Thus the risk premia will be directly dependent from 

the respective yields movements, taking also into account time to maturity, and will thus differ 

from different yields. 

BOND RETURNS 2.2 
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At this point we must understand what a no arbitrage condition imposition means. On a general 

basis no arbitrage requires that there in a given period no profitable riskless investment on an 

asset, i.e. all assets are appropriately priced in a way that allows no extra market gains without 

bearing more risk. In our setting this translates into having no excess holding period returns 

higher than the returns from investing on a bond maturing in the same period taken in 

consideration. In expectation we will have excess holding period returns from a long maturity 

bond with respect to a short maturity excess return, where in the latter case excess return will 

coincide with yield. The excess return will appear as  

𝐸𝑡(𝑟𝑡,𝑡+1
𝑇 − 𝑟𝑡,𝑡+1

1 ) = 𝐸𝑡(𝑟𝑡,𝑡+1
𝑇 − 𝑦𝑡,𝑡+1) = 𝜑𝑡,𝑡+1

𝑇  

𝐸𝑡(𝑟𝑡,𝑡+1
𝑇 ) =  𝑦𝑡,𝑡+1 + 𝜑𝑡,𝑡+1

𝑇  

 

From this equation, reintroducing the log price of the bond related to the returns, using the 

properties of the logarithm and the fact that price at time t equals the price in the following 

period discounted by the rate of return, the log price of the bond evaluated at t with maturity at 

T can be represented as 

𝑝𝑡,𝑇 = 𝑝𝑡+1,𝑇 −  𝑟𝑡,𝑡+1
𝑇  

Hence the yield of the bond will appear as 

𝑦𝑡,𝑇 =
1

(𝑇 − 𝑡)
∑ 𝐸𝑡(

𝑛−1

𝑖=0

𝑟𝑡+𝑖,𝑡+𝑖+1
𝑇 ) 

 

=
1

(𝑇−𝑡)
∑ 𝐸𝑡(𝑛−1

𝑖=0 𝑦𝑡+𝑖,𝑡+𝑖+1 + 𝜑𝑡+𝑖,𝑡+𝑖+1
𝑇 ) 

 

In the end, given the no arbitrage condition, the yield of a given bond with a fixed maturity will 

appear as the mean of the future expected one period rates and the respective risk premia. 

 

2.2.1                                                 FORWARD RATES 

2.2.1 Forward Rates 

An important concept to conceive to well understand term structure theories is the one of 

forward rates. As a general definition, we may say that forward rates are the yield that an agent 

would agree to get today for an investment at some future time t over the period following t 
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until maturity T. these kind of investments can be summarized by the yield curve, as a ten year 

zero coupon bond may be decomposed into a one year zero coupon bond and other nine forward 

rates. The strategy for the replication of the forward rate is usually defined as the one who sells 

at time t a bond maturing at time t’, and buys a bond at time t maturing at time T. Through this 

reinterpretation given by the investment strategy, we are able to write down the forward 

formula, that is 

𝑓𝑡, 𝑡′,𝑇 =
(𝑇 − 𝑡)𝑦𝑡,𝑇 − (𝑡′ − 𝑡)𝑦𝑡, 𝑡′

𝑇 − 𝑡′
 

 

Where at the numerator we have the log price of the same forward, and maturity at denominator. 

This means that for example, a forward rate for a bond investing at time t+1 and maturing at 

t+2 equals two times the yield from time t to time t+2 minus the one period yield. Using such 

a rule we may recursively describe any maturity yield using forward rates and the one period 

yield, thus we could write 

 

𝑦𝑡,𝑡+𝑛 =
1

𝑛
(𝑦𝑡,𝑡+1 + 𝑓𝑡,𝑡+1,𝑡+2 + 𝑓𝑡,𝑡+2,𝑡+3 + ⋯ + 𝑓𝑡,𝑡+𝑛−1,𝑡+𝑛) 

And recalling that  

𝑦𝑡,𝑡+𝑛 =
1

𝑛
∑ 𝐸𝑡(𝑛−1

𝑖=0 𝑦𝑡+𝑖,𝑡+𝑖+1 + 𝜑𝑡+𝑖,𝑡+𝑖+1
𝑇 ) 

We come to the conclusion that 

𝑓𝑡,𝑡+𝑖,𝑡+𝑖+1 = 𝐸𝑡(𝑦𝑡+𝑖,𝑡+𝑖+1 + 𝜑𝑡+𝑖,𝑡+𝑖+1
𝑇 ) 

This last consideration equates future short rate to forward rate and explicitly puts forward that 

forward rates are nothing but the expected short yield plus a given risk premium. 
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PRICING BONDS IN CONTINUOUS TIME 

    

 

 

 

3. Pricing Bonds in Continuous Time 
Pricing zero-coupon bonds within the economy through a model is what is usually required to 

a term structure model that wants to create, or somehow emulate, the relationship between bond 

of different maturities and between yields and maturities. Zero-coupon bonds are obligations 

paying a given capital, usually named principal, after a given period, but giving no intermediate 

payments (coupons) during the same period. To model such products and their yields usually 

the principal is taken to be equal to one, to have a common ground for comparison. 

Of course to keep comparability among bonds, time to maturity will define bond price. Even 

contract with different maturities but with equal time to maturity at a given date will be 

considered the same. We assume each bond is traded on the market at a given price 𝑃τ, that 

defines the yields of each bond with a given maturity in this way: 

ℎ𝑝𝑟𝑡,𝑡+𝑛
𝜏 = 𝑙𝑜𝑔 𝑃𝑡+𝑛

𝜏−𝑛 − 𝑙𝑜𝑔 𝑃𝑡
𝜏 

𝑦𝜏 =
ℎ𝑝𝑟𝑡,𝑡+𝜏

𝜏

𝜏
=  − 

𝑙𝑜𝑔𝑃𝑡
𝜏

𝜏
 

That is, independently from the specific term of the contract, the relevant features of the 

instruments we are considering are no-coupon and common time to maturity: note that if it was 

otherwise arbitrage opportunities could easily been exploited. The specification of the yield 

given above tells nothing but that the yield is a particular case of holding period return, when 

the bond is kept until maturity. 

The short rate, that in ATSMs plays a central role for specification, is theoretically the limit of 

the yield as time to maturity shrinks and goes towards zero. This means that the short rate is 

resembling an hypothetical instantaneous rate. Another key definition is excess holding period 

returns, that is the holding period return in excess of risk free return, defined as the difference 

between the hpr of a bond and the hpr of another bond that is maturing at the end of the holding 

period. 

The method usually employed to price bonds uses a corresponding risk neutral probability 

measure, most of the times identified with Q*, and it is in this probability space that risk neutral 

pricing is applied. Risk neutral measure is an artificial one, where prices in the economy are 
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payoffs discounted at the riskless rate. The key for the difference between the data-generating 

measure (where we observe the events) and the artificial risk neutral measure is the computation 

of probability weights. Such probability measure, mostly used for derivative pricing, assures 

that arbitrage is not possible: under Q* prices are martingales, that is, the expectation of prices 

under such measure, conditional on past history of the same asset, is equal to the last observation 

for the price of the asset, a well defined model in this sense is Duffie (2001). Thus generally 

what is used as a general formula to price bonds in continuous time is  

𝑃𝑡
𝜏 = 𝐸𝑡

∗ [exp(−∫
𝑡

𝑡+𝜏
𝑟𝑢 𝑑𝑢)] 

This obviously means that the price at time t of a bond with maturity τ is depending on the 

expectation under the corresponding martingale (i.e. risk neutral measure) directly on the 

movement of the short term rate from the time of pricing to the maturity of the bond, this is 

equivalent to say that long term rates are nothing but the mean of expected future short term 

rates. This seems quite interesting since we can easily understand that under the martingale 

measure excess holding period returns are equal to zero. Piazzesi (2006) well defines this 

passage by allowing some error in notation and putting it as 

 

𝐸𝑡
∗ [

𝑑𝑃𝑡
𝜏

𝑃𝑡
𝜏 ] =  𝑟𝑡𝑑𝑡 

 

That is to say that under the risk neutral measure the instantaneous movement of the price of 

the bond is perfectly identified by the movement of the short rate. The important thing thus 

becomes the passage from data-generating measure to the risk neutral probability measure, this 

is what determines the fundamental in the pricing of the bond, and this is precisely determined 

by the so called term premia definition. 

Generally term structure model in continuous time setting thus include two main stages: 

1) The change of probability measure from the data generating measure Q to the risk 

neutral one, Q*; 

2) A specific description of the movement of the short rate r under the new martingale 

measure Q*. 

One famous class of models, named factor models¸ by the way substitutes point 2) with a 

different assumption. The dynamics of the short rate r is described through a relationship with 

a factor (as in Vasicek) or with a vector of factors, usually named state variables, and is usually 
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THE LOCAL EXPECTATION HYPOTHESIS 

set to be a Markov continuous process. A Markov process is defined as a process in which 

expectation conditional on the past is equal to the last observation, it is a memoryless process. 

Hence the conditional expectation at time t under the martingale measure we showed above 

becomes a generic function of time to maturity and of the state vector. For each time to maturity 

of a bond we will have a price defined by this function and by the relationship with the state 

variables that are included in the model. 

𝑃𝑡
𝜏 = 𝐹 (𝑥𝑡, 𝜏) 

Furthermore a dependence on time may be included, bringing the relationship to be time 

varying for different factors 

𝑃𝑡
𝜏 = 𝐹 (𝑥𝑡, 𝑡, 𝜏) 

 

This depends on how term premia are defined within the model. Some research ignored term 

premia, some other considered them as time constant, and other took them as time varying: 

there are different models with different setups and term premia specification is usually set 

independently. 

Even if it will not be our case, it is important to quote how usually ATSMs price bonds in the 

economy. In continuous time the key tool that is used is Ito’s Lemma, that, for a given Ito 

process and a given smooth function of such Ito process, even nonlinear, provides a dynamic 

for the price and turns the problem into a PDE problem usually solved through the Feynman-

Kac approach. The final formula for bond price thus, in most ATSMs, is a PDE derived from 

the relation between yields and state variables and risk premia specification.  

 

 

 

3.1 The Local Expectation Hypothesis 

The local expectation hypothesis, frequently indicated as LEH, is one of the basic assumption 

that, mostly in past, were stated as a starting point in term structure models. Specifically, the 

LEH allows the equation 

𝑃𝑡
𝜏 = 𝐸𝑡

∗ [exp(−∫
𝑡

𝑡+𝜏
𝑟𝑢 𝑑𝑢)] 

3.1 
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to hold under the data-generating measure. This means that it is assumed that in the probability 

measure were observation are made, yields are the log expectation of future short rates until 

maturity, and we are hence allowed to write down 

𝑦𝑡
𝜏 = −𝑙𝑜𝑔𝐸𝑡[exp(−∫

𝑡

𝑡+𝜏
𝑟𝑢 𝑑𝑢)]/τ 

That corresponds to the log price divided by the number of periods, given that the Q and the Q* 

probability measures are the same. On a general basis thus, excess returns on longer maturity 

bonds are zero, since every yield is exactly the expected payoff for that maturity even if we are 

not in an artificial risk neutral measure. This differs from the Expectation Hypothesis (EH), that 

describes yields as the expectation of average future short rates  

𝑦𝑡
𝜏 =  𝐸𝑡[𝑆]/𝜏 

Assuming normality of the short rate we can see that the local expectation hypothesis gives the 

yield as the logarithm of a lognormal distribution, this means that LEH can be rewritten as  

𝑦𝑡
𝜏 =

𝐸𝑡[𝑆]

𝜏
−

1

2
 𝑣𝑎𝑟𝑡 [𝑆]/𝜏 

Hence the two assumptions differ for the variance term. On the empirical ground different 

papers were written on the compatibility of such hypotheses with no-arbitrage assumption, as 

Cox Ingersoll Ross1 (1981) and Fisher (1998)2. Moreover for different specification of the short 

rate, EH and LEH provide different shapes of yield curve, since each of these hypotheses gives 

a different relationship between yield and maturity. In the next subsection we will briefly focus 

on the bonds price PDE in the case in which LEH is present or not. 

 

 

3.1.1                                PDE FOR BOND PRICES: THE ROLE OF LEH 

3.1.1 PDE for Bond Prices: the Role of LEH 

As we mentioned above, in ATSMs usually the change of measure form Q to Q* has to be 

provided, but if LEH is assumed then no change will be needed since the two measures will 

coincide. Even if LEH is a pretty strong hypothesis, that has been denied as counterfactual, it 

does have some advantages. Working directly in the data generating measure in fact can allow 

                                                 
1 J.C. Cox, J.E. Ingersoll, S.A. Ross, 1981, “The relation between forward prices and future prices”, journal of Financial 

Economics 9, 321-346 

2 Fisher, M., 1998. A Simple Model of the Failure of the Expectations Hypothesis, Working paper (Federal Reserve Bank of 

Atlanta, Atlanta, GE) 
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some insight on parameters in the same probability space of the observations, and needs no 

complex changes of measure within the model. 

To have a brief idea of what this means we will consider a Markov process x solving the SDE 

𝑑𝑥𝑡= µ𝑥(𝑥𝑡)𝑑𝑡 +  𝜎𝑥(𝑥𝑡)𝑑𝑧𝑡 

with drift µ𝑥, volatility 𝜎𝑥, and z being a Q-brownian motion. Among such processes the so 

called Gaussian processes have affine drift and constant volatility, but in general the drift and 

the volatility are time –homogeneous. The key idea is that a partial differential equation is built 

starting from the basic concept that the expression for price  

𝑃𝑡
𝜏 = 𝐸𝑡

∗ [exp(−∫
𝑡

𝑡+𝜏
𝑟𝑢 𝑑𝑢)] 

is the solution for the bond price, that depends on state vector and maturity, i.e. the bond price 

is 𝐹(𝑥, 𝜏). Form the pricing equation above we know that the price at time t for a given maturity 

is equal to the payoff, this means that when time to maturity runs out, and thus τ = 0, we will 

have 𝐹(𝑥, 0) = 1. Again, from the pricing equation we know that price is strictly positive 

(exponential function), and so will be even 𝐹(𝑥, 𝜏), that will also be an Ito process with some 

drift µ𝐹(𝑥𝑡, 𝜏) and some volatility 𝜎𝐹(𝑥𝑡, 𝜏). As a final step we will have that the initial Local 

Expectation Hypothesis will imply that the drift of the price, function of state variables and 

maturity, will be nothing but the short rate r. On a general basis thus starting from a pricing 

equation that gives the price as an expected payoff, being the price a function of state variables 

and imposing LEH, we come to a model that can state a relationship between prices of bonds 

and state variables. Specific resolution of PDE may bring some trouble on an empirical ground, 

but for what concerns our paper this is not strictly needed. 

A different case, and with no doubt a more realistic one, is the one in which Local Expectation 

Hypothesis is not assumed. This means that the data-generating measure is not taken to coincide 

with the risk neutral measure, hence a new probability space will have to be define and a 

“translation” mechanism between the two spaces will be needed to compute prices. If with LEH 

the drift of the price function was equal to the short rate, i.e. 

µ𝐹 (𝑥, 𝜏) = 𝑅(𝑥) 

now the drift will be equal to the short rate only under the martingale measure Q*, i.e. 

µ 𝐹
∗ (𝑥, 𝜏) = 𝑅(𝑥) 
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and a passage from the two measures will be needed. The simplest case for the dynamics of x 

will be taking it as a single state variable, as the first ATSMs did (e.g. Vasicek, 1977)3: in such 

models the state variable considered was simply the present short rate 𝑟 = 𝑥. In such case the 

distribution of the short rate would be shifted, consequently form an adjustment for risk. The 

mean of the state variable will hence change passing through the measures, while volatility 

would stay the same, i.e. 

𝜎𝑥
∗ = 𝜎𝑥 

The whole process for the construction of PDE will now have to be derived in the risk-neutral 

measure and only after will be translated back to the data generating measure. 

This change of measure is usually performed involving a density ξ, a strictly positive martingale 

starting from  𝜉0 = 1 and moving according to the Stochastic Differential Equation 

𝑑𝜉𝑡

𝜉𝑡
= −𝜎𝜉(𝑥𝑡)𝑑𝑧𝑡 

This density is assured to be a martingale since it solves Novikov condition, i.e. the expectation 

for the solution of 𝜉𝑡 is finite. Once this is satisfied, the Q-distribution can be twisted into the 

risk neutral probability measure through the Girsanov theorem, that bring the dynamics of x to 

𝑑𝑥𝑡 = (µ𝑡
∗(𝑥𝑡) − 𝜎𝑡

∗(𝑥𝑡)𝜎𝜉
∗(𝑥𝑡)T)𝑑𝑡 + 𝜎𝑡

∗(𝑥𝑡)𝑑𝑧𝑡 

Where we can note that x keeps the same volatility under both measure: this is known as the 

diffusion invariance principle. 

 

 

 

 

 

 

 

 

                                                 
3 Vasicek, O., 1977. An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, 5, 177-88. 
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AFFINE TERM STRUCTURE MODELS 

 

    

3.2 Affine Term Structure Models 

 

The second stage of term structure model quoted in the above sub-chapter is the main concern 

for what defines affine term structure models. In fact generally ATSMs have as a common and 

characterizing feature the functional form that relates the short rate and the state variables, and 

the type of diffusion that these state variables show. The functional form intended is of course 

affine form, which is characterized by a constant plus a linear term, and this is applied: 

1) To 𝑅(𝑥) 

Where we will have a short rate as function of state variables in an affine form like 

𝑅(𝑥) = 𝑎 + 𝑏𝑇𝑥 

2) To the diffusion of x under the risk neutral measure, where both the drift µ𝑥
∗ (𝑥𝑡) and the 

variance matrix 𝜎𝑡
∗(𝑥𝑡)𝜎𝑡

∗(𝑥𝑡)𝑇 will be affine functions. 

The first requirement appears pretty simple, being a a real constant and b some vector of 

coefficients, with length equal to the number of factors considered within the model. ATSMs 

with one state variable will thus have a equal to zero and b coefficients vector of the type 

[1 ;  0𝑁−1]. 

The second requirement instead needs a more detailed explanation. 

 

3.2.1                                              AFFINE DIFFUSIONS 

3.2.1 Affine Diffusions 

To explain affine diffusions it is helpful for us to start from a general case, that may result 

simpler, that provides the imposition of Local Expectation Hypothesis, this correspond again 

to assume that risk neutral pricing can be done in the data-generating probability measure, since 

the assumption on price as expected exponential short rate holds in such space. 

 

Assuming that the x vector has an affine diffusion means to assume that the dynamics of such 

process is 

𝑑𝑥𝑡 = µ𝑥(𝑥𝑡)𝑑𝑡 + 𝜎𝑥(𝑥𝑡)𝑑𝑧𝑡 

 

3.2 
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Where the coefficients for drift and volatility are affine functions of x, and specifically  

µ𝑥(𝑥𝑡) = 𝑘(𝑥̅ − 𝑥) 

𝜎𝑥(𝑥𝑡) = 𝛴𝑠(𝑥) 

Where 𝑠(𝑥) is an N × N matrix with √𝑠0𝑖 + 𝑠0𝑖
𝑇 𝑥 for each i-th diagonal element, while Σ and k 

are matrices of constants. 

To better understand what this means it may be of some use to make clear some consequences 

that in the univariate case are of simple intuition.  

First of all, the drift of the affine diffusion is nothing but a mean reverting process. In fact the 

error observed at each time, intended as the distance of the state variable from its own mean, is 

corrected with speed of adjustment k (taking it between 0 and 1): if the level of x is above the 

mean, the movement dx brings x towards its mean by a fraction of the error equal to 
1

𝑘
. In the 

meanwhile, this movement of mean reversion will be disturbed by the stochastic part of the 

infinitesimal movement dx. In fact to the mean reversion component a random shock 𝑑𝑧𝑡, 

distributed as a normal with mean 0 and variance dt, will add some noise via the coefficient 

𝜎𝑥(𝑥𝑡). Thus depending on whether the volatility is allowed to be time varying or not, the 

random normal shocks will translate more or less during periods of high or low volatility into 

the infinitesimal movement dx. 

The most common types of affine processes are Gaussian and Square Root processes, which 

are characterized by the assumptions on the stochastic coefficient (volatility matrix). The first 

type of process has constant variance matrix: this means that 𝜎𝑥(𝑥)𝜎𝑥(𝑥)𝑇 is time 

homogeneous, and thus the disturbance term affects the movement of the state variables in a 

stable way throughout time. On a mathematical basis this translate into 𝑠(𝑥) being an identity 

matrix, since Σ is a free parameters matrix. We will thus have a process described by the 

stochastic differential equation 

  

𝑑𝑥𝑡 = 𝑘(𝑥̅ − 𝑥)𝑑𝑡 + 𝛴𝑑𝑧𝑡 
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Square root processes instead allow a linkage between the variance matrix and the state 

variables. This brings along heteroscedasticity and thus needs for some requirements to avoid 

that zero is not reached by the process. 

 The process will appear as 

 

𝑑𝑥𝑡 = 𝑘(𝑥̅ − 𝑥)𝑑𝑡 + 𝛴√𝑥𝑡𝑑𝑧𝑡 

Variance will thus be 𝛴2𝑥𝑡, that may be not positive definite. If the process 𝑥𝑡hits zero in fact, 

variance will do as well: to avoid this the Feller condition 𝑘𝑥̅ >
1

2
𝛴2 ensures that the drift part 

is high enough to make the process go away from zero. Moreover, an important feature to note 

is that the variance of the process in this case will be always proportional to the value of the 

process at time t. 

At this point it is really important to note that Gaussian processes directly depend on their past 

history. Peculiarly this feature makes the infinitesimal movement of the process x to depend on 

a deterministic part that pushes towards the mean value, and a stochastic part that, even with 

constant volatility coefficient, disturbs this movement. In a discrete time setting this translate 

in a Vector Autoregressive stochastic process, that makes each value at each time t to depend 

directly on its past. This will be fundamental for us since the model we will implement will be 

characterized by Gaussian processes in a discrete time setting as well. 
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INTEREST RATES TERM STRUCTURE: THE MODEL 

THE MACRO - FINANCE MODEL 

 

    

 

 

4. Interest Rates Term Structure: the Model 
 

 

 

4.1 The Macro - Finance Model 

 

In this chapter we are going to describe the general approach that has been used in the paper. 

First of all the base model we are taking as main inspiration is the one by Ang Piazzesi (2003)4, 

where the macroeconomic models and the finance models were mixed to get a no arbitrage 

autoregression of the yield curve, introducing macro factors in an affine term structure model. 

The next session is describing the rational, the main mathematical results of Ang Piazzesi 

(2003) and finally the estimation method used. 

 

The main motivation for the model by Ang and Piazzesi is the fact that the macro literature on 

the yield curve only describes the link between the yield considered and the macroeconomic 

variables. On the other side finance models, and in particular affine term structure models, 

working most of times in a continuous time setting and studying the deep meaning of the 

existing difference between the different maturities yields, were able to forecast all the possible 

maturities. By the way the link between yield curve and macroeconomic variables was left on 

the table by these models, or at least was not studied explicitly. On the empirical side this is 

done by using a Gaussian ATSM and adding macroeconomic variables to it. 

The macro variables included in the model, to ensure estimation, are reduced to two measures: 

the first one is a proxy for inflation, the other one is a proxy for real activity. The construction 

of such variables is made by way of the principal component analysis, taking seven different 

                                                 
4 Ang, Andrew and Monika Piazzesi (2003) “A no-arbitrage vector autoregression of term structure dynamics with 

macroeconomic and latent variables.” Journal of Monetary Economics 50,745–787. 
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measures of activity and real activity, dividing them into two groups and taking the first 

component of the principal component analysis. 

This kind of analysis, starting from the variance-covariance matrix of original variables and the 

relative eigenvalues, produces a series of linear combinations of the original series that give as 

output a new series of variables called principal components, where the variation of original 

variables is transferred in different percentages to the new ones. Taking the first principal 

components thus leads to have a kind of synthetic variable explaining most of the times more 

than 90% of the variation of initial variables. In the case of Ang and Piazzesi the initial variables 

that are taken are consumer and producer price index, spot market commodity prices, 

unemployment rate, the index of Help Wanted Advertising in Newspapers, the growth rate of 

employment and the growth rate of industrial production. 

The interesting approach used starts from a Taylor Rule, where the short rate dynamics is 

dependent on Gross Domestic Product and Inflation Rate5 measures. The unobservable 

variables then are nothing but the error of such Taylor Rule, that is they are independent from 

macroeconomic variables effects. Thus while a simple Taylor Rule appears as  

 

𝑟𝑡 = 𝑎0 + 𝑎1𝑓𝑡
𝑜 + 𝑣𝑡   

 

Ang Piazzesi (2003) will describe the short rate as  

 

𝑟𝑡 = 𝛿0 + 𝛿11𝑋𝑡
𝑜 + 𝛿12𝑋𝑡

𝑢   

 

This kind of description of the short rate dynamic is one of the base equations of the affine term 

structure model, together with the measurement equation, the description of the Radon 

Nikodym derivative and the vector autoregression of the model factors. 

 

The state dynamics on the other hand is described by the following autoregression 

𝑋𝑡 = µ + 𝛷𝑋𝑡−1 + 𝛴𝑒𝑡   

                                                 
5 Actually, the measures used are GDP and Inflation gaps, that is the difference between the two macro variables and the 

relative target measures. 
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Where 𝑋𝑡 is the vector of factors describing the yield curve.  

Moreover a pricing kernel is performed to assess the market prices of risk. This kind of 

assumption made at the base at the model allows to assume the no-arbitrage and thus guarantee 

the existence of an equivalent martingale measure. This means that every asset in the economy 

perfectly compensates the risk beared, that is inherent in the asset. This kind of statement is 

used to assure that no extra gain is made in the economy beyond risk free rate and risk premium. 

Applying this concept to the yield curve means to state that the excess returns on the risk free 

rate, that is the excess returns on the one month zero coupon bond, are determined by the risk 

that the agent in the economy is bearing. The whole model is dependent upon such rational: 

why are longer maturities always showing higher returns? Because they are reflecting the risk 

caused by the enhanced uncertainty, due to the further distance of maturity. This uncertainty 

will depend on some variables, that in our case are included in vector 𝑋𝑡. In fact starting from 

the autoregression of 𝑋𝑡, a vector 𝑒𝑡 of errors will be left out, and it will represent the 

unexplainable portion of the state variables taken in consideration. This is in fact what is 

inserted in the Radon Nykodim derivative, being the derivative that describes the link between 

the observation probability measure and the risk neutral probability measure: 

𝜉𝑡+1 = 𝜉𝑡exp (−
1

2
𝜆𝑡

′ 𝜆𝑡 − 𝜆𝑡
′ 𝑒𝑡+1)   

This means that the difference between data generating probability measure and the risk neutral 

probability measure, is dependent on the unexplained portion in the autoregression of the state 

vector by way of some vector 𝜆𝑡, that creates the recursive series 𝜉𝑡. The vector 𝜆𝑡 can be thus 

parametrized by an affine transformation as 

𝜆𝑡 = 𝜆0 + 𝜆1𝑋𝑡 

Were 𝜆0 and 𝜆1 will be the market prices of risk. In fact the diverse 𝜆𝑡 will be the multipliers 

from uncertainty in economy 𝑒𝑡, that will bring to the Radon Nykodim derivative. But being 

this derivative recursive, the first two 𝜆𝑡 will be the most important and they can be interpreted 

as the prices that market attributes to uncertainty, i.e. risk. 

 

The pricing kernel thus is completely defined as 

𝑚𝑡+1 = exp(−𝑟𝑡) 𝜉𝑡+1/𝜉𝑡 
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And hence, substituting 𝑟𝑡 with the short rate dynamics we come to 

𝑚𝑡+1 = exp (−
1

2
𝜆𝑡

′ 𝜆𝑡 − 𝛿0 + 𝛿1𝑋𝑡 − 𝜆𝑡
′ 𝑒𝑡+1)   

And we get to the description of the pricing kernel as a function of the past values of the state 

variables and the transformation of the errors describing uncertainty. 

 

To apply this to the bond prices formula we start from the consideration that uses the definition 

of pricing kernel 

𝐸𝑡(𝑚𝑡+1𝑅𝑡+1) = 1 

That is the one period rate (risk free rate) multiplied by the factor equal to the pricing kernel, 

gives unity. In this way prices of bonds can be computed recursively by using  

𝑝𝑡+1
𝑛+1 = 𝐸𝑡(𝑚𝑡+1𝑝𝑡+1

𝑛 ) 

 

Since the pricing kernel shapes the behaviour of an additional period of maturity return. 

Moreover, within the context of the Ang Piazzesi (2003) model, the prices of bonds are given 

by an affine transformation, named measurement equation, of the state vector that looks like 

𝑝𝑡+1
𝑛 = exp (𝐴̅𝑛 + 𝐵̅𝑛

′ 𝑋𝑡) 

For the price at time t+1 of a zero coupon bond maturing ion n periods. Where the two 

coefficients can be find algebraically6 and result equal to 

𝐴̅𝑛+1 = 𝐴̅𝑛 + 𝐵̅𝑛
′ (µ − 𝛴′𝜆0) +  

1

2
𝐵̅𝑛

′ 𝛴𝛴′𝐵̅𝑛
′ − 𝛿0 

𝐵̅𝑛+1
′ = 𝐵̅𝑛

′ (𝛷 − 𝛴′𝜆1) − 𝛿′1 

 

Starting from 

𝐴̅1 = −𝛿0 

𝐵̅1 = −𝛿1 

                                                 
6 For algebraic derivation of the coefficients please refer to Ang Piazzesi (2003) Appendix. 
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That is nothing but the dynamics of the short rate. Looking at the two equation for the 

coefficients of the measurement equation we can see that at each time t a quantity depending 

on autoregressive parameters and on market prices of risk is added and in particular the short 

rate dynamics mean and slope are taken away at each added period.  

Yields values can be finally computed since 

𝑦𝑡
𝑛 =  −

𝑙𝑜𝑔 𝑝𝑡
𝑛

𝑛
 

𝑦𝑡
𝑛 =  𝐴𝑛 + 𝐵𝑛

′ 𝑋𝑡 

 

With 𝐴𝑛 and 𝐵𝑛 being equal respectively to − 𝐴̅1/𝑛 and − 𝐵̅1/𝑛. 

Given this general theoretical framework, already used in many other works7 needs some more 

specifications in this model. In fact, beyond being an Affine Term Structure Model, this model 

includes both observables and unobservables in the state vector 𝑋𝑡, being a kind of Taylor Rule 

with specified errors, equal to the unobservables factors: the stronger assumption made is the 

one of independence of macro and latent factors.  

This of course goes hand in hand with the Taylor Rule interpretation of the model, but on the 

empirical basis, it is assumed that no link is present between macro and the latent factors of the 

term structure. This would go against the evidences of predictive power of macro movements 

by the yield curve and of course of the link between short rate monetary policy and 

macroeconomic variables8. That could be seen as the main drawback of the model, despite the 

forecast from it proves to be rather effective. 

Another interesting feature of the model are the Risk Premia assumptions. In such a setting 

𝜆𝑡 = 0 would mean assuming that data generating measure and risk neutral measures coincide: 

that is exactly the Local Expectation Hypothesis case, explained in the previous sections. In 

such a case risk premia would be null, since the coefficients would collapse to have constant 

coefficients in the measurement equation, and thus the mean returns per month of holding a one 

year zero coupon bond or a ten year coupon bond would be the same. In some models, like 

macro models (where simple VAR on macro variables is performed) this is assumed, in others 

                                                 
7 A rather complete classification of such models can be found in Dai, Q., Singleton, K., 2000. Specification analysis of 

affine term structure models. Journal of Finance 55, 1943–1978. 
8 Such evidences can be found for example in Harvey, C.R., 1988. The real term structure and consumption growth. Journal 

of Financial Economics 22, 305–333. 
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the risk premia are assumed to be constant (and thus all equal to 𝜆0)9. This seems to be thus a 

crucial point, since it would significantly change the final yield curve: the no arbitrage 

assumption and the risk premia specification do characterize differences among maturities and 

so the whole shape of the curve. 

On the estimation side what is performed is a change from a system of yields and observables 

into a system of observables and unobservables. Studying the density functions of yields and 

macro variables, unobservables can be inferred. The main point is to start from the relationships 

between yields and observables, to describe some new variables basing on a restricted number 

of yields (three in Ang Piazzesi, 2003), and analyse the links between the newly found 

unobservables, together with macro, and the yields that are left: this is referred to as the Chen 

and Scott (1993) method10. To do this a two steps approach is used:  

1) First of all, Ordinary Least Squared (OLS) is used to find the main coefficients 𝛿0 and 

𝛿11 of the short rate dynamics and the autoregressive coefficients µ and Φ. This of 

course are vectors of parameters, that contain parameters corresponding to unobservable 

factors. The point is that unobservable factors are found simultaneously in the model, 

thus in this first step only the parameters corresponding to observables (macro factors) 

are computed and kept fixed in the subsequent estimation step 

2) Holding the previously found parameters fixed, a maximum likelihood function is 

estimated to assess values for the remaining parameters (namely market prices of risk 

and the parameters corresponding to unobservable factors). 

On a more practical base, the following equations are used 

𝑟𝑡 = 𝛿0 + 𝛿11𝑋𝑡
𝑜 + 𝛿12𝑋𝑡

𝑢   

𝑋𝑡 = µ + 𝛷𝑋𝑡−1 + 𝛴𝑒𝑡   

𝐴̅𝑛+1 = 𝐴̅𝑛 + 𝐵̅𝑛
′ (µ − 𝛴′𝜆0) +  

1

2
𝐵̅𝑛

′ 𝛴𝛴′𝐵̅𝑛
′ − 𝛿0 

𝐵̅𝑛+1
′ = 𝐵̅𝑛

′ (𝛷 − 𝛴′𝜆1) − 𝛿′1 

𝜆𝑡 = 𝜆0 + 𝜆1𝑋𝑡 

𝑦𝑡
𝑛 =  𝐴𝑛 + 𝐵𝑛

′ 𝑋𝑡 

                                                 
9 See for example Vasicek (1977) 
10 Chen, R.R., Scott, L., 1993. Maximum likelihood estimation for a multi-factor equilibrium model of the term structure of 

interest rates. Journal of Fixed Income 3, 14–31. 
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Exactly in this order estimation is provided. Starting from the short rate dynamics and the vector 

autoregression, initial values for macro factors are estimated. From these vectors we obtain 

some initial values for the vectors of 𝐴𝑛 and 𝐵𝑛
′ , and 𝑋𝑡

𝑢 time series are computed: following 

this first stage the likelihood function will begin to run, estimating again at each iterative round 

new vectors of parameters 𝐴𝑛 and 𝐵𝑛
′   also considering the new unobservables 𝑋𝑡

𝑢, until the 

likelihood function, based on the probability density functions of observables, unobservables 

and residuals is optimized for a given vector of parameters  θ, including the autoregression 

parameters (µ, θ), short term dynamics parameters (𝛿12) corresponding to unobservable factors, 

and market prices of risk (𝜆0, 𝜆1). This whole system will finally provide a given vector of 

optimizing parameters, that will return some definite measurement equations, one for each 

maturity we may need to know. The interesting aspect of such model is the fact that studying 

autoregressive portions of factors, permits to isolate the effects that the factors at each time t 

have on their future values, and the effect that will affect the short rate. Then there will of course 

be an additional unobservable effect determining the short rate, represented by the unobservable 

factors and their relative parameters. Moreover longer maturities will suffer some additional 

effect, due to higher risk, and thus mainly determined through the estimation of market prices 

of risk, that return the additional premium from each unit of risk, that in this case is an additional 

month of maturity. 

In such a way a given prediction for short rate is given based on the vector of factors, and the 

entire yield curve for potentially every possible maturity (on an empirical basis discrete 

maturities  with one month differences) can be predicted. Of course the entire model is based 

on the effective representation of short rate through adequate choice for the state vector and the 

specification of risk premia. In the case of Local Expectation Hypothesis would disregard the 

second additional effect for longer maturities, and thus would set market prices of risk to zero. 

The LEH in fact would assume that for example, a twelve months zero coupon bond could be 

replicated through a rolling strategy buying twelve subsequent one month zero coupon bonds, 

thus holding a single twelve months bond would give no excess return, that is market prices of 

risk would be zero. Below we report the likelihood function provided directly by the Appendix 

of the original paper by Ang and Piazzesi (2003): the four elements composing such likelihood 

function are the density functions of the variables that linearly combined through the parameters 

of measurement equation return the values for yields. 
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The aim of maximization will be, conditionally on values for the state vector 𝑋𝑡 (containing 

both observable macro factors and unobservable latent factors), to find the vector of parameters 

θ that has the highest probability to return the correspondent vector of yields 𝑌𝑡.  

Once this kind of general framework is clear we can better define the Chen and Scott (1993) 

method. The fundamental concept is the division of the yield into two groups, one of which will 

in a first step model define the unobservable factors, extracting them from the general Taylor 

Rule model. The unobservable factors are thus nothing but the residual unexplained portion of 

the yields chosen for such extraction: taking the three shortest maturities means that the 

variables taken as unobservables will completely define the shortest yields and that the market 

prices of risk will be defined, beyond macro factors, by the portion of such yields that is not 

explained by the values of the same yields and the macro factors at 𝑡 − 1. This is a pretty 

complex argument but in effect the definition of market prices of risk is made on an affine 

function of the state vector, and if the state vector includes variables extracted from the yields 

this means that we are netting the measure of market price of risk from the autoregressive effect 

and looking at the unexplained portion. Here is why we may propose, a further analysis on such 

point: a hint for the chosen yields may be to pick one short, one medium and one long rate for 

unobservable factors definition, so that we may have the autoregressive effects on three 

completely diverse maturities within the model. 

The general results of the Ang and Piazzesi (2003) can be summed up by a substantial 

contribution to forecasting by macroeconomics variables, peculiarly on an out of sample basis. 

Different models for short rates dynamics are used since many times too complex models are 

outperformed by parsimonious ones. Starting from a random walk and going through an 

unconstrained and a constrained VAR, that is constrained considering no-arbitrage 
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implications, the final findings show that a model with macro factors, not including lagged 

values for macro factors, outperforms the others.  
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THE MODEL 

YIELDS DATA 

 

 

5. The 

Model 
 

  

 

5.1 Yields Data 

The data we will take in consideration in our empirical model will be US interest rates at fixed 

selected maturities, available on the St. Louis Federal Reserve website11.  The maturities 

available here are 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 

years. As declared on the FED website12 yields on treasury nominal securities at constant 

maturity are interpolated by the U.S. Treasury from the daily yield curve for non-inflation-

indexed Treasury securities. The curve is based on the closing market bid yields on actively 

traded Treasury securities in the over-the-counter market. These market yields are calculated 

from composites of quotations obtained by the Federal Reserve Bank of New York. This 

method provides a yield for a 10-year maturity, for example, even if no outstanding security 

has exactly 10 years remaining to maturity. What is reported in the graph below are the selected 

nominal yields calculated through the cited interpolation and taken at a monthly frequency. 

 

Figure 1 Representative Nominal Yields from the Database 

                                                 
11 www.fred.stlouisfed.org 
12 www.federalreserve.gov/releases/h15/current/h15 
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As we can easily see from the above graph the yields had a substantial downward movement 

from the end of eighties until 2014. This period came after the Alan Greenspan took the office 

at Federal Reserve Bank and brought as a main action in monetary policy the lowering of short 

rates as a response to all the crisis that United States faced, going from the Russian crisis, to the 

2001 Dot-Com bubble burst until 2008 recession. The dataset we will be using considers this 

periods, with particular focus on the 2008 crisis, that was enhanced by the credit expansions 

that allowed subprime mortgages and CDO financial market takeover until Lehman Brothers 

bankruptcy. 

 

 

Figure 2 Annualised Representative Yields 

 

Since we will be dealing with annualised changes to macro variables, the yields are annualised 

and thus scaled down by a substantial percentage. 
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MODEL 1: A SINGLE FACTOR NO ARBITRAGE MODEL 

 

 

 

5.2 Model 1: A Single Factor No Arbitrage Model Models 

As a first model we will take a single factor model. Such model can be seen as similar to a 

Vasicek (1977) model, where the state factor used is simply the short rate: in our case the proxy 

used will be the one month rate. Using data from January 1988 to December 2014, we will give 

in this model a general example of how this kind of affine term structure models works, we will 

produce some in-sample forecasts of the model going from January to December 2014. These 

forecasts for the entire yield curve will be the measure for comparison with next models. 

 

Figure 3The !-Month Zero Coupon Bond Yield 

The one month yield for zero coupon bonds above graphed will thus constitute our vector 𝑋𝑡 in 

the equations of the model. Starting from the base vector 12 lag autoregression 

 

𝑋𝑡 = µ + 𝛷𝑋𝑡−1 + 𝛴𝑒𝑡   

 

We will recover parameters in the µ, Φ and Σ through Ordinary Least Squares method. The 

dynamics of the short rate instead in this first model collapses to an identity since the empirical 

proxy for the instantaneous rate in our analysis is actually the one month yield, Hence in the 

equation   
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𝑟𝑡 = 𝛿0 + 𝛿11𝑋𝑡
𝑜 + 𝛿12𝑋𝑡

𝑢   

 

The parameters 𝛿0 and 𝛿12 will go down to zero, while the parameter 𝛿11 will be simply equal 

to one. The only parameters left to Maxim Likelihood Estimation (MLE) thus will be the one 

reguarding market prices of risk, that is the ones involved in the equation  

 

𝜆𝑡 = 𝜆0 + 𝜆1𝑋𝑡 

Where 𝜆0 and 𝜆1 will be set at zero initially and after that will be estimated through MLE. The 

initial values set in the initial step (OLS parameters and market prices of risk) will enter first of 

all our measurement equation parameters expressions 

 

𝐴̅𝑛+1 = 𝐴̅𝑛 + 𝐵̅𝑛
′ (µ − 𝛴′𝜆0) +  

1

2
𝐵̅𝑛

′ 𝛴𝛴′𝐵̅𝑛
′ − 𝛿0 

𝐵̅𝑛+1
′ = 𝐵̅𝑛

′ (𝛷 − 𝛴′𝜆1) − 𝛿′1 

 

As it can be easily seen from the above equations, and as the Ang Piazzesi (2003) work suggests, 

the measurement equation are recursive processes. With the initial values found in the initial 

step the first vectors of measurement equation parameters are found (with market prices of risk 

parameters at zero) and the MLE is performed to find the optimal market prices of risk holding 

𝐴𝑛 and 𝐵𝑛 fixed. After this first iteration the parameters are reestimated with the previous 

optimal estimates for 𝜆0 and 𝜆1 and with new vectors of 𝐴𝑛 and 𝐵𝑛, and so on until the iteration 

that maximizes the log likelihood function and that will contain the optimal values for the 

model. The likelihood function that is used retrieves the distribution of  𝑌𝑡 from the 

transformation of yields into a linear transformation of the state variables plus an error, at each 

round of iteration new measurement equation is computed and this gives back an error 𝑢𝑡, that 

is supposed to be distributed normally. In this case the factor entering the measurement equation 

will only be the 1 month rate, included all the lags, hence the final vector of parameters in the 

measurement equation will transform the last twelve values for the one month short rate into a 
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9 maturities vector of yields. In the graph below you can find the effect of the past twelve 

months on the one year, the five years and the ten years yields respectively. 

 

 

Figure 4 The effect of Lagged Values of One Month rate on Longer Maturities 

 

From Figure 4 we can see that the multipliers for the lagged values of the short rate, given the 

results of our model are rather similar across maturities. The seventh lagged value for the short 

rate seems to play an important role together with the first lagged values and the twelfth lag, on 

the other hand generally we have no prominent differences in the effects across different 

maturities.   

 

Figure 5 Intercept of Measurement Equation 
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In Figure 5 we can find the intercept values 𝐴𝑛 that optimize our model. As we expected, for 

longer maturities the intercept is higher since the lagged values for short term yields will affect 

the long term yields for a small part, and the mean is higher than the other maturities.  

 

Figure 6 Model One - Yield Curve Forecast over 2014 

 

In Figure 6 the final forecast from the model is presented. Here both the time dimension and 

the maturity dimension are reported so that a double view could be exploited: yields curve for 

given forecast periods and evolutions over 2014 of the different maturities. Of course a similar 

graph is not explicative of our results but surely makes clear what the base for model 

comparison is and what we are forecasting at this stage. To gain a somewhat practical view on 

our result we performed a Root Mean Squared Error of the forecasts in order to have an easier 

method for comparison with the other models. 
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Maturity RMSE_Mod1 

1 Month 0,0674 

3 Months 0,1139 

6 Months 0,1924 

1 Year 0,3817 

2 Years 0,8466 

3 Years 1,3390 

5 Years 2,2495 

7 Years 3,0045 

10 Years 3,8758 
 

Table 1: Root Mean Squared Error on Forecasts over 2014 Period for the entire Yield Curve 

For the root mean squared error we may observe that much of the error is found on longer 

maturities. This is of course because the model we are estimating is basing on the additional 

risk premia per period of maturity, thus the error that will produce on the single period will be 

at its highest when the periods of maturities are much more, thus with longer maturities. 

For a further idea of the result of our forecast, we focus on the yield showing the greatest 

standard deviation over our sample, i.e. the one-year yield.  

  

Figure 7 1 Year Maturity Yield - Forecast vs. Realized Data 

 

The main problem with this first estimation is that including crisis period from 2001 on 

(considering also the Dot-Com bubble) the level of the 1 Year yield is substantially higher for 

2014 forecast than realized data. The model thus does not perform very well on this basis, since 

the volatility of the 2001-2014 period crucially biases forecasts. Even knowing this we will 
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anyway keep the whole sample together because it is at the basis of our analysis to challenge 

this kind of models on a dataset that requires a strong model because of such volatility of the 

market. 
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5.3 Model 2: A Three Unobservable Factors No Arbitrage Model 

In this second model we are going to change the base set of variables. The great part of interest 

rates finance literature focused on models like this one, where the setting was kept unchanged 

and equal to affine term structure models, but the state vector was changed. One example is the 

work of Litterman and Scheinkman (1991)13, where the factors affecting the curve are 

unobservable variables that describe the level, slope and curvature of the yield curve. Beyond 

this example many more models were created with different kinds of unobservables that 

described the common movement of yields across maturities, the approach we will employ in 

this context is the one by Chen and Scott (1993)14.  Such approach consists in a Kalman Filter 

applied to interest rate yields in a two step process, where the first step extracts some 

unobservable factors, while the second one produces estimates of parameters including in the 

state vector also the unobservables. 

Thus going through the first step we have to select three yields that will be the base for our 

unobservable factors: in our models these yields will be indicated as yields measured without 

error, while the other yields will be indicated as yields measured with error. The estimation 

procedure is rather tricky and not so easy to get conceptually. After some initial arbitrary 

guesses for model parameters, and thus parameters included in the equations 

 

𝑋𝑡 = µ + 𝛷𝑋𝑡−1 + 𝛴𝑒𝑡   

 

𝑟𝑡 = 𝛿0 + 𝛿11𝑋𝑡
𝑜 + 𝛿12𝑋𝑡

𝑢   

 

𝜆𝑡 = 𝜆0 + 𝜆1𝑋𝑡 

We can get to some initial values for the measurement equation parameters, i.e. 

                                                 
13 Litterman, R., Scheinkman, J., 1991. Common factors affecting bond returns. Journal of Fixed Income 1, 51–61. 

14 Chen, R.R., Scott, L., 1993. Maximum likelihood estimation for a multi-factor equilibrium model of the term structure of 

interest rates. Journal of Fixed Income 3, 14–31. 

MODEL 2: A THREE UNOBSERVABLE FACTORS NO ARBITRAGE MODEL 5.3 
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𝐴̅𝑛+1 = 𝐴̅𝑛 + 𝐵̅𝑛
′ (µ − 𝛴′𝜆0) +  

1

2
𝐵̅𝑛

′ 𝛴𝛴′𝐵̅𝑛
′ − 𝛿0 

𝐵̅𝑛+1
′ = 𝐵̅𝑛

′ (𝛷 − 𝛴′𝜆1) − 𝛿′1 

These parameters then, can be used to retrieve from the measurement equation  

𝑦𝑡
𝑛 =  𝐴𝑛 + 𝐵𝑛

′ 𝑋𝑡 

Operating such inversion we get to the extraction of the unobservable variables directly from 

the model through maximization, using subsequent iterations. This lets us to construct new state 

unobservable variables, already accounting for the market prices of risk and the no arbitrage 

assumptions included in the model. The behaviour of such unobservables from one month, two 

years and ten years maturities along the sample period is graphed in Figure 8. 

 

 

Figure 8 Unobservable Variables extracted from 1 Month, 2 Years and 10 Years Yields 

 

The choice made for yields without error has been caused by the fact that we wanted to have 

three unobservables extracted from three different maturities, in such a way that we had some 

degree of description of the short, medium and long end of the yield curve. Once the 

unobservables are determined at inception, the model estimates the Maximum Likelihood 

function based on such variables, the whole thing is then repeated at each iteration until the 

model is maximized with respect to the vector of parameters of the entire model. Such 

procedure is totally different from the one taken in model one, but it is perfectly in line with the 

affine models based on unobservable variables. What we obtain at the end, as in Model 1, are 
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estimates for the parameters in the measurement equation 𝐴𝑛 and 𝐵𝑛. In this case these 

parameters represent the diverse reactions of different maturities to movements in the 

unobservable factors.  

As for Ang and Piazzesi (2003), we can trace in these three unobservable, represented in Figure 

9, factors the relationships among parameters across different maturities: moving for example 

the first latent factor will affect mostly the central portion and the short end of the curve, thus 

it may be assimilated to the “steepness” factor in Litterman and Scheinkman (1991). The second 

unobservable instead affects in a similar fashion all the maturities up to 120 months (10 years), 

and ensembles the “level” factor in literature, while the third unobservable moves the short end 

and nearly does not affect the medium and long portion, hence it may represent the “curvature” 

effect. 

 

 

 

Figure 9 Measurement Equation Parameters estimates for Maturities up to 120 months 

 

 

From these parameters we obtain the forecasts for 2014 for the initial nine yields we analysed. 

The forecast is, as in the previous model, obtained estimating the model until time t and 

applying it to forecast the t+1 yield curve. In Figure 10 we observe that the data obtained show 

negative values for shortest rates at the beginning of the year, with an upward trend in the last 
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months. For longer maturities we observe no significant trend, but a rather constant pattern of 

yields. 

 

Figure 10 Model Two - Forecast for Yield Curves over 2014 

 

Given this result, an interesting focus has to be made on such short negative yields. In Figure 

11 we have the maturities until one year detailed and compared with realized data in 2014. The 

forecasted one month rate, measured without error, is forecasted with a dramatic trend in the 

course of 2014, from – 0,2 to almost 0 in twelve months. In the actual data instead the short rate 

experienced a rather stable pattern, remaining always above 0. Negative rates may be explained 

as the global trend of rates in the long term is decreasing, but in real world having negative 

short rates is not that conventional, and our model does not take into account this.  
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Figure 11 Forecast vs Realized Data for Short end of the Curves over 2014 

 

Having such a hint of errors produced by the model and passing to quantitative analysis, the 

Root Mean Squared Error can give us a more precise. 

 

Maturity  RMSE_Mod1  RMSE_Mod2  

 1 Month  0,0674 0,2193 

 3 Months  0,1139 0,1062 

 6 Months  0,1924 0,1564 

 1 year  0,3817 0,3363 

 2 years  0,8466 0,7012 

 3 years  1,3390 1,0468 

 5 years  2,2495 1,6749 

 7 years  3,0045 2,2277 

 10 years  3,8758 2,9315 
 

Table 2 Root Mean Squared Error on Forecasts over 2014 Period for the entire Yield Curve 

 

The performance for this second model proves to be slightly better than for the first one, as the 

root mean squared error decreases. Considering the fact that Model 2 produces negative 

forecasts by the way would not make it so preferable to Model 1. Certainly this kind of model 

is a more sophisticated one, but still could be improved for example taking into consideration 

the different combinations of yields to be measured with and without error: another criteria to 

be used for example to choose the yields without error may be to choose the yields with higher 

volatilities, that would thus be the most difficult to forecast. By the way our interest to this kind 

of model is limited since we will use it as a base for comparison with the macro model, that is 

Model 3. 
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MODEL 3: A NO ARBITRAGE MODEL WITH MACRO FACTORS 

 

 

 

5.4 Model 3: A No Arbitrage Model with Macro Factors 

As for the model in Ang and Piazzesi (2003) we want to unify the no arbitrage affine term 

structure model, as the ones produced in the two sections above, with the traditional VAR 

approach, that bases the study of the yield curve on the regression of different yields on 

macroeconomic variables. In this way we will have the complete yield curve (120 predicted 

maturities in our case) in a model that also considers macroeconomic variables.  

Mainly for data availability issues, the chosen variables are Consume Price Index (CPI) and 

Industrial Production Index (IPI). These two variables in fact can well represent the economy 

state in the sample period taken under analysis, and most of all, they are computed at a monthly 

frequency. The CPI rate of change can be considered as a good proxy for inflation, the index in 

fact contains the level of prices for all consumer goods in the economy, while the Industrial 

Production Index is well representing GDP movements, as one of the interpretations of Gross 

Domestic Product is usually the sum of all the values produced in one country.  

From the empirical side then, the model is a kind of mixture of the first two models with the 

addition of macro variables. Model 3 in fact is based on the one month rate dynamics, but with 

the Chen and Scott (1993) method. Thus we will base the estimation of the whole yield curve 

on the unobservable variable constructed on the one month maturity yield, plus the two 

differenced series of the macroeconomic variables. Starting from the beginning, the process is 

the same described in model two, but here the difference is that the extraction of the 

unobservable latent factor is done including macro factors in the measurement equation. On a 

stepwise basis, we start from initial guesses for maximum likelihood, of the fundamental 

parameters of the model include in the equations 

𝑋𝑡 = µ + 𝛷𝑋𝑡−1 + 𝛴𝑒𝑡   

 

𝑟𝑡 = 𝛿0 + 𝛿11𝑋𝑡
𝑜 + 𝛿12𝑋𝑡

𝑢   

 

𝜆𝑡 = 𝜆0 + 𝜆1𝑋𝑡 

5.4 
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Peculiarly for this model only, the short rate dynamics will have a valorised 𝑋𝑡
𝑜 vector, made 

up by the macroeconomic variables. Once the initial guesses are set, 120 parameters for the 

measurement equations will be constructed, one for each maturity, and will of course contain 

at this round also parameters for macroeconomic variables that will enter in  

𝐴̅𝑛+1 = 𝐴̅𝑛 + 𝐵̅𝑛
′ (µ − 𝛴′𝜆0) +  

1

2
𝐵̅𝑛

′ 𝛴𝛴′𝐵̅𝑛
′ − 𝛿0 

𝐵̅𝑛+1
′ = 𝐵̅𝑛

′ (𝛷 − 𝛴′𝜆1) − 𝛿′1 

These new parameters then will be employed to inverse the measurement equation below 

equation, where the observable part of 𝑋𝑡 will contain the macroeconomic variables while the 

unobservable part will be obtain from inversion. 

𝑦𝑡
𝑛 =  𝐴𝑛 + 𝐵𝑛

𝑜′𝑋𝑡
𝑜 + 𝐵𝑛

𝑢′𝑋𝑡
𝑢 

Then again as in Model 2 the maximum likelihood will be maximized based on both 

observables and unobservables, obtaining the optimal values for the vector of parameters. At 

the following iteration this optimal values will be the initial values, until the maximum 

likelihood is maximized. 

It seems thus crucial to insert good values for macroeconomic variables. Even having nominal 

rates as values for yields, our intent is to have a good description of relationships among shocks 

in the variables. We thus prefer to work with first differenced values for macro variables, 

resulting in a series as the one represented below 

 

 

Figure 12 Macroeconomic Variables Time Series in First Differences 
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Moreover we conducted some test for stationarity and represent autocorrelation functions and 

partial autocorrelation functions on both the series and the result is the one reported in Figure 

13. 

 

  

 

  

Figure 13 Autocorrelation and Partial Autocorrelation Functions for Macroeconomic Variables 

 

Of course we may not admit stationarity of the series but surely the persistence of the data has 

been decreased from the level variables and thus should report better estimates. Significant 

Autocorrelations and partial autocorrelations are few, we thus could treat these variables as 

stationary. 

From the model thus we will come up with three variables, one representing the unobservable 

part, the other two equal to the macroeconomic variables, and we will have coefficient for all 

of them, summed up in the measurement equation parameters. 
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Figure 14 Measurement Equation Parameters for the Considered Maturities 

 

The relationship between factors and different yields shows that Consumer Price Index has 

negative effects on the shortest maturities, but a positive effect on longer ones, this may seem 

to go against the Taylor Rule. For the Industrial production Index instead the relationship is 

always negative even following the shape of the Consumer Price Index, this would suggest that 

an increase in production would lower interest rates along the whole yield curve. These effects 

do not appear to be as expected, but this may be due mainly to high volatilities during the crisis 

period.

 

Figure 15 Model 3 - The Forecast of the Yield Curve over 2014 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1mo 3mo 6mo 1y 2y 3y 5y 7y 10y

CPI IPI Xu

1mo

3mo
6mo

1y
2y

3y
5y

7y
10y

 (0,50)

 -

 0,50

 1,00

 1,50

 2,00

 2,50

 3,00

 3,50

ge
n

-1
4

fe
b

-1
4

m
ar

-1
4

ap
r-

1
4

m
ag

-1
4

gi
u

-1
4

lu
g-

1
4

ag
o

-1
4

se
t-

1
4

o
tt

-1
4

n
o

v-
1

4
d

ic
-1

4



 

 

48 

 

With respect to the previous models, Model 3 show a substantial increase in precision for one 

step ahead forecast. All of the curves for 2014 in fact are in line, at least for a scale matter, with 

the realized values for the curve. The inclusion of macroeconomic variables in fact does include 

important information for interest rates, both for the short and the long end. The short end of 

the curve is the portion that the central bank can govern somehow through Federal Fund Rate 

setting, while the long end is usually made up of expectation of investors. Both of these 

components seem to be well described by this last model: the macro variables included are good 

proxies for what affects the short maturities, and thus FED policies, and they also are enough 

correlated with the expectations affecting the long end of the curve. 

 

 

Maturity  RMSE_Mod1  RMSE_Mod2   RMSE_Mod3 

 1 Month  0,0674 0,2193 0,0880 

 3 Months  0,1139 0,1062 0,1368 

 6 Months  0,1924 0,1564 0,1453 

 1 year  0,3817 0,3363 0,1329 

 2 years  0,8466 0,7012 0,4808 

 3 years  1,3390 1,0468 0,8836 

 5 years  2,2495 1,6749 1,5669 

 7 years  3,0045 2,2277 2,0874 

 10 years  3,8758 2,9315 2,6383 
 

Figure 16 The Three Models RMSE 

 

 

A last interesting point to make is the capacity of prediction in crisis conditions. We run the 

model on the 2008 period to verify if the model even having parameters based on the whole 

sample was able to estimate the breaks for the Subprime crisis. The result we had was fairly 

good since the yields downward shocks (particularly in February and September 2008) have 

been reported by the model even with a few lag delate. 
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Figure 17 The Forecasted Yield Curve over 2008 Period 
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CONCLUSIONS 

 

 

 

 

6. Conclusions 
Generally thus the model we used seems to well predict the one step ahead values for the interest 

rates. This may seem not a great result for the limited horizon of the forecast but thinking about 

the fact that the maturities we estimated are 120 there would be a potentially wide space for 

hedging or trading strategies linked to such a model. Even in a crisis context in fact the one 

month ahead forecast are good ones and repeat the shocks suffered by the yield curve even few 

periods after the shock. Ang and Piazzesi (2003) hence seem to be confirmed as a final 

conclusion: macro variables do improve finance term structure models mainly through out of 

sample forecasting.  

The analysis may be extended in many more ways, for example further unobservables or 

different macro variables may be included after a preliminary analysis on the single factor. 

Active portfolio strategies may be constructed and components including structural breaks may 

be considered. 
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